WorldWideScience

Sample records for adhesive protein coatings

  1. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.;

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... cells ( HeLa) and fluorescence labeled proteins (isothiocyanate-labeled bovine serum albumin, i.e. FITC-BSA). The PEO-like coatings were fabricated by plasma polymerization of 12-crown-4 (ppCrown) with plasma polymerized hexene (ppHexene) as adhesion layer. The coatings were micro patterned using...

  2. Coating Reduces Ice Adhesion

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  3. Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material.

    Choi, Yoo Seong; Kang, Dong Gyun; Lim, Seonghye; Yang, Yun Jung; Kim, Chang Sup; Cha, Hyung Joon

    2011-08-01

    Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ∼1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material. PMID:21770718

  4. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  5. Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate- reactive proteins (glycosidases and lectins) and fibronectin

    1981-01-01

    The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase- coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly diffe...

  6. Coating to enhance metal-polymer adhesion

    Parthasarathi, A.; Mahulikar, D. [Olin Metals Research Laboratories, New Haven, CT (United States)

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  7. Enhanced adhesion of diamond coatings

    Zheng, Zhido

    potential layers identified: TiN and TiC. Crystalline diamond coatings are subsequently deposited on these layers by hot filament CVD. A large grained TiC coating with a relatively rough surface was found to provide the best adhesion to the diamond layer. As judged qualitatively by the extent of spallation adjacent to hardness indentation, this intermediate layer performs better than similar TiC layers reported in the literature. The residual stresses in the diamond coatings are analysed using Raman microprobe spectroscopy, and compared with the predictions of the analytical model. The adhesion of the diamond coatings on various substrates with and without an intermediate layer of TiC is quantitatively evaluated by measuring the length of the delamination crack surrounding through-thickness holes in the coating and comparing with the relationship derived between crack length and strain energy release rate. The measured adherence on WC-Co substrates, as characterised by the critical strain energy release rate for growth of the delamination crack, was found to be significantly higher in the presence of the TiC intermediate layer developed during the course of this work.

  8. Impact of oils and coatings on adhesion of structural adhesives

    Hagström, Marcus

    2015-01-01

    This is a master thesis project conducted for Scania CV AB in collaboration with Swerea Kimab. The purpose is to examine how oils and coatings on the surface affect the adhesion of adhesives. Earlier work done by Scania indicate that the amount of oil applied may have an impact on the adhesion. Substrates tested are hot dipped galvanised steel, electro galvanised. AlSi and ZnMg. Oils used are Anticorit RP 3802 that is an anti-corrosive oil and Renoform 3802 that is a drawing oil. The two adhes...

  9. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  10. Adhesives from modified soy protein

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  11. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  12. Nanostructured niobium oxide coatings influence osteoblast adhesion.

    Eisenbarth, E; Velten, D; Müller, M; Thull, R; Breme, J

    2006-10-01

    The interaction of osteoblasts was correlated to the roughness of nanosized surface structures of Nb(2)O(5) coatings on polished CP titanium grade 2. Nb(2)O(5) sol-gel coatings were selected as a model surface to study the interaction of osteoblasts with nanosized surface structures. The surface roughness was quantified by determination of the average surface finish (Ra number) by means of atomic force microscopy. Surface topographies with Ra = 7, 15, and 40 nm were adjusted by means of the annealing process parameters (time and temperature) within a sol-gel coating procedure. The observed osteoblast migration was fastest on smooth surfaces with Ra = 7 nm. The adhesion strength, spreading area, and collagen-I synthesis showed the best results on an intermediate roughness of Ra = 15 nm. The surface roughness of Ra = 40 nm was rather peaked and reduced the speed of cell reactions belonging to the adhesion process. PMID:16788971

  13. Activated platelets form protected zones of adhesion on fibrinogen and fibronectin-coated surfaces

    1993-01-01

    Leukocytes form zones of close apposition when they adhere to ligand- coated surfaces. Because plasma proteins are excluded from these contact zones, we have termed them protected zones of adhesion. To determine whether platelets form similar protected zones of adhesion, gel-filtered platelets stimulated with thrombin or ADP were allowed to adhere to fibrinogen- or fibronectin-coated surfaces. The protein- coated surfaces with platelets attached were stained with either fluorochrome-conjugate...

  14. Coatings against corrosion and microbial adhesion

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Grit Blasting Scribes Coats For Tests Of Adhesion

    Novak, Howard L.

    1991-01-01

    Grit-blasting technique for cutting line gaps in paints, hard coats, lubricants, and other coating films undergoing development. Line gaps cut in chevron patterns, groups of parallel lines, or other prescribed patterns, in preparation for testing adhesions of coats to substrates by attempting to peel patterned areas off with adhesive tapes. Damage to substrate reduced.

  16. Quantifying adhesion energy of mechanical coatings at atomistic scale

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  17. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  18. ADHESION STRENGTH OF COATING SUBSTRATE AND SURFACE MORPHOLOGY OF PRETREATMENT

    2003-01-01

    Premature failure of coated tool often results from a poor adhesion of coating-substrate and shortens the lifetime of the tool.The results of increasing the adhesion strength of thin film coatings on cutting tool inserts by pretreating the inserts with sandblasting technique to obtain a desirable surface morphology of the inserts are presented.A geometric model representing the ideal surface morphology is established to enhance the nucleation density and adhesion strength of coating-substrate.Thin film coating experiment is conducted on the substrates of four different sample groups.Indentation and wear tests are performed on coated inserts to evaluate the effect of sandblasting on the adhesion strength of the coatings.A theoretical analysis is provided on the formation and growth of atom clusters in terms of the contact angle and the thermodynamic barrier of a substrate to predict thin film nucleation.

  19. Tensile adhesion test measurements on plasma-sprayed coatings

    Berndt, C. C.

    1986-01-01

    Adhesion measurements on plasma-sprayed coatings are briefly studied, including a critical analysis of the experimental scatter for duplicate tests. The application of a simple method which presents adhesion strength data in a fracture mechanics perspective is demonstrated. Available data are analyzed in a way which suggests an approach to finding the overall defect contribution to reducing the apparent strength of coatings.

  20. Adhesion between coating layers based on epoxy and silicone

    Svendsen, Jacob R.; Kontogeorgis, Georgios; Kiil, Søren;

    2007-01-01

    The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered....... The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of...

  1. Formation of tunable graphene oxide coating with high adhesion.

    Lin, Liangxu; Wu, Huaping; Green, Stephen J; Crompton, Joanna; Zhang, Shaowei; Horsell, David W

    2016-02-10

    Graphene oxide (GO) can be applied as a coating on metals, but few of these coatings have an adhesion suitable for practical applications. We demonstrate here how to form a GO coating on metals with a high adhesion (∼10.6 MPa) and tuneable surface, which can be further applied using similar/modified techniques for special applications (e.g. anti-corrosion and anti-biofouling). PMID:26814138

  2. Cell Adhesion to Plasma-Coated PVC

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  3. Humidity dependence of adhesion for silane coated microcantilevers

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  4. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  5. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  6. Practical measurements of adhesion and strain for improved optical coatings

    Adhesion and strain are two important physical properties which determine the success or failure of thin-film coatings in optical applications. In this paper we describe the design and operation of a dynamically loaded scratch tester for making measurements of relative adhesive strength, and a modulated transmission ellipsometer for measuring total and internal strain. Numerous examples for coating/substrate systems of interest to optical applications are given

  7. Mechanical pretreatment for improved adhesion of diamond coatings

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  8. Adhesion Improvement of Zirconium Coating on Polyurethane Modified by Plasmas

    Gao, Yi; Hao, Xiaofei; Liu, Jiwei

    2016-02-01

    In order to improve the adhesion of the middle frequency magnetic sputtered zirconium coating on a polyurethane film, an anode layer source was used to pretreat the polyurethane film with nitrogen and oxygen ions. SEMs and AFM roughness profiles of treated samples and the contrast groups were obtained. Besides, XPS survey spectrums and high resolution spectrums were also investigated. The adhesion test revealed that ion bombardment could improve the adhesion to the polyurethane coating substrate. A better etching result of oxygen ions versus nitrogen predicts a higher bonding strength of zirconium coating on polyurethane and, indeed, the highest bonding strengths are for oxygen ion bombardment upto 13.3 MPa. As demonstrated in X-ray photoelectron spectroscopy, the oxygen ion also helps to introduce more active groups, and, therefore, it achieves a high value of adhesion strength.

  9. A novel graded bioactive high adhesion implant coating

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  10. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Tian-yang ZHANG; Duan, Yong-hong; Zhu, Shu; Jin-yu ZHU; Zhu, Qing-sheng

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  11. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  12. Adhesion failures on hard coatings induced by interface anomalies

    Silva, Carlos W. Moura e; E. Alves; Ramos, A. R.; Sandu, Cosmin S.; Cavaleiro, A

    2009-01-01

    In this work, the lack of adhesion occurred during the up-scaling of the deposition of tribological coatings in a semi-industrial apparatus is interpreted. The adhesion problems were detected for both hard and self-lubricant coatings from W-Ti-N and W:C systems, respectively, when they were deposited in a 4 cathodes TEER® chamber by reactive unbalanced magnetron sputtering. In spite of cleaning the substrates surface by ion bombardment prior to deposition, by establishing a discharge close to...

  13. Rabbit cationic protein enhances leukocyte adhesiveness.

    Oseas, R S; Allen, J; Yang, H. H.; Baehner, R. L.; Boxer, L A

    1981-01-01

    Cationic protein purified from rabbit peritoneal polymorphonuclear leukocytes (PMN) was demonstrated to incite autoaggregation of the rabbit PMN and promote adhesiveness of human PMN to endothelial cells. PMN aggregation induced by supernatants derived from secretory PMN was blocked by a specific anticationic protein antibody. These studies reveal that a positively charged protein derived from the PMN can alter surface properties of the PMN itself and imply a role for this protein in PMN immo...

  14. Quantitative Adhesion Characterization of Antireflective Coatings in Multijunction Photovoltaics

    Brock, Ryan; Rewari, Raunaq; Novoa, Fernando D.; Hebert, Peter; Ermer, James; Miller, David C.; Dauskardt, Reinhold H.

    2016-08-01

    We discuss the development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method, which enables the quantitative measurement of adhesion on the thin and fragile substrates used in multijunction photovoltaics. In particular, we address the adhesion of several 2- and 3-layer antireflective coating systems on multijunction cells. By varying interface chemistry and morphology through processing, we demonstrate the marked effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We demonstrate that even with germanium substrates that fracture relatively easily, quantitative measurements of adhesion can be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  15. UV curable release coating and adhesive formulations containing vinylethers

    Vinylether monomers offer unique properties for UV/EB curing due to their efficiency as reactive diluents and their ability to undergo both cationic homopolymerization and free-radical copolymerization. The benefits derived from the inclusion of vinylethers into commercial UV-curable epoxysilicone formulations include viscosity reduction, improved cationic photoinitiator miscibility, and lower costs. The addition of up to 60 wt.% of monovinylethers to epoxysilicone systems maintains the release performance, resulting in high-performance coatings and valuable cost savings. On the other hand, divinylethers may be used to impart a controlled release behavior to the epoxysilicone systems. Vinylethers may also be used in the formulation of acrylate-free pressure-sensitive adhesives and laminating adhesives. In this paper, we have first elucidated the advantages offered by the inclusion of vinylethers in UV curable release coatings, followed by a discussion of UV curable pressure-sensitive and laminating adhesive formulations based on vinylethers

  16. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging.

    Leitner, Michael; Stock, Lorenz G; Traxler, Lukas; Leclercq, Laurent; Bonazza, Klaus; Friedbacher, Gernot; Cottet, Hervé; Stutz, Hanno; Ebner, Andreas

    2016-08-01

    Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. PMID:27265903

  17. Fundamentals of adhesion of thermal spray coatings: Adhesion of single splats

    Indentation experiments were performed inside a scanning electron microscope to measure adhesive strength of individual alumina splats on a steel substrate. The in situ nature of experimental evaluations made characterization of interfacial crack propagation possible by direct observation. The increase in the strain energy of brittle alumina splats originating from indentation deformation was correlated to the strain energy release rate through the characterization of interfacial crack propagation. An analytical model previously reported and evaluated in studies of the adhesive strength of thin films was employed. An average calculated strain energy release rate of 80 J m-2 was found for single splats. This high value suggests that splat adhesion can make a significant contribution to the adhesion of thermal sprayed coatings.

  18. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  19. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications

  20. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  1. Assessing heat-adhesive emulsions for tack coats

    Miró Recasens, José Rodrigo; Martínez Reguero, Adriana Haydée; Pérez Jiménez, Félix Edmundo

    2005-01-01

    The use of conventional emulsions for tack coats can cause problems as they frequently stick to the tyres of construction vehicles. Consequently, the bond between the asphalt layers is inadequate. Recently, new types of emulsions have been developed from very lowpenetration bitumen that contain no flux. They are known as ‘heat-adhesive’ emulsions and they are resistant to construction vehicles. However, the adhesive ability of these new emulsions has not previously been studied closely,...

  2. Development of Recycling Compatible Pressure-Sensitive Adhesives and Coatings

    Steven J. Severtson

    2010-02-15

    The objective of this project was the design of new water-based pressure-sensitive adhesive (PSA) products and coatings engineered for enhanced removal during the processing of recycled fiber. Research included the formulation, characterization, and performance measurements of new screenable coatings, testing of modified paper and board substrates and the design of test methods to characterize the inhibition of adhesive and coating fragmentation and relative removal efficiencies of developed formulations. This project was operated under the requirements that included commercially viable approaches be the focus, that findings be published in the open literature and that new strategies could not require changes in the methods and equipment used to produce PSA and PS labels or in the recycling process. The industrial partners benefited through the building of expertise in their company that they would not, and likely could not, have pursued if it had not been for the partnership. Results of research on water-based PSAs clearly identifies which PSA and paper facestock properties govern the fragmentation of the adhesive and provide multiple strategies for making (pressure-sensitive) PS labels for which the PSA is removed at very high efficiencies from recycling operations. The application of these results has led to the identification of several commercial products in Franklin International’s (industrial partner) product line that are recycling compatible. Several new formulations were also designed and are currently being scaled-up. Work on recycling compatible barrier coatings for corrugated containers examined the reinforcement of coatings using a small amount of exfoliated organically modified montmorillonite (OMMT). These OMMT/paraffin wax nanocomposites demonstrated significantly improved mechanical properties. Paraffin waxes containing clay were found to have significantly higher Young’s moduli and yield stress relative to the wax matrix, but the most

  3. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  4. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration. PMID:23484179

  5. Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction.

    Martinez, Jessica S; Kelly, Kristopher D; Ghoussoub, Yara E; Delgado, Jose D; Keller Iii, Thomas C S; Schlenoff, Joseph B

    2016-04-22

    Polymers of various architectures with zwitterionic functionality have recently been shown to effectively suppress nonspecific fouling of surfaces by proteins and prokaryotic (bacteria) or eukaryotic (mammalian) cells as well as other microorganisms and environmental contaminants. In this work, zwitterionic copolymers were used to make thin coatings on substrates with the layer-by-layer method. Polyelectrolyte multilayers, PEMUs, were built with [poly(allylamine hydrochloride)], PAH, and copolymers of acrylic acid and either the AEDAPS zwitterionic group 3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate (PAA-co-AEDAPS), or benzophenone (PAABp). Benzophenone allowed the PEMU to be toughened by photocrosslinking post-deposition. The attachment of two mammalian cell lines, rat aortic smooth muscle (A7r5) and mouse fibroblasts (3T3), and the biofilm-forming Gram-negative bacteria Escherichia coli was studied on PEMUs terminated with PAA-co-AEDAPS. Consistent with earlier studies, it is shown that PAH/PAA-co-AEDAPS PEMUs resist the adhesion of mammalian cells, but, contrary to our initial hypothesis, are bacterial adhesive and significantly so after maximizing the surface presentation of PAA-co-AEDAPS. This unexpected contrast in the adhesive behavior of prokaryotic and eukaryotic cells is explained by differences in adhesion mechanisms as well as different responses to the topology and morphology of the multilayer surface. PMID:26872345

  6. The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation

    Fan, Xue; Diao, Dongfeng

    2016-01-01

    We report a nanoscale adhesion induced nano-response in terms of re-indentation during in situ transmission electron microscope (TEM) nanoindentation on the carbon coating with silicon substrate. The adhesive force generated with nanoindentation was measured, and re-indentation phenomenon during unloading with displacement sudden drop and external loading force change from tension to compression was found. The occurrence of re-indentation during unloading was ascribed to the adhesive force of the contact interface between the indenter and the coating surface. Adhesion energies released for re-indentation processes were quantitatively analyzed from the re-indentation load-displacement curves, and carbon coating reduced the impact of adhesion for silicon substrate. The adhesion induced nano-response of contact surfaces would affect the reliability and performance of nano devices.

  7. Adhesion strength of sputtered TiAlN-coated WC insert tool

    Budi, Esmar [Department of Physics, Faculty of Science and Mathematics, Universitas Negeri Jakarta, Jl. Pemuda No. 10, Jakarta 13220 (Indonesia); Razali, M. Mohd.; Nizam, A. R. Md. [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka Karung Berkunci No 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia)

    2013-09-09

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  8. Adhesion strength of sputtered TiAlN-coated WC insert tool

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased

  9. Laser processing of natural mussel adhesive protein thin films

    Doraiswamy, A. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States); Narayan, R.J. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States)]. E-mail: roger_narayan@unc.edu; Cristescu, R. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Chrisey, D.B. [United States Naval Research Laboratory, Washington, DC (United States)

    2007-04-15

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications.

  10. Laser processing of natural mussel adhesive protein thin films

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications

  11. A novel coating strategy towards improving interfacial adhesion strength of Cu–Sn alloy coated steel with vulcanized rubber

    Highlights: • We propose a double layer Cu–Sn alloy coating strategy on steel to improve adhesion. • Uniform coating with adequate penetration inside micro-roughness was observed. • XPS and GDOES study revealed improved substrate surface coverage by coating. • TEM investigation confirmed compact, uniform and micro-porosity free interface. • Peel test with vulcanized rubber confirmed improved adhesion with cohesive fracture. - Abstract: A comparative assessment in terms of uniformity, coating coverage and coating deposition mechanism has been carried out for two different types of Cu–Sn coatings on steel substrate with varying Sn composition (2–6.5 wt%) deposited via immersion technique, viz. (i) single layer Cu–Sn coating and (ii) double layer coating consisting of a thin Cu strike layer followed by a Cu–Sn layer. Coating morphology, surface coverage, coating-substrate interface, and coating composition at surface and along the depth were studied using laser confocal microscope (OLS), scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (TEM). Quantitative depth profiling using GDOES and surface compositional analysis via XPS suggested improvement in surface coverage in the case of double layer coatings. SEM-EDS and TEM analysis confirmed that the coating deposition was more uniform with sufficient coating penetration inside the deep roughness troughs resulting in compact and micro-porosity free interface for this type of coatings. Better adhesion strength with less variation in peel force and cohesive mode of fracture within the rubber was observed for the double layer coated samples during the peel test carried out on coated steel samples vulcanized with rubber. On the other hand, the single layer coated samples showed large variation in peel force with adhesive

  12. Evaluation for Adhesion Strength of Coating and Substrate by Burying Beforehand Specimen

    2003-01-01

    Adhesion strength is an important target in evaluating the quality of coating layers.The traditional way of adhesion strength test is bonding pull-off method for thick layers and scratch test for thin films.The drawbacks of these two methods are discussed in this paper,and an evaluating method for adhesion strength of coating by burying beforehand specimen is proposed.The adhesion strength of samples is measured with two methods.The dispersity of testing data is lower than that in the ASTM-C663-79 Standard.

  13. Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings

    Eriksson, Robert; Brodin, Håkan; Johansson, Sten; Östergren, Lars; Li, Xin-hai

    2011-01-01

    The adhesion of thermal barrier coatings (TBC) has been studied using the standard method described in ASTM C633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrate coupons of Ni-base alloy Hastelloy X. The bond coat (BC) is of a NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different hea...

  14. Aspects of Characterisation of Thin Coating Adhesion at the Nano-Scale

    Jisheng E; Aiyang Zhang; Ben D. Beake

    2002-01-01

    In response to current development of materials in nano-science,characterisation of thin coating adhesion on a nano-scale becomes one of the most important research areas,as new coatings get ever thinner and more technologically advanced. With a review of technology and mechanisms of evaluating the adhesion failure of coatings,three techniques,nano impact ,nano-scratch and nano-indentation techniques ,for charactering the adhesion of thin coatings on a nano scale are described.Results of charactering the adhesion faliure of thin coatings using three different techniques indicate that the nano-scratch and nano-indentation techniques are very useful tools ,particularly in charactering the performance of thin coatings under nano-abra sive wear conditions. However,results from these types of tests cannot be easily applied to predict the performance of coatings whose are subject to nano-erosive wear,cyclic nano-fatigue or multiple nano-impacts during service. Instead,results of the new dynamic testing technique ,impact technique ,are found to correlate well with the coating performance under fatigue conditions,precisely because the impact test more closely simulates the actual contact (adhesion failure and wear)conditions of thin coatings occurring in nano-erosive/nano-fatigue/nano-impact wear.

  15. Mg Content Dependence of EML-PVD Zn-Mg Coating Adhesion on Steel Strip

    Jung, Woo Sung; Lee, Chang Wook; Kim, Tae Yeob; De Cooman, Bruno C.

    2016-09-01

    The effect of coating thickness and Mg concentration on the adhesion strength of electromagnetic levitation physical vapor deposited Zn-Mg alloy coatings on steel strip was investigated. The phase fraction of Zn, Mg2Zn11, and MgZn2 was determined for a coating Mg concentration in the 0 to 15 wt pct range. Coatings with a Mg content less than 5 pct consisted of an Zn and Mg2Zn11 phase mixture. The coatings showed good adhesion strength and ductile fracture behavior. Coatings with a higher Mg concentration, which consisted of a Mg2Zn11 and MgZn2 phase mixture, had a poor adhesion strength and a brittle fracture behavior. The adhesion strength of PVD Zn-Mg alloy coatings was found to be related to the pure Zn phase fraction. The effect of coating thickness on adhesion strength was found to be negligible. The microstructure of the interface between steel and Zn-Mg alloy coatings was investigated in detail by electron microscopy, electron diffraction, and atom probe tomography.

  16. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board. PMID:19329303

  17. Optimized Baxter model of protein solutions: electrostatics versus adhesion

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the repulsive electrostatics against part of the bare adhesion. A theory similar in spirit is developed at nonzero concentrations by assuming an appropriate Baxter model as the reference state. The first-...

  18. The hardness, adhesion, and wear resistance of coatings developed for cobalt-base alloys

    Cockeram, B.V.; Wilson, W.L.

    2000-05-01

    One potential approach for reducing the level of nuclear plant radiation exposure that results from activated cobalt wear debris is the use of a wear resistant coating. However, large differences in stiffness between a coating/substrate can result in high interfacial stresses that produce coating de-adhesion when a coated substrate is subjected to high stress wear contact. Scratch adhesion and indentation tests have been used to identify four promising coating processes [1,2]: (1) the use of a thin Cr-nitride coating with a hard and less-stiff interlayer, (2) the use of a thick, multilayered Cr-nitride coating with graded layers, (3) use of the duplex approach, or nitriding to harden the material subsurface followed by application of a multilayered Cr-nitride coating, and (4) application of nitriding alone. The processing, characterization, and adhesion of these coating systems are discussed. The wear resistance and performance has been evaluated using laboratory pin-on-disc, 4-ball, and high stress rolling contact tests. Based on the results of these tests, the best coating candidate from the high-stress rolling contact wear test was the thin duplex coating, which consists of ion nitriding followed deposition of a thin Cr-nitride coating, while the thin Cr-nitride coating exhibited the best results in the 4-ball wear test.

  19. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts

    Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites. (paper)

  20. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  1. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms. (author)

  2. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms

  3. Adhesion enhancement of hard coatings deposited on flexible plastic substrates using an interfacial buffer layer

    Liu, Day-Shan; Wu, Cheng-Yang, E-mail: dsliu@sunws.nfu.edu.t [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Taiwan 63201 (China)

    2010-05-05

    An interfacial buffer layer has been developed to improve the silicon oxide (SiO{sub x}) hard coating adhered to a flexible plastic substrate through a consecutive plasma-enhanced chemical vapour deposition process, using the same organosilicon precursor. The adhesion of the hard coating structure, correlated with the buffer layer thickness, was rated by the standard tape-peeling test. An excellent adhesion (rank 5B) was available for the hard coating structure with an interfacial buffer layer deposited on polycarbonate and polymethylmethacrylate substrates. The degree of adhesion strength for the hard coating structures was measured by the standard scratch test. The increase in the critical loads determined from the scratch test was well correlated with the tape-peeling test results. The hard coating structure showed excellent adhesion and also corresponded to a minimum residual stress. The mechanisms responsible for the adhesion enhancement were linked to the specific chemical bonds of the hydrocarbon C-H bond, and cross-linking Si-C bond appeared in the interfacial buffer layer. The C-H bond was recognized as a hydrophobic group that was favourable for minimizing the adsorption of ambient contaminants potentially arising during deposition, while the cross-linking Si-C bond functioned to compensate the large tensile stress residing in the SiO{sub x} hard coating. As a consequence, a close contact and progressive morphology resulting in excellent adhesion were observed at the interface of the hard coating structure with an interfacial buffer layer.

  4. Soy protein isolate molecular level contributions to bulk adhesive properties

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  5. Optimized Baxter model of protein solutions: electrostatics versus adhesion

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the rep

  6. Adhesion enhancement of indium tin oxide (ITO) coated quartz optical fibers

    Wang, Yihua; Liu, Jing; Wu, Xu; Yang, Bin, E-mail: yangbin665959@gmail.com

    2014-07-01

    Transparent conductive indium tin oxide (ITO) film was prepared on optical fiber through a multi-step sol–gel process. The influence of annealing temperature on the adhesion of ITO coated optical fibers was studied. Different surface treatments were applied to improve the adhesion between ITO film and quartz optical fiber. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), UV–vis spectrophotometer and Avometer were used to characterize the morphology, crystal structure and photo-electric properties. A thermal shock test was used to evaluate the adhesion. The result shows that the adhesion between ITO film and quartz optical fiber can be strongly influenced by the annealing process, and optimal adhesion can be acquired when annealing temperature is 500 °C. Surface treatments of ultrasonic cleaning and the application of surface-active agent have effectively enhanced the adhesion and photo-electric properties of indium tin oxide film coated quartz optical fiber.

  7. Non-destructive method of determination of elastic properties and adhesion coefficient of different coating materials

    M. Kubisztal

    2010-12-01

    Full Text Available Purpose: The paper presents a non-destructive method of determination of Young’s modulus and adhesion coefficient of different coating materials (metallic coatings, polymer, composite etc.. Some of the results obtained by applying this method are discussed in detail.Design/methodology/approach: The presented method consists in measuring the dynamic response of the examined material in the form of a flat rectangular bar subjected to external periodic mechanical stress i.e. the so called vibrating reed technique. General equations describing elastic properties of the sample consisting of a substrate and a deposited coating are derived and discussed in detail.Findings: It was shown that the application of the proposed approach to the metallic, polymeric and composite coatings allowed to obtain a quantitative data concerning the change of both the elastic properties and the adhesion coefficient with a change of: coating thickness, measurement temperature, chemical composition of coating, surface preparation or in the case of epoxy resin coatings with a change of curing time or curing temperature.Research limitations/implications: The proposed method can be applied in many scientific problems in the field of coating materials (e.g. elastic properties of porous coating, crystallization of amorphous coating, adhesion of different polymeric coatings.Practical implications: It was shown that the described method can be successfully used in optimisation of some technological processes of deposition of different coatings on metallic substrate.Originality/value: The paper presents methodology of a non-destructive approach to determination of elastic properties and adhesion coefficient of coating materials with an overview of some applications already publish and also the new ones. Especially interesting are the results concerning the influence of surface preparation on adhesion coefficient which are published for the first time.

  8. A study on the adhesion characteristics of the protective coatings by immersion for nuclear power plants

    The surface of the liner plate in containment is applied with the protective coatings to control corrosion and radioactive contamination levels, and to protect surfaces from wear. So, the protective coatings should be capable of withstanding the high temperature, humidity, pressure, and radioactivity caused at the simulated design basis accident and operating conditions. For this reason, they are classified into the safety related items and produced under the strict quality control. When Reg-Guide 1.54(Rev.0) was issued in 1973, it was expected that the protective coatings that met this guide would keep the function for the designed durability period. But, examining the operation history of N.P.P.s, we can find many kinds of deteriorations like unexpected cracks and delamination from substrata in the qualified protective coatings. Therefore, it is very important to understand the adhesion characteristics of the coatings. Adhesive performance of film to a substrate is a very important property, and even the best coating material has no value as coating materials if the adhesion is not good. Especially, in the protective coatings of containment, the most important performance is adhesive strength. However, adhesive mechanism of the coating materials has not become clear and there might be an error since it has been explained on the basis of construction experience. In this work, we conducted the accelerated deterioration experiment by immersion. The three types of test specimens were manufactured according to the ASTM D5139 standard. They were made in the construction site with a poor working condition in humid rainy season and cured in normal temperature for about 3 years. They were immersed into the distilled water at 25±1 degree C, 50±1 degree C and 75±1 degree C and investigated for 180 days. Adhesion test was performed according to ASTM D4541 with Elcometer Adhesion Tester. Epoxy Adhesive was used as a bonding agent of Dolly and we measured the adhesive

  9. Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings

    Kromer, R.; Cormier, J.; Costil, S.

    2016-06-01

    APS coating is deposited with different treated surfaces to understand the effects of surface topography and particle sizes on adhesion bond strength. Grit blasting and laser surface texturing have been used to create a controlled roughness and controlled surface topography, respectively. Coating adhesion is mainly controlled by a mechanical interlocking mechanism. Fully melted Ni-Al powder fills the respected target surface with high-speed radial flow. Pores around central flattening splat are usually seen due to splash effects. Laser surface texturing has been used to study near interface coating depending on the target shape and in-contact area. Pull-off test results have revealed predominant correlation with powder, surface topography, and adhesion bond strength. Adhesion bond strength is linked to the in-contact area. So, coating adhesion might be optimized with powder granulometry. Pores near the interface would be localized zones for crack initiations and propagations. A mixed-mode failure has been reported for sharp interface (interface and inter-splats cracks) due to crack kicking out phenomena. Coating toughness near the interface is a key issue to maximize adhesion bond strength. Volume particles and topography parameters have been proposed to enhance adhesion bond strength for thermal spray process for small and large in-contact area.

  10. Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings

    Kromer, R.; Cormier, J.; Costil, S.

    2016-05-01

    APS coating is deposited with different treated surfaces to understand the effects of surface topography and particle sizes on adhesion bond strength. Grit blasting and laser surface texturing have been used to create a controlled roughness and controlled surface topography, respectively. Coating adhesion is mainly controlled by a mechanical interlocking mechanism. Fully melted Ni-Al powder fills the respected target surface with high-speed radial flow. Pores around central flattening splat are usually seen due to splash effects. Laser surface texturing has been used to study near interface coating depending on the target shape and in-contact area. Pull-off test results have revealed predominant correlation with powder, surface topography, and adhesion bond strength. Adhesion bond strength is linked to the in-contact area. So, coating adhesion might be optimized with powder granulometry. Pores near the interface would be localized zones for crack initiations and propagations. A mixed-mode failure has been reported for sharp interface (interface and inter-splats cracks) due to crack kicking out phenomena. Coating toughness near the interface is a key issue to maximize adhesion bond strength. Volume particles and topography parameters have been proposed to enhance adhesion bond strength for thermal spray process for small and large in-contact area.

  11. A method for predicting critical load evaluating adhesion of coatings in scratch testing

    CHEN Xi-fang(陈溪芳); YAN Mi(严密); YANG De-ren(杨德人); HIROSE Yukio

    2003-01-01

    In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematical model predicting the critical load is proposed for calculating critical load as determined by scratch testing. The factors for correctly evaluating adhesion of coatings according to the experimental data are discussed.

  12. A method for predicting critical load evaluating adhesion of coatings in scratch testing

    陈溪芳; 严密; 杨德人; HIROSEYukio

    2003-01-01

    In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematical model predicting the critical load is proposed for calculating critical load as determined byscratch testing. The factors for correctly evaluating adhesion of coatings according to the experimental data arediscussed.

  13. A Cold Adhesion for Self-fused Alloy Coat by High Frequency Induction

    ZHANGZeng-zhi; AIBo

    2004-01-01

    In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstnlcture and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of tbe thermal magnetism, thermal resislivity, and anti-induction mechanism. By comparing the microsLrUclures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200-250kHz. (2) The microstructure of the coat by cold adhesion is superior to that by themal spraying, but the particle size range should be 0.047-0.044mm (200-320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.

  14. A Cold Adhesion for Self-fused Alloy Coat by High Frequency Induction

    ZHANG Zeng-zhi; AI Bo

    2004-01-01

    In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstructure and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of the thermal magnetism, thermal resistivity and anti-induction mechanism. By comparing the microstrucrures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200~250kHz. (2) The microstrucrure of the coat by cold adhesion is superior to that by thermal spraying, but the particle size range should be 0.047~0.044mm (200~320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.

  15. Staphylococcus aureus and Staphylococcus epidermidis adhesion to nanohydroxyapatite in the presence of model proteins

    Bacterial infections can have adverse effects on the efficacy, lifetime, and safety of an implanted device. The aim of this study was to investigate the initial adhesion of several strains, namely S. aureus and S. epidermidis, on two distinct types of nanohydroxyapatite (nanoHA), sintered at 725 °C and 1000 °C. A comparison was also made with nanohydroxyapatite having adsorbed fetal bovine serum (FBS), human fibronectin (FN) and human serum albumin (HSA). Adhered bacterial cells were examined by scanning electron microscopy and quantified as colony forming units after being released by sonication. The wettability of the sample surface with and without adsorbed protein was assessed by contact-angle measurements. NanoHA sintered at 1000 °C showed lower bacterial adhesion than this heat-treated at 725 °C. Adsorption of FBS onto the nanoHA surface caused a decrease in the adhesion of all strains on both materials. The bacterial adhesion patterns in the presence of FN were different for both nanoHA substrates; the adherence of the bacterial strains, except for the clinical strain of S. epidermidis, was significantly higher on nanoHA 1000 in comparison to nanoHA 1000 without protein and the bacterial adhesion on the FN-coated nanoHA 725 was lower in comparison to the bare nanoHA 725. The effect of HSA on bacterial adhesion was concentration and bacterial strain dependent. (paper)

  16. Mussel-mimetic protein-based adhesive hydrogel.

    Kim, Bum Jin; Oh, Dongyeop X; Kim, Sangsik; Seo, Jeong Hyun; Hwang, Dong Soo; Masic, Admir; Han, Dong Keun; Cha, Hyung Joon

    2014-05-12

    Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications. PMID:24650082

  17. The inclined impact test, an efficient method to characterize coatings' cohesion and adhesion properties

    The impact test, supported by its finite elements method (FEM) simulation, has been successfully used to characterize the fatigue performance of coatings. In this test, the load is exercised perpendicularly to the coated surface by a cemented carbides ball. In the inclined impact test, the successive impacts are applied on an inclined surface. In this way, the coated surfaces are loaded vertically and tangentially simultaneously. The coating fatigue failure modes were classified by means of scanning electron microscopy (SEM) observations and energy dispersive X-ray spectroscopy microanalyses. The experimental method is supported by a developed FEM simulation, which considers the mechanical elastic-plastic properties of the coating and of the substrate, as well as of the ball indenter during the impact test, thus enabling the elucidation of the coating failure modes. In this way, critical equivalent stresses were determined and the coating cohesive and adhesive impact performance was systematically investigated. The inclined impact test implies a new reference to the prediction of the coatings' cohesive and adhesive failure, managing to approach loading directions for a variety of coated surfaces in different applications. Examples for an efficient use of this test are presented and a characteristic magnitude, the coating impact adhesion (CIA), is introduced

  18. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. PMID:24802964

  19. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    Maciej Kupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values.It was found that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interfacial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  20. Possibilities of Increase of Adhesion of the Cubic Boron Nitride Coatings by Applying an Interfacial Layers

    MaciejKupczyk

    2004-01-01

    In the work the chosen investigations of the adhesion force of thin, superhard coatings to the cutting edges made of cemented carbides are presented. For identification of the adhesion force of coatings to substrate an automatic scratch tester constructed at Poznan University of Technology was applied. The estimation of the adhesion force (value of critical load measured during scratch test) was carried out on the base of the vibration signal. Results of investigations are pointed at the influence of a surface preparation (degreasing, etching, low and high-temperature sputtering) on a critical load values. It was round that the most effective method for surface preparation is low temperature sputtering. The influence of the TiC+Al2O3+TiN interracial layer on increase of the adhesion force of BN coating to cemented carbides substrate was observed.

  1. Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions.

    Glass, Paul; Chung, Hoyong; Washburn, Newell R; Sitti, Metin

    2009-06-16

    In this work, we take previously developed gecko-foot-hair-inspired elastomer microfiber arrays with film-terminated and mushroom-shaped tips that have demonstrated enhanced adhesion with respect to unpatterned materials under dry conditions and coat them with synthetic DOPA-containing mussel-inspired polymers to enhance adhesion repeatedly in fully submerged wet environments. A new protocol for the development of this hybrid patterned, coated adhesive, which is suitable for use in contact with both wet and dry nonflat surfaces, is described. The experimental evaluation of repeatable adhesion under both wet and dry conditions for these materials is described and compared with unpatterned and/or uncoated materials. Macroscale reversible fibrillar adhesion enhancement on a nonflat, smooth glass surface when compared with unpatterned materials under fully submerged conditions is demonstrated with no suction effect. PMID:19456091

  2. Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion.

    Shao, Wei; Zhao, Q

    2010-03-01

    Many studies suggest a strong antimicrobial activity of silver coatings. The biocidal activity of silver is related to the biologically active silver ion released from silver coatings. However, no studies have been reported on the effect of surface energy of silver coatings on antibacterial performance. In this paper, three silver coatings with various corrosion rates and surface energies were prepared on stainless steel plates using AgNO(3) based electroless plating solutions. The corrosion rate and surface energy of the silver coatings were characterized with CorrTest Electrochemistry Workstation and Dataphysics OCA-20 contact angle analyzer, respectively. The antibacterial performance of the silver coatings was evaluated with Pseudomonas aeruginosa PA01, which frequently causes medical device-associated infections. The experimental results showed that surface energy had significant influence on initial bacterial adhesion at low corrosion rate. The extended DLVO theory was used to explain the bacterial adhesion behavior. PMID:19910169

  3. Evaluation of the Interfacial Adhesion between Brittle Coating and Ductile Substrate by Cross-Sectional Indention

    SUJian-yu; ZHANGKun; CHENGuang-nan

    2004-01-01

    The cross-sectional indentation method is extended to evaluate the interracial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interracial separation occurs due to the edge chipping of brittle coating. The comesponding models are established to elucidate interracial separation processes. This work further highlights the advantages and potential of this novel indentation method.

  4. Evaluation of the Interfacial Adhesion between Brittle Coating and Ductile Substrate by Cross-Secitional Indention

    SU Jian-yu; ZHANG Kun; CHEN Guang-nan

    2004-01-01

    The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method.

  5. Inhibitory effect of coated mannan against the adhesion of Candida biofilms to denture base resin.

    Sato, Maki; Ohshima, Tomoko; Maeda, Nobuko; Ohkubo, Chikahiro

    2013-01-01

    The adherence of Candida on dentures is related to diseases such as denture stomatitis and aspiration pneumonia. Mannan is a major component of the Candida cell surface, and contributes to the cell adherence. A previous report indicated that the adherence of C. albicans to culture dishes was inhibited by the coating them with mannan. The purpose of this study was to examine the adhesion inhibitory effect of mannan coating on acrylic denture surfaces against C. albicans and C. glabrata. The amount of Candida attached on the acrylic surfaces coated with mannan was calibrated by culture methods. Mannan showed significant inhibitory effects on Candida adhesion in both the yeast and hyphal form in a concentration-dependent manner, and the durability of the inhibitory effect continued for three days. These results suggest that mannan coating on the denture base acrylic can prevent Candida adhesion on the denture. PMID:23718993

  6. The adhesion of epoxy cataphoretic coating on phosphatized hot-dip galvanized steel

    Bajat Jelena B.

    2006-01-01

    Full Text Available The influence of hot-dip galvanized steel surface pretreatment on the adhesion of epoxy cataphoretic coating was investigated. Phosphate coatings were deposited on hot-dip galvanized steel and the influence of fluoride ions in the phosphating plating bath, as well as the deposition temperature of the plating bath, were investigated. The dry and wet adhesion of epoxy coating were measured by a standard pull-off method. The surface roughness of phosphatized galvanized steel was determined, as well as the wettability of the metal surface by emulsion of the epoxy resin in water. The adhesion of epoxy coatings on phosphatized hot-dip galvanized steel was investigated in 3wt.%NaCI.

  7. Isolation and characterization of Chinese hamster ovary cell variants defective in adhesion to fibronectin-coated collagen

    1980-01-01

    Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substra...

  8. Deposition and adhesion of PECVD boron coatings on Ti-6Al-4V substrates

    Plasma-enhanced chemical vapor deposition (PECVD) has been used to produce elemental boron coatings on Ti-6Al-4V substrates. Deposition has been accomplished using a novel PECVD reactor in which a serpentine, rather than a helical, RF coil has been employed. Transmission electron microscopy has confirmed the amorphous nature of these boron coatings. Scratch adhesion properties of this coating/substrate system, including an investigation of the effects of nitrogen ion implantation energy and fluence prior to deposition, have been determined. Both acoustic emission and frictional force measurements have been recorded during scratch removal traverses to detect incipient coating and/or substrate failure. Differences in failure mechanism have been found to result as a consequence of the substrate surface pretreatment, with untreated substrates giving rise to adhesive failures and ion implanted substrates leading to cohesive coating failures. The acoustic emission technique has demonstrated great sensitivity in the detection of both adhesive and cohesive coating failures, and scanning electron microscopy has been effective in differentiating adhesive failures, such as spallation, from coating microcracking in a cohesive failure mode

  9. Adhesion Issues with Polymer/Oxide Barrier Coatings on Organic Displays

    Matson, Dean W.; Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Hall, Michael G.; Mast, Eric S.; Bonham, Charles C.; Zumhoff, Mac R.; Rutherford, Nicole M.; Moro, Lorenza; Rosenblum, Martin; Praino, Robert F.; Visser, Robert J.

    2005-01-01

    Multilayer polymer/oxide coatings are being developed to protect sensitive organic display devices, such as OLEDs, from oxygen and water vapor permeation. The coatings have permeation levels ~ 10-6 g/m2/d for water vapor and ~10-6 cc/m2/d for oxygen, and are deposited by vacuum polymer technology. The coatings consist of either a base Al2O3 or acrylate polymer adhesion layer followed by alternating Al2O3/polymer layers. The polymer is used to decouple the 30 nm-thick Al2O3 barrier layers. Adhesion of the barrier coating to the substrate and display device is critical for the operating lifetime of the device. The substrate material could be any transparent flexible plastic. The coating technology can also be used to encapsulate organic-based electronic devices to protect them from atmospheric degradation. Plasma pretreatment is also needed for good adhesion to the substrate, but if it is too aggressive, it will damage the organic display device. We report on the effects of plasma treatment on the adhesion of barrier coatings to plastic substrates and the performance of OLED devices after plasma treatment and barrier coating deposition. We find that initial OLED performance is not significantly affected by the deposition process and plasma treatment, as demonstrated by luminosity and I-V curves.

  10. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength.

    Khurana, Rajneet; Singh, Kuldeep; Sapra, Bharti; Tiwary, A K; Rana, Vikas

    2014-02-15

    Tablet coating is the most useful method to improve tablet texture, odour and mask taste. Thus, the present investigation was aimed at developing an industrially acceptable aqueous tablet coating material. The physico-chemical, electrical and SEM investigations ensures that blending of Tamarindus indica (Linn.) pectin (TP) with chitosan gives water resistant film texture. Therefore, CH-TP (60:40) spray coated tablets were prepared. The evaluation of CH-TP coated tablets showed enhanced adhesive force strength (between tablet surface to coat) and negligible cohesive force strength (between two tablets) both evaluated using texture analyzer. The comparison of CH-TP coated tablets with Eudragit coated tablets further supported superiority of the former material. Thus, the findings pointed towards the potential of CH-TP for use as a tablet coating material in food as well as pharmaceutical industry. PMID:24507255

  11. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    Choudhary, R. K.; Mishra, P.

    2016-06-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  12. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    Choudhary, R. K.; Mishra, P.

    2016-04-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  13. Electrochemical Characterization of Poly-L-Lysine Coating on Indium Tin Oxide Electrode for Enhancing Cell Adhesion.

    Choi, Yonghyun; Yagati, Ajay Kumar; Cho, Sungbo

    2015-10-01

    Nano or microelectrode-based cell chip for stimulating or recording neuronal signals requires better cell adhesion procedures in order to achieve efficient cell based assays for effective cellular diagnosis and for high throughput screening of drug candidates. The cells can be adhered on protein pre-coated sensing electrodes, but the electrochemical characteristics of cells are highly influenced by the electrical charge of the underlying protein interface. Thus, in this study, we report on experimental and theoretical aspects of poly-L-lysine (PLL) adsorption on transparent indium tin oxide (ITO) electrodes and the interaction between PLL and human embryonic kidney 293/GFP cells. PLL coated ITO electrodes showed a lower transfer resistance compared to bare or bovine serum albumin coated ITO electrodes. In addition, they exhibited more positive potential and higher magnitude of redox peak currents with increased immersion time of PLL solution. Finally, results of the impedance analysis showed that adhesion of cells was enhanced by PLL coating on ITO electrodes compared to bare ITO electrodes. PMID:26726433

  14. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.; Han, Songi

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were f...

  15. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  16. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys

    Makoto HINO; Koji MURAKAMI; Yutaka MITOOKA; Ken MURAOKA; Teruto KANADANI

    2009-01-01

    The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined. Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element. The zinc deposits in the 2nd zincate treatment became thinly uniform, and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element. XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid. This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.

  17. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    Testrich, H., E-mail: holger.testrich@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Finke, B.; Hempel, F. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff Str. 2, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Meichsner, J. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2013-10-15

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion.

  18. Adhesion of Actinomyces viscosus to Porphyromonas (Bacteroides) gingivalis-coated hexadecane droplets.

    Rosenberg, M; Buivids, I A; Ellen, R P

    1991-01-01

    Interbacterial adhesion (coadhesion) is considered a major determinant of dental plaque ecology. In this report, we studied several aspects of the adhesion of Porphyromonas (Bacteroides) gingivalis to hexadecane in order to use the liquid hydrocarbon as a convenient substratum for coadhesion assays. Washed suspensions of hydrophobic P. gingivalis 2561 cells were vortexed with hexadecane to yield highly stable cell-coated droplets. Kinetics of coadhesion between Actinomyces viscosus cells and ...

  19. On the effect of roughness and degree of cold working on adhesion strength of plasma coatings

    The effect of surface roughness and coldhardening on the adhesion properties of the chromium-nickel spinel thermal control plasma spray-coating on the base D16AT alloy and steel Kh18N10T substrates is considered. The formula which shows the relationship between the height of the substrate surface miero irregularities, parameters of shot blasting, and hardness of the material. The optimum parameters which insure maximum adhesion between the plating and the substrate are determined

  20. Friction, adhesion and corrosion performance of metallurgical coatings in HTGR-helium

    The friction-, adhesion-, thermal cycling- and corrosion performance of several metallurgical coating systems have been tested in a simulated HTGR-test atmosphere at elevated temperatures. The coatings were applied to a solid solution strengthened Ni-based superalloy. Component design requires coatings for the protection of mating surfaces, since under reactor operating conditions, contacting surfaces of metallic components under high pressures are prone to friction and wear damage. The coatings will have to protect the metal surface for 30 years up to 9500C in HTGR-helium. The materials tested were various refractory carbides with or without metallic binders and intermetallic compounds. The coatings evaluated were applied by plasma spraying-, detonation gun- and chemical vapor deposition techniques. These yielded two types of coatings which employ different mechanisms to improve the tribiological properties and maintain coating integrity. (Auth.)

  1. Halofuginone- and Chitosan-Coated Amnion Membranes Demonstrate Improved Abdominal Adhesion Prevention

    Scott Washburn

    2010-01-01

    Full Text Available Our objective was to determine whether coating the amniotic membrane with halofuginone, a type 1 collagen synthase inhibitor, with or without the hemostasis-inducing substance chitosan, reduced the number and severity of adhesions in the rat uterine horn injury model. Sixty retired breeder Sprague-Dawley rats underwent midline laparotomy and a zone of ischemia was created in the left uterine horn of each animal. Rats were randomized to one of six treatment groups: (1 untreated control, (2 oxidized regenerated cellulose (Interceed® (ORC, (3 plain amnion, (4 amnion coated on both sides with 0.5% solution of halofuginone (HAH, (5 amnion coated on one side with 0.5% halofuginone and on the other side with chitosan (CAH, or (6 amnion coated on both sides with chitosan (CAC. The zone of ischemia in each left uterine horn was wrapped in each treatment. Rats were sacrificed 2 weeks after laparotomy, and adhesions were counted and scored for severity. Data were analyzed using Chi square and a p <0.05 was considered significant. Our results showed that there were no differences in the percentage of animals with adhesions in the untreated, ORC, plain amnion, or CAC groups. No adhesions formed in any animal in the HAH group and only 14% of the animals developed adhesions to the uterine horn in the CAH group (p < 0.05. The percentage of animals with moderate and severe adhesions did not differ between untreated controls and the ORC groups, but were significantly reduced in all four of the amnion groups: plain amnion, HAH, CAH, and CAC (p < 0.05. Amnion coated with halofuginone alone or in combination with chitosan reduced the percentage of animals with adhesions, as well as the percentage of animals with moderate and severe adhesions compared to untreated controls and the ORC group in the rat uterine horn injury model. Amnion alone or coated with chitosan reduced the percentage of rats with moderate and severe adhesions, but not the percentage of rats with

  2. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating.

    Joung, Yoon Ki; You, Seung Soo; Park, Kyung Min; Go, Dong Hyun; Park, Ki Dong

    2012-11-01

    Durable and blood-compatible coating of metallic biomaterials remains a major issue in biomedical fields despite its long history of development. In this study, in situ forming, metal-adhesive heparin hydrogels were developed to coat metallic substrates to enhance blood compatibility. The hydrogels are composed of metal-adhesive and enzyme-reactive amphiphilic block copolymer (Tetronic-tyramine/dopamine; TTD) and enzyme-reactive heparin derivatives (heparin-tyramine or heparin-polyethylene glycol-tyramine), which are cross-linkable in situ via an enzyme reaction. The combinations of heparin and Tetronic formed hydrogels with relatively high mechanical strengths of 300-5000 Pa within several tens of seconds; this was also confirmed by observing a dried porous structure as coated on a metal surface. The introduction of dopamine to the hydrogel network enhanced the durability of the hydrogel layers coated on metal, such that more than 60% heparin remained for 7 days. Compared to bare metal surfaces, hydrogel-coated metal surfaces exhibited significantly enhanced blood compatibility. Reduced fibrinogen adsorption and platelet adhesion showed that blood compatibility was 3-5-fold-enhanced on coated hydrogel layers than on the bare metal surface. In conclusion, hydrogels containing heparin and dopamine prepared by enzyme reaction have the potential to be an alternative coating method for enhancing blood compatibility of metallic biomaterials. PMID:22100384

  3. Titanium Surface Coating with a Laminin-Derived Functional Peptide Promotes Bone Cell Adhesion

    Seung-Ki Min

    2013-01-01

    Full Text Available Laminin-derived peptide coatings can enhance epithelial cell adhesion to implants, and the positive effect of these peptides on bone cell adhesion has been anticipated. The purpose of this study was to evaluate the improvement in bone cell attachment to and activity on titanium (Ti scaffolds coated with a laminin-derived functional peptide, Ln2-P3 (the DLTIDDSYWYRI motif. Four Ti disc surfaces were prepared, and a human osteosarcoma (HOS cell attachment test was performed to select two candidate surfaces for peptide coating. These two candidates were then coated with Ln2-P3 peptide, a scrambled peptide, or left uncoated to measure cell attachment to each surface, following which one surface was chosen to assess alkaline phosphatase (ALP activity and osteogenic marker gene expression with quantitative real-time PCR. On the commercially pure Ti surface, the Ln2-P3 coating significantly increased cellular ALP activity and the expression levels of ALP and bone sialoprotein mRNA as compared with the scrambled peptide-coated and uncoated surfaces. In conclusion, although further in vivo studies are needed, the findings of this in vitro study indicate that the Ln2-P3-coated implant surface promotes bone cell adhesion, which has clinical implications for reducing the overall treatment time of dental implant therapy.

  4. The significant adhesion enhancement of Ag–polytetrafluoroethylene antibacterial coatings by using of molecular bridge

    Highlights: • The more effective coupling agent is employed to modify surface. • S–Ag displays more intensive bond strength than that of N–Ag. • The coatings possess the highest level of adhesion. - Abstract: Weak adhesion between the metal-based antibacterial coatings and polymer substrates limits their clinical applications; surface modification is an effective way to solve this intrinsic problem. In this study, UV irradiation was employed to activate the inert silicon rubber substrates, and the grafting of coupling agent (3-mercaptopropyl) trimethoxy silane into the UV-irradiated substrates generated reactive surface containing −SH groups. During electroless plating S which has lone pair electrons anchored Ag+ and produced antibacterial coatings with improved adhesion. The grafting of (3-mercaptopropyl) trimethoxy silane into silicon rubber was verified by X-ray photoelectron spectroscopy (XPS). The adhesion was tested by American Society of Testing Materials (ASTM D 3359-02). Surface elements content and distribution were observed and analyzed by X-ray energy disperse spectroscopy (EDS). The antibacterial performance was characterized by inhibition halo test and shake flash method. The results showed that the as-prepared composite Ag–polytetrafluoroethylene coatings possessed remarkably enhanced adhesion and superior antibacterial activity

  5. The significant adhesion enhancement of Ag–polytetrafluoroethylene antibacterial coatings by using of molecular bridge

    Guo, Ruijie, E-mail: guoruijie@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 (China); Yin, Guangda; Sha, Xiaojuan [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 (China); Zhao, Qi [Division of Mechanical Engineering and Mechatronics, University of Dundee, Dundee, DD1 4HN (United Kingdom); Wei, Liqiao; Wang, Huifang [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 (China)

    2015-06-30

    Highlights: • The more effective coupling agent is employed to modify surface. • S–Ag displays more intensive bond strength than that of N–Ag. • The coatings possess the highest level of adhesion. - Abstract: Weak adhesion between the metal-based antibacterial coatings and polymer substrates limits their clinical applications; surface modification is an effective way to solve this intrinsic problem. In this study, UV irradiation was employed to activate the inert silicon rubber substrates, and the grafting of coupling agent (3-mercaptopropyl) trimethoxy silane into the UV-irradiated substrates generated reactive surface containing −SH groups. During electroless plating S which has lone pair electrons anchored Ag{sup +} and produced antibacterial coatings with improved adhesion. The grafting of (3-mercaptopropyl) trimethoxy silane into silicon rubber was verified by X-ray photoelectron spectroscopy (XPS). The adhesion was tested by American Society of Testing Materials (ASTM D 3359-02). Surface elements content and distribution were observed and analyzed by X-ray energy disperse spectroscopy (EDS). The antibacterial performance was characterized by inhibition halo test and shake flash method. The results showed that the as-prepared composite Ag–polytetrafluoroethylene coatings possessed remarkably enhanced adhesion and superior antibacterial activity.

  6. Influence of heat treatment on the Al-Si coating adhesion to steel strips

    K. Żaba

    2010-01-01

    A division of methods of coatings adhesion investigations, with special emphasis on qualitative methods is presented in the paper. Theobtained results the Al-Si coating adhesion to a steel strips of DX52D grade are given. This strip was examined before and after the heattreatment in temperatures 250-700oC during 30-1440 minutes. Methods of thermal shock, bending, filing, network of cuts and tensile wereapplied in examinations. The assessment of the method adequacy was performed. Structure cha...

  7. Interface adhesion properties of functional coatings on titanium alloy formed by microarc oxidation method

    Three functional coatings (namely Al-C, Si-P-Al and P-F-Al coating) were fabricated by microarc oxidation method on Ti6Al4V alloy in different aqueous solutions. The microstructure, phase and chemical composition of coatings were investigated using scanning electron microscope, X-ray diffraction and energy dispersive spectroscopy. The interface adhesion failure mode of the coating is revealed by shear, tensile and thermal shock methods. The coatings exhibit high adhesion strength by the quantitative shearing test, registering as 110, 70, and 40 MPa for Al-C, Si-P-Al and P-F-Al coating, respectively. The tensile test of the coated samples shows that microarc oxidation treatment does not significantly deteriorate mechanical properties of substrate titanium alloy. The observations of the coating failure after subjected to the identical tensile elongation of 3.0% are well in agreement with those results of the shear test. The thermal cycle test indicates that all the coatings have good anti-thermal shocking properties.

  8. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide

    Caccavo, F. Jr.

    1999-11-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

  9. Protein kinase C involvement in focal adhesion formation

    Woods, A; Couchman, J R

    1992-01-01

    still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form...... then treated with kinase inhibitors H7 and HA1004 for 2h, IRM indicated a reduction in focal adhesion formation at concentrations where protein kinase C (PKC) should be inhibited. In contrast, focal adhesions formed normally at concentrations of these inhibitors where cyclic AMP- or cyclic GMP......-dependent kinases should be inactivated. Inhibition of PKC, but not that of cyclic AMP- or cyclic GMP-dependent kinases, also prevented the formation of stress fibers and induced a dispersal of talin and vinculin, but not integrin beta 1 subunits, from small condensations present at 1h. Consistent with the...

  10. Nanoparticulate sol-gel pretreatments as barrier coatings and adhesion promoters for metallic corrosion protection

    Jiménez Morales, Antonia

    2008-01-01

    The Spanish University Carlos III de Madrid has developed sol-gel coatings for the corrosion protection of alloys. Sol-gel coatings represent a physical barrier between the metallic substrate and the aggressive environment of exposition and act as adhesion promoters through interfacial bonding. Optimization of the coating’s properties may be easily achivied by changing the processing parameters and formulation of the layer. Interest in licensing the applied patent or technical cooperation wit...

  11. Fabrication of a superhydrophobic coating with high adhesive effect to substrates and tunable wettability

    Li, Yuan; Zhang, Zhaozhu; Zhu, Xiaotao; Men, Xuehu; Ge, Bo; Zhou, Xiaoyan

    2015-02-01

    In this paper, a new superhydrophobic coating was successfully prefabricated by a facile sol-gel process which was made up of first the surface chemical reaction of (3-Glycidyloxypropyl) trimethoxysilane (A-187) and SiO2 particles and subsequent spray-coating onto the substrate. Further hardening treatment and surface fluorination allowed the SiO2 coating with the optimum mass ratio of 2.0:1 to exhibit nice superhydrophobic property and high adhesive effect to substrates. Our researches indicated that the mass ratio of A-187 and SiO2 particles could significantly control the surface morphology (or the wettability) and affect adhesion force of the superhydrophobic coating to substrates. In the process, hardening temperature was quite important for rapid evaporation of the solvent and then fast hardening of the coating despite the absence of the similar effect to the mass ratio of A-187 and SiO2 particles on the superhydrophobic coating, and moreover, a higher hardening temperature could also highly improve transparency of the superhydrophobic coating. These findings suggest that the superhydrophobic coating should have promising commercial applications as a self-cleaning product.

  12. Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection

    De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.

    2015-01-01

    Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per

  13. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  14. 78 FR 52429 - Indirect Food Additives: Adhesives and Components of Coatings

    2013-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 Indirect Food Additives: Adhesives and Components of Coatings CFR Correction In Title 21 of the Code of Federal Regulations, Parts 170 to...

  15. Adhesive plasters. [Patent application; coatings for crucibles, control rods, etc

    Holcombe, C.E. Jr.; Swain, R.L.; Banker, J.G.; Edwards, C.C.

    1975-09-26

    Adhesive plaster compositions are provided by treating particles of Y/sub 2/O/sub 3/, Eu/sub 2/O/sub 3/, Gd/sub 2/O/sub 3/, or Nd/sub 2/O/sub 3/ with dilute acid solutions. The resulting compositions were found to harden spontaneously into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure. 1 table.

  16. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  17. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.

    2013-09-01

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  18. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    Aldenhoff Y. B.J.

    2003-06-01

    Full Text Available Surface modification of polyurethanes (PUs by covalent attachment of dipyridamole (Persantinregistered is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP. This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3. In PU immobilised with 1 dipyridamole is directly linked to the surface, in PU immobilised with 2 there is a short hydrophilic spacer chain in between the surface and the dipyridamole, while conjugate molecule 3 is merely the spacer chain. Scanning electron microscopy (SEM was used to characterise platelet adhesion from human PRP under static conditions, and fluorescence imaging microscopy was used to study platelet adhesion from whole blood under flow. SEM experiments encompassed both density measurements and analysis of the morphology of adherent platelets. In the static experiments the surface immobilised with 2 showed the lowest platelet adherence. No difference between the three modified surfaces emerged from the flow experiments. The surfaces were also incubated with washed blood platelets and labeled with Oregon-Green Annexin V. No capture of Oregon-Green Annexin V was seen, implying that the adhered platelets did not expose any phosphatidyl serine at their exteriour surface.

  19. The effect of adhesive strength of hydroxyapatite coating on the stability of hydroxyapatite-coated prostheses in vivo at the early stage of implantation

    Duan, Yonghong; Zhu, Shu; Guo, Fei; Zhu, Jinyu; Li,Mao; Ma, Jie; Zhu, Qingsheng

    2012-01-01

    Introduction With the increase in joint revision surgery after arthroplasty, defects of hydroxyapatite (HA)-coated prostheses have been observed increasingly often. These defects adversely affect the prosthetic stability in vivo. This study has analyzed the potential effect of the adhesive strength of HA coating on the stability of HA-coated prostheses in vivo after its implantation. Material and methods Sixty experimental rabbits were divided into HA- and Ti-coated groups. HA-coated prosthes...

  20. Tribological behaviour of H- and W-DLC coatings: Effects of environment and temperature on adhesion

    Abou Gharam, Ahmed

    The objective of this study was to gain insight into the friction, aluminum adhesion, and wear mechanisms of diamond-like carbon (DLC) coatings, and to provide guidelines for coating design and development. Mechanisms that control the tribological behaviour of DLC coatings and the effects of dopants (i.e. hydrogen (H-DLC), and tungsten (W-DLC)) against aluminum alloys were investigated under various environments and test temperatures. The effects of temperature and an oxygen-rich environment on dopant-free DLC, H- DLC, and W- DLC were investigated. Experimental analyses of dopant-free DLC showed that, when it was tested in an atmosphere consisting of 50% oxygen and 45% moisture, a high COF of 0.6 observed during the running-in against aluminum was eliminated compared to environment without moisture. At elevated temperatures, presence of hydrogen reduced the COF of H-DLC (e.g., to 0.06 at 200 ºC). W-DLC coatings provided a low COF of 0.18 and minimized aluminum adhesion at temperatures ranging between 400 ºC and 500 ºC, which was attributed to the formation of a tungsten oxide film. Additionally, DLC coatings were found to generate a low COF at subzero temperatures (-196 ºC), with W-DLC and H-DLC generating a COF of 0.18. The work of adhesion (Wad) was determined using a nano-indentation pull-off force method. In this way, insight was gained into the nature of atomic interactions contributing to tribological mechanisms at elevated temperatures. The results showed that the adhesion of the diamond tip against all four samples tested (H-DLC, dopant-free DLC, W-DLC, and aluminum) decreased with temperature. At 25 °C, no aluminum adhesion was observed on the diamond tip, due to OH passivation of the diamond surface in agreement with the low COF of 0.12 for the dopant-free DLC coating. The elimination of meniscus forces due to adsorbed water molecules on the sample surface was identified as an important factor contributing to the adhesion at room temperature. The

  1. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Díaz-Gómez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Faheem A. Sheikh; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSC) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in uniform sponge-like coating of 2.85 (s.d. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical p...

  2. Coat proteins isolated from clathrin coated vesicles can assemble into coated pits

    1989-01-01

    Isolated human fibroblast plasma membranes that were attached by their extracellular surface to a solid substratum contained numerous clathrin coated pits that could be removed with a high pH buffer (Moore, M.S., D.T. Mahaffey, F.M. Brodsky, and R.G.W. Anderson. 1987. Science [Wash. DC]. 236:558-563). When these membranes were incubated with coat proteins extracted from purified bovine coated vesicles, new coated pits formed that were indistinguishable from native coated pits. Assembly was de...

  3. Research on Processes and Adhesion of Electroless Plating Ni-Cu-P Coating

    HUANG Yan-bin; LIU Bo; ZHANG Ping; LIU De-gang; XU Xiao-li

    2004-01-01

    In order to improve the corrosion and wear resistance of the coatings of electroless plating Ni-Cu-P and broaden its application, an optimizing mathematical theory test has been applied in this research. The processing parameters have been optimized and some Ni-Cu-P coatings have been obtained with smooth and glittering appearance. At the same time,the composite complexants can prevent copper from depositing first and obtain coatings with strong adhesion. The porosity of Ni-Cu-P coating (20 μm) ranked class 9. The changing color time of the coating is more than 800 seconds with HNO3 dropthan 0.5 g/L. The surface appearance of deposition is typical cystiform cells by SEM,which rank close and neatly.

  4. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiOx thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiOx coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  5. Mono- and multiple TiN(/Ti) coating adhesion mechanism on a Ti-13Nb-13Zr alloy

    Li, Jianzhong; Zheng, Hua; Sinkovits, Theo; Hee, Ay Ching; Zhao, Yue

    2015-11-01

    Mono- and multiple TiN(/Ti) coatings deposited on Ti-13Nb-13Zr alloy substrates by the filtered arc deposition system were examined using scratch testing and depth-sensing indentation in terms of the relationship between the coating adhesion, deformation mechanism, and microstructure, and mechanical properties at the film/substrate interface. The results show that multilayer TiN/Ti coatings offer a greater resistance to cracking and delamination than monolithic TiN coatings under the same conditions on the Ti-13Nb-13Zr alloys substrates. And increasing the number of layers for TiN multilayer coating improves the coatings adhesion. In contrast, for the coatings on the Ti-13Nb-13Zr alloys substrates that were heat-treated to a higher hardness, the limited deformation in the substrates improved remarkably the coating adhesion indiscriminately. The substrate mechanical properties play the major roles in controlling the coating adhesion, and increasing thickness and layers of the TiN multilayer have a limited improvement to the adhesion of coating.

  6. Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates.

    Barnes, Dunstan; Johnson, Scott; Snell, Robert; Best, Serena

    2012-02-01

    Bioactive coatings are applied to components of modern orthopædic implants to improve the host tissue response to the implants. Such coatings cannot be applied to polymeric implants by high-temperature techniques, because the use of high temperatures may critically degrade the polymer substrate. Regardless of the coating technique that is used, the coating must be sufficiently well adhered to the underlying substrate to provide any practical benefit. This paper investigates the use of scratch testing to measure the adhesion strength of calcium phosphate (CaP) coatings that were applied to a poly(carbonate urethane) (PCU) substrate by an aqueous process at temperatures of 19, 28, 37, and 50 °C. This work represents the first time that scratch testing analysis has been used to study CaP coatings deposited by an aqueous, low-temperature process on to a polymer substrate. Scratch testing was shown to be a useful technique for obtaining comparative, rather than absolute, values of adhesion strength for hard coatings formed on a compliant substrate. Generally, the coating temperature was not found to influence the CaP-PCU adhesion strength. Although CaP coatings formed at 19 °C exhibited considerably lower adhesion strengths than CaP coatings formed at 28, 37, and 50 °C, this finding was attributable to the inconsistency of CaP coatings formed on the PCU substrates at 19 °C. The coating-substrate adhesion strength was measured for CaP coatings of four different coating ages (0, 1, 2, and 3 years). CaP coatings that were aged for 0, 1, or 2 years exhibited similar coating-substrate adhesion strengths to each other. In contrast, CaP coatings that were aged for 3 years demonstrated considerably lower coating-substrate adhesion strengths. The observed reduction in adhesion strength with age was thought to be attributable to suspected "drying out" of the CaP coatings. PMID:22301182

  7. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion

    Nabila Mighri

    2015-11-01

    Full Text Available Designing scaffolds made from natural polymers may be highly attractive for tissue engineering strategies. We sought to produce and characterize chitosan-coated collagen membranes and to assess their efficacy in promoting chondrocyte adhesion, growth, and cytokine secretion. Porous collagen membranes were placed in chitosan solutions then crosslinked with glutaraldehyde vapor. Fourier transform infrared (FTIR analyses showed elevated absorption at 1655 cm-1 of the carbon–nitrogen (N=C bonds formed by the reaction between the (NH2 of the chitosan and the (C=O of the glutaraldehyde. A significant peak in the amide II region revealed a significant deacetylation of the chitosan. Scanning electron microscopy (SEM images of the chitosan-coated membranes exhibited surface variations, with pore size ranging from 20 to 50 µm. X-ray photoelectron spectroscopy (XPS revealed a decreased C–C groups and an increased C–N/C–O groups due to the reaction between the carbon from the collagen and the NH2 from the chitosan. Increased rigidity of these membranes was also observed when comparing the chitosan-coated and uncoated membranes at dried conditions. However, under wet conditions, the chitosan coated collagen membranes showed lower rigidity as compared to dried conditions. Of great interest, the glutaraldehyde-crosslinked chitosan-coated collagen membranes promoted chondrocyte adhesion, growth, and interleukin (IL-6 secretion. Overall results confirm the feasibility of using designed chitosan-coated collagen membranes in future applications, such as cartilage repair.

  8. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  9. Flame Sprayed Al-12Si Coatings for the Improvement of the Adhesion of Composite Casting Profiles

    Voyer, Joël; Peterlechner, Christian; Noster, Ulf

    2008-12-01

    In this study, flame sprayed Al-12Si coatings were produced on the surface of inlays (aluminum profiles) of composite castings parts. The aim was to enhance the strength between the joining partners inlay and cast. Due to the high surface roughness and the presence of pores in the coatings, combined with the formation of an intermetallic phase at the interface, the adhesion of flame sprayed inlays could be enhanced by a factor of 2 compared to blank inlays and by a factor of 1.3 when compared to sand-blasted inlays. However, results also show that gaps are present, mostly at the interface between the inlays and the flame sprayed coatings, and these gaps have a negative effect on the joining strength of the composite casting parts. Therefore, optimizing the adhesion of the coating on the Al profiles via an improvement in both the sand-blasting and the flame spraying parameters would be beneficial for further enhancement of the adhesion of composite casting parts.

  10. The Influence of Interface Characteristics on the Adhesion/Cohesion of Plasma Sprayed Tungsten Coatings

    Pavel Sachr

    2013-06-01

    Full Text Available Tungsten is the prime candidate material for plasma facing components of future fusion devices. Plasma spraying, with its ability to coat large areas, including non-planar surfaces, with a significant thickness, is a prospective fabrication technology for components subject to moderate heat loads, e.g., the first wall of the Demonstration Reactor (DEMO. The functionality of such coatings is critically dependent on their adhesion to the underlying material. This in turn, is influenced by a variety of processing-related factors, chief among them being the state of the interface. In this study, the effects of two factors—surface roughness and the presence of thin interlayers—were investigated. Two different levels of roughness of steel substrates were induced by grit blasting, and two thin interlayers—titanium (Ti and tungsten (W—were applied by physical vapor deposition prior to plasma spraying of W by a Water Stabilized Plasma (WSP torch. Coating adhesion was determined by a shear adhesion test. The structures of the coatings and the interfaces, as well as the characteristics of the fractured surfaces, were observed by SEM.

  11. Influence of superconductor film composition on adhesion strength of coated conductors

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  12. The Mussel Adhesive Protein (Mefp-1) : A GREEN Corrosion Inhibitor

    Zhang, Fan

    2013-01-01

    Corrosion of metallic materials is a natural process, and our study shows that even in an alkaline environment severe corrosion may occur on a carbon steel surface. While corrosion cannot be stopped it can be retarded. Many of the traditional anti-corrosion approaches such as the chromate process are effective but hazardous to the environment and human health. Mefp-1, a protein derived from blue mussel byssus, is well known for its extraordinary adhesion and film forming properties. Moreover,...

  13. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  14. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly

  15. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p 2 CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  16. Adhesion of YSZ suspension plasma-sprayed coating on smooth and thin substrates

    The design concept of the gas-cooled fast reactor which is a 4. generation nuclear reactor, requires protective coatings able to operate at 850 C and protect the underlying structure in case of sudden increase of the functional temperature up to 1250 C and depressurization from 0.70 MPa to atmospheric pressure. The parts to be covered are made of 1 mm thick materials resistant to heat and erosion and exhibiting high mechanical properties at high temperatures, such as the Haynes (R)230 nickel-based alloy. In this study, the use of suspension plasma spraying to manufacture zirconia coatings is explored. The spraying conditions were optimized for the elaboration of coatings on stainless steel AISI 304L substrates and then adapted for Haynes 230 substrates. A special attention was paid to coating adhesion that was investigated by using a Vickers indentation cracking method. (authors)

  17. Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating

    We demonstrate, for the first time, that a thin, strong, ductile, and adhesive coating renders bulk metallic glasses (BMGs) bendable. The bending ductility of 3 mm thick BMGs, Zr50Cu30Al10Ni10 in this case, can be dramatically enhanced from ∼0% to ∼13.7% by the deposition of a thin bilayer film on the tensile side of the BMG sample. The bilayer, consisting of a 25 nm thick Ti adhesive layer with a 200 nm thick metallic glass (MG) overlayer, exhibits the required synergistic combination of good adhesion, high strength, and ductility compared with other single-layer films examined (Ti, TiN, and MG). Cross-sectional scanning and transmission electron microscopy, together with finite element modeling, reveal that the bilayer coating absorbs deformation while allowing more homogeneous formation of a high density of smaller shear bands at the bilayer/BMG interface. The bilayer coating, in turn, covers surface weak points and minimizes the formation of localized shear bands which lead to catastrophic failure under bending. As a result, the average shear-band spacing in bilayer-coated BMGs is small, 54 μm, and approximately equal to that found in bendable, 450 μm thick, MG ribbons. Thus, coated BMGs can accommodate large strains and overcome the MG size effect, without sacrificing their extraordinary mechanical properties. Our results for both coated and uncoated BMGs, as well as previously reported results for uncoated metallic glasses, with thicknesses ranging from ribbons to thin plates to bulk, are well described by a simple power law relationship between plastic strain to failure and shear band spacing. This scaling law may be useful in guiding future experiments toward producing more flexible BMGs.

  18. Adhesion properties of MgO-ZrO2 insulation coatings for 5 Tesla HTS coils

    Self insulating substrate tapes (SIST) is the most promising insulation technique for high temperature MgO-ZrO2 coatings on Ag and AgMg sheathed Bi2Sr2Ca1Cu2Ox (Bi-2212) superconducting tapes and wires in applications of HTS/LTS coils and magnets. We have already reported successful results as to the synthesis, characterizations and applications of the insulation coatings using the SIST. In order to provide no electrical short circuit in Jc measurements of HTS/LTS coils, the bonding of the coatings onto the substrate is a very important issue. In this present research, the adhesion properties of high temperature MgO-ZrO2 coatings were scrutinized for different processing parameters. Lap joints were fabricated by laying fresh sol-gel coated silver tape samples over each other and then by heat-treating at temperature range of 500-800 deg. C for several times in air. These joint samples were pulled to failure by using a mini tensile tester. MgO-ZrO2 was coated on Ag tapes by sol-gel process using Mg and Zr based precursors. The obtained results obviously pointed out that the best Mg precursor is Mg(C5H7O2)·2H2O to prepare solution and there is a strong relationship between film growth and adhesion properties. Also, MgO content in ZrO2 increased its bonding strength. The optimum heat treatment conditions are 600 deg. C and 15 min for best bonding for these high temperature insulation coatings on HTS tape conductor. The failure mode of all samples was in the form of a mixed type interfacial/cohesive defects in MgO-ZrO2 coating

  19. Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics.

    Miller, Michael S; O'Kane, Jessica C; Niec, Adrian; Carmichael, R Stephen; Carmichael, Tricia Breen

    2013-10-23

    We present new flexible, transparent, and conductive coatings composed of an annealed silver nanowire network embedded in a polyurethane optical adhesive. These coatings can be applied to rigid glass substrates as well as to flexible polyethylene terephthalate (PET) plastic and elastomeric polydimethylsiloxane (PDMS) substrates to produce highly flexible transparent conductive electrodes. The coatings are as conductive and transparent as indium tin oxide (ITO) films on glass, but they remain conductive at high bending strains and are more durable to marring and scratching than ITO. Coatings on PDMS withstand up to 76% tensile strain and 250 bending cycles of 15% strain with a negligible increase in electrical resistance. Since the silver nanowire network is embedded at the surface of the optical adhesive, these coatings also provide a smooth surface (root mean squared surface roughnesstransparent conducting electrodes in flexible light-emitting electrochemical cells. These devices continue to emit light even while being bent to radii as low as 1.5 mm and perform as well as unstrained devices after 20 bending cycles of 25% tensile strain. PMID:24007382

  20. Contact Resistance and Metallurgical Connections Between Silver Coated Polymer Particles in Isotropic Conductive Adhesives

    Pettersen, Sigurd R.; Kristiansen, Helge; Nagao, Shijo; Helland, Susanne; Njagi, John; Suganuma, Katsuaki; Zhang, Zhiliang; He, Jianying

    2016-04-01

    Recently, there has been an increasing interest in silver thin film coated polymer spheres as conductive fillers in isotropic conductive adhesives (ICAs). Such ICAs yield resistivities similar to conventional silver flake based ICAs while requiring only a fraction of the silver content. In this work, effects of the nanostructure of silver thin films on inter-particle contact resistance were investigated. The electrical resistivity of ICAs with similar particle content was shown to decrease with increasing coating thickness. Scanning electron micrographs of ion milled cross-sections revealed that the silver coatings formed continuous metallurgical connections at the contacts between the filler particles after adhesive curing at 150°C. The electrical resistivity decreased for all samples after environmental treatment for 3 weeks at 85°C/85% relative humidity. It was concluded that after the metallurgical connections formed, the bulk resistance of these ICAs were no longer dominated by the contact resistance, but by the geometry and nanostructure of the silver coatings. A figure of merit (FoM) was defined based on the ratio between bulk silver resistivity and the ICA resistivity, and this showed that although the resistivity was lowest in the ICAs containing the most silver, the volume of silver was more effectively used in the ICAs with intermediate silver contents. This was attributed to a size effect due to smaller grains in the thickest coating.

  1. Contact Resistance and Metallurgical Connections Between Silver Coated Polymer Particles in Isotropic Conductive Adhesives

    Pettersen, Sigurd R.; Kristiansen, Helge; Nagao, Shijo; Helland, Susanne; Njagi, John; Suganuma, Katsuaki; Zhang, Zhiliang; He, Jianying

    2016-07-01

    Recently, there has been an increasing interest in silver thin film coated polymer spheres as conductive fillers in isotropic conductive adhesives (ICAs). Such ICAs yield resistivities similar to conventional silver flake based ICAs while requiring only a fraction of the silver content. In this work, effects of the nanostructure of silver thin films on inter-particle contact resistance were investigated. The electrical resistivity of ICAs with similar particle content was shown to decrease with increasing coating thickness. Scanning electron micrographs of ion milled cross-sections revealed that the silver coatings formed continuous metallurgical connections at the contacts between the filler particles after adhesive curing at 150°C. The electrical resistivity decreased for all samples after environmental treatment for 3 weeks at 85°C/85% relative humidity. It was concluded that after the metallurgical connections formed, the bulk resistance of these ICAs were no longer dominated by the contact resistance, but by the geometry and nanostructure of the silver coatings. A figure of merit (FoM) was defined based on the ratio between bulk silver resistivity and the ICA resistivity, and this showed that although the resistivity was lowest in the ICAs containing the most silver, the volume of silver was more effectively used in the ICAs with intermediate silver contents. This was attributed to a size effect due to smaller grains in the thickest coating.

  2. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  3. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  4. Environmentally safe curing and cross-linking of surface coatings and adhesives with low energy electrons

    Solvent free, fast, controlled through-curing, as well as immediate stacking and subsequent treatment, are the main arguments in favour of the industrial application of electron beam (EBC) in the board industry for wood and similar substrates. The Federal Ministry for Research and Technology (BMFT) of Germany has announced that projects to reduce emissions of volatile organic compounds (VOCs) will be supported. The concern here is with solvents which are used when lacquering, printing and treating adhesives. This target of reducing VOC emissions will be reached by further development of environmentally harmless coating systems, such as powder coating technology and EBC. In the printing and adhesive sectors, solvents should be replaced completely by other procedures or be ecologically safe solvents. The German Government sponsors research and development (F+E) projects using EBC to avoid the use of solvents and the production of wastes. (author). 13 refs, 14 figs

  5. ADHESION STRENGTH OF TiN COATINGS AT VARIOUS ION ETCHING DEPOSITED ON TOOL STEELS USING CATHODIC ARC PVD TECHNIQUE

    MUBARAK ALI; ESAH HAMZAH; NOUMAN ALI

    2009-01-01

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. ...

  6. The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar

    Goode, K. R.; Bowen, J.; Akhtar, N; Robbins, P. T.; Fryer, P. J.

    2013-01-01

    The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements ...

  7. Biofouling and barnacle adhesion data for fouling-release coatings subjected to static immersion at seven marine sites

    Swain, G.; Anil, A.C.; Baier, R.E.; Chia, F.-S.; Conte, E.; Cook, A.; Hadfield, M.; Haslbeck, E.; Holm, E.; Kavanagh, C.; Kohrs, D.; Kovach, B.; Lee, C.; Mazzella, L.; Meyer, A.E.; Qian, P.-Y.; Sawant, S.S.; Schultz, M.; Sigurdsson, J.; Smith, C.; Soo, L.; Terlizzi, A.; Wagh, A.; Zimmerman, R.; Zupo, V.

    Little is known about the performance of fouling release coatings at different geographical locations. An investigation was designed to measure the differences in biofouling and biofouling adhesion strength on three known silicone formulations...

  8. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Amanov, Auezhan; Pyun, Young-Sik

    2016-04-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  9. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  10. Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings

    He, Xiaoyan; Liu, Yi; Huang, Jing; Chen, Xiuyong; Ren, Kun; Li, Hua

    2015-03-01

    Thermal-sprayed aluminum coatings have been extensively used as protective layers against corrosion for steel structures in the marine environment. The corrosion usually deteriorates from marine biofouling, yet the mechanism of accelerated corrosion of the coatings remains elusive. As the first stage participating in biofouling process, adsorption of molecules plays critical roles in mediating formation of biofilm. Here, we report at molecular level the adsorption behaviors of albumin and marine polysaccharide on arc-sprayed aluminum coatings and their influence on adhesion of Escherichia coli. The adsorption of alginate and albumin was characterized by infrared spectra analyses and atomic force microscopic observation. The adsorption inhibits effectively adhesion of the bacteria. Further investigation indicates that alginate/albumin altered the hydrophilicity/hydrophobicity of the coatings instead of impacting the survival of the bacteria to decline their adhesion. The conditioning layer composed of the molecules enhances anti-corrosion performances of the coatings.

  11. Chemically vapour deposited diamond coatings on cemented tungsten carbides: Substrate pretreatments, adhesion and cutting performance

    Chemical vapour deposition (CVD) of diamond films onto Co-cemented tungsten carbide (WC-Co) tools and wear parts presents several problems due to interfacial graphitization induced by the binder phase and thermal expansion mismatch of diamond and WC-Co. Methods used to improve diamond film adhesion include substrate-modification processes that create a three-dimensional compositionally graded interface. This paper reviews substrate pretreatments and adhesion issues of chemically vapour deposited diamond films on WC-Co. The combined effect of pretreatments and substrate microstructure on the adhesive toughness and wear rate of CVD diamond in dry machining of highly abrasive materials was analyzed. The role of diamond film surface morphology on chip evacuation in dry milling of ceramics was also investigated by comparing feed forces of coated and uncoated mills. The overall tribological performance of diamond coated mills depended on coating microstructure and smoothness. The use of smother films did allow to reduce cutting forces by facilitating chip evacuation

  12. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm

  13. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  14. An evaluation of the adhesion of solid oral dosage form coatings to the oesophagus.

    Smart, John D; Dunkley, Sian; Tsibouklis, John; Young, Simon

    2015-12-30

    There is a requirement for the development of oral dosage forms that are adhesive and allow extended oesophageal residence time for localised therapies, or are non-adhesive for ease of swallowing. This study provides an initial assessment of the in vitro oesophageal retention characteristics of several widely utilised pharmaceutical coating materials. To this end, a previously described apparatus has been used to measure the force required to pull a coated disc-shaped model tablet across a section of excised oesophageal tissue. Of the materials tested, the well-studied mucoadhesive polymer sodium alginate was found to be associated with significant oesophageal adhesion properties that was capable of 'self-repairing'. Hydroxypropylmethylcellulose exhibited less pronounced bioadhesive behaviour and blending this with plasticiser or with low molecular weight polymers and surfactants did not significantly affect this. Low molecular weight water soluble polymers, were found to behave similarly to the uncoated glass control disc. Polysorbates exhibited bioadhesion behaviour that was majorly influenced by the nature of the surfactant. The insoluble polymer ethylcellulose, and the relatively lipophilic surfactant sorbitan monooleate were seen to move more readily than the uncoated disc, suggesting that these may have a role as 'easy-to-swallow' coatings. PMID:26453786

  15. The influence of organophosphonic acid and conducting polymer on the adhesion and protection of epoxy coating on aluminium alloy

    Dalmoro, Viviane; Alemán Llansó, Carlos; Ferreira, Carlos Arthur; Dos Santos, J.H.Z.; Azambuja, Denise S.; Armelín Diggroc, Elaine Aparecida

    2015-01-01

    In the present study we compared the beneficial effect on the incorporation of modified silane nanocoating and conducting polymer additive to the adhesion and protection of aluminium surface with epoxy coating. Results proved that the protection imparted by the silane coating, suitably modified with phosphonic groups, showed an excellent adhesion to the metallic substrate as well as good adherence with the epoxy outer layer, which result in an improved corrosion resistance. The incorporation ...

  16. Comparison of the adhesion and wear resistance of the PVD coatings

    M. Polok-Rubiniec

    2007-01-01

    Full Text Available Purpose: of the paper was comparison of the adhesion and antiwear properties of the multilayer TiN/(Ti,AlNPVD coatings deposited onto heat treated and plasma nitrited X37CrMoV5-1 type hot work tool steel.Design/methodology/approach: Hardness test of the investigated specimens from hot work steel in the heattreated state has been made using Rockwell method. The distribution of microhardness in the nitriding layermeasured using Vickers micro-hardness testing method. The evaluation of the adhesion of coatings to thesubstrate was made using the scratch test. Wear resistance tests with the pin-on-disc method were carried out onthe CSEM THT (High Temperature Tribometer device at the room temperature and at the temperature of 500˚C.The friction coefficient between the ball and disc was measured during the test.Findings: In case of the TiN/(Ti,AlN coating deposited onto the X37CrMoV5-1 nitrided hot work steel show avery good adhesion which has been revealed to the substrate material is comparison to the TiN/(Ti,AlN coatingdeposited onto heat treated hot work steel. Taking into account the results of measurements, one can state thatthe lowest wear at certain conditions in both room and elevated temperatures show TiN/(Ti,AlN deposited ontoplasma nitrited X37CrMo V5-1 hot work steel type.Practical implications: The investigation results will provide useful information to applying of the TiN/(Ti,AlNPVD coating for the improvement of wear resistance of tools made from hot work steels.Originality/value: The paper contributes to better understanding the wear resistance at the elevated temperatureto 500ºC of the multilayer TiN/(Ti,AlN PVD coating deposited onto heat treated and plasma nitrited hot worktool steel

  17. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating.

    Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1±0.5%, 84.4±0.7%, and 94.2±0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. PMID:27040214

  18. Effect of the glass transition of coating adhesive on temperature performance of fiber optic gyroscope and its optimization

    Wang, Yueze; Wang, Tieshui; Ma, Lin; Yu, Hao; Liu, Bohan

    2015-10-01

    The fiber optic gyroscope (FOG)based on Sagnac effect has became to one of the most important sensors in developing due to light in quality, high accuracy, compact in dimension and long life and has played a very important role in both military and civil use. It is the most difficult problem that the FOG has an obvious bias drift caused by temperature change and temperature grade, so its application is limited to a great extent. Fiber coil is one of the most critical components in FOG. Here, the characteristic of temperature error of the fiber optical coil was analyzed. At first, by studying the glass transition of coating adhesive in the fiber coil, the element model of the fiber coil with the glass transition of coating adhesive in FOG was built. Then the discrete mathematics model of SHUPE error with the glass transition of coating adhesive in FOG was built. Finally, based on the temperature models mentioned above, the effects caused by the glass transition of coating adhesive on temperature performance of fiber optic gyroscope were analyzed. Theoretical analysis and experimental results show that effect caused by the glass transition of coating adhesive had seriously affected the temperature performance of FOG. By optimizing the glass transition temperature of coating adhesive, the SHUPE error of fiber coils can be reduced. At the same time, the amplitude uniformity of the SHUPE error can be improved greatly to reduce the difficulty in temperature compensation.

  19. Self-assembled monolayer of 3-aminopropyltrimethoxysilane for improved adhesion between aluminum alloy substrate and polyurethane coating

    A good adhesion between a polymer coating and a metal or metal alloy substrate such as Al 2024-T3 plays a critical role in corrosion protection of metal substrates. In our study, a self-assembled monolayer film of 3-aminopropyltrimethoxysilane was formed on Al 2024-T3 substrate by covalent bonding. The adhesion property of a self-priming polyurethane coating was evaluated by pull-off adhesion test, wet tape test and thermal cycling test. All the testing results indicate that both dry and wet adhesion properties of the polyurethane coating were improved significantly after APS treatment of Al 2024-T3 in polar solvents such as methanol and acetone. In nonpolar solvents such as hexane, the APS treatment led to inconsistent improvement or sometime decreased adhesion of polyurethane coating. X-ray photoelectron spectroscopic study revealed that while a monolayer film was formed on the aluminum alloy surface after treating the substrate with APS in methanol and acetone, a multilayer film was formed on the substrate surface when the treatment was conducted in hexane. The APS monolayer film served as a covalent bond linkage between polymer coating and aluminum alloy substrates, which led to the increased adhesion property of polymer coating and corrosion resistance of the metal alloy substrate

  20. Microhardness and adhesion of TiB sub 2 coatings produced by dynamic ion mixing

    Riviere, J.P.; Guesdon, P. (Lab. de Matallurgie Physique, Faculte des Sciences, 86 - Poitiers (France)); Farges, G.; Degout, D. (Etablissement Technique Central de l' Armement, 94 - Arcueil (France))

    1990-10-01

    The production at room temperature of adherent ceramic coatings on metallic substrates necessitates the improvement of conventional deposition techniques. Ion beam deposition processes using low energy ion beams have proved to be powerful methods for producing a wide variety of surface alloys. More recently, the use of high energy heavy ion beams in coating technology was investigated in order to improve the interface mixing effect and to control the structural state of the coating. We have deposited TiB{sub 2} alloy films on a tool steel via dynamic ion mixing (DIM) using either 320 keV Ar{sup 2+} ions or 320 keV Xe{sup 2+} ions. The depositing atom flux was obtained by sputtering a TiB{sub 2} target with an intense Ar{sup +} ion beam of 1.2 keV delivered by a Kaufman-type ion source. The microstructure of the films was characterized by cross-sectional transmission electron microscopy. It is recognized that crystallization is induced by DIM and that the interface mixing has a beneficial influence on the adhesion performance of the coating. The relative increase in the Vickers microhardness of the coated tool steel substrate is of the order of 23%. The intrinsic hardness of the 1 {mu}m TiB{sub 2} coatings on these substrates is estimated to about 2200 kgf mm{sup -2} by application of the composite hardness model. (orig.).

  1. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  2. Effect of pretreatment methods and chamber pressure on morphology, quality and adhesion of HFCVD diamond coating on cemented carbide inserts

    Sarangi, S. K.; Chattopadhyay, A.; Chattopadhyay, A. K.

    2008-04-01

    In the present investigation, diamond coating was deposited on cemented carbide substrate by hot filament chemical vapour deposition. The effect of substrate pretreatment methods and chamber pressure on morphology, quality, and adhesion of the diamond film were studied. The carbide inserts were pretreated with acid, Murakami's solution, and Murakami's solution followed by acid, respectively. The chamber pressure was set at 6.6, 13.2, 26.4, 39.6 and 66 mbar. Deposition carried out at pressure of 26.4 and 39.6 mbar on inserts pretreated with acid exhibited uniform crystal habit and provided coating-substrate adhesion adequate for machining application. Good coating morphology was obtained when deposition was done at 6.6 mbar on carbide inserts treated with Murakami's solution. Pretreatment with Murakami's solution followed by acid and deposition at 6.6 mbar also resulted in good morphology of diamond film. Indentation (Rockwell C scale) was done on diamond-coated inserts to assess coating-substrate adhesion under three loads of 294, 588 and 980 N. The diameter of the indentation crack at the coating-substrate interface was observed under SEM. The results suggested that diamond coating deposited at medium pressure of 26.4 mbar on carbide substrate treated with acid not only exhibited best morphology but also highest coating-substrate adhesion and improved machining performance.

  3. 金黄色葡萄球菌超抗原样蛋白-5抑制人脐血源性内皮祖细胞黏附功能及其机制研究%Staphylococcal superantigen-like protein-5 inhibits adhesion of human umbilical cord blood-derived endothelial progenitor cells to P-selectin-coated surface

    梁华; 曲小龙; 胡厚源; 宋治远; 程彦; 张静

    2011-01-01

    目的 研究金黄色葡萄球菌超抗原样蛋白-5 (staphylococcal superantigen-like protein-5,SSL5)与人脐血源性内皮祖细胞(endothelial progenitor cells,EPCs)表面P-选择素糖蛋白配体-1 (P-selectin glycoprotein ligand-1,PSGL-1) 的结合情况,及其对内皮祖细胞黏附功能的影响.方法 从金黄色葡萄球菌 NCTC 8325菌株的基因组中,扩增ssl5基因,并进行重组SSL5蛋白表达载体的构建.采用密度梯度离心法分离得到脐血中的单个核细胞并进行体外培养,对贴壁细胞在激光共聚焦显微镜下观察其摄取乙酰化低密度脂蛋白(DiI-acLDL)和结合荆豆凝集素(FITC-UEA-1)的情况.以流式细胞仪分析SSL5与EPCs表面PSGL-1的结合情况;以calcein-AM负载EPCs后,定量分析SSL5对EPCs在P-选择素包被表面黏附的抑制作用.结果 DiI-acLDL/ FITC-UEA-1双染阳性的细胞为EPCs.PSGL-1在EPCs表面有较丰富的表达,阳性细胞率为76.6%.SSL5与EPCs的结合随着SSL5浓度的增加而显著升高;并且,SSL5可竞争性抑制抗PSGL-1单克隆抗体(KPL-1)与EPCs的结合.SSL5可显著抑制EPCs在P-选择素表面的黏附,终浓度为30 mg/L的SSL5对EPCs在P-选择素表面黏附的抑制率已接近10 mg/L的KPL-1的效应,两者与空白对照组比较,差异有统计学意义(P<0.01).结论 SSL5可与EPCs表面的PSGL-1结合,而抑制EPCs在P-选择素表面的黏附,提示SSL5可能通过抑制EPCs与损伤内皮或激活的血小板之间的黏附,进而抑制EPCs对损伤内皮的修复作用.%Objective To investigate the binding of staphylococcal superantigen-like protein-5 (SSL5) to P-selectin glycoprotein ligand-1 (PSGL-1) on human umbilical cord blood-derived endothelial progenitor cells (EPCs) and the inhibitive effect of SSL5 on the adhesion of EPCs to P-selectin-coated surface.Methods SSL5 gene was amplified from the genome of Staphylococcus aureus NCTC 8325 and cloned into a vector for expressing recombinant SSL5 protein. Mononuclear cells were

  4. Adhesion Strength of Cellulosic Varnish Coated Wood Species as Function of Their Surface Roughness

    Turgay Ozdemir

    2015-01-01

    Full Text Available The objective of this study was to evaluate adhesion strength of four wood species, namely, beech (Fagus orientalis Lipsky, alder (Alnus glutinosa subsp. barbata Yalt., spruce (Picea orientalis L. Link, and fir (Abies nordmanniana subsp. coated with cellulosic varnish. Samples were prepared in tangential and radial grain orientations from the above species. Surface quality of the specimens was also measured employing stylus type equipment after samples of all four types of species were sanded with 80- and 180-grit sandpaper prior to coating process. Surface roughness of the specimens sanded with 80-grit sandpaper resulted in significantly higher mean peak-to-valley height (Rz values based on the measurement employing stylus type profilometer. The highest adhesion strength values of 2.39 N/mm2 and 2.03 N/mm2 were found for beech and alder samples, respectively. It appears that overall higher roughness characteristics of the specimens exhibited enhanced adherence between substrate and varnish resulting in higher adhesion strength values.

  5. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  6. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  7. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors

    Hamann, Jörg; Aust, Gabriela; Araç, Demet;

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic ...

  8. Evaluation of interface adhesion of hot-dipped zinc coating on TRIP steel with tensile testing and finite element calculation

    Song, G.M.; de Hosson, J.T.M.; Sloof, W. G.; Pei, Y.T.

    2015-01-01

    In this work, a methodology for the determination of the interface adhesion strength of zinc coating on TRIP steel is present. This method consists of a conventional tensile test in combination with finite element calculation. The relation between the average interface crack length and the applied tensile stress is determined on the partially delaminated coating with in-situ tensile test. The delamination process of zinc coating on steel substrate is simulated by using a two-grain finite elem...

  9. Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces

    In vitro, degradable aliphatic polyesters are widely used as cell carriers for bone tissue engineering, despite their lack of biological cues. Their biological active surface is rather determined by an adsorbed layer of proteins from the surrounding media. Initial cell fate, including adhesion and proliferation, which are key properties for efficient cell carriers, is determined by the adsorbed layer of proteins. Herein we have investigated the ability of human bone marrow derived stem cells (hBMSC) to adhere to extracellular matrix (ECM) proteins, including fibronectin and vitronectin which are present in plasma and serum. hBMSC expressed integrins for collagens, laminins, fibronectin and vitronectin. Accordingly, hBMSC strongly adhered to these purified ECM proteins by using the corresponding integrins. Although purified fibronectin and vitronectin adsorbed to aliphatic polyesters to a lower extent than to cell culture polystyrene, these low levels were sufficient to mediate adhesion of hBMSC. It was found that plasma- and serum-coated polystyrene adsorbed significant levels of both fibronectin and vitronectin, and fibronectin was identified as the major adhesive component of plasma for hBMSC; however, aliphatic polyesters adsorbed minimal levels of fibronectin under similar conditions resulting in impaired cell adhesion. Altogether, the results suggest that the efficiency of aliphatic polyesters cell carriers could be improved by increasing their ability to adsorb fibronectin. (paper)

  10. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  11. In situ synthesis of mesoporous polyvinyl alcohol/hydroxyapatite composites for better biomedical coating adhesion

    Hussain, Riaz; Tabassum, Sobia; Gilani, Mazhar Amjad; Ahmed, Ejaz; Sharif, Ahsan; Manzoor, Faisal; Shah, Asma Tufail; Asif, Anila; Sharif, Faiza; Iqbal, Farasat; Siddiqi, Saadat Anwar

    2016-02-01

    Hydroxyapatite (HA) shows diverse biomedical applications as bone filler and coating material for metal implants to enhance osteoconduction. Four different PVAHA composites were synthesized in situ by an economical co-precipitation wet methodology. The FTIR spectra of PVAHA composites showed characteristic signals of HA and PVA. The BET surface area of PVAHA composites were in range of 41.3-63.7 m2/g. The composites showed type IV nitrogen adsorption/desorption isotherm, a characteristic for mesoporous material. The pore diameter range (6.3-8.1 nm) of PVAHA composites also confirmed their mesoporous nature. The Barrett-Joyner-Halenda (BJH) pore size distribution curves indicated a narrow pore size distribution. To obtain a homogeneous crack free coating with EPD on stainless steel (SS) plates, different parameters such as PVA percentages in PVAHA composites, solvent, deposition time and voltage were optimized. The PVAHA composites were stable after EPD as confirmed by FTIR spectra recorded before and after EPD. The SEM images of the coating showed a homogeneous morphology. The thickness of the coating was controlled by varying voltage and time. The best results were obtained with c-PVAHA composite at 30 volts for 5-10 min and current density was around 4.5 to 5 mA. The adhesion strength of c-PVAHA coating was measured by using ASTM standard F1044-99. The average value was approximately 9.328 ± 1.58 MPa.

  12. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    Pietro Mandracci

    2016-01-01

    Full Text Available Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Improving or accelerating the osseointegration process is usually the main goal of these surface processes, but the improvement of biocompatibility and the prevention of bacterial adhesion are also of considerable importance. In this review, we report on the research of the recent years in the field of surface treatments and coatings deposition for the improvement of dental implants performance, with a main focus on the osseointegration acceleration, the reduction of bacterial adhesion and the improvement of biocompatibility.

  13. Adhesion strength characterization of PVDF/HA coating on cp Ti surface modified by laser beam irradiation

    Highlights: ► Titanium substrates are superficially treated by laser beam irradiation. ► Treated titanium substrates are coated with α-PVDF and α-PVDF/HA films. ► Three-point bending test is used to assess the adhesion strength of coatings. ► The coatings show good physical adhesion on treated titanium substrates. ► Three-point bending test appears as an alternative for measuring adhesion strength. - Abstract: Up to the moment, there is no standardized test for measuring the adhesion strength of polymeric coatings on titanium substrate modified by laser beam irradiation. The present work aimed to assess the adhesion strength of polyvinylidene fluoride (α-PVDF)/hydroxyapatite (HA) composite coating on commercially pure titanium (α-cp Ti) substrate surface modified by laser beam irradiation, using the three-point bending test. The preparation of coating was carried out by mixing α-PVDF pellets dissolved in dimethylacetamide (DMA) with HA/DMA emulsion. The mixture was poured onto the α-cp Ti sample and left to dry in an oven. Commercially pure titanium plates were coated with α-PVDF/HA composite film, in proportions of 100/00 (PVDF) and 60/40 (PVDF/HA) in weight. The Ti-PVDF/HA samples were subjected to the three-point bending test and analyzed by scanning electron microscopy. According to the results, PVDF and PVDF/HA coatings showed a good adhesion strength on α-cp Ti surface, since no detachment was observed.

  14. Adhesion strength characterization of PVDF/HA coating on cp Ti surface modified by laser beam irradiation

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Department of Polymer Technology, School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, Campinas, SP 13083-970 (Brazil); Vaz, L.G. [Department of Dental Materials and Prosthodontics, Araraquara Dental School, UNESP, P.O. Box 331, Araraquara, SP 14801-903 (Brazil); Guastaldi, A.C. [Department of Physical Chemistry, Institute of Chemistry, UNESP, P.O. Box 331, Araraquara, SP 14801-970 (Brazil); Campos, J.S.C. [Department of Polymer Technology, School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, Campinas, SP 13083-970 (Brazil)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Titanium substrates are superficially treated by laser beam irradiation. Black-Right-Pointing-Pointer Treated titanium substrates are coated with {alpha}-PVDF and {alpha}-PVDF/HA films. Black-Right-Pointing-Pointer Three-point bending test is used to assess the adhesion strength of coatings. Black-Right-Pointing-Pointer The coatings show good physical adhesion on treated titanium substrates. Black-Right-Pointing-Pointer Three-point bending test appears as an alternative for measuring adhesion strength. - Abstract: Up to the moment, there is no standardized test for measuring the adhesion strength of polymeric coatings on titanium substrate modified by laser beam irradiation. The present work aimed to assess the adhesion strength of polyvinylidene fluoride ({alpha}-PVDF)/hydroxyapatite (HA) composite coating on commercially pure titanium ({alpha}-cp Ti) substrate surface modified by laser beam irradiation, using the three-point bending test. The preparation of coating was carried out by mixing {alpha}-PVDF pellets dissolved in dimethylacetamide (DMA) with HA/DMA emulsion. The mixture was poured onto the {alpha}-cp Ti sample and left to dry in an oven. Commercially pure titanium plates were coated with {alpha}-PVDF/HA composite film, in proportions of 100/00 (PVDF) and 60/40 (PVDF/HA) in weight. The Ti-PVDF/HA samples were subjected to the three-point bending test and analyzed by scanning electron microscopy. According to the results, PVDF and PVDF/HA coatings showed a good adhesion strength on {alpha}-cp Ti surface, since no detachment was observed.

  15. Thermal stability and adhesion of low-emissivity electroplated Au coatings.

    Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.; Chames, Jeffrey M.; Clift, W. Miles

    2010-12-01

    We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnar grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.

  16. Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings

    He, Xiaoyan; Liu, Yi; Huang, Jing; Chen, Xiuyong; Ren, Kun; Li, Hua, E-mail: lihua@nimte.ac.cn

    2015-03-30

    Graphical abstract: - Highlights: • Adsorption behaviors of alginate and albumin on Al coatings were investigated at molecular level. • The adsorption inhibits effectively the colonization of Escherichia coli bacteria. • The adsorption alters the wettability of the Al coatings. • The conditioning layer enhances anti-corrosion performances of the Al coatings. - Abstract: Thermal-sprayed aluminum coatings have been extensively used as protective layers against corrosion for steel structures in the marine environment. The corrosion usually deteriorates from marine biofouling, yet the mechanism of accelerated corrosion of the coatings remains elusive. As the first stage participating in biofouling process, adsorption of molecules plays critical roles in mediating formation of biofilm. Here, we report at molecular level the adsorption behaviors of albumin and marine polysaccharide on arc-sprayed aluminum coatings and their influence on adhesion of Escherichia coli. The adsorption of alginate and albumin was characterized by infrared spectra analyses and atomic force microscopic observation. The adsorption inhibits effectively adhesion of the bacteria. Further investigation indicates that alginate/albumin altered the hydrophilicity/hydrophobicity of the coatings instead of impacting the survival of the bacteria to decline their adhesion. The conditioning layer composed of the molecules enhances anti-corrosion performances of the coatings.

  17. Adsorption of alginate and albumin on aluminum coatings inhibits adhesion of Escherichia coli and enhances the anti-corrosion performances of the coatings

    Graphical abstract: - Highlights: • Adsorption behaviors of alginate and albumin on Al coatings were investigated at molecular level. • The adsorption inhibits effectively the colonization of Escherichia coli bacteria. • The adsorption alters the wettability of the Al coatings. • The conditioning layer enhances anti-corrosion performances of the Al coatings. - Abstract: Thermal-sprayed aluminum coatings have been extensively used as protective layers against corrosion for steel structures in the marine environment. The corrosion usually deteriorates from marine biofouling, yet the mechanism of accelerated corrosion of the coatings remains elusive. As the first stage participating in biofouling process, adsorption of molecules plays critical roles in mediating formation of biofilm. Here, we report at molecular level the adsorption behaviors of albumin and marine polysaccharide on arc-sprayed aluminum coatings and their influence on adhesion of Escherichia coli. The adsorption of alginate and albumin was characterized by infrared spectra analyses and atomic force microscopic observation. The adsorption inhibits effectively adhesion of the bacteria. Further investigation indicates that alginate/albumin altered the hydrophilicity/hydrophobicity of the coatings instead of impacting the survival of the bacteria to decline their adhesion. The conditioning layer composed of the molecules enhances anti-corrosion performances of the coatings

  18. Pin test – an approach to adhesion/cohesion assesment of thermal spray coatings

    Pejchal, Václav; Mušálek, Radek; Matějíček, Jiří

    Trenčín : LISS,a.s, 2011 - (Šošovičková, J.), s. 135-140 ISBN 978-80-970824-0-6. [Vrstvy a povlaky 2011. Rožnov pod Radhoštěm (CZ), 17.10.2011-18.10.2011] R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : thermal spray * adhesion/cohesion testing * coating failure Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://vrstvyapovlaky.cz/-aktualni-info-

  19. Comparison of the adhesion and wear resistance of the PVD coatings

    M. Polok-Rubiniec; L.A. Dobrzański; M. Adamiak

    2007-01-01

    Purpose: of the paper was comparison of the adhesion and antiwear properties of the multilayer TiN/(Ti,Al)NPVD coatings deposited onto heat treated and plasma nitrited X37CrMoV5-1 type hot work tool steel.Design/methodology/approach: Hardness test of the investigated specimens from hot work steel in the heattreated state has been made using Rockwell method. The distribution of microhardness in the nitriding layermeasured using Vickers micro-hardness testing method. The evaluation of the adhes...

  20. Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent devices.

    Yin, Min; Yuan, Yuan; Liu, Changsheng; Wang, Jing

    2009-05-01

    In this study, to improve the attachment, growth and adhesion of endothelial cells (ECs) and thus accelerate the re-endothelialization of stents, a synthesized mussel adhesive polypeptide mimics containing dihydroxyphenylalanine and L-lysine (MAPDL) was immobilized onto 316L stainless steel (316LSS) with polyethylene glycol (PEG) molecule as spacer arm by using cold plasma-induced grafting technique. To immobilize MAPDL effectively, ethylene vinyl acetate (EVA) was first coated onto 316LSS. Different molecular weights of PEG and grafting times were tested to obtain the optimal cell bioactivity. XPS and water contact angles measurement indicated the successful immobilization of MAPDL. In vitro cell culture results showed that compared with the control of 316LSS, the attachment, adhesion and growth of cells on the MAPDL-coated EVA surface, in particular with PEG as spacer arm, were significantly enhanced, and a confluent endothelial cells layer was formed after a 2-day culture. A platelet adhesion experiment revealed that the platelet adhesion was also reduced on the MAPDL-coated EVA surface. The in vitro inflammatory assessment showed that the MAPDL coating inhibited the TNF-alpha and IL-1beta release from monocyte cells, indicative of good anti-inflammation property. Therefore, it is concluded that the MAPDL coating developed here appeared to be a promising strategy for rapid re-endothelialization of intravascular stent devices. PMID:19223071

  1. Independent control of adhesive and bulk properties of hybrid silica coatings on polycarbonate.

    Lionti, Krystelle; Cui, Linying; Volksen, Willi; Dauskardt, Reinhold; Dubois, Geraud; Toury, Berangere

    2013-11-13

    Transparent polymers are widely used in many applications ranging from automotive windows to microelectronics packaging. However, their intrinsic characteristics, in particular their mechanical properties, are significantly degraded with exposure to different weather conditions. For instance, under humid environment or UV-irradiation, polycarbonate (PC) undergoes depolymerization, leading to the release of Bisphenol A, a molecule presumed to be a hormonal disruptor, potentially causing health problems. This is a serious concern and the new REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances ) program dictates that materials releasing Bisphenol A should be removed from the market by January 1st, 2015 (2012-1442 law). Manufacturers have tried to satisfy this new regulation by depositing atop the PC a dense oxide-like protective coating that would act as a barrier layer. While high hardness, modulus, and density can be achieved by this approach, these coatings suffer from poor adhesion to the PC as evidenced by the numerous delamination events occurring under low scratch constraints. Here, we show that the combination of a N2/H2-plasma treatment of PC before depositing a hybrid organic-inorganic solution leads to a coating displaying elevated hardness, modulus, and density, along with a very high adherence to PC (> 20 J/m(2) as measured by double cantilever beam test). In this study, the sol-gel coatings were composed of hybrid O/I silica (based on organoalkoxysilanes and colloidal silica) and designed to favor covalent bonding between the hybrid network and the surface treated PC, hence increasing the contribution of the plastic deformation from the substrate. Interestingly, double-cantilever beam (DCB) tests showed that the coating's adhesion to PC was the same irrespective of the organoalkoxysilanes/colloidal silica ratio. The versatility of the sol-gel deposition techniques (dip-coating, spray-coating, etc.), together with the

  2. Effect of Multiple Coatings of One-step Self-etching Adhesive on Microtensile Bond Strength to Primary Dentin

    Lin Ma; Jian-feng Zhou; Jian-guo Tan; Quan Jing; Ji-zhi Zhao; Kuo Wan

    2011-01-01

    Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups with 6 teeth each. In group 1,each tooth was hemisected into two halves. One half was assigned to control subgroup 1,which was bonded with a single-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 1 in which the adhesive was applied three times before light curing. In group 2, the teeth were also hemisected into two halves. One half was assigned to control subgroup 2, which was bonded with the single-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 2 in which three layers of adhesive were applied with light curing each successive layer. Microtensile bond strength was immediately tested after specimen preparation.Results When the adhesive was applied three times before light curing, the bond strength of the experimental subgroup 1 (n=33, 57.49±11.61 MPa) was higher than that of the control subgroup 1 (n=31,49.71±11.43 MPa, P0.05).Conclusion multiple coatings of one-step self-etching adhesive can increase the immediate bond strength to primary dentin when using the technique of light-curing after applying three layers of adhesive.

  3. Lubricin as a novel nanostructured protein coating to reduce fibroblast density

    Aninwene, George Ejiofor; Yang, Zifan; Ravi, Vishnu; Jay, Gregory D; Webster, Thomas J

    2014-01-01

    Excessive fibroblast adhesion and proliferation on the surface of medical implants (such as catheters, endotracheal tubes, intraocular lenses, etc) can lead to major postsurgical complications. This study showed that when coated on tissue culture polystyrene, lubricin, a nanostructured mucinous glycoprotein found in the synovial fluid of joints, decreased fibroblast density for up to 2 days of culture compared to controls treated with phosphate buffered saline (PBS). When examining why, similar antifibroblast density results were found when coating tissue culture polystyrene with bovine submaxillary mucin (BSM), an even smaller protein closely related to the central subregion of lubricin. Additionally, results from this study demonstrated that in contrast to BSM or controls (PBS-coated and non-coated samples), lubricin was better at preserving the health of nonadherent or loosely adherent fibroblasts; fibroblasts that did not adhere or loosely adhered on the lubricin-coated tissue culture polystyrene adhered and proliferated well for up to an additional day when they were reseeded on uncoated tissue culture polystyrene. In summary, this study provides evidence for the promise of nanostructured lubricin (and to a lesser extent BSM) to inhibit fibroblast adhesion and growth when coated on medical devices; lubricin should be further explored for numerous medical device applications. PMID:25028550

  4. Dissecting signaling and functions of adhesion G protein-coupled receptors

    Araç, Demet; Aust, Gabriela; Calebiro, Davide;

    2012-01-01

    G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matri...

  5. PVD-Alumina Coatings on Cemented Carbide Cutting Tools: A Study About the Effect on Friction and Adhesion Mechanism

    S.E. Cordes

    2012-01-01

    Crystalline PVD γ-alumina coatings are interesting for machining operations due to their outstanding characteristics, such as high hot hardness, high thermal stability and low tendency to adhesion. In the present work (Ti,Al)N/γ-Al2O3-coatings are deposited on cemented carbide by means of MSIP. Objectives of this work are to study the effects of coating and cutting fluid regarding friction in tribological tests and to study the wear mechanisms and cutting performance of γ-Al2O3-based coated c...

  6. MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

    Jakub Horník

    2015-12-01

    Full Text Available The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

  7. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  8. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.

    Gulati, Karan; Ramakrishnan, Saminathan; Aw, Moom Sinn; Atkins, Gerald J; Findlay, David M; Losic, Dusan

    2012-01-01

    Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice. PMID:21930254

  9. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  10. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-01

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  11. Blocking of bacterial biofilm formation by a fish protein coating

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition......Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of...... biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this...

  12. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  13. The influence of titanium interlayers on the adhesion of PVD TiN coatings on oxidized stainless steel substrates

    It has been shown that the use of thin titanium interlayers improves the coating-substrate adhesion of physical vapour deposition (PVD) titanium nitride thin films on a stainless steel substrate. This improvement arises from a combination of chemical gettering and mechanical compliance effects. The improved adhesion of plasma-assisted chemical vapour deposition TiN coatings with increasing interlayer thickness has been shown to be largely attributable to the compliance effect. The development of practical methods to improve adhesion is hampered by the difficulties involved in quantitative measurements of the effect. To avoid the influence of the intrinsic and extrinsic parameters involved in scratch test and microhardness measurements, efforts have been made to apply fracture mechanical testing methods to the determination of the adhesion strength of the film on the substrate (S. Berg, S. W. Kim, V. Grajewski and E. Fromm, Mater. Sci. Eng. A, 139 (1991) 345). In our study the influence of Ti interlayers on the adhesion of PVD TiN coatings on oxidized stainless steel substrates was investigated using a pull-off test for adhesion measurements and scanning tunnelling microscopy and secondary ion mass spectrometry for analysis of the fractured surfaces. It was shown that the thickness of the Ti layer must be chosen according to the thickness of the oxide layer. An excess of Ti leads to lower adhesion values due to failure in the Ti layer, while a shortage of Ti leads to unreacted oxide and minimum adhesion due to brittle fracture in the oxide layer, which was shown to be amorphous. (orig.)

  14. Adhesion of ceramic coating on thin and smooth metal substrate: A novel approach with a nano-structured ceramic interlayer

    The adhesion of plasma-sprayed coating is, to a large extent, controlled by the cleanness and roughness of the surface on which the coating is deposited. So, most of the plasma spray procedures involve surface pretreatment by grit-blasting to adapt the roughness of the surface to the size of the impacting particles. This preparation process brings about compressive stresses that make it inappropriate for thin substrates. The present works aim to elaborate a thick ceramic coating (about 0.5 mm thick) on a thin metal substrate (1 mm thick) with a smooth surface (Ra of about 0.4 μm). The coating system is intended for use in a Generation-IV nuclear energy system. It must exhibit a good adhesion between the ceramic topcoat and the smooth metal substrate to meet the specifications of the application. Our approach consisted of depositing the ceramic topcoat by air plasma spraying on a few micrometers thick ceramic layer made by suspension plasma spraying. This nano-structured layer played the role of a bond coat for the topcoat and made it possible to deposit it on the as-received substrate. The adhesion of the nano-structured layer was measured by the Vickers indentation cracking technique and that of the ceramic duplex coating system by tensile test. (authors)

  15. Adhesive strength and structure of micro-arc oxidation ceramic coatings grown in-situ on LY12 aluminum alloy

    WU Zhen-dong; JIANG Zhao-hua; YAO Zhong-ping

    2006-01-01

    The ceramic coatings containing zirconium dioxide were grown in-situ on LY12 aluminium alloy by micro-arc oxidation in mixed zirconate and phosphate solution. The phase composition and morphology of the coatings were studied by XRD and SEM.The adhesive strength of ceramic coatings was assessed by thermal shock test and tensile test. The results show that the coating is composed of m-ZrO2, t-ZrO2, and a little γ-Al2O3. Along the section of the coating, t-ZrO2 is more onboth sides than that in the middle, while m-ZrO2 is more in the middle than that on both sides. Meantime the coating is also composed of a dense layer and a loose layer. The coating has excellent thermal shock resistance under 550 ℃ and 600 ℃. And tensile tests show the adhesive strength of the dense layer of the coating with the substrate is more than 17.5 MPa.

  16. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive.

    Liu, Dagang; Chen, Huihuang; Chang, Peter R; Wu, Qinglin; Li, Kaifu; Guan, Litao

    2010-08-01

    Despite the biodegradability, non-toxicity, and renewability, commercially available soy protein-based adhesives still have not been widely adopted by industry, partially due to their disappointing performances, i.e., low glue strength in the dry state and no glue strength in the wet state. In this study, biomimetic soy protein/CaCO(3) hybrid wood glue was devised and an attempt made to improve the adhesion strength. The structure and morphology of the adhesive and its fracture bonding interface and adhesion strength were investigated. Results showed that the compact rivets or interlocking links, and ion crosslinking of calcium, carbonate, hydroxyl ions in the adhesive greatly improving the water-resistance and bonding strength of soy protein adhesives. Glue strength of soy protein hybrid adhesive was higher than 6 MPa even after three water-immersion cycles. This green and sustainable proteinous hybrid adhesive, with high glue strength and good water-resistance, is a good substitute for formaldehyde wood glues. PMID:20307978

  17. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  18. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of ...

  19. Multiple Coatings can Improve the Bond Durability of One-step Self-etching Adhesive to Primary Dentin

    Lin Ma; Jian-feng Zhou; Quan Jing; Ji-zhi Zhao; Kuo Wan

    2012-01-01

    Objective To investigate whether multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups.In group 1,each tooth was hemisected into 2 halves.One half was assigned to the control subgroup 1,which was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 1,in which the adhesive was applied three times before light curing.In group 2,one split half tooth was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; for the other half,three layers of adhesive were applied with each successive layer of light curing.Specimens were stored in 0.9% NaCl containing 0.02% sodium azide at 37℃ for 18 months and then were subjected to microtensile bond strength test and the fracture mode analysis.Results When the adhesive was applied three times before light curing,the bond strength of the experimental subgroup 1 was significandy higher than that of the control subgroup 1 (47.46±13.91 vs.38.12±11.21 MPa,P<0.05).When using the technique of applying multiple layers of adhesive with each successive layer of light curing,no difference was observed in bond strength between the control subgroup and the experimental subgroup (39.40±8.87 vs.40.87±9.33 MPa,P>0.05).Conclusion Multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin when using the technique of light-curing after applying 3 layers of adhesive.

  20. Evaluation of interface adhesion of hot-dipped zinc coating on TRIP steel with tensile testing and finite element calculation

    Song, G.M.; De Hosson, J.T.M.; Sloof, W.G.; Pei, Y.T.

    2015-01-01

    In this work, a methodology for the determination of the interface adhesion strength of zinc coating on TRIP steel is present. This method consists of a conventional tensile test in combination with finite element calculation. The relation between the average interface crack length and the applied t

  1. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    Zhang, Pengjie; Xu, Guangqing; Liu, Jiaqin; Yi, Xiaofei; Wu, Yucheng; Chen, JingWu

    2016-02-01

    Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm2) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  2. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  3. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  4. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  5. Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants

    Gobi Saravanan Kaliaraj; Vinita Vishwakarma; Ananthakumar Ramadoss; D Ramachandran; Arul Maximus Rabel

    2015-08-01

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were examined in order to evaluate the coating’s compatibility for ideal implant. Results revealed that TiZrN coatings exhibited less bacterial attachment against Staphylococcus aureus and Escherichia coli bacteria, negligible platelets activation and superior corrosion resistance than the uncoated 316L SS.

  6. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical

  7. Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by Inductively Excited Low Pressure Plasma.

    Bhatt, Sudhir; Pulpytel, Jérome; Ceccone, Giacomo; Lisboa, Patricia; Rossi, François; Kumar, Virendra; Arefi-Khonsari, Farzaneh

    2011-12-01

    Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2). The roughness of the coatings can be tailored depending on the plasma mode used. A very smooth coating was deposited with a CW (continuous wave) power, whereas a rougher surface with R(a) in the range of 2 to 12 nm was deposited with the PW (pulsed wave) mode. The nanometer scale roughness of amphiphilic PFDA-co-DEGVE coatings was found to be in the range of the size of the two proteins namely BSA and lysozyme used to examine for the antifouling properties of the surfaces. The results show that the statistically designed surfaces, presenting a surface energy around 25 mJ/m(2), present no adhesion with respect to both proteins measured by QCM. PMID:22029599

  8. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  9. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  10. Improvement of adhesion of diamond-like coatings to steel using a transition layer of variable composition

    The influence of transition layer composition on adhesive strength of a diamond-like coating deposited on steel Kh12M is under study. The transition layer ∼ 100 nm thick was formed as a Ti-C structure with carbon content varying from 0 to 100%. This structure resulted from the deposition of arc sputtered Ti and pulsed arc sputtered graphite from two sources simultaneously. The concentration of C in the transition layer was controlled thought the variation of a carbon deposition rate at a constant Ti deposition velocity. The adhesion strength was determined from the extent of coating exfoliation near a scratch or from cone indentation of a Rockwell hardness meter. The best adhesion of coatings 1-2μ thick is attained when a 20 nm thin layer of Ti is covered with carbon-titanium mixture, not lower TiC in composition, with progressive transition to a pure diamond-like coating. Measurements of microhardness, friction properties and wear rate in abrasive powder show high quality of diamond-like coatings on steel if the transition layer is of optimal composition

  11. Structure, Substructure, Hardness and Adhesion Strength of Multiperiod Composite Coatings MoN / CrN

    S.S. Grankin

    2015-12-01

    Full Text Available A comprehensive study of the influence of the thickness of the layers, Us and PN on the structural engineering to obtain high mechanical properties in multilayer composite MoN / CrN vacuum-arc coatings has been conducted by means of scanning electron microscopy with energy analysis, X-ray diffraction studies microindentation and scratch testing methods. It has been determined that in the studied PN = (2-30 × 10 – 4 Torr, the content of nitrogen in the coatings varies from 6.3 to 33 at. %, which leads even at the greatest nitrogen content to the formation of lower phase by nitrogen, γ-Mo2N and isostructural CrN with the vacant sites in the nitrogen sublattice. The increase of thickness of the layers applied on the substrate in a stationary state promotes the increase of nitrogen content. Along with this, the lowest microdeformation and the average size of crystallites are formed at Ub = – 300 V, which defines the achievement of greater hardness of 35 GPa and high adhesion strength, which resists the destruction, Lc5 = 187.6 N.

  12. Effect of protein on the dissolution of HA coatings.

    Bender, S A; Bumgardner, J D; Roach; Bessho, K; Ong, J L

    2000-02-01

    The dissolution behavior of hydroxyapatite (HA) in the presence and absence of protein needs to be investigated in order to fully understand the initial cellular response to HA surfaces. In this study, HA coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy (FTIR) prior to protein study. Fibronectin and albumin adsorption study were also performed. Calcium and phosphorus released in the presence and absence of albumin were measured. pH of the solution was measured daily. From the materials characterization, it was observed that the coatings exhibit a HA-type structure, with traces of sodium on the surface. FTIR indicated the possible presence of carbonates on the coatings. From the adsorption study, the amount of albumin adsorbed (0.052+/-0.005 microg/mm2) was statistically higher than the amount of fibronectin adsorbed on HA surfaces (0.035+/-0.002 microg/mm2). Flame atomic absorption indicated a significantly higher calcium ions released initially for HA coatings incubated with proteins as compared to coatings in the absence of proteins. However, after 7 days incubation, no significant difference in calcium ions release was observed between the HA coatings in the presence and absence of proteins. Phosphorus dissolution on HA coatings was not significantly affected by the presence of proteins. Thus, it was suggested from this study that the initial dissolution properties of calcium ions from HA coatings was dependent on the media. PMID:10646947

  13. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine

    Wei Wen; Li-Mei Ma; Wei He; Xiao-Wei Tang; Yin Zhang; Xiang Wang; Li Liu; Zhi-Ning Fan

    2016-01-01

    BACKGROUND: One of the major limitations of biliary stents is the stent occlusion, which is closely related to the over-growth of bacteria. This study aimed to evaluate the feasibility of a novel silver-nanoparticle-coated polyurethane (Ag/PU) stent in bacterial cholangitis model in swine. METHODS: Ag/PU was designed by coating silver nanopar-ticles on polyurethane (PU) stent. Twenty-four healthy pigs with bacterial cholangitis using Ag/PU and PU stents were ran-domly divided into an Ag/PU stent group (n=12) and a PU stent group (n=12), respectively. The stents were inserted by standard endoscopic retrograde cholangiopancreatography. Laboratory assay was performed for white blood cell (WBC) count, alanine aminotransferase (ALT), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) at baseline time, 8 hours, 1, 2, 3, and 7 days after stent placements. The segment of bile duct containing the stent was examined histologically ex vivo. Implanted bili-ary stents were examined by a scan electron microscope. The amount of silver release was also measured in vitro. RESULTS: The number of inflammatory cells and level of ALT, IL-1β and TNF-α were significantly lower in the Ag/PU stent group than in the PU stent group. Hyperplasia of the mucosa was more severe in the PU stent group than in the Ag/PU stent group. In contrast to the biofilm of bacteria on the PU stent, fewer bacteria adhered to the Ag/PU stent. CONCLUSIONS: PU biliary stents modified with silver nanoparticles are able to alleviate the inflammation of pigs with bacterial cholangitis. Silver-nanoparticle-coated stents are resistant to bacterial adhesion.

  14. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Muhammad Pervaiz

    2011-04-01

    Full Text Available In this study, secondary sludge (SS from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as recovered sludge protein (RSP was tested for crude protein, moisture, and other contents. A significant process yield of 90% in terms of precipitation of soluble protein from disintegrated sludge was estimated through calorimetric studies, whereas an overall material balance confirmed a RSP yield of up to 23% based on total suspended solids of raw sludge. The RSP containing 30% crude protein was used as a wood adhesive and its adhesion performance was compared with soy protein isolate (SPI and phenol formaldehyde (PF resin. The testing of plywood lap joints has shown up to 41% shear strength level of RSP adhesive compared to PF. This work demonstrates the technical feasibility and potential of SS as a biomass resource to develop eco-friendly adhesives for wood composite applications.

  15. Immunocytochemical localization of coated vesicle protein in rodent nervous system

    1980-01-01

    Immunocytochemistry has been used to study the distribution of the major 180,000-mol wt protein of coated vesicles in rodent cerebellum. An antibody to the coat protein was prepared in rabbits and characterized by immunodiffusion and immunofixation of polyacrylamide gels. At the light microscope level the protein was primarily localized in punctate profiles surrounding Purkinje cells and within the cerebellar glomeruli. At the electron microscope level the punctate distribution was confined t...

  16. Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis

    Silverman, Heather G.; Roberto, Francisco F.

    2006-02-07

    The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  17. Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis

    Silverman, Heather G.; Roberto, Francisco F.

    2006-01-17

    The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  18. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei

    Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

    2002-01-01

    Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and...

  19. Study of green film-forming corrosion inhibitor based on mussel adhesive protein

    Holmér, Camilla

    2013-01-01

    Today there are numerous methods to slow down a corrosion process of metallic materials. However, due to environmental effects and health risk issues, several traditional corrosion inhibitors have to be phased out. Hence, it is of great importance to develop new corrosion inhibitors that are “green”, safe, smart and multifunctional. In this essay, the focus is on mussel adhesive protein (MAP) and its possibility to reduce the rate of the corrosion process. The protein exhibit great adhesive s...

  20. INTERFACIAL ADHESION AND MECHANICAL PROPERTIES OF PMMA-COATED CaCO3 NANOPARTICLE-REINFORCED PVC COMPOSITES

    Xuehua Chen; Chunzhong Li; Shoufang Xu; Ling Zhang; Wei Shao; H. L. Du

    2006-01-01

    Polymethyl methacrylate (PMMA)-coated nano-CaCO3 particles were prepared by in-situ emulsion polymerization. The mechanical properties of nano-CaCO3 particles-reinforced PVC were investigated using an AG-2000A universal testing machine and an XJU-2.75 izod impact tester; interfacial adhesion between CaCO3 nanoparticles and PVC matrix by SEM, and structure of PMMA coated on the surface of CaCO3 by FTIR and 1H-NMR. The results indicate that the PMMA coated on the nano CaCO3 particles consists mainly of syndiotactic structure, and their three tacticity contents were rr 52.8%, mm 7.3% and mr 39.9%, respectively. The interfacial adhesion between CaCO3 nanoparticles and PVC matrix was significantly improved when the CaCO3 nanoparticles were coated with PMMA, which led to increased Young's moduli and tensile strengths of the PMMA-coated CaCO3/PVC composites. The izod impact strengths of the composites were strongly affected by the PMMA coating thickness and increased significantly with increasing the volume fraction of CaCO3 filler in the composites.

  1. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs. PMID:27429988

  2. Candle soot-based super-amphiphobic coatings resist protein adsorption.

    Schmüser, Lars; Encinas, Noemi; Paven, Maxime; Graham, Daniel J; Castner, David G; Vollmer, Doris; Butt, Hans Jürgen; Weidner, Tobias

    2016-01-01

    Super nonfouling surfaces resist protein adhesion and have a broad field of possible applications in implant technology, drug delivery, blood compatible materials, biosensors, and marine coatings. A promising route toward nonfouling surfaces involves liquid repelling architectures. The authors here show that soot-templated super-amphiphobic (SAP) surfaces prepared from fluorinated candle soot structures are super nonfouling. When exposed to bovine serum albumin or blood serum, x-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry analysis showed that less than 2 ng/cm(2) of protein was adsorbed onto the SAP surfaces. Since a broad variety of substrate shapes can be coated by soot-templated SAP surfaces, those are a promising route toward biocompatible materials design. PMID:27460261

  3. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  4. The Investigation of the Effect of Micro-Arc Oxidation Modes on the Adhesion Strength of Coatings

    N.Yu. Dudareva

    2014-07-01

    Full Text Available The paper presents the results of studies of the properties of hardened surface layers formed by micro-arc oxidation on the workpiece surfaces of aluminum alloy Al-12Si-Mg-Cu-Ni. The authors attempted to determine the influence of micro-arc oxidation modes on the properties of the modified layers. Investigation of the adhesion strength of the surface layers formed at different concentrations of electrolyte components and analysis of the change in coatings adhesion characteristics after thermal cycling were presented.

  5. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Muhammad Pervaiz; Mohini Sain

    2011-01-01

    In this study, secondary sludge (SS) from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as reco...

  6. Effect of adhesion proteins and surface chemistry on the procoagulant state of adherent platelets

    Grunkemeier, John Mark

    Poor hemocompatibility of a blood contacting device can lead to blood clotting, reduced blood flow, and depletion of platelets from the blood. Improved understanding of the processes by which blood-material contact leads to these responses could result in more hemocompatible materials. Platelets accelerate blood clotting by adhesion, aggregation, secretion of proteins and agonists and acceleration of thrombin generation. Platelets are said to be "procoagulant" after phosphatidylserine residues flip from the cytosolic to the extracellular face of the lipid bilayer. This then allows for the assembly of the prothrombinase complex (Xa, Va and calcium) on the platelet membrane, which can rapidly convert prothrombin to thrombin. In this study, three different methods confirmed that adhesion causes platelets to become procoagulant: shortening of clotting times of recalcified plasma, binding of FITC-annexin V, and generation of thrombin in the presence of Va, Xa and prothrombin by adherent platelets. Adherent platelets were 10--23 times more activated than bulk phase unactivated platelets and 10--24 times less activated than bulk phase platelets activated by calcium ionophore. The role of adsorbed fibrinogen, vWF, mixtures of fibrinogen and vWF, fibronectin, whole and dilute plasma, and plasma deficient in adhesion proteins in stimulating platelet procoagulant activity was investigated. The results of these experiments suggested that adhesion proteins affect procoagulant activation to varying degrees and that surfaces preadsorbed with mixtures of adhesion proteins are more activating that surfaces preadsorbed with single adhesion proteins. The hypothesis that materials that affect tightness of binding of adsorbed adhesion proteins affect platelet procoagulant activity was investigated. These studies showed that increasing fluorine content of RFGD polymerized films caused reduced platelet adhesion, but increased procoagulant activity, possibly due to their ability to adsorb

  7. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    Research highlights: → Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. → The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. → Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  8. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    Edith eMäder

    2015-07-01

    Full Text Available An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test.In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis.The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this

  9. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  10. Lubricin as a novel nanostructured protein coating to reduce fibroblast density

    Aninwene II GE

    2014-06-01

    Full Text Available George Ejiofor Aninwene II,1 Zifan Yang,2 Vishnu Ravi,3 Gregory D Jay,2,4 Thomas J Webster1,51Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3Albany Medical College, Albany, NY, USA; 4Department of Emergency Medicine, Brown University, School of Medicine, Providence, RI, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: Excessive fibroblast adhesion and proliferation on the surface of medical implants (such as catheters, endotracheal tubes, intraocular lenses, etc can lead to major postsurgical complications. This study showed that when coated on tissue culture polystyrene, lubricin, a nanostructured mucinous glycoprotein found in the synovial fluid of joints, decreased fibroblast density for up to 2 days of culture compared to controls treated with phosphate buffered saline (PBS. When examining why, similar antifibroblast density results were found when coating tissue culture polystyrene with bovine submaxillary mucin (BSM, an even smaller protein closely related to the central subregion of lubricin. Additionally, results from this study demonstrated that in contrast to BSM or controls (PBS-coated and non-coated samples, lubricin was better at preserving the health of nonadherent or loosely adherent fibroblasts; fibroblasts that did not adhere or loosely adhered on the lubricin-coated tissue culture polystyrene adhered and proliferated well for up to an additional day when they were reseeded on uncoated tissue culture polystyrene. In summary, this study provides evidence for the promise of nanostructured lubricin (and to a lesser extent BSM to inhibit fibroblast adhesion and growth when coated on medical devices; lubricin should be further explored for numerous medical device applications.Keywords: lubricin, antiadhesive, fibroblasts, mucin

  11. The Study of the Grit-blasting Parameters and Their Effects on the Adhesive Strength of the Plasma Sprayed Coatings

    M; Heydarzadeh; Sohi; M; Frooghieh; Sh; Khameneh; Asl

    2002-01-01

    Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In this study, grit-blasting of an AISI 4130 steel (of different heat treatmen ts) with Al 2O 3 particles was studied. Various grit-blasting parameters such as blasting particle size, the distance between blasting nozzle and the work pi ece (25, 30 and 40 cm.), blasting pressure (3,4,5,6 and ...

  12. Employing SiO_2 Buffer Layer to Improve Adhesion of the Frequency-doubled Antireflection Coating on LBO

    TAN Tianya; SHAN Jing; WU Wei; GUO Yongxin; SHAO Jianda; FAN Zhengxiu

    2009-01-01

    Frequency-doubled antireflection coatings simultaneously effective at 1064 nm and 532 nm were deposited on the lithium triborate(LiB_3O_5 or LBO)crystals using the electron beam evaporation method.Comparing with the sample without buffer layer,it is found that the adhesion of the sample with buffer layer of SiO_2 between coating and LBO substrate is improved significantly from 137.4 mN to greater than 200 mN.And the laser-induced damage threshold is increased by 20% from 15.1 J/cm~2 to 18.6 J/cm~2 .The strengthening mechanism of adhesion of the buffer layer of SiO_2 is discussed by considering full plastic indentation and shear theory.

  13. Influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings

    Li, Zhiming; Qian, Shiqiang; Wang, Wei

    2011-10-01

    The present study has been conducted in order to determine the influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings. Six types of coating samples with different substrate roughness were tested. The surface roughness and real surface area of both the substrates and coatings were studied by atomic force microscopy (AFM) techniques. The scratch tests performed at progressive loads were employed to evaluate the adhesion of the coatings. Cyclic oxidation tests were performed at 1100 °C in air for 50 cycles, each cycle consisting of 1 h heating in the tube furnace followed by 15 min cooling in the open air. The AFM measurements exhibit that the surface roughness of the sputtered NiCoCrAlY coating increases with the increasing of the superalloy substrate roughness. The NiCoCrAlY coatings present slightly lower roughness than the corresponding superalloy substrate. The scratch adhesion tests indicate that the coatings on substrates with a smoother surface possess better adhesion than on those with a rougher surface. Both the real surface area and oxidation weight gain of the coatings decrease with the decreasing of the superalloy substrate roughness. The NiCoCrAlY coating sputtered on the superalloy substrate with lower roughness provides relatively higher antioxidant protection than that provided by the coating with rougher substrate.

  14. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties

    Aubry, Cyril

    2013-06-01

    Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry. © 2013 Elsevier Ltd.

  15. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  16. Effects of Platinum Additions and Sulfur Impurities on the Microstructure and Scale Adhesion Behavior of Single-Phase CVD Aluminide Bond Coatings

    Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Pint, B.A.; Wright, I.G.; Zhang, Y.

    1999-02-28

    The adhesion of alumina scales to aluminide bond coats is a life-limiting factor for some advanced thermal barrier coating systems. This study investigated the effects of aluminide bond coat sulfur and platinum contents on alumina scale adhesion and coating microstructural evolution during isothermal and cyclic oxidation testing at 1150 C. Low-sulfur NiAl and NiPtAl bond coats were fabricated by chemical vapor deposition (CVD). Lowering the sulfur contents of CVD NiAl bond coatings significantly improved scale adhesion, but localized scale spallation eventually initiated along coating grain boundaries. Further improvements in scale adhesion were obtained with Pt additions. The observed influences of Pt additions included: (1) mitigation of the detrimental effects of high sulfur levels, (2) drastic reductions in void growth along the scale-metal interface, (3) alteration of the oxide-metal interface morphology, and (4) elimination of Ta-rich oxides in the Al{sub 2}O{sub 3} scales during thermal cycling. The results of this study also suggested that the microstructure (especially the grain size) of CVD aluminide bond coatings plays a significant role in scale adhesion.

  17. The Effects of Surface Roughness on Adhesion Strength of Coated Ash (Fraxinus excelsior L. and Birch (Betula L. Wood

    Justina VITOSYTĖ

    2012-12-01

    Full Text Available For the evaluation of surface roughness impact on adhesion properties, the samples of dried ash (Fraxinus excelsior L. and birch (Betula L. wood were used. Before wood finishing, the surfaces of the samples were sanded. In order to get different surface roughness the abrasive material of P80, P120, P150, P180, P220 and P240 grit was used. The parameters of surface roughness Ra, Rz and Rmax were measured in three directions: along the wood grain, across the grain and in the angle of 45º. Comparison of the results showed the non-linear dependency of roughness parameters. Afterwards the wood surface was coated with three different acrylic-polyurethane coating systems (1 layer of varnish without primer, 1 layer of primer and 1 layer of varnish, and 1 layer of primer and 2 layers of varnish. The adhesion strength was assessed using the pull-off method. Also the nature of the fracture was evaluated. It was determined that the peculiarities of surface roughness, coating system type and wood species signally results the values of the adhesion strength.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3094

  18. AREVA coating and adhesive technology. A method to mitigate and/or prevent leaks in pools with stainless steel liners

    Kraemer, Georg [AREVA NP GmbH, Erlangen (Germany)

    2011-07-01

    Worldwide experience shows that stainless steel liners of concrete pools tend to leak primarily due to corrosion phenomena, although weld failure leakage can also occur. Extensive investigations by AREVA showed that mechanical defects are usually caused by mechanical impact and that the affected location is obvious. However, in the case of corrosion, which is the root cause in most of the cases, the defect in the liner begins from the concrete side and is only detected when a complete penetration occurs. Therefore, in the case of corrosion defects, it is not only vital to identify the location and repair the actual leak, but it is advantageous to apply a technology that works as a preventive measure. Repair methods based on conventional welding techniques are not promising as a preventive measure, mostly due to cost and time issues. With the AREVA coating and adhesive technology, a repair method is provided which is able to stop existing leaks. It also works as a prophylactic measure against future penetration from the concrete side of the pool. This technique covers the failure mechanisms from weld failures over corrosion to mechanical stresses. A further advantage of the coating and adhesive technology is the possibility to use remote-controlled underwater repair methods. These are particularly beneficial in the repair of leaks in spent fuel pools. Extensive laboratory testing and longstanding successful experience in nuclear power plants have proven the suitability of the coating and adhesive technology as an active and proactive method to minimize leakages in pools. (orig.)

  19. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths.

    Thormann, Esben; Mizuno, Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M Soledad; Arias, José Luis; Rutland, Mark W; Pai, Ranjith Krishna; Bergström, Lennart

    2012-07-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO(3). The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. PMID:22653376

  20. Bacterial adhesion to titanium-oxy-nitride (TiNOX) coatings with different resistivities : a novel approach for the development of biomaterials

    Koerner, RJ; Butterworth, LA; Mayer, [No Value; Dasbach, R; Busscher, HJ

    2002-01-01

    In this study the quantitative adhesion of a strain of Staphylococcus epidermidis, Streptococcus mutans and Pseudomonas aeruginosa to and the ease of removal from different TiNOX coatings was investigated by means of a parallel plate flow chamber and in situ image analysis. Quality of adhesion was d

  1. Switchable surface coatings for control over protein adsorption

    Cole, Martin A.; Jasieniak, Marek; Voelcker, Nicolas H.; Thissen, Helmut; Horn, Roger; Griesser, Hans J.

    2007-12-01

    Control over biomolecule interactions at interfaces is becoming an increasingly important goal for a range of scientific fields and is being intensively studied in areas of biotechnological, biomedical and materials science. Improvement in the control over materials and biomolecules is particularly important to applications such as arrays, biosensors, tissue engineering, drug delivery and 'lab on a chip' devices. Further development of these devices is expected to be achieved with thin coatings of stimuli responsive materials that can have their chemical properties 'switched' or tuned to stimulate a certain biological response such as adsorption/desorption of proteins. Switchable coatings show great potential for the realisation of spatial and temporal immobilisation of cells and biomolecules such as DNA and proteins. This study focuses on protein adsorption onto coatings of the thermosensitive polymer poly(N-isopropylacrylamide) (pNIPAM) which can exhibit low and high protein adsorption properties based on its temperature dependent conformation. At temperatures above its lower critical solution temperature (LCST) pNIPAM polymer chains are collapsed and protein adsorbing whilst below the LCST they are hydrated and protein repellent. Coatings of pNIPAM on silicon wafers were prepared by free radical polymerisation in the presence of surface bound polymerisable groups. Surface analysis and protein adsorption was carried out using X-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry and contact angle measurements. This study is expected to aid the development of stimuli-responsive coatings for biochips and biodevices.

  2. Effect of Monocyte Chemotactic Protein-1 on the Intraperitoneal Adhesion Formation

    2000-01-01

    In order to study the role of monocyte chemotactic protein-1 (MCP-1) in the intra-peritoneal adhesion formation, 23 infertile patients undergoing laparoscopic operation were divided into two groups: experimental group including 12 patients with intra-peritoneal adhesion and control group including 11 patients without intra-peritoneal adhesion. Peritoneal fluid (PF) and peritoneum were collected from these patients during laparoscopic examination. The expression levels of MCP-l protein and MCP-1 mRNA were detected by using enzyme-linked immunosorbent assay (ELISA) and dot blot analysis method respectively. It was found that the levels of MCP-1 protein in PF of the patients with peritoneal adhesion were significantly higher than in the control group (0. 44±0.11 ng/ml vs 0. 19+0. 09 ng/ml respectively, P<0. 01 ). The level of MCP-1 mRNA in the peritoneum of the patients with peritoneal adhesion was significantly higher than in the control group (48.61±3.72 vs 19. 87±2.54 respectively, P<0. 01). It was suggested that MCP-1 might play a role in the adhesion formation, and chemotactic cytokines expressing in the peritoneal mesothelial cells might be take part in the process.

  3. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.

    Finlay, John A; Bennett, Stephanie M; Brewer, Lenora H; Sokolova, Anastasiya; Clay, Gemma; Gunari, Nikhil; Meyer, Anne E; Walker, Gilbert C; Wendt, Dean E; Callow, Maureen E; Callow, James A; Detty, Michael R

    2010-08-01

    Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, gamma(C) and surface energies, gamma(S), and duplicated the 'Baier curve'. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with gamma(C) and increased wettability as measured by the static water contact angle, theta(Ws), of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R(2) = 0.74 for percentage removal as a function of theta(Ws) and R(2) = 0.69 for percentage removal as a function of gamma(C)). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with theta(Ws) (R(2) = 0.84) and gamma(C) (R(2) = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes). PMID:20645195

  4. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  5. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film

  6. Adhesion and wear behaviour of NCD coatings on Si3N4 by micro-abrasion tests.

    Silva, F G; Neto, M A; Fernandes, A J S; Costa, F M; Oliveira, F J; Silva, R F

    2009-06-01

    Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2-CH4 and H2-CH4-N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 microm. A micro-abrasion tribometer was used, with 3 microm diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25-0.75 N. The wear rate for MPCVD NCD (3.7 +/- 0.8 x 10(-5) mm3 N(-1) m(-1)) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure. PMID:19504945

  7. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  8. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  9. Adhesion of Mussel Foot Protein Mefp-5 to Mica: An Underwater Superglue†

    Danner, Eric W.; Kan, Yajing; Hammer, Malte U.; Israelachvili, Jacob N.; Waite, J. Herbert

    2012-01-01

    Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4 dihydroxyphenylalanine (Dopa) (~30 mol%) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using ...

  10. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  11. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  12. 78 FR 41840 - Indirect Food Additives: Adhesives and Components of Coatings

    2013-07-12

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 Indirect Food Additives: Adhesives and... promulgation of such regulations.'' Our regulations specific to administrative actions for food additives....gov . List of Subjects in 21 CFR Part 175 Adhesives, Food additives, Food packaging. Therefore,...

  13. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion

    Zhang, Ning

    2012-05-18

    POx bottle-brush brushes (BBBs) are synthesized by SIPGP of 2-isopropenyl-2-oxazoline and consecutive LCROP of 2-oxazolines on 3-aminopropyltrimethoxysilane-modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of adhesion strength of Er2O3 coating layer for an advanced breeding blanket system applied to thermal cycles using nano-scratch method

    The electrical insulator and hydrogen permeation barrier coatings are important materials to realize the liquid metal and molten-salt typed breeding blanket systems. We found that erbium oxide (Er2O3) is one of the promising materials as the electrical insulator and hydrogen permeation restraint coatings. Establishing the mechanical property evaluation method for these coating is extremely important to certify the durability of coating material in the blanket systems. The adhesion strength property, which is one of the key mechanical properties of coating materials, was investigated using the nano-scratch method. From the results, it was found that the nano-scratch test was able to evaluate the adhesion strength of the Er2O3 coating synthesized by the Metal Organic Chemical Vapor Deposition (MOCVD) process with high reproducibility. Furthermore, the adhesion strength of the Er2O3 coating before and after thermal cycling was evaluated using this method. The adhesion strength after 50 thermal cycles at 700degC was kept around 70% compared with that before thermal cycling. (author)

  15. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    Andersen, T.E.; Kingshott, Peter; Benter, M.;

    Introduction Silicone rubber is among the most biocompatible materials available, exhibiting low levels of extractables, absence of plasticizers and additives and fairly low activation of blood thrombogenesis components. However untreated silicone rubber does not efficiently resist protein...... with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... the measurement of both initial adhesion of clinically isolated bacteria on silicone and subsequent biofilm formation during prolonged growth under liquid flow. The extend of adsorption of relevant proteins to the surfaces was also investigated using quartz crystal microbalance with dissipation (QCM...

  16. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    Liebscher, Ines; Ackley, Brian; Araç, Demet;

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region...

  17. Low-Cost Soybean Protein Products as Extenders in Plywood Adhesives

    Soybean flour and meal were evaluated as alternate protein extenders in plywood adhesives. This research is part of our laboratory’s efforts to develop new uses for the proteinaceous co-products from soybean and cereal processing. Ground soybean meal was tested as replacement for wheat flour in gl...

  18. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  19. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  20. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-01

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth. PMID:24773089

  1. Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate

    Min, Hyungsuk; Lee, Byoungyoon; Jeong, Sooncheol; Lee, Myeongkyu

    2016-05-01

    We here present a simple, low-cost laser-direct process to fabricate conductive Cu patterns on plastic substrate. A Cu nano-ink was synthesized using Cu formate as a precursor. The Cu ink spin-coated on a polyimide substrate was selectively sintered using a pulsed ultraviolet laser beam. The unexposed regions of the coated ink could be removed by rinsing the whole film in the dispersion agent of the synthesized ink, which revealed a conductive Cu pattern. This allowed sintering and patterning to be simultaneously accomplished, with a minimum line width of ~20 μm available. The fabricated pattern remained strongly adhesive to the substrate and exhibited only a slight increase in resistance even after 1000 bending cycles to a radius of curvature of 4.8 mm.

  2. Properties of the coat protein of a new tobacco mosaic virus coat protein ts-mutant.

    Dobrov, E N; Abu-Eid, M M; Solovyev, A G; Kust, S V; Novikov, V K

    1997-01-01

    Amino acid substitutions in a majority of tobacco mosaic virus (TMV) coat protein (CP) ts-mutants have previously been mapped to the same region of the CP molecule tertiary structure, located at a distance of about 70 A from TMV virion axis. In the present work some properties of a new TMV CP ts-mutant ts21-66 (two substitutions I21=>T and D66=>G, both in the 70-A region) were studied. Thermal inactivation characteristics, sedimentation properties, circular dichroism spectra, and modification by a lysine-specific reagent, trinitrobenzensulfonic acid, of ts21-66 CP were compared with those of wild-type (U1) TMV CP. It is concluded that the 70-A region represents the most labile portion of the TMV CP molecule. Partial disordering of this region in the mutant CP at permissive temperatures leads to loss of the capacity to form two-layer aggregates of the cylindrical type, while further disordering induced by mild heating results also in the loss of the ability to form ordered helical aggregates. PMID:9055205

  3. STRUCTURAL AND FUNCTIONAL CHARACTERISATION OF MUCUS ADHESION PROTEINS OF LACTOBACILLUS REUTERI

    Etzold, Sabrina

    2013-01-01

    Mucus is the first point of contact between the gut microbiota and the host. Mucus adhesins are thought to be key mediators in the mucus adhesion of commensal Lactobacillus species. However, knowledge on the structural or functional basis of adhesin interaction with mucin glycoproteins, the main component of mucus, is limited. This work describes the biochemical and structural properties of two cell-surface proteins from Lactobacillus reuteri, the mucus-binding protein (MUB) and the Lar0958 p...

  4. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  5. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly

  6. Detection of spore coat protein of Bacillus subtilis by immunological method

    The spore coat protein of Bacillus subtilis was separated, and the qualitative assay for the spore coat protein was made by use of the immunological technique. The immunological method was found to be useful for judging the maturation of spore coat in the course of sporulation. The spore coat protein antigen appeared at t2 stage of sporulation. The addition of rifampicin at the earlier stages of sporulation inhibited the increase in content of the spore coat antigen. (auth.)

  7. Multiple GTP-binding proteins participate in clathrin-coated vesicle- mediated endocytosis

    1993-01-01

    We have examined the effects of various agonists and antagonists of GTP- binding proteins on receptor-mediated endocytosis in vitro. Stage- specific assays which distinguish coated pit assembly, invagination, and coat vesicle budding have been used to demonstrate requirements for GTP-binding protein(s) in each of these events. Coated pit invagination and coated vesicle budding are both stimulated by addition of GTP and inhibited by GDP beta S. Although coated pit invagination is resistant to ...

  8. Honeycomb structured porous interfaces as templates for protein adhesion

    Rodriguez-Hernandez, J; Munoz-Bonilla, A; Ibarboure, E; Bordege, V; Fernandez-Garcia, M, E-mail: jrodriguez@ictp.csic.es

    2010-11-01

    We prepared breath figure patterns decorated with a statistical glycopolymer, (styrene-co-2-{l_brace}[(D-glucosamin-2-N-yl)carbonyl]oxy{r_brace}ethyl methacrylate, S-HEMAGl). The preparation of the glycopolymer occurs in one single step by using styrene and S-HEMAGl. Blends of this copolymer and high molecular weight polystyrene were spin coated from THF solutions leading to the formation of surfaces with both controlled functionality and topography. AFM studies revealed that both the composition of the blend and the relative humidity play a key role on the size and distribution of the pores at the interface. The porous films shows the hydrophilic glycomonomer units are oriented towards the pore interface since upon soft annealing in water, the holes are partially swelled. The self-organization of the glycopolymer within the pores was additionally confirmed both by reaction of carbohydrate hydroxyl groups with rhodamine-isocyanate and by means of the lectin binding test using Concanavalin A (Con A).

  9. The Research of Influence of Vibromechanical Treatment on Ni Coatings PT-19N-01 Adhesion

    Tomas Stukas; Olegas Černašėjus

    2011-01-01

    Thermal spray coating is very widely used in various fields. It is technologically simple, compact, inexpensive, universal and mobile mode, which ensures a high process efficiency and good surface quality. In this paper, the examination of the possibilities to improve nickel base coating properties made by thermal spraying with vibromechanical treatment into the coating process. Studies at 30, 60, 90, 120, 150 Hz frequencies of introducing vibrations, and three different vibration amplitudes ...

  10. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed. PMID:25832889

  11. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  12. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    Yildirim, Eda D; Gueceri, Selcuk; Sun, Wei [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Besunder, Robyn; Allen, Fred [Drexel University, School of Biomedical Engineering Science and Health System, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pappas, Daphne, E-mail: edy22@drexel.ed [Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2010-03-15

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  13. Contact angle anomalies indicate that surface-active eluates from silicone coatings inhibit the adhesive mechanisms of fouling organisms.

    Meyer, Anne; Baier, Robert; Wood, Christina Darkangelo; Stein, Judith; Truby, Kathryn; Holm, Eric; Montemarano, Jean; Kavanagh, Christopher; Nedved, Brian; Smith, Celia; Swain, Geoff; Wiebe, Deborah

    2006-01-01

    Silicone coatings with critical surface tensions (CST) between 20 and 30 mN m-1 more easily release diverse types of biofouling than do materials of higher and lower CST. Oils added to these coatings selectively further diminish the attachment strengths of different marine fouling organisms, without significantly modifying the initial CST. In a search for the mechanisms of this improved biofouling resistance, the interfacial instabilities of four silicone coatings were characterised by comprehensive contact angle analyses, using up to 12 different diagnostic fluids selected to mimic the side chain chemistries of the common amino acids of bioadhesive proteins. The surfaces of painted steel test panels were characterised both before and after exposure to freshwater, brackish water, and seawater over periods ranging from 9 months to nearly 4 years. Contact angle measurements demonstrated significant surface activity of the oil-amended coatings both before and after long-term underwater exposure. The surface activity of the control (coating without oil) increased as a result of underwater exposure, consistent with mild surface chain scission and hydrolysis imparting a self-surfactancy to the coating and providing a weak boundary layer promoting continuing easy release of attaching foulants. Coatings with additives that most effectively reduced biofouling showed both initial and persistent contact angle anomalies for the test liquid, thiodiglycol, suggesting lower-shear biofouling release mechanisms based upon diminished bioadhesive crosslinking by interfering with hydrogen- and sulfhydryl bonds. Swelling of the silicone elastomeric coatings by hydrocarbon fluids was observed for all four coatings, before and after immersion. PMID:17178574

  14. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  15. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO2 + 8% Y2O3) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure

  16. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    Sánchez-Hernández, Z.E. [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Torres-Huerta, A.M.; Onofre-Bustamante, E. [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Andraca Adame, J. [Instituto Politécnico Nacional, Centro de Nanociencias Micro y Nanotecnologías, Departamento de DRX, C. P. 07300, Mexico, DF, México (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C. P. 07300 Mexico, DF, México (Mexico)

    2014-05-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.

  17. Multiple-Approach Evaluation of WSP Coatings Adhesion/Cohesion Strength

    Mušálek, Radek; Pejchal, V.; Vilémová, Monika; Matějíček, Jiří

    2013-01-01

    Roč. 22, 2-3 (2013), s. 221-232. ISSN 1059-9630. [International Thermal Spray Conference (ITSC). Houston, 21.05.2012-24.05.2012] R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional research plan: CEZ:AV0Z20430508 Keywords : adhesion testing * adhesive strength * alumina * cohesion * stainless steel * water-stabilized plasma Subject RIV: JI - Composite Materials Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-012-9850-2.pdf

  18. The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide.

    Dong, Cui-Ling; Li, Shi-Yan; Wang, Yang; Dong, Ying; Tang, James Zhenggui; Chen, Jin-Chun; Chen, Guo-Qiang

    2012-03-01

    Microbial polyhydroxyalkanoates (PHAs) are a family of polyesters with biodegradability, biocompatibility and adjustable mechanical properties that are under intensive development for bioimplant applications. In this research, a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) oligopeptide (PhaR-KQAGDV) was utilized to enhance the PHA cytocompatability via a mechanism of PhaR hydrophobically binding to PHA coupled with KQAGDV oligopeptide, a specific ligand to the integrins on the cell surface, for promotion of cell adhesion. The PhaR-KQAGDV fusion protein successfully produced and purified from recombinant E. coli was used to coat the surfaces of several PHA including poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), respectively. The PhaR was observed to bind efficiently on all PHA surfaces measured by the fluorescence intensity of PhaR-EGFP as compared to the uncoated (PhaR negative) PHA films. The PHA surface hydrophilicity measured by water contact angles was significantly improved after PhaR-KQAGDV coating. Observations under confocal microscope and scanning electron microscopy, together with CCK-8 assays clearly demonstrated that adhesion and proliferation of human vascular smooth muscle cells (HvSMCs) inoculated on PHA films were much better on PhaR-KQAGDV coated surfaces than the non-coated control ones. The convenient physical coating approach for enhanced PHA cytocompatibility provides an advantage for PHA based tissue engineering. PMID:22206593

  19. A novel corrosion and abrasion resistant internal coating method with improved adhesion using hollow cathode PECVD (Plasma Enhanced Chemical Vapor Deposition) technology

    Boardman, B.; Boinapally, K.; Casserly, T.; Upadhyaya, D.; Gupta, M.; Dornfest, C. [SubOne Technology, Pleasanton, CA (United States)

    2008-07-01

    A new enabling technology for coating the internal surfaces of pipes with a hard, corrosion, wear resistant diamond-like-carbon (DLC) coating is described. The importance of proper surface preparation and optimized interface and adhesion layer is shown. Corrosion resistance is measured based on exposure to HCl, NaCl environments and autoclave with H{sub 2}S. Mechanical properties include high hardness, high adhesion, and excellent wear resistance including sand abrasion resistance. The coating is optimized for high hardness and deposition rate based on selection on the proper hydrocarbon precursor. This new technology enables wide spread use of DLC based coating to increase component life in applications where internal surface of pipes are exposed to corrosive and abrasive environment especially in the oil and gas industry. (author)

  20. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Dowling, Catríona M., E-mail: Catriona.Dowling@ul.ie; Kiely, Patrick A., E-mail: Catriona.Dowling@ul.ie [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)

    2015-07-15

    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  1. Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene

    Chashmejahanbin, Mohammad. R.; Daemi, Hamed; Barikani, Mehdi; Salimi, Ali

    2014-10-01

    In present research, polypropylene (PP) was selected as a model nonpolar substrate for chemical modification using plasma. In the first step, the PP samples were treated using oxygen and argon atmospheres, individually. The prepared samples were analyzed using both FTIR and AFM techniques. The output of these techniques revealed that the carbonyl, carboxylic acid and its derivatives have been formed on the surface of PP. Afterward, a series of aqueous polyurethane-urea dispersions were synthesized as the novel polar coating for modified nonpolar polymers and characterized by different techniques including FTIR, DSC, TGA, mechanical properties and contact angle. Finally, the plasma treated samples were coated by prepared polyurethane ionomer. The results of pull-off analysis confirmed the significant role of the polyurethane as an extremely polar coating to create hydrogen bonding with functional groups on the surface of treated PP. The adhesion strength of polypropylenes increased from 0.04 MPa to 0.61 MPa for neat and oxygen-based plasma treated samples, respectively.

  2. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  3. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Jutta Messing; Michael Niehues; Anna Shevtsova; Thomas Borén; Andreas Hensel

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with beta-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ...

  4. Cell adhesion-dependent inactivation of a soluble protein kinase during fertilization in Chlamydomonas.

    Zhang, Y.; Luo, Y.; Emmett, K; Snell, W J

    1996-01-01

    Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar...

  5. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration

    Cornelia Peeters, Miriam; Fokkelman, Michiel; Boogaard, Bob;

    2015-01-01

    Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which origin...... the adhesion GPCR ADGRG2 is critically involved in the adhesion and migration of certain breast cancer cells through mechanisms including a non-canonical NFkB pathway and that ADGRG2 could be a target for treatment of certain types of cancer.......Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which...... activity through the adhesion- and migration-related transcription factors serum response element (SRE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) presumably via coupling to Gα12/13 and Gαq. However, activation of these two pathways appears to occur through distinct molecular...

  6. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating.

    Rivolo, Paola; Nisticò, Roberto; Barone, Fabrizio; Faga, Maria Giulia; Duraccio, Donatella; Martorana, Selanna; Ricciardi, Serena; Magnacca, Giuliana

    2016-08-01

    In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties. PMID:27157754

  7. Effects of protein incorporation on calcium phosphate coating

    Leonor, I. B.; C.M. Alves; Azevedo, Helena S.; Reis, R.L.

    2009-01-01

    The incorporation of proteins into calcium phosphate (Ca–P) coatings is expected to alter their properties. The aim of this work is, therefore, to study the effect of protein concentration on the formation of Ca–P film. A biodegradable blend of corn starch/ethylene vinyl alcohol (SEVA-C) was used as substrate and bioactive glass (45S5 Bioglass®) was used as a nucleating agent. Bovine serum albumin (BSA) and α-amylase were added, separately, at a concentration of 0.5, 1, and 5 mg/mLto simulate...

  8. Multiple-Approach Evaluation of WSP Coatings Adhesion/Cohesion Strength

    Mušálek, Radek; Vilémová, Monika; Matějíček, Jiří; Pejchal, V.

    Materials Park, Ohio : ASM International, 2012 - (Lima, R.; Agarwal, A.; Hyland, M.; Lau, Y.; Li, C.; McDonald, A.; Toma, F.), s. 746-751 ISBN 978-1-62708-010-1. - (ASM International). [International Thermal Spray Conference 2012 (ITSC 2012). Houston (US), 21.05.2012-24.05.2012] R&D Projects: GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : alumina * stainless steel * water stabilized plasma * adhesive strength * cohesion * adhesion testing Subject RIV: JI - Composite Materials http://www.asminternational.org/portal/site/www/store/ConferencePapers?topic=false&channelID=1603745137b47310VgnVCM100000621e010aRCRD&page=1

  9. Adhesion behaviour of CrNx coatings on pre-treated metal substrates studied in situ by PBA and ESEM after annealing

    Galindo, RE; van Veen, A; Schut, H; Janssen, GCAM; Hoy, R; de Hosson, JTM

    2005-01-01

    In this paper we present the first combined Positron Beam Analysis (PBA) and Environmental Scanning Electron Microscopy (ESEM) adhesion study on thin chromium nitride (CrN,) coatings. Both techniques are combined with a 4-point bending stage. PBA monitors the creation of open volume in the ceramic/m

  10. GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti-6Al-7Nb aimed at developing mixed oxide nanotubular arrays.

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Fallahpour, A; Vadivelu, J; Musa, S N; Kaboli, S H A

    2016-08-01

    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications. PMID:26874249

  11. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  12. Plasma Sprayed Bondable Stainless Surface (BOSS) Coatings for Corrosion Protection and Adhesion Treatments

    Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.

    1995-01-01

    Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.

  13. Coating of Carbon Nanotube Fibers: Variation of Tensile Properties, Failure Behavior, and Adhesion Strength

    Mäder, Edith; Liu, Jianwen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-01-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparab...

  14. The Influence of Interface Characteristics on the Adhesion/Cohesion of Plasma Sprayed Tungsten Coatings

    Matějíček, Jiří; Vilémová, Monika; Mušálek, Radek; Sachr, P.; Horník, J.

    2013-01-01

    Roč. 3, č. 2 (2013), s. 108-125. ISSN 2079-6412 R&D Projects: GA ČR(CZ) GAP108/12/1872; GA MPO FR-TI2/702 Grant ostatní: EFDA(XE) WP12-MAT-01-HHFM Institutional support: RVO:61389021 Keywords : Tungsten * plasma spraying * adhesion * cohesion * PVD * interlayers Subject RIV: JG - Metallurgy http://www.mdpi.com/2079-6412/3/2/108

  15. Phosphorylation of the beta-subunit of CD11/CD18 integrins by protein kinase C correlates with leukocyte adhesion.

    Valmu, L; Autero, M; Siljander, P; Patarroyo, M; Gahmberg, C G

    1991-11-01

    Adhesion of activated leukocytes to cells is of critical functional importance. The adhesion is known to be mediated mainly by the CD11/CD18 integrins, also known as leukocytic cell adhesion molecules, or Leu-CAM. We have now studied the phosphorylation of Leu-CAM by protein kinase C and the correlation of phosphorylation with the generation of the adhesive phenotype among human peripheral blood mononuclear leukocytes during cell activation. We here show that a good correlation exists between the phosphorylation of the beta subunit of Leu-CAM (CD18), and the extent of cell-to-cell adhesion. The phosphorylated CD18 subunit was associated with both CD11a and CD11b. Purified protein kinase C was able to phosphorylate the beta subunit of isolated Leu-CAM in vitro. The phosphorylation occurred mainly on serine residues. PMID:1682156

  16. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions

    CHOKKALINGAM PRIYA; GANESSIN ARAVIND; WILSON RICHARD THILAGARAJ

    2016-04-01

    Titanium (Ti) used as condenser material in nuclear power plants encounter severe biofouling in marine environment which in turn affects the efficiency of the metal. To reduce the biofouling by marine microorganisms, surface modification of the Ti was carried out by anodization process to obtain nanotubes (TiO$_2$-NTs). The electrolyte solution containing 1% of ammonium fluoride resulted in uniform growth of TiO$_2$-NTs. TiO$_2$-NTs were furthercoated with chemically synthesized copper nanoparticles (NT-CuNP) using 3-amino propyl triethoxy silane as a coupling agent. NT-CuNP was characterized by field-emission scanning electron microscopy (FE-SEM), energydispersivespectroscopy and X-ray diffraction. The stability of the coating was determined by the amount of Cu$^+$ ions released into the surrounding using AAS. The microbial adhesion on the surface of Ti, TiO$_2$-NTs and NT-CuNPcoupons were evaluated by sea water exposure studies using total viable count method and also characterized by FE-SEM for any morphological changes. The NT-CuNP coupons show a 60% reduction in microbial adhesion whencompared to control Ti coupons.

  17. MEASUREMENT OF ADHESION STRENGTH OF Mo-Ti-N AND Mo-Сu-N COATINGS USING «SCRATCH-TESTER» DEVICE

    V. M. Anischik; A. K. Kuleshov; V. V. Uglov; D. P. Rusalsky; A. F. Syschenko

    2015-01-01

    The new «scratch-tester» device for measurement of adhesion strength of coatings is presented. The device has a number of advantages as compared with known analogues – the expanded range of investigated sample sizes and more simple procedure of sample positioning, more precise measurement of scratching length, additional manner of registration of coating destruction or tearing off instant on the base of friction force. The device was used for investigation of Mo-Ti-N and Mo-Сu-N coatings on c...

  18. Coat protein activation of alfalfa mosaic virus replication is concentration dependent.

    Guogas, Laura M; Laforest, Siana M; Gehrke, Lee

    2005-05-01

    Alfalfa mosaic virus (AMV) and ilarvirus RNAs are infectious only in the presence of the viral coat protein; therefore, an understanding of coat protein's function is important for defining viral replication mechanisms. Based on in vitro replication experiments, the conformational switch model states that AMV coat protein blocks minus-strand RNA synthesis (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999), while another report states that coat protein present in an inoculum is required to permit minus-strand synthesis (L. Neeleman and J. F. Bol, Virology 254:324-333, 1999). Here, we report on experiments that address these contrasting results with a goal of defining coat protein's function in the earliest stages of AMV replication. To detect coat-protein-activated AMV RNA replication, we designed and characterized a subgenomic luciferase reporter construct. We demonstrate that activation of viral RNA replication by coat protein is concentration dependent; that is, replication was strongly stimulated at low coat protein concentrations but decreased progressively at higher concentrations. Genomic RNA3 mutations preventing coat protein mRNA translation or disrupting coat protein's RNA binding domain diminished replication. The data indicate that RNA binding and an ongoing supply of coat protein are required to initiate replication on progeny genomic RNA transcripts. The data do not support the conformational switch model's claim that coat protein inhibits the initial stages of viral RNA replication. Replication activation may correlate with low local coat protein concentrations and low coat protein occupancy on the multiple binding sites present in the 3' untranslated regions of the viral RNAs. PMID:15827190

  19. Polymers coatings of fluid pipelines: characterization and evolution of the adhesion in aggressive medium; Revetements polymeres de canalisation de fluide: caracterisation et evolution de l'adhesion en milieu agressif

    Coeuille, F.

    2002-07-15

    This study deals with the adhesion and the ageing of an external three-layer polyethylene coating applied to buried steel pipelines. In order to avoid corrosion of the pipe external surface, 'Gaz De France' utilizes two complementary methods of protection: The first is passive protection achieved by the use of an organic coating that acts as a barrier between pipe and the surrounding environment. This is supplemented by an electrochemical method known as 'Cathodic Protection' (CP), which prevents corrosion of the metal surface where it is exposed to the environment at holidays and other defects in the barrier coating. The coating comprises three polymers, successively applied on the surface of the pipe in the following sequence: 1. A thin layer of Epoxy (Ep) is directly sprayed on the prepared metal surface. 2. An adhesive layer called Ethylene Butyl Acrylate (EBA) is extruded on this first layer of Epoxy. 3. A thick topcoat of Polyethylene (HDPE) is extruded on the EBA. Excellent adhesion of the coating to the metal substrate is critical if the coating is to act as a long-term barrier to corrosion. Our study used a 'peel test' to characterise and quantify adhesion. This test was considered the most suitable considering the geometry and composition of our samples. The study of samples without 'surface failure' showed that the adhesion of this coating is directly dependent on the quality of the manufacturing process. A pipeline's service lifetime can be very long (up to 50 years). Therefore we have used harsh experimental conditions to accelerate ageing on samples. Samples without 'surface failure', and samples with 'surface failure' were tested to make an ageing comparison. Only samples with 'surface failure' suffered premature ageing. The results showed the weakness of Epoxy compared to the other external layers (EBA and HDPE), that are much less permeable to water. Specific water diffusion

  20. AND-34, a novel p130Cas-binding thymic stromal cell protein regulated by adhesion and inflammatory cytokines.

    Cai, D; Clayton, L K; Smolyar, A; Lerner, A

    1999-08-15

    We have characterized a novel cDNA whose steady state mRNA levels rise in the thymus 2 to 6 h following the induction of CD4+CD8+ thymocyte apoptosis by in vivo cross-linking of CD3 epsilon. This cDNA, AND-34-1, contains an open reading frame (ORF) encoding a protein with an amino-terminal Src homology 2 (SH2) domain and a carboxyl-terminal domain homologous to GDP-exchange factors (GEFs). Northern analysis demonstrates widespread expression of the AND-34 gene. Anti-CD3 epsilon treatment induces up-regulation of the AND-34 mRNA levels in total thymic RNA but not in RNA from purified thymocytes, suggesting that this transcript is derived from a thymic stromal cell population. IL-1 and TNF increase AND-34 transcript levels in thymic cortical reticular, thymic nurse, and fibroblast cell lines. In the thymic cortical reticular cell line, IL-1 and TNF induce a protein of the predicted 93-kDa size reactive with anti-AND-34 peptide antisera. Fifteen minutes of serum stimulation of vanadate-pretreated AND-34-1-transfected NIH3T3 fibroblasts induces tyrosine phosphorylation of AND-34 as well as coprecipitating 95-, 125-, and 130-kDa proteins. One of these tyrosine phosphorylated proteins is identified as p130Cas (Crk-associated substrate), a signaling molecule previously known to bind to a GDP-exchange factor (C3G) and inducibly associate with the focal adhesion complex. Consistent with such an association, AND-34 tyrosine phosphorylation is induced following adherence of trypsinized fibroblasts to fibronectin or poly-L -lysine-coated surfaces. PMID:10438950

  1. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms

    Banerjee, Indrani; Pangule, Ravindra C.; Kane, Ravi S. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Ricketts Building, Troy, NY 12180 (United States)

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Lunar building materials: Some considerations on the use of inorganic polymers. [adhesives, coatings, and binders

    Lee, S. M.

    1979-01-01

    The use of inorganic polymer systems synthesized from the available lunar chemical elements, viz., silicon, aluminum, and oxygen to make adhesives, binders, and sealants needed in the fabrication of lunar building materials and the assembly of structures is considered. Inorganic polymer systems, their background, status, and shortcomings, and the use of network polymers as a possible approach to synthesis are examined as well as glassy metals for unusual structural strength, and the use of cold-mold materials as well as foam-sintered lunar silicates for lightweight shielding and structural building materials.

  3. The scratch test - Different critical load determination techniques. [adhesive strength of thin hard coatings

    Sekler, J.; Hintermann, H. E.; Steinmann, P. A.

    1988-01-01

    Different critical load determination techniques such as microscopy, acoustic emission, normal, tangential, and lateral forces used for scratch test evaluation of complex or multilayer coatings are investigated. The applicability of the scratch test to newly developed coating techniques, systems, and applications is discussed. Among the methods based on the use of a physical measurement, acoustic emission detection is the most effective. The dynamics ratio between the signals below and above the critical load for the acoustic emission (much greater than 100) is well above that obtained with the normal, tangential, and lateral forces. The present commercial instruments are limited in load application performance. A scratch tester able to apply accurate loads as low as 0.01 N would probably overcome most of the actual limitations and would be expected to extend the scratch testing technique to different application fields such as optics and microelectronics.

  4. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  5. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  6. Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation

    Liu, Shimin; Li, Baoe; Liang, Chunyong; Wang, Hongshui; Qiao, Zhixia

    2016-01-01

    A hydroxyapatite (HA)/TiO2 composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca-P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca2+ ions which diffused into the coating decreased more rapidly than that of PO43- or HPO42-. The adhesive strength between the apatite and TiO2 coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO2 layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  7. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. PMID:27309944

  8. Blood compatibility and adhesion of collagen/heparin multilayers coated on two titanium surfaces by a layer-by-layer technique

    This paper investigates the blood compatibility and adhesion of collagen/heparin multilayers coated on cp-Ti substrates with a layer-by-layer self-assembly technique. Two surface polishing processes were used for the titanium samples: one was mechanical polishing (MP) and the other, electropolishing (EP). These samples were pretreated by being immersed in NaOH solution to obtain a negatively charged surface with hydroxyl groups and then positively charged in poly-L-lysine solution. The repeated treatment of the samples by applying heparin and collagen alternately determined the number and thickness of the multilayers. The surface topography, chemical composition, and hydrophilicity of the films were investigated by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurement. The study of the adhesion of the multilayer was conducted by a nano-scratch test. The blood compatibility was evaluated by measuring the hemolysis ratio and platelet-covered area in vitro. The uncoated titanium surface was used as the benchmark. The results indicated that the anticoagulation performance of collagen/heparin multilayers on the titanium surface was superior to that of the uncoated titanium surface. The hemolysis ratios of samples with an EP Ti substrate, a relatively rougher one, were essentially lower than those of samples with an MP substrate. The increase in the multilayers' thickness enhanced their adhesion to the Ti substrate. - Highlights: • Coated substrates' platelet-adhesion tests revealed a possible thrombus suppression. • Hemolysis of coated substrates was reduced mainly by substrate's original morphology. • Two coated substrates' hemolysis ratios were reduced by nearly the same percentages. • Adhesion strength of multilayers was proportional to their thicknesses

  9. Blood compatibility and adhesion of collagen/heparin multilayers coated on two titanium surfaces by a layer-by-layer technique

    Chou, Chau-Chang, E-mail: cchou@mail.ntou.edu.tw [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei-Ning Rd., Keelung 202, Taiwan, ROC (China); Center for Marine Mechatronic Systems (CMMS), National Taiwan Ocean University, No. 2 Pei-Ning Rd., Keelung 202, Taiwan, ROC (China); Zeng, Hong-Jhih [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2 Pei-Ning Rd., Keelung 202, Taiwan, ROC (China); Yeh, Chi-Hsiao [Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan, ROC (China)

    2013-12-31

    This paper investigates the blood compatibility and adhesion of collagen/heparin multilayers coated on cp-Ti substrates with a layer-by-layer self-assembly technique. Two surface polishing processes were used for the titanium samples: one was mechanical polishing (MP) and the other, electropolishing (EP). These samples were pretreated by being immersed in NaOH solution to obtain a negatively charged surface with hydroxyl groups and then positively charged in poly-L-lysine solution. The repeated treatment of the samples by applying heparin and collagen alternately determined the number and thickness of the multilayers. The surface topography, chemical composition, and hydrophilicity of the films were investigated by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurement. The study of the adhesion of the multilayer was conducted by a nano-scratch test. The blood compatibility was evaluated by measuring the hemolysis ratio and platelet-covered area in vitro. The uncoated titanium surface was used as the benchmark. The results indicated that the anticoagulation performance of collagen/heparin multilayers on the titanium surface was superior to that of the uncoated titanium surface. The hemolysis ratios of samples with an EP Ti substrate, a relatively rougher one, were essentially lower than those of samples with an MP substrate. The increase in the multilayers' thickness enhanced their adhesion to the Ti substrate. - Highlights: • Coated substrates' platelet-adhesion tests revealed a possible thrombus suppression. • Hemolysis of coated substrates was reduced mainly by substrate's original morphology. • Two coated substrates' hemolysis ratios were reduced by nearly the same percentages. • Adhesion strength of multilayers was proportional to their thicknesses.

  10. Proteins Play Important Role in Intercellular Adhesion Affecting on Fruit Textural Quality

    Bahadur Adhikari, Khem; Shomer, Ilan

    2012-01-01

    Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA strength......Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA...... strengthening was exempli ed in Medjoul date (Phoenix dactylifera L.) fruit, as a model. Fruit mesocarp sensitively responded to culture environment which was assayed in vitro at pH 3.5(< pKa) and pH 6.5(> pKa) in presence of organic acid molecules. The max penetration force, as a measure of ICA strength, of p......H 3.5 (< pKa) incubated mesocarp (~10.5 N) was signi cantly higher than that of pH 6.5 (> pKa) incubated fruits (~2 N). The protein bands at ~29 kDa, ~75 kDa, ~32 kDa and 87 kDa were exclusively or prominently found in ICA strengthened fruits (pH 3.5< pKa) compared to texturally injured fruits (pH 6...

  11. Amine-containing block copolymers: long-term adhesion promoters and corrosion resistant coatings

    Small, J.H.; Saunders, R.S.; Kent, M.S.

    1996-07-01

    Arylamine-containing diblock copolymers were prepared via ring- opening metathesis polymerization (ROMP) to afford well-defined phase- separated materials. Alteration of the functionaity in a block, as well as the size of the blocks, allowed for the synthesis of self- assembled monolayers on a copper surface. The arylamine-containing block exhibited a strong binding affinity for the copper surface as seen by neutron reflectivity experiments. In addition, neutron reflectivity data verifies the self-assembly of block copolymer monolayers normal to the copper surface. Block copolymers prepared in this manner allow for the preparation of a wide range of adhesives and corrosion resistant materials. The use of ring-opening metathesis polymerization is important because it permits the synthesis of a variety of functionalized block copolymers.

  12. Protein micro patterned lattices to probe a fundamental lengthscale involved in cell adhesion

    Guillou, Herve; Chaussy, Jacques; Block, Marc R

    2009-01-01

    Cell adhesion, a fundamental process of cell biology is involved in the embryo development and in numerous pathologies especially those related to cancers. We constrained cells to adhere on extracellular matrix proteins patterned in a micro lattices. The actin cytoskeleton is particularly sensitive to this constraint and reproducibly self organizes in simple geometrical patterns. Such highly organized cells are functional and proliferate. We performed statistical analysis of spread cells morphologies and discuss the existence of a fundamental lengthscale associated with active processes required for spreading.

  13. Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings

    Bio-glass films were deposited by radio-frequency magnetron sputtering technique onto medical grade Ti6Al7Nb alloy substrates from prepared silica based bio-glass target. A low deposition temperature was used (150 deg. C) and three different working pressures, followed by annealing in air at 550 and 750 deg. C. A quasi-stoichiometric target to substrate atomic transfer was found for Si, Ca and P, along with strong enrichment in Na and depletion in K and Mg, as evidenced by the energy dispersive microanalysis. The best results, taking into account stoichiometry and surface roughness, were obtained for the BG layers deposited at 0.3 Pa argon working pressure. The infrared spectroscopy of the as-sputtered and of the annealed films evidenced the characteristic molecular vibrations of silicate, phosphate and carbonate functional groups. The as-deposited films are amorphous and became partly crystalline after annealing at 750 deg. C, as evidenced by X-ray diffraction. The pull-out measurements, performed with a certified pull-test machine, gave very strong film-substrate adhesion strength values. For the non-crystalline layers, the pull-out strength is higher than 85 MPa, and decreases after annealing at 750 deg. C to 72.9 ± 7.1 MPa. The main objective of this work was to establish the influence of the working pressure upon the composition and morphology of the as-deposited films, and of the annealing temperature upon structure and film-substrate adhesion.

  14. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    Brown, Alan; Turner, Louise; Christoffersen, Stig;

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The...

  15. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  16. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  17. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  18. XPS and AES investigations of the adhesive bonding properties of thin titanium coatings

    The bonding properties of PMMA-microstructures on Ti-coated Cu-substrates after an oxidative treatment in alkaline hydrogenperoxide solution were investigated. In order to clarify the basic mechanism, surface analytical investigations by XPS-, AES-, and depth profile measurements have been performed. It was demonstrated that for optimum bonding a TiO2 surface layer of ca. 30 nm thickness is necessary. Chemical effects as well as a mechanical bonding with open grain boundary structures (dimensions in the μm-range) could be ruled out as bonding mechanisms. A mechanical interlocking of the polymer with micropores (dimensions in the nm-range) of the oxidic overlayer is adopted as the most probable bonding mechanism. (orig.)

  19. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  20. Isolation and characterization of biogenic calcium carbonate/phosphate from oral bacteria and their adhesion studies on YSZ-coated titanium substrate for dental implant application

    GOBI SARAVANAN KALIARAJ; KAMALAN KIRUBAHARAN; G PRADHABAN; P KUPPUSAMI; VINITA VISHWAKARMA

    2016-04-01

    Biogenic calcium carbonate/phosphate were isolated and characterized from oral bacteria (CPOB). The crystalline nature and morphology of calcium carbonate/phosphate were characterized by X-ray diffraction (XRD)and field emission scanning electron microscopy (FESEM), respectively. XRD analysis revealed the cubic phase of YSZ coating as well as biogenic calcium carbonate (rhombohedral) and calcium phosphate oxide (hexagonal) wasobserved from CPOB. FESEM confirmed the extracellular synthesis of calcium compounds. Bacterial adhesion result reveals that YSZ coating drastically reduce bacterial invasion than titanium substrate.

  1. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  2. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives. PMID:27217558

  3. Understanding Marine Mussel Adhesion

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  4. Understanding marine mussel adhesion.

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  5. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    Wolfram Tobias

    2008-12-01

    Full Text Available Abstract Background Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. Results Here we show a similar dependence of cell adhesion on the spacing of agrin, a protein that exists as both a secreted, matrix-bound form and a type-2 transmembrane form in vivo. Agrin was presented as a substrate for cell adhesion assays by anchoring recombinant protein to gold nanoparticles that were arrayed at tunable distances onto glass coverslips. Cells adhered well to nanopatterned agrin, and when presented as uniformly coated substrates, adhesion to agrin was comparable to other well-studied adhesion molecules, including N-Cadherin. Adhesion of both mouse primary cortical neurons and rat B35 neuroblastoma cells showed a spacing-dependent threshold, with a sharp drop in adhesion when the space between agrin-coated nanoparticles increased from 60 to 90 nm. In contrast, adhesion to N-Cadherin decreased gradually over the entire range of distances tested (uniform, 30, 60, 90, and 160 nm. The spacing of the agrin nanopattern also influenced cell motility, and peptide competition suggested adhesion was partially integrin dependent. Finally, differences in cell adhesion to C-terminal agrin fragments of different lengths were detected using nanopatterned substrates, and these differences were not evident using uniformly coated substrates. Conclusion These results suggest nanopatterned substrates may provide a physiological presentation of adhesive substrates, and are consistent with cells adhering to agrin

  6. Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating

    Muszanska, Agnieszka K.; Busscher, Henk J.; Herrmann, Andreas; van der Mei, Henny C.; Norde, Willem

    2011-01-01

    This paper describes the preparation and characterization of polymer protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the

  7. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  8. Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating

    Muszanska, Agnieszka K.; Busscher, Henk J.; Herrmann, Andreas; Henny C van der Mei; Norde, Willem

    2011-01-01

    This paper describes the preparation and characterization of polymer protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the telechelic groups of the PEO chains. Covalent conjugation of lysozyme proceeded via reductive amination of aldehyde functionalized PEO blocks (CHO-Pluronic) and the amine groups of the lysine resid...

  9. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  10. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas.

    Kostoro, Joanna; Chang, Shu-Jyuan; Clark Lai, Yen-Chang; Wu, Chun-Chieh; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-06-01

    Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p astrocytoma. PMID:26935340

  11. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Melnichuk, Iurii, E-mail: iurii.melnichuk@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Choukourov, Andrei, E-mail: choukourov@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Bilek, Marcela, E-mail: m.bilek@physics.usyd.edu.au [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); School of Physics, University of Sydney, NSW 2006 (Australia); Weiss, Anthony, E-mail: tony.weiss@sydney.edu.au [School of Molecular Bioscience, University of Sydney, NSW 2006 (Australia); Vandrovcová, Marta, E-mail: Marta.Vandrovcova@fgu.cas.cz [Institute of Physiology of Czech Academy of Science, Prague 14220 (Czech Republic); Bačáková, Lucie, E-mail: Lucie.Bacakova@fgu.cas.cz [Institute of Physiology of Czech Academy of Science, Prague 14220 (Czech Republic); Hanuš, Jan, E-mail: jan.hanus@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Kousal, Jaroslav, E-mail: jarda@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Shelemin, Artem, E-mail: artem.shelemin@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Solař, Pavel, E-mail: pawell.solar@seznam.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); and others

    2015-10-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment.

  12. Oligomerization of a Cargo Receptor Directs Protein Sorting into COPII-coated Transport Vesicles

    Sato, Ken; Nakano, Akihiko

    2003-01-01

    Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in vesicles coated with coat protein complex II (COPII). The incorporation of certain transport molecules (cargo) into the COPII vesicles is thought to be mediated by cargo receptors. Here we show that Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Exit of Emp46p from the ER was saturable and de...

  13. Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties

    Stallard, Charlie P.; McDonnell, Kevin; Onayemi, O. D.; et al.

    2012-01-01

    Protein adsorption is one of the key parameters influencing the biocompatibility of medical device materials. This study investigates serum protein adsorption and bacterial attachment on polymer coatings deposited using an atmospheric pressure plasma jet system. The adsorption of bovine serum albumin and bovine fibrinogen (Fg) onto siloxane and fluorinated siloxane elastomeric coatings that exhibit water contact angles (θ) ranging from superhydrophilic (θ 150°) ...

  14. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens.

    Hennebert, Elise; Wattiez, Ruddy; Waite, J Herbert; Flammang, Patrick

    2012-01-01

    Sea stars are able to make firm but temporary attachments to various substrata by secretions released by their tube feet. After tube foot detachment, the adhesive secretions remain on the substratum as a footprint. Proteins presumably play a key role in sea star adhesion, as evidenced by the removal of footprints from surfaces after a treatment with trypsin. However, until now, characterisation was hampered by their high insolubility. In this study, a non-hydrolytic method was used to render most of the proteins constituting the adhesive footprints soluble. After analysis by SDS-PAGE, the proteins separated into about 25 bands, which ranged from 25 to 450 kDa in apparent molecular weight. Using mass spectrometry and a homology-database search, it was shown that several of the proteins are known intracellular proteins, presumably resulting from contamination of footprint material with tube foot epidermal cells. However, 11 protein bands, comprising the most abundant proteins, were not identified and might correspond to novel adhesive proteins. They were named 'Sea star footprint proteins' (Sfps). Tandem mass spectrometry analysis of the protein bands yielded 43 de novo-generated peptide sequences. Most of them were shared by several, if not all, Sfps. Polyclonal antibodies were raised against one of the peptides (HEASGEYYR from Sfp-115) and were used in immunoblotting. They specifically labelled Sfp-115 and other bands with lower apparent molecular weights. The different results suggest that all Sfps might belong to a single family of related proteins sharing similar motifs or, alternatively, they are the products of polymerization and/or degradation processes. PMID:22439774

  15. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes

    2009-01-01

    This article concerns the investigation of blood protein adsorption on carbon paper and multi-wall carbon nanotubes (MWCNTs). Mouse fibroblast cell adhesion and growth on MWCNTs was also studied. The results showed that fibrinogen adsorption on carbon paper was much lower than that on MWCNTs, which means that platelets readily aggregate on the surface of MWCNTs. Mouse fibroblast cells implanted on MWCNTs tended to grow more prolifically than those implanted on carbon paper. The cell concentration observed on MWCNTs increased from 1.2×105/mL for a single day culture to 2×105/mL for a 7-day culture. No toxicity reaction was observed during the culturing period. These results indicated that MWCNTs possessed excellent tissue compatibility.

  16. Adhesion G protein-coupled receptors in nervous system development and disease.

    Langenhan, Tobias; Piao, Xianhua; Monk, Kelly R

    2016-09-01

    Members of the adhesion G protein-coupled receptor (aGPCR) class have emerged as crucial regulators of nervous system development, with important implications for human health and disease. In this Review, we discuss the current understanding of aGPCR functions during key steps in neural development, including cortical patterning, dendrite and synapse formation, and myelination. We focus on aGPCR modulation of cell-cell and cell-matrix interactions and signalling to control these varied aspects of neural development, and we discuss how impaired aGPCR function leads to neurological disease. We further highlight the emerging hypothesis that aGPCRs can be mechanically activated and the implications of this property in the nervous system. PMID:27466150

  17. Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs

    Xuchen Xu

    2014-10-01

    Full Text Available Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed a novel and convenient method to modify the biodegradable Fe plates with heparin. Iron was first treated by a facile one-step pH-induced polymerization of dopamine, and then a high density heparin was successfully grafted onto the surface via coupling with polydopamine (PDA active layer. Heparin immobilization contributed much longer blood clotting coagulation time than the pure Fe sample, and hence reduced the risk of thrombosis. Cell viability tests suggested that the heparin modified Fe plates were more favorable to the proliferation of ECV304 cells. In summary, the heparin modified Fe plates with good anti-thrombus properties and inhibiting the proliferation of VSMC cells provide great prospects for biodegradable iron.

  18. Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs)

    Xuchen Xu; Ming Li; Qian Liu; Zhaojun Jia; Yuying Shi; Yan Cheng; Yufeng Zheng; L.Q. Ruan

    2014-01-01

    Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed a novel and convenient method to modify the biodegradable Fe plates with heparin. Iron was first treated by a facile one-step pH-induced polymerization of dopamine, and then a high density heparin was successfully grafted onto the surface via coupling with polydopamine (PDA) active layer. Heparin immobilization contributed much longer blood clotting coagulation time than the pure Fe sample, and hence reduced the risk of thrombosis. Cell viability tests suggested that the heparin modified Fe plates were more favorable to the proliferation of ECV304 cells. In summary, the heparin modified Fe plates with good anti-thrombus properties and inhibiting the proliferation of VSMC cells provide great prospects for biodegradable iron.

  19. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  20. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1–0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  1. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. PMID:21216704

  2. Expression and immunological characterization of cardamom mosaic virus coat protein displaying HIV gp41 epitopes.

    Damodharan, Subha; Gujar, Ravindra; Pattabiraman, Sathyamurthy; Nesakumar, Manohar; Hanna, Luke Elizabeth; Vadakkuppattu, Ramanathan D; Usha, Ramakrishnan

    2013-05-01

    The coat protein of cardamom mosaic virus (CdMV), a member of the genus Macluravirus, assembles into virus-like particles when expressed in an Escherichia coli expression system. The N and C-termini of the coat protein were engineered with the Kennedy peptide and the 2F5 and 4E10 epitopes of gp41 of HIV. The chimeric proteins reacted with sera from HIV positive persons and also stimulated secretion of cytokines by peripheral blood mononuclear cells from these persons. Thus, a system based on the coat protein of CdMV can be used to display HIV-1 antigens. PMID:23668610

  3. Genome activation by raspberry bushy dwarf virus coat protein.

    Macfarlane, Stuart A; McGavin, Wendy J

    2009-03-01

    Two sets of infectious cDNA clones of raspberry bushy dwarf virus (RBDV) have been constructed, enabling either the synthesis of infectious RNA transcripts or the delivery of infectious binary plasmid DNA by infiltration of Agrobacterium tumefaciens. In whole plants and in protoplasts, inoculation of RBDV RNA1 and RNA2 transcripts led to a low level of infection, which was greatly increased by the addition of RNA3, a subgenomic RNA coding for the RBDV coat protein (CP). Agroinfiltration of RNA1 and RNA2 constructs did not produce a detectable infection but, again, inclusion of a construct encoding the CP led to high levels of infection. Thus, RBDV replication is greatly stimulated by the presence of the CP, a mechanism that also operates with ilarviruses and alfalfa mosaic virus, where it is referred to as genome activation. Mutation to remove amino acids from the N terminus of the CP showed that the first 15 RBDV CP residues are not required for genome activation. Other experiments, in which overlapping regions at the CP N terminus were fused to the monomeric red fluorescent protein, showed that sequences downstream of the first 48 aa are not absolutely required for genome activation. PMID:19218221

  4. Replication of alfamo- and ilarviruses: role of the coat protein.

    Bol, John F

    2005-01-01

    In the family Bromoviridae, a mixture of the three genomic RNAs of bromo-, cucumo-, and oleaviruses is infectious as such, whereas the RNAs of alfamo- and ilarviruses require binding of a few molecules of coat protein (CP) to the 3' end to initiate infection. Most studies on the early function of CP have been done on the alfamovirus Alfalfa mosaic virus (AMV). The 3' 112 nucleotides of AMV RNAs can adopt two different conformations. One conformer consists of a tRNA-like structure that, together with an upstream hairpin, is required for minus-strand promoter activity. The other conformer consists of four hairpins interspersed by AUGC-sequences and represents a strong binding site for CP. Binding of CP to this conformer enhances the translational efficiency of viral RNAs in vivo 40-fold and blocks viral minus-strand RNA synthesis in vitro. AMV CP is proposed to initiate infection by mimicking the function of the poly(A)-binding protein. PMID:16078876

  5. The recognition of adsorbed and denatured proteins of different topographies by β2 integrins and effects on leukocyte adhesion and activation

    Brevig, T.; Holst, B.; Ademovic, Z.;

    2005-01-01

    Leukocyte beta(2) integrins Mac-1 and p150,95 are promiscuous cell-surface receptors that recognise and mediate cell adhesion to a variety of adsorbed and denatured proteins. We used albumin as a model protein to study whether leukocyte adhesion and activation depended on the nm-scale topography ...

  6. Influence of levofloxacin on soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis

    Qing-Zhou He; Qian-Shu Hu

    2016-01-01

    Objective:To observe the influence of levofloxacin on soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis. Methods:A total of 50 patients with pulmonary tuberculosis who had been treated in our hospital from March 2014 to April 2015 were randomly divided into the control group (conventional treatment) and the observation group (conventional treatment plus levofloxacin). Each group had 25 cases. Then, the soluble selection,interleukin,adhesion molecule and pulmonary surfactant protein levels of the two groups at the second, fourth and sixth months before and after treatment were compared. Results:Before treatment, the differencess of the levels of the soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of the two groups were significant (P>0.05), while the detection levels of all the aspects of the observation group at the second, fourth and sixth months after treatment were all significantly lower than those of the control group (P<0.05). The detection results of the two groups at the second, fourth and sixth months after treatment showed significant differences. Conclusions:Lvofloxacin has significant effect on the soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis.

  7. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Giugliano Loreny

    2004-04-01

    Full Text Available Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants.

  8. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  9. Effect of protein coating of flocked swabs on the collection and release of clinically important bacteria

    K H Harry

    2014-01-01

    Full Text Available Clinical swab heads are often coated with biopolymers to improve the recovery and survival of organisms. To assess the effect of swab head material coating, water absorption capacity and capture and release characteristics of four pathogenic bacteria from protein coated and uncoated flocked swabs were determined. Demonstration of no uniformly higher recovery of all test bacteria from coated swabs over their corresponding uncoated swabs suggest importance of physicochemical properties of swab tip material compared with biopolymer coating, for swab selection for clinical applications.

  10. Adhesion of actinomyces isolates to experimental pellicles.

    Steinberg, D; Kopec, L K; Bowen, W H

    1993-06-01

    The ability of oral bacteria to adhere to surfaces is associated with their pathogenicity. Actinomyces can adhere to pellicle and cells through extracellular fimbriae. Research on adhesion of actinomyces has been conducted with use of hydroxyapatite (HA) coated with mammalian-derived salivary constituents, whereas the bacterial-derived components of the acquired pellicle have been largely ignored. The influence of the cell-free bacterial enzyme, glucosyltransferase (GTF), on adhesion of human and rodent isolates of Actinomyces viscosus was examined. Cell-free GTF was adsorbed onto parotid saliva-coated hydroxyapatite (sHA). Next, A. viscosus was exposed to the pellicle following the synthesis of glucan formed in situ by GTF. Glucans formed on the pellicle served as binding sites for adhesion of a rodent strain of A. viscosus. Conversely, the presence of in situ glucans on sHA reduced the adhesion of human isolates of A. viscosus compared with their adhesion to sHA. Adhesion of the rodent strains may be facilitated through a dextran-binding protein, since the rodent strains aggregated in the presence of dextrans and mutan. The human isolates were not aggregated by dextran or mutan. Pellicle harboring A. viscosus rodent strains interfered with the subsequent adhesion of Streptococcus mutans to the bacterial-coated pellicle. In contrast, the adhesion of S. mutans to pellicle was not decreased when the pellicle was pre-exposed to a human isolate of A. viscosus. The experimental data suggest that human and the rodent isolates of A. viscosus have distinct glucan adhesion properties.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8496474

  11. Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133)

    Fischer, Liane; Wilde, Caroline; Schöneberg, Torsten; Liebscher, Ines

    2016-01-01

    Background: A large number of human inherited and acquired diseases and phenotypes are caused by mutations in G protein-coupled receptors (GPCR). Genome-wide association studies (GWAS) have shown that variations in the ADGRD1 (GPR133) locus are linked with differences in metabolism, human height and heart frequency. ADGRD1 is a Gs protein-coupled receptor belonging to the class of adhesion GPCRs. Results: Analysis of more than 1000 sequenced human genomes revealed approximately 9000 single nu...

  12. 40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt...

  13. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Watermelon Mosaic... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  14. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  15. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  16. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model.

    Siu, Erica R; Wong, Elissa W P; Mruk, Dolores D; Sze, K L; Porto, Catarina S; Cheng, C Yan

    2009-07-01

    Several integral membrane proteins that constitute the blood-testis barrier (BTB) in mammalian testes, in particular rodents, are known to date. These include tight junction (TJ) proteins (e.g. occludin, junctional adhesion molecule-A, claudins), basal ectoplasmic specialization proteins (e.g. N-cadherin), and gap junction proteins (e.g. connexin43). However, the regulators (e.g. protein kinases and phosphatases) that affect these proteins, such as their interaction with the cytoskeletal actin, which in turn confer cell adhesion at the TJ, remain largely unknown. We report herein that focal adhesion kinase (FAK) is a putative interacting partner of occludin, but not claudin-11 or junctional adhesion molecule-A. Immunohistochemistry and fluorescence microscopy studies illustrated that the expression of FAK in the seminiferous epithelium of adult rat testes was stage specific. FAK colocalized with occludin at the BTB in virtually all stages of the seminiferous epithelial cycle but considerably diminished in stages VIII-IX, at the time of BTB restructuring to facilitate the transit of primary leptotene spermatocytes. Using Sertoli cells cultured in vitro with established TJ-permeability barrier and ultrastructures of TJ, basal ectoplasmic specialization and desmosome-like junction that mimicked the BTB in vivo, FAK was shown to colocalize with occludin and zonula occludens-1 (ZO-1) at the Sertoli-Sertoli cell interface. When these Sertoli cell cultures were treated with CdCl(2) to perturb the TJ-barrier function, occludin underwent endocytic-mediated internalization in parallel with FAK and ZO-1. Thus, these findings demonstrate that FAK is an integrated regulatory component of the occludin-ZO-1 protein complex, suggesting that functional studies can be performed to study the role of FAK in BTB dynamics. PMID:19213829

  17. Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling.

    de Lima, Camila Bento; Tamura, Eduardo K; Montero-Melendez, Trindad; Palermo-Neto, João; Perretti, Mauro; Markus, Regina P; Farsky, Sandra Helena Poliselli

    2012-01-13

    The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. PMID:22209795

  18. Application of protein-phenolic based coating on tomatoes (Lycopersicum esculentum)

    Eliane Pereira Cipolatti; Larine Kupski; Meritaine da Rocha; Melissa dos Santos Oliveira; Jaqueline Garda Buffon; Eliana Badiale Furlong

    2012-01-01

    The aim of this study was to investigate the use of protein-phenolic based coating made from fermented rice bran on cherry tomatoes (Lycopersicum esculentum). Tests were performed with glycerol 3% (v/v), glycerol with protein-phenolic rice bran extract (5%), glycerol with protein-phenolic extract after 96 hours of fermentation (5%), and a control (without coating). The coated cherry tomatoes were kept at room temperature for 28 days. Mass loss, pH and acidity, total soluble solids, and carote...

  19. Coating a polystyrene well-plate surface with synthetic hematite, goethite and aluminium hydroxide for cell mineral adhesion studies in a controlled environment

    Highlights: • Hematite, goethite and aluminium hydroxide were synthesized and characterize. • Polystyrene cell culture well plates were coated with the synthetic metal oxides. • The coated well plates proven to be completely identical to the synthetic minerals. • The coating method is compatible with what occurs in aquifers with metal oxides. • This method provides a key experimental part for cell mineral adhesion studies. - Abstract: Iron and aluminium oxides are available in many climatic regions and play a vital role in many environmental processes, including the interactions of microorganisms in contaminated soils and groundwater with their ambient environment. Indigenous microorganisms in contaminated environments often have the ability to degrade or transform those contaminants, a concept that supports an in situ remediation approach and uses natural microbial populations in order to bio-remediate polluted sites. These metal oxides have a relatively high pH-dependent surface charge, which makes them good candidates for studying mineral–bacterial adhesion. Given the importance of understanding the reactions that occur at metal oxide and bacterial cell interfaces and to investigate this phenomenon further under well-characterized conditions, some of the most common iron and aluminium oxides; hematite, goethite and aluminium hydroxide, were synthesized and characterized and a coating method was developed to coat polystyrene well-plates as a surface exposable to bacterial adhesion with these minerals (non-treated polystyrene-12 well-plates which are used for cell cultures). The coating process was designed in a way that resembles naturally coated surfaces in aquifers. Hematite, Fe2O3, was synthesized from acidic FeCl3 solution, while goethite, FeOOH, and aluminium hydroxide, Al(OH)3, were prepared from an alkaline solution of Fe(NO3)3 and Al(NO3)3. They were further characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR

  20. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model

    McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

    2004-07-01

    Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or

  1. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  2. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  3. Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering

    Xue, Weichang; Bandyopadhyay, Amit; Bose, Susmita

    2009-01-01

    Polycaprolactone (PCL) was coated on porous tricalcium phosphate (TCP) scaffolds to achieve controlled protein delivery. Porous TCP scaffolds were fabricated using reticulated polyurethane foam as sacrificial scaffold with a porosity of 70–90 vol %. PCL was coated on sintered porous TCP scaffolds by dipping-drying process. The compressive strength of TCP scaffolds increased significantly after PCL coating. The highest strength of 2.41 MPa at a porosity of 70% was obtained for the TCP scaffold...

  4. Oxidative stability and quality characteristics of whey protein coated rohu (Labeo rohita) fillets

    Khan, Muhammad Issa; Adrees, Muhammad Nawaz; Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Jo, Cheorun; Sameen, Aysha

    2015-01-01

    Background Edible coatings have beneficial effect on quality of fish and act as barrier against moisture transfer and uptake of oxygen. Edible coating made up of biodegradable materials is helpful to control the quality deterioration and enhance the shelf life. Methods The present study was designed to elucidate the effects of whey based protein using two plasticizers i.e. sorbitol and glycerol on oxidative stability and quality characteristics of Rohu (Labeo rohita). Coating solutions were p...

  5. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings.

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-01-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution. PMID:24846348

  6. Application of protein-phenolic based coating on tomatoes (Lycopersicum esculentum

    Eliane Pereira Cipolatti

    2012-09-01

    Full Text Available The aim of this study was to investigate the use of protein-phenolic based coating made from fermented rice bran on cherry tomatoes (Lycopersicum esculentum. Tests were performed with glycerol 3% (v/v, glycerol with protein-phenolic rice bran extract (5%, glycerol with protein-phenolic extract after 96 hours of fermentation (5%, and a control (without coating. The coated cherry tomatoes were kept at room temperature for 28 days. Mass loss, pH and acidity, total soluble solids, and carotenoids were determined every 96 hours. The coating made from the biomass extract reduced the carotenoid and acidity levels in the fruits studied by 17 and 21.1%, respectively, compared to the control. The coating proved an efficient barrier to water vapor with mass loss of 57% less than the control suggesting that it can be used as an alternative for vegetable tissue conservation.

  7. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  8. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  9. Adhesion strength of sputter deposited diffusion barrier layer coatings for the use in U–Mo nuclear fuels

    Schmid, W., E-mail: Wolfgang.Schmid@Areva.com; Dirndorfer, S.; Juranowitsch, H.; Kress, M.; Petry, W.

    2014-09-15

    Highlights: • Pull-off tests are used to assess the adhesion strength of nuclear fuel diffusion barriers. • Co-rolled, sputter deposited and C2TWP barriers are tested and compared. • Sputter deposited barriers show similar adhesion strength compared to other types. - Abstract: Advanced designs for high-density U–Mo/Al nuclear fuel feature an interfacial barrier layer between the U–Mo fuel bulk and the Al cladding, which is intended to avoid the formation of an irradiation induced diffusion layer (IDL). Sputter deposition was suggested as a method to apply such interfacial barriers to the U–Mo/Al fuel system. We investigated the adhesion strength of sputter deposited Ti, Zr, Zry-4, Nb and Ta barrier layers of 15–20 μm thickness in the U–Mo/Al system by pull-off tests. The adhesion strength is a measure for the robustness of a diffusion barrier layer against delaminating due to inner stresses. We found, that the adhesion strength of sputter deposited diffusion barrier layers is at least similar or even better compared to both the adhesion strength of barrier layers produced by the INL co-rolling process and the fuel-to-cladding adhesion strength achieved by the AREVA-CERCA C2TWP process.

  10. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  11. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  12. Structure and adhesion of thin coatings deposited by PVD technology on the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates

    K. Lukaszkowicz

    2011-09-01

    Full Text Available Purpose: The main aim of the research was the investigation of the structure and adhesion of AlTiCrN, CrAlSiN and TiAlSiN coatings deposited by physical vapour deposition technology on the X40CrMoV5-1 hot work tool steel and the X6CrNiMoTi17-12-2 austenitic stainless steel substrate.Design/methodology/approach: Observations of surface and microstructure of the deposited coatings were carried out on cross sections in the SUPRA 35 scanning electron microscope. The microhardness tests of coatings were made with the SHIMADZU DUH 202 ultra-microhardness tester. The cohesion and adhesion properties of the coatings were made using the scratch test on the CSEM REVETEST device.Findings: It was found that the coatings present a compact structure, without any visible delaminations or defects. The morphology of the fracture of coatings is characterized by a dense structure, in some cases there is a columnar structure. The coatings demonstrated good adhesion to the substrate. The critical load LC2 lies within the range of 39-47 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa.Practical implications: The process of covering steels with the thin PVD coatings is currently the most commonly method used to extend their life. Investigations of those coatings determining their scratch-resistant properties and structure enable to pick out the optimum coatings for given industrial applications.Originality/value: The results of the investigation provide useful information on microstructure and scratch-resistant properties of the quaternary coatings deposited on the hot work tool steels and austenitic stainless steels.

  13. Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif

    2015-01-01

    The noncoded aromatic 3,4-dihydroxy-l-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presented by the catechol moieties. Here, we harnessed the molecular self-assembly abilities of very short peptide motifs to develop analogous DOPA-containing supramolecular polymers. The DOPA-containing DOPA–DOPA and Fmoc–DOPA–DOPA building blocks were designed by substituting the phenylalanines in the well-studied diphenylalanine self-assembling motif and its 9-fluorenylmethoxycarbonyl (Fmoc)-protected derivative. These peptides self-organized into fibrillar nanoassemblies, displaying high density of catechol functional groups. Furthermore, the Fmoc–DOPA–DOPA peptide was found to act as a low molecular weight hydrogelator, forming self-supporting hydrogel which was rheologically characterized. We studied these assemblies using electron microscopy and explored their applicative potential by examining their ability to spontaneously reduce metal cations into elementary metal. By applying ionic silver to the hydrogel, we observed efficient reduction into silver nanoparticles and the remarkable seamless metallic coating of the assemblies. Similar redox abilities were observed with the DOPA–DOPA assemblies. In an effort to impart adhesiveness to the obtained assemblies, we incorporated lysine (Lys) into the Fmoc–DOPA–DOPA building block. The assemblies of Fmoc–DOPA–DOPA–Lys were capable of gluing together glass surfaces, and their adhesion properties were investigated using atomic force microscopy. Taken together, a class of DOPA-containing self-assembling peptides was designed. These nanoassemblies display unique properties and can serve as multifunctional

  14. Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-L-phenylalanine) peptide motif.

    Fichman, Galit; Adler-Abramovich, Lihi; Manohar, Suresh; Mironi-Harpaz, Iris; Guterman, Tom; Seliktar, Dror; Messersmith, Phillip B; Gazit, Ehud

    2014-07-22

    The noncoded aromatic 3,4-dihydroxy-L-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presented by the catechol moieties. Here, we harnessed the molecular self-assembly abilities of very short peptide motifs to develop analogous DOPA-containing supramolecular polymers. The DOPA-containing DOPA-DOPA and Fmoc-DOPA-DOPA building blocks were designed by substituting the phenylalanines in the well-studied diphenylalanine self-assembling motif and its 9-fluorenylmethoxycarbonyl (Fmoc)-protected derivative. These peptides self-organized into fibrillar nanoassemblies, displaying high density of catechol functional groups. Furthermore, the Fmoc-DOPA-DOPA peptide was found to act as a low molecular weight hydrogelator, forming self-supporting hydrogel which was rheologically characterized. We studied these assemblies using electron microscopy and explored their applicative potential by examining their ability to spontaneously reduce metal cations into elementary metal. By applying ionic silver to the hydrogel, we observed efficient reduction into silver nanoparticles and the remarkable seamless metallic coating of the assemblies. Similar redox abilities were observed with the DOPA-DOPA assemblies. In an effort to impart adhesiveness to the obtained assemblies, we incorporated lysine (Lys) into the Fmoc-DOPA-DOPA building block. The assemblies of Fmoc-DOPA-DOPA-Lys were capable of gluing together glass surfaces, and their adhesion properties were investigated using atomic force microscopy. Taken together, a class of DOPA-containing self-assembling peptides was designed. These nanoassemblies display unique properties and can serve as multifunctional platforms for various

  15. Adhesion of monocytes to medical steel as used for vascular stents is mediated by the integrin receptor Mac-1 (CD11b/CD18; alphaM beta2) and can be inhibited by semiconductor coating.

    Schuler, Pia; Assefa, Dawit; Ylänne, Jari; Basler, Nicole; Olschewski, Manfred; Ahrens, Ingo; Nordt, Thomas; Bode, Christoph; Peter, Karlheinz

    2003-01-01

    Implantation of stents into stenosed arteries helps to restore normal blood flow in ischemic organs. However, limited biocompatibility of the applied medical steel can cause acute thrombosis and long-term restenosis. Adhesion of monocytes to stent metal may participate in those acute and long-term complications of stent placement. Based on described prominent electrochemical properties of the interaction between the monocyte integrin receptor Mac-1 and its various ligands, we hypothesized, that this receptor is a central mediator of monocyte adhesion to stent metal and that semiconductor coating of medical steel reduces monocyte adhesion. Adhesion of monocytes on L-316 stainless steel was directly evaluated by light microscopy. Mac-1 could be identified as mediator of monocyte adhesion, since cell adhesion could be blocked by anti-Mac-1-antibodies, including the cross-reacting anti-GPIIb/IIIa antibody fragment abciximab. To further prove the central role of Mac-1, two CHO cell lines were generated expressing recombinant Mac-1 either as wild type, resulting in a low affinity receptor, or mutant with a GFFKR deletion of the alpha(M) subunit, resulting in a high affinity receptor. Indeed, adhesion was specific for Mac-1 and dependent on the affinity state of this integrin. Finally, we could demonstrate that Mac-1-mediated adhesion of monocytes to stents can be significantly inhibited by silicon carbide coating of the stent metal. In conclusion, the integrin Mac-1 and its affinity state could be identified as major mediators of monocyte adhesion on medical steel. As therapeutic strategies, the blockade of Mac-1 by antibodies or silicon carbide coating of steel inhibits monocyte adhesion on stents. PMID:12881037

  16. Circulating renalase, catecholamines, and vascular adhesion protein 1 in hypertensive patients.

    Maciorkowska, Dominika; Zbroch, Edyta; Malyszko, Jolanta

    2015-11-01

    The aim of the study was to estimate and correlate circulating levels of renalase, vascular adhesion protein-1 (VAP-1), catecholamines in patients with primary hypertension. The renalase, VAP-1, and catecholamines concentration was estimated in 121 hypertensive patients. The correlation between renalase, VAP-1 levels and catecholamine concentration in blood, blood pressure control, pharmacological therapy, and medical history were taken in to consideration. The median office blood pressure was 145.5/86 mm Hg and was significantly higher than the median home blood pressure measurement value, which was 135/80 mm Hg, P hypertension comparing to healthy individuals (3.83 μg/mL and 248.37 ng/mL, P blood was observed (r = 0.549; P Hypertensive patients with diabetes mellitus had almost statistically significant higher VAP-1 concentration compared with hypertensive patients without diabetes mellitus (Me = 403.22 ng/mL vs. Me = 326,68 ng/mL, P = .064). In multiple regression analysis, renalase was predicted by plasma dopamine and norepinephrine as also diastolic office blood pressure and left ventricle ejection fraction. Circulating renalase and VAP-1 levels are elevated in patients with poor blood pressure control. Its correlation with noradrenalin concentration need further studies to find out the role of renalase as also VAP-1 in pathogenesis and treatment of hypertension. PMID:26403854

  17. Plasmodium vivax thrombospondin related adhesion protein: immunogenicity and protective efficacy in rodents and Aotus monkeys

    Angélica Castellanos

    2007-06-01

    Full Text Available The thrombospondin related adhesion protein (TRAP is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.

  18. Structure modification of montmorillonite nanoclay by surface coating with soy protein.

    Jin, Minfeng; Zhong, Qixin

    2012-12-01

    To achieve exfoliated and/or intercalated structures, montmorillonite (MMT) was surface-coated by soy protein at 60 °C, at MMT/soy protein powder mass ratios of 49:1, 9:1, 4:1, and 2:1 and pH 2.0-10.0. The protein-coated MMT was triple-washed and lyophilized for characterization. Protein coating was observed at all pH conditions, based on data from X-ray diffraction, Fourier transform infrared spectroscopy, zeta potential, and quantification of protein remaining in the continuous phase and present in the triple-washed MMT. At a mass ratio of 4:1, >90% protein bound with MMT, with the largest d-spacing at pH 9.0. When the mass ratio was increased to 2:1, protein-coated MMT at pH 9.0 demonstrated the highest degree of intercalation/exfoliation, corresponding to disappearance of the diffraction peak characteristic of pristine MMT. This study thus demonstrated that intercalation/exfoliation of MMT can be easily achieved by coating with low-cost soy protein for manufacturing nanocomposite materials. PMID:23163488

  19. EFFECT OF SUBSTRATE BIAS ON FRICTION COEFFICIENT, ADHESION STRENGTH AND HARDNESS OF TiN-COATED TOOL STEEL

    ESAH HAMZAH; MUBARAK ALI; MOHD RADZI HJ. MOHD TOFF

    2006-01-01

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating ...

  20. Ascorbic acid-containing whey protein film coatings for control of oxidation.

    Min, Seacheol; Krochta, John M

    2007-04-18

    A formulation for the whey protein isolate film or coating incorporating ascorbic acid (AA-WPI film or coating) was developed. Tensile and oxygen-barrier properties of the AA-WPI film were measured. Antioxidant effects of the AA-WPI coating on roasted peanuts were studied by comparing the values of peroxide (PO), thiobarbituric acid reactive substance (TBARS), and free-radical-scavenging activity, determined with noncoated peanuts and peanuts coated with WPI with and without ascorbic acid during storage at 21% relative humidity (RH) and 23, 35, and 50 degrees C. The incorporation of AA reduced elongation of WPI films. The oxygen-barrier property of the WPI film was significantly improved by incorporation of AA. The AA-WPI coating retarded lipid oxidation in peanuts significantly at 23, 35, and 50 degrees C. The AA-WPI coated peanuts were more red than noncoated peanuts at all storage temperatures. PMID:17367158

  1. Role of Streptococcus gordonii Amylase-Binding Protein A in Adhesion to Hydroxyapatite, Starch Metabolism, and Biofilm Formation

    Rogers, Jeffrey D.; Palmer, Robert J.; Kolenbrander, Paul E; Scannapieco, Frank A.

    2001-01-01

    Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. α-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (Ab...

  2. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

    Alcaide, M.; Papaioannou, S.; Taylor, Andrew; Fekete, Ladislav; Gurevich, L.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 27, č. 5 (2016), s. 90. ISSN 0957-4530 Grant ostatní: FUNBIO(XE) CZ.2.16/3.1.00/21568; FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : protein adsorption * fibroblasts adhesion * nanocrystalline diamond * boron doping * topography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.587, year: 2014

  3. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Giugliano Loreny; Lima Renato de; Willer Emerson

    2004-01-01

    Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the eff...

  4. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  5. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  6. Coatings.

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  7. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O2 and N2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N2 plasma pre-treatment was more effective than the O2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N2 plasma pre-treatment showed good wear resistance, compared with that with O2 plasma pre-treatment

  8. Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway

    Isozaki Misako

    2010-09-01

    Full Text Available Abstract Background Melanomas are highly malignant and have high metastatic potential; hence, there is a need for new therapeutic strategies to prevent cell metastasis. In the present study, we investigated whether statins inhibit tumor cell migration, invasion, adhesion, and metastasis in the B16BL6 mouse melanoma cell line. Methods The cytotoxicity of statins toward the B16BL6 cells were evaluated using a cell viability assay. As an experimental model, B16BL6 cells were intravenously injected into C57BL/6 mice. Cell migration and invasion were assessed using Boyden chamber assays. Cell adhesion analysis was performed using type I collagen-, type IV collagen-, fibronectin-, and laminin-coated plates. The mRNA levels, enzyme activities and protein levels of matrix metalloproteinases (MMPs were determined using RT-PCR, activity assay kits, and Western blot analysis, respectively; the mRNA and protein levels of vary late antigens (VLAs were also determined. The effects of statins on signal transduction molecules were determined by western blot analyses. Results We found that statins significantly inhibited lung metastasis, cell migration, invasion, and adhesion at concentrations that did not have cytotoxic effects on B16BL6 cells. Statins also inhibited the mRNA expressions and enzymatic activities of matrix metalloproteinases (MMPs. Moreover, they suppressed the mRNA and protein expressions of integrin α2, integrin α4, and integrin α5 and decreased the membrane localization of Rho, and phosphorylated LIM kinase (LIMK and myosin light chain (MLC. Conclusions The results indicated that statins suppressed the Rho/Rho-associated coiled-coil-containing protein kinase (ROCK pathways, thereby inhibiting B16BL6 cell migration, invasion, adhesion, and metastasis. Furthermore, they markedly inhibited clinically evident metastasis. Thus, these findings suggest that statins have potential clinical applications for the treatment of tumor cell metastasis.

  9. Adhesion and degranulation promoting adapter protein (ADAP is a central hub for phosphotyrosine-mediated interactions in T cells.

    Marc Sylvester

    Full Text Available TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486-783. Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC we identified SLP-76, PLCgamma, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.

  10. Effects of ovarian cancer G protein coupled receptor 1 on the proliferation, migration, and adhesion of human ovarian cancer cells

    REN Juan; ZHANG Long

    2011-01-01

    Background OGR1 was found as a G-protein coupled receptor (GPCR) and proton sensor. Our previous studies have found that OGR1 has inhibitory effect on the metastasis of prostate cancer. In order to investigate the roles of OGR1 gene in the biological activities of ovarian cancer, we studied the OGR1 effects on ovarian cancer cells, HEY cells.Methods OGR1 gene was transfected into HEY cell, in which endogenous expression is low. OGR1-overxepressed cells and vector-transfected cells were compared in different assays. Western blotting was employed to confirm the high expression level of OGR1. Cell proliferation was determined by MTT assay and cell doubling time assay. Cell migration assay (transwell assay) and cell adhesion assay were performed to determine the migration and adhesion potential of cells. Student's t test was employed for statistical analysis.Results Proliferation of OGR1-overexpressed cells was significantly reduced (P <0.01); cell migration was significantly inhibited in the OGR1-transfected cells (P <0.01); cell adhesion to extracellular matrix including fibronectin, vitronectin,collagen Ⅰ/Ⅳ was significantly increased (P <0.01).Conclusions OGR1 expression in human ovarian cancer cells significantly inhibited the cell proliferation and migration,but significantly enhanced cell adhesion to the extracellular matrix. It indicated that OGR1 may be a tumor suppressor gene for ovarian cancer.

  11. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells

    Grebeňová, D.; Roeselová, M.; Pluskalová, M.; Halada, Petr; Roesel, D.; Suttnar, J.; Brodská, B.; Otevřelová, P.; Kuželová, K.

    2012-01-01

    Roč. 77, DEC 2012 (2012), s. 406-422. ISSN 1874-3919 Institutional support: RVO:61388971 Keywords : SAHA * Adhesion * Cofilin Subject RIV: EE - Microbiology, Virology Impact factor: 4.088, year: 2012

  12. Protein kinase C, focal adhesions and the regulation of cell migration

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and...

  13. Study in electron microscopy of the formation of the hybrid layer using adhesive systems One Coat and Experimental (EXL 759), at the Facultad de Odontologia of the Universidad de Costa Rica

    The formation of the hybrid layer is observed in dental pieces in vitro, utilizing conventional adhesives systems and of self etching with different times of acid etching, by applying of electron microscopy. Samples of dental pieces are prepared utilizing conventional adhesive systems as Single Bond 2 of 3M, One Coat of Coltene and the adhesive self etching Experimental (EXL 759) of 3M. Samples of dental pieces collected have been molars recently extracted and later stored in jars with water. Samples prepared with the adhesive systems are observed in the electron microscope to obtain images of the hybrid layers formed. The hybrid layers formed are compared observing the photographs of the images obtained in the electron microscope. The adhesive system that has allowed the formation of a hybrid layer more convenient is determined. The time of acid etching is determined and has interfered in the formation of a hybrid layer more stable

  14. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  15. Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins.

    Bin Xia

    Full Text Available We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT complex, also localizes at the trans-Golgi network (TGN, where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of beta1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of beta1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to beta1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as beta1 integrin.

  16. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells

    Noratel Elizabeth F

    2012-11-01

    Full Text Available Abstract Background AmpA is a secreted 24Kd protein that has pleiotropic effects on Dictyostelium development. Null mutants delay development at the mound stage with cells adhering too tightly to the substrate. Prestalk cells initially specify as prespore cells and are delayed in their migration to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is also necessary in a cell autonomous manner for anterior like cells (ALCs to migrate to the upper cup. The ALCs are only 10% of the developing cell population making it difficult to study the cell autonomous effect of AmpA on the migration of these cells. AmpA is also expressed in growing cells, but, while it contains a hydrophobic leader sequence that is cleaved, it is not secreted from growing cells. This makes growing cells an attractive system for studying the cell autonomous function of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration. Excess AmpA facilitates migration on soft, adhesive surfaces but hinders migration on less adhesive surfaces. AmpA also effects the level of actin polymerization. Knockout cells polymerize less actin while over expressing cells polymerize more actin than wild type. Overexpression of AmpA also causes an increase in endocytosis that is traced to repeated formation of multiple endocytic cups at the same site on the membrane. Immunofluorescence analysis shows that AmpA is found in the Golgi and colocalizes with calnexin and the slow endosomal recycling compartment marker, p25, in a perinuclear compartment. AmpA is found on the cell periphery and is endocytically recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell periphery where it is endocytosed and localizes to what has been defined as a slow endosomal recycling compartment. AmpA plays a role in actin polymerization and cell substrate adhesion. Additionally AmpA influences cell

  17. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro.

    Jensen, Hanne; Roos, Stefan; Jonsson, Hans; Rud, Ida; Grimmer, Stine; van Pijkeren, Jan-Peter; Britton, Robert A; Axelsson, Lars

    2014-04-01

    Lactobacillus reuteri, a symbiotic inhabitant of the gastrointestinal tract in humans and animals, is marketed as a probiotic. The ability to adhere to intestinal epithelial cells and mucus is an interesting property with regard to probiotic features such as colonization of the gastrointestinal tract and interaction with the host. Here, we present a study performed to elucidate the role of sortase (SrtA), four putative sortase-dependent proteins (SDPs), and one C-terminal membrane-anchored cell surface protein of Lactobacillus reuteri ATCC PTA 6475 in adhesion to Caco-2 cells and mucus in vitro. This included mutagenesis of the genes encoding these proteins and complementation of mutants. A null mutation in hmpref0536_10255 encoding srtA resulted in significantly reduced adhesion to Caco-2 cells and mucus, indicating involvement of SDPs in adhesion. Evaluation of the bacterial adhesion revealed that of the five putative surface protein mutants tested, only a null mutation in the hmpref0536_10633 gene, encoding a putative SDP with an LPxTG motif, resulted in a significant loss of adhesion to both Caco-2 cells and mucus. Complementation with the functional gene on a plasmid restored adhesion to Caco-2 cells. However, complete restoration of adhesion to mucus was not achieved. Overexpression of hmpref0536_10633 in strain ATCC PTA 6475 resulted in an increased adhesion to Caco-2 cells and mucus compared with the WT strain. We conclude from these results that, among the putative surface proteins tested, the protein encoded by hmpref0536_10633 plays a critical role in binding of Lactobacillus reuteri ATCC PTA 6475 to Caco-2 cells and mucus. Based on this, we propose that this LPxTG motif containing protein should be referred to as cell and mucus binding protein A (CmbA). PMID:24473252

  18. Facile Photoimmobilization of Proteins onto Low-Binding PEG-Coated Polymer Surfaces

    Larsen, Esben Kjær Unmack; Mikkelsen, Morten Bo Lindholm; Larsen, Niels Bent

    2014-01-01

    Immobilization of proteins onto polymer surfaces usually requires specific reactive functional groups. Here, we show an easy one-step method to conjugate protein covalently onto almost any polymer surface, including low protein-binding poly(ethylene glycol) (PEG), without the requirement for the...... surface areas, showing ng/mL sensitivity to a cytokine antigen target. Moreover, spatially patterned attachment of fluorescently labeled protein onto the low-binding PEG-coated surface was achieved with a projection lithography system that enabled the creation of micrometer-sized protein features....... presence of specific functional groups. Several types of proteins, including alkaline phosphatase, bovine serum albumin, and polyclonal antibodies, were photoimmobilized onto a PEG-coated polymer surface using a water-soluble benzophenone as photosensitizer. Protein functionality after immobilization was...

  19. Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate.

    Han, J H; Hwang, H-M; Min, S; Krochta, J M

    2008-10-01

    Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and alpha-tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high-speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 degrees C, and the oxidation of peanuts was determined by hexanal analysis using solid-phase micro-extraction samplers and GC-MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants. PMID:19019105

  20. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.

    Meese, Thomas M; Hu, Yunhua; Nowak, Richard W; Marra, Kacey G

    2002-01-01

    The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA. PMID:12022746

  1. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%–85% and 10%–22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: ► Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers ► Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. ► Protein adsorption depended on the macromolecular composition and surface properties. ► Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  2. In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realise coatings for drug-eluting stents

    Gagliardi, Mariacristina, E-mail: mariacristina.gagliardi@iit.it

    2012-12-01

    In the present paper, a preliminary in vitro analysis of biocompatibility of newly-synthesised acrylic copolymers is reported. In particular, with the aim to obtain coatings for drug-eluting stents, blood protein absorption and cytocompatibility were studied. For protein absorption tests, bovine serum albumin and bovine plasma fibrinogen were considered. Cytocompatibility was tested using C2C12 cell line as model, analysing the behaviour of polymeric matrices and of drug-eluting systems, obtained loading polymeric matrices with paclitaxel, an anti-mitotic drug, in order to evaluate the efficacy of a pharmacological treatment locally administered from these materials. Results showed that the amount of albumin absorbed was greater than the amount of fibrinogen (comprised in the range of 70%-85% and 10%-22% respectively) and it is a good behaviour in terms of haemocompatibility. Cell culture tests showed good adhesion properties and a relative poor proliferation. In addition, a strong effect related to drug elution and a correlation with the macromolecular composition were detected. In this preliminary analysis, tested materials showed good characteristics and can be considered possible candidates to obtain coatings for drug-eluting stents. Highlights: Black-Right-Pointing-Pointer Preliminary evaluation of haemo- and cytocompatibility of newly-synthesised acrylic copolymers Black-Right-Pointing-Pointer Materials adsorb higher amounts of albumin and with a faster rate than fibrinogen. Black-Right-Pointing-Pointer Protein adsorption depended on the macromolecular composition and surface properties. Black-Right-Pointing-Pointer Cell viability on pure samples and efficacy of paclitaxel release were verified in C2C12 cultures.

  3. Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells

    Although the effects of progesterone on cell cycle progression are well known, its role in spreading and adhesion of breast cancer cells has not attracted much attention until recently. Indeed, by controlling cell adhesion proteins, progesterone may play a direct role in breast cancer invasion and metastasis. Progesterone has also been shown to modulate epidermal growth factor (EGF) effects in neoplasia, although EGF effects on progesterone pathways and targets are less well understood. In the present study we identify an effect of EGF on a progesterone target, namely desmoplakin. Initially flow cytometry was used to establish the growing conditions and demonstrate that the T47D breast cancer cell line was responding to progesterone and EGF in a classical manner. Differential display RT-PCR was employed to identify differentially expressed genes affected by progesterone and EGF. Western and Northern blotting were used to verify interactions between EGF and progesterone in three breast cancer cell lines: T47D, MCF-7, and ZR-75. We found the cell adhesion protein desmoplakin to be upregulated by progesterone – a process that was suppressed by EGF. This appears to be a general but not universal effect in breast cancer cell lines. Our findings suggest that progesterone and EGF may play opposing roles in metastasis. They also suggest that desmoplakin may be a useful biomarker for mechanistic studies designed to analyze the crosstalk between EGF and progesterone dependent events. Our work may help to bridge the fields of metastasis and differentiation, and the mechanisms of steroid action

  4. The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles

    Šimor, M.; Creyghton, Y.; Wypkema, A.W.; Zemek, J.

    2010-01-01

    The surface of high-performance poly(ethylene terephthalate) (PET) fibers is difficult to wet and impossible to chemically bond to different matrices. Sizing applied on the fiber surface usually improves fiber wetting, but prevents good adhesion between a matrix and the fiber surface. The present st

  5. The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles

    Šimor, M.; Creyghton, Y.; Wypton, A.; Zemek, Josef

    2010-01-01

    Roč. 24, č. 1 (2010), s. 77-97. ISSN 0169-4243 Institutional research plan: CEZ:AV0Z10100521 Keywords : adhesion * plasma treatment * surface DBD * composite * surface modification * XPS * PET Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.980, year: 2010

  6. The effect of intense pulsed electron beam irradiation on the adhesion of NiCrAlY arc-vacuum coatings of gas turbine engine blades from GhS26NK alloy

    The present paper reviews the experimental results dedicated to the effect of irradiating conditions with intense pulsed electron beams on the adhesion of NiCrAlY resistant coatings to gas turbine engine blades from GhS26NK alloy. It is shown that intense pulsed electron beam of microsecond duration is high effective instrument for repair of turbine blades from refractory nickel alloys with resistant coatings. (authors)

  7. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    Kolkova, K; Novitskaya, V; Pedersen, N;

    2000-01-01

    ), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently......The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma...... transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor...

  8. Supporting data for characterization of non-coding RNAs associated with the Neuronal growth regulator 1 (NEGR1) adhesion protein.

    Kaur, Prameet; Tan, Jun Rong; Karolina, Dwi Setyowati; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Peter Wong, Tsun-Hon; Jeyaseelan, Kandiah

    2016-06-01

    Long non-coding RNAs and microRNAs control gene expression to determine central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that plays an important role in neurite outgrowth during neuronal development and its precise expression is crucial for correct brain development. The data described here is related to the research article titled "A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of Neuronal growth regulator 1 (NEGR1) adhesion protein" [1]. This data article contains detailed bioinformatics analysis of genetic signatures at the Negr1 gene locus retrieved from the UCSC genome browser. This approach could be adopted to identify putative regulatory non-coding RNAs in other tissues and diseases. PMID:26977442

  9. Mussel adhesive protein coating: A potential therapeutic method for self-healing of cracked teeth

    Li Bo-Lin; Cao Ying; Li Quan-Li

    2015-01-01

    Introduction: Nowadays, cracked tooth syndrome is the third main cause of tooth extraction, following caries and periodontal diseases, done in almost all the dental clinics. Nevertheless, the diagnosis and treatment of this condition remain controversial. All candidate therapeutics, such as occlusal adjustment, preventive filling, root canal therapy (RCT), and crown restoration, provide unpredictable outcomes. As such, methods to prevent further crack development and to induce crack self-heal...

  10. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  11. Identification, characterization, and expression levels of putative adhesive proteins from the tube-dwelling polychaete Sabellaria alveolata.

    Becker, Pierre T; Lambert, Aurélie; Lejeune, Annabelle; Lanterbecq, Déborah; Flammang, Patrick

    2012-10-01

    The shelter of the tube-dwelling polychaete Sabellaria alveolata is composed of mineral particles assembled with spots of a proteinaceous cement. The adhesive proteins constituting the cement were identified on the basis of their sequence similarity with proteins of a phylogenetically related species, Phragmatopoma californica. Two positively charged proteins, Sa-1 and Sa-2, share common features: they both have a mass of 22 kDa; are rich in glycine, tyrosine and basic residues; and show repeated peptide motifs. The consensus repeat of Sa-1 is KGAYGAKGLGYGNKAGYGAYG (occurring 6-8 times), while Sa-2 displays the consensus heptapeptide VHKAAWG (5 times) and undecapeptide VHKAAGYGGYG (8 times). Two variants of a serine-rich protein, Sa-3A (22 kDa) and Sa-3B (21 kDa), were also identified. Their serine residues account for 75 mol% and are probably phosphorylated, meaning that Sa-3 is very acidic and negatively charged. Moreover, tyrosine residues of all adhesive proteins are presumably modified into DOPA. Although protein sequences are not well-conserved between S. alveolata and P. californica, their main characteristics (including amino acid composition, post-translational modifications, repeated patterns, isoelectric point, and mass) are shared by both species. This suggests that these features are more important for their function than the primary structure of the proteins. The mRNA abundance for each protein was estimated by quantitative real-time PCR, revealing relative expression levels of about 5, 11, 1.5, and 1 for Sa-1, -2, -3A, and -3B, respectively. These levels could be indicative of charge neutralization phenomena or could reflect their function (interface vs. bulk) in the cement. PMID:23111133

  12. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA

    Hemenway, Cynthia; Fang, Rong-Xiang; Kaniewski, Wojciech K.; Chua, Nam-Hai; Tumer, Nilgun E.

    1988-01-01

    Transgenic tobacco plants engineered to express either the potato virus X (PVX) coat protein (CP+) or the antisense coat protein transcript (CP-antisense) were protected from infection by PVX, as indicated by reduced lesion numbers on inoculated leaves, delay or absence of systemic symptom development and reduction in virus accumulation in both inoculated and systemic leaves. The extent of protection observed in CP+ plants primarily depended upon the level of expression of the coat protein. P...

  13. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control. - Highlights: ► Crosslinked proteins and antimicrobials agents was able to preserve strawberries. ► Crosslinked protein structure was more ordered. ► Films based on crosslinked proteins and methylcellulose enhanced puncture strength.

  14. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review.

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  15. Bacterial Adhesion & Blocking Bacterial Adhesion

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  16. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  17. Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium–tungsten and tantalum as adhesion layers

    Thakur, D.B.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2009-01-01

    Coatings of carbon nanofiber (CNF) layers were synthesized on fused silica substrates using a catalytic thermal chemical vapor deposition process (C-TCVD). The effects of various adhesion layers–titanium, titanium–tungsten and tantalum–under the nickel thin film on the attachment of carbon nanofiber

  18. DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells

    Hsiao, Sonny C.; Crow, Ailey K.; Lam, Wilbur A.; Bertozzi, Carolyn R.; Fletcher, Daniel A.; Francis, Matthew B.

    2008-08-01

    Measurement of receptor adhesion strength requires the precise manipulation of single cells on a contact surface. To attach live cells to a moveable probe, DNA sequences complementary to strands displayed on the plasma membrane are introduced onto AFM cantilevers (see picture, bp=base pairs). The strength of the resulting linkages can be tuned by varying the length of DNA strands, allowing for controlled transport of the cells.

  19. Contact time- and pH-dependent adhesion and cohesion of low molecular weight chitosan coated surfaces

    Lim, C; Lee, DW; Israelachvili, JN; Jho, Y; Hwang, DS

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Low molecular weight chitosan (LMW chitosan, ∼5 kDa) potentially has many desirable biomedical applications such as anti-microbial, anti-tumor, and anti-diabetes. Unlike high molecular weight chitosan, LMW chitosan is easily dissolvable in aqueous solutions even at neutral and basic pH, but its dissolution mechanism is not well understood. Here, we measured adhesion and cohesion of molecularly thin LMW chitosan films in aqueous solutions in different ...

  20. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2) Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    Salih Gulsen; Dilek Cokeliler; Hilal Goktas; Aysu Kucukturhan; Bilgehan Ozcil; Hakan Caner

    2014-01-01

    Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2) could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and unc...

  1. Radiation induced modification of polyetherurethane films and tubes: platelet adhesion and in vivo experiments

    The measurement of platelet adhesion to polyetherurethane films grafted (via the preswelling technique) with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AAm), performed by means of the stagnation point flow experiment (SPFE-test) as well as with the aid of the bioluminescence assay, is described. Platelet adhesion is found to decrease if the interfacial free energy γ /sub sw/ of the polymer surfaces decreases. Adhesion to protein-coated, grafted polyetherurethane films (coated with albumin, γ-globulin, fibrinogen, fibronectin or a protein mixture) depends on the nature of the protein used: precoating of the films with albumin or γ-globulin leads to a decrease, precoating with fibrinogen or fibronectin to an increase in platelet adhesion. Also we report about early experiences with HEMA-grafted polyetherurethane tubes in implantation experiments

  2. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins

    The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine–glycine–aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks. (paper)

  3. The adhesive protein of Choromytilus chorus (Molina, 1782) and Aulacomya ater (Molina, 1782): a proline-rich and a glycine-rich polyphenolic protein.

    Burzio, L A; Saéz, C; Pardo, J; Waite, J H; Burzio, L O

    2000-06-15

    The adhesive polyphenolic proteins from Aulacomya ater and Choromytilus chorus with apparent molecular masses of 135000 and 105000, respectively, were digested with trypsin and the peptides produced resolved by reversed phase liquid chromatography. About 5 and 12 major peptides were obtained from the protein of A. ater and C. chorus, respectively. The major peptides were purified by reverse-phase chromatography and the amino acid sequence indicates that both polyphenolic proteins consisted of repeated sequence motifs in their primary structure. The major peptides of A. ater contain seven amino acids corresponding to the consensus sequence AGYGGXK, whereas the tyrosine was always found as 3, 4-dihydroxyphenylalanine (Dopa), the X residue in position 6 was either valine, leucine or isoleucine, and the carboxy terminal was either lysine or hydroxylysine. On the other hand, the major peptides of C. chorus ranged in size from 6 to 21 amino acids and the majority correspond to the consensus sequence AKPSKYPTGYKPPVK. Both proteins differ markedly in the sequence of their tryptic peptides, but they share the common characteristics of other adhesive proteins in having a tandem sequence repeat in their primary structure. PMID:11004549

  4. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Bernadette Sosa-García

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  5. Yeast Gga Coat Proteins Function with Clathrin in Golgi to Endosome Transport

    Costaguta, G; Stefan, C. J.; Bensen, E. S.; Emr, S D; Payne, G S

    2001-01-01

    Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the “ear” domain of the clathrin adaptor AP-1 γ subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Δ), the major Gga protein...

  6. Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses

    Nielsen, Janne; Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    interactions, thereby modulating a range of biological processes. This review summarizes interactions between NCAM and other CAMs and ECM proteins. Additionally, the role of NCAM as a receptor for rabies virus, and its implications in rabies infections is briefly described. Interactions between NCAM and its...

  7. Study in electron microscopy the formation of the hybrid layer using adhesive systems One Coat and Single Bond Universal, at the Facultad de Medicina of the Universidad de Costa Rica

    The formation of the hybrid layer is observed in dental pieces in vitro, using systems of conventional adhesives (Single Bond 2 of 3M and One Coat of Coltene), with different times of acid etching, through the use of atomic force microscopy (AFM). The images of the hybrid layer obtained from samples prepared with adhesive systems are analyzed by AFM. Samples collected have been of dental pieces (molars and premolars) recently extracted and later placed in water. The pieces used have provided more surface to be observed under the microscope, greater accessibility to the be cut for its study, and to the great pieces have facilitated their placement on the Isomet low speed saw. The differences are evaluated between hybrid layers according the adhesive system used and the mode of application of the images obtained in the atomic force microscope. The adhesive system that has allowed the formation of a hybrid layer more appropriate between the adhesive system One Coat and the adhesive system Single Bond Universal is determined. The time of acid etching as variable of procedure is determined and has interfered with the formation of a hybrid layer more stable. The images evaluated that were provided by the atomic force microscope and compared with the images of electron microscopy of other studies, have determined that the AFM is without providing detailed information, as well as the appropriate images to evaluate the hybrid layer of the adhesive systems Single Bond 2 and One Coat of Coltene, or the different times of acid etching. Therefore, for this type of study, the image of choice must be of an electron microscope

  8. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface

    Musílková, Jana; Kotelnikov, Ilya; Novotná, Katarína; Pop-Georgievski, Ognen; Rypáček, František; Bačáková, Lucie; Proks, Vladimír

    2015-01-01

    Roč. 26, č. 11 (2015), s. 253. ISSN 0957-4530 R&D Projects: GA ČR(CZ) GAP108/11/1857; GA ČR(CZ) GAP108/12/1168; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61389013 Keywords : protein repulsive surface * cell adhesion * RGD * endothelial cells Subject RIV: EI - Biotechnology ; Bionics; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.587, year: 2014

  9. Outer Membrane Proteins of Fibrobacter succinogenes with Potential Roles in Adhesion to Cellulose and in Cellulose Digestion▿

    Jun, Hyun-Sik; Qi, Meng; Gong, Joshua; Egbosimba, Emmanuel E.; Forsberg, Cecil W.

    2007-01-01

    Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membr...

  10. Cdc42 Effector Protein 2 (XCEP2 is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis

    Nelson Richard W

    2004-10-01

    Full Text Available Abstract Background Rho GTPases and their downstream effector proteins regulate a diverse array of cellular processes during embryonic development, including reorganization of cytoskeletal architecture, cell adhesion, and transcription. Changes in the activation state of Rho GTPases are converted into changes in cellular behavior by a diversity of effector proteins, which are activated in response to changes in the GTP binding state of Rho GTPases. In this study we characterize the expression and function of one such effector, XCEP2, that is present during gastrulation stages in Xenopus laevis. Results In a search for genes whose expression is regulated during early stages of embryonic development in Xenopus laevis, a gene encoding a Rho GTPase effector protein (Xenopus Cdc42 effector protein 2, or XCEP2 was isolated, and found to be highly homologous, but not identical, to a Xenopus sequence previously submitted to the Genbank database. These two gene sequences are likely pseudoalleles. XCEP2 mRNA is expressed at constant levels until mid- to late- gastrula stages, and then strongly down-regulated at late gastrula/early neurula stages. Injection of antisense morpholino oligonucleotides directed at one or both pseudoalleles resulted in a significant delay in blastopore closure and interfered with normal embryonic elongation, suggesting a role for XCEP2 in regulating gastrulation movements. The morpholino antisense effect could be rescued by co-injection with a morpholino-insensitive version of the XCEP2 mRNA. Antisense morpholino oligonucleotides were found to have no effect on mesodermal induction, suggesting that the observed effects were due to changes in the behavior of involuting cells, rather than alterations in their identity. XCEP2 antisense morpholino oligonucleotides were also observed to cause complete disaggregation of cells composing animal cap explants, suggesting a specific role of XCEP2 in maintenance or regulation of cell

  11. Effect of osteopontin on the initial adhesion of dental bacteria.

    Schlafer, Sebastian; Meyer, Rikke L; Sutherland, Duncan S; Städler, Brigitte

    2012-12-28

    Bacterial biofilms are involved in numerous infections of the human body, including dental caries. While conventional therapy of biofilm diseases aims at eradication and mechanical removal of the biofilms, recent therapeutic approaches target the mechanisms of biofilm formation and bacterial adhesion in particular. The effect of bovine milk osteopontin, a highly phosphorylated whey protein, on adhesion of Streptococcus mitis, Streptococcus sanguinis, and Actinomyces naeslundii, three prominent colonizers in dental biofilms, to saliva-coated surfaces was investigated. While adhesion of A. naeslundii was not affected by osteopontin, a strong, dose-dependent reduction in the number of adhering S. mitis was shown. No difference in bacterial adhesion was observed for caseinoglycomacropeptide, another phosphorylated milk protein. Osteopontin did not affect bacterial viability, but changed bacterial surface hydrophobicity, and may be suggested to prevent the adhesins of S. mitis from interacting with their salivary receptors. The antiadhesive effect of osteopontin may be useful for caries prevention. PMID:23167781

  12. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele, Bucharest (Romania); Mitu, B.; Filipescu, M.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania)

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm{sup −2}. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  13. Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties

    To assemble into a virus with icosahedral symmetry, capsid proteins must be able to attain multiple conformations. Whether this conformational diversity is achieved during folding of the subunit, or subsequently during assembly, is not clear. Phage P22 coat protein offers an ideal model to investigate the folding of a monomeric capsid subunit since its folding is independent of assembly. Our early studies indicated that P22 coat protein monomers could be folded into an assembly-competent state in vitro, with evidence of a kinetic intermediate. Using urea denaturation, coat protein monomers are shown to be marginally stable. The reversible folding of coat protein follows a three-state model, N ↔ I ↔ U, with an intermediate exhibiting most of the tryptophan fluorescence of the folded state, but little secondary structure. Folding and unfolding kinetics monitored by circular dichroism, tryptophan fluorescence, and bisANS fluorescence indicate that several kinetic intermediates are populated sequentially through parallel channels en route to the native state. Additionally, two native states were identified, suggesting that the several conformers required to assemble an icosahedral capsid may be found in solution before assembly ensues

  14. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R; Woods, Anne

    2003-01-01

    Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC......, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase....

  15. Membrane Tension Inhibits Deformation by Coat Proteins in Clathrin-Mediated Endocytosis

    Hassinger, Julian; Drubin, David; Oster, George; Rangamani, Padmini

    2016-02-01

    In clathrin-mediated endocytosis (CME), clathrin and various adaptor proteins coat a patch of the plasma membrane, which is reshaped to form a budded vesicle. Experimental studies have demonstrated that elevated membrane tension can inhibit bud formation by a clathrin coat. In this study, we investigate the impact of membrane tension on the mechanics of membrane budding by simulating clathrin coats that either grow in area or progressively induce greater curvature. At low membrane tension, progressively increasing the area of a curvature-generating coat causes the membrane to smoothly evolve from a flat to budded morphology, whereas the membrane remains essentially flat at high membrane tensions. Interestingly, at physiologically relevant, intermediate membrane tensions, the shape evolution of the membrane undergoes a snapthrough instability in which increasing coat area causes the membrane to "snap" from an open, U-shaped bud to a closed, $\\Omega$-shaped bud. This instability is accompanied by a large energy barrier, which could cause a developing endocytic pit to stall if the binding energy of additional coat is insufficient to overcome this barrier. Similar results were found for a coat of constant area in which the spontaneous curvature progressively increases. Additionally, a pulling force on the bud, simulating a force from actin polymerization, is sufficient to drive a transition from an open to closed bud, overcoming the energy barrier opposing this transition.

  16. Evaluation of C-Reactive Protein, Endothelin-1, Adhesion Molecule(s), and Lipids as Inflammatory Markers in Type 2 Diabetes Mellitus Patients

    2007-01-01

    This study compared lipids, the product of lipid peroxidation malondialdehyde (MDA), the acute phase reactant high-sensitive C-reactive protein (hsCRP), endothelin-1 (ET-1), P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) between healthy controls, subjects with ischemic heart disease (IHD) and type 2 diabetes mellitus (DM) subjects who did not perform coronary artery bypass graft (CABG) surgery as well as type 2 DM subjects who performed ...

  17. Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo.

    Grdzelishvili, V Z; Chapman, S N; Dawson, W O; Lewandowski, D J

    2000-09-15

    The Tobacco mosaic virus movement protein (MP) and coat protein (CP) are expressed from 3'-coterