WorldWideScience

Sample records for adhesively bonded joints

  1. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    Abdullah, A R; Afendi, Mohd; Majid, M S Abdul

    2013-01-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  2. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints

    International Nuclear Information System (INIS)

    Xu, W.; Liu, L.; Zhou, Y.; Mori, H.; Chen, D.L.

    2013-01-01

    The microstructures, tensile and fatigue properties of weld-bonded (WB) AZ31B-H24 Mg/Mg joints with different sizes of bonding area were evaluated and compared with the adhesive-bonded (AB) Mg/Mg joints. Typical equiaxed dendritic structures containing divorced eutectic Mg 17 Al 12 particles formed in the fusion zone of both WB-1 (with a bonding area of 35 mm×35 mm) and WB-0.5 (with a bonding area of 17.5 mm×35 mm) joints. Less solidification shrinkage cracking was observed in the WB-0.5 joints than WB-1 joints. While the WB-0.5 joints exhibited a slightly lower maximum tensile shear stress than the AB-0.5 joints (with a bonding area of 17.5 mm×35 mm), the energy absorption was equivalent. Although the AB-0.5 joints exhibited a higher fatigue resistance at higher cyclic stress levels, both the AB-0.5 and WB-0.5 joints showed an equivalent fatigue resistance at lower cyclic stress levels. A higher fatigue limit was observed in the WB-0.5 joints than in the WB-1 joints owing to the presence of fewer shrinkage pores. Cohesive failure mode along the adhesive layer in conjunction with partial nugget pull-out from the weld was observed at the higher cyclic loads, and fatigue failure occurred in the base metal at the lower cyclic loads

  3. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  4. Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures

    Science.gov (United States)

    2016-10-04

    validated under the fatigue /dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM (Finite Element Modeling) simulation of the...between input voltage and output charge provide the real and imaginary impedance as illustrated in Figure 3. (a) Adhesive + plate (ΩS) PZT (ΩP...3 m m 0.45mm Adhesive 3.18mm dia. PZT disc (0.25mm thick) 8 Self-Diagnostic Adhesive for Bonded Joints in Aircraft Structures

  5. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading: Arcan Test Study and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-01-01

    Full Text Available The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress, and combination of both. To realize these stress states in the adhesively-bonded joint during tests, a specific loading device is developed with the capacity of providing six different loading angles, which are 0°(pure tension, 18°, 36°, 54°, 72° and 90°(pure shear. Failure modes of adhesively-bonded joints are investigated. It indicates that, for the pure shear loading, the failure mode is the cohesive failure (near the interface between the adhesive layer and the steel support in the adhesive layer. For the pure tensile and combined loading conditions, the failure mode is the combination of fiber breaking, FRP delamination and interfacial adhesion failure between the FRP sandwich deck and the adhesive layer. The load-bearing capacities of adhesive joints under combined loading are much lower than those of the pure tensile and pure shear loading conditions. According to the test results of six angle loading conditions, a tensile/shear failure criterion of the adhesively-bonded joint is obtained. By using Finite Element (FE modeling method, linear elastic simulations are performed to characterize the stress distribution throughout the adhesively-bonded joint.

  6. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  7. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    International Nuclear Information System (INIS)

    GUESS, TOMMY R.; METZINGER, KURT E.

    1999-01-01

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint

  8. Acousto-ultrasonic evaluation of adhesively bonded CFRP-aluminum joints

    International Nuclear Information System (INIS)

    Lee, Seung Hwan; Kwon, Oh Yang

    1997-01-01

    Correlation between the amount of artificial defects in bonded region and the acousto-ultrasonic parameters(AUPs) including signal amplitude and then the static strength of adhesively bonded joints of carbon fiber reinforced plastic(CFRP) laminates and Al6061 plates has been investigated. The effect of the frequency content and the bandwidth of input signals were studied using 200 kHz, 650 kHz, 1 MHz, 2 MHz pulses and 1 MHz tone-burst signals. With increasing fraction of defects, the signal amplitude and AUP1 were decreased whereas AUP2 was increased. This result has been attributed to the energy transfer characteristics of bonded joints with delamination-type defects and the change of spectral content due to the defects. Considering the nature of high attenuation, a pulse signal with major frequency content at the third harmonic of thickness mode resonance, 650 kHz for the dimension of specimens used in this study, has been found optimal for acousto-ultrasonic testing of CFRP-aluminum joints.

  9. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  10. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    -1, where partial safety factors are introduced together with characteristic values. Asymptotic sampling is used to estimate the reliability with support points generated by randomized Sobol sequences. The predicted reliability level is compared with the implicitly required target reliability level defined......This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  11. Analysis on Adhesively-Bonded Joints of FRP-steel Composite Bridge under Combined Loading : Arcan Test Study and Numerical Modeling

    NARCIS (Netherlands)

    Jiang, X.; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2016-01-01

    The research presented in this paper is an experimental study and numerical analysis on mechanical behavior of the adhesively-bonded joint between FRP sandwich bridge deck and steel girder. Generally, there are three typical stress states in the adhesively-bonded joint: shear stress, tensile stress,

  12. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  13. A Fracture-Based Criterion for Debonding Strength of Adhesive-Bonded Double-Strap Steel Joints

    Directory of Open Access Journals (Sweden)

    Prawit Santisukpotha

    2012-01-01

    Full Text Available This paper addresses the debonding strength of adhesive-bonded double-strap steel joints. A fracture-based criterion was formulated in terms of a stress singularity parameter, i.e., the stress intensity factor, which governs the magnitude of a singular stress field near the joint ends. No existing crack was assumed. A total of 24 steel joint specimens were tested under constant amplitude fatigue loadings at stress ratio of 0.2 and frequency of 2 Hz. The joint stiffness ratio was slightly less than one to control the maximum adhesive stresses at the joint ends. To detect the debonding, a simple and practical technique was developed. The test results showed that the interfacial failure near the steel/adhesive corner was a dominant failure mode. The failure was brittle and the debonding life was governed by the crack initiation stage. The finite element analysis was employed to calculate the stress intensity factors and investigate the effects of the adhesive layer thickness, lap length and joint stiffness ratio on the debonding strength.

  14. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  15. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  16. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  17. Analytical modeling of mixed-Mode bending behavior of asymmetric adhesively bonded pultruded GFRP joints

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Shahverdi, M.; Hutař, Pavel; Vassilopoulos, Anastasios P.

    2015-01-01

    Roč. 147, OCT (2015), s. 228-242 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Mixed-Mode delamination * Asymmetric joint * Adhesively bonded joint * Failure criterion * Analytical prediction * GFRP Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.024, year: 2015

  18. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  19. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  20. Identification of parameters of cohesive elements for modeling of adhesively bonded joints of epoxy composites

    Directory of Open Access Journals (Sweden)

    Kottner R.

    2013-12-01

    Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.

  1. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  2. Review of research on the hygrothermal environmental durability of structural adhesively bonded joints

    Directory of Open Access Journals (Sweden)

    Xiao HAN

    2017-06-01

    Full Text Available In recent years, structural adhesive bonding technology has been widely used in many industrial fields, with many advantages over traditional mechanical connection methods, such as riveting, welding and bolt connection. Due to the adhesive characteristics of polymer materials, the environmental durability of adhesive joint becomes the key problems in engineering structure connection feasibility and long-term service reliability. On the basis of the review of the research of the hot-humid environmental durability of structural adhesive joints, the effects of temperature, moisture and coupled condition on the structural mechanical behaviour are discussed, introducing the published research progress and results both at home and abroad. The prospects are provided: the future research work can be combined with a variety of observation scales of environmental aging test and numerical simulation method, delve into sub hygroscopic, creep, thermal expansion and hygroscopic expansion aging behavior, such as the environment of model prediction method simulation in more than a variety of mechanical performance degradation behavior of coupling conditions, and provide more reliable theoretical modeling and experimental data for engineering design and application of cementing structure.

  3. Adhesion quality of glued joints from different commercial wood species

    Directory of Open Access Journals (Sweden)

    Alexandre Miguel do Nascimento

    2013-12-01

    Full Text Available The objective of this study was to determine the effect of wood density, adhesive type and gluing pressure on the shear strength of glued joints of fourteen commercial wood species. Wood pieces were classified in three density classes (Class 1: less than 0.55 g cm-3; Class 2: from 0.55 to 0.75 g cm-3; and Class 3: greater than 0.75 g cm-3 and joints bonded with two adhesives: polyvinyl acetate (PVA and urea-formaldehyde (UF, under two different pressures: 6 and 12 kgf cm-2. Glued joints bonded with PVA adhesive presented higher shear strength than those bonded with UF adhesive. For percentage of wood failure, the PVA adhesive had the best performance, however, only Classes 1 and 2 reached the values required by ASTM 3110 standard. Glued joints from Class 3, bonded with UF adhesive, did not reach the values of solid wood. The gluing pressure of 12 kgf cm-2 was more efficient for Class 3, for both shear strength and percentage of wood failure.

  4. Polyurethane structural adhesives applied in automotive composite joints

    Directory of Open Access Journals (Sweden)

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  5. A self-diagnostic adhesive for monitoring bonded joints in aerospace structures

    Science.gov (United States)

    Zhuang, Yitao; Li, Yu-hung; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2016-04-01

    Bondline integrity is still one of the most critical concerns in the design of aircraft structures up to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations still require assembling the composite using conventional fasteners. Furthermore, current state-of-the-art non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques are incapable of offering mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is the development of an intelligent adhesive film with integrated micro-sensors for monitoring the integrity of the bondline interface. The proposed method makes use of an electromechanical-impedance (EMI) based method, which is a rapidly evolving approach within the SHM family. Furthermore, an innovative screen-printing technique to fabricate piezoelectric ceramic sensors with minimal thickness has been developed at Stanford. The approach presented in this study is based on the use of (i) micro screen-printed piezoelectric sensors integrated into adhesive leaving a minimal footprint on the material, (ii) numerical and analytical modeling of the EMI spectrum of the adhesive bondline, (iii) novel diagnostic algorithms for monitoring the bondline integrity based on advanced signal processing techniques, and (iv) the experimental assessment via prototype adhesively bonded structures in static (varying loads) and dynamic (fatigue) environments. The proposed method will provide a huge confidence on the use of bonded joints for aerospace structures and lead to a paradigm change in their design by enabling enormous weight savings while maximizing the economic and performance efficiency.

  6. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Directory of Open Access Journals (Sweden)

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  7. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  8. Strength and Failure Mechanism of Composite-Steel Adhesive Bond Single Lap Joints

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2018-01-01

    Full Text Available Carbon fiber-reinforced plastics- (CFRP- steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.

  9. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    Science.gov (United States)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  10. Creep analysis of adhesively bonded single lap joint using finite element method

    International Nuclear Information System (INIS)

    Zehsaz, Mohammad; Vakilitahami, Tahami Farid; Saeimisadigh, Mohammad Ali

    2014-01-01

    Adhesive joints are being used widely in engineering industries due to the increasing demand for designing lightweight structures. Because of the physical properties of the most adhesives, they creep even at room temperature. Therefore, the creep behavior of a single lap adhesive joint is studied in this paper. For this purpose, using the experimental data, creep constitutive equations for the adhesive has been obtained. Then, these equations have been employed to investigate the creep behavior of the joint. The results show that due to the creep straining, the stresses in the joint corners, decrease. However, creep strain accumulates in these areas which this in turn may lead to separation of adhesive from adherent. In order to eliminate the effect of strain accumulation, two modifying methods have been proposed in this paper: increasing the layer thickness and using filleted joints.

  11. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  12. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    International Nuclear Information System (INIS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-01-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test. (paper)

  13. Progressive Damage Modeling of Durable Bonded Joint Technology

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  14. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  15. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    Science.gov (United States)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  16. Analysis of Balanced Double Lap Joints with a Bi-Linear Softening Adhesive

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik; Schmidt, Jacob Wittrup

    2010-01-01

    of cracked concrete disks strengthened with adhesive bonded fiber reinforced polymers (FRP), or in any other structure comparable to a double lap joint with a softening interface. The present constitutive model can be changed to fit any model with the same shape of constitutive relationship, see Figure 1.......The response of a bonded symmetric balanced double lap joint under tensile loading with a bilinear softening adhesive is described with a closed form solution. Since bonded joints in concrete structures undergo softening, a versatile model to describe the response for a wide range of constitutive...

  17. Environment influence on the solidity of the adhesive joint

    Directory of Open Access Journals (Sweden)

    Vladimír Válek

    2006-01-01

    Full Text Available In this paper “Environment influence on the solidity of the adhesive joint” I have dealt with the utilization of the bonding metals and practising experimental laboratory tests of adhesive joints depending on different laboratory environments and anticorrosive protection of the samples.For this laboratory tests I have chosen a universal adhesive. It is a two-component epoxy adhesive with suitable conditions for bonding metals. The samples were made from steel and were produced by the standard ČSN EN 1465. After the bonding and the cure procedure the samples were exposed in H20 environment for exact intervals (parts of the samples were painted by anticorrosive painting. After the exposition I have examinated the solidity of the adhesive joint in shearing stress on the measuring instrument Zwick 050. The samples were compared with etalon that were exposed to no environment.Results of the particular measuring were described into the graphs and were recorded the break down maximum force. When the samples were broken down I have taken a photo of it, which is in the appendix.

  18. Performance Evaluation and Durability Studies of Adhesive Bonds

    Science.gov (United States)

    Ranade, Shantanu Rajendra

    In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights

  19. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  20. Effect of mixed adhesive joints and tapered plate on stresses in retrofitted beams bonded with a fiber-reinforced polymer plate

    International Nuclear Information System (INIS)

    Bouchikhi, A.S.; Megueni, A.; Gouasmi, S.; Boukoulda, F.B.

    2013-01-01

    Highlights: • Interface stress distribution in beams reinforced composites jointed by homogeneous adhesive. • The reduction of stresses interfaces by using the tapered plate at edges. • The reduction of stresses interfaces by using the bi-adhesive. • The reduction of stresses interfaces by combining between the tapered plate and the bi-adhesive. - Abstract: This paper focuses on the reduction of interfacial stresses when using bonded laminates in strengthening existing structures. The presence of high interfacial stresses that develop near the end of composite known as edge effect may compromise the résistance to failure of strengthened structure. It is known that the decrease of plate thickness and fitness of adhesive (Young modulus) reduces the stress concentration at plate ends. Another way to tackle the problem is proper design of the plate end shape (tapered plate) and using mixed adhesive joints (MAJs) between the adherents. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJs) and tapering plate on the interfacial stress distribution in the adhesive layer in retrofitted steel beam with fiber reinforced polymer (FRP) plate, This results indicate that using the correct combination of tapering plate at the end and mixed adhesive joints can reduce the magnitude of the interfacial stresses significantly

  1. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  2. THE EFFECT OF DEGREASING ON ADHESIVE JOINT STRENGTH

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2017-03-01

    Full Text Available The paper investigates the effect of degreasing, a surface preparation methods in adhesive bonding, on adhesive joint strength. 5 types of degreasing agents were used in the study: acetone, extraction naphtha, Ultramyt, Wiko and Loctite 7061. The degreasing operation was performed by three methods: rubbing, spraying and immersion. Strength tests were performed on single-lap adhesive joints of hot-dip galvanized metal sheets made with Loctite 9466 adhesive according to the above variants of surface preparation. The experimental results demonstrate that adhesive joint strength is significantly affected by the applied degreasing agent. Moreover, the method of application of the degreasing agent is crucial, too. The results of strength testing reveal that the most effective degreasing method for hot-dip galvanized metal sheet adhesive joints is spraying using extraction naphtha. Thereby degreased samples have the highest immediate strength and shear strength. The use of extraction naph-tha is also effective in combination with degreasing by rubbing; however, it is not effective when used in combi-nation with immersion, as reflected in the lowest strength results.

  3. Hybrid FSWeld-bonded joint fatigue behaviour

    Science.gov (United States)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco

    2018-05-01

    Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.

  4. Durability properties for adhesively bonded structural aerospace applications

    International Nuclear Information System (INIS)

    Shaffer, D.K.; Davis, G.D.; McNamara, D.K.; Shah, T.K.; Desai, A.

    1992-01-01

    This paper reports on the importance of good bond durability of adhesively joined aerospace components which has been recognized for many years. Military and civilian aircraft are exposed to harsh environments in addition to severe thermal and stress cycles during their service lives. Moisture is responsible for the majority of bond failures in the field. The presence of surface contaminants (e.g., fluoride, silicones) and the non-neutral pH of poor rinse water are common causes of adhesion problems in production environments. Honeycomb panels, stringer skins, doubler plates and core cowl assemblies are bonded joint structures that are subject to environmental- or contaminant-induced debonding. The identification and characterization of the causes of such bond failures leads to improved production quality, yield and cost reduction

  5. Fatigue strength of a single lap joint SPR-bonded

    International Nuclear Information System (INIS)

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-01-01

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  6. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Gobbato, Maurizio [UCSD; Conte, Joel [UCSD; Kosmatke, John [UCSD; Oliver, Joseph A [UCSD

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  7. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  8. Effects of the curing pressure on the torsional fatigue characteristics of adhesively bonded joints

    International Nuclear Information System (INIS)

    Hwang, Hui Yun; Kim, Byung Jung; Lee, Dai Gil

    2004-01-01

    Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no hole, add very little weight to the structure and have superior fatigue resistance. However, the fatigue characteristics of adhesive joints are much affected by applied pressure during curing operation because actual curing temperature is changed by applied pressure and the adhesion characteristics of adhesives are very sensitive to manufacturing conditions. In this study, cure monitoring and torsional fatigue tests of adhesive joints with an epoxy adhesive were performed in order to investigate the effects of the applied pressure during curing operation. From the experiments, it was found that the actual curing temperature increased as the applied pressure increased, which increased residual thermal stress in the adhesive layer. Therefore, the fatigue life decreased as the applied pressure increased because the mean stress during fatigue tests increased due to the residual thermal stress

  9. Finger jointing green southern yellow pine with a soy-based adhesive

    Science.gov (United States)

    Philip H. Steele; Roland E. Kreibicha; Petrus J. Steynberg; Richard W. Hemingway

    1998-01-01

    The authors present results of laboratory tests for a soy-based adhesive to bond southern yellow pine using the finger-jointing method. There was some reason to suspect that finger jointing of southern yellow pine (SYP) with the honeymoon system using soy-based adhesive might prove more difficult than for western species. The Wood Handbook classes western species in...

  10. Load-Displacement Curves of Spot Welded, Bonded, and Weld-Bonded Joints for Dissimilar Materials and Thickness

    Directory of Open Access Journals (Sweden)

    E.A. Al-Bahkali

    2011-12-01

    Full Text Available Three-dimensional finite element models of spot welded, bonded and weld-bonded joints are developed using ABAQUS software. Each model consists of two strips with dissimilar materials and thickness and is subjected to an axial loading. The bonded and weld-bonded joints have specific adhesive thickness. A detailed experimental plan to define many properties and quantities such as, the elastic - plastic properties, modulus of elasticity, fracture limit, and properties of the nugget and heat affected zones are carried out. Experiments include standard testing of the base metal, the adhesive, the nugget and heat affected zone. They also include employing the indentation techniques, and ductile fracture limits criteria, using the special notch tests. Complete load-displacement curves are obtained for all joining models and a comparison is made to determine the best combination.

  11. The influence of adhesive joint characteristics of the bonded samples of PUR-foam

    Directory of Open Access Journals (Sweden)

    Josef Pacovský

    2011-01-01

    Full Text Available Upholstered chairs and upholstered furniture in general, is largely produced primarily using PUR-foams, and it largely in the form of gluing several types of foam and himself on a firm surface - usually plywood or the agglomerated material – for the qualitative increase of upholstered furniture (including seating. Work deals with properties of the bond in connection with the influence on the final properties of the finished product, or even a change of functional properties in use over time. This work deals with: The influence of the characteristics of the adhesive used on samples bonded polyurethane foams. This work deals with properties of the bond in connection with an influence on the final properties of the finished product, or changes in functional properties when used at the time. The work is focused on: Effect of glue applied to the characteristics of the bonded samples of PUR foam. To determine the effects observed were used as the basis for the methodology based on the standard EN 1957, which was further modified as necessary. The results of the tests and conclusions can be stated that the incidence of bonded joints, ultimately, has a negligible effect on the resulting observed characteristics and therefore can cut and paste samples of smaller sizes into larger blocks without a fundamental change of the original features.

  12. Possibilities of Belzona Adhesive Joints Application for Austenitic Steel Used in Ship Constructions

    Directory of Open Access Journals (Sweden)

    Wojciech Jurczak

    2017-12-01

    Adhesive joints of 304 and 2xx steel using Hysol 9466 adhesive made in laboratory conditions showed better durability properties than the ones made with the use of Belzona 1111 composite. However, in case of emergency connections the bonding strength as well as the bonding time (hardening are important factors. The use of the special Belzona 1212 (for wet surfaces gives a relatively good durability of approx. 20MPa with a much shorter (up to 20 minutes hardening time and does not require such an accurate surface preparation as the adhesive joints made with the use of Hysol 9466.

  13. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    Science.gov (United States)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  14. Experimental Study on Steel to FRP Bonded Lap Joints in Marine Applications

    Directory of Open Access Journals (Sweden)

    Çiçek Özes

    2015-01-01

    Full Text Available Steel structures coated with fiber-reinforced polymer (FRP composites have gained wide acceptance in marine industry due to their high strength-to-weight ratio, good protection from environmental degradation, and impact loads. In this study, adhesive bonding performance of single-lap bonded joints composed of steel coated with FRP has been investigated experimentally for three different surface roughness and two epoxy types. Single-lap bonded joints have been tested under tensile loading. The adhesive bonding performance has been evaluated by calculating the strain energy values. The results reveal that the surface roughness of steel has a significant effect on the bonding performance of steel to FRP combinations and the performance of the resin can be improved by using the primer in an economical way.

  15. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  16. Debonding characteristics of adhesively bonded woven Kevlar composites

    Science.gov (United States)

    Mall, S.; Johnson, W. S.

    1988-01-01

    The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.

  17. Fracture analysis of adhesive joints in wind turbine blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert

    2015-01-01

    Modern wind turbine rotor blades are usually made from fibre-reinforced composite subcomponents. In the final assembly stage, these subcomponents are bonded together by several adhesive joints. One important adhesive joint is situated at the trailing edge, which refers to the downstream edge where...... the air-flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed...

  18. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    Science.gov (United States)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  19. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    Science.gov (United States)

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  20. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin

    2015-10-19

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  1. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin; Alfano, Marco; Lubineau, Gilles; Buttner, Ulrich

    2015-01-01

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  2. A Practical Test Method for Mode I Fracture Toughness of Adhesive Joints with Dissimilar Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Boeman, R.G.; Erdman, D.L.; Klett, L.B.; Lomax, R.D.

    1999-09-27

    A practical test method for determining the mode I fracture toughness of adhesive joints with dissimilar substrates will be discussed. The test method is based on the familiar Double Cantilever Beam (DCB) specimen geometry, but overcomes limitations in existing techniques that preclude their use when testing joints with dissimilar substrates. The test method is applicable to adhesive joints where the two bonded substrates have different flexural rigidities due to geometric and/or material considerations. Two specific features discussed are the use of backing beams to prevent substrate damage and a compliance matching scheme to achieve symmetric loading conditions. The procedure is demonstrated on a modified DCB specimen comprised of SRIM composite and thin-section, e-coat steel substrates bonded with an epoxy adhesive. Results indicate that the test method provides a practical means of characterizing the mode I fracture toughness of joints with dissimilar substrates.

  3. The effect of surface preparation on the behaviour of double strap adhesive joints with thick steel adherents

    DEFF Research Database (Denmark)

    Anyfantis, K.N.; Tsouvalis, N.G.

    2009-01-01

    for preparing the bonding surfaces are investigated, namely grit blasting (GB) and simple sandpaper (SP). The behaviour of the joints, in terms of the force-displacement and strains-displacement responses was monitored and compared for both cases. The joints with SP surface preparation exhibited slightly lower...... stiffness and lower strength than the joints with GB surface preparation, while the latter failed at a lower displacement. In both cases, failure initiated at the free edges of the joints and the dominating failure mode was interfacial. In addition to the above experimental measurements, results are also......One of the major factors determining the integrity of an adhesive bond is the preparation of the bonding surfaces. The present study is an experimental investigation of the effect of the surface preparation procedure on the response of a steel-to-steel double strap adhesive joint. Two procedures...

  4. Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints

    Directory of Open Access Journals (Sweden)

    Behnam Ghoddous

    Full Text Available Abstract In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A two-dimensional elasticity theory that includes the complete stress-strain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.

  5. Longevity of Self-etch Dentin Bonding Adhesives Compared to Etch-and-rinse Dentin Bonding Adhesives: A Systematic Review.

    Science.gov (United States)

    Masarwa, Nader; Mohamed, Ahmed; Abou-Rabii, Iyad; Abu Zaghlan, Rawan; Steier, Liviu

    2016-06-01

    A systematic review and meta-analysis were performed to compare longevity of Self-Etch Dentin Bonding Adhesives to Etch-and-Rinse Dentin Bonding Adhesives. The following databases were searched for PubMed, MEDLINE, Web of Science, CINAHL, the Cochrane Library complemented by a manual search of the Journal of Adhesive Dentistry. The MESH keywords used were: "etch and rinse," "total etch," "self-etch," "dentin bonding agent," "bond durability," and "bond degradation." Included were in-vitro experimental studies performed on human dental tissues of sound tooth structure origin. The examined Self-Etch Bonds were of two subtypes; Two Steps and One Step Self-Etch Bonds, while Etch-and-Rinse Bonds were of two subtypes; Two Steps and Three Steps. The included studies measured micro tensile bond strength (μTBs) to evaluate bond strength and possible longevity of both types of dental adhesives at different times. The selected studies depended on water storage as the aging technique. Statistical analysis was performed for outcome measurements compared at 24 h, 3 months, 6 months and 12 months of water storage. After 24 hours (p-value = 0.051), 3 months (p-value = 0.756), 6 months (p-value=0.267), 12 months (p-value=0.785) of water storage self-etch adhesives showed lower μTBs when compared to the etch-and-rinse adhesives, but the comparisons were statistically insignificant. In this study, longevity of Dentin Bonds was related to the measured μTBs. Although Etch-and-Rinse bonds showed higher values at all times, the meta-analysis found no difference in longevity of the two types of bonds at the examined aging times. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  7. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    Science.gov (United States)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  8. Fracture property of double cantilever beam of aluminum foam bonded with spray adhesive

    International Nuclear Information System (INIS)

    Han, Moon Sik; Choi, Hae Kyu; Cho, Jae Ung; Cho, Chong Du

    2015-01-01

    Aluminum foam with the property of excellent impact absorption has been widely used recently. It is necessary to study fracture energy due to energy release rate by the use of adhesive joint at aluminum foam. This study aims at strength evaluation about adhesive joint on aluminum foam. Bonded DCB specimens with this material property are experimented and the fracture behavior is analyzed by simulation. These specimens are designed by differing in height on the basis of British industrial and ISO standards. As the value of height at model is higher, bonded part is separated to the end. By comparing analysis results with experimental data, these data could agree with each other. By the confirmation with experimental results, these all simulation results in this study can be applied on real composite structure with aluminum foam material effectively. The fracture behavior and its property can also be examined by this study.

  9. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  10. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    Science.gov (United States)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  11. Moisture distribution measurements in adhesive-bonded composites using the D (3He,p)4 He reaction

    International Nuclear Information System (INIS)

    Schulte, R.L.; Deiasi, R.J.

    1981-01-01

    Adhesive bonding of composite materials for many aircraft components offers a distinct advantage in weight and cost reduction compared to similar structures that have been joined by riveting. However, the long term performance of adhesive-bonded components depends on the degree and rate of moisture absorption by the adhesive in the service environment. To investigate the rate and the mechanism of water transport in adhesive-bonded composite materials, a nuclear reaction analysis method based on the D( 3 He,p) 4 He reaction is used to measure the moisture distributions. Samples of graphite/epoxy composite materials were bonded with an epoxy adhesive and isothermally conditioned in a controlled D 2 O environment at 70% relative humidity and 77 0 C for various exposure times. The moisture profiles were measured along the adhesive (adhesive scan) as well as through the thickness of the bonded joint (transverse scan). The dimensions of the probing beam were 125 μm x 125 μm for the adhesive scan and 25 μ x 200 μm for the transverse scan. Absolute deuterium concentrations were determined by comparison of the proton yield from the composite/adhesive to that from reference standards. Calculations from diffusion models of water transport based on parameters determined from bulk measurement techniques are compared to the measured profile and the agreement indicates that classical Fickian diffusion describes the transport of moisture in these materials

  12. Comparison of enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives in self-etch mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.

  13. Shear bond strength of orthodontic brackets bonded with different self-etching adhesives.

    Science.gov (United States)

    Scougall Vilchis, Rogelio José; Yamamoto, Seigo; Kitai, Noriyuki; Yamamoto, Kohji

    2009-09-01

    The purpose of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded with 4 self-etching adhesives. A total of 175 extracted premolars were randomly divided into 5 groups (n = 35). Group I was the control, in which the enamel was etched with 37% phosphoric acid, and stainless steel brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif). In the remaining 4 groups, the enamel was conditioned with the following self-etching primers and adhesives: group II, Transbond Plus and Transbond XT (3M Unitek); group III, Clearfil Mega Bond FA and Kurasper F (Kuraray Medical, Tokyo, Japan); group IV, Primers A and B, and BeautyOrtho Bond (Shofu, Kyoto, Japan); and group V, AdheSE and Heliosit Orthodontic (Ivoclar Vivadent AG, Liechtenstein). The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The adhesive remnant index (ARI) including enamel fracture score was also evaluated. Additionally, the conditioned enamel surfaces were observed under a scanning electron microscope. The SBS values of groups I (19.0 +/- 6.7 MPa) and II (16.6 +/- 7.3 MPa) were significantly higher than those of groups III (11.0 +/- 3.9 MPa), IV (10.1 +/- 3.7 MPa), and V (11.8 +/- 3.5 MPa). Fluoride-releasing adhesives (Kurasper F and BeautyOrtho Bond) showed clinically acceptable SBS values. Significant differences were found in the ARI and enamel fracture scores between groups I and II. The 4 self-etching adhesives yielded SBS values higher than the bond strength (5.9 to 7.8 MPa) suggested for routine clinical treatment, indicating that orthodontic brackets can be successfully bonded with any of these self-etching adhesives.

  14. Evaluation of the quality of cyanoacrylate adhesive joints using the example of poly(methyl methacrylate and polycarbonate

    Directory of Open Access Journals (Sweden)

    Piotr Mazur

    2017-04-01

    Full Text Available Adhesive bonding is one of the simplest and most common methods used for joining materials. It is applied in both production and repair works. The most commonly used adhesives are cyanoacrylates, due to the possibility of combining various materials and short curing time. One of the ways to assess the quality of the adhesive used is testing the shear strength of bonded joints. Three adhesives commonly available on the Polish market, from various manufacturers and with different prices per gram of product were tested. The polymer materials bonded were poly(methyl methacrylate and polycabonate, since they are broadly used in the automotive industry and household equipment. The study revealed significant differences in bonding strength, reaching as much as 38% The adhesive’s price was not commensurate with the quality of the product tested in all cases.

  15. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  16. Analysis of an adhesively bonded single lap joint subjected to eccentric loading

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, N. G.

    2013-01-01

    is benchmarking of computational tools. The test is based on a Single Lap Joint subjected to Eccentric Loading (SLJ-EL). The basic concept that lies behind this configuration is that the applied in-plane tensile load leads the adhesive layer to develop normal stresses, in-plane and out-of-plane shear stresses...

  17. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  18. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  19. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength. PMID:24222742

  20. Microtensile bond strength of eleven contemporary adhesives to enamel.

    Science.gov (United States)

    Inoue, Satoshi; Vargas, Marcos A; Abe, Yasuhiko; Yoshida, Yasuhiro; Lambrechts, Paul; Vanherle, Guido; Sano, Hidehiko; Van Meerbeek, Bart

    2003-10-01

    To compare the microtensile bond strength (microTBS) to enamel of 10 contemporary adhesives, including three one-step self-etch systems, four two-step self-etch systems and three two-step total-etch systems, with that of a conventional three-step total-etch adhesive. Resin composite (Z100, 3M) was bonded to flat, #600-grit wet-sanded enamel surfaces of 18 extracted human third molars using the adhesives strictly according to the respective manufacturer's instructions. After storage overnight in 37 degrees C water, the bonded specimens were sectioned into 2-4 thin slabs of approximately 1 mm thickness and 2.5 mm width. They were then trimmed into an hourglass shape with an interface area of approximately 1 mm2, and subsequently subjected to microTBS-testing with a cross-head speed of 1 mm/minute. The microTBS to enamel varied from 3.2 MPa for the experimental one-step self-etch adhesive PQ/Universal (self-etch) to 43.9 MPa for the two-step total-etch adhesive Scotchbond 1. When compared with the conventional three-step total-etch adhesive OptiBond FL, the bond strengths of most adhesives with simplified application procedures were not significantly different, except for two one-step self-etch adhesives, experimental PQ/Universal (self-etch) and One-up Bond F, that showed lower bond strengths. Specimen failures during sample preparation were recorded for the latter adhesives as well.

  1. Bonding Durability of Four Adhesive Systems

    Directory of Open Access Journals (Sweden)

    Leila Atash Biz Yeganeh

    2016-04-01

    Full Text Available Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS and microleakage during six months of water storage.Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP, Single Bond (SB, Clearfil-SE bond (CSEB, and All-Bond SE (ABSE. After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05.Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage.Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. 

  2. Effects of composite adherend properties on stresses in double lap bonded joints

    International Nuclear Information System (INIS)

    Mokhtari, M.; Madani, K.; Belhouari, M.; Touzain, S.; Feaugas, X.; Ratwani, M.

    2013-01-01

    Highlights: ► We analysis the maximal stresses distribution in the adhesive and the adherend for double lap joint. ► We modified the mechanical properties of adherend layer to decreases the stresses in adhesive layer. ► Then, we analysis the influence of modifying the types of fibers on maximal stresses distributions. ► We analysis the thickness modifications of some layers on maximal stresses distribution. ► In last, we analysis the combination of different modifications on maximal stresses distribution. -- Abstract: The effects of composite layer stiffness, thickness and ply orientations on stresses in the adhesive layer of a double lap bonded joint are investigated using three-dimensional finite element analysis code ABAQUS. A special 3-layer modelling technique is used in the finite element analysis. The non-linear behaviour of adhesive is also considered. Six composite laminates with different ply orientations are used in the lap-joint analysis. The composite materials considered in the analysis are – carbon epoxy, boron epoxy, T300/934 graphite-epoxy, and aramid epoxy. The analysis results indicate that the maximum stress in the adhesive can be significantly reduced by changing the stiffness and fibre orientations in the composite layer. Also, the use of hybrid composite (changing the nature of the fibres in two layers which are near the adhesive layer) results in reducing adhesive shear stresses.

  3. Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.

    Science.gov (United States)

    Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2016-05-01

    To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.

  4. [The application of universal adhesives in dental bonding].

    Science.gov (United States)

    Guo, Jingmei; Lei, Wenlong; Yang, Hongye; Huang, Cui

    2016-03-01

    The bonding restoration has become an important clinical technique for the development of dental bonding technology. Because of its easy operation and the maximum preservation of tooth tissues, bonding repair is widely used in dental restoration. The recent multi-mode universal adhesives have brought new progress in dental bonding restoration. In this article the universal adhesives were reviewed according to its definition, development, improvement, application features and possible problems.

  5. Bond strength and microleakage of current dentin adhesives.

    Science.gov (United States)

    Fortin, D; Swift, E J; Denehy, G E; Reinhardt, J W

    1994-07-01

    The purpose of this in vitro study was to evaluate shear bond strengths and microleakage of seven current-generation dentin adhesive systems. Standard box-type Class V cavity preparations were made at the cemento-enamel junction on the buccal surfaces of eighty extracted human molars. These preparations were restored using a microfill composite following application of either All-Bond 2 (Bisco), Clearfil Liner Bond (Kuraray), Gluma 2000 (Miles), Imperva Bond (Shofu), OptiBond (Kerr), Prisma Universal Bond 3 (Caulk), Scotchbond Multi-Purpose (3M), or Scotchbond Dual-Cure (3M) (control). Lingual dentin of these same teeth was exposed and polished to 600-grit. Adhesives were applied and composite was bonded to the dentin using a gelatin capsule technique. Specimens were thermocycled 500 times. Shear bond strengths were determined using a universal testing machine, and microleakage was evaluated using a standard silver nitrate staining technique. Clearfill Liner Bond and OptiBond, adhesive systems that include low-viscosity, low-modulus intermediate resins, had the highest shear bond strengths (13.3 +/- 2.3 MPa and 12.9 +/- 1.5 MPa, respectively). Along with Prisma Universal Bond 3, they also had the least microleakage at dentin margins of Class V restorations. No statistically significant correlation between shear bond strength and microleakage was observed in this study. Adhesive systems that include a low-viscosity intermediate resin produced the high bond strengths and low microleakage. Similarly, two materials with bond strengths in the intermediate range had significantly increased microleakage, and one material with a bond strength in the low end of the spectrum exhibited microleakage that was statistically greater. Thus, despite the lack of statistical correlation, there were observable trends.

  6. On the Assessment of Susceptor-Assisted Induction Curing of Adhesively Bonded Joints

    NARCIS (Netherlands)

    Severijns, C.P.A.; Teixeira De Freitas, S.; Poulis, J.A.

    2016-01-01

    The autoclave/oven curing process is known to be the current manufacturing technique that provides the best quality of composite laminates and bonded joints. However, this process implies high acquisition cost and a large ecological footprint. Furthermore, with the current complete aeroplane

  7. Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers

    Directory of Open Access Journals (Sweden)

    Shuye Zhang

    2018-01-01

    Full Text Available Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test.

  8. Adhesion science

    CERN Document Server

    Comyn, John

    1997-01-01

    The use of adhesives is widespread and growing, and there are few modern artefacts, from the simple cereal packet, to the jumbo jet, that are without this means of joining. Adhesion Science provides an illuminating account of the science underlying the use of adhesives, a branch of chemical technology which is fundamental to the science of coatings and composite materials and to the performance of all types of bonded structures. This book guides the reader through the essential basic polymer science, and the chemistry of adhesives in use at present. It discusses surface preparation for adhesive bonding, and the use of primers and coupling agents. There is a detailed chapter on contact angles and what can be predicted from them. A simple guide on stress distribution joints and how this relates to testing is included. It also examines the interaction of adhesives and the environment, including an analysis of the resistance of joints to water, oxygen and ultra-violet light. Adhesion Science provides a comprehens...

  9. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives

    Science.gov (United States)

    Sharma, Sudhir; Tandon, Pradeep; Nagar, Amit; Singh, Gyan P; Singh, Alka; Chugh, Vinay K

    2014-01-01

    Objectives: The objective of this study is to compare the shear bond strength (SBS) of stainless steel (SS) orthodontic brackets bonded with four different orthodontic adhesives. Materials and Methods: Eighty newly extracted premolars were bonded to 0.022 SS brackets (Ormco, Scafati, Italy) and equally divided into four groups based on adhesive used: (1) Rely-a-Bond (self-cure adhesive, Reliance Orthodontic Product, Inc., Illinois, USA), (2) Transbond XT (light-cure adhesive, 3M Unitek, CA, USA), (3) Transbond Plus (sixth generation self-etch primer, 3M Unitek, CA, USA) with Transbond XT (4) Xeno V (seventh generation self-etch primer, Dentsply, Konstanz, Germany) with Xeno Ortho (light-cure adhesive, Dentsply, Konstanz, Germany) adhesive. Brackets were debonded with a universal testing machine (Model No. 3382 Instron Corp., Canton, Mass, USA). The adhesive remnant index (ARI) was recordedIn addition, the conditioned enamel surfaces were observed under a scanning electron microscope (SEM). Results: Transbond XT (15.49 MPa) attained the highest bond strength. Self-etching adhesives (Xeno V, 13.51 MPa; Transbond Plus, 11.57 MPa) showed clinically acceptable SBS values and almost clean enamel surface after debonding. The analysis of variance (F = 11.85, P adhesives left on the tooth) to be the most prevalent in Transbond XT (40%), followed by Rely-a-Bond (30%), Transbond Plus with Transbond XT (15%), and Xeno V with Xeno Ortho (10%). Under SEM, enamel surfaces after debonding of the brackets appeared porous when an acid-etching process was performed on the surfaces of Rely-a-Bond and Transbond XT, whereas with self-etching primers enamel presented smooth and almost clean surfaces (Transbond Plus and Xeno V group). Conclusion: All adhesives yielded SBS values higher than the recommended bond strength (5.9-7–8 MPa), Seventh generation self-etching primer Xeno V with Xeno Ortho showed clinically acceptable SBS and the least amount of residual adhesive left on the

  10. Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.

    Science.gov (United States)

    Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa

    2010-06-01

    To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.

  11. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  12. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran; Alfano, Marco; Lubineau, Gilles

    2018-01-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  13. Bonding of universal adhesives to dentine--Old wine in new bottles?

    Science.gov (United States)

    Chen, C; Niu, L-N; Xie, H; Zhang, Z-Y; Zhou, L-Q; Jiao, K; Chen, J-H; Pashley, D H; Tay, F R

    2015-05-01

    Multi-mode universal adhesives offer clinicians the choice of using the etch-and-rinse technique, selective enamel etch technique or self-etch technique to bond to tooth substrates. The present study examined the short-term in vitro performance of five universal adhesives bonded to human coronal dentine. Two hundred non-carious human third molars were assigned to five groups based on the type of the universal adhesives (Prime&Bond Elect, Scotchbond Universal, All-Bond Universal, Clearfil Universal Bond and Futurabond U). Two bonding modes (etch-and-rinse and self-etch) were employed for each adhesive group. Bonded specimens were stored in deionized water for 24h or underwent a 10,000-cycle thermocycling ageing process prior to testing (N=10). Microtensile bond testing (μTBS), transmission electron microscopy (TEM) of resin-dentine interfaces in non-thermocycled specimens and scanning electron microscopy (SEM) of tracer-infused water-rich zones within hybrid layers of thermocycled specimens were performed. Both adhesive type and testing condition (with/without thermocycling) have significant influences on μTBS. The use of each adhesive in either the etch-and-rinse or self-etch application mode did not result in significantly different μTBS to dentine. Hybrid layers created by these adhesives in the etch-and-rinse bonding mode and self-etch bonding mode were ∼5μm and ≤0.5μm thick respectively. Tracer-infused regions could be identified within the resin-dentine interface from all the specimens prepared. The increase in versatility of universal adhesives is not accompanied by technological advances for overcoming the challenges associated with previous generations of adhesives. Therapeutic adhesives with bio-protective and bio-promoting effects are still lacking in commercialized adhesives. Universal adhesives represent manufacturers' attempt to introduce versatility in product design via adaptation of a single-bottle self-etch adhesive for other application

  14. Bonding stability of adhesive systems to eroded dentin

    Directory of Open Access Journals (Sweden)

    Janaina Barros CRUZ

    2015-01-01

    Full Text Available This in vitro study evaluated the immediate and 6 months microshear bond strength (µSBS of different adhesive systems to sound and eroded dentin. Sixty bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated into two groups: sound dentin (immersion in artificial saliva and eroded dentin (erosive challenge following a pH cycling model comprising 4 ×/day Sprite Light® drink for 10 days. Then, specimens were reassigned according to the adhesive system: etch-and-rinse adhesive (Adper Single Bond, two-step self-etch system (Clearfil SE Bond, or one-step self-etch adhesive (Adper Easy One. Polyethylene tubes with an internal diameter of 0.76 mm were placed over pre-treated dentin and filled with resin composite (Z250. Half of the specimens were evaluated by the µSBS test after 24 h, and the other half 6 months later, after water storage at 37°C. Failure mode was evaluated using a stereomicroscope (400×. Data were analyzed by three-way repeated measures analysis of variance and Tukey’s post hoc tests (α = 0.05. After 6 months of water aging, marked reductions in µSBS values were observed, irrespective of the substrate. The µSBS values for eroded dentin were lower than those obtained for sound dentin. No difference in bonding effectiveness was observed among adhesive systems. For all groups, adhesive/mixed failure was observed. In conclusion, eroded dentin compromises the bonding quality of adhesive systems over time.

  15. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  16. [The durability of three self-etch adhesives bonded to dentin].

    Science.gov (United States)

    Tian, Fu-Cong; Wang, Xiao-Yan; Gao, Xue-Jun

    2013-04-01

    To investigate the durability of self-etch adhesives bonded to dentin in vitro. Forty-two extracted human molars were selected and occlusal dentin surfaces were exposed. The teeth were randomly distributed into three groups based on adhesives applied. The one-step self-etch adhesive B(Adper Prompt) and C(G-Bond) and two-step self-etch adhesive A (Clearfil SE bond) were used. After application of the adhesives to the dentin surfaces, composite crowns were built up, after 24 h water storage, the teeth were sectioned longitudinally into sticks (1.0 mm×1.0 mm bonding area) for microtensile testing or slabs (1 mm thick) for scanning electron microscopec (SEM) observation. Bonding strength (mTBS) and nano-leakage were evaluated immediately after cutting or after 6 months in water. The mTBS was analyzed using one-way ANOVA (SPSS 13.0). The nanoleakage was observed by SEM with a backscattered electron detector. Both adhesives and water storage time affected the mTBS. All adhesives showed decreased bond strength after six-month water aging [A dropped from (40.60 ± 5.76) MPa to (36.04 ± 3.15) MPa; B dropped from (19.06 ± 1.50) MPa to (11.19 ± 1.97) MPa; C dropped from (17.75 ± 1.10) MPa to (9.14 ± 1.15) MPa] (P adhesives tested were probably influenced by water aging, however, the two-step adhesive showed better durability than the one-step adhesives.

  17. Effect of double-layer application on bond quality of adhesive systems.

    Science.gov (United States)

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microtensile bond strength of contemporary adhesives to primary enamel and dentin.

    Science.gov (United States)

    Marquezan, Marcela; da Silveira, Bruno Lopes; Burnett, Luiz Henrique; Rodrigues, Célia Regina Martins Delgado; Kramer, Paulo Floriani

    2008-01-01

    The purpose of this study was to assess bond strength of three self-etching and two total-etch adhesive systems bonded to primary tooth enamel and dentin. Forty extracted primary human molars were selected and abraded in order to create flat buccal enamel and occlusal dentin surfaces. Teeth were assigned to one of the adhesive systems: Adper Scotch Bond Multi Purpose, Adper Single Bond 2, Adper Prompt L-Pop, Clearfil SE Bond and AdheSE. Immediately to adhesive application, a composite resin (Filtek Z250) block was built up. After 3 months of water storage, each sample was sequentially sectioned in order to obtain sticks with a square cross-sectional area of about 0.72 mm2. The specimens were fixed lengthways to a microtensile device and tested using a universal testing machine with a 50-N load cell at a crosshead speed of 0.5 mm/min. Microtensile bond strength values were recorded in MPa and compared by Analysis of Variance and the post hoc Tukey test (a = 0.05). In enamel, Clearfil SE Bond presented the highest values, followed by Adper Single Bond 2, AdheSE and Adper Scotch Bond Multi Purpose, without significant difference. The highest values in dentin were obtained with Adper Scotch Bond Multi Purpose and all other adhesives did not present significant different values from that, except Adper Prompt L-Pop that achieved the lowest bond strength in both substrates. Adper Scotch Bond Multi Purpose and Adper Single Bond 2 presented significantly lower values in enamel than in dentin although all other adhesives presented similar results in both substrates. contemporary adhesive systems present similar behaviors when bonded to primary teeth, with the exception of the one-step self-etching system; and self-etching systems can achieve bond strength values as good in enamel as in dentin of primary teeth.

  19. Cohesive Laws and Progressive Damage Analysis of Composite Bonded Joints, a Combined Numerical/Experimental Approach

    Science.gov (United States)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2015-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  20. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  1. Adhesive bonding using variable frequency microwave energy

    Science.gov (United States)

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  2. Shear bond strength of metallic and ceramic brackets using color change adhesives.

    Science.gov (United States)

    Stumpf, Aisha de Souza Gomes; Bergmann, Carlos; Prietsch, José Renato; Vicenzi, Juliane

    2013-01-01

    To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared, but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  3. Bonded Joints with “Nano-Stitches”: Effect of Carbon Nanotubes on Load Capacity and Failure Modes

    Directory of Open Access Journals (Sweden)

    Henrique N. P. Oliva

    Full Text Available Abstract Carbon nanotubes were employed as adhesive reinforcement/nano-stitches to aluminum bonded joints. The CNT addition to an epoxy adhesive not only lead to an increase on load capacity but it is also the most probable cause of the mixed failure mode (adhesive/cohesive. The damage evolution was described as the stiffness decrease and the failure mixed modes were related to the load capacity. Although the presence of CNT cluster were observed, in small concentrations (< 1.0 wt. %, these clusters acted as crack stoppers and lead to an increase on lap joint shear strength. The addition of 2.0 wt. % carbon nanotubes lead to an increase on load capacity of approximately 116.2 % when the results were compared against the single lap joints without carbon nanotubes.

  4. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    Science.gov (United States)

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Application of Bionic Design to FRP T-Joints

    Science.gov (United States)

    Luo, Guang-Min; Kuo, Chia-Hung

    2017-09-01

    We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.

  6. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  7. Bonding characteristics of self-etching adhesives to intact versus prepared enamel.

    Science.gov (United States)

    Perdigão, Jorge; Geraldeli, Saulo

    2003-01-01

    This study tested the null hypothesis that the preparation of the enamel surface would not affect the enamel microtensile bond strengths of self-etching adhesive materials. Ten bovine incisors were trimmed with a diamond saw to obtain a squared enamel surface with an area of 8 x 8 mm. The specimens were randomly assigned to five adhesives: (1) ABF (Kuraray), an experimental two-bottle self-etching adhesive; (2) Clearfil SE Bond (Kuraray), a two-bottle self-etching adhesive; (3) One-Up Bond F (Tokuyama), an all-in-one adhesive; (4) Prompt L-Pop (3M ESPE), an all-in-one adhesive; and (5) Single Bond (3M ESPE), a two-bottle total-etch adhesive used as positive control. For each specimen, one half was roughened with a diamond bur for 5 seconds under water spray, whereas the other half was left unprepared. The adhesives were applied as per manufacturers' directions. A universal hybrid composite resin (Filtek Z250, 3M ESPE) was inserted in three layers of 1.5 mm each and light-cured. Specimens were sectioned in X and Y directions to obtain bonded sticks with a cross-sectional area of 0.8 +/- 0.2 mm2. Sticks were tested in tension in an Instron at a cross-speed of 1 mm per minute. Statistical analysis was carried out with two-way analysis of variance and Duncan's test at p adhesive, resulted in statistically higher microtensile bond strength than any of the other adhesives regardless of the enamel preparation (unprepared = 31.5 MPa; prepared = 34.9 MPa, not statistically different at p adhesives resulted in higher microtensile bond strength when enamel was roughened than when enamel was left unprepared. However, for ABF and for Clearfil SE Bond this difference was not statistically significant at p > .05. When applied to ground enamel, mean bond strengths of Prompt L-Pop were not statistically different from those of Clearfil SE Bond and ABF. One-Up Bond F did not bond to unprepared enamel. Commercial self-etching adhesives performed better on prepared enamel than on

  8. Effect of adhesive stiffness and thickness on stress distributions in structural finger joints

    Science.gov (United States)

    Leslie H. Groom; Robert J. Leichti

    1994-01-01

    Environmental, political, and socioeconomic actions over the past several years have resulted in a decreased wood supply at a time when there is an increased demand for forest products. This combination of increased demand and decreased supply has forced more emphasis on engineered wood products, a varied category usually connected with adhesively-bonded end joints, of...

  9. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...

  10. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    Science.gov (United States)

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  11. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    International Nuclear Information System (INIS)

    Vallee, T.; Keller, Th.; Fourestey, G.; Fournier, B.; Correia, J.R.

    2009-01-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  12. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, T.; Keller, Th. [Ecole Polytech Fed Lausanne, CCLab, CH-1015 Lausanne, (Switzerland); Fourestey, G. [Ecole Polytech Fed Lausanne, IACS, Chair Modeling and Sci Comp, CH-1015 Lausanne, (Switzerland); Fournier, B. [CEA SACLAY ENSMP, DEN, DANS, DMN, SRMA, LC2M, F-91191 Gif Sur Yvette, (France); Correia, J.R. [Univ Tecn Lisbon, Inst Super Tecn, Civil Engn and Architecture Dept, P-1049001 Lisbon, (Portugal)

    2009-07-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  13. Shear bond strength of a new one-bottle dentin adhesive.

    Science.gov (United States)

    Swift, E J; Bayne, S C

    1997-08-01

    To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.

  14. Shear bond strength of metallic and ceramic brackets using color change adhesives

    Directory of Open Access Journals (Sweden)

    Aisha de Souza Gomes Stumpf

    2013-04-01

    Full Text Available OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI. RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  15. Infrared monitoring of friction welds and adhesive bond curing in automotive manufacturing

    International Nuclear Information System (INIS)

    Chapman, G.B.

    2005-01-01

    The need for improving automotive assembly, energy-efficiency, performance, durability and quality is intensifying as customer demands and competitive pressures drive the industry toward unrelenting improvements in energy conservation, cost, quality and speed to market, without compromising the vehicle capacity, performance, appearance and affordability to which North Americans have become accustomed. This presentation describes the need for and the development and use of infrared detection methods to assure the joint quality of friction welds in thermoplastic assemblies and to monitor adhesive bond-joint curing in metal assemblies. Some remaining barriers to the wider applications of this technology in the quality assurance of joints in automotive body structures will also be presented as indicators of further research and development opportunities. (author)

  16. Bond efficacy and interface morphology of self-etching adhesives to ground enamel.

    Science.gov (United States)

    Abdalla, Ali I; El Zohairy, Ahmed A; Abdel Mohsen, Mohamed M; Feilzer, Albert J

    2010-02-01

    This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray) and Hybrid bond (Sun-Medical), a self-etching primer, Clearfil SE Bond (Kuraray), and an etch-and-rinse system, Admira Bond (Voco), were selected. Thirty human molars were used. The root of each tooth was removed and the crown was sectioned into halves. The convex enamel surfaces were reduced by polishing on silicone paper to prepare a flat surface. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm height/0.75 mm internal diameter) was placed on the treated surfaces. A resin composite was then inserted into the tube and cured. After water storage for 24 h, the tube was removed and shear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/min. The results were analyzed with ANOVA and the Tukey.-Kramer test at a 59 degrees confidence level. The enamel of five additional teeth was ground, and the etching component of each adhesive was applied and removed with absolute ethanol instead of being light cured. These teeth and selected fractured surfaces were examined by SEM. Adhesion to ground enamel of the Futurabond DC (25 +/- 3.5 MPa) and Clearfil SE Bond (23 +/- 2.9 MPa) self-etching systems was not significantly different from the etch-and-rinse system Admira Bond (27 +/- 2.3 MPa). The two self-etching adhesives Clearfil S Tri bond and Hybrid Bond demonstrated significantly lower bond strengths (14 +/- 1.4 MPa; 11 +/- 1.9 MPa) with no significant differences between them (p adhesive systems are dependent on the type of adhesive system. Some of the new adhesive systems showed bond strength values comparable to that of etch-and-rinse systems. There was no correlation between bond strength and morphological changes in

  17. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  18. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies.

    Science.gov (United States)

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2015-02-01

    The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p adhesive system to dentin.

  19. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    Science.gov (United States)

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (Penamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  20. The effect of air thinning on dentin adhesive bond strength.

    Science.gov (United States)

    Hilton, T J; Schwartz, R S

    1995-01-01

    The purpose of this study was to determine if air thinning three dentin adhesives would affect bond strength to dentin. Ninety human molars were mounted in acrylic and the occlusal surfaces ground to expose a flat dentin surface. Thirty teeth were randomly assigned to one of the following dentin bonding agent/composite combinations: A) Universal Bond 3/TPH (Caulk), B) All-Bond 2/Bis-Fil-P (Bisco), and C) Scotchbond Multi-Purpose/Z-100 (3m). The primers were applied following the manufacturers' instructions. The adhesives were applied by two methods. A thin layer of adhesive was applied with a brush to 15 specimens in each group and light cured. Adhesive was brushed on to the remaining 15 teeth in the group, air thinned for 3 seconds, and then polymerized. The appropriate composite was applied in 2 mm increments and light cured utilizing a 5 mm-in-diameter split Teflon mold. Following 3 months of water storage, all groups were shear tested to failure on an Instron Universal Testing Machine. Bond strength was significantly higher in all groups when the dentin bonding agent was painted on without being air thinned. Scotchbond Multi-Purpose had significantly higher bond strength than All-Bond 2, which had significantly higher bond strength than Universal Bond 3.

  1. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    Science.gov (United States)

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  2. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    Directory of Open Access Journals (Sweden)

    Laura AlveBastos

    2015-02-01

    Full Text Available Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE, the specific self-etching adhesive system (Adhesive System P90, 3M ESPE was used with and without pre-etching (Pre-etching/Silorane and Silorane groups. Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray, with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups, or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE (Three-step/Methacrylate group (n = 6. The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm, and coupled to a universal test machine (0.5 mm/min to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05. However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.

  3. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    Science.gov (United States)

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S 3 Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  4. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste

    Science.gov (United States)

    Müller, Miroslav; Valášek, Petr

    2018-05-01

    A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.

  5. Bond durability of universal adhesive to bovine enamel using self-etch mode.

    Science.gov (United States)

    Suzuki, Soshi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Sai, Keiichi; Takimoto, Masayuki; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The purpose of this study was to examine the enamel bond durability of universal adhesives in the self-etch mode under 2-year water storage and thermal cycling conditions. Three commercially available universal adhesives and a gold standard two-step self-etch adhesive were used. Ten specimens of bovine enamel were prepared per test group, and shear bond strength (SBS) was measured to determine the bonding durability after thermal cycling (TC) or long-term water storage (WS). The bonded specimens were divided into three groups: (1) specimens subjected to TC, where the bonded specimens were stored in 37 °C distilled water for 24 h before being subjected to 3000, 10,000, 20,000 or 30,000 TC; (2) specimens stored in 37 °C distilled water for 3 months, 6 months, 1 year or 2 year; and (3) specimens stored in 37 °C distilled water for 24 h, serving as a baseline. The two-step self-etch adhesive showed significantly higher SBS than the universal adhesives tested, regardless of the type of degradation method. All universal adhesives showed no significant enamel SBS reductions in TC and WS, when compared to baseline and the other degradation conditions. Compared to the bond strengths obtained with the two-step self-etch adhesive, significantly lower bond strengths were obtained with universal adhesives. However, the enamel bond durability of universal adhesives was relatively stable under both degradation conditions tested. The present data indicate that the enamel bond durability of universal adhesives in the self-etch mode might be sufficient for clinical use.

  6. Bonding effectiveness of self-etch adhesives to dentin after 24 h water storage.

    Science.gov (United States)

    Sarr, Mouhamed; Benoist, Fatou Leye; Bane, Khaly; Aidara, Adjaratou Wakha; Seck, Anta; Toure, Babacar

    2018-01-01

    This study evaluated the immediate bonding effectiveness of five self-etch adhesive systems bonded to dentin. The microtensile bond strength of five self-etch adhesives systems, including one two-step and four one-step self-etch adhesives to dentin, was measured. Human third molars had their superficial dentin surface exposed, after which a standardized smear layer was produced using a medium-grit diamond bur. The selected adhesives were applied according to their respective manufacturer's instructions for μTBS measurement after storage in water at 37°C for 24 h. The μTBS varied from 11.1 to 44.3 MPa; the highest bond strength was obtained with the two-step self-etch adhesive Clearfil SE Bond and the lowest with the one-step self-etch adhesive Adper Prompt L-Pop. Pretesting failures mainly occurring during sectioning with the slow-speed diamond saw were observed only with the one-step self-etch adhesive Adper Prompt L-Pop (4 out of 18). When bonded to dentin, the self-etch adhesives with simplified application procedures (one-step self-etch adhesives) still underperform as compared to the two-step self-etch adhesive Clearfil SE Bond.

  7. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin.

    Science.gov (United States)

    Scholtanus, J D; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J; Feilzer, Albert J

    2010-08-01

    The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft caries-infected dentin was excavated with the help of caries detector dye. On the remaining hard dentin, a standardized smear layer was created by polishing with 600-grit SiC paper. Teeth were divided into three groups and treated with one of the three tested adhesives: Adper Scotchbond 1 XT (3M ESPE), a 2-step etch-andrinse adhesive, Clearfil S3 Bond (Kuraray), a 1-step self-etching or all-in-one adhesive, and Clearfil SE Bond (Kuraray), a 2-step self-etching adhesive. Five-mm-thick composite buildups (Z-250, 3M ESPE) were built and light cured. After water storage for 24 h at 37ºC, the bonded specimens were sectioned into bars (1.0 x 1.0 mm; n = 20 to 30). Microtensile bond strength of normal dentin specimens and caries-affected dentin specimens was measured in a universal testing machine (crosshead speed = 1 mm/min). Data were analyzed using two-way ANOVA and Tukey's post-hoc test (p adhesives were found. Adper Scotchbond 1 XT and Clearfil S3 Bond showed significantly lower bond strength values to caries-affected dentin. For Clearfil SE Bond, bond strength values to normal and caries-affected dentin were not significantly different. All the tested simplified adhesives showed similar bond strength values to normal dentin. For the tested 2-step etch-and-rinse adhesive and the all-in-one adhesive, the bond strength values to caries-affected dentin were lower than to normal dentin.

  8. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Directory of Open Access Journals (Sweden)

    An-Na Choi

    2017-10-01

    Full Text Available The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS testing and confocal laser scanning microscopy (CLSM. Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying, 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05. Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05. One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.

  9. Strength and failure analysis of inverse Z joints bonded with Vinylester Atlac 580 and Flexo Tix adhesives

    International Nuclear Information System (INIS)

    Adin, Hamit; Turgut, Aydin

    2012-01-01

    In this study, the tensile strength and failure loads of the inverse Z joints were analyzed both experimentally and numerically by using two adhesives with different properties under a tensile load. Vinylester Atlac 580 and Flexo Tix were used as adhesives and the joints were prepared with two different composite materials. Initially, the mechanical properties of the adhesives were specified using bulk specimens. Then, the stress analyses were performed using three dimensional finite element method (3 D FEM) via Ansys (V.10.0.1). The experimental results were compared with the numerical results and they were found quite reasonable. According to the test results, it can be seen that when the adherend thickness is increased, the stress increases as well. The most appropriate value of the adherend thickness is identified as t = 5 mm. Furthermore, it was observed that the lowest failure load was obtained at t = 3 mm the thickness for each specimen

  10. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    OpenAIRE

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2014-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/S...

  11. Environmental influence on the usage of adhesive single lap joints in nuclear industry applications

    International Nuclear Information System (INIS)

    Amorim, Felipe do C.; Reis, João M.L. dos; Souza, João F.B. de; Costa, Gilberto T. de P.; Moura, Jorge C. de; Universidade Federal Fluminense; Comissao Nacional de Energia Nuclear

    2017-01-01

    Despite of some polymeric compounds vulnerability to different types of radiation, high polymer, as epoxy adhesives, had prospered in the nuclear industry because their mechanical properties to high doses of ionizing radiation is maintained. Because of this, epoxy adhesives are widely used in nuclear applications: nuclear power plants, aerospace components, radioactive sealed sources to medicine, radioactive waste immobilization. In the present work, the performance of a diglycidyl ether of bisphenol ether A (DGEBA) was analyzed. Tensile tests of adhesive single lap joints bonded with epoxy were performed. The environmental effect of ultraviolet (UV) exposure was observed in the mechanical reaction of PolyAnchor 4100 HT. In particular, maximum load decreases slightly in aggressive environment. It is possible to conclude the material is proper to use in internal and external areas, mainly due to the easy application when compared to welded joints with similar strength. The easy application reduces the workers exposure time to ionizing radiation. (author)

  12. Environmental influence on the usage of adhesive single lap joints in nuclear industry applications

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Felipe do C.; Reis, João M.L. dos; Souza, João F.B. de; Costa, Gilberto T. de P.; Moura, Jorge C. de, E-mail: felipe.amorim@cefet-rj.br, E-mail: jreis@id.uff.br, E-mail: joaofellipe@id.uff.br, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Itaguai, RJ (Brazil). Departamento de Engenharia Mecanica; Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Laboratorio de Mecania Teorica e Aplicada; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Divisão de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    Despite of some polymeric compounds vulnerability to different types of radiation, high polymer, as epoxy adhesives, had prospered in the nuclear industry because their mechanical properties to high doses of ionizing radiation is maintained. Because of this, epoxy adhesives are widely used in nuclear applications: nuclear power plants, aerospace components, radioactive sealed sources to medicine, radioactive waste immobilization. In the present work, the performance of a diglycidyl ether of bisphenol ether A (DGEBA) was analyzed. Tensile tests of adhesive single lap joints bonded with epoxy were performed. The environmental effect of ultraviolet (UV) exposure was observed in the mechanical reaction of PolyAnchor 4100 HT. In particular, maximum load decreases slightly in aggressive environment. It is possible to conclude the material is proper to use in internal and external areas, mainly due to the easy application when compared to welded joints with similar strength. The easy application reduces the workers exposure time to ionizing radiation. (author)

  13. Evaluation of an Experimental Adhesive Resin for Orthodontic Bonding

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Pavithra, D.; Hashem, M. I.; Alkhudhairy, F.; Elsharawy, M.; Divakar, D. D.; Vallittu, P. K.; Matinlinna, J. P.

    2017-07-01

    The aim of this study was to evaluate in vitro the effect of an experimental adhesive resin for orthodontic bonding by measuring some the chemical and mechanical properties. The resin demonstrated increased values of nanohardness and elastic modulus, but the differences were not significant compared with those for the Transbond XT adhesives. The experimental adhesive resin could be a feasible choice or a substitute for the traditional bis-GMA-based resins used in bonding orthodontic attachments.

  14. Performance of universal adhesives on bonding to leucite-reinforced ceramic.

    Science.gov (United States)

    Kim, Ryan Jin-Young; Woo, Jung-Soo; Lee, In-Bog; Yi, Young-Ah; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-01-01

    This study aimed to investigate the microshear bond strength of universal bonding adhesives to leucite-reinforced glass-ceramic. Leucite-reinforced glass-ceramic blocks were polished and etched with 9.5% hydrofluoric acid for 1 min. The specimens were assigned to one of four groups based on their surface conditioning (n = 16): 1) NC: negative control with no further treatment; 2) SBU: Single Bond Universal (3M ESPE); 3) ABU: ALL-BOND Universal (Bisco); and 4) PC: RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Adhesive (3M ESPE) as a positive control. RelyX Ultimate resin cement (3M ESPE) was placed on the pretreated ceramic and was light cured. Eight specimens from each group were stored in water for 24 h, and the remaining eight specimens were thermocycled 10,000 times prior to microshear bond strength evaluation. The fractured surfaces were examined by stereomicroscopy and scanning electron microscopy (SEM). After water storage and thermocycling, the microshear bond strength values decreased in the order of PC > SBU and ABU > NC (P universal adhesives were used, conventional surface conditioning using a separate silane and adhesive is preferable to a simplified procedure that uses only a universal adhesive for cementation of leucite-reinforced glass-ceramic.

  15. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Science.gov (United States)

    Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon

    2017-01-01

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p adhesives. PMID:29068404

  16. Shear bond strength of one-step self-etch adhesives: pH influence

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P adhesive systems showed lower shear bond strength values with significant differences between them (P 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  17. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.

    1999-01-01

    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  18. Bond strength of universal adhesives: A systematic review and meta-analysis.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira da; Piva, Evandro; Silva, Adriana Fernandes da

    2015-07-01

    A systematic review was conducted to determine whether the etch-and-rinse or self-etching mode is the best protocol for dentin and enamel adhesion by universal adhesives. This report followed the PRISMA Statement. A total of 10 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2014 in eight databases: PubMed, Web of Science, Scopus, BBO, SciELO, LILACS, IBECS and The Cochrane Library. In vitro studies evaluating the bond strength of universal adhesives to dentin and/or enamel by the etch-and-rinse and self-etch strategies were eligible to be selected. Statistical analyses were conducted using RevMan 5.1 (The Cochrane Collaboration, Copenhagen, Denmark). A global comparison was performed with random-effects models at a significance level of puniversal adhesives (p≥0.05). However, for the ultra-mild All-Bond Universal adhesive, the etch-and-rinse strategy was significantly different than the self-etch mode in terms of dentin micro-tensile bond strength, as well as in the global analysis of enamel micro-tensile and micro-shear bond strength (p≤0.05). The enamel bond strength of universal adhesives is improved with prior phosphoric acid etching. However, this effect was not evident for dentin with the use of mild universal adhesives with the etch-and-rinse strategy. Selective enamel etching prior to the application of a mild universal adhesive is an advisable strategy for optimizing bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Influence of degradation conditions on dentin bonding durability of three universal adhesives.

    Science.gov (United States)

    Sai, Keiichi; Shimamura, Yutaka; Takamizawa, Toshiki; Tsujimoto, Akimasa; Imai, Arisa; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2016-11-01

    This study aims to determine dentin bonding durability of universal adhesives using shear bond strength (SBS) tests under various degradation conditions. G-Premio Bond (GP, GC), Scotchbond Universal (SU, 3M ESPE) and All Bond Universal (AB, Bisco) were compared with conventional two-step self-etch adhesive Clearfil SE Bond (SE, Kuraray Noritake Dental). Bonded specimens were divided into three groups of ten, and SBSs with bovine dentin were determined after the following treatments: 1) Storage in distilled water at 37°C for 24h followed by 3000, 10,000, 20,000 or 30,000 thermal cycles (TC group), 2) Storage in distilled water at 37°C for 3 months, 6 months or 1year (water storage, WS group) and 3) Storage in distilled water at 37°C for 24h (control). SE bonded specimens showed significantly higher SBSs than universal adhesives, regardless of TC or storage periods, although AB specimens showed significantly increased SBSs after 30,000 thermal cycles. In comparisons of universal adhesives under control and degradation conditions, SBS was only reduced in SU after 1year of WS. Following exposure of various adhesive systems to degradation conditions of thermal cycling and long term storage, SBS values of adhesive systems varied primarily with degradation period. Although universal adhesives have lower SBSs than the two-step self-etch adhesive SE, the present data indicate that the dentin bonding durability of universal adhesives in self-etch mode is sufficient for clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bonding performance of universal adhesives to er,cr:YSGG laser-irradiated enamel.

    Science.gov (United States)

    Ayar, Muhammet Kerim; Erdemir, Fatih

    2017-04-01

    Universal adhesives have been recently introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser-irradiated enamel is still not well-known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo-B Plus) applied to Er,Cr:YSGG laser-irradiated enamel with SBS of the same adhesives applied in self-etch and acid-etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid-etching mode; Nova Compo-B Plus/acid-etching mode; Single Bond Universal/self-etching mode; Nova Compo-B Plus/self-etching mode; and Single Bond Universal/Er,Cr:YSGG Laser-etching mode; Nova Compo-B Plus/Er,Cr:YSGG Laser-etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min -1 . Failure modes were evaluated using a stereomicroscope. Data was analyzed using two-way of analyses of variances (ANOVA) (p = 0.05). Two-way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid-etching significantly increased SBS, whereas there are no significant differences between self-etch mode and laser-etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self-etch mode. © 2016 Wiley Periodicals, Inc.

  1. Mechanical and Non-Destructive Study of CFRP Adhesive Bonds Subjected to Pre-Bond Thermal Treatment and De-Icing Fluid Contamination

    Directory of Open Access Journals (Sweden)

    Paweł H. Malinowski

    2018-04-01

    Full Text Available Composite materials are commonly used in many branches of industry. One of the effective methods to join the carbon fibre reinforced polymer (CFRP parts includes the use of adhesives. There is a search on effective methods for quality assurance of bonded parts. In the research here reported the influence of surface pre-bond modification on the adhesive bonds of CFRP plates has been analyzed. Adherends surface modifications, to include defects affecting the bonding quality, were obtained through surface thermal treatment, surface contamination with de-icing fluid and a combination of both the previously described treatments. Characterization of bonded joints was performed by means of mechanical testing, ultrasounds and electromechanical impedance (EMI measurements. The study here proposed has also the aim to evaluate the ability of different destructive and non-destructive techniques to assess the quality of the bonds. While mechanical tests were strongly affected by the surface modifications, results obtained ultrasound and EMI test have demonstrate only a limited ability of these techniques to differentiate between the different samples. In fact, ultrasounds did not show any changes in the bondline, due to pre-bond modifications. However, this technique was able to detect delamination in CFRP for one of the samples thermally treated at 280 °C. Electromechanical impedance (EMI measurements showed similar behavior as mechanical tests for samples thermally treated at 260 °C and 280 °C, and for the sample whose surface modification was made with a combination of thermally and de-icing fluid treatments.

  2. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    Science.gov (United States)

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, padhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  3. Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin.

    Science.gov (United States)

    Naranjo, Jennifer; Ali, Mohsin; Belles, Donald

    2015-11-01

    Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements

  4. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  5. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    Science.gov (United States)

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  6. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Choi,

    2011-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15, according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond and application methods. The adhesive systems were applied on the dentin as follows: 1 The single coating, 2 The double coating, 3 Manual agitation, 4 Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

  7. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  8. Enamel and dentin bond strengths of a new self-etch adhesive system.

    Science.gov (United States)

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  9. In vitro evaluation of microleakage under orthodontic brackets bonded with different adhesive systems.

    Science.gov (United States)

    Atash, Ramin; Fneiche, Ali; Cetik, Sibel; Bahrami, Babak; Balon-Perin, Alain; Orellana, Maria; Glineur, Régine

    2017-01-01

    Adhesives systems have a drawback when utilized for bonding orthodontic brackets: they shrink during photopolymerization creating microleakage. The aim of this study was to assess the stability of different orthodontic adhesives around brackets and enamel. Sixty noncarious mandibular premolars extracted for orthodontic reasons were randomly divided into six groups of adhesives used for bonding brackets to dental enamel: NeoBond ® Light Cure Adhesive Kit, Transbond™ Plus Self-Etching, Victory V-Slot APC PLUS ® + Transbond™ MIP, Rely-A-Bond ® Kit, Light Cure Orthodontic Adhesive Kit (OptiBond ® ), and Transbond™ MIP. Following bonding, all teeth underwent 2500 cycles of thermal cycling in baths ranging from 5°C to 55°C before being immersed in 2% methylene blue for 24 h. All samples were examined under a binocular microscope to assess the degree of microleakage at the "bracket-adhesive" and "adhesive-enamel" interfaces in the gingival and occlusal regions of the bracket. A significant difference was found at the "occlusal bracket-adhesive" interface. The highest microleakage values were found in the occlusal region, although no significant. Microleakage was observed in all groups. Group 2 had the highest microleakage values whereas Group 6 had the lowest values.

  10. Shear bond strength of hydrophilic adhesive systems to enamel.

    Science.gov (United States)

    Hara, A T; Amaral, C M; Pimenta, L A; Sinhoreti, M A

    1999-08-01

    To compare the enamel shear bond strength of four hydrophilic adhesive systems: one multiple-bottle (Scotchbond Multi-Purpose Plus), two one-bottle (Stae, Single Bond) and one self-etching (Etch & Prime). 120 bovine incisor teeth were obtained, embedded in polyester resin, polished to 600 grit to form standardized enamel surfaces, and randomly assigned to four groups (n = 30). Each adhesive system was used on enamel according to the manufacturer's instructions, and resin-based composite (Z100) cylinders with 3 mm diameter and 5 mm height were bonded. Specimens were stored in humid environment for 1 week, and bond strength was determined using a universal testing machine, at a crosshead speed of 0.5 mm/minute. The mean shear bond strength values (MPa +/- SD) were: Single Bond: 24.28 +/- 5.27 (a); Scotchbond Multi-Purpose Plus: 21.18 +/- 4.35 (ab); Stae: 19.56 +/- 4.71 (b); Etch & Prime 3.0: 15.13 +/- 4.92 (c). ANOVA revealed significant difference in means (P < 0.01) and Tukey's test showed the statistical differences that are expressed by different letters for each group. It could be concluded that the self-etching adhesive system did not provide as good a bond to enamel surface, as did the one- and multiple-bottle systems.

  11. Adhesive bonds for optics: analysis and trade-offs

    Science.gov (United States)

    Daly, John G.; Hawk, Matthew D.

    2017-08-01

    Fastening optical elements with adhesives presents challenges when dissimilar materials (almost always the case) are encountered and environmental exposures from temperature changes, shock and vibration must be met. A brief review of standard processes will be followed by a selection criteria for the optic, its substrate, the bond geometry, surface preparation, application and cure. Common analysis practices will be compared to Finite Element models. The impact of stress in terms of distortion and level of risk of bond failure is highlighted. Trade-offs will be presented as aids in determination of the best approach. Some areas addressed will be different adhesive types, matching CTE's, stress effects, athermal bonds, monolithic designs, and the use of flexures.

  12. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates.

    Science.gov (United States)

    Münchow, Eliseu A; Bottino, Marco C

    2017-09-01

    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  13. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  14. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray)

  15. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    Science.gov (United States)

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  16. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    Science.gov (United States)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  17. Two-year water degradation of self-etching adhesives bonded to bur ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2009-01-01

    To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were

  18. Bond strength of adhesive resin cement with different adhesive systems

    OpenAIRE

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; S?, Marcus-Vinicius-Reis; Pereira, Jefferson-Ricardo

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder? Scotchbond? Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-s...

  19. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  20. [Bond strengths of absorbable polylactic acid root canal post with three different adhesives].

    Science.gov (United States)

    Pan, Hui; Cheng, Can; Hu, Jia; Liu, He; Sun, Zhi-hui

    2015-12-18

    To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], Padhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives. No major failure modes were found in the group of cyanoacrylates. The bond strength of fibrin sealant is low, which cannot meet the requirement of

  1. Effectiveness of immediate bonding of etch-and-rinse adhesives to simplified ethanol-saturated dentin

    Directory of Open Access Journals (Sweden)

    Leandro Afonso Guimarães

    2012-04-01

    Full Text Available This study examined the immediate bond strength of etch-and-rinse adhesives to demineralized dentin saturated with either water or absolute ethanol. The research hypothesis was that there would be no difference in bond strength to dentin between water or ethanol wet-bonding techniques. The medium dentin of 20 third molars was exposed (n = 5. The dentin surface was then acid-etched, left moist and randomly assigned to be saturated via either water wet-bonding (WBT or absolute ethanol wet-bonding (EBT. The specimens were then treated with one of the following etch-and-rinse adhesive systems: a 3-step, water-based system (Adper Scotchbond Multipurpose, or SBMP or a 2-step, ethanol/water-based system (Adper Single Bond 2, or SB. Resin composite build-ups were then incrementally constructed. After water storage for 24 h at 37°C, the tensile strength of the specimens was tested in a universal testing machine (0.5 mm/min. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%. The failure modes were verified using a stereomicroscope (40'. For both adhesives, no significant difference in bond strength was observed between WBT and EBT (p > 0.05. The highest bond strength was observed for SB, regardless of the bonding technique (p < 0.05. No significant interaction between adhesives and bonding techniques was noticed (p = 0.597. There was a predominance of adhesive failures for all tested groups. The EBT and WBT displayed similar immediate bond strength means for both adhesives. The SB adhesive exhibited higher means for all conditions tested. Further investigations are needed to evaluate long-term bonding to dentin mediated by commercial etch-and-rinse adhesives using the EBT approach.

  2. THE PROBLEMS OF ENSURE OF SAFE LABOR CONDITIONS ON WORKPLACES FOR ADHESIVE BONDING

    Directory of Open Access Journals (Sweden)

    Barbara CIECIŃSKA

    2016-04-01

    Full Text Available In the performance a variety of technological operations a human may come into contact with a variety of factors caus-ing deterioration of safety at work. As an example of which is described in article, adhesive bonding operations are re-quiring use of specific chemicals, which are adhesives. They are produced on the basis of a variety of compounds, often hazardous to human health. Furthermore, adhesive bonding requires a series of preparatory operations such as degreas-ing or surface preparation with a specific structure and roughness and auxiliary operations such as measurement of the wettability of surface. In this paper are described examples of risks occurring during adhesive bonding, it is a simple way to estimate the risks associated with the performance of operations. The examples of the determination by the produc-ers of chemicals are described which are used in adhesive bonding and fragment of international chemical safety card (ICSC, as a source of information important to the workplace organization and ensuring safety during adhesive bonding.

  3. Cooperative Research and Development Agreement Final Report for Cooperative Research and Development Agreement Number ORNL93-0237 Adhesive Bonding Technologies for Automotive Structural Composites; TOPICAL

    International Nuclear Information System (INIS)

    Boeman, R.G.

    2001-01-01

    In 1993, the Oak Ridge National Laboratory (ORNL) entered into a Cooperative Research and Development Agreement (CRADA) with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. The research undertaken under this CRADA addresses the following areas of importance: bulk material characterization, structural fracture mechanics, modeling/characterization, process control and nondestructive evaluation (PC/NDE), manufacturing demonstration, and advanced processing. For the bulk material characterization task, the individual material properties of the adherends and adhesives were characterized. This included generating a database of mechanical and physical properties, after identifying and developing standard test methods to obtain properties. The structural fracture mechanics task concentrated on test development to characterize the fracture toughness of adhesively bonded joints subjected to Mode I, Mode II and mixed-mode conditions. Standard test procedures for quantifying an adhesive/adherend system's resistance to crack growth were developed for use by industry. In the modeling/characterization task, fracture mechanics-based design guidelines and predictive methodologies have been developed which will facilitate iteration on design concepts for bonded joints while alleviating the need for extensive testing

  4. Adhesives with wood materials : bond formation and performance

    Science.gov (United States)

    Charles R. Frihart; Christopher G. Hunt

    2010-01-01

    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...

  5. Influence of blood contamination during multimode adhesive application on the microtensile bond strength to dentin.

    Science.gov (United States)

    Kucukyilmaz, E; Celik, E U; Akcay, M; Yasa, B

    2017-12-01

    The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Seventy-five molars were randomly assigned to three adhesive groups comprising 25 specimens each: two multimode adhesives [Single Bond Universal (SBU) and All-Bond Universal (ABU)] and a conventional one-step self-etch adhesive [Clearfil S3 Bond Plus (CSBP)]. Each group was subdivided as follows: (1) uncontaminated (control): bonding application/light curing as a positive control; (2) contamination-1 (cont-1): bonding application/light curing/blood contamination/dry as a negative control; (3) contamination-2 (cont-2): bonding application/light curing/blood contamination/rinse/dry; (4) contamination-3 (cont-3): bonding application/blood contamination/dry/bonding re-application/light curing; and (5) contamination-4 (cont-4): bonding application/blood contamination/rinse/dry/bonding re-application/light curing. Dentin specimens were prepared for μTBS testing after the composite resin application. Data were analyzed with two-way ANOVA and post-hoc tests (α = 0.05). μTBS values were similar in cont-3 groups, and ABU/cont-4 and corresponding control groups, but were significantly lower in the other groups than in their control groups (P groups showed the lowest μTBS values (P blood contaminants and reapplying the adhesive may regain the dentin adhesion when contamination occurs before light curing. Alternatively, rinsing and drying contaminants followed by adhesive re-application may be effective depending on adhesive type.

  6. [Influence of thermalcycling on bonding durability of self-etch adhesives with dentin].

    Science.gov (United States)

    Tian, Fu-cong; Wang, Xiao-yan; Gao, Xue-jun

    2014-04-18

    To investigate influence of thermalcycling on the bonding durability of two one-step products [Adper Prompt (AP) and G-bond (GB)] and one two-step self-etching adhesive [Clearfil SE bond (SE)] with dentin in vitro. Forty-two extracted human molars were selected. The superficial dentin was exposed by grinding off the enamel. The teeth were randomly distributed into six groups with varied bonding protocols. The adhesives were applied to the dentin surface. Composite crowns were built up, then the samples were cut longitudinally into sticks with 1.0 mm×1.0 mm bonding area [for microtensile bond strength (MTBS) testing] or 1.0 mm thick slabs (for nanoleakage observation). Bonding performance was evaluated with or without thermalcyling. For the MTBS testing, the strength values were statistically analysed using One-Way ANOVA. Four slabs in each group were observed for nanoleakage by SEM with a backscattered electron detector. Thermalcycling procedures affected MTBS. In the two one-step groups, the MTBS decreased significantly (Padhesives showed lower MTBS than two-step bonding system after aging.For AP and GB, continuous nanoleakage appearance was notable and more obvious than for SE. Thermalcycling can affect the bonding performance of self-etch adhesives including decrease of bond strength and nanoleakage pattern. one-step self-etch adhesives showed more obvious change compared with their two-step counterparts.

  7. Microtensile Bond Strength and Micromorphology of Bur-cut Enamel Using Five Adhesive Systems.

    Science.gov (United States)

    Vinagre, Alexandra; Ramos, João; Messias, Ana; Marques, Fernando; Caramelo, Francisco; Mata, António

    2015-04-01

    This study compared the microtensile bond strengths (μTBS) of two etch-and-rinse (ER) (OptiBond FL [OBFL]; Prime & Bond NT [PBNT]) and three self-etching (SE) (Clearfil SE Bond [CSEB]; Xeno III [XIII]; Xeno V+ [XV+]) adhesives systems to bur-prepared human enamel considering active (AA) and passive (PA) application of the self-etching systems. Ninety-six enamel surfaces were prepared with a medium-grit diamond bur and randomly allocated into 8 groups to receive adhesive restorations: G1: OBFL; G2: PBNT; G3: CSEB/PA; G4: CSEB/ AA; G5: XIII/PA; G6: XIII/AA; G7: XV+/PA; G8: XV+/AA. After composite buildup, samples were sectioned to obtain a total of 279 bonded sticks (1 mm2) that were submitted to microtensile testing (μTBS; 0.5 mm/min) after 24-h water storage (37°C). Etching patterns and adhesive interfacial ultramorphology were also evaluated with confocal laser scanning (CLSM) and scanning electron microscopy (SEM). Data was analyzed with one-way ANOVA (α = 0.05). Weibull probabilistic distribution was also determined. Regarding μTBS, both adhesive system and application mode yielded statistically significant differences (p systems together with CSEB/AA and XIII/PA recorded the highest and statistically similar bond strength results. XV+ presented very low bond strength values, regardless of the application mode. Among self-etching adhesives, CSEB produced significantly higher μTBS values when applied actively. Qualitative evaluation by SEM and CLSM revealed substantial differences between groups both in adhesive interfaces and enamel conditioning patterns. ER and SE adhesive systems presented distinctive bond strengths to bur-cut enamel. The application mode effect was adhesive dependent. Active application improved etching patterns and resin interfaces micromorphology.

  8. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    OpenAIRE

    Song Chunsheng; Zhang Jiaxiang; Yang Mo; Shang Erwei; Zhang Jinguang

    2017-01-01

    The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhes...

  9. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  10. Shear bond strength of three adhesive systems to enamel and dentin of permanent teeth

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2012-01-01

    Full Text Available Background and Aims: The purpose of this experimental study was to investigate the shear bond strength of three new adhesive systems to enamel and dentin of permanent human teeth using three new etch and rinse and self-etch adhesive systems.Materials and Methods: Sixty intact caries-free third molars were selected and randomly divided into 6 groups. Flat buccal and lingual enamel and dentin surfaces were prepared and mounted in the acrylic resin perpendicular to the plan of the horizon. Adhesives used in this study were Tetric N-Bond, AdheSE and AdheSE-One F (Ivoclar/Vivadent, Schaan, Liechtenstein. The adhesives were applied on the surfaces and cured with quartz tungsten halogen curing unit (600 mW/cm2 intensity for 20 s. After attaching composite to the surfaces and thermocycling (500 cycles, 5-55ºC, shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. The failure modes were examined under a stereomicroscope. The data were statistically analyzed using T-test, one-way ANOVA, Tukey and Fisher's exact tests.Results: In enamel, Tetric N-Bond (28.57±4.58 MPa and AdheSE (21.97±7.6 MPa had significantly higher bond strength than AdheSE-One F (7.16±2.09 MPa (P0.05.Conclusion: Shear bond strength to dentin in Tetric N-Bond (etch and rinse system( was higher than self-etch adhesives (AdheSE and AdheSE-One F. The bond strength to enamel and dentin in two-step self-etch (AdheSE was higher than one-step self-etch (AdheSE-One F.

  11. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    Directory of Open Access Journals (Sweden)

    Cécile Bernard

    2015-01-01

    Full Text Available The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL and a two-steps/self-etch adhesive system (Optibond XTR were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR. All specimens were submitted to thermocycling ageing (10000 cycles. The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL.

  12. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives : Focussing on Bonding Glass

    NARCIS (Netherlands)

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap

  13. Study on transparency of adhesive joints of scintillation strips on the polyester basis

    International Nuclear Information System (INIS)

    Bondarenko, V.G.; Grigor'ev, V.A.; Kaplin, V.A.; Gushchin, V.V.; Prikhodchenko, N.N.; Silina, T.S.; Finashina, T.L.

    1979-01-01

    Optical transparency of adhesive joints of polyester-base scintillators is studied. To realize the optical contact between two scintillation strips of the 400x80x20 mm and 300x80x20 mm dimensions the following substances are used: KV-3 vaseline, 21-03V elastosyl adhesive and VK-14 adhesive. Using an installation for measuring adhesive joint transparency the dependence of the photomultiplier signal amplitude on the β-source coordinates is obtained. It is experimentally found that light losses on the adhesive joints were 8% for the VK-14 and elastosyl adhesives, and 10% for the VK-3 vase-line. The measurement error is +-1%. On the basis of the results obtained the conclusion is made that for adhesion of the scintillation detectors on the polyester basis the 21-03V elastosyl for detachable joints and the VK-14 adhesive - for permanent joints adhesive can be used. It is noted that while using the VK-14 adhesive it is necessary to pay attention to thorough preparation of the adhesive surfaces and provision of the necessary pressure during adhesion (not less than 2-3 kg/cm 2 ) [ru

  14. Bond strength and morphology of enamel using self-etching adhesive systems with different acidities

    Directory of Open Access Journals (Sweden)

    Sandra Kiss Moura

    2009-08-01

    Full Text Available OBJECTIVES: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. MATERIAL AND METHODS: Composite resin (Filtek Z250 buildups were bonded to untreated (prophylaxis and treated (bur-cut or SiC-paper enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition: Clearfil SE Bond (CSE; OptiBond Solo Plus Self-Etch (OP; AdheSe (AD; Tyrian Self Priming Etching (TY, Adper Scotchbond Multi-Purpose Plus (SBMP and Adper Single Bond (SB. After storage in water (24 h/37°C, the bonded specimens were sectioned into sticks with 0.8 mm² cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa were subjected to two-way ANOVA and Tukey's test (α=0.05. The etching patterns of the adhesive systems were also observed with a scanning electron microscope. RESULTS: The main factor adhesive system was statistically significant (p<0.05. The mean bond strength values (MPa and standard deviations were: CSE (20.5±3.5, OP (11.3±2.3, AD (11.2±2.8, TY (11.1±3.0, SBMP (21.9±4.0 and SB (24.9±3.0. Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. CONCLUSION: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed.

  15. Bond strength of dental adhesive systems irradiated with ionizing radiation.

    Science.gov (United States)

    Dibo da Cruz, Adriana; Goncalves, Luciano de Souza; Rastelli, Alessandra Nara de Souza; Correr-Sobrinho, Lorenco; Bagnato, Vanderlei Salvador; Boscolo, Frab Norberto

    2010-04-01

    The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

  16. Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.

    Science.gov (United States)

    Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco

    2014-02-01

    The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.

  17. Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

    Directory of Open Access Journals (Sweden)

    Parvin Mirzakoucheki

    2015-05-01

    Full Text Available Objectives The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP on microtensile bond strengths (MTBS of dental adhesives to dentin. Materials and Methods Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive or etch-and-rinse (Adper Single Bond Plus adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003. Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064. Conclusions The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant.

  18. In vitro comparison of the tensile bond strength of denture adhesives on denture bases.

    Science.gov (United States)

    Kore, Doris R; Kattadiyil, Mathew T; Hall, Dan B; Bahjri, Khaled

    2013-12-01

    With several denture adhesives available, it is important for dentists to make appropriate patient recommendations. The purpose of this study was to evaluate the tensile bond strength of denture adhesives on denture base materials at time intervals of up to 24 hours. Fixodent, Super Poligrip, Effergrip, and SeaBond denture adhesives were tested with 3 denture base materials: 2 heat-polymerized (Lucitone 199 and SR Ivocap) and 1 visible-light-polymerized (shade-stable Eclipse). Artificial saliva with mucin was used as a control. Tensile bond strength was tested in accordance with American Dental Association specifications at 5 minutes, 3 hours, 6 hours, 12 hours, and 24 hours after applying the adhesive. Maximum forces before failure were recorded in megapascals (MPa), and the data were subjected to a 2-way analysis of variance (α=.05). All 4 adhesives had greater tensile bond strength than the control. Fixodent, Super Poligrip, and SeaBond had higher tensile bond strength values than Effergrip. All adhesives had the greatest tensile bond strength at 5 minutes and the least at 24 hours. The 3 denture bases produced significantly different results with each adhesive (Padhesives had the greatest tensile bond strength, followed by Ivocap and Eclipse. All 4 adhesives had greater tensile bond strength than the control, and all 4 adhesives were strongest at the 5-minute interval. On all 3 types of denture bases, Effergrip produced significantly lower tensile bond strength, and Fixodent, Super Poligrip, and SeaBond produced significantly higher tensile bond strength. At 24 hours, the adhesive-base combinations with the highest tensile bond strength were Fixodent on Lucitone 199, Fixodent on Eclipse, Fixodent on Ivocap, and Super Poligrip on Ivocap. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  20. Two-year water degradation of self-etching adhesives bonded to bur ground enamel.

    Science.gov (United States)

    Abdalla, Ali I; Feilzer, Albert J

    2009-01-01

    To evaluate the effect of water storage on the microshear bond strength to ground enamel of three "all-in-one" self-etch adhesives: Futurabond DC, Clearfil S Tri Bond and Hybrid bond; a self-etching primer; Clearfil SE Bond and an etch-and-rinse adhesive system, Admira Bond. Sixty human molars were used. The root of each tooth was removed and the crown was sectioned into two halves. The convex enamel surfaces were reduced by polishing on silicon paper to prepare a flat surface that was roughened with a parallel-sided diamond bur with abundant water for five seconds. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm in height/0.75 mm in internal diameter) was placed on the treated surfaces and cured. A resin composite was then inserted into the tube and cured. For each adhesive, two procedures were carried out: A--the specimens were kept in water for 24 hours, then the tube was removed and the microshear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/minute; B--the specimens were stored in water for two-years before microshear testing. The fractured surface of the bonded specimens after each test procedure was examined by SEM. For the 24-hour control, there was no significant difference in bond strength between the tested adhesives. After two years of water storage, the bond strength of Admira Bond, Clearfil SE Bond and Futurabond DC decreased, but the reduction was not significantly different from that of 24 hours. For Clearfil S Tri Bond and Hybrid Bond, the bond strengths were significantly reduced compared to their 24-hour results.

  1. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    Directory of Open Access Journals (Sweden)

    Mehdi Abed Kahnemooyi

    2014-12-01

    Full Text Available Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A‒D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultrastructural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014, with significant differences in shear bond strengths in terms of the adhesive systems (P<0.01. There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01. Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for 10 minutes restored the bond strength in both adhesive systems.

  2. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques.

    Science.gov (United States)

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz; Faria-E-Silva, André Luis

    2015-08-01

    This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  3. Influence of chlorhexidine concentration on microtensile bond strength of contemporary adhesive systems

    Directory of Open Access Journals (Sweden)

    Edson Alves de Campos

    2009-09-01

    Full Text Available The purpose of this study was to investigate the influence of chlorhexidine (CHX concentration on the microtensile bond strength (μTBS of contemporary adhesive systems. Eighty bovine central incisors were used in this study. The facial enamel surface of the crowns was abraded with 600-grit silicon carbide paper to expose flat, mid-coronal dentin surfaces. The tested materials were Scotchbond Multipurpose (SMP, Single-Bond (SB, Clearfil SE Bond (CSEB and Clearfil Tri S Bond (CTSB. All the materials were applied according to manufacturer's instructions and followed by composite application (Z250. The teeth were randomly divided into 16 groups: for the etch-and-rinse adhesives (SMP and SB, 0.12% or 2% CHX was applied prior to or after the acid etching procedure. For the self-etch adhesives (CSEB and CTSB 0.12% or 2% CHX was applied prior to the primer. Control groups for each one of the adhesive systems were also set up. The specimens were immediately submitted to μTBS testing and the data were analyzed using Analysis of Variance and the Tukey post hoc test (alpha = .01. The failure patterns of the specimens were observed using scanning electron microscopy. The effects of 2% CHX were statistically significant (p < 0.01 for the self-etch adhesives but were not significant for the etch-and-rinse adhesive systems. Analysis of the data demonstrated no statistical difference between the etch-and-rinse adhesive systems. CHX-based cavity disinfectants in concentrations higher than 0.12% should be avoided prior to the self-etch adhesive systems evaluated in this study to diminish the possibilities of reduction in bond strength.

  4. Amalgam shear bond strength to dentin using single-bottle primer/adhesive systems.

    Science.gov (United States)

    Cobb, D S; Denehy, G E; Vargas, M A

    1999-10-01

    To evaluate the in vitro shear bond strengths (SBS) of a spherical amalgam alloy (Tytin) to dentin using several single-bottle primer/adhesive systems both alone: Single Bond (SB), OptiBond Solo (Sol), Prime & Bond 2.1 (PB), One-Step (OS) and in combination with the manufacturer's supplemental amalgam bonding agent: Single Bond w/3M RelyX ARC (SBX) and Prime & Bond 2.1 w/Amalgam Bonding Accessory Kit (PBA). Two, three-component adhesive systems, Scotchbond Multi-Purpose (SBMP) and Scotchbond Multi-Purpose Plus w/light curing (S + V) and w/o light curing (S+) were used for comparison. One hundred eight extracted human third molars were mounted lengthwise in phenolic rings with acrylic resin. The proximal surfaces were ground to expose a flat dentin surface, then polished to 600 grit silicon carbide paper. The teeth were randomly assigned to 9 groups (n = 12), and dentin surfaces in each group were treated with an adhesive system according to the manufacturer's instructions, except for S + V specimens, where the adhesive was light cured for 10 s before placing the amalgam. Specimens were then secured in a split Teflon mold, having a 3 mm diameter opening and amalgam was triturated and condensed onto the treated dentin surfaces. Twenty minutes after condensation, the split mold was separated. Specimens were placed in distilled water for 24 hrs, then thermocycled (300 cycles, between 5 degrees C and 55 degrees C, with 12 s dwell time). All specimens were stored in 37 degrees C distilled water for 7 days, prior to shear strength testing using a Zwick Universal Testing Machine at a cross-head speed of 0.5 mm/min. The highest to the lowest mean dentin shear bond strength values (MPa) for the adhesive systems tested were: S + V (10.3 +/- 2.3), SBX (10.2 +/- 3.5), PBA, (6.4 +/- 3.6), SOL (5.8 +/- 2.5), SBMP (5.7 +/- 1.8), S+ (4.8 +/- 2.3), PB (2.7 +/- 2.6), SB (2.7 +/- 1.1) and OS (2.5 +/- 1.8). One-way ANOVA and Duncan's Multiple Range Test indicated significant

  5. Enamel microhardness and bond strengths of self-etching primer adhesives.

    Science.gov (United States)

    Adebayo, Olabisi A; Burrow, Michael F; Tyas, Martin J; Adams, Geoffrey G; Collins, Marnie L

    2010-04-01

    The aim of this study was to determine the relationship between enamel surface microhardness and microshear bond strength (microSBS). Buccal and lingual mid-coronal enamel sections were prepared from 22 permanent human molars and divided into two groups, each comprising the buccal and lingual enamel from 11 teeth, to analyze two self-etching primer adhesives (Clearfil SE Bond and Tokuyama Bond Force). One-half of each enamel surface was tested using the Vickers hardness test with 10 indentations at 1 N and a 15-s dwell time. A hybrid resin composite was bonded to the other half of the enamel surface with the adhesive system assigned to the group. After 24 h of water storage of specimens at 37 degrees C, the microSBS test was carried out on a universal testing machine at a crosshead speed of 1 mm min(-1) until bond failure occurred. The mean microSBS was regressed on the mean Vickers hardness number (VHN) using a weighted regression analysis in order to explore the relationship between enamel hardness and microSBS. The weights used were the inverse of the variance of the microSBS means. Neither separate correlation analyses for each adhesive nor combined regression analyses showed a significant correlation between the VHN and the microSBS. These results suggest that the microSBS of the self-etch adhesive systems are not influenced by enamel surface microhardness.

  6. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Science.gov (United States)

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  7. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin.

    Science.gov (United States)

    Gundogdu, M; Aladag, L I

    2018-03-01

    The aim of the present study was to evaluate the effects of self-etch and self-adhesive resin cements on the shear bond strength of ceramic core materials bonded to dentin. Extracted, caries-free, human central maxillary incisor teeth were selected, and the vestibule surfaces were cut flat to obtain dentin surfaces. Ceramic core materials (IPS e.max Press and Prettau Zirconia) were luted to the dentin surfaces using three self-etch adhesive systems (Duo-Link, Panavia F 2.0, and RelyX Ultimate Clicker) and two self-adhesive resin systems (RelyX U200 Automix and Maxcem Elite). A shear bond strength test was performed using a universal testing machine. Failure modes were observed under a stereomicroscope, and bonding interfaces between the adhesive resin cements and the teeth were evaluated with a scanning electron microscope. Data were analyzed with Student's t-test and one-way analysis of variance followed by Tukey's test (α = 0.05). The type of adhesive resin cement significantly affected the shear bond strengths of ceramic core materials bonded to dentin (P materials when the specimens were luted with self-adhesive resin cements (P materials.

  8. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel

    Science.gov (United States)

    Yazici, A. Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-01-01

    Objective The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Methods: Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C–55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at Padhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (Penamel for any of the adhesives tested (P=.17). Conclusion: Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested. PMID:22904656

  9. Clinical acceptability of two self-etch adhesive resins for the bonding of orthodontic brackets to enamel.

    Science.gov (United States)

    Schnebel, Bradley; Mateer, Scott; Maganzini, Anthony Louis; Freeman, Katherine

    2012-12-01

    To determine whether two self-adhesive resin cements, Clearfil SA and RelyX, can be used to successfully bond orthodontic brackets to enamel. Seventy extracted premolars were custom mounted, cleaned and randomly divided into three groups. In group 1 (control), orthodontic brackets were bonded to 25 premolars using the Transbond Plus and Transbond XT two step adhesive systerm adhesive. In group 2, brackets were bonded to 25 premolars using Clearfil SA. In group 3, brackets were bonded to 20 premolars using RelyX. The brackets were debonded using a universal testing machine and shear bond strengths recorded. After debonding, each tooth was examined under 20× magnification to evaluate the residual adhesive remaining. An ANOVA with Duncan's Multiple Range Test was used to determine whether there were significant differences in shear bond strength between the groups. A Kruskal-Wallis Test and a Bonferroni multiple comparison procedure were used to compare the bond failure modes (adhesive remnant index scores) between the groups. The mean shear bond strengths for the brackets bonded using Clearfil SA and RelyX were 5·930±1·840 and 3·334±1·953 MPa, respectively. Both were significantly lower than that for the brackets bonded using Transbond (7·875±3·611 MPa). Both self-etch adhesive resin cement groups showed a greater incidence of bracket failure at the enamel/adhesive interface while the Transbond group showed a higher incidence at the bracket/adhesive interface. The shear bond strengths of the self-etch adhesive resin cements may be inadequate to successfully bond orthodontic brackets to enamel.

  10. Shear bond strength of one-step self-etch adhesives to dentin: Evaluation of NaOCl pretreatment.

    Science.gov (United States)

    Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio; Scribante, Andrea

    2018-02-01

    The aim of this study was to evaluate the influence of dentin pretreatment with NaOCl on shear bond strength of four one-step self-etch adhesives with different pH values. Bovine permanent incisors were used. Four one-step self-etch adhesives were tested: Adper™ Easy Bond, Futurabond NR, G-aenial Bond, Clearfil S3 Bond. One two-step self-etch adhesive (Clearfil SE Bond) was used as control. Group 1- no pretreatment; group 2- pretratment with 5,25 % NaOCl; group 3- pretreatment with 37 % H3PO4 etching and 5,25 % NaOCl. A hybrid composite resin was inserted into the dentin surface. The specimens were tested in a universal testing machine. The examiners evaluated the fractured surfaces in optical microscope to determine failure modes, quantified with adhesive remnant index (ARI). Dentin pretreatment variably influenced bond strength values of the different adhesive systems. When no dentin pretreatment was applied, no significant differences were found ( P >.05) among four adhesives tested. No significant differences were recorded when comparing NaOCl pretreatment with H3PO4 + NaOCl pretreatment for all adhesive tested ( P >.05) except Clearfil S3 Bond that showed higher shear bond strength values when H3PO4 was applied. Frequencies of ARI scores were calculated. The influence of dentin pretreatment with NaOCl depends on the composition of each adhesive system used. There was no difference in bond strength values among self-etch adhesives with different pH values. Key words: Dentin, pretreatment, self-etch adhesives.

  11. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel.

    Science.gov (United States)

    Yazici, A Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-07-01

    The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C-55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at Padhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (Padhesives tested (P=.17). Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested.

  12. Two methods to simulate intrapulpal pressure: effects upon bonding performance of self-etch adhesives.

    Science.gov (United States)

    Feitosa, V P; Gotti, V B; Grohmann, C V; Abuná, G; Correr-Sobrinho, L; Sinhoreti, M A C; Correr, A B

    2014-09-01

    To evaluate the effects of two methods to simulate physiological pulpal pressure on the dentine bonding performance of two all-in-one adhesives and a two-step self-etch silorane-based adhesive by means of microtensile bond strength (μTBS) and nanoleakage surveys. The self-etch adhesives [G-Bond Plus (GB), Adper Easy Bond (EB) and silorane adhesive (SIL)] were applied to flat deep dentine surfaces from extracted human molars. The restorations were constructed using resin composites Filtek Silorane or Filtek Z350 (3M ESPE). After 24 h using the two methods of simulated pulpal pressure or no pulpal pressure (control groups), the bonded teeth were cut into specimens and submitted to μTBS and silver uptake examination. Results were analysed with two-way anova and Tukey's test (P adhesives. No difference between control and pulpal pressure groups was found for SIL and GB. EB led significant drop (P = 0.002) in bond strength under pulpal pressure. Silver impregnation was increased after both methods of simulated pulpal pressure for all adhesives, and it was similar between the simulated pulpal pressure methods. The innovative method to simulate pulpal pressure behaved similarly to the classic one and could be used as an alternative. The HEMA-free one-step and the two-step self-etch adhesives had acceptable resistance against pulpal pressure, unlike the HEMA-rich adhesive. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Environmental Durability of Adhesively Bonded Joints

    Science.gov (United States)

    1997-10-14

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040188 Public reporting burden for tis collection of information isestimated to average 1 hour per...transmittance and reflectance spectroscopy was performed using Nicolet’s OMNIC software for the set-up, control, and analysis of spectroscopic scans... publications inciudc: JAhIN’. W S. iind Butjkus, L.M., "Considetring E~nvironmental Condjitions ill the Design ()’ Bonded Structures: A Fracture

  14. Standard Guide for Acousto-Ultrasonic Assessment of Composites, Laminates, and Bonded Joints

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide explains the rationale and basic technology for the acousto-ultrasonic (AU) method. Guidelines are given for nondestructive evaluation (NDE) of flaws and physical characteristics that influence the mechanical properties and relative strength of composite structures (for example, filament-wound pressure vessels), adhesive bonds (for example, joints between metal plates), and interlaminar and fiber/matrix bonds in man-made composites and natural composites (for example, wood products). 1.2 This guide covers technical details and rules that must be observed to ensure reliable and reproducible quantitative AU assessments of laminates, composites, and bonded structures. The underlying principles, prototype apparatus, instrumentation, standardization, examination methods, and data analysis for such assessments are covered. Limitations of the AU method and guidelines for taking advantage of its capabilities are cited. 1.3 The objective of AU is to assess subtle flaws and associated strength variations...

  15. Shear bond strength of different adhesive systems to normal and caries-affected dentin

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2015-10-01

    Full Text Available BACKGROUND AND AIM: According to the effect of the adhesive and substrate type on the bond strength, examination of the adhesive is required in all aspects. The aim of this study was to evaluate the shear bond strength of different adhesive systems to normal dentin (ND and caries affected dentin (CAD in permanent teeth. METHODS: Thirty extracted molars with small occlusal caries were selected. After preparation and determination of ND and CAD by caries detector, teeth were divided into three groups and treated with one of the two tested adhesives: Single Bond 2 (SB2, Scotchbond Universal with etch (SBU-ER, and Scotchbond Universal without etch (SBU-SE. Then composite (Filtek Z-250 XT were attached to the surfaces and cured. After water storage (24 hours and thermocycling (500 cycles 5-55 °C, bond strength was calculated and failure modes were determined by stereomicroscope. The data were analyzed by one-way ANOVA and post-hoc test [Tukey HSD (honest significant difference] and with P ˂ 0.050 as the level of significance. RESULTS: Only SBU-ER had significantly higher shear bond strength than SBU-SE in ND (P = 0.027 and CAD (P = 0.046. Bond strength in SBU-ER the highest and in SBU-SE had the lowest amounts in CAD and ND. There was no significant difference in each group between ND and CAD. CONCLUSION: The 2-step etch-and-rinse adhesive (SBU-ER had higher bond strength to ND and CAD than the selfetch adhesive (SBU-SE.

  16. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  17. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    Science.gov (United States)

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  18. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    Directory of Open Access Journals (Sweden)

    José Aginaldo de Sousa Júnior

    2015-08-01

    Full Text Available Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05. Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05, while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05. Stae showed the lowest bond strength values (p < 0.05, while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  19. The strength research of the adhesive joints of sheet structures ...

    African Journals Online (AJOL)

    The research results of stress-strained condition of constructional sheet materials are given in the article. The strength dependence on type, configuration and sizes of adhesive joints is analyzed. The research of the strength dependence was made on the samples from bakelite plywood with the main types of adhesive joints ...

  20. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  1. Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints

    Science.gov (United States)

    Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.

  2. Influence of Different Etching Modes on Bond Strength to Enamel using Universal Adhesive Systems.

    Science.gov (United States)

    Diniz, Ana Cs; Bandeca, Matheus C; Pinheiro, Larissa M; Dos Santosh Almeida, Lauber J; Torres, Carlos Rg; Borges, Alvaro H; Pinto, Shelon Cs; Tonetto, Mateus R; De Jesus Tavarez, Rudys R; Firoozmand, Leily M

    2016-10-01

    The adhesive systems and the techniques currently used are designed to provide a more effective adhesion with reduction of the protocol application. The objective of this study was to evaluate the bond strength of universal adhesive systems on enamel in different etching modes (self-etch and total etch). The mesial and distal halves of 52 bovine incisors, healthy, freshly extracted, were used and divided into seven experimental groups (n = 13). The enamel was treated in accordance with the following experimental conditions: FUE-Universal System - Futurabond U (VOCO) with etching; FUWE - Futurabond U (VOCO) without etching; SB-Total Etch System - Single Bond 2 (3M); SBUE-Universal System - Single Bond Universal (3M ESPE) with etching; SBUWE - Single Bond Universal (3M ESPE) without etching; CLE-Self-etch System - Clearfil SE Bond (Kuraray) was applied with etching; CLWE - Clearfil SE Bond (Kuraray) without etching. The specimens were made using the composite spectrum TPH (Dentsply) and stored in distilled water (37 ± 1°C) for 1 month. The microshear test was performed using the universal testing machine EMIC DL 2000 with the crosshead speed of 0.5 mm/minute. The bond strength values were analyzed using statistical tests (Kruskal-Wallis test and Mann-Whitney test) with Bonferroni correction. There was no statistically significant difference between groups (p adhesive interface revealed that most failures occurred between the interface composite resin and adhesive. The universal adhesive system used in dental enamel varies according to the trademark, and the previous enamel etching for universal systems and the self-etch both induced greater bond strength values. Selective enamel etching prior to the application of a universal adhesive system is a relevant strategy for better performance bonding.

  3. Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems.

    Science.gov (United States)

    William, Vanessa; Burrow, Michael F; Palamara, Joseph E A; Messer, Louise B

    2006-01-01

    When restoring hypomineralized first permanent molars, placement of cavo-surface margins can be difficult to ascertain due to uncertainty of the bonding capability of the tooth surface. The purpose of this study was to investigate the adhesion of resin composite bonded to control and hypomineralized enamel with an all-etch single-bottle adhesive or self-etching primer adhesive. Specimens of control enamel (N=44) and hypomineralized enamel (N=45) had a 0.975-mm diameter composite rod (Filtek Supreme Universal Restorative) bonded with either 3M ESPE Single Bond or Clearfil SE Bond following manufacturers' instructions. Specimens were stressed in shear at 1 mm/min to failure (microshear bond strength). Etched enamel surfaces and enamel-adhesive interfaces were examined under scanning electron microscopy. The microshear bond strength (MPa) of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel (3M ESPE Single Bond=7.08 +/- 4.90 vs 16.27 +/- 10.04; Clearfil SE Bond=10.39 +/- 7.56 vs 19.63 +/- 7.42; P=.001). Fractures were predominantly adhesive in control enamel and cohesive in hypomineralized enamel. Scotchbond etchant produced deep interprismatic and intercrystal porosity in control enamel and shallow etch patterns with minimal intercrystal porosity in hypomineralized enamel. Control enamel appeared almost unaffected by SE Primer; hypomineralized enamel showed shallow etching. The hypomineralized enamel-adhesive interface was porous with cracks in the enamel. The control enamel-adhesive interface displayed a hybrid layer of even thickness. The microshear bond strength of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel. This was supported by differences seen in etch patterns and at the enamel-adhesive interface.

  4. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    Science.gov (United States)

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  5. Casein phosphopeptide-amorphous calcium phosphate and shear bond strength of adhesives to primary teeth enamel.

    Science.gov (United States)

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-02-01

    CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth enamel.

  6. What's new in dentine bonding? Self-etch adhesives.

    Science.gov (United States)

    Burke, F J Trevor

    2004-12-01

    Bonding to dentine is an integral part of contemporary restorative dentistry, but early systems were not user-friendly. The introduction of new systems which have a reduced number of steps--the self-etch adhesives--could therefore be an advantage to clinicians, provided that they are as effective as previous adhesives. These new self-etch materials appear to form hybrid layers as did the previous generation of materials. However, there is a need for further clinical research on these new materials. Advantages of self-etch systems include, no need to etch and rinse, reduced post-operative sensitivity and low technique sensitivity. Disadvantages include, the inhibition of set of self- or dual-cure resin materials and the need to roughen untreated enamel surfaces prior to bonding.

  7. Polymerization contraction stress in dentin adhesives bonded to dentin and enamel

    NARCIS (Netherlands)

    Hashimoto, M.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water

  8. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  9. Bond Performance and Structural Characterization of Polysaccharide Wood Adhesive Made from Konjac Glucomannan/Chitosan/Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Rong Gu

    2016-08-01

    Full Text Available The bond performance and bonding mechanism were evaluated for a Konjac glucomannan (KGM, Chitosan (CS, and polyvinyl alcohol (PVOH blended wood adhesive. An optimized experimental strategy was used to investigate the effects of the formula parameters of adhesives on the bonding strength of plywood using a Box-Behnken design and response surface methodology (RSM. The microstructure of the blended adhesives was analyzed by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. An optimum bonding strength (3.42 ± 0.31 MPa was achieved with concentrations of KGM, CS, and 10% PVOH of 2.3%, 2.3%, and 5.0%, respectively. There was strong hydrogen bonding between the KGM, CS, and 10% PVOH adhesives and the interface. SEM observations indicated that the blended adhesive exhibited a net-like structure that increased the overall bonding strength. These results provided the scientific basis for the continual development of environmentally friendly wood adhesives and the improvement of processing conditions.

  10. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    OpenAIRE

    Chul-Kyu Choi,; Sung-Ae Son; Jin-Hee Ha; Bock Hur; Hyeon-Cheol Kim; Yong-Hun Kwon; Jeong-Kil Park

    2011-01-01

    Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15), according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond) and application methods. The adhesive systems were applied on the dentin as follows: 1) T...

  11. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives.

    Science.gov (United States)

    ALGhanem, Adi; Fernandes, Gabriela; Visser, Michelle; Dziak, Rosemary; Renné, Walter G; Sabatini, Camila

    2017-09-01

    To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm 2 ) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives. Copyright © 2017. Published by Elsevier Ltd.

  12. Adhesives for bonded molar tubes during fixed brace treatment.

    Science.gov (United States)

    Millett, Declan T; Mandall, Nicky A; Mattick, Rye Cr; Hickman, Joy; Glenny, Anne-Marie

    2017-02-23

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. The success of a fixed appliance depends partly on the metal attachments (brackets and bands) being glued to the teeth so that they do not become detached during treatment. Brackets (metal squares) are usually attached to teeth other than molars, where bands (metal rings that go round each tooth) are more commonly used. Orthodontic tubes (stainless steel tubes that allow wires to pass through them), are typically welded to bands but they may also be glued directly (bonded) to molars. Failure of brackets, bands and bonded molar tubes slows down the progress of treatment with a fixed appliance. It can also be costly in terms of clinical time, materials and time lost from education/work for the patient. This is an update of the Cochrane review first published in 2011. A new full search was conducted on 15 February 2017 but no new studies were identified. We have only updated the search methods section in this new version. The conclusions of this Cochrane review remain the same. To evaluate the effectiveness of the adhesives used to attach bonded molar tubes, and the relative effectiveness of the adhesives used to attach bonded molar tubes versus adhesives used to attach bands, during fixed appliance treatment, in terms of: (1) how often the tubes (or bands) come off during treatment; and (2) whether they protect the bonded (or banded) teeth against decay. The following electronic databases were searched: Cochrane Oral Health's Trials Register (to 15 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 1) in the Cochrane Library (searched 15 February 2017), MEDLINE Ovid (1946 to 15 February 2017), and Embase Ovid (1980 to 15 February 2017). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or

  13. Does Shortened Application Time Affect Long-Term Bond Strength of Universal Adhesives to Dentin?

    Science.gov (United States)

    Saikaew, P; Matsumoto, M; Chowdhury, Afma; Carvalho, R M; Sano, H

    2018-04-09

    This study evaluated the effect of shortened application time on long-term bond strength with universal adhesives. Three universal adhesives were used: Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc, Tokyo, Japan), Scotchbond Universal Adhesive (SB, 3M ESPE, St Paul, MN, USA) or G-Premio Bond (GP, GC Corp, Tokyo, Japan). Sixty molars were cut to expose midcoronal dentin and prepared with a regular diamond bur. Each adhesive was applied either according to the manufacturer's instruction or with shortened time. Specimens were stored in distilled water at 37°C for 24 hours and then cut into resin-dentin sticks. Microtensile bond strength (μTBS) was tested after either 24 hours or 1 year of water storage. Data were analyzed by the three-way ANOVA and Duncan tests ( α=0.05). Fracture modes were analyzed under a scanning electron microscope (SEM). One dentin stick per group was selected after fracture mode analysis and further observed using transmission electron microscopy (TEM). Six additional dentin discs were prepared and conditioned with each adhesive under the different application time to observe the adhesive-smear layer interaction by SEM. Shortened application time affected the μTBS ( puniversal adhesives to bur-cut dentin. The performance of universal adhesives can be compromised when applied using a shortened application time.

  14. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  15. Fracture mechanics characterisation of medium-size adhesive joint specimens

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (glass-fibre beams bonded together by an adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres...

  16. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    Science.gov (United States)

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength

  17. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    Science.gov (United States)

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (padhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of long-term repeated topical fluoride applications and adhesion promoter on shear bond strengths of orthodontic brackets

    Science.gov (United States)

    Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo

    2014-01-01

    Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720

  19. Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy

    Science.gov (United States)

    Daniel J. Yelle

    2013-01-01

    Some extensively used wood adhesives, such as pMDI (polymeric methylene diphenyl diisocyanate) and PF (phenol formaldehyde) have shown excellent adhesion properties with wood. However, distinguishing whether the strength is due to physical bonds (i.e., van der Waals, London, or hydrogen bond forces) or covalent bonds between the adherend and the adhesive is not fully...

  20. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications Preparation and Testing of Single Lap Joints (Ver. 2.2, Unlimited)

    Science.gov (United States)

    2016-04-01

    the characteristics of these data and relationships among their corresponding entities, supporting one or more application areas.”2 Digital...application, and cure) of an adhesive with unfamiliar handling characteristics . Fig. 2 Surface treating the lap-joint coupon panel using the acetone...bonding surface. It is crucial to not touch the treated tabs (specifically, the bonding area), even with gloves, after treatment is completed. Bake

  1. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2008-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  2. Shear bond strength of amalgam to dentin using different dentin adhesive systems

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2012-01-01

    Full Text Available Background and Aims: The aim of this in vitro study was to assess the shear bond strength of amalgam to dentin using four dentin adhesive systems.Materials and Methods: One hundred human molars were selected. After enamel removal, a dentin cylinder with 3 mm thickness was prepared. Eighty specimens were resorted with amalgam and four dentin adhesive systems as follows (n=20: group 1, Scotch Bond Multi-Purpose; group 2, One Coat Bond; group 3, PQ1; and group 4, Panavia-F. In group 5, 20 specimens were resorted with amalgam and varnish as control group. The specimens were incubated at 37°C for 24 h. The shear bond strengths were then measured by using push out method. The data were analyzed by one-way ANOVA and post hoc Duncan's tests.Results: Mean values for bond strengths of test groups were as follows: group 1=21.03±8.9, group 2=23.47±9, group 3=13.16±8.8, group 4=20.07±8.9 and group 5=14.15±8.7 MPa±SD. One-way ANOVA showed the statistically significant difference between the bond strengths of five groups (P=0.001. Post hoc Duncan's test showed significant difference between groups 1and 3 (P=0.008, groups 1 and 5 (P=0.019, groups 2 and 5 (P=0.0008, groups 4 and 5 (P=0.042, and groups 3 and 4 (P=0.018.Conclusion: Results of this study showed that the bond strength of amalgam to dentin using One Coat Bond as dentin adhesive system was higher than that observed in other dentin adhesive systems.

  3. Effect of blood contamination with 1-step self-etching adhesives on microtensile bond strength to dentin.

    Science.gov (United States)

    Yoo, H M; Pereira, P N R

    2006-01-01

    This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (pcontamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05).

  4. Effects of Different Radiation Doses on the Bond Strengths of Two Different Adhesive Systems to Enamel and Dentin.

    Science.gov (United States)

    da Cunha, Sandra Ribeiro de Barros; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; da Silva, João Luis Fernandes; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2016-01-01

    To evaluate the effects of three different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. Eighty human third molars were randomly divided into four groups (n = 20) according to the radiation dose (control/no radiation, 20 Gy, 40 Gy, and 70 Gy). The teeth were sagittally sectioned into three slices: one mesial and one distal section containing enamel and one middle section containing dentin. The sections were then placed in the enamel and dentin groups, which were further divided into two subgroups (n = 10) according to the adhesive used. Three restorations were performed in each tooth (one per section) using Adper Single Bond 2 (3M ESPE) or Universal Single Bond (3M ESPE) adhesive system and Filtek Z350 XT (3M ESPE) resin composite and subjected to the microshear bond test. Data were analyzed using a two-way ANOVA followed by Tukey's test. Failure modes were examined under a stereoscopic loupe. Radiotherapy did not affect the bond strengths of the adhesives to either enamel or dentin. In dentin, the Universal Single Bond adhesive system showed higher bond strength values when compared with the Adper Single Bond adhesive system. More adhesive failures were observed in the enamel for all radiation doses and adhesives. Radiotherapy did not influence the bond strength to enamel or dentin, irrespective of the adhesive or radiation dose used.

  5. Fatigue de-bond growth in adhesively bonded single lap joints

    Indian Academy of Sciences (India)

    3Department of Aerospace Engineering, Indian Institute of Science,. Bangalore 560012 ... experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a ... such as the stress intensity factor, are related to fatigue crack growth. ..... American Society for Testing and Materials, Philadelphia.

  6. Influence of saliva contamination on the shear bond strength of adhesives on enamel

    Directory of Open Access Journals (Sweden)

    Tatiana Feres Assad-Loss

    2012-04-01

    Full Text Available OBJECTIVE: To evaluate shear bond strength of 3 adhesive systems (Single Bond, TransbondTM MIP and TransbondTM XT applied on bovine enamel under saliva contamination condition. METHOD: One hundred and twenty enamel surfaces of bovine incisors were divided into 6 groups (n = 20 according to the adhesive system used (TransbondTM XT, TransbondTM MIP and Single Bond with or without saliva contamination. For each adhesive system, there were two groups defined as no contamination group (NC: 37% H3PO4 conditioning for 30 seconds and two layers of adhesive systems; saliva contamination group (SC: After the first adhesive layer application, the examined areas were contaminated with saliva. Samples were mounted appropriately for testing and stored in deionized water at 37 ºC for 7 days. Samples were then submitted to shear bond strength trials at a speed of 0.5 mm/min. The Adhesive Remnant Index (ARI was evaluated under stereomicroscopy. Two-way analysis of variance and the Tukey test were used to compare mean values (α = 0.05. RESULTS: Groups XT (NC = 26.29 ± 7.23; MIP (NC = 24.47 ± 7.52 and SB (NC = 32.36 ± 4.14 XT (SC = 19.59 ± 6.76; MIP (SC = 18.08 ± 6.39 and SB (SC = 18.18 ± 7.03 MPa. ARI 0 and 1 were the most prevalent scores in all study groups examined. CONCLUSION: Saliva contamination significantly decreased bond strength of the three adhesive systems examined (p <0.05. However, the comparison of groups with and without saliva contamination did not reveal any significant differences, and, therefore, the three systems may be considered equivalent.

  7. BOND STRENGTH OF SELF-ETCH ADHESIVES WITH PRIMARY AND PERMANENT TEETH DENTIN – IN VITRO STUDY.

    Directory of Open Access Journals (Sweden)

    Natalia Gateva

    2012-03-01

    Full Text Available Objective: The aim of this study was to compare dentin bond strength of primary and permanent teeth with self-etching adhesive systems. Methods: On 40 intact specimens of primary and permanent teeth was created flat dentin surfaces. The patterns were divided in 4 groups. Two different self-etching adhesive systems were used – one two steps (AdheSE, VivaDent and one one step (AdheSE One, VivaDent. Resin composite build-ups were constructed by means of convetional copper ring after applying the adhesive. The specimens were stored in water for 72 h at room temperature. After that specimens were tested for macrotensile bond strength. Debonded surfaces were analyzed by SEM.Conclusions: The measured values of dentin bond strength after applying self-etching adhesives are statistically significant in group of permanent teeth in comparison with group of primary teeth, and for both adhesive generations. Two steps self-etching adhesive provide significant stronger dentin bond strength with both dentitions in comparison with one step self-etching adhesive.

  8. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives

    OpenAIRE

    Hosaka, K; Nakajima, M; Monticelli, F; Carrilho, M; Yamauti, M; Aksornmuang, J; Nishitani, Y; Tayh, FR; Pashley, DH; Tagami, J

    2007-01-01

    Purpose: To evaluate the microtensile bond strength (mu TBS) of two all-in-one self-etching adhesive systems and two self etching adhesives with and without simulated hydrostatic pulpal pressure (PP). Materials and Methods: Flat coronal dentin surfaces of extracted human molars were prepared. Two all-in-one self-etching adhesive systems, One-Up Bond F (OBF; Tokuyama) and Clearfil S-3 Bond (Tri-S, Kuraray Medical) and two self-etching primer adhesives, Clearfil Protect Bond (PB; Kuraray) and C...

  9. Shear bond strength of one-step self-etch adhesives to dentin : evaluation of NaOCl pretreatment

    OpenAIRE

    Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio; Scribante, Andrea

    2018-01-01

    The aim of this study was to evaluate the influence of dentin pretreatment with NaOCl on shear bond strength of four one-step self-etch adhesives with different pH values. Bovine permanent incisors were used. Four one-step self-etch adhesives were tested: Adper? Easy Bond, Futurabond NR, G-aenial Bond, Clearfil S3 Bond. One two-step self-etch adhesive (Clearfil SE Bond) was used as control. Group 1- no pretreatment; group 2- pretratment with 5,25 % NaOCl; group 3- pretreatment with 37 % H3PO4...

  10. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ali Nadaf

    2012-09-01

    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  11. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    Science.gov (United States)

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (Padhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  12. In vitro bonding effectiveness of three different one-step self-etch adhesives with additional enamel etching.

    Science.gov (United States)

    Batra, Charu; Nagpal, Rajni; Tyagi, Shashi Prabha; Singh, Udai Pratap; Manuja, Naveen

    2014-08-01

    To evaluate the effect of additional enamel etching on the shear bond strength of three self-etch adhesives. Class II box type cavities were made on extracted human molars. Teeth were randomly divided into one control group of etch and rinse adhesive and three test groups of self-etch adhesives (Clearfil S3 Bond, Futurabond NR, Xeno V). The teeth in the control group (n = 10) were treated with Adper™ Single Bond 2. The three test groups were further divided into two subgroups (n = 10): (i) self-etch adhesive was applied as per the manufacturer's instructions; (ii) additional etching of enamel surfaces was done prior to the application of self-etch adhesives. All cavities were restored with Filtek Z250. After thermocycling, shear bond strength was evaluated using a Universal testing machine. Data were analyzed using anova independent sample's 't' test and Dunnett's test. The failure modes were evaluated with a stereomicroscope at a magnification of 10×. Additional phosphoric acid etching of the enamel surface prior to the application of the adhesive system significantly increased the shear bond strength of all the examined self-etch adhesives. Additional phosphoric acid etching of enamel surface significantly improved the shear bond strength. © 2013 Wiley Publishing Asia Pty Ltd.

  13. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    Science.gov (United States)

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  14. Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview.

    Science.gov (United States)

    Awad, Mohamed Moustafa; Alqahtani, H; Al-Mudahi, A; Murayshed, M S; Alrahlah, A; Bhandi, Shilpa H

    2017-07-01

    To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result: An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials.

  15. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation

    International Nuclear Information System (INIS)

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-01-01

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion.

  16. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel.

    Science.gov (United States)

    Beltrami, Riccardo; Chiesa, Marco; Scribante, Andrea; Allegretti, Jessica; Poggio, Claudio

    2016-04-06

    The purpose of this study was to evaluate the effect of surface pretreatment with 37% phosphoric acid on the enamel bond strength of different universal adhesives. One hundred and sixty bovine permanent mandibular incisors freshly extracted were used as a substitute for human teeth. The materials tested in this study included 6 universal adhesives, and 2 self-etch adhesives as control. The teeth were assigned into 2 groups: In the first group, etching was performed using 37% phosphoric acid for 30 seconds. In the second group, no pretreatment agent was applied. After adhesive application, a nanohybrid composite resin was inserted into the enamel surface by packing the material into cylindrical-shaped plastic matrices. After storing, the specimens were placed in a universal testing machine. The normality of the data was calculated using the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) was applied to determine whether significant differences in debond strength values existed among the various groups. Groups with phosphoric acid pretreatment showed significantly higher shear bond strength values than groups with no enamel pretreatment (p<0.001). No significant variation in shear strength values was detected when comparing the different adhesive systems applied onto enamel after orthophosphoric acid application (p>0.05). All adhesives provide similar bond strength values when enamel pretreatment is applied even if compositions are different. Bond strength values are lower than promised by manufacturers.

  17. Failure in a composite resin-dentin adhesive bond

    Energy Technology Data Exchange (ETDEWEB)

    Rezgui, B. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Abdennagi, H. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Sahtout, S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia)); Belkhir, M.S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia))

    1993-11-01

    Composites are drawing more and more attention as preferred materials for teeth restoration. The success of teeth restoration has been generally limited by the Composite Resin-Dentin bond strength. A testing device has been developped to allow a satisfactory testing method for evaluating bonding strength in tension and shear, which led to reproducible results. A comparaison between different bond systems has shown no significant difference in the tensile and the shear strength as well as in the fracture behavior. Moreover, results showed difference between tensile and shear strength, when considering one same bond system. Failure mode examination turned out to be, either cohesive (composite rupture), or adhesive (interface rupture) or both (mixed rupture). (orig.).

  18. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  19. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Giuseppina Barra

    2017-09-01

    Full Text Available The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs with Polyhedral Oligomeric Silsesquioxane (POSS compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS to Tetraglycidyl Methylene Dianiline (TGMDA epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA, single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints.

  20. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  1. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    Science.gov (United States)

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  2. 4-Point beam tensile test on a soft adhesive

    International Nuclear Information System (INIS)

    Budzik, Michal K.; Jumel, Julien; Shanahan, Martin E.R.

    2013-01-01

    Highlights: ► An adhesive butt joint with a soft bondline of variable thickness has been studied. ► We found that bondline thickness affects the stress state in soft bondlines. ► Fracture energy at crack onset is lowest for the thinnest of bondlines and becomes stable for thicker layers. ► Maximum stress decreases with increasing bondline thickness. ► We found that for optimal joint design, rate effects must be taken into account. - Abstract: An adhesive butt joint with a soft bondline has been studied. A series of experiments was conducted on test pieces constituted of aluminium adherends bonded with a low modulus epoxy adhesive, Scotch Weld™ 2216. The joint was subjected to four point bending, in tension/compression loading, under constant deflection rate, with the bondline being parallel to the applied load. The objective was to examine and evaluate crack nucleation for a range of adhesive layer thicknesses. Three criteria were used to evaluate joint efficiency. Firstly, force/stress at crack onset revealed that thinner bondlines were preferable to produce stronger and stiffer bonded structures. Secondly, fracture energy was derived, which, in the present configuration, is associated with the energy stored within the adhesive layer, rather than the substrates. This is one of originalities of the test proposed. Fracture energy data lead to the conclusion, that more energy is dissipated by the joints with lower effective rigidity, viz. thicker bondlines. Finally, we applied a criterion of non-linear, ‘pragmatic’ work of adhesion – similar to the J-integral approach. In terms of energy consumption, the third criterion yielded (quasi) independence of the adhesive thickness. From the data collected, we conclude that for optimal joint design, rate effects must be carefully taken into account

  3. Dielectric Non-Destructive Analysis of Adhesive Bonded Structures

    National Research Council Canada - National Science Library

    Mijovic, Jovan

    2004-01-01

    .... The highlights of the research performed are: l) The defects in adhesive joints decrease the real and imaginary dielectric permittivity in the frequency domain and induce additional peaks in the time domain spectra; 2...

  4. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    International Nuclear Information System (INIS)

    Perton, M; Blouin, A; Monchalin, J-P

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  5. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  6. Nano-modified adhesive by graphene: the single lap-joint case

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Almir; Cruz, Diego Thadeu Lopes da; Avila, Antonio Ferreira, E-mail: aavila@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica

    2013-11-01

    This paper addresses the performance study on, low viscosity, nano-modified adhesives by graphene. For achieving this goal, single-lap joints following ASTM D 5868-01 were manufactured and tested. X-ray diffraction, scanning electron microscopy and nanoindentation were employed for graphene based nanostructures characterization. The increase on joint strength was around 57% when compared against the control group. Furthermore, all failures for the nano-modified adhesive were cohesive failure for the carbon fibre/epoxy composites indicating that the adhesive was tested. X-ray diffractions signatures indicate formation of nano-structures with 17-19 nm diameters. Moreover, nanoindentation tests revealed a homogeneous dispersion of graphene. (author)

  7. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  8. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells.

    Science.gov (United States)

    Nguyen, Ngoc-Minh; Angely, Christelle; Andre Dias, Sofia; Planus, Emmanuelle; Filoche, Marcel; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2017-07-01

    Integrin-mediated adhesion is a key process by which cells physically connect with their environment, and express sensitivity and adaptation through mechanotransduction. A critical step of cell adhesion is the formation of the first bonds which individually generate weak contacts (∼tens pN) but can sustain thousand times higher forces (∼tens nN) when associated. We propose an experimental validation by multiple bond force spectroscopy (MFS) of a stochastic model predicting adhesion reinforcement permitted by non-cooperative, multiple bonds on which force is homogeneously distributed (called parallel bond configuration). To do so, spherical probes (diameter: 6.6 μm), specifically coated by RGD-peptide to bind integrins, are used to statically indent and homogenously stretch the multiple bonds created for short contact times (2 s) between the bead and the surface of epithelial cells (A549). Using different separation speeds (v = 2, 5, 10 μm/s) and measuring cellular Young's modulus as well as the local stiffness preceding local rupture events, we obtain cell-by-cell the effective loading rates both at the global cell level and at the local level of individual constitutive bonds. Local rupture forces are in the range: f*=60-115 pN , whereas global rupture (detachment) forces reach F*=0.8-1.7 nN . Global and local rupture forces both exhibit linear dependencies with the effective loading rate, the slopes of these two linear relationships providing an estimate of the number of independent integrin bonds constituting the tested multiple bond structure (∼12). The MFS method enables to validate the reinforcement of integrin-mediated adhesion induced by the multiple bond configuration in which force is homogeneously distributed amongst parallel bonds. Local rupture events observed in the course of a spectroscopy manoeuver (MFS) lead to rupture force values considered in the literature as single-integrin bonds. Adhesion reinforcement permitted by the parallel

  9. Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material.

    Science.gov (United States)

    Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu

    2009-07-01

    Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile

  10. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. IV. Improvement in wet peel strength

    International Nuclear Information System (INIS)

    Yamakawa, S.; Yamamoto, F.

    1980-01-01

    Adhesive joints of hydrolyzed methyl acrylate grafts, bonded with epoxy adhesives, yield extremely high peel strength (adherend failure) in dry conditions. However, when the joints are exposed to humid environments, the peel strength rapidly decreases with exposure time and then reaches a constant value (wet peel strength). Since the locus of failure changes from the adherend to the homopolymer layer with decreasing peel strength, the decrease is due to a decrease in mechanical strength of the homopolymer layer itself, which results from its swelling by water absorption. Many attempts to reduce the swelling of the homopolymer layer or to strengthen the swollen homopolymer layer were unsuccessful except (1) priming with epoxy solutions consisting of a base epoxy resin and organic solvents which can dissolve not only epoxy resins but also hydrolyzed poly(methyl acrylate) and (2) partial etching of the homopolymer layer by photo-oxidative degradation. All the results on the improvement in wet peel strength can be explained in terms of the penetration of epoxy resins into the homopolymer layer and subsequent curing of the penetrated epoxy resin. 15 figures, 1 table

  11. Bond strengths of different orthodontic adhesives after enamel conditioning with the same self-etching primer.

    Science.gov (United States)

    Scougall-Vilchis, Rogelio J; Zárate-Díaz, Chrisel; Kusakabe, Shusuke; Yamamoto, Kohji

    2010-05-01

    To determine the shear bond strengths (SBS) of stainless steel brackets bonded with seven light-cured orthodontic adhesives after the enamel was conditioned with the same self-etching primer. A total of 140 extracted human molars were randomly divided into seven groups (N = 20). In all the groups, the enamel was conditioned with Transbond Plus SEP (TPSEP). Stainless steel brackets were bonded with the following orthodontic adhesives: Group I, Transbond XT; Group II, Blūgloo; Group III, BeautyOrtho Bond; Group IV, Enlight; Group V, Light Bond; Group VI, Transbond CC; Group VII, Xeno Ortho. The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The modified adhesive remnant index (ARI) was also recorded. There were no significant differences in the SBS values among the groups: I (18.0 +/- 7.4 MPa); II (18.3 +/- 5.1 MPa); III (14.8 +/- 4.3 MPa); IV (18.3 +/- 7.0 MPa); V (16.4 +/- 4.3 MPa); VI (20.3 +/- 5.3 MPa); VII (15.9 +/- 6.4 MPa), but significant differences in ARI were found. The seven orthodontic adhesives evaluated in this study can be successfully used for bonding stainless steel brackets when the enamel is conditioned with TPSEP, however, the differences among some groups might influence the clinical bond strengths. In addition, the amount of residual adhesive remaining on the teeth after debonding differed among the adhesives. Further studies are required to better understand the differences in SBS and ARI.

  12. Degradation of Multimode Adhesive System Bond Strength to Artificial Caries-Affected Dentin Due to Water Storage.

    Science.gov (United States)

    Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z

    The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.

  13. Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin.

    Science.gov (United States)

    Thanatvarakorn, Ornnicha; Prasansuttiporn, Taweesak; Thittaweerat, Suppason; Foxton, Richard M; Ichinose, Shizuko; Tagami, Junji; Hosaka, Keiichi; Nakajima, Masatoshi

    2018-03-01

    Smear layer deproteinizing was proved to reduce the organic phase of smear layer covered on dentin surface. It was shown to eliminate hybridized smear layer and nanoleakage expression in resin-dentin bonding interface of two-step self-etch adhesive. This study aimed to investigate those effects on various one-step self-etch adhesives. Four different one-step self-etch adhesives were used in this study; SE One (SE), Scotchbond™ Universal (SU), BeautiBond Multi (BB), and Bond Force (BF). Flat human dentin surfaces with standardized smear layer were prepared. Smear layer deproteinizing was carried out by the application of 50ppm hypochlorous acid (HOCl) on dentin surface for 15s followed by Accel ® (p-toluenesulfinic acid salt) for 5s prior to adhesive application. No surface pretreatment was used as control. Microtensile bond strength (μTBS) and nanoleakage under TEM observation were investigated. The data were analyzed by two-way ANOVA and Tukey's post-hoc test and t-test at the significant level of 0.05. Smear layer deproteinizing significantly improved μTBS of SE, SU, and BB (player observed in control groups of SE, BB, and BF, and reticular nanoleakage presented throughout the hybridized complex in control groups of BB and BF were eliminated upon the smear layer deproteinizing. Smear layer deproteinizing by HOCl and Accel ® application could enhance the quality of dentin for bonding to one-step self-etch adhesives, resulting in the improving μTBS, eliminating hybridized smear layer and preventing reticular nanoleakage formation in resin-dentin bonding interface. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root

    Directory of Open Access Journals (Sweden)

    Ehsan Mohamadian Amiri

    2017-10-01

    Full Text Available Objectives: Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root.Materials and Methods: This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ, and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA.Results: The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001.Conclusions: Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  15. [Evaluation of shear bond strengths of self-etching and total-etching dental adhesives to enamel and dentin].

    Science.gov (United States)

    Yu, Ling; Liu, Jing-Ming; Wang, Xiao-Yan; Gao, Xue-Jun

    2009-03-01

    To evaluate the shear bond strengths of four dental adhesives in vitro. The facial surfaces of 20 human maxillary incisors were prepared to expose fresh enamel and randomly divided into four groups, in each group 5 teeth were bonded with one adhesives: group A (Clearfil Protect Bond, self-etching two steps), group B (Adper( Prompt, self-etching one step), group C (SwissTEC SL Bond, total-etching two steps), group D (Single Bond, total-etching two steps). Shear bond strengths were determined using an universal testing machine after being stored in distilled water for 24 h at 37 degrees C. The bond strengths to enamel and dentin were (25.33 +/- 2.84) and (26.07 +/- 5.56) MPa in group A, (17.08 +/- 5.13) and (17.93 +/- 4.70) MPa in group B, (33.14 +/- 6.05) and (41.92 +/- 6.25) MPa in group C, (22.51 +/- 6.25) and (21.45 +/- 7.34) MPa in group D. Group C showed the highest and group B the lowest shear bond strength to enamel and dentin among the four groups. The two-step self-etching adhesive showed comparable shear bond strength to some of the total-etching adhesives and higher shear bond strength than one-step self-etching adhesive.

  16. Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives.

    Science.gov (United States)

    Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi

    2016-09-01

    The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of tetracycline on the bond performance of etch-and-rinse adhesives to dentin

    Directory of Open Access Journals (Sweden)

    Rodrigo Stanislawczuk

    2011-10-01

    Full Text Available This study evaluated the effect of modified tetracycline on the resin-dentin bond strength (µTBS, silver nitrate uptake (SNU and solution homogeneity (SH of two adhesives. Dentin surfaces were treated with phosphoric acid, rinsed off and either rewetted with water (control group - CO, 2% minocycline (MI, 2% doxycyline (DO or 2% chlorhexidine (CH. Adhesive systems (Adper Single Bond 2 and Prime Bond NT and composite were applied and light-polymerized. Specimens were sectioned to obtain bonded sticks (0.8 mm² to test under tension at 0.5 mm/min. For SNU, specimens were immersed in silver nitrate and analyzed by EDX-SEM. SH was qualitatively analyzed after mixing the adhesives with different solvent-based solutions containing MI, DO and CH. Lower µTBS values were observed in the DO group compared with MI and CH (p = 0.01. Lower SNU was observed for MI and CH. The lowest µTBS for both adhesives was observed for the DO group (p = 0.01. Signs of phase separation were observed for DO with both adhesives. MI or CH used as rewetting solutions after acid etching did not affect the µTBS and hybrid layer quality.

  18. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel

    NARCIS (Netherlands)

    El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J.

    2010-01-01

    Objective The aim of the study was to evaluate the efficacy of the microtensile bond test (μTBS) and the microshear bond test (μSBS) in ranking four dental adhesives according to bond strength to enamel and identify the modes of failure involved. Materials and methods Forty-four caries-free human

  19. Influence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin

    Directory of Open Access Journals (Sweden)

    Marcio Vivan Cardoso

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp. Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX and one self-etch system (Clearfil SE Bond - SE were employed, varying the presence or absence of an intrapulpal pressure (IPP simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05. The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.

  20. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  1. Influence of CVD diamond tips and Er:YAG laser irradiation on bonding of different adhesive systems to dentin.

    Science.gov (United States)

    da Silva, Melissa Aline; Di Nicolo, Rebeca; Barcellos, Daphne Camara; Batista, Graziela Ribeiro; Pucci, Cesar Rogerio; Rocha Gomes Torres, Carlos; Borges, Alessandra Bühler

    2013-01-01

    The aim of this study was to compare the microtensile bond strength of three adhesive systems, using different methods of dentin preparation. A hundred and eight bovine teeth were used. The dentin from buccal face was exposed and prepared with three different methods, divided in 3 groups: Group 1 (DT)- diamond tip on a high-speed handpiece; Group 2 (CVD)-CVD tip on a ultrasonic handpiece; Group 3 (LA)-Er: YAG laser. The teeth were divided into 3 subgroups, according adhesive systems used: Subgroup 1-Adper Single Bond Plus/3M ESPE (SB) total-etch adhesive; Subgroup 2-Adper Scotchbond SE/3M ESPE (AS) selfetching adhesive; Subgroup 3-Clearfil SE Bond/Kuraray (CS) selfetching adhesive. Blocks of composite (Filtek Z250-3M ESPE) 4 mm high were built up and specimens were stored in deionized water for 24 hours at 37°C. Serial mesiodistal and buccolingual cuts were made and stick-like specimens were obtained, with transversal section of 1.0 mm(2). The samples were submitted to microtensile test at 1 mm/min and load of 10 kg in a universal testing machine. Data (MPa) were subjected to ANOVA and Tukey's tests (p adhesive produced significantly lower bond strength values compared to other groups. Surface treatment with Er: YAG laser associated with Single Bond Plus or Clearfil SE Bond adhesives and surface treatment with CVD tip associated with Adper Scotchbond SE adhesive produced significantly lower bond strength values compared to surface treatment with diamond or CVD tips associated with Single Bond Plus or Adper Scotchbond SE adhesives. Interactions between laser and the CVD tip technologies and the different adhesive systems can produce a satisfactory bonding strength result, so that these associations may be beneficial and enhance the clinical outcomes.

  2. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation.

    Science.gov (United States)

    Gotti, Valéria B; Feitosa, Victor P; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Leal, Fernanda B; Stansbury, Jeffrey W; Correr, Américo B

    2015-02-01

    This study assessed the effect of antioxidants vitamin C (Vit. C), vitamin E (Vit. E) and quercetin (Querc) on the dentin bonding performance, degree of conversion, and rate of polymerization of three commercial adhesive systems (Adper Single Bond 2 [SB], Clearfil SE Bond [CSE], Adper Easy Bond [EB]). Human premolars were restored using antioxidant-doped adhesives. The samples were stored for 24 h in distilled water or 6 months under simulated pulpal pressure. Teeth were cut into sticks and the microtensile bond strength (μTBS) to dentin was tested in a universal testing machine. Qualitative nanoleakage analysis was performed from a central stick of each restored tooth. Degree of conversion and rate of polymerization of adhesive systems were evaluated in triplicate using real-time FT-IR. Although the inclusion of the antioxidants negatively affected the μTBS over 24 h, the antioxidant-doped adhesives maintained (SB-Vit. C, SB-Vit. E, CSE-Vit. C, EB-Querc) or increased (SB-Querc, CSE-Vit. E, CSE-Querc, EB-Vit. E, and EB-Vit. C) their μTBS during 6 months of storage. Only the μTBS of Adper Single Bond 2 dropped significantly after 6 months among the control groups. Slight changes in the nanoleakage pattern after aging were observed in all groups, except for the EB-control group, which showed a noteworthy increase in nanoleakage after 6 months, and for EB-Vit. C, which presented a remarkable decrease. A lower degree of conversion was obtained with all antioxidants in SB and EB, except for the EB-Vit. E group. Similar degrees of conversion were attained in control and experimental groups for CSE. The rate of polymerization was reduced in antioxidant-doped adhesives. The performance of antioxidants changed according to the adhesive system to which they were added, and antioxidant-doped adhesives appear to have a positive effect on the adhesive interface durability, since their bond strength obtained after 24 h was maintained or increased over time.

  3. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  4. Hybridization quality and bond strength of adhesive systems according to interaction with dentin.

    Science.gov (United States)

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-07-01

    To evaluate the hybridization quality and bond strength of adhesives to dentin. Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives - Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems - Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system - Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm(2) in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. SE reached significantly higher μ-TBS (P 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P quality than that observed for ADP and XE. The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin.

  5. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    OpenAIRE

    Yazdi, Fatemeh-Maleknejad; Moosavi, Horieh; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (?SBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% ...

  6. Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads

    Science.gov (United States)

    Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui

    1997-01-01

    Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.

  7. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin.

    Science.gov (United States)

    Alves, Mll; Campos, F; Bergoli, C D; Bottino, M A; Özcan, M; Souza, Roa

    2016-01-01

    This study evaluated the effects of different adhesive strategies on the adhesion of zirconia to dentin using conventional and self-adhesive cements and their corresponding adhesive resins. The occlusal parts of human molars (N=80) were sectioned, exposing the dentin. The teeth and zirconia cylinders (N=80) (diameter=3.4 mm; height=4 mm) were randomly divided into eight groups according to the factors "surface conditioning" and "cement type" (n=10 per group). One conventional cement (CC: RelyX ARC, 3M ESPE) and one self-adhesive cement (SA: RelyX U200, 3M ESPE) and their corresponding adhesive resin (for CC, Adper Single Bond Plus; for SA, Scotchbond Universal Adhesive-SU) were applied on dentin. Zirconia specimens were conditioned either using chairside (CJ: CoJet, 30 μm, 2.5 bar, four seconds), laboratory silica coating (RC: Rocatec, 110 μm, 2.5 bar, four seconds), or universal primer (Single Bond Universal-UP). Nonconditioned groups for both cements acted as the control (C). Specimens were stored in water (37°C, 30 days) and subjected to shear bond strength (SBS) testing (1 mm/min). Data (MPa) were analyzed using two-way analysis of variance and a Tukey test (α=0.05). While surface conditioning significantly affected the SBS values (p=0.0001) (Cadhesive. Air-abrasion and the use of the universal primer improved the bond strength of zirconia to dentin compared to the control group, regardless of the type of resin cement used.

  8. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    Science.gov (United States)

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  9. Wood-adhesive bonding failure : modeling and simulation

    Science.gov (United States)

    Zhiyong Cai

    2010-01-01

    The mechanism of wood bonding failure when exposed to wet conditions or wet/dry cycles is not fully understood and the role of the resulting internal stresses exerted upon the wood-adhesive bondline has yet to be quantitatively determined. Unlike previous modeling this study has developed a new two-dimensional internal-stress model on the basis of the mechanics of...

  10. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    Science.gov (United States)

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  11. Modeling of fracture and durability of paste-bonded composite joints subjected to hygro-thermal-mechanical loading

    Science.gov (United States)

    Harris, David Lee

    The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.

  12. Sealing ability and bond strength of four contemporary adhesives to enamel and to dentine.

    Science.gov (United States)

    Atash, R; Vanden Abbeele, A

    2005-12-01

    To compare the shear bond strength and microleakage of four adhesive systems to the enamel and dentine of primary bovine teeth. 120 bovine primary mandibular incisors were collected and stored in an aqueous 1% chloramine solution at room temperature for no longer than 3 months after extraction (80 for shear bond testing and 40 for microleakage evaluation). The adhesives tested were Clearfil SE bond (SE), Adper Prompt L Pop (LP), Xeno III (XE), and Prime and Bond NT (PB). For shear bond strength testing the specimens were wet ground to 600 grit SiC paper to expose a flat enamel or dentine surface. After bonding and restoration with Dyract AP (DAP), the teeth were subjected to shear stress using a universal testing machine. For microleakage evaluation, facial class V cavities were prepared half in enamel and half in cementum. All cavities were restored with DAP. After thermocycling and immersion in 2% methylene blue, the dye penetration was evaluated under a stereomicroscope. All data were analysed by Chi-square tests or Fisher's tests when adapted in order to determine the significant differences between groups. Results were considered as significant for p enamel 11.06 to 5.34, in decreasing order SE, LP, XE and PB and on dentine 10.47 to 4.74, in decreasing order SE, XE, LP and PB. Differences in bond strengths between the four systems on enamel and dentine were all statistically significant, excepted for XE vs LP (shear bond at dentine). No significant differences were recorded in the microleakage degree between the four adhesive systems on enamel and on dentine (p > 0.0.5). The highest shear bond strength was achieved by Clearfil SE bond and the lowest by Prime and Bond NT. There was no significant difference concerning the sealing ability of the four adhesive systems.

  13. Effect of saliva decontamination procedures on shear bond strength of a one-step adhesive system.

    Science.gov (United States)

    Ülker, E; Bilgin, S; Kahvecioğlu, F; Erkan, A I

    2017-09-01

    To evaluate the effect of different saliva decontamination procedures on the shear bond strength of a one-step universal adhesive system (Single Bond™ Universal Adhesive, 3M ESPE, St. Paul, MN, USA). The occlusal surfaces of 75 human third molars were ground to expose dentin. The teeth were divided into the following groups: Group 1 (control group): Single Bond™ Universal Adhesive was applied to the prepared tooth according to the manufacturer's recommendations and light cured; no contamination procedure was performed. Group 2: Bonding, light curing, saliva contamination, and dry. Group 3: Bonding, light curing, saliva contamination, rinse, and dry. Group 4: After the procedure performed in Group 2, reapplication of bonding. Group 5: After the procedure performed in Group 3, reapplication of bonding. Then, composite resins were applied with cylindrical-shaped plastic matrixes and light cured. For shear bond testing, a notch-shaped force transducer apparatus was applied to each specimen at the interface between the tooth and composite until failure occurred. The data were statistically analyzed using one-way ANOVA. One-way ANOVA revealed significant differences in shear bond strength between the control group and experimental Groups 2 and 4 (P 0.05). The present in vitro study showed that water rinsing is necessary if cured adhesive resin is contaminated with saliva to ensure adequate bond strength.

  14. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    Science.gov (United States)

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  15. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2012-01-01

    Full Text Available In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT, Optibond Solo Plus (OBSP, and Clearfil SE Bond (CSEB and unfilled (Single Bond (SB adhesive systems (n=12. A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP.

  16. Shear Bond Strength of Saliva Contaminated and Re-etched All-in-One Adhesive to Enamel

    Directory of Open Access Journals (Sweden)

    M. Khoroushi

    2008-12-01

    Full Text Available Objective: The aim of this study was to investigate the effect of phosphoric acid re-etching of an enamel surface treated via a one-bottle adhesive system on shear bond strength between resin composite and the enamelsurface in different stages of adhesive application.Materials and Methods: Extracted intact premolars (n=84 were divided into sevengroups (n=12. In the control group 1, the adhesive i-Bond was used according to the manufacturer's instructions, with nocontamination. In groups 2 to 4, the conditioned and saliva, contaminated enamel was blot dried only, rinsed,and blot dried, rinsed blot dried and re-etched, respectively. In groups 5, 6and 7 cured adhesive was contaminated with saliva and then rinsed and blot-dried, blot dried only and rinsed, blot-dried and re-etched respectively. In groups 3, 4, 6 and 7 the adhesive was reapplied. Afterward, Z100 compos-ite cylinders were bonded to the enamel surfaces. The samples were thermocycled (5°C and 55°C, 30 s, dwelling time: 10 s, 500 cycles. Finally, the samples were sheared using Dartec testing machine and shear bond strength data were subjected to one-way ANOVA analysis and Tukey's HSD test.Results: There were statistically significant differences among groups 1 and 5-7. The samples in groups 1 and 4 demonstrated higher bond strengths than those in the other groups.Conclusion: Using phosphoric acid etching may be effective, only where contamination occurs prior to curing of the adhesive. After curing of the adhesive, none of the methods in this study would be preferred.

  17. Effects of drying agents on bond strength of etch-and-rinse adhesive systems to enamel immediately after bleaching.

    Science.gov (United States)

    Niat, Alireza Boruzi; Yazdi, Fatmeh Maleknejad; Koohestanian, Niloufar

    2012-12-01

    To determine the effect of drying agents and adhesive solvents on the bond strength of resin composite to enamel immediately after bleaching. Sixty healthy human premolars were bleached using 15% carbamide peroxide gel and randomly divided into three groups according to the immersing solutions applied immediately after bleaching: 70% alcohol, acetone, and distilled water. Each group was randomly divided into two subgroups according to the adhesives that were applied: an alcohol-based adhesive (Single Bond) and an acetone-based adhesive (One Step). By using rubber washers, composite Z100 was placed onto the enamel and shear bond strength was evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The type of failure was also assessed using a stereomicroscope. The data were statistically analyzed by two-way ANOVA and Tukey's post-hoc test (α = 0.05). Fisher's Exact test was used to evaluate differences in the failure modes. Statistical analysis showed that the bond strength of the distilled water groups was significantly lower than that of the other groups, but the bond strengths of the two groups where a drying agent was applied were similar to that of the unbleached group. The acetone-based adhesive (One Step) provided higher bond strength than did the alcohol-based adhesive (Single Bond) (p 0.05). Fisher's Exact test showed there was no significant difference in the failure mode of all the experimental groups (p > 0.05). The application of drying agents improves the bond strength of resin composite to bleached enamel. Furthermore, the acetone-based adhesive used in the study had a higher bond strength to bleached enamel than did the alcohol-based adhesive used.

  18. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive.

  19. Effect of bur-cut dentin on bond strength using two all-in-one and one two-step adhesive systems.

    Science.gov (United States)

    Koase, Kaori; Inoue, Satoshi; Noda, Mamoru; Tanaka, Toru; Kawamoto, Chiharu; Takahashi, Akiko; Nakaoki, Yasuko; Sano, Hidehiko

    2004-01-01

    To compare the microtensile bond strength (MTBS) of two all-in-one adhesive systems and one experimental two-step self-etching adhesive system to two types of bur-cut dentin. Using one of the three adhesives, Xeno CF Bond (Xeno), Prompt L-Pop (PL), or the experimental two-step system ABF (ABF), resin composite was bonded to flat buccal and root dentin surfaces of eight extracted human premolars. These surfaces were produced using either regular-grit or superfine-grit diamond burs. After storage overnight in 37 degrees C water, the bonded specimens were sectioned into six or seven slices approximately 0.7 mm thick perpendicular to the bonded surface. They were then subjected to microtensile testing. The surfaces of the fractured specimens were observed microscopically to determine the failure mode. In addition, to observe the effect of conditioning, the two types of bur-cut dentin surfaces were conditioned with the adhesives, rinsed with acetone, and observed with SEM. When Xeno and PL were bonded to dentin cut with a regular-grit diamond bur, MTBS values were lower than to superfine bur-cut dentin, and failures occurred adhesively at the interface, whereas the experimental two-step adhesive showed no significant difference in microtensile bond strength between two differently cut surfaces. The all-in-one adhesives tested here improved bond strengths when bonded to superfine bur-cut dentin as a substrate, whereas the experimental two-step adhesive system showed unchanged bonding to both regular and superfine bur-cut dentin surfaces.

  20. Evaluation of bond strength of a conventional adhesive system in irradiated teeth

    Directory of Open Access Journals (Sweden)

    Emanuel Jordan de CARVALHO

    Full Text Available Abstract Introduction One of the most common treatments of head and neck cancer patients is radiotherapy, a treatment method which uses ionizing radiation beam and destroys tumor cells, minimizing damage to neighbor cells. Purpose To evaluate the bond strength of a conventional adhesive system in irradiated teeth. Method 24 third human molars, 12 of which were randomly exposed to radiation and prepared from the removal of occlusal enamel, then exposed to a flat dentine surface. The adhesive system Stae was applied according to the manufacturer’s instructions. Next, two 2 mm increments of resin were implemented. The samples were hemi sectioned specimens, originating shapped toothpick. To evaluate the bond strength, a micro tensile test was done with 500N load and speed of 0.5 mm/minute. Result There was no statistically significant difference between the bond strength of teeth which were or were not exposed to radiation and which used a conventional adhesive system. Conclusion Although the radiation doses applied may cause some alterations in microscopic range in dental tissues, it can be concluded that these alterations do not influence in the bond strength in dentin of irradiated teeth.

  1. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Science.gov (United States)

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  2. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    Science.gov (United States)

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  3. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Berry, Thomas P; Watanabe, Hedehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The purpose of this study was to determine the dentin bonding ability of three new universal adhesive systems under different etching modes using fatigue testing. Prime & Bond elect [PE] (DENTSPLY Caulk), Scotchbond Universal [SU] (3M ESPE), and All Bond Universal [AU] (Bisco) were used in this study. A conventional single-step self-etch adhesive, Clearfil Bond SE ONE [CS] (Kuraray Noritake Dental) was also included as a control. Shear bond strengths (SBS) and shear fatigue strength (SFS) to human dentin were obtained in the total-etch mode and self-etch modes. For each test condition, 15 specimens were prepared for the SBS and 30 specimens for SFS. SEM was used to examine representative de-bonded specimens, treated dentin surfaces and the resin/dentin interface for each test condition. Among the universal adhesives, PE in total-etch mode showed significantly higher SBS and SFS values than in self-etch mode. SU and AU did not show any significant difference in SBS and SFS between the total-etch mode and self-etch mode. However, the single-step self-etch adhesive CS showed significantly lower SBS and SFS values in the etch-and-rinse mode when compared to the self-etch mode. Examining the ratio of SFS/SBS, for PE and AU, the etch-and-rinse mode groups showed higher ratios than the self-etch mode groups. The influence of different etching modes on dentin bond quality of universal adhesives was dependent on the adhesive material. However, for the universal adhesives, using the total-etch mode did not have a negative impact on dentin bond quality. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Reconstruction of fiber Bragg grating strain profile used to monitor the stiffness degradation of the adhesive layer in carbon fiber–reinforced plastic single-lap joint

    Directory of Open Access Journals (Sweden)

    Song Chunsheng

    2017-01-01

    Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.

  5. Effect of EDTA Conditioning and Carbodiimide Pretreatment on the Bonding Performance of All-in-One Self-Etch Adhesives

    Directory of Open Access Journals (Sweden)

    Shipra Singh

    2015-01-01

    Full Text Available Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA conditioning and carbodiimide (EDC pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a adhesive applied following manufacturer’s instructions; (b dentin conditioning with 24% EDTA gel prior to application of adhesive; (c EDC pretreatment followed by application of adhesive; (d application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey’s test at a significance level of p<0.05.  Results and Conclusion. EDTA preconditioning as well as EDC pretreatment alone had no significant effect on the immediate and delayed bond strengths of either of the adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months.

  6. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives.

    Science.gov (United States)

    Hosaka, Keiichi; Nakajima, Masatoshi; Monticelli, Francesca; Carrilho, Marcela; Yamauti, Monica; Aksornmuang, Juthatip; Nishitani, Yoshihiro; Tay, Franklin R; Pashley, David H; Tagami, Junji

    2007-10-01

    To evaluate the microtensile bond strength (microTBS) of two all-in-one self-etching adhesive systems and two self-etching adhesives with and without simulated hydrostatic pulpal pressure (PP). Flat coronal dentin surfaces of extracted human molars were prepared. Two all-in-one self-etching adhesive systems, One-Up Bond F (OBF; Tokuyama) and Clearfil S3 Bond (Tri-S, Kuraray Medical) and two self-etching primer adhesives, Clearfil Protect Bond (PB; Kuraray) and Clearfil SE Bond (SE; Kuraray) were applied to the dentin surfaces according to manufacturers' instructions under either a pulpal pressure (PP) of zero or 15 cm H2O. A hybrid resin composite (Clearfil AP-X, Kuraray) was used for the coronal buildup. Specimens bonded under PP were stored in water at 37 degrees C under 15 cm H2O for 24 h. Specimens not bonded under PP were stored under a PP of zero. After storage, the bonded specimens were sectioned into slabs that were trimmed to hourglass-shaped specimens, and were subjected to microtensile bond testing (microTBS). The bond strength data were statistically analyzed using two-way ANOVA and the Holm-Sidak method for multiple comparison tests (alpha = 0.05). The surface area percentage of different failure modes for each material was also statistically analyzed with three one-way ANOVAs and Tukey's multiple comparison tests. The microTBS of OBF and Tri-S fell significantly under PP. However, in the, PB and SE bonded specimens under PP, there were no significant differences compared with the control groups without PP. The microTBS of the two all-in-one adhesive systems decreased when PP was applied. However, the microTBS of both self-etching primer adhesives did not decrease under PP.

  7. Microshear bond strength of a flowable resin to enamel according to the different adhesive systems

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Kim

    2011-01-01

    Full Text Available Objectives The purpose of this study was to compare the microshear bond strength (uSBS of two total-etch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10 by adhesives used; OS group (One-Step Plus, SB group (Single Bond, CE group (Clearfil SE Bond, TY group (Tyrian SPE/One-Step Plus, AP group (Adper Prompt L-Pop and GB group (G-Bond. After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350 was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05. 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05. 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions Although adhesives using the same step were applied the enamel sur

  8. Investigation of the shear bond strength to dentin of universal adhesives applied with two different techniques

    Directory of Open Access Journals (Sweden)

    Elif Yaşa

    2017-09-01

    Full Text Available Objective: The aim of this study was to evaluate the shear bond strength of universal adhesives applied with self-etch and etch&rinse techniques to dentin. Materials and Method: Fourty-eight sound extracted human third molars were used in this study. Occlusal enamel was removed in order to expose the dentinal surface, and the surface was flattened. Specimens were randomly divided into four groups and were sectioned vestibulo-lingually using a diamond disc. The universal adhesives: All Bond Universal (Group 1a and 1b, Gluma Bond Universal (Group 2a and 2b and Single Bond Universal (Group 3a and 3b were applied onto the tooth specimens either with self-etch technique (a or with etch&rinse technique (b according to the manufacturers’ instructions. Clearfil SE Bond (Group 4a; self-etch and Optibond FL (Group 4b; etch&rinse were used as control groups. Then the specimens were restored with a nanohybrid composite resin (Filtek Z550. After thermocycling, shear bond strength test was performed with a universal test machine at a crosshead speed of 0.5 mm/min. Fracture analysis was done under a stereomicroscope (×40 magnification. Data were analyzed using two-way ANOVA and post-hoc Tukey tests. Results: Statistical analysis showed significant differences in shear bond strength values between the universal adhesives (p<0.05. Significantly higher bond strength values were observed in self-etch groups (a in comparison to etch&rinse groups (b (p<0.05. Among all groups, Single Bond Universal showed the greatest shear bond strength values, whereas All Bond Universal showed the lowest shear bond strength values with both application techniques. Conclusion: Dentin bonding strengths of universal adhesives applied with different techniques may vary depending on the adhesive material. For the universal bonding agents tested in this study, the etch&rinse technique negatively affected the bond strength to dentin.

  9. The difference of tensile bond strength between total and self etch adhesive systems in dentin

    Directory of Open Access Journals (Sweden)

    Selly Yusalina

    2010-03-01

    Full Text Available Total etch adhesive system has been widely used in teeth conservation area as an adhesive agent before implicating composite resin restoration agent. The aim of this research is to prove the difference of tensile bond strength between total etch (Single Bond and self etch adhesive system (Adper prompt L-Pop on dentin surface in vitro. The extracted and non carries maxillary premolar teeth were used in this research and were divided into 2 groups. The first group comprised 15 specimen teeth etched in phosphoric acid and was applicated with the Single Bond adhesive agent. The second group comprised 15 specimen teeth, applicated with the Adper Prompt-L-Pop. The composite resin (Z 350, 3M was applied incrementally and each of the layers was rayed for 20 seconds. The specimens were stored in physiologic solution before they were tested. Tensile bond strength was measured by LRX Plus Lloyd Instrument, with 1 N load and 1 mm/minute speed, and the measurement result was in Mpa unit. The result was evaluated statistically by the Student t-test with α = 0.05. Single Bond (the 5th generation showed a better bond strength compared to the Adper Prompt-L-Pop (the 6th generation.

  10. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    . The overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding...... of the process consists of numerical predictions based on the commercial finite element program SORPAS with the purpose of establishing the most favourable parameters that allow spot-welding through the adhesives....

  11. Adhesion to pulp chamber dentin: Effect of ethanol-wet bonding technique and proanthocyanidins application

    Directory of Open Access Journals (Sweden)

    Pallavi Sharma

    2015-01-01

    Full Text Available Aim: To evaluate the microleakage of a simplified etch-and-rinse adhesive bonded to pulp chamber dentin with water-wet bonding (WWB or ethanol-wet bonding (EWB with and without proanthocyanidins (PA application. Materials and Methods: Total 88 non-carious extracted human molar teeth were sectioned horizontally to expose the pulp chambers 1.5 mm coronal to the cemento-enamel junction. After the pulp tissue extirpation, canal orifices were enlarged and the root ends were sealed. The samples were randomly divided equally into following four groups according to the four bonding techniques performed using Adper Single Bond 2 [SB] adhesive (1 WWB; (2 EWB; (3 WWB and PA application [WWB + PA]; (4 EWB and PA application [EWB + PA]. Composite resin restorations were performed in all the pulp chambers. Total 20 samples from each group were subjected to microleakage evaluation, and two samples per group were assessed under scanning electron microscope for interfacial micromorphology. Results: The least microleakage score was observed in group 2 (EWB with similar results seen in group 4 (EWB + PA (P = 0.918. Group 2 (EWB showed significantly less microleakage than group 1 (WWB; P = 0.002 and group 3 (WWB + PA; P = 0.009. Group 4 (EWB + PA also depicted significantly reduced microleakage as compared with group 1 (WWB; P = 0.001 and group 3 (WWB + PA; P = 0.003. Conclusion: The use of EWB technique in a clinically relevant simplified dehydration protocol significantly reduced microleakage in simplified etch-and-rinse adhesive, Adper Single Bond 2, bonded to pulp chamber dentin. Application of PA had no significant effect on the microleakage of the adhesive bonded with either WWB or EWB.

  12. Bond strength of self-etch adhesives after saliva contamination at different application steps.

    Science.gov (United States)

    Cobanoglu, N; Unlu, N; Ozer, F F; Blatz, M B

    2013-01-01

    This study evaluated and compared the effect of saliva contamination and possible decontamination methods on bond strengths of two self-etching adhesive systems (Clearfil SE Bond [CSE], Optibond Solo Plus SE [OSE]). Flat occlusal dentin surfaces were created on 180 extracted human molar teeth. The two bonding systems and corresponding composite resins (Clearfil AP-X, Kerr Point 4) were bonded to the dentin under six surface conditions (n=15/group): group 1 (control): primer/bonding/composite; group 2: saliva/drying/primer/bonding/composite; group 3: primer/saliva/rinsing/drying/primer/bonding/composite; group 4: primer/saliva/rinsing/drying/bonding/composite; group 5: primer/bonding (cured)/saliva/rinsing/drying/primer/bonding/composite; group 6: primer/bonding (cured)/saliva/removing contaminated layer with a bur/rinsing/drying/primer/bonding/composite. Shear bond strength was tested after specimens were stored in distilled water at 37°C for 24 hours. One-way analysis of variance and Tukey post hoc tests were used for statistical analyses. For CSE, groups 2, 3, and 4 and for OSE, groups 6, 2, and 4 showed significantly lower bond strengths than the control group (pcontamination occurred after light polymerization of the bonding agent, repeating the bonding procedure recovered the bonding capacity of both self-etch adhesives. However, saliva contamination before or after primer application negatively affected their bond strength.

  13. Analytical and numerical study concerning the behaviour of single-sided bonded patch repairs

    Directory of Open Access Journals (Sweden)

    Gheorghi OPATCHI

    2011-06-01

    Full Text Available Adhesive bonded joints are used in the assembling of structural parts, especially of those which are made from dissimilar materials. Lightweight fibre reinforced polymer composites and other adhesive bonded components represent a major proportion of a modern aircraft. Bonded patch repair technology has been widely used to repair cracked thin-walled structures to extend their service life, because a correctly executed repair significantly enhances the structural performance.In practice, the single-sided bonded patch repair is the most used because a good solution like the double-sided repair may not be an option if the access to the structure is only available from one side.This paper presents a relatively simple and effective design procedure for the single strapped bonded joints. Also, the influence of various geometrical parameters of the joint is evaluated. The analytical development is validated based on nonlinear finite element analyses.

  14. Shear bond strength of self-etch adhesives to enamel with additional phosphoric acid etching.

    Science.gov (United States)

    Lührs, Anne-Katrin; Guhr, Silke; Schilke, Reinhard; Borchers, Lothar; Geurtsen, Werner; Günay, Hüsamettin

    2008-01-01

    This study evaluated the shear bond strength of self-etch adhesives to enamel and the effect of additional phosphoric acid etching. Seventy sound human molars were randomly divided into three test groups and one control group. The enamel surfaces of the control group (n=10) were treated with Syntac Classic (SC). Each test group was subdivided into two groups (each n=10). In half of each test group, ground enamel surfaces were coated with the self-etch adhesives AdheSe (ADH), Xeno III (XE) or Futurabond NR (FNR). In the remaining half of each test group, an additional phosphoric acid etching of the enamel surface was performed prior to applying the adhesives. The shear bond strength was measured with a universal testing machine at a crosshead speed of 1 mm/minute after storing the samples in distilled water at 37 degrees C for 24 hours. Fracture modes were determined by SEM examination. For statistical analysis, one-way ANOVA and the two-sided Dunnett Test were used (p>0.05). Additional phosphoric etching significantly increased the shear bond strength of all the examined self-etch adhesives (padhesive fractures. For all the self-etch adhesives, a slight increase in mixed fractures occurred after conditioning with phosphoric acid. An additional phosphoric acid etching of enamel should be considered when using self-etch adhesives. More clinical studies are needed to evaluate the long-term success of the examined adhesives.

  15. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  16. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  17. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  18. Influence of application method on surface free-energy and bond strength of universal adhesive systems to enamel.

    Science.gov (United States)

    Imai, Arisa; Takamizawa, Toshiki; Sai, Keiichi; Tsujimoto, Akimasa; Nojiri, Kie; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    The aim of the present study was to determine the influence of different adhesive application methods and etching modes on enamel bond effectiveness of universal adhesives using shear bond strength (SBS) testing and surface free-energy (SFE) measurements. The adhesives Scotchbond Universal, All-Bond Universal, Adhese Universal, and G-Premio Bond were used. Prepared bovine enamel specimens were divided into four groups, based on type of adhesive, and subjected to the following surface treatments: (i) total-etch mode with active application; (ii) total-etch mode with inactive application; (iii) self-etch mode with active application; and (iv) self-etch mode with inactive application. Bonded specimens were subjected to SBS testing. The SFE of the enamel surfaces with adhesive was measured after rinsing with acetone and water. The SBS values in total-etch mode were significantly higher than those in self-etch mode. In total-etch mode, significantly lower SBS values were observed with active application compared with inactive application; in contrast, in self-etch mode there were no significant differences in SBS between active and inactive applications. A reduction in total SFE was observed for active application compared with inactive application. The interaction between etching mode and application method was statistically significant, and the application method significantly affected enamel bond strength in total-etch mode. © 2017 Eur J Oral Sci.

  19. Mechanism of adhesion of epoxy resin to steel surface; Tekko hyomen to epoxy jushino secchaku mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, M. [Nippon Steel Corp., Tokyo (Japan)

    1994-08-01

    In the present research, an adhesion-breaking test and a molecular-scale model experiment were conducted to elucidate the adhesion mechanism of epoxy resin (R) to the cold rolled steel sheet (CR) and galvanized steel sheet (GI). As for the adhesive joint strength in the humid environment, the GI is inferior in residual strength to the CR. The GI joint fracture is an interfacial fracture between the plating and adhesive agent, while the CR joint fracture is a combination of cohesive fracture and interfacial fracture. It is attributable to the difference in adhesion mechanism of R and degradation due to humidity between the surface solely of zinc and iron-containing surface. The adhesion state of R to the zinc oxide and iron oxide was observed by temperature-programed desorption in an ultrahigh vacuum. On each of both oxides, the R chemically adsorbs through bond scission between the phenoxy oxide and carbon. If the water dissociatively adsorbs onto the surface, the bond is destroyed between the zinc oxide and R. The formation of interfacial chemical bond contributes to the adhesion of R to the CR and GI. In case of GI, this band is destroyed by the interfacial infiltration of water, while it is not done in case of CR. The CR excels the GI in adhesive durability. 20 refs., 8 figs., 3 tabs.

  20. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    Science.gov (United States)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  1. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel.

    Science.gov (United States)

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.

  2. Lap Shear Testing of Candidate Radiator Panel Adhesives

    Science.gov (United States)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  3. An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel

    International Nuclear Information System (INIS)

    Chen, Pin-Chuan; Liu, Yu-Min; Chou, Huang-Chieh

    2016-01-01

    Thermoplastics are widely used in the fabrication of microfluidic chips, due to their low cost, flexibility in manufacturing, and applicability in large-scale production. This paper presents a novel bonding method for the assembly of thermoplastic microfluidic chips, with the aim of preventing the flow of UV adhesive into microchannels during the bonding process. The proposed bonding methodology depends primarily on controlling the thickness of the UV adhesive, which is achieved by using spin-coating for the uniform UV adhesive in conjunction with the microfabrication of short pillars for keeping a uniform gap between the two bonded surfaces. In this study, two devices with serpentine microchannels (cross-sectional area of 500 μm  ×  500 μm and 200 μm  ×  200 μm) were fabricated on PMMA substrates using a micromilling machine, whereupon a hydrophobic coating was applied to the walls of 200 μm  ×  200 μm microchannels in order to prevent clogging, which might otherwise be caused by the seepage of UV adhesive into the channels. A variety of experiments were used to characterize the quality of bonding, the results of which reveal the following: (1) no leakage was observed in either of the microfluidic chips; (2) the hydrophobic coating proved highly effective in preventing the flow of UV adhesive into the smaller microchannels; (3) the average amount of clogging inside 500 μm  ×  500 μm microchannels was 1.13% with standard deviation of 0.55%, while the average amount of clogging inside 200 μm  ×  200 μm microchannels was 1.65% with standard deviation of 0.92%; (4) the average thickness of the UV adhesive in a 500 μm  ×  500 μm microfluidic chip was 32 μm with standard deviation of 2 μm, whereas the average thickness of the UV adhesive in a 200 μm  ×  200 μm microfluidic chip was 31 μm with standard deviation of 1.2 μm; (5) the two chips possess sufficient bonding strength to withstand

  4. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  5. Effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.

    Directory of Open Access Journals (Sweden)

    Lin Hu

    Full Text Available This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding.Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson's correlation coefficient.Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB, and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = -0.65, p = 0.003. The Pearson's correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen.In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface.

  6. Selective Acid Etching Improves the Bond Strength of Universal Adhesive to Sound and Demineralized Enamel of Primary Teeth.

    Science.gov (United States)

    Antoniazzi, Bruna Feltrin; Nicoloso, Gabriel Ferreira; Lenzi, Tathiane Larissa; Soares, Fabio Zovico Maxnuck; Rocha, Rachel de Oliveira

    To evaluate the influence of enamel condition and etching strategy on bond strength of a universal adhesive in primary teeth. Thirty-six primary molars were randomly assigned to six groups (n = 6) according to the enamel condition (sound [S] and demineralized [DEM]/cariogenic challenge by pH cycling prior to restorative procedures) and adhesive system (Scotchbond Universal Adhesive [SBU]) used in either etch-and-rinse (ER) or selfetching (SE) mode, with Clearfil SE Bond as the self-etching control. The adhesives were applied to flat enamel surfaces and composite cylinders (0.72 mm2) were built up. After 24-h storage in water, specimens were subjected to the microshear test. Bond strength (MPa) data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α = 0.05). Significant differences were found considering the factors adhesive system (p = 0.003) and enamel condition (p = 0.001). Demineralized enamel negatively affected the bond strength, with μSBS values approximately 50% lower than those obtained for sound enamel. SBU performed better in etch-and-rinse mode, and the bond strength found for SBU applied in self-etching mode was similar to that of CSE. Enamel etching with phosphoric acid improves the bond strength of a universal adhesive system to primary enamel. Demineralized primary enamel results in lower bond strength.

  7. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Ruan, Hongjiang; Fan, Cunyi; Zeng, Bingfang; Wang, Chunyang; Wang, Xiang

    2010-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  8. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  9. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  10. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  11. Can previous acid etching increase the bond strength of a self-etching primer adhesive to enamel?

    Directory of Open Access Journals (Sweden)

    Ana Paula Morales Cobra Carvalho

    2009-06-01

    Full Text Available Because a greater research effort has been directed to analyzing the adhesive effectiveness of self etch primers to dentin, the aim of this study was to evaluate, by microtensile testing, the bond strength to enamel of a composite resin combined with a conventional adhesive system or with a self-etching primer adhesive, used according to its original prescription or used with previous acid etching. Thirty bovine teeth were divided into 3 groups with 10 teeth each (n= 10. In one of the groups, a self-etching primer (Clearfil SE Bond - Kuraray was applied in accordance with the manufacturer's instructions and, in the other, it was applied after previous acid etching. In the third group, a conventional adhesive system (Scotchbond Multipurpose Plus - 3M-ESPE was applied in accordance with the manufacturer's instructions. The results obtained by analysis of variance revealed significant differences between the adhesive systems (F = 22.31. The self-etching primer (Clearfil SE Bond presented lower enamel bond strength values than the conventional adhesive system (Scotchbond Multipurpose Plus (m = 39.70 ± 7.07 MPa both when used according to the original prescription (m = 27.81 ± 2.64 MPa and with previous acid etching (m = 25.08 ± 4.92 MPa.

  12. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  13. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  14. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2015-01-01

    Full Text Available Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P 0.05. In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.

  15. Influence of Nd:YAG laser on the bond strength of self-etching and conventional adhesive systems to dental hard tissues.

    Science.gov (United States)

    Marimoto, A K; Cunha, L A; Yui, K C K; Huhtala, M F R L; Barcellos, D C; Prakki, A; Gonçalves, S E P

    2013-01-01

    The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting. One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37°C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (α=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (penamel groups were X=20.2 ± 5.61, XL=23.6 ± 4.92, S=20.8 ± 4.55, SL=22.1 ± 5.14 and for the dentin groups were X=14.1 ± 7.51, XL=22.2 ± 6.45, S=11.2 ± 5.77, SL=15.9 ± 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased). Nd:YAG laser application prior to photopolymerization of adhesive systems

  16. Combined effect of smear layer characteristics and hydrostatic pulpal pressure on dentine bond strength of HEMA-free and HEMA-containing adhesives.

    Science.gov (United States)

    Mahdan, Mohd Haidil Akmal; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2013-10-01

    This study evaluated the combined effect of smear layer characteristics with hydrostatic pulpal pressure (PP) on bond strength and nanoleakage expression of HEMA-free and -containing self-etch adhesives. Flat dentine surfaces were obtained from extracted human molars. Smear layers were created by grinding with #180- or #600-SiC paper. Three HEMA-free adhesives (Xeno V, G Bond Plus, Beautibond Multi) and two HEMA-containing adhesives (Bond Force, Tri-S Bond) were applied to the dentine surfaces under hydrostatic PP or none. Dentine bond strengths were determined using the microtensile bond test (μTBS). Data were statistically analyzed using three- and two-way ANOVA with Tukey post hoc comparison test. Nanoleakage evaluation was carried out under a scanning electron microscope (SEM). Coarse smear layer preparation and hydrostatic PP negatively affected the μTBS of HEMA-free and -containing adhesives, but there were no significant differences. The combined experimental condition significantly reduced μTBS of the HEMA-free adhesives, while the HEMA-containing adhesives exhibited no significant differences. Two-way ANOVA indicated that for HEMA-free adhesives, there were significant interactions in μTBS between smear layer characteristics and pulpal pressure, while for HEMA-containing adhesives, there were no significant interactions between them. Nanoleakage formation within the adhesive layers of both adhesive systems distinctly increased in the combined experimental group. The combined effect of coarse smear layer preparation with hydrostatic PP significantly reduced the μTBS of HEMA-free adhesives, while in HEMA-containing adhesives, these effects were not obvious. Smear layer characteristics and hydrostatic PP would additively compromise dentine bonding of self-etch adhesives, especially HEMA-free adhesives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Protein Modifiers Generally Provide Limited Improvement in Wood Bond Strength of Soy Flour Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda Lorenz

    2013-01-01

    Soy flour adhesives using a polyamidoamine-epichlorohydrin (PAE) polymeric coreactant are used increasingly as wood adhesives for interior products. Although these adhesives give good performance, higher bond strength under wet conditions is desirable. Wet strength is important for accelerated tests involving the internal forces generated by the swelling of wood and...

  18. Evaluation of bond strength of self-etching adhesives having different pH on primary and permanent teeth dentin.

    Science.gov (United States)

    Ozmen, Bilal; Koyuturk, Alp Erdin; Tokay, Ugur; Cortcu, Murat; Sari, Mustafa Erhan

    2015-10-16

    The purpose of this in vitro study was to evaluate the dentin shear bond strength of 4 self-etching adhesives having a different pH on primary and permanent teeth dentin. The occlusal enamel was removed from 60 freshly extracted third molar and 60 primary second molar human teeth, which were randomly separated into 4 groups (n = 15). Four adhesive systems were applied: G-Bond (GC Corporation, Tokyo, Japan, pH: 1.5), Futura Bond M (Voco, Cuxhaver, Germany, pH: 1.4), Adper Prompt L-Pop (3M/ESPE, St Paul, MN, USA, pH: 0.8), and Clearfil S(3) Bond (Kuraray Medical, Tokyo, Japan, pH: 2.7) according to the manufacturer's instructions. After the application of dentin bonding agents, a composite resin material (Z250 Restorative A2, 3M ESPE, St. Paul, MN, USA) for permanent teeth and a compomer resin material (Dyract Extra A2, Dentsply, Konstanz, Germany) for primary teeth was applied onto the prepared dentin surfaces. The data were obtained by using a universal test machine at a crosshead speed of 1 mm/min. The mean values were compared using Tukey's multiple comparison test. Although there was no difference between adhesives on the permanent teeth, Clearfil S3 adhesive showed higher bond (18.07 ± 0.58 MPa) (P>0.05). Lower bond strength values were obtained from primary teeth and especially G-Bond adhesive (9.36 ± 0.48 MPa) (Padhesives with different pH and solvent types can be used successfully for permanent teeth dentin but adhesives with low pH did not provide greater shear bond strength values.

  19. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    Science.gov (United States)

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p composite resin (p composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  20. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  1. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  2. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.

    Science.gov (United States)

    De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart

    2013-06-01

    To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    Science.gov (United States)

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (padhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (puniversal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  4. Effect of EDTA and phosphoric Acid pretreatment on the bonding effectiveness of self-etch adhesives to ground enamel.

    Science.gov (United States)

    Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M

    2010-10-01

    This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.

  5. Evaluation of microtensile bond strength of total-etch, self-etch, and glass ionomer adhesive to human dentin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Neelima Lakshmi

    2008-01-01

    Full Text Available Aim: To evaluate the microtensile bond strength of Single Bond, AdheSE, and Fuji Bond LC to human dentin. Fifteen non-carious third molars were selected for the study. The teeth were randomly divided into three groups of five teeth each. Each group was given a different bonding treatment. Group I was treated with Single Bond (3M, ESPE, group II with AdheSE (Ivoclar, Vivadent, and group III was treated with Fuji Bond LC (GC America. A T-band metal matrix was placed and composite resin bonded on to the tooth surface using appropriate bonding agents. The composite resin was packed in increments and light cured. Each tooth was sectioned to obtain 1 mm x 1 mm beams of dentin-resin samples. Tensile bond testing was done using a universal testing machine (Instron at a cross-head speed of 0.5 mm/min. Results: The mean bond strength of Single Bond (35.5 MPa was significantly higher than that of AdheSE (32.8 MPa and Fuji Bond LC (32.6 MPa. The difference between the microtensile bond strength values of AdheSE and Fuji Bond LC was statistically insignificant. Inference: Though the bond strength of AdheSE and Fuji Bond LC was above 30 MPa, it was less than that of Single Bond as evaluated by testing of microtensile bond strength.

  6. Long-term bond strength of adhesive systems applied to etched and deproteinized dentin

    Directory of Open Access Journals (Sweden)

    Ninoshka Uceda-Gómez

    2007-12-01

    Full Text Available The aim of this study was to evaluate the early and 12-month bond strength of two adhesive systems (Single Bond-SB and One Step-OS applied to demineralized dentin (WH and demineralized/NaOCl-treated dentin (H. Twenty flat dentin surfaces were exposed, etched, rinsed and slightly dried. For the H groups, a solution of 10% NaOCl was applied for 60 s, rinsed (15 s and slightly dried. The adhesives were applied according to the manufacturer's instructions and composite resin crowns were incrementally constructed. After 24 h (water-37ºC, the specimens was sectioned in order to obtain resin-dentin sticks (0.8 mm². The specimens were tested in microtensile (0.5 mm/min immediately (IM or after 12 months of water storage (12M. The data (MPa were subjected to ANOVA and Tukey's test (a=0.05. Only the main factors adhesive and time were significant (p=0.004 and p=0.003, respectively. SB (42.3±9.1 showed higher bond strengths than OS (33.6±11.6. The mean bond strength for IM-group (42.5±8.7 was statistically superior to 12M (33.3±11.8. The use of 10% NaOCl, after acid etching, did not improve the immediate and the long-term resin-dentin bond strength.

  7. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin.

    Science.gov (United States)

    Fu, Jiale; Saikaew, Pipop; Kawano, Shimpei; Carvalho, Ricardo M; Hannig, Matthias; Sano, Hidehiko; Selimovic, Denis

    2017-08-01

    To evaluate the influence of different air-blowing durations on the micro-tensile bond strength (μTBS) of five current one-step adhesive systems to dentin. One hundred and five caries-free human molars and five current one-step adhesive systems were used: ABU (All Bond Universal, Bisco, Inc.), CUB (CLEARFIL™ Universal Bond, Kuraray), GPB (G-Premio BOND, GC), OBA (OptiBond All-in-one, Kerr) and SBU (Scotchbond Universal, 3M ESPE). The adhesives were applied to 600 SiC paper-flat dentin surfaces according to each manufacturer's instructions and were air-dried with standard, oil-free air pressure of 0.25MPa for either 0s, 5s, 15s or 30s before light-curing. Bond strength to dentin was determined by using μTBS test after 24h of water storage. The fracture pattern on the dentin surface was analyzed by SEM. The resin-dentin interface of untested specimens was visualized by panoramic SEM image. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. air-blowing time), and Games-Howell (a=0.05). Two-way ANOVA revealed a significant effect of materials (p=0.000) and air-blowing time (p=0.000) on bond strength to dentin. The interaction between factors was also significantly different (p=0.000). Maximum bond strength for each system were recorded, OBA/15s (76.34±19.15MPa), SBU/15s (75.18±12.83MPa), CUB/15s (68.23±16.36MPa), GPB/30s (55.82±12.99MPa) and ABU/15s (44.75±8.95MPa). The maximum bond strength of OBA and SUB were significantly higher than that of GPB and ABU (padhesive systems is material-dependent (p=0.000), and was influenced by air-blowing duration (p=0.000). For the current one-step adhesive systems, higher bond strengths could be achieved with prolonged air-blowing duration between 15-30s. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    Science.gov (United States)

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  9. Effect of changes to the manufacturer application techniques 
on the shear bond strength of simplified dental adhesives.

    Science.gov (United States)

    Chasqueira, Ana Filipa; Arantes-Oliveira, Sofia; Portugal, Jaime

    2013-09-13

    The aim of this work was to assess the shear bond strength (SBS) between a composite resin and dentin, promoted by two dental adhesive systems (one-step self-etching adhesive Easy Bond [3M ESPE], and two-step etch-and-rinse adhesive Scotchbond 1XT [3M ESPE]) with different application protocols (per manufacturer's instruction (control group); with one to four additional adhesive layers; or with an extra hydrophobic adhesive layer). Proximal enamel was removed from ninety caries-free human molars to obtain two dentin discs per tooth, which were randomly assigned to twelve experimental groups (n=15). After adhesion protocol, the composite resin (Filtek Z250 [3M ESPE]) was applied. Specimens were mounted in the Watanabe test device and shear bond test was performed in a universal testing machine with a crosshead speed of 5 mm/min. Data were analyzed with ANOVA followed by Student-Newman-Keuls tests (PScotchbond 1XT per manufacturer's instructions (27.15±2.99 MPa). Easy Bond yielded higher SBS values than Scotchbond 1XT. There were no statistically significant differences (P>0.05) between the application protocols tested, except for the three and four layers groups, that presented higher SBS results compared to manufacturer's instruction groups (Padhesive layers when using Easy Bond and Scotchbond 1XT adhesives, since it improves SBS values without consuming much time.

  10. Bond durability of adhesives containing modified-monomer with/without-fluoride after aging in artificial saliva and under intrapulpal pressure simulation.

    Science.gov (United States)

    El-Deeb, H A; Al Sherbiney, H H; Mobarak, E H

    2013-01-01

    To evaluate the dentin bond strength durability of adhesives containing modified-monomer with/without-fluoride after storage in artificial saliva and under intrapulpal pressure simulation (IPPS). The occlusal enamel of 48 freshly extracted teeth was trimmed to expose midcoronal dentin. Roots were sectioned to expose the pulp chamber and to connect the specimens to the pulpal-pressure assembly. Specimens were assigned into four groups (n=12) according to adhesive system utilized: a two-step etch-and-rinse adhesive system (SB, Adper Single Bond 2, 3M ESPE), a two-step self-etch adhesive system (CSE, Clearfil SE Bond, Kuraray Medical Inc), and two single-step self-etch adhesives with the same modified monomer (bis-acrylamide)-one with fluoride (AOF, AdheSE One F, Ivoclar-Vivadent) and the other without (AO, AdheSE One, Ivoclar-Vivadent). Bonding was carried out while the specimens were subjected to 15-mm Hg IPPS. Resin composite (Valux Plus, 3M ESPE) buildups were made. After curing, specimens were aged in artificial saliva and under 20-mm Hg IPPS at 37°C in a specially constructed incubator either for 24 hours or six months prior to testing. Bonded specimens (n=6/group) were sectioned into sticks (n=24/group) with a cross section of 0.9 ± 0.01 mm(2) and subjected to microtensile bond strength (μTBS) testing using a universal testing machine. Data were statistically analyzed using two-way analysis of variance (ANOVA) with repeated measures, one-way ANOVA tests, and a t-test (partificial saliva and under IPPS, yet these values remained significantly higher than those for the other two adhesives with modified monomers. There was no significant difference in the bond strength values between fluoride-containing and fluoride-free self-etch adhesive systems (AOF and AO) after 24 hours or six months. Modes of failure were mainly adhesive and mixed. Based on the results of this study, 1) Fluoride addition did not affect dentin bond durability; and 2) despite the fact that

  11. Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2015-01-01

    As wood construction increasingly uses engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives used. Bondline strength is a crucial issue for engineered wood applications, especially in cold climates. In this study, Norway spruce (Picea abies) joints (150 mm...... adhesive was tested at six temperatures: 20, −20, −30, −40, −50 and −60 °C. Generally, within the temperature test range, temperature changes significantly affected the shear strength of solid wood and wood joints. As the temperature decreased, the shear strength decreased. PUR adhesive in most cases...... resulted in the strongest shear strength and MUF adhesive resulted in the weakest. MF and PRF adhesives responded to temperature changes in a similar manner to that of the PUR adhesive. The shear strengths of wood joints with PVAc and EPI adhesives were more sensitive to temperature change. At low...

  12. On the use of the EMI for the health monitoring of bonded elements

    Science.gov (United States)

    Gulizzi, Vincenzo; Rizzo, Piervincenzo; Milazzo, Alberto

    2014-03-01

    The low weight, robustness and fatigue resistance of adhesive joints make them suitable for structural joints. A fully developed nondestructive evaluation technique however is needed to monitor and assess the quality of bonded joints. In the present paper the application of the electromechanical impedance (EMI) technique is proposed. In the EMI method a piezoelectric transducer (PZT) is attached to the structure of interest. The high sensitivity and low power consumption make the EMI method feasible for real time structural health monitoring. In this study we investigated the sensitivity of the electromechanical response of a PZT to the curing and the quality of the adhesive used for bonded joints. A PXI unit running under LabView and an auxiliary circuit were employed to measure the electric impedance of a PZT glued to an aluminum plate. The system aimed at monitoring the bond line between an aluminum strip and the plate. The conductive signature of the PZT was measured and analyzed during the curing. The experimental results show that the electromechanical impedance technique is sensitive to the curing time and variations are observed for adhesives of different quality.

  13. Composite shear bond strength to dry and wet enamel with three self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Shafiee F

    2006-01-01

    Full Text Available Background and Aim: The bonding mechanisms of self etching primers, based upon the simultaneous etching and priming of dentin, simplifies the bonding technique, but the efficiency of these systems is still controversial. This study compared the shear bond strength of three self etch adhesive systems in dry and wet conditions. Materials and Method: In this experimental study, 77 intact bovine lower incisors with flat 600 grit sanded enamel surface were fixed in acrylic molds and divided into 7 groups, of 11 teeth. The enamel surfaces were treated according to a special procedure as follows: Group 1: Prompt L-Pop (PLP in dry condition, Group 2: Prompt L-Pop in wet condition, Group 3: Clearfield SE Bond (CSEB in dry condition, Group 4: Clearfield SE Bond in wet condition, Group 5: iBond (iB in dry condition, Group 6: iBond in wet condition, Group 7: Margin Bond (Control in dry condition. Surfaces were air dried for ten seconds, or blot dried in wet condition. Composite resin was bonded on the enamel and built up by applying a cylindric teflon split mold (4 mm height 2mm diameter. After 24 hours storage in dionized water at room temperature, all specimens were thermocycled and shear bond test was employed by a universal testing machine (Instron with a cross-head speed of 1mm/min. The shear bond strength was recorded in MPa and data were analyzed with ANOVA and Scheffe statistical tests. P<0.05 was considered as statistically significant. The mode of failure was examined under a stereomicroscope. Results: 1- Shear bond strength of CSEB in dry condition (21.5 ± 4.8 MPa was significantly higher than PLP and iB groups (p<0.0001. 2- Shear bond strength of iB and PLP groups in dry condition (9.60 ± 2.2, 9.49 ± 3 MPa were significantly lower than CSEB and control (2.99 ± 5.1 MPa (P<0.0001. 3- There was no significant difference between PLP and iB groups in dry condition (P=1. 4- Shear bond strength of CSEB in wet condition (21.8 ± 3 MPa was

  14. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  15. Development for dissimilar metal joint between stainless steel and zirconium by explosive bonding technique

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Matsumoto, Toshimi; Asano, Chooichi; Funamoto, Takao; Hirose, Yasuo; Sasada, Yasuhiro.

    1988-01-01

    Development of dissimilar metal joints between stainless steel and Zr for application to nuclear fuel reprocessing equipment was studied. Two dissimilar metal joints (Zr to SUS 304 L joint and its joint using Ta as insert metal) were made by the explosive bonding technique. After bonding, microstructure, tensile strength and corrosion test of dissimilar metal joints were investigated. The results indicated that: (1) The good dissimilar metal joint is obtained between stainless steel and Zr with a Ta insert metal by using explosive bonding technique. (2) A Ta insert metal retards a growth of intermetallic compounds at the bonding interface. (3) The strength of the dissimilar metal joint in this study is higher than that of Zr metal. Any local attack was not observed at the bonding interface after corrosion test. (author)

  16. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  17. An in vitro Evaluation of Shear Bond Strength of Adhesive Precoated Brackets

    Directory of Open Access Journals (Sweden)

    A S Sibi

    2014-01-01

    Full Text Available Newer materials have been introduced in the field of orthodontics to improve clinical efficacy as well as to simplify the technique. In an effort to reduce the time and steps to bond orthodontic attachments, adhesive precoated (APC brackets were introduced. In this study, an attempt is made to evaluate the shear bond strength (SBS and debonding behavior of APC brackets compared with uncoated ceramic brackets. A total of 60 human premolar teeth were divided into two groups of 30 each, bonded with APC ceramic brackets and uncoated ceramic brackets. Group I bonded with APC brackets as prescribed by the manufacturers and group II was bonded with conventional bonding using Turbobond. After bonding, sthe samples were kept in distilled water at 37°C for 24 hours and a universal testing mechine was used to apply an occlusal shear force at a speed of 0.5 mm/min. The shear bond strength of the groups was compared using Student t-test and the debonding behavior were compared using Mann-Whitney′s U test. Mean shear bond strength and standard deviation of the groups were group I - 9.09 ± 2.5 MPa and group II - 12.95 ± 2.81 MPa. There were significant differences in bond strength observed between the two groups. The debonding behavior showed an adhesive remnant index score of 0.90 ± 0.08 for group I and 1.10 ± 0.04 for group II, which indicates there is significant difference between each other. When considering the values required for optimum bond strength, APC brackets in this study showed adequate bond strength and could be used for routine clinical use.

  18. Effect of various bleaching treatments on shear bond strength of different universal adhesives and application modes

    Science.gov (United States)

    2018-01-01

    Objectives The aim of this in vitro study was to evaluate the bond strength of 2 universal adhesives used in different application modes to bleached enamel. Materials and Methods Extracted 160 sound human incisors were used for the study. Teeth were divided into 4 treatment groups: No treatment, 35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide. After bleaching treatments, groups were divided into subgroups according to the adhesive systems used and application modes (n = 10): 1) Single Bond Universal, etch and rinse mode; 2) Single Bond Universal, self-etch mode; 3) Gluma Universal, etch and rinse mode; 4) Gluma Universal, self-etch mode. After adhesive procedures nanohybrid composite resin cylinders were bonded to the enamel surfaces. All specimens were subjected to shear bond strength (SBS) test after thermocycling. Data were analyzed using a 3-way analysis of variance (ANOVA) and Tukey post hoc test. Results No significant difference were found among bleaching groups (35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide, and no treatment groups) in the mean SBS values. There was also no difference in SBS values between Single Bond Universal and Gluma Universal at same application modes, whereas self-etch mode showed significantly lower SBS values than etch and rinse mode (p adhesives was enhanced with the etch and rinse mode application to bleached enamel and non-bleached enamel. PMID:29765900

  19. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  20. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  1. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid

  2. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    OpenAIRE

    Pamato, Saulo; do Valle, Acc?cio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; S?, Marcus-Vin?cius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer?s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond? FL,...

  3. Wood : adhesives

    Science.gov (United States)

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  4. Interface strength and degradation of adhesively bonded porous aluminum oxides

    NARCIS (Netherlands)

    Abrahami, S.T.; de Kok, John M.M.; Gudla, Visweswara C.; Ambat, Rajan; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    For more than six decades, chromic acid anodizing has been the main step in the surface treatment of aluminum for adhesively bonded aircraft structures. Soon this process, known for producing a readily adherent oxide with an excellent corrosion resistance, will be banned by strict international

  5. Behavior of an epoxy-polysulfide adhesive in wood joints exposed to moisture content changes

    Science.gov (United States)

    Gordon P. Krueger

    1965-01-01

    The mechanical behavior of a flexible epoxy-resin adhesive system was observed in joints of plywood to lumber. The joints were subjected to internal swelling stresses caused by an increase in moisture content. Previous experimental work at the U.S. Forest Products Laboratory has shown that this adhesive system acts as a strain-absorbing cushion and thus has a...

  6. Influence of de/remineralization of enamel on the tensile bond strength of etch-and-rinse and self-etching adhesives.

    Science.gov (United States)

    Farias de Lacerda, Ana Julia; Ferreira Zanatta, Rayssa; Crispim, Bruna; Borges, Alessandra Bühler; Gomes Torres, Carlos Rocha; Tay, Franklin R; Pucci, Cesar Rogério

    2016-10-01

    To evaluate the bonding behavior of resin composite and different adhesives applied to demineralized or remineralized enamel. Bovine tooth crowns were polished to prepare a 5 mm2 enamel bonding area, and divided into five groups (n= 48) according to the surface treatment: CONT (sound enamel control), DEM (demineralized with acid to create white spot lesions), REMS (DEM remineralized with artificial saliva), REMF (DEM remineralized with sodium fluoride) and INF (DEM infiltrated with Icon resin infiltrant). The surface-treated teeth were divided into two subgroups (n= 24) according to adhesive type: ER (etch-and-rinse; Single Bond Universal) and SE (self-etching; Clearfill S3 Bond), and further subdivided into two categories (n= 12) according to aging process: Thermo (thermocycling) and NA (no aging). Composite blocks were made over bonded enamel and sectioned for microtensile bond strength (MTBS) testing. Data were analyzed with three-way ANOVA and post-hoc Tukey's test (α= 0.05). Significant differences were observed for enamel surface treatment (Padhesive type (PUniversal had higher MTBS than Clearfil S3 Bond; thermo-aging resulted in lower MTBS irrespective of adhesive type and surface treatment condition. The predominant failure mode was mixed for all groups. Enamel surface infiltrated with Icon does not interfere with adhesive resin bonding procedures. Treatment of enamel surface containing white spot lesions or cavities with cavosurface margins in partially-demineralized enamel can benefit from infiltration with a low viscosity resin infiltrant prior to adhesive bonding of resin composites.

  7. Effect of Cigarette Smoke on Resin Composite Bond Strength to Enamel and Dentin Using Different Adhesive Systems.

    Science.gov (United States)

    Theobaldo, J D; Catelan, A; Rodrigues-Filho, U; Marchi, G M; Lima, Danl; Aguiar, Fhb

    2016-01-01

    To evaluate the microshear bond strength of composite resin restorations in dental blocks with or without exposure to cigarette smoke. Eighty bovine dental blocks were divided into eight groups (n=10) according to the type of adhesive (Scotchbond Multi-Purpose, 3M ESPE, St Paul, MN, USA [SBMP]; Single Bond 2, 3M ESPE [SB]; Clearfil SE Bond, Kuraray Medical Inc, Okayama, Japan [CSEB]; Single Bond Universal, 3M ESPE [SBU]) and exposure to smoke (no exposure; exposure for five days/20 cigarettes per day). The adhesive systems were applied to the tooth structure, and the blocks received a composite restoration made using a matrix of perforated pasta. Data were statistically analyzed using analysis of variance and Tukey test (αadhesive systems (padhesives, but no differences were noted in enamel.

  8. Effect of post space treatment with adhesives on the push-out bond strength of fiber posts luted with self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Tufan Can Okay

    2017-01-01

    Full Text Available Objective: The aim of this study was to evaluate the push-out bond strength of fiber posts used in the restoration of endodontically-treated teeth with extreme material loss, luted with two different self-adhesive resin cements alone or with the combination of an adhesive. Materials and Method: The post spaces of 80 extracted mandibular first premolar roots were prepared and divided into 4 experimental groups according to fiber post (RelyX Fiber Post luting material. Group 1 was luted with RelyX Unicem, Group 2 was luted with RelyX Unicem + Adper Easy One, Group 3 was luted with Clearfil SA Cement, and Group 4 was luted with Clearfil SA Cement + S3 Bond. After 24 h and 1 month, horizontal sections of 1 mm thickness were made from the coronal, middle and apical root parts of the fiber posts, and push-out tests were performed. Groups were compared by using one way analysis of variance (ANOVA and Tukey’s HSD post hoc tests and storage periods were compared by using independent samples t-test (α=0.05. Results: For both evaluation time periods, RelyX Unicem + Adper Easy One showed the highest bond strength. Regarding the 24 h period, the lowest bond strength values were found for the apical sections followed by middle and coronal sections. One month results revealed similar bond strength values for the middle and apical sections (p>0.05 which were significantly lower than the values found for the coronal sections (p<0.05. RelyX Unicem + Adper Easy One exhibited greater push-out bonding strength compared to other groups in the middle and apical sections (p<0.05. Conclusion: According to the results of this in vitro study it can be concluded that, using an adhesive system in combination with a self-adhesive resin cement during post cementation may improve the bond strength.

  9. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    Science.gov (United States)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  10. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    International Nuclear Information System (INIS)

    Malta, D A M P; De Andrade, M F; Costa, M M; Lizarelli, R F Z; Pelino, J E P

    2008-01-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm 2 . The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm 2 . Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser

  11. Influence of enamel conditioning on the shear bond strength of different adhesives.

    Science.gov (United States)

    Brauchli, Lorenz; Muscillo, Teodoro; Steineck, Markus; Wichelhaus, Andrea

    2010-11-01

    Phosphoric acid etching is the gold standard for enamel conditioning. However, it is possible that air abrasion or a combination of air abrasion and etching might result in enhanced adhesion. The aim of this study was to investigate the effect of different enamel conditioning methods on the bond strength of six adhesives. Three different enamel conditioning procedures (phosphoric acid etching, air abrasion, air abrasion + phosphoric acid etching) were evaluated for their influence on the shear bond strength of six different adhesives (Transbond™ XT, Cool-Bond™, Fuji Ortho LC, Ultra Band-Lok, Tetric(®) Flow, Light-Bond™). Each group consisted of 15 specimens. Shear forces were measured with a universal testing machine. The scores of the Adhesive Remnant Index (ARI) were also analyzed. There were no significant differences between phosphoric acid etching and air abrasion + phosphoric acid etching. Air abrasion as a single conditioning technique led to significantly lower shear forces. The ARI scores did not correlate with the shear strengths measured. There were greater variations in shear forces for the different adhesives than for the conditioning techniques. The highest shear forces were found for the conventional composites Transbond™ XT and Cool- Bond™ in combination with conventional etching. Air abrasion alone and in combination with phosphoric acid etching showed no advantages compared with phosphoric acid etching alone and, therefore, cannot be recommended.

  12. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic.

    Science.gov (United States)

    Moro, André Fábio Vasconcelos; Ramos, Amanda Barreto; Rocha, Gustavo Miranda; Perez, Cesar Dos Reis

    2017-11-01

    Universal adhesives combine silane and various monomers in a single bottle to make them more versatile. Their adhesive performance is unclear. The purpose of this in vitro study was to assess the effects of an additional silane application before using a universal adhesive on the adhesion between a disilicate glass ceramic and a composite resin by using a microshear bond strength test (μSBS) and fracture analysis immediately and after thermocycling. One hundred lithium disilicate glass ceramic disks were divided into 10 groups for bond strength testing according to the following 3 surface treatments: silane application (built-in universal adhesive or with additional application), adhesive (Adper Single Bond Plus [SB, 3M ESPE], Scotchbond Universal Adhesive [U, 3M ESPE], and mixed U with Dual Cure Activator [DCA, 3M ESPE]); or thermocycling (half of the specimens were thermocycled 10000 times). After surface treatment, 5 resin cylinders were bonded to each disk and submitted to a μSBS test. The failure mode was analyzed under a stereomicroscope and evaluated by scanning electron microscope and energy-dispersive x-ray spectroscopy. Data from the μSBS test were analyzed by 3-way ANOVA followed by the Tukey HSD post hoc test (α=.05). An additional silane application resulted in a higher μSBS result for all adhesive groups (Padhesives, which may be improved with an additional silane application. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Effect of Surface Treatment, Silane, and Universal Adhesive on Microshear Bond Strength of Nanofilled Composite Repairs.

    Science.gov (United States)

    Fornazari, I A; Wille, I; Meda, E M; Brum, R T; Souza, E M

     The aim of this study was to evaluate the effect of surface treatment and universal adhesive on the microshear bond strength of nanoparticle composite repairs.  One hundred and forty-four specimens were built with a nanofilled composite (Filtek Supreme Ultra, 3M ESPE). The surfaces of all the specimens were polished with SiC paper and stored in distilled water at 37°C for 14 days. Half of the specimens were then air abraded with Al 2 O 3 particles and cleaned with phosphoric acid. Polished specimens (P) and polished and air-abraded specimens (A), respectively, were randomly divided into two sets of six groups (n=12) according to the following treatments: hydrophobic adhesive only (PH and AH, respectively), silane and hydrophobic adhesive (PCH, ACH), methacryloyloxydecyl dihydrogen phosphate (MDP)-containing silane and hydrophobic adhesive (PMH, AMH), universal adhesive only (PU, AU), silane and universal adhesive (PCU, ACU), and MDP-containing silane and universal adhesive (PMU, AMU). A cylinder with the same composite resin (1.1-mm diameter) was bonded to the treated surfaces to simulate the repair. After 48 hours, the specimens were subjected to microshear testing in a universal testing machine. The failure area was analyzed under an optical microscope at 50× magnification to identify the failure type, and the data were analyzed by three-way analysis of variance and the Games-Howell test (α=0.05).  The variables "surface treatment" and "adhesive" showed statistically significant differences for p<0.05. The highest mean shear bond strength was found in the ACU group but was not statistically different from the means for the other air-abraded groups except AH. All the polished groups except PU showed statistically significant differences compared with the air-abraded groups. The PU group had the highest mean among the polished groups. Cohesive failure was the most frequent failure mode in the air-abraded specimens, while mixed failure was the most common

  14. Influence of laboratory degradation methods and bonding application parameters on microTBS of self-etch adhesives to dentin.

    Science.gov (United States)

    Erhardt, Maria Carolina G; Pisani-Proença, Jatyr; Osorio, Estrella; Aguilera, Fátima S; Toledano, Manuel; Osorio, Raquel

    2011-04-01

    To evaluate the laboratory resistance to degradation and the use of different bonding treatments on resin-dentin bonds formed with three self-etching adhesive systems. Flat, mid-coronal dentin surfaces from extracted human molars were bonded according to manufacturer's directions and submitted to two challenging regimens: (A) chemical degradation with 10% NaOC1 immersion for 5 hours; and (B) fatigue loading at 90 N using 50,000 cycles at 3.0 Hz. Additional dentin surfaces were bonded following four different bonding application protocols: (1) according to manufacturer's directions; (2) acid-etched with 36% phosphoric acid (H3PO4) for 15 seconds; (3) 10% sodium hypochlorite (NaOClaq) treated for 2 minutes, after H3PO4-etching; and (4) doubling the application time of the adhesives. Two one-step self-etch adhesives (an acetone-based: Futurabond/FUT and an ethanol-based: Futurabond NR/FNR) and a two-step self-etch primer system (Clearfil SE Bond/CSE) were examined. Specimens were sectioned into beams and tested for microtensile bond strength (microTBS). Selected debonded specimens were observed under scanning electron microscopy (SEM). Data (MPa) were analyzed by ANOVA and multiple comparisons tests (alpha= 0.05). microTBS significantly decreased after chemical and mechanical challenges (Padhesive systems, regardless the bonding protocol. FUT attained the highest microTBS after doubling the application time. H3PO4 and H3PO4 + NaOCl pretreatments significantly decreased bonding efficacy of the adhesives.

  15. Effect of Irradiation on the Shear Bond Strength of Self-adhesive ...

    African Journals Online (AJOL)

    2016-02-05

    Feb 5, 2016 ... changes in the crystalline structure of dental hard tissues. Keywords: Bond strength, irradiation, self-adhesive luting cement. Effect of Irradiation on the .... The metal ring was connected with the cross-head and loaded (speed 1 ...

  16. Effect of collagen fibrils removal on shear bond strength of total etch and self etch adhesive systems

    Directory of Open Access Journals (Sweden)

    Pishevar L.

    2009-12-01

    Full Text Available "nBackground and Aim: Sodium hypochlorite can remove the organic phase of the demineralized dentin and it produces direct resin bonding with hydroxyapatite crystals. Therefore, the hydrolytic degradation of collagen fibrils which might affect the bonding durability is removed. The aim of this study was to evaluate the effect of collagen fibrils removal by 10% NaOCl on dentin shear bond strength of two total etch and self etch adhesive systems."nMaterials and Methods: Sixty extracted human premolar teeth were used in this study. Buccal surface of teeth were grounded until dentin was exposed. Then teeth were divided into four groups. According to dentin surface treatment, experimental groups were as follows: Group I: Single Bond (3M according to manufacture instruction, Group II: 10% NaOCl+Single bond (3M, Group III: Clearfil SE Bond (Kuraray according to manufacture instruction, and Group IV: Clearfil SE Bond primer. After that, the specimens were immersed in 50% acetone solution for removing extra monomer. Then the specimens were rinsed and dried. 10% NaOCl was applied and finally adhesive was used. Then composite was bonded to the treated surfaces using a 4 2 mm cylindrical plastic mold. Specimens were thermocycled for 500 cycles (5-55ºC. A shear load was employed by a universal testing machine with a cross head speed of 1mm/min. The data were analyzed for statistical significance with One-way ANOVA, Two-way ANOVA and Tukey HSD post-hoc tests."nResults: The mean shear bond strengths of groups were as follows: Single Bond=16.8±4.2, Clearfil SE Bond=23.7±4.07, Single Bond+NaOCl=10.5±4.34, Clearfil SE Bond+NaOCl=23.3±3.65 MPa. Statistical analysis revealed that using 10% NaOCl significantly decreased the shear bond strength in Single Bond group (P=0.00, but caused no significant difference in the shear bond strength in Clearfil SE Bond group (P=0.99."nConclusion: Based on the results of this study, NaOCl treatment did not improve the bond

  17. Adhesive joint evaluation by ultrasonic interface and lamb waves

    Science.gov (United States)

    Rokhlin, S. I.

    1986-01-01

    Some results on the application of interface and Lamb waves for the study of curing of thin adhesive layers were summarized. In the case of thick substrates (thickness much more than the wave length) the interface waves can be used. In this case the experimental data can be inverted and the shear modulus of the adhesive film may be explicitly found based on the measured interface wave velocity. It is shown that interface waves can be used for the study of curing of structural adhesives as a function of different temperatures and other experimental conditions. The kinetics of curing was studied. In the case of thin substrates the wave phenomena are much more complicated. It is shown that for successful measurements proper selection of experimental conditions is very important. This can be done based on theoretical estimations. For correctly selected experimental conditions the Lamb waves may be a sensitive probe of adhesive bond quality and may be used or cure monitoring.

  18. Loading and fracture response of CFRP-to-steel adhesively bonded joints with thick adherents – Part II: Numerical simulation

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    This work is focused on the numerical simulation of experimentally tested single lap joints, based on cohesive zone modeling techniques. Seven cases have been considered for analysis. The models were built in a 3-dimensional finite element space. The adherents were modeled with continuum elements...... the developed peel, in-plane and out-of-plane shear stresses over the adhesive area. Thus, the global measured response of all cases was justified by examining the stress fields and their variation through the loading history. © 2012 Elsevier Ltd. All rights reserved....

  19. Systèmes multimatériaux – Assemblage par collage Multimaterial systems – Adhesive bonding

    Directory of Open Access Journals (Sweden)

    Zuanna C. Dalla

    2013-11-01

    Full Text Available L'assemblage par collage multimatériaux (métal/composite, métal/verre, métal/plastiques, verre/plastiques… offre de nombreux avantages par rapport aux techniques d'assemblages traditionnelles (pas d'affaiblissement des matériaux par la température, tenues en fatigue et à la corrosion améliorées, esthétisme, étanchéité…. Cependant la qualité et la durabilité à long terme des assemblages collés dépendent d'une bonne conception de ces assemblages : Le choix de préparations de surfaces efficaces, robustes, facilement industrialisables et respectueuses de l'environnement, Le choix d'adhésifs aptes à répondre au cahier des charges fonctionnel de l'assemblage (performances mécaniques, thermiques, chimiques… dont la mise en œuvre est compatible avec les contraintes d'industrialisation (cadences, temps de manipulation des pièces, environnement du poste collage…, Le dessin et le dimensionnement de la liaison de façon à transmettre les efforts mécaniques spécifiés dans la plage de températures de fonctionnement des pièces collées (en tenant compte des dilatations différentielles des matériaux assemblés. Cette démarche sera développée en donnant l'état de l'art actuel et les avancées les plus récentes sur les trois thèmes cités ci-dessus. Adhesive-bonding offers many advantages over traditional joining techniques (no weakening of materials by temperature, required fatigue and improved corrosion resistance, aesthetics, sealing… for multimaterial assembly (metal/composite, metal/glass, metal/plastic, glass/plastic…. However the quality and long term durability of bonded assemblies depend on a correct design of the joint: Choice of eco-efficient surfaces preparations, robust, and easily processed, Choice of adhesive in good adequation with the functional specifications of the assembly (mechanical performance, thermal, chemical… whose implementation is compatible with industrialization constraints

  20. Influence of dentin contamination by temporary cements on the bond strength of adhesive systems

    Directory of Open Access Journals (Sweden)

    Josimeri Hebling

    2009-01-01

    Full Text Available Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8, the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA or Cavit (3M ESPE, St. Paul, MN, USA and kept in an oven at 37oC for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan were applied in accordance with the manufacturers’ recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were sub mitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05. Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA, bond strength did not differ statistically (p>0.05 for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan, only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA Group showed significantly lower bond strength (30.1±13.8 MPa in comparison with the other groups; control (38.9±13.5 MPa and Cavit (3M ESPE, St. Paul, MN, USA (42.1±11.0 MPa, which showed no significant difference between them.Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.

  1. Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds

    Science.gov (United States)

    Qian, Jin; Lin, Ji; Xu, Guang-Kui; Lin, Yuan; Gao, Huajian

    A statistical model is proposed to describe the peeling of an elastic strip in adhesion with a flat substrate via an array of non-covalent molecular bonds. Under an imposed tensile peeling force, the interfacial bonds undergo diffusion-type transition in their bonding state, a process governed by a set of probabilistic equations coupled to the stretching, bending and shearing of the elastic strip. Because of the low characteristic energy scale associated with molecular bonding, thermal excitations are found to play an important role in assisting the escape of individual molecular bonds from their bonding energy well, leading to propagation of the peeling front well below the threshold peel-off force predicted by the classical theories. Our study establishes a link between the deformation of the strip and the spatiotemporal evolution of interfacial bonds, and delineates how factors like the peeling force, bending rigidity of the strip and binding energy of bonds influence the resultant peeling velocity and dimensions of the process zone. In terms of the apparent adhesion strength and dissipated energy, the bond-mediated interface is found to resist peeling in a strongly rate-dependent manner.

  2. Effect of ferric sulfate contamination on the bonding effectiveness of etch-and-rinse and self-etch adhesives to superficial dentin

    OpenAIRE

    Shahram Farzin Ebrahimi; Niloofar Shadman; Arezoo Abrishami

    2013-01-01

    Aim: This study investigated the effect of one hemostatic agent on the shear bond strength of self-etch and etch-and-rinse adhesive systems. Materials and Methods: Sixty extracted third molars were selected. After preparing a flat surface of superficial dentin, they were randomly divided into six groups. Adhesives were Tetric N-Bond, AdheSE, and AdheSE One F. Before applying adhesives, surfaces were contaminated with ViscoStat for 60 s in three groups and rinsed. Then composite were attached ...

  3. Nanodiamond resonators fabricated on 8″ Si substrates using adhesive wafer bonding

    Science.gov (United States)

    Lebedev, V.; Lisec, T.; Yoshikawa, T.; Reusch, M.; Iankov, D.; Giese, C.; Žukauskaitė, A.; Cimalla, V.; Ambacher, O.

    2017-06-01

    In this work, the adhesive wafer bonding of diamond thin films onto 8″ silicon substrates is reported. In order to characterize bonded nano-crystalline diamond layers, vibrometry and interferometry studies of micro-fabricated flexural beam and disk resonators were carried out. In particular, surface topology along with resonant frequencies, eigenmodes and mechanical quality factors were recorded and analyzed in order to obtain physical parameters of the transferred films. The vibration properties of the bonded resonators were compared to those fabricated directly on 3″ silicon substrates.

  4. Effects of Different Combinations of Er:YAG Laser-Adhesives on Enamel Demineralization and Bracket Bond Strength.

    Science.gov (United States)

    Çokakoğlu, Serpil; Nalçacı, Ruhi; Üşümez, Serdar; Malkoç, Sıddık

    2016-04-01

    The purpose of this study was to investigate the demineralization around brackets and shear bond strength (SBS) of brackets bonded to Er:YAG laser-irradiated enamel at different power settings with various adhesive systems combinations. A total of 108 premolar teeth were used in this study. Teeth were assigned into three groups according to the etching procedure, then each group divided into three subgroups based on the application of different adhesive systems. There were a total of nine groups as follows. Group 1: Acid + Transbond XT Primer; group 2: Er:YAG (100 mJ, 10 Hz) etching + Transbond XT Primer; group 3: Er:YAG (200 mJ, 10 Hz) etching + Transbond XT Primer; group 4: Transbond Plus self-etching primer (SEP); group 5: Er:YAG (100 mJ, 10 Hz) etching + Transbond Plus SEP; group 6: Er:YAG (200 mJ, 10 Hz) etching + Transbond Plus SEP; group 7: Clearfil Protect Bond; group 8: Er:YAG (100 mJ, 10 Hz) etching + Clearfil Protect Bond; group 9: Er:YAG (200 mJ, 10 Hz) etching + Clearfil Protect Bond. Brackets were bonded with Transbond XT Adhesive Paste in all groups. Teeth to be evaluated for demineralization and SBS were exposed to pH and thermal cyclings, respectively. Then, demineralization samples were scanned with micro-CT to determine lesion depth values. For SBS test, a universal testing machine was used and adhesive remnant was index scored after debonding. Data were analyzed statistically. No significant differences were found among the lesion depth values of the various groups, except for G7 and G8, in which the lowest values were recorded. The lowest SBS values were in G7, whereas the highest were in G9. The differences between the other groups were not significant. Er:YAG laser did not have a positive effect on prevention of enamel demineralization. When two step self-etch adhesive is preferred for bonding brackets, laser etching at 1 W (100 mJ, 10 Hz) is suggested to improve SBS of brackets.

  5. Evaluación de la adherencia de uniones adhesivas metálicas con adhesivos epoxídicos modificados Evaluation of the adherence of bonded metallic joints with modified epoxy adhesives

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2008-03-01

    agents. The adhesive properties were investigated using the epoxy resins as independent systems as well as the modified resin. The adhesive properties of modified and unmodified epoxy resins were studied using steel alloy (ASTM A36 as adherent. The adherence has been evaluated using three geometric assays of steel-steel bonded joints. The rheological behavior of the adhesives was investigated under isothermal conditions. The rheological parameters associated with the curing reaction such as reaction rate, pot life and gel time of the pure adhesives were related to the chemical structure of the curing agents. The cloud point and the gel time of the modified adhesives were related to the morphology and the reaction rate, respectively. The morphology was characterized by scanning electronic microscopy. The adherence of the adhesive joints at different mechanical solicitations was related to the generated morphology by the dispersed phase of each modifier and the networks structures of the epoxy adhesives.

  6. Effect of repeated use on dentin bond strength of two adhesive systems: All-in-one and one-bottle

    Directory of Open Access Journals (Sweden)

    Shafiei Fershteh

    2009-01-01

    Full Text Available Aims: To compare the effects of repeated use of two one-bottle adhesives with that of two all- in- one adhesives (with acetone solvent on bond strength to dentin. Materials and Methods: A flat dentin surface was prepared on 120 bovine incisors using 600- grit abrasive pape. The teeth were randomly assigned into 12 equal groups. The four adhesive systems [Prime and Bond NT (P&B NT, One-Step Plus (OS, iBond (iB, and G-Bond (GB] were used at baseline, after the lid of the container had been opened 30 times, and after it had been opened 60 times. Before each use of the adhesives, the lids of the containers were left open for 1 min. The resin composites were applied on the dentin in a cylindrical split mold. After thermocycling, shear bond strength test was performed with a universal testing machine at 1 mm/min. We used Kruskal-Wallis and Dunn tests for statistical analysis. Results: There was no statistically significant difference among bond strength (MPa of the groups of P&B NT (31.9 ± 4.6, 31.8 ± 6.5, 26.1 ± 6.7 and OS (33.2 ± 5.1, 30.9 ± 7, 29.3 ± 5.9, respectively (P > 0.05. The mean of the bond strength of iB and GB after 60 times (15.3 ± 4.1 and 12.2 ± 3.9, respectively was significantly lower than that of iB and GB at baseline (23.5 ± 4.8 and 22.2 ± 4.5, respectively (P < 0.05. Conclusions: Repeated use (60 times of the all-in-one adhesive led to a decline in the dentin bond strength. To avoid this problem it would be advisable to have containers with smaller amounts of adhesive or perhaps those with only a singe dose.

  7. Surface pretreatments for medical application of adhesion

    Directory of Open Access Journals (Sweden)

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  8. The effects of two soft drinks on bond strength, bracket microleakage, and adhesive remnant on intact and sealed enamel.

    Science.gov (United States)

    Navarro, Raúl; Vicente, Ascensión; Ortiz, Antonio J; Bravo, Luis A

    2011-02-01

    The purpose of this study was to evaluate the effects of Coca-Cola and Schweppes Limón on bond strength, adhesive remnant, and microleakage beneath brackets. One hundred and twenty upper central incisor brackets were bonded to bovine incisors and divided into three groups: (1) Control, (2) Coca-Cola, and (3) Schweppes Limón. The teeth were submerged in the drinks three times a day for 15 minutes over a 15 day period. Shear bond strength (SBS) was measured with a universal testing machine, and adhesive remnant evaluated using image analysis equipment. Microleakage at the enamel-adhesive and adhesive-bracket interfaces was determined using methylene blue. One hundred and eight teeth were used for scanning electron microscopy to determine the effect of the drinks on intact and sealed enamel. SBS and adhesive remnant data were analysed using the Kruskal-Wallis test (P adhesive remnant between the groups (P > 0.05). Microleakage at the enamel-adhesive interface for groups 2 and 3 was significantly greater than for group 1 (P adhesive-bracket interface, microleakage was significantly greater in group 2 than in group 1 (P enamel erosion, loss of adhesive and microleakage. Coca-Cola and Schweppes Limón did not affect the SBS of brackets or the adhesive remnant.

  9. Chapter 9:Wood Adhesion and Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  10. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    Meng, X F; Yoshida, K; Gu, N

    2010-01-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R a and R y values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  11. Strength scaling of adhesive joints in polymer–matrix composites

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Goutianos, Stergios; Jacobsen, Torben K.

    2009-01-01

    The fracture of adhesive joints between two glass-fibre laminates was studied by testing double cantilever beam test specimens loaded by uneven bending moments. A large-scale fracture process zone, consisting of a crack tip and a fibre bridging zone, developed. The mixed mode fracture resistance...

  12. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts.

    Science.gov (United States)

    da Silva, Luciana Mendonça; Andrade, Andréa Mello de; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus - 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost - Angelus) + four #1 accessory posts (Reforpin - Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37 degrees C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 +/- 7.123; G2- 37.752 +/-13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (pAdhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  13. Influence of different adhesive systems on the pull-out bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Luciana Mendonça da Silva

    2008-06-01

    Full Text Available This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost - Angelus-Brazil cemented to root dentin with a resin cement (RelyX ARC - 3M/ESPE associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP Plus - 3M/ESPE, using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10: G1- etching with 37% phosphoric acid gel (3M/ESPE + Adper Single Bond + #1 post (Reforpost - Angelus + four #1 accessory posts (Reforpin - Angelus + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; a=0.05 showed no statistically significant difference (p<0.05 between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1. The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength.

  14. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  15. Development of HIP bonding procedure and mechanical properties of HIP bonded joints for reduced activation ferritic steel F-82H

    International Nuclear Information System (INIS)

    Oda, Masahiro; Kurasawa, Toshimasa; Kuroda, Toshimasa; Hatano, Toshihisa; Takatsu, Hideyuki

    1997-03-01

    Structural materials of blanket components in fusion DEMO reactors will receive a neutron wall load more than 3-5MW/m 2 as well as exposed by surface heat flux more than 0.5MW/m 2 . A reduced activation ferritic steel F-82H has been developed by JAERI in collaboration with NKK from viewpoints of resistance for high temperature and neutron loads and lower radioactivity. This study intends to obtain basic performance of F-82H to establish the fabrication procedure of the first wall and blanket box by using Hot Isostatic Pressing (HIP) bonding. Before HIP bonding tests, effects of heat treatment temperature and surface roughness on mechanical properties of joints were investigated in the heat treatment tests and diffusion bonding tests, respectively. From these results, the optimum HIP bonding conditions and the post heat treatment were selected. Using these conditions, the HIP bonding tests were carried out to evaluate HIP bondability and to obtain mechanical properties of the joints. Sufficient HIP bonding performance was obtained under the temperature of 1040degC, the compressive stress of 150MPa, the holding time of 2h, and the surface roughness ∼μ m. Mechanical properties of HIP bonded joints with these conditions were similar to those of as-received base metal. An oxide formation on the surface to be bonded would need to be avoided for sufficient bonding. The bonding ratio, Charpy impact value and fatigue performance of the joints strongly depended on the HIP conditions, especially temperature, while micro-structure, Vickers hardness and tensile properties had little dependence on the HIP temperature. The surface roughness strongly affected the bonding ratio and would be required to be in the level of a few μ m. In the HIP bonding test of the welded material, the once-melted surface could be jointed by the HIP bonding under the above-mentioned procedure. (J.P.N.)

  16. Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding

    Directory of Open Access Journals (Sweden)

    Simon J. Bleiker

    2016-10-01

    Full Text Available Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based on low-temperature adhesive wafer bonding, which ensures full complementary metal-oxide-semiconductor (CMOS compatibility. All necessary fabrication steps for the wafer bonding, such as cavity formation and deposition of the adhesive, are performed on the capping substrate. The polymer adhesive is deposited by spray-coating on the capping wafer containing the cavities. Thus, no lithographic patterning of the polymer adhesive is needed, and material waste is minimized. Furthermore, this process does not require any additional fabrication steps on the device wafer, which lowers the process complexity and fabrication costs. We demonstrate the proposed capping method by packaging two different MEMS devices. The two MEMS devices include a vibration sensor and an acceleration switch, which employ two different electrical interconnection schemes. The experimental results show wafer-level capping with excellent bond quality due to the re-flow behavior of the polymer adhesive. No impediment to the functionality of the MEMS devices was observed, which indicates that the encapsulation does not introduce significant tensile nor compressive stresses. Thus, we present a highly versatile, robust, and cost-efficient capping method for components such as MEMS and imaging sensors.

  17. Effect on Shear Strength of Machining Methods in Pinus nigra Arnold Bonded with Polyurethane and Polyvinyl Acetate Adhesives

    Directory of Open Access Journals (Sweden)

    Murat Kılıç

    2016-06-01

    Full Text Available Specimens taken from Pinus nigra Arnold were subject to surfacing techniques by being cut with a circular saw, planed with a thickness machine, and sanded with a calibrating sanding machine (with P80 grit sandpaper. First, their surface roughness values were measured; then, the specimens were processed in the machines in a radial and tangential process. Afterwards, the change in shear strength (adhesiveness resistance was analyzed as a result of bonding with various adhesive types (PVAc, PU and pressure applications (0.45 N/mm² or 0.9 N/mm². Approximately 600 specimens were prepared with the purpose of identifying the effect of variables on the bonding performance, and they were subjected to shear testing. The greatest shear strength achieved for both the tangential and radial surfaces in terms of cutting was observed in specimens processed in the thickness machine, on which polyvinyl acetate adhesive and 0.9 N/mm². pressure were applied. Specimens bonded with polyvinyl acetate adhesive displayed higher shear strength in general in comparison to those bonded with polyurethane for both tangential and radial surfaces.

  18. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    International Nuclear Information System (INIS)

    Khan, Nazrul Islam; Halder, Sudipta; Goyat, M.S.

    2016-01-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  19. Effect of epoxy resin and hardener containing microcapsules on healing efficiency of epoxy adhesive based metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazrul Islam [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Halder, Sudipta, E-mail: shalder@nits.ac.in [Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam (India); Goyat, M.S. [Department of Physics, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007 (India)

    2016-03-01

    Dual component microcapsules of epoxy resin and polyamine hardener with polymethyl methacrylate (PMMA) shell were synthesized using a water-oil-water emulsion solvent evaporation method. The high concentration of sodium dodecyl sulfate (SDS) was used to reduce the thickness of shell wall of dual component microcapsules. The dual microcapsules of 1:1 weight ratio were introduced in the epoxy adhesive to study the healing effect. The morphology, chemical structure and thermal characteristics of the microcapsules were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. The insertion of dual component microcapsules in epoxy matrix reduced the lap shear strength of adhesive joints, which may be attributed to the generation of stress concentration cites because of micron sized capsules. However, the extension and absorbed failure energy of adhesive joints under uniaxial loading increased with the increase of concentration of dual microcapsules. The viscoelastic nature of the dual microcapsules may be responsible for this enhancement. Significant enhancement in the healing efficiency (90.93%) of the joints was achieved for 10 wt% of dual microcapsules. The crack pinning and crack blunting mechanisms at the vicinity of the crack path adjacent to the microcapsules were found responsible for significant enhancement in the healing efficiency of the adhesive joints. - Highlights: • High SDS concentration was used to control the dual component microcapsules shell wall thickness. • Self-healing performance of dual component microcapsules reinforced epoxy adhesive based single lap joints was studied. • 90.93% of the damage healing was achieved for self-healing adhesive based single lap joints. • Increase in concentration of microcapsules reduces the lap shear properties of the self-healing joints.

  20. Micro-CT evaluation of microleakage under orthodontic ceramic brackets bonded with different bonding techniques and adhesives.

    Science.gov (United States)

    Öztürk, Fırat; Ersöz, Mustafa; Öztürk, Seyit Ahmet; Hatunoğlu, Erdem; Malkoç, Sıddık

    2016-04-01

    The aim of this study was to evaluate microleakage under orthodontic ceramic brackets bonded with direct and different indirect bonding techniques and adhesives using micro-computed tomography. A total of 30 human maxillary premolars were randomly separated into five groups with six teeth in each group. In group I, teeth were bonded directly with Transbond XT (3M Unitek). In group II, group III, group IV, and group V, teeth were bonded through an indirect technique with Custom I.Q. (Reliance Orthodontic Products), Sondhi Rapid-Set (3M Unitek), RMbond (RMO), and Transbond IDB (3M Unitek), respectively, following the manufacturer's instructions. Micro-CT system model 1172 of Skyscan (Kontich, Belgium) was used to scan all samples. NRecon (Skyscan) version 1.6, CT-Analyser V.1.11 (Skyscan), and TView (SkyScan, Bvba) software programs were used for microleakage evaluation. Microleakage values between the test groups were assessed using the Kruskal-Wallis test, while the Wilcoxon signed rank test was used for within-group comparisons. The level of significance was set at P Kruskal-Wallis analysis of variance test, there were no significant differences among the tested groups, with regard to volume and percentage (microleakage/region of interest × 100) of microleakage values (P test showed that coronal microleakage volume and percentage values significantly differed for RMbond and Transbond IDB groups. In the study, only ceramic brackets were used and microleakage into mini gaps did not show up on the micro-CT image because 50% silver nitrate solution could not penetrate into mini gaps which are smaller than silver nitrate particles. Use of direct and indirect bonding techniques with different adhesives did not significantly affect the amount of microleakage. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Measurement of strain distribution in bonded joints by fiber Bragg gratings

    Science.gov (United States)

    Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.

    1998-07-01

    Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.

  2. Experimental etch-and-rinse adhesive systems containing MMP-inhibitors: Physicochemical characterization and resin-dentin bonding stability.

    Science.gov (United States)

    da Silva, Eduardo Moreira; de Sá Rodrigues, Carolina Ullmann Fernandes; de Oliveira Matos, Marcos Paulo; de Carvalho, Thais Rodrigues; dos Santos, Glauco Botelho; Amaral, Cristiane Mariote

    2015-12-01

    To evaluate the degree of conversion (DC%), water sorption (WS), solubility (SO) and the resin-dentin bonding stability (μTBS) of experimental (EXP) etch-and-rinse adhesive systems containing MMP-inhibitors: Galardin-GAL, Batimastat-BAT, GM1489-GM1 and chlorhexidine diacetate-CHX. DC% was measured using FT-IR spectroscopy, while WS and SO were calculated based on ISO4049. Thirty-six human molars were wet ground until the occlusal dentin was exposed. The adhesive systems were applied and resin composite buildups were incrementally constructed. After 24 h immersion in distilled water at 37 °C, the specimens were cut into resin-dentin beams with a cross-sectional area of 1 mm(2). The μTBS was evaluated after 24 h, 6 months and 12 months of water storage at 37 °C. Adper Single Bond 2 (SB2) was used as a commercial control. The data were analyzed using ANOVA and Tukey's HSD test. SB2 presented the highest DC% (p0.05). SO was found to be not significant (p>0.05). All adhesive systems maintained μTBS stability after 6 months of water storage. Only BAT, GM1 and CHX maintained μTBs stability after 12 months of water storage. The experimental adhesive systems with GM1489 and chlorhexidine diacetate presented the best physicochemical properties and preserved resin-dentin bonding stability after 12 months of water storage. GM1489 could be suitable for inclusion as an MMP-inhibitor in etch-and-rinse adhesive systems to maintain resin-dentin bonding stability over time. Copyright © 2015. Published by Elsevier Ltd.

  3. Atomic force microscopic corroboration of bond ageing for adhesion of Streptococcus thermophilus to solid substrata

    NARCIS (Netherlands)

    Vadillo-Rodriguez, V.; Busscher, H.J.; Norde, W.; Vries, de J.

    2004-01-01

    Initial bacterial adhesion is considered to be reversible, but over time the adhesive bond between a bacterium and a substratum surface may strengthen, turning the process into an irreversible state. Microbial desorption has been studied in situ in controlled flow devices as a function of the

  4. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  5. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  6. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  8. The Influence of No-Primer Adhesives and Anchor Pylons Bracket Bases on Shear Bond Strength of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    Andrea Scribante

    2013-01-01

    Full Text Available Objective. The aim of this study was to compare the shear bond strength (SBS and adhesive remnant index (ARI scores of no-primer adhesives tested with two different bracket bases. Materials and Methods. 120 bovine permanent mandibular incisors were divided into 6 groups of 20 specimens. Two brackets (ODP with different bracket bases (anchor pylons and 80-gauge mesh were bonded to the teeth using a conventional adhesive (Transbond XT and two different no-primer adhesive (Ortho Cem; Heliosit systems. Groups were tested using an instron universal testing machine. SBS values were recorded. ARI scores were measured. SEM microphotographs were taken to evaluate the pattern of bracket bases. Statistical analysis was performed. ANOVA and Tukey tests were carried out for SBS values, whereas a chi-squared test was applied for ARI scores. Results. Highest bond strength values were reported with Transbond XT (with both pad designs, Ortho Cem bonded on anchor pylons and Heliosit on 80-gauge mesh. A higher frequency of ARI score of “3” was reported for Transbond XT groups. Other groups showed a higher frequency of ARI score “2” and “1.” Conclusion. Transbond XT showed the highest shear bond strength values with both pad designs.

  9. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  10. Active application of primer acid on acid-treated enamel: Influence on the bond effectiveness of self-etch adhesives systems.

    Science.gov (United States)

    Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Costa, Daiane Cristianismo; Bosso, Mariana Avalone; Coppini, Erick Kamiya; Dias, Carlos Tadeu Santos; Paulillo, Luis Alexandre Maffei Sartini

    2017-08-01

    Evaluate the composite-to-enamel bond after passive or active application of self-etching primer systems on polished or pre-etched enamel with phosphoric acid. Two self-etch adhesives systems (SEAS) were used: Clearfil SE Bond and Easy Bond. Third human molars were divided into 8 groups (N = 10). The crown of each tooth was sectioned into halves and the mesial/distal surfaces were used. The adhesives were actively or passively applied on enamel with or without prior phosphoric-acid etching. Resin composite cylinders were built after adhesive application. After stored in relative humidity for 24 hr/37°C the specimens were subjected to microshear test in universal testing a machine at a crosshead speed of 0.5 mm/minute. The results were analyzed with three-way ANOVA and the Tukey test. The enamel-etching pattern was evaluated under SEM. The 2-step SEAS system presented significantly higher adhesive bond strength means (47.37 MPa) than the 1-step (36.87 MPa). A poor enamel- etching pattern was observed in active mode showing irregular and short resin tags, however there was not compromised the bond strength. Active or passive application produced similar values of bond strength to enamel regardless of enamel pretreatment and type of SEAS. © 2017 Wiley Periodicals, Inc.

  11. Ion Beam Enhanced Deposition as Alternative Pretreatment for Adhesive Bonding of Aircraft Alloys

    National Research Council Canada - National Science Library

    Koch, Gerhardus

    1994-01-01

    .... The objective of the work described in this paper was to demonstrate the feasibility of applying a non-chemical technique to generate an aluminum oxide surface with adhesive bonding properties...

  12. Influence of adhesion promoters and curing-light sources on the shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Claudia Tavares Machado

    2012-01-01

    Conclusions: The conventional orthodontic adhesive presented higher bond strength than the nanofilled composite, although both materials interacted similarly to the teeth. The curing-light devices tested did not influence on bond strength of orthodontic brackets.

  13. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    Science.gov (United States)

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (Penamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites. The mode of failure had no meaningful relation to the type of

  14. Performance of a rigid and a flexible adhesive in lumber joints subjected to moisture content changes

    Science.gov (United States)

    G. P. Krueger; R. F. Blomquist

    1964-01-01

    Experimental work was undertaken to investigate the extent and magnitude of deterioration that can occur in typical plywood-to-lumber glue joints subjected to stresses resulting from changes in the moisture content of the wood, and to compare the performance of a somewhat flexible or deformable adhesive to that of a rigid adhesive in these joints. Results showed that...

  15. The use of acoustic emission and composite peel tests to detect weak adhesion in composite structures

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Zarouchas, D.; Poulis, J.A.

    2018-01-01

    Adhesive bonding is one of the most promising joining technologies for composite aircraft. However, to comply with current aircraft certification rules, current safety-critical bonded joints, in which at least one of the interfaces requires additional surface preparation, are always used in

  16. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  17. Shear bond strength of self-etching adhesive systems with different pH values to bleached and/or CPP-ACP-treated enamel.

    Science.gov (United States)

    Oskoee, Siavash Savadi; Bahari, Mahmoud; Kimyai, Soodabeh; Navimipour, Elmira Jafari; Firouzmandi, Maryam

    2012-08-01

    To compare shear bond strengths of three different self-etching adhesive systems of different pH values to enamel bleached with carbamide peroxide, treated with casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), or treated with CPP-ACP subsequent to bleaching with carbamide peroxide. Thirty-six human third molars were cut into 4 sections and randomly assigned to 4 groups (n = 36): group I: no treatment; group II: bleaching; group III: CPP-ACP; group IV: bleaching and CPP-ACP. After surface treatments, the samples of each group were further divided into three subgroups (n = 12) based on the adhesive used. The adhesives Clearfil SE Bond (CSE), AdhesE (ADE), and Adper SE Plus (ADP) were applied, and resin composite cylinders with a diameter of 2 mm and a height of 4 mm were bonded to the enamel. Then the specimens were subjected to shear bond strength testing. Two-way ANOVA and a post-hoc Tukey's test were used for statistical analysis (α = 0.05). There were significant differences between the adhesive systems (p system showed the highest bond strength, and the bleaching procedure reduced bond strengths (p = 0.001). Furthermore, there were no significant differences in shear bond strength values between the control and CPP groups. However, the differences between other groups were statistically significant (p material dependent.

  18. Effect of polymerization mode of two adhesive systems on push-out bond strength of fiber post to different regions of root canal dentin

    Directory of Open Access Journals (Sweden)

    Shahram Farzin Ebrahimi

    2014-01-01

    Full Text Available Background: A few studies have investigated the effect of the activation mode of adhesive systems on bond strength of fiber posts to root canal dentin. This study investigated the push-out bond strengths of a glass fiber post to different root canal regions with the use of two adhesives with light- and dual-cure polymerization modes. Materials and Methods: In this in vitro study, 40 maxillary central incisors were decoronated at cement-enamel junction with 15 ± 1 mm root length. After root canal therapy and post space preparations, they were randomly divided into four groups. Post spaces were treated with four different adhesives: Excite, Excite Dual cure Single Component (DSC, self-etch adhesive (AdheSE, and AdheSE dual-cure. Then the fiber-reinforced composite (FRC post, Postec Plus, was cemented with dual-cure resin cement, Variolink II. The roots were cut into three 2-mm-thick slices. Push-out tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. The mode of failures was determined under a stereomicroscope. Data were analyzed by three-way analysis of variance (ANOVA and Tukey test was conducted to compare post hoc with P < 0.05 as the level of significance. Results: The highest bond strength was obtained for AdheSE dual-cure (15.54 ± 6.90 MPa and the lowest was obtained for Excite light-cure (10.07 ± 7.45 MPa and only the bond strength between these two adhesives had significant difference (P = 0.02. Bond strength decreased from the coronal to the apical in all groups and this was significant in Excite (group 1 and AdheSE (group 3 (P < 0.001. In apical regions, bond strength of dual-cure adhesives was significantly higher than light-cure adhesives (P < 0.001. Conclusion: Push-out bond strength of fiber post to different regions of root canal dentin was affected by both adhesive systems and their polymerization modes.

  19. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  20. Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.

    Science.gov (United States)

    Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin

    2015-02-01

    The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.

  1. Strength and durability of one-part polyurethane adhesive bonds to wood

    Science.gov (United States)

    C. B. Vick; E. A. Okkonen

    1998-01-01

    One-part polyurethane wood adhesives comprise a new class of general purpose consumer products. Manufacturersa claims of waterproof bonds brought many inquiries to the Forest Products Laboratory (FPL) from users constructing aircraft, boats, lawn furniture, and other laminated materials for outdoor use. Although FPL has technical information on several types of...

  2. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  3. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin

    NARCIS (Netherlands)

    Scholtanus, J.D.; Purwanta, K.; Dogan, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  4. Microtensile Bond Strength of Three Simplified Adhesive Systems to Caries-affected Dentin

    NARCIS (Netherlands)

    Scholtanus, Johannes; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J.; Feilzer, Albert J.

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  5. Bonding properties of acrylonitrile butadiene rubber with polyamide mediated by a functional layer of silane coupling agent

    International Nuclear Information System (INIS)

    Sang, J.; Aisawa, S.; Hirahara, H.; Mori, K.

    2017-01-01

    This study demonstrates that coating layers, expected to be formed as self-assembled monolayers, of silane coupling agents can act as adhesion layers as the hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA6) plate interfaces. The resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure and the interfaces were jointed through chemical bonds, which were confirmed by swelling tests. The surfaces and bonding properties of rubber and PA6 were studied by means of peel tests, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (AFM-IR). (authors)

  6. Effects of swelling forces on the durability of wood adhesive bonds

    Science.gov (United States)

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  7. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Directory of Open Access Journals (Sweden)

    Fernanda de Souza Henkin

    Full Text Available ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM. Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM to 9.871 ± 5.106 MPa (TecnidentTM. The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface.

  8. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Science.gov (United States)

    Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos

    2016-01-01

    ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142

  9. Technological aspects of manufacturing and numerical modelling of clinch-adhesive joints

    CERN Document Server

    Sadowski, Tomasz; Golewski, Przemysław

    2015-01-01

    This short book describes the basic technological aspects involved in the creation of purely clinch and clinch-adhesive joints made of different types of adherent materials and employing different joining technologies. Basic parameters that need to be taken into account in the design process are also presented, while a comparison of experimental testing of the hybrid joint with simple clinching for a combination of different joining materials underlines the advantages of opting for hybrid joints. The book’s conclusions will facilitate the practical application of this new fastening technology.

  10. Stress Analysis and Strength Prediction of Adhesively Bonded Composite Joints

    National Research Council Canada - National Science Library

    Rastogi, Naveen

    1998-01-01

    .... Further, the submodeling technique available in the commercial finite element package ABAQUS is explored to study the three-dimensional stress field in the vicinity of joint edges and debond cracks...

  11. On Obtaining Design Allowables for Adhesives Used in the Bonded-Composite Repair of Aircraft

    National Research Council Canada - National Science Library

    Chalkley, Peter

    1998-01-01

    A technique is documented, along with its experimental validation, for obtaining engineering-standard design allowables for structural adhesives used in the bonded/composite repair of aircraft structure...

  12. Effect of saliva contamination on the microshear bond strength of one-step self-etching adhesive systems to dentin.

    Science.gov (United States)

    Yoo, H M; Oh, T S; Pereira, P N R

    2006-01-01

    This study evaluated the effect of saliva contamination and decontamination methods on the dentin bond strength of one-step self-etching adhesive systems. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt) and one resin composite (Filtek Z-250) were used. Third molars stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to contamination methods: no contamination, which was the control (C); contamination of the adhesive surface with fresh saliva before light curing (A) and contamination of the adhesive surface with fresh saliva after light curing (B). Each contamination group was further subdivided into three subgroups according to the decontamination method: A1-Saliva was removed by a gentle air blast and the adhesive was light-cured; A2-Saliva was rinsed for 10 seconds, gently air-dried and the was adhesive light-cured; A3-Saliva was rinsed and dried as in A2, then the adhesive was re-applied to the dentin surface and light-cured; B1-Saliva was removed with a gentle air blast; B2-Saliva was rinsed and dried; B3-Saliva was rinsed, dried and the adhesive was re-applied and light cured. Tygon tubes filled with resin composite were placed on each surface and light cured. All specimens were stored in distilled water at 37 degrees C for 24 hours. Microshear bond strength was measured using a universal testing machine (EZ test), and data were analyzed by one-way ANOVA followed by the Duncan test to make comparisons among the groups (p0.05). Bond strengths of all B groups were significantly lower compared to the controls (pcontamination after adhesive curing. There was no statistically significant difference among the control groups (p>0.05).

  13. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives.

    Science.gov (United States)

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-03-01

    Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.

  14. Adhesives in Building--Lamination of Structural Timber Beams, Bonding of Cementitious Materials, Bonding of Gypsum Drywall Construction. Proceedings of a Conference of the Building Research Institute, Division of Engineering and Industrial Research (Spring 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    The role of adhesives in building design is discussed. Three major areas are as follows--(1) lamination of structural timber beams, (2) bonding of cementitious materials, and (3) bonding of gypsum drywall construction. Topical coverage includes--(1) structural lamination today, (2) adhesives in use today, (3) new adhesives needed, (4) production…

  15. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    Science.gov (United States)

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (padhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  16. Effect of simulated pulpal pressure on all-in-one adhesive bond strengths to dentine.

    Science.gov (United States)

    Hosaka, Keiichi; Nakajima, Masatoshi; Yamauti, Monica; Aksornmuang, Juthatip; Ikeda, Masaomi; Foxton, Richard M; Pashley, David H; Tagami, Junji

    2007-03-01

    To evaluate the durability of all-in-one adhesive systems bonded to dentine with and without simulated hydrostatic pulpal pressure (PP). Flat dentine surfaces of extracted human molars were prepared. Two all-in-one adhesive systems, One-Up Bond F (OBF) (Tokuyama Corp., Tokyo, Japan), and Fluoro Bond Shake One (FBS) (Shofu Co., Kyoto, Japan) were applied to the dentine surfaces under either a PP of 0 or 15cm H(2)O. Then, resin composite build-ups were made. The specimens bonded under pressure were stored in 37 degrees C water for 24h, 1 and 3 months under 15cm H(2)O PP. Specimens not bonded under pressure were stored under zero PP. After storage, the specimens were sectioned into slabs that were trimmed to hourglass shapes and subjected to micro-tensile bond testing (muTBS). The data were analysed using two-way ANOVA and Holm-Sidak HSD multiple comparison tests (alpha=0.05). The muTBS of OBF fell significantly (phydrostatic pressure storage fell significantly over the 3 months period, the decrease was less than half as much as specimens stored under PP. In FBS bonded specimens, although there was no significant difference between the muTBS with and without hydrostatic pulpal pressure at 24h, by 1 and 3 months of storage under PP, significant reductions were seen compared with the control group without PP. The muTBS of OBF bonded specimens was lowered more by simulated PP than by storage time; specimens bonded with FBS were not sensitive to storage time in the absence of PP, but showed lower bond strengths at 1 and 3 months in the presence of PP.

  17. Effect of Ti interlayer on the bonding quality of W and steel HIP joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Wang, Wanjing, E-mail: wjwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Wei, Ran; Wang, Xingli; Sun, Zhaoxuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Xie, Chunyi; Li, Qiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Hefei Center for Physical Science and Technology, Hefei, 230022 (China); Hefei Science Center of Chinese Academy of Sciences, Hefei, 230027 (China)

    2017-03-15

    Tungsten (W) and steel bonding is one of the key technologies for blanket First Wall (FW) manufacture in thermal fusion reactor. The W/Steel joints are prone to fail without interlayer for the different thermo physical properties. To study the effect of titanium (Ti) interlayer on the bonding quality of W and steel joints, W/Steel Hot Isostatic Pressing (HIP) experiments with Ti interlayer were conducted under 930 °C, 100 MPa for 2 h. Intermetallics caused by atom interdiffusion would affect the bonding quality of W/Ti/Steel HIP joints, the bonding quality was evaluated by microstructure analysis and mechanical tests. All the HIP joints were well bonded and results showed no intermetallics occurred between W/Ti interfaces, meanwhile multiply phases were found between Ti/Steel interfaces. Shear tests indicated when Ti thickness was 100–500 μm, the maximum shear strength of W/Ti/Steel HIP joints would be up to around 151 MPa. Charpy impact tests showed the W/Ti/Steel HIP joints all broke in a brittle manner and the maximum Charpy impact energy was ∼0.192 J. Nano-indentation tests demonstrated W/Ti interfaces could be enhanced by solid solution hardening and formation of brittle phases has conducted high hardness across the Ti/Steel interfaces.

  18. CARIOSTATIC EFFECT AND FLUORIDE RELEASE FROM A VISIBLE LIGHT-CURING ADHESIVE FOR BONDING OF ORTHODONTIC BRACKETS

    NARCIS (Netherlands)

    OGAARD, B; REZKLEGA, F; RUBEN, J; ARENDS, J

    This study was designed to investigate the cariostatic potential in vivo of a visible light-curing adhesive for the bonding of orthodontic brackets. The fluoride release of the adhesive in water and saliva was also measured. Ten orthodontic patients with premolars to be extracted participated. One

  19. Effect of a functional monomer (MDP) on the enamel bond durability of single-step self-etch adhesives.

    Science.gov (United States)

    Tsuchiya, Kenji; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsubota, Keishi; Tsujimoto, Akimasa; Berry, Thomas P; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The present study aimed to determine the effect of the functional monomer, 10-methacryloxydecyl dihydrogen phosphate (MDP), on the enamel bond durability of single-step self-etch adhesives through integrating fatigue testing and long-term water storage. An MDP-containing self-etch adhesive, Clearfil Bond SE ONE (SE), and an experimental adhesive, MDP-free (MF), which comprised the same ingredients as SE apart from MDP, were used. Shear bond strength (SBS) and shear fatigue strength (SFS) were measured with or without phosphoric acid pre-etching. The specimens were stored in distilled water for 24 h, 6 months, or 1 yr. Although similar SBS and SFS values were obtained for SE with pre-etching and for MF after 24 h of storage in distilled water, SE with pre-etching showed higher SBS and SFS values than MF after storage in water for 6 months or 1 yr. Regardless of the pre-etching procedure, SE showed higher SBS and SFS values after 6 months of storage in distilled water than after 24 h or 1 yr. To conclude, MDP might play an important role in enhancing not only bond strength but also bond durability with respect to repeated subcritical loading after long-term water storage. © 2015 Eur J Oral Sci.

  20. Comparative evaluation of pH, bond strength and washability in four common denture adhesives in Iran

    Directory of Open Access Journals (Sweden)

    Mehran Bahrami

    2015-12-01

    at 0.05. Results: Professional and Corega adhesives had more neutral pH than that of Fittydent and Fixodent which were more acidic. Washability test showed no remaining mass of any adhesive and there was not any statistically significant difference between groups (P>0.05. Fittydent and Corega adhesives showed higher bond strength than that of Professional and Fixodent and this difference was statistically significant (P<0.05. Conclusion: Professional and Corega adhesives had less acidity. Thus they cause less harmful effects on the oral mucosa than that of Fittydent and Fixodent and should be indicated in patients with little-tolerant oral mucousa such as diabetous, iron-deficiency anemia and hypertention. All the groups had acceptable washability. Fittydent and Corega had higher bond strength than that of Professional and Fixodent. Therefore in complete-denture-wearers who require more retention as a result of severe ridge resorption, macrotruma, and maladaptiivity, Fittydent and Corega seems to be more acceptable.

  1. Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives.

    Science.gov (United States)

    Hass, Viviane; Dobrovolski, Max; Zander-Grande, Christiana; Martins, Gislaine Cristine; Gordillo, Luís Alfonso Arana; Rodrigues Accorinte, Maria de Lourdes; Gomes, Osnara Maria Mongruel; Loguercio, Alessandro Dourado; Reis, Alessandra

    2013-09-01

    The aim of this study was to correlate the degree of conversion measured inside the hybrid layer (DC) with the microtensile resin-dentin bond strength (μTBS) and silver nitrate uptake or nanoleakage (SNU) for five simplified etch-and-rinse adhesive systems. Fifty-five caries free extracted molars were used in this study. Thirty teeth were used for μTBS/SNU [n=6] and 25 teeth for DC [n=5]. The dentin surfaces were bonded with the following adhesives: Adper Single Bond 2 (SB), Ambar (AB), XP Bond (XP), Tetric N-Bond (TE) and Stae (ST) followed by composite resin build-ups. For μTBS and SNU test, bonded teeth were sectioned in order to obtain stick-shaped specimens (0.8mm(2)), which were tested under tensile stress (0.5mm/min). Three bonded sticks, from each tooth, were not tested in tensile stress and they were immersed in 50% silver nitrate, photo-developed and analyzed by scanning electron microscopy. Longitudinal 1-mm thick sections were prepared for the teeth assigned for DC measurement and evaluated by micro-Raman spectroscopy. ST showed lowest DC, μTBS, and higher SNU (p0.05), except for TE which showed an intermediate SNU level. The DC was positively correlated with μTBS and negatively correlated with SNU (p<0.05). SNU was also negatively correlated with μTBS (p<0.05). The measurement of DC inside the hybrid layer can provide some information about bonding performance of adhesive systems since this property showed a good correlation with resin-dentin bond strength and SNU values. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Effect of Bonding Pressure and Bonding Time on the Tensile Properties of Cu-Foam / Cu-Plate Diffusion Bonded Joint

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Heo, Hoe-Jun; Kang, Chung-Yun; Yoon, Tae-Jin

    2016-01-01

    Open cell Cu foam, which has been widely utilized in various industries because of its high thermal conductivity, lightweight and large surface area, was successfully joined with Cu plate by diffusion bonding. To prevent excessive deformation of the Cu foam during bonding process, the bonding pressure should be lower than 500 kPa at 800 ℃ for 60 min and bonding pressure should be lowered with increasing holding time. The bonding strength was evaluated by tensile tests. The tensile load of joints increased with the bonding pressure and holding time. In the case of higher bonding pressure or time, the bonded length at the interface was usually longer than the cross-sectional length of the foam, so fracture occurred at the foam. For the same reason, base metal (foam) fracture mainly occurred at the node-plate junction rather than in the strut-plate junction because the bonded surface area of the node was relatively larger than that of the strut.

  3. Effect of salivary contamination on shear bond strength of two adhesives: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shruti B Patil

    2014-01-01

    Full Text Available Introduction: Composite material used with bonding system are technique sensitive and contamination of an etched surface by saliva or blood plays a key role in bonding efficacy. Achieving good moisture control is a common problem encountered and is of importance while treating a pediatric age group since rubber dam in dental office is commonly applied in fewer than 10% of restorative treatment. Despite the advantage of rubber dam application, usage of rubber dam depends on child′s behavior and its level of co-operation for which pediatric dentists compromise with its usage. This study was conducted to evaluate the effect of salivary contamination of enamel and dentin on bond strength of two adhesives. Materials and Methods: An in vitro study comprised of test group of 112 central incisors divided into 4 groups for testing on enamel and dentin separately. These are Group I: Control group without salivary contamination; Group II: Contaminated with saliva and air-dried; Group III: Contaminated with saliva, rinsed and air-dried; Group IV: Coated with adhesive, light cured and then contaminated. Shear bond strength was calculated using universal testing machine. Results: For testing on enamel and dentin, significantly decreased bond strength was seen with Group II (P 0.05, when compared with control Group I. Conclusion: The decontamination method used in this study by rinsing the contaminated cured adhesive layer that did not reverse the harmful effect of salivary contamination. As most of the children are active and restless with swinging mood, it is important not to negotiate with the procedural steps during treatment.

  4. Fatigue assessment of light weight adhesive bondings. Challenges for fibre reinforced composite and hybrid components; Betriebsfestigkeitsbewertung von Leichtbauklebeverbindungen. Herausforderung bei Faserverbund- und Hybridbauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, Helge; Metschkoll, Matthias; Froeschl, Juergen [BMW AG, Muenchen (Germany); Becker, Ingo [Industrieanlagen Betriebsgesellschaft (IABG) mbH, Ottobrunn (Germany). Abt. Festigkeit, Berechnung, Methodenentwicklung

    2013-07-01

    The increasing number of fiber composite components in car body structures requires the application of new joining techniques between steel and composite materials. Qualified methods for durability assessment are necessary due to the local high load for these lightweight joining techniques. The present contribution presents the actual results of a running method development project for a durability assessment of lightweight adhesive Bondings. After the description of the state of the art the different influences as load type, environmental temperature, etc. on the cyclic and static strength are shown by specimen tests and the main influence quantities are identified. In a second step the advantages and disadvantages of different concepts of durability assessments of adhesive joints are identified by test results. Finally, an outlook about future tests with component specimens for model verification will be given and the obtained results are concluded. (orig.)

  5. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser.

    Science.gov (United States)

    Pires, Patrícia T; Ferreira, João C; Oliveira, Sofia A; Azevedo, Alvaro F; Dias, Walter R; Melo, Paulo R

    2013-01-01

    Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA)+ ExciTE(®); Group II - ExciTE(®); Group III - AdheSE(®) self-etching; Group IV - FuturaBond(®) no-rinse. NR; Group V - Xeno(®) V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. One-way ANOVA and post-hoc tests (P adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE(®) and ExciTE(®) without condition with PA. FuturaBond(®) NR and Xeno(®) V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  6. The effect of Er:YAG laser irradiation on the bond stability of self-etch adhesives at different dentin depths.

    Science.gov (United States)

    Karadas, Muhammet; Çağlar, İpek

    2017-07-01

    The aim of this study was to evaluate the effect of Er:YAG laser irradiation on the micro-shear bond strength of self-etch adhesives to the superficial dentin and the deep dentin before and after thermocycling. Superficial dentin and deep dentin surfaces were prepared by flattening of the occlusal surfaces of extracted human third molars. The deep or superficial dentin specimens were randomized into three groups according to the following surface treatments: group I (control group), group II (Er:YAG laser; 1.2 W), and group III (Er:YAG laser; 0.5 W). Clearfil SE Bond or Clearfil S 3 Bond was applied to each group's dentin surfaces. After construction of the composite blocks on the dentin surface, the micro-shear bond testing of each adhesive was performed at 24 h or after 15,000 thermal cycles. The data were analyzed using a univariate analysis of variance and Tukey's test (p  0.05). However, deep-dentin specimens irradiated with laser showed significantly higher bond strengths than did control specimens after thermocycling (p adhesives may be altered by the dentin depth. Regardless of the applied surface treatment, deep dentin showed significant bond degradation.

  7. An evaluation of shear bond strength of self-etch adhesive on pre-etched enamel: an in vitro study.

    Science.gov (United States)

    Rao, Bhadra; Reddy, Satti Narayana; Mujeeb, Abdul; Mehta, Kanchan; Saritha, G

    2013-11-01

    To determine the shear bond strength of self-etch adhesive G-bond on pre-etched enamel. Thirty caries free human mandibular premolars extracted for orthodontic purpose were used for the study. Occlusal surfaces of all the teeth were flattened with diamond bur and a silicon carbide paper was used for surface smoothening. The thirty samples were randomly grouped into three groups. Three different etch systems were used for the composite build up: group 1 (G-bond self-etch adhesive system), group 2 (G-bond) and group 3 (Adper single bond). Light cured was applied for 10 seconds with a LED unit for composite buildup on the occlusal surface of each tooth with 8 millimeters (mm) in diameter and 3 mm in thickness. The specimens in each group were tested in shear mode using a knife-edge testing apparatus in a universal testing machine across head speed of 1 mm/ minute. Shear bond strength values in Mpa were calculated from the peak load at failure divided by the specimen surface area. The mean shear bond strength of all the groups were calculated and statistical analysis was carried out using one-way Analysis of Variance (ANOVA). The mean bond strength of group 1 is 15.5 Mpa, group 2 is 19.5 Mpa and group 3 is 20.1 Mpa. Statistical analysis was carried out between the groups using one-way ANOVA. Group 1 showed statistically significant lower bond strength when compared to groups 2 and 3. No statistical significant difference between groups 2 and 3 (p adhesive G-bond showed increase in shear bond strength on pre-etched enamel.

  8. Effect of Temperature Variation on Bond Characteristics between CFRP and Steel Plate

    Directory of Open Access Journals (Sweden)

    Shan Li

    2016-01-01

    Full Text Available In recent years, application of carbon fiber reinforced polymer (CFRP composite materials in the strengthening of existing reinforced concrete structures has gained widespread attention, but the retrofitting of metallic buildings and bridges with CFRP is still in its early stages. In real life, these structures are possibly subjected to dry and hot climate. Therefore, it is necessary to understand the bond behavior between CFRP and steel at different temperatures. To examine the bond between CFRP and steel under hot climate, a total of twenty-one double strap joints divided into 7 groups were tested to failure at constant temperatures from 27°C to 120°C in this paper. The results showed that the joint failure mode changed from debonding along between steel and adhesive interface failure to debonding along between CFRP and adhesive interface failure as the temperature increased beyond the glass transition temperature (Tg of the adhesive. The load carrying capacity decreased significantly at temperatures approaching or exceeding Tg. The interfacial fracture energy showed a similar degradation trend. Analytical models of the ultimate bearing capacity, interfacial fracture energy, and bond-slip relationship of CFRP-steel interface at elevated temperatures were presented.

  9. Influence of Er,Cr: YSGG laser on bond strength of self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group; and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE, and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE. Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05 among the groups G1a (25.44 ± 2.35 and G1b (23.62 ± 3.48, G2a (11.77 ± 2.67 and G2b (9.93 ± 3.37. Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.

  10. Crosslinking of fibrinogen and fibronectin by free radicals : A possible initial step in adhesion formation in osteoarthritis of the temporomandibular joint

    NARCIS (Netherlands)

    Dijkgraaf, LC; Zardeneta, G; Cordewener, FW; Liem, RSB; Schmitz, JP; de Bont, LGM; Milam, SB

    Purpose: Adhesion formation in osteoarthritis (OA) of the temporomandibular joint (TMJ) typically results in a sustained limitation of joint movement. We propose the hypothesis that free-radical-mediated crosslinking of proteins underlies this adhesion formation in affected joints. Free radicals may

  11. Resin-dentin Bond Stability of Experimental 4-META-based Etch-and-rinse Adhesives Solvated by Ethanol or Acetone.

    Science.gov (United States)

    Amaral, Cristiane Mariote; Diniz, Alice Marques; Arantes, Eugênio Braz Rodrigues; Dos Santos, Glauco Botelho; Noronha-Filho, Jaime Dutra; da Silva, Eduardo Moreira

    To investigate the influence of 4-META concentration and type of solvent on the degree of conversion (DC%) and resin-dentin bond stability of experimental etch-and-rinse adhesives. Four different concentrations of 4-META (12 wt%, 20 wt%, 30 wt%, 40 wt%) were added to a model adhesive system consisting of TEG-DMA (25 wt%), UDMA (20 wt%), HEMA (30 wt%), water (4 wt%), camphorquinone (0.5 wt%), and tertiary amine (0.5 wt%) dissolved in 20% acetone (A12, A20, A30 and A40) or 20% ethanol (E12, E20, E30 and E40). DC% was evaluated by FT-IR spectroscopy. Human molars were wet ground until the occlusal dentin was exposed, the adhesive systems were applied after 37% phosphoric acid etching, and resin composite buildups were incrementally constructed. After storage in distilled water at 37°C for 24 h, the teeth were cut into resin-dentin beams (cross-sectional area 1 mm2). Microtensile bond strength (μTBS) was evaluated after 24 h, 6 months, and 1 year of water storage at 37°C. The failure mode was categorized as adhesive, mixed, or cohesive. Data were analyzed using ANOVA and Tukey's HSD test (α = 0.05). A12 presented the lowest DC% (p 0.05). All adhesive systems maintained resin-dentin bond stability after 6 months of water storage, while only A40 and E40 maintained it after 1 year. Irrespective of the type of organic solvent, the incorporation of high concentrations of 4-META (40 wt%) improved the resin-dentin bond stability of the experimental etch-and-rinse adhesive systems over a period of 1 year.

  12. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  13. Effect of etching on bonding of a self-etch adhesive to dentine affected by amelogenesis imperfecta.

    Science.gov (United States)

    Epasinghe, Don Jeevanie; Yiu, Cynthia Kar Yung

    2018-02-01

    Dentine affected by amelogenesis imperfecta (AI) is histologically altered due to loss of hypoplastic enamel and becomes hypermineralized. In the present study, we examined the effect of additional acid etching on microtensile bond strength of a self-etch adhesive to AI-affected dentine. Flat coronal dentine obtained from extracted AI-affected and non-carious permanent molars were allocated to two groups: (a) Clearfil SE Bond (control); and (b) Clearfil SE Bond and additional etching with 34% phosphoric acid for 15 seconds. The bonded teeth were sectioned into .8-mm 2 beams for microtensile bond strength testing, and stressed to failure under tension. The bond strength data were analyzed using two-way analysis of variance (dentine type and etching step) and Student-Newman-Keuls multiple comparison test (P<.05). Representative fractured beams from each group were examined under scanning electron microscopy. Both factors, dentine substrate (P<.001) and etching step (P<.05), and their interactions (P<.001), were statistically significant. Additional etching had an adverse effect on the bond strength of Clearfil SE Bond to normal dentine (P<.005), and no significant improvement was found for AI-affected dentine (P=.479). Additional acid etching does not improve the bond strength of a self-etch adhesive to AI-affected dentine. © 2017 John Wiley & Sons Australia, Ltd.

  14. Proposal of guideline for bonding to prevention of hydrogen embrittlement at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was investigated with respect to the hydrogen content and applied stress in order to propose a guideline for the explosive bonding procedure to prevention of hydrogen embrittlement. Hydrogen charging test was conducted for SUS304ULC/Ta/Zr explosive bonded joints applied the different flexural strains. A hydrogen embrittlement crack occurred in the Zr substrate at Ta/Zr bond interface after hydrogen charging, and it was initiated at shorter charging times when the augmented strain was increased. The occurrence condition of hydrogen embrittlement cracking at Ta/Zr bond interface was shifted to lower stress and hydrogen content with an increase in the amount of explosive during bonding. It was suggested that hydrogen embrittlement in Ta/Zr explosive bonded joint could be inhibited by reducing the initial hydrogen content in Ta substrate less than approx. 5 ppm. (author)

  15. Shear Bond Strength of Metal Brackets to Zirconia Conditioned with Various Primer-Adhesive Systems

    Science.gov (United States)

    2016-07-01

    adhesion to ceramic crowns through chemical bonding presents a risk of prosthesis surface damage at debond (Falkensammer et al., 2013). When bonding...enamel. Traditional protocol associated with attaching brackets to enamel must be altered for ceramic crowns due to the dissimilarity in composition. The...Uniform Services University of the Health Sciences In Partial Fulfillment Of the Requirements For the Degree of MASTER OF SCIENCE By Michael

  16. Many Roles of Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  17. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  18. Influence of Adhesives and Methods of Enamel Pretreatment on the Shear Bond Strength of Orthodontic Brackets.

    Science.gov (United States)

    Jurišić, Sanja; Jurišić, Gordan; Jurić, Hrvoje

    2015-12-01

    The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT). The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B-37% phosphoric acid; Fuji Ortho LC, group C-self etching primer; Transbond XT, group D-37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated. After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups. The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer's recommendation is the "gold standard" for brackets bonding for fixed orthodontic appliances.

  19. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Timotius Yonathan Sunarsa

    2017-12-01

    Full Text Available Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  20. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?

    Science.gov (United States)

    SPENCER, Paulette; Jonggu PARK, Qiang YE; MISRA, Anil; BOHATY, Brenda S.; SINGH, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer

    2013-01-01

    Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:24855586

  2. Physico-mechanical properties of plywood bonded with ecological adhesives from Acacia mollissima tannins and lignosulfonates

    Science.gov (United States)

    Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima

    2017-06-01

    The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  3. Comparative bonding ability to dentin of a universal adhesive system and monomer conversion as functions of extended light curing times and storage.

    Science.gov (United States)

    Sampaio, Paula Costa Pinheiro; Kruly, Paula de Castro; Ribeiro, Clara Cabral; Hilgert, Leandro Augusto; Pereira, Patrícia Nóbrega Rodrigues; Scaffa, Polliana Mendes Candia; Di Hipólito, Vinicius; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel

    2017-11-01

    The purpose of this in vitro study was to evaluate the bonding ability and monomer conversion of a universal adhesive system applied to dentin as functions of different curing times and storage. The results were compared among a variety of commercial adhesives. Flat superficial dentin surfaces were exposed on human molars and assigned into one of the following adhesives (n = 15): total-etch Adper Single Bond 2 (SB) and Optibond Solo Plus (OS), self-etch Optibond All in One (OA) and Clearfil SE Bond (CSE), and Scotchbond Universal Adhesive in self-etch mode (SU). The adhesives were applied following the manufacturers' instructions and cured for 10, 20, or 40s. Specimens were processed for the microtensile bond strength (µTBS) test in accordance with the non-trimming technique and tested after 24h and 2 years. The fractured specimens were classified under scanning electron microscopy (SEM). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=5). Data were analyzed by 2-way ANOVA/Tukey's tests (α = 0.05). At 24-h evaluation, OA and CSE presented similar bond strength means irrespective of the curing time, whereas SB and SU exhibited significantly higher means when cured for 40s as did OS when cured for 20 or 40s (p storage, only the self-etching adhesive Optibond All-In-One exhibited the same bonding ability when cured for longer periods of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intra-articular injection of hyaluronic acid for the reduction in joint adhesion formation in a rabbit model of knee injury.

    Science.gov (United States)

    Wang, Min; Liu, Chao; Xiao, Wei

    2014-07-01

    Our purpose was to evaluate the effectiveness of intra-articular injections of hyaluronic acid (HA) into immobilized joints for reducing rigidity and formation of joint adhesions following surgery and prolonged joint immobilization. Twenty-four New Zealand white rabbits were randomly divided into experimental (n = 12) and control groups (n = 12). A model of knee injury was created in the right hind leg, and external plaster fixation was performed for 8 weeks. The experimental and control groups received weekly intra-articular injections of 0.3 mL HA solution or normal saline, respectively, in the knee joint. The degree of adhesions, range of motion (ROM), and collagen content of the synovium of the knee joint were observed after 8 weeks. At the end of 8 weeks, the experimental compared with control group had significantly higher mean ROM (70.3° ± 11.1° vs. 54.6° ± 11.2°, respectively; P = 0.002) and mean adhesion score. The experimental group compared with the control group had significantly lower mean adhesion score (2.2 ± 0.9 vs. 3.1 ± 0.7, respectively; P = 0.012) and collagen content (32.4 ± 4.7 vs. 39.0 ± 4.2 μg/mg, P = 0.001). In a rabbit model of knee injury, intra-articular injection of HA decreased adhesion formation and collagen content and increased ROM after prolonged immobilization. These results indicate that HA may be clinically useful to prevent adhesions and improve joint mobility in patients who require joint immobilization for up to 8 weeks.

  5. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    Directory of Open Access Journals (Sweden)

    Patrícia T Pires

    2013-01-01

    Full Text Available Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15 and to enamel morphology analysis ( n = 5 after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA+ ExciTE® ; Group II - ExciTE® ; Group III - AdheSE® self-etching; Group IV - FuturaBond® no-rinse. NR; Group V - Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (p < 0.05. For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA and the etching pattern analyzed under Scanning Electron Microscope (SEM. Results: Mean bond strengths were Group I - 47.17 ± 1.61 MPa (type I etching pattern; Group II - 32.56 ± 1.64 MPa, Group III - 29.10 ± 1.34 MPa, Group IV - 23.32 ± 1.53 MPa (type III etching pattern; Group V - 24.43 MPa ± 1.55 (type II etching pattern. Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  6. Bond Stability of a Universal Adhesive System to Eroded/Abraded Dentin After Deproteinization.

    Science.gov (United States)

    Augusto, M G; Torres, Crg; Pucci, C R; Schlueter, N; Borges, A B

    Erosive/abrasive challenges can potentially compromise bonding to dentin. Aiming to improve the quality and stability of bonding to this substrate, this study investigated the combined effect of erosion and toothbrush abrasion on the microtensile bond strength (μTBS) stability to dentin using a universal adhesive system in total and self-etching modes, associated or not associated with deproteinization. Bovine dentin specimens were divided into five groups according to the organic matrix condition (n=20): control (C); erosion (E); erosion + abrasion (EA); erosion + sodium hypochlorite (EH); erosion + abrasion + sodium hypochlorite (EAH). The groups were further divided (n=10) according to the mode of application (total or self-etching) of a universal adhesive. After the bonding procedure, composite blocks were built up, and the samples were cut to obtain sticks for μTBS testing. For each specimen, one-half of the sticks was immediately tested, and the other one-half was tested after artificial aging (5000 thermocycles, 5°C and 55°C). Three-way analysis of variance (α=5%) showed a significant difference for the triple interaction ( p=0.0007). Higher μTBS means were obtained for the EH and EAH groups compared with the E and EA groups. The control group showed immediate μTBS values similar to that of the E and EA groups for both bond strategies. Erosion and erosion/abrasion did not significantly influence the immediate μTBS to dentin. Artificial aging reduced μTBS values for the groups C, E, and EA using the total-etching mode. Deproteinization maintained the bond stability to artificially aged eroded and eroded/abraded dentin.

  7. Effect of smear layer deproteinization on bonding of self-etch adhesives to dentin: a systematic review and meta-analysis

    Science.gov (United States)

    Alshaikh, Khaldoan H.; Mahmoud, Salah H.

    2018-01-01

    Objectives The aim of this systematic review was to critically analyze previously published studies of the effects of dentin surface pretreatment with deproteinizing agents on the bonding of self-etch (SE) adhesives to dentin. Additionally, a meta-analysis was conducted to quantify the effects of the above-mentioned surface pretreatment methods on the bonding of SE adhesives to dentin. Materials and Methods An electronic search was performed using the following databases: Scopus, PubMed and ScienceDirect. The online search was performed using the following keywords: ‘dentin’ or ‘hypochlorous acid’ or ‘sodium hypochlorite’ and ‘self-etch adhesive.’ The following categories were excluded during the assessment process: non-English articles, randomized clinical trials, case reports, animal studies, and review articles. The reviewed studies were subjected to meta-analysis to quantify the effect of the application time and concentration of sodium hypochlorite (NaOCl) and hypochlorous acid (HOCl) deproteinizing agents on bonding to dentin. Results Only 9 laboratory studies fit the inclusion criteria of this systematic review. The results of the meta-analysis revealed that the pooled average microtensile bond strength values to dentin pre-treated with deproteinizing agents (15.71 MPa) was significantly lower than those of the non-treated control group (20.94 MPa). Conclusions In light of the currently available scientific evidence, dentin surface pretreatment with deproteinizing agents does not enhance the bonding of SE adhesives to dentin. The HOCl deproteinizing agent exhibited minimal adverse effects on bonding to dentin in comparison with NaOCl solutions. PMID:29765895

  8. A completely transparent, adhesively bonded soda-lime glass block masonry system

    Directory of Open Access Journals (Sweden)

    F. Oikonomopoulou

    2015-01-01

    Full Text Available A pioneering, all transparent, self-supporting glass block facade is presented in this paper. Previously realized examples utilize embedded metal components in order to obtain the desired structural performance despite the fact that these elements greatly affect the facade’s overall transparency level. Undeniably, the oxymoron ‘transparency and strength’ remains the prime concern in such applications. In this paper, a new, innovative structural system for glass block facades is described, which demonstrably meets both criteria. The structure is exclusively constructed by monolithic glass blocks, bonded with a colourless, UV-curing adhesive, obtaining thus a maximum transparency. In addition, the desired structural performance is achieved solely through the masonry system, without any opaque substructure. Differing from previous realized projects, solid soda-lime glass blocks are used rather than borosilicate ones. This article provides an overview of the integrated architectural and structural design and discusses the choice of materials. The structural verification of the system is demonstrated. The results show that the adhesively bonded glass block structure has the required self-structural behaviour, but only if strict tolerances are met in the geometry of the glass blocks.

  9. [In vitro study of marginal microleakage of Clearfil S3 BOND adhesive systems and Majesty composite resin].

    Science.gov (United States)

    Wang, Bei; Zhu, Ya-qin

    2009-08-01

    To evaluate the microleakage of standard box-type cavity filled with Clearfil S3 BOND self-etch adhesive systems and Majesty composite resin. 40 permanent molars were randomly divided into experimental and control groups, 20 of each . The box-type cavities, 3mm in length and width and 2mm in depth, were prepared at the cemento-enamel junction on buccal surface of forty permanent extracted teeth. According to grouping, the experimental group was filled with Clearfil S(3) BOND self-adhesive systems and Majesty composite resin, and the control group was filled with 3M Adper Prompt self-adhesive and Filtek Z350 composite resin. After thermal circulation(2000 times, 5 degrees centigrade-55 degrees centigrade) and soaked for 24 hours in 2% methyl blue solution, the samples were cut through the midline of the restoration and the leakage depth was measured with vernier caliper. The microleakage degrees and microleakage depth of 2 groups were analyzed with SPSS 17.0 software package for Mann-Whitney U test and independent-samples t test. Microleakage was observed in both groups. But the microleakage degrees and microleakage depth of 2 groups had no significant difference (P>0.05). The marginal sealibility of Clearfil S(3) BOND self-adhesive systems and Majesty composite resin is as good as Adper Prompt self-adhesive and Filtek Z350 composite resin,it may be an ideal clinical restoration material.

  10. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Habibah; Ye, Lin [Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Zhang, Ming-Qiu [Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Zhongshan University, Guangzhou 510275 (China)

    2016-03-09

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  11. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    International Nuclear Information System (INIS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-01-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  12. Bond Strength of a Bisphenol-A-Free Fissure Sealant With and Without Adhesive Layer under Conditions of Saliva Contamination.

    Science.gov (United States)

    Mesquita-Guimarães, Késsia Suênia Fidelis de; Sabbatini, Iliana Ferraz; Almeida, Cintia Guimarães de; Galo, Rodrigo; Nelson-Filho, Paulo; Borsatto, Maria Cristina

    2016-01-01

    Dental sealants are important for prevention of carious lesions, if they have good shear strength. The aim of this study was to evaluate the shear bond strength (SBS) of two sealants to saliva-contaminated and non-contaminated enamel with and without an intermediate adhesive layer underneath the sealant. Ninety flat enamel surfaces from human third molars were randomly assigned to 6 groups (n=15): F (control): Fluroshield(tm) sealant; EWB (control): Embrace(tm) WetBond(tm); SB/F: Single Bond adhesive system + F; SB/EWB, s-SB/F and s-SB/EWB. In the s-SB/F and s-SB/EWB groups, the acid-etched enamel was contaminated with 0.01 mL of fresh human saliva for 20 s. Sealant cylinders were bonded to enamel surface with and without an intermediate adhesive system layer. The shear tests were performed using a universal testing machine (0.5 mm/min). Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (α=0.05). F presented higher mean SBS than EWB in all experimental conditions. The lowest SBS mean was obtained for EWB on contaminated enamel (p<0.05). In conclusion, an adhesive system layer should be used prior to sealant placement, in both dry and saliva-contaminated enamel. F had the best performance in all experimental conditions. EWB sealant showed very low results, but an adhesive layer underneath the sealant increased its SBS even after salivary contamination.

  13. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Science.gov (United States)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  14. Effect of ethanol-wet bonding with hydrophobic adhesive on caries-affected dentine.

    Science.gov (United States)

    Huang, Xueqing; Li, Li; Huang, Cui; Du, Xijin

    2011-08-01

    Frequently encountered in clinical practice, caries-affected dentine (CAD) is the most challenging bonding substrate. This study evaluated the effect of ethanol-wet bonding with hydrophobic adhesive to sound dentine and to CAD. In the control groups, prepared sound dentine and CAD were bonded with Adper Single Bond 2 using a traditional water-wet bonding technique. In the experimental groups, the specimens were treated as follows: Group 1, rinsed with stepwise ethanol dehydration; Group 2, immersion in 100% ethanol, three times, for 20 s each time; and Group 3, immersion in 100% ethanol for 20 s. Microtensile bond strength (μTBS) testing was used to evaluate the effects of the different protocols on bonding. The microhardness of debonded dentine surfaces was measured to ensure the presence of CAD. Interfacial nanoleakage was evaluated by field-emission scanning electron microscopy. Treatment significantly improved the μTBS in CAD in Groups 1 and 2, but had no effect on Group 3. Conversely, treatment significantly reduced the μTBS in sound dentine in Groups 2 and 3, but had no effect in Group 1. The presence of nanoleakage varied with the ethanol-wet protocol used. In conclusion, ethanol-wet bonding can potentially improve bond efficacy to CAD when an appropriate protocol is used. © 2011 Eur J Oral Sci.

  15. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  16. Performance of a new one-step multi-mode adhesive on etched vs non-etched enamel on bond strength and interfacial morphology.

    Science.gov (United States)

    de Goes, Mario Fernando; Shinohara, Mirela Sanae; Freitas, Marcela Santiago

    2014-06-01

    To compare microtensile bond strength (μTBS) and interfacial morphology of a new one-step multimode adhesive with a two-step self-etching adhesive and two etch-and-rinse adhesives systems on enamel. Thirty human third molars were sectioned to obtain two enamel fragments. For μTBS, 48 enamel surfaces were ground using 600-grit SiC paper and randomly assigned into 6 groups (n = 8): nonetched Scotchbond Universal [SBU]; etched SBU [SBU-et]; non-etched Clearfil SE Bond [CSE]; etched CSE [CSE-et]; Scotchbond Multi-PURPOSE [SBMP]; Excite [EX]. The etched specimens were conditioned with 37% phosphoric acid for 30 s, each adhesive system was applied according to manufacturers' instructions, and composite resin blocks (Filtek Supreme Plus, 3M ESPE) were incrementally built up. Specimens were sectioned into beams with a cross-sectional area of 0.8-mm2 and tested under tension (1 mm/min). The data were analyzed with oneway ANOVA and Fisher's PLSD (α = 0.05). For interface analysis, two samples from each group were embedded in epoxy resin, polished, and then observed using scanning electron microscopy (SEM). The μTBS values (in MPa) and the standard deviations were: SBU = 27.4 (8.5); SBU-et = 33.6 (9.3); CSE = 28.5 (8.3); CSE-et = 34.2 (9.0); SBMP = 30.4 (11.0); EX = 23.3 (8.2). CSE-et and SBU-et presented the highest bond strength values, followed by SBMP, CSE, and SBU which did not differ significantly from each other. EX showed the statistically significantly lowest bond strength values. SEM images of interfaces from etched samples showed long adhesive-resin tags penetrating into demineralized enamel. Preliminary etching of enamel significantly increased bond strength for the new one-step multimode adhesive SBU and two-step self-etching adhesive CSE.

  17. In vitro evaluation of repair bond strength of composite: Effect of surface treatments with bur and laser and application of universal adhesive.

    Science.gov (United States)

    Kiomarsi, Nazanin; Espahbodi, Melika; Chiniforush, Nasim; Karazifard, Mohammad Javd; Kamangar, Sedighe Sadat Hashemi

    2017-09-30

    This study aimed to assess the effect of surface treatment by bur and laser and application of universal adhesive on repair bond strength of composite resin. A total of 120 composite blocks measuring 6×4×4 mm were fabricated of Filtek Z250 composite. All samples were subjected to 5,000 thermal cycles and divided into two groups for surface preparation by bur and by Er,Cr:YSGG laser (n = 60). The surfaces were then etched with orthophosphoric acid, rinsed with water and divided into three groups (silane, silane plus Single Bond and silane plus Single Bond Universal). Repair composite was then bonded to aged composite. Half of the samples in each group were stored in distilled water at 37°C for 24 hours and the other half underwent 5000 thermal cycles. All samples were then subjected to shear bond strength testing using a universal testing machine at a crosshead speed of 1 mm/minute. The data were analyzed using one-way ANOVA and Tukey's HSD test. Mode of failure was determined using a stereomicroscope. Bur preparation plus universal adhesive yielded the highest bond strength (30.16 µ 2.26 MPa). Laser plus silane yielded the lowest bond strength (5.63 µ 2.43 MPa). Bur preparation yielded significantly higher bond strength than laser (P composite by bur and application of universal adhesive can improve the repair bond strength of composite. Application of silane (without adhesive) in the process of repair cannot provide adequately high repair bond strength.

  18. Low-frequency features of the ultrasound echo from an adhesively bonded layer-substrate structure

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaomin; LI Mingxuan; MAO Jie; LIAN Guoxuan

    2005-01-01

    The low-frequency features of the ultrasound reflection spectra from the structure of a single layer on a substrate bonded by a thin adhesive layer are theoretically studied; the low-frequency here means the frequency of the interrogating ultrasonic wave is less than the quart-wavelength resonance frequency of the adhesive layer. The possibility of the inversion of the thickness and the evaluation of the cohesion strength of the adhesive layer from the resonance frequency shifts of the layered system is indicated. An analytic solution to the nonlinear equation satisfied by the resonance frequency is presented by Taylor expansion method showing satisfactory agreement with the numerical results by Newton iterative method. The results indicate larger range for application than the traditional spring model for the thin adhesive layer. In a much lower frequency range the thin adhesive layer may be regarded to be a spring.

  19. Glass-aluminium bonded joints ; testing, comparing and designing for the ATP

    NARCIS (Netherlands)

    Richemont, S.A.J. de; Veer, F.A.

    2007-01-01

    This article presents the research to the bonded joints of the All Transparent Pavilion (ATP), an experimental project built in November 2004 at the faculty of Architecture in Delft. The pavilion is designed to use structural glass elements, bonded with Delo Photobond GB 368, a photo-catalytic

  20. Fluoride level in saliva after bonding orthodontic brackets with a fluoride containing adhesive

    NARCIS (Netherlands)

    Ogaard, B; Arends, J; Helseth, H; Dijkman, G; vanderKuijl, M

    The fluoride level in saliva is considered an important parameter in caries prevention. Elevation of the salivary fluoride level by a fluoride-releasing orthodontic bonding adhesive would most likely be beneficial in the prevention of enamel caries. In this study, the fluoride level in saliva was

  1. Elastomer toughened polyimide adhesives. [bonding metal and composite material structures for aircraft and spacecraft

    Science.gov (United States)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1985-01-01

    A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.

  2. Performance of composite boards from long strand oil palm trunk bonded by isocyanate and urea formaldehyde adhesives

    Science.gov (United States)

    Hermanto, Indra; Massijaya, M. Y.

    2018-03-01

    In this research, the obtained long strand were produced from the outer part of oil palm trunk and then hot-prepressed. The three-ply composite boards were made from hot-prepressed long strand and use bonded by isocyanate and urea formaldehyde adhesives with a glue spread variation of 150 g/m2, 225 g/m2, and 300 g/m2. The board target density was 0.65 g/cm3, face and back layers orientation is the same and the core layer was perpendicular to the face and back layers. The research results showed that : (1) composite boards bonded by isocyanate performed better physical and mechanical properties compared to those of bonded by urea formaldehyde, (2) utilization of higher glue spread level would improve the physical and mechanical properties of the composite board. (3) composite boards bonded by isocyanate and urea formaldehyde adhesives at glue spread of 225 g/m2, 300 g/m2, respectively were enough to fulfill the JIS A 5908 (2003) standard.

  3. Modelling the influence of reactive elements on the work of adhesion between a thermally grown oxide and a bond coat alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J. [University of Technology Delft, Department of Materials Science and Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands); Sloof, W.G. [Netherlands Institute of Metals Research, Rotterdamseweg 137, 2628 AL Delft (Netherlands)

    2006-03-15

    The durability of thermal barrier coating systems is primarily determined by the degree of adhesion between the thermally grown oxide (TGO) and the bond coat. Failure of the TBC is often the result of delamination at this interface. Adhesion can be improved by the addition of reactive elements (RE) to the bond coat alloy. REs include oxide forming elements such as Y, Zr and Hf. The so-called reactive element effect has been attributed to a direct improvement of the bonding between the TGO and the bond coat. A macroscopic atom model has been developed to allow the work of adhesion between two compounds (e.g. an oxide and a metal compound) to be estimated. By calculating the work of adhesion across a number of different interfaces, the influence of reactive elements and impurities present in the substrate can be assessed. It has been found that the REs have a limited direct influence on the work of adhesion and can even result in a weaker interface. A large reduction in the work of adhesion is calculated when S and C are present at the interface. REs have a high affinity for both S and C. This indicates that the RE effect is primarily that of impurity scavenging, preventing diffusion of impurities to the interface. A number of experiments are reported, which demonstrate the RE effect and support the modelling results. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Shear Bond Strength of Orthodontic Brackets Fixed with Remineralizing Adhesive Systems after Simulating One Year of Orthodontic Treatment

    Directory of Open Access Journals (Sweden)

    Gisele Lima Bezerra

    2015-01-01

    Full Text Available The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n=16: XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM in order to analyze enamel surface and Adhesive Remnant Index (ARI. Kruskal-Wallis and Mann-Whitney (with Bonferroni correction tests showed a significant difference between the studied groups (p<0.05. Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT and self-etching (SEP adhesives, while remineralizing system (OL provided the lowest values of adhesive resistance.

  5. Effect of Nanofiller Addition to an Experimental Dentin Adhesive on Microtensile Bond Strength to Human Dentin

    Directory of Open Access Journals (Sweden)

    SH. Kasraei

    2009-06-01

    Full Text Available Objective: The purpose of the study was to evaluate the influence of adding nanofiller particles to a dentin bonding agent on resin-dentin bond strength.Materials and Methods: Fifty-four human intact premolar teeth were divided in to 6 groups of nine. The teeth were ground on occlusal surfaces and polished with 320 and then 600 grit silicon carbide papers. An experimental bonding system based on acetone/alcoholsolvent was provided with filler contents of 0.0, 0.5, 1.0, 2.5, 5.0, and 10.0 weight percent fumed silica nanofiller. After dentin surface etching, rinsing and blot drying, the experimentalbonding agents were applied to dentin surface. A composite resin was, then,bonded to the dentin on the bonding agent. The specimens were thermocycled for 500 cycles and sectioned in stick form. After two week of storage in distilled water, resin-dentin microtensile bond strength of the specimens was measured. Data were analyzed by one way ANOVA and DunnettT3 tests.Results: Bond strength to dentin was significantly affected by the filler level. Minimum and maximum resin-microtensile bond strength was in the experimental bonding agent with no filler (5.88 MPa and with filler level of 1.0 weight percent (15.15 MPa, respectively,and decreased with the increase of filler content down to 8.95 MPa for the filler level of 10.0 weight percent.Conclusion: Filler content seems to be one of the important factors influencing the bond strength of dental adhesives. Maximum dentin bond strength was obtained with 1% silanized nanofiller silica added to experimental adhesive system.

  6. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  7. Bond strength durability of self-etching adhesives and resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  8. Review on failure prediction techniques of composite single lap joint

    Energy Technology Data Exchange (ETDEWEB)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my [Faculty of Mechanical Engineering, Locked Bag 1200, Hang Tuah Jaya, 75450 Ayer Keroh, Melaka (Malaysia)

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  9. Review on failure prediction techniques of composite single lap joint

    International Nuclear Information System (INIS)

    Ab Ghani, A.F.; Rivai, Ahmad

    2016-01-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  10. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives.

    Science.gov (United States)

    Sezinando, Ana; Luque-Martinez, Issis; Muñoz, Miguel Angel; Reis, Alessandra; Loguercio, Alessandro D; Perdigão, Jorge

    2015-10-01

    To test the influence of a hydrophobic resin coating (HC) on the immediate (24h) and 6-month (6m) microtensile dentin bond strengths (μTBS) and nanoleakage (NL) of three universal adhesives applied in self-etch (SE) or in etch-and-rinse (ER) mode. Sixty caries-free extracted third molars were assigned to 12 experimental groups resulting from the combination of the factors "adhesive system" (Scotchbond Universal Adhesive [SBU], 3M ESPE; All-Bond Universal [ABU], Bisco Inc.; and G-Bond Plus [GBP], GC Corporation); "adhesive strategy" (SE or ER); "hydrophobic resin coating" [HC] (with or without Heliobond, Ivoclar Vivadent); and "storage time" (24h or 6m). Specimens were prepared for μTBS testing - (24h) half of the beams were immediately tested under tension; and (6m) the other half was stored in distilled water (37°C) for 6m prior to testing. For each tooth, two beams were randomly selected for NL evaluation for both evaluation times. Data were analyzed for each adhesive system using three-way ANOVA and Tukey's post-hoc test (α=0.05). μTBS: (24h): In SE mode, HC resulted in statistically greater mean μTBS for all adhesives. (6m): When HC was not used the mean μTBS for SBU/ER, ABU/ER, GBP/ER and SBU/SE decreased significantly. NL: (24h): SBU/ER, ABU/ER and GBP/SE resulted in a significant reduction in NL when HC was applied. (6m): No significant reduction was observed for SBU/ER or for SBU/SE regardless of the use of HC. The application of a hydrophobic resin coating improved the 24h and the 6m performances of all three adhesives systems in SE mode. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Influence of dentinal regions on bond strengths of different adhesive systems.

    Science.gov (United States)

    Ozer, F; Unlü, N; Sengun, A

    2003-06-01

    This in vitro study assessed comparatively the shear bond strengths of three composite resins, 3M Valux Plus (3MVP), Herculite (H), Clearfil AP-X (CAP-X), a polyacid modified composite resin Dyract (D), and a resin modified glass-ionomer materials Vitremer (V), to cervical and buccal dentine regions of extracted human molar teeth. Four different bonding systems, 3M ScotchBond Multipurpose (SB), Clearfil Liner Bond 2 (LB2), Opti Bond (OB), and Prime & Bond 2.1 (PB 2.1) were used with the manufacturer's respective composite and compomer materials. One hundred freshly extracted mandibular molar teeth were selected for this study. Flat buccal dentine surfaces were created on 50 teeth and cylindrical rods of the five materials were bonded to the dentine surfaces. For assessment of cervical bond strengths, the materials were bonded to mesial and distal enamel bordered occlusal dentinal surfaces of the remaining 50 teeth. The five groups of restorative procedures were applied as follows; Group 1: SB + 3MVP, Group 2: LB2 + CAP-X, Group 3: OB + H, Group 4: PB2.1 + D, Group 5: Vitremer primer (VP) VP + V. Each restorative procedure thus had 20 specimens (10 buccal + 10 cervical). After 24 h of water storage (37 degrees C), the specimens were tested on a Universal Testing machine in shear with a cross head speed of 0.5 mm min-1. The bond strength values were calculated in MPa and the results were evaluated statistically using Kruskal-Wallis one-way/anova and Mann-Whitney U-tests. It was found that the bond strengths of SB + 3MVP, LB2 + CAP-X and VP + V to buccal dentine surfaces were significantly stronger (P 0.05). Vitremer was found the least successful adhesive material in terms of shear bond strength on both buccal and occluso-cervical dentine surfaces.

  12. IMPACTS OF DIFFERENT JOINT ANGLES AND ADHESIVES ON DIAGONAL TENSION PERFORMANCES OF BOX-TYPE FURNITURE

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2010-02-01

    Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.

  13. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing, E-mail: chunjing.li@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Bo; Liu, Shaojun [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  14. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    Science.gov (United States)

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p cements reduced the bond strength to Panavia self-etching resin cements only (p cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  15. Data Collection Protocols for Adhesive Testing Results Using the Materials Selection and Analysis Tool

    Science.gov (United States)

    2012-06-01

    processing envelope will also be equally broad, as the Army employs thermosetting , thermoplastic, paste, and film adhesives cured using a variety of...Testing ASTM D 1002 13 was the basis standard used for the single-lap-joint testing. Aluminum adherends ( Alloy 2024-T3) were used with dimensions of...Surface Preparation of Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels." ASTM International, West Conshohocken, PA, 2001, DOI

  16. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    Science.gov (United States)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  17. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  18. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  19. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  20. Influence of nanoporous structure on mechanical strength of aluminium and aluminium alloy adhesive structural joints

    International Nuclear Information System (INIS)

    Spadaro, C; Dispenza, C; Sunseri, C

    2006-01-01

    The influence of surface treatments on the mechanical strength of adhesive joints was investigated. The attention was focused on AA2024 alloy because it is extensively used in both the automotive and aerospace industries. Adhesive joints fabricated with pure aluminium were also investigated in order to evidence possible differences in the surface features after identical treatments. Before joining with a commercial epoxy adhesive, metal substrates were subjected to different kinds of treatment and the surfaces were characterized by SEM analysis. The formation of a microporous surface in the AA2024 alloy, upon etching and anodizing, is discussed on the basis of the role of the intermetallic particles and their electrochemical behaviour with respect to the aluminium matrix. Moreover, nanostructured porous oxide layers on both type of substrate were also formed, as a consequence of the anodizing process. Differences in their morphologies were revealed as a function of both the applied voltage and the presence of alloying elements. On this basis, an explanation of the different values of fracture energy measured by means of T-peel tests carried out on the corresponding joints was attempted

  1. Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

    International Nuclear Information System (INIS)

    Ishiyama, Chiemi

    2012-01-01

    Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter

  2. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    José de Jesús Figueroa-Lara

    2017-09-01

    Full Text Available This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA with silica (SiO2 nanoparticles plus zirconia (ZrO2 nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS. The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM, and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR.

  3. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  4. Mechanical properties of dynamic diffusion bonded joints in a mild alloy steel

    International Nuclear Information System (INIS)

    Gomez de Salazar, J. M.; Urena, A.; Menendez, M.

    2001-01-01

    Mechanical properties in Dynamic Diffusion Bonded (DDB) in a A.S.T.M. 1045 steel (=.45%C) joints were studied. The thermomechanical cycle added to the process, favours both the initial deformation stage and probably the diffusion mechanisms which participate in bond formation. (Author) 11 refs

  5. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  6. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s. © 2016 Eur J Oral Sci.

  7. The effect of organic solvents on one-bottle adhesives' bond strength to enamel and dentin.

    Science.gov (United States)

    Reis, André Figueiredo; Oliveira, Marcelo Tavares; Giannini, Marcelo; De Goes, Mário Fernando; Rueggeberg, Frederick A

    2003-01-01

    This study evaluated the microtensile bond strength (pTBS) of ethanol/water- and acetone-based, one-bottle adhesive systems to enamel (E) and dentin (D) in the presence (P) or absence (A) of their respective solvents. Thirty-two freshly extracted third molars were flattened with 600-grit SiC paper and restored with Single Bond (SB) or Prime&Bond 2.1 (PB) according to the manufacturers' instructions and after full solvent elimination. The molars were divided into eight test groups (n = 4): G1-SB-E-P, G2-SB-E-A, G3-PBE-P, G4-PB-E-A, G5-SB-D-P, G6-SB-D-A, G7-PB-D-P and G8-PB-D-A. After applying the adhesive resins, composite crowns of approximately 8 mm were built up with TPH Spectrum composite. After 24-hour water storage, the specimens were serially sectioned bucco-lingually to obtain 0.8 mm slabs that were trimmed to an hourglass shape, approximately 0.8 mm2 at the bonded interface. The specimens were tested in tension using a universal testing machine (0.5 mm/minute). The results were statistically analyzed by ANOVA and Tukey test. The frequency of fracture mode was compared using the Kruskal-Wallis test. There were no statistically significant differences in mean bond strength among the groups restored with or without solvent for enamel. However, the results were significantly different for the dentin groups (MPa): G5-26.2 +/- 8.6a; G7-23.6 +/- 11.3ab; G6-12.8 +/- 2.1bc; G8-6.2 +/- 3.1c. SEM examination indicated that the dentin group failure modes were significantly different from the enamel groups. The results suggest that the presence of organic solvents does not influence microTBS to enamel. However, microTBS to dentin was significantly affected by the absence of solvents in the adhesive system.

  8. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin.

    Science.gov (United States)

    Lührs, Anne-Katrin; Pongprueksa, Pong; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To determine the effect of curing mode and restoration-surface pre-treatment on the micro-tensile bond strength (μTBS) to dentin. Sandblasted CAD/CAM composite blocks (LAVA Ultimate, 3M ESPE) were cemented to bur-cut dentin using either the etch & rinse composite cement Nexus 3 ('NX3', Kerr) with Optibond XTR ('XTR', Kerr), or the self-etch composite cement RelyX Ultimate ('RXU', 3M ESPE) with Scotchbond Universal ('SBU', 3M ESPE). All experimental groups included different 'curing modes' (light-curing of adhesive and cement ('LL'), light-curing of adhesive and auto-cure of cement ('LA'), co-cure of adhesive through light-curing of cement ('AL'), or complete auto-cure ('AA')) and different 'restoration-surface pre-treatments' of the composite block (NX3: either a silane primer (Kerr), or the XTR adhesive; RXU: either silane primer (RelyX Ceramic Primer, 3M ESPE) and SBU, or solely SBU). After water-storage (7 days, 37°C), the μTBS was measured. Additionally, the degree of conversion (DC) of both cements was measured after 10min and after 1 week, either auto-cured (21°C/37°C) or light-cured (directly/through 3-mm CAD/CAM composite). The linear mixed-effects model (α=0.05) revealed a significant influence of the factors 'curing mode' and 'composite cement', and a less significant effect of the factor 'restoration-surface pre-treatment'. Light-curing 'LL' revealed the highest μTBS, which decreased significantly for all other curing modes. For curing modes 'AA' and 'AL', the lowest μTBS and a high percentage of pre-testing failures were reported. Overall, DC increased with light-curing and incubation time. The curing mode is decisive for the bonding effectiveness of adhesively luted composite CAD/CAM restorations to dentin. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  10. Effect of hydroxyl bond formation on the adhesion improvement of a polyethylene copper thin film system

    International Nuclear Information System (INIS)

    Camacho, M.; Blantocas, G.; Ramos, H.

    2009-01-01

    Formation of hydroxyl bonds on the surface of a gas plasma treated high density polyethylene (HDPE) sheets significantly enhanced the adhesion strength of the polyethylene copper thin film system. Surface treatments using oxygen gas plasmas at varying plasma parameters are applied in this study to identify the most effective plasma parameters that would promote the best adhesion strength. Analysis of gas plasma adulterated HDPE sheets showed best enhancement of polyethylene copper adhesion after an oxygen gas plasma treatment for 60 minutes at 5mA discharge current. Scanning Electron Microscopy Analysis, Fourier Transform Infrared Spectroscopy and Adhesion measurements using Pull out Force Analysis were used to measure the changes in the surface chemistry and surface topology of the HDPE sheets. (author)

  11. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hattan

    2013-01-01

    Full Text Available Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80 stainless steel crowns (SSCs were divided into four groups (20 each. Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group, Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany, and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength ( to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  12. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    International Nuclear Information System (INIS)

    Castro, F L A; Carvalho, J G; Andrade, M F; Saad, J R C; Hebling, J; Lizarelli, R F Z

    2014-01-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm 2 ) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin. (paper)

  13. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties.

    Science.gov (United States)

    Heinzmann, Christian; Salz, Ulrich; Moszner, Norbert; Fiore, Gina L; Weder, Christoph

    2015-06-24

    Hydrogen-bonded, side-chain-functionalized supramolecular poly(alkyl methacrylate)s were investigated as light- and temperature-responsive reversible adhesives that are useful for bonding and debonding on demand applications. Here, 2-hydroxyethyl methacrylate (HEMA) was functionalized with 2-ureido-4[1H]pyrimidinone (UPy) via a hexamethylenediisocyanate (HMDI) linker, to create a monomer (UPy-HMDI-HEMA) that serves to form supramolecular cross-links by way of forming quadruple hydrogen bonded dimers. UPy-HMDI-HEMA was copolymerized with either hexyl methacrylate or butyl methacrylate to create copolymers comprising 2.5, 5, or 10 mol % of the cross-linker. The mechanical properties of all (co)polymers were investigated with stress-strain experiments and dynamic mechanical analysis. Furthermore, the adhesive properties were studied at temperatures between 20 and 60 °C by testing single lap joints formed with stainless steel substrates. It was found that increasing the concentration of the UPy-HMDI-HEMA cross-linker leads to improved mechanical and adhesive properties at elevated temperatures. Concurrently, the reversibility of the bond formation remained unaffected, where rebonded samples displayed the same adhesive strength as regularly bonded samples. Debonding on demand abilities were also tested exemplarily for one copolymer, which for light-induced debonding experiments was blended with a UV-absorber that served as light-heat converter. Single lap joints were subjected to a constant force and heated or irradiated with UV light until debonding occurred. The necessary debonding temperature was comparable for direct heating and UV irradiation and varied between 28 and 82 °C, depending on the applied force. The latter also influenced the debonding time, which under the chosen conditions ranged from 30 s to 12 min.

  14. Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications : A review

    NARCIS (Netherlands)

    Abrahami, S.T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic

  15. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.

    Science.gov (United States)

    Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  16. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  17. Universal adhesives: the next evolution in adhesive dentistry?

    Science.gov (United States)

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  18. Effect of salivary contamination and decontamination on bond strength of two one-step self-etching adhesives to dentin of primary and permanent teeth.

    Science.gov (United States)

    Santschi, Katharina; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-02-01

    To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.

  19. A study of the impact properties of adhesively-bonded aluminum alloy based on impact velocity

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Teng; Cheon, Seong Sik; Cho, Jae Ung [Kongju National University, Cheonan (Korea, Republic of); Kinloch, Anthony J.; Blackman, Bamber R. K.; Sanchez, F. S. Rodriguez [Imperial College London, London (United Kingdom); Bang, Hye Jin; Lee, Sang Kyo; Cho, Chong Du [Inha University, Seoul (Korea, Republic of)

    2015-02-15

    In this study, an experiment and a simulation were carried out on colliding an adhesively-bonded tapered double cantilever beam (TDCB) at the impact velocities of 5 m/s, 7.5 m/s and 12.5 m/s. The analysis method of the corrected beam theory (CBT) was used to obtain the rate of energy release in the bonded area according to the crack progression, and a simulation was performed to determine the maximum strain energy during the impact analysis as a means to examine the mechanical properties of aluminium alloy. The experimental data were found to be higher than the simulation data. This is deemed to explicable by the fact that the adhesive strength was maintained even after the specimen separated in the experiment. Crack progression occurred, irrespective of the impact velocity, and high strain energy occurred at the end of the bonded region, thereby causing the strain energy to increase in the final stages. Also, the maximum load applied on the pin and the maximum strain energy in the bonded area were shown increase at higher impact velocities. The results of the experiment and simulation performed in this study are expected to serve as important data in developing a safety design for composite materials that can help prevent the progression of cracks caused by impact.

  20. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Science.gov (United States)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases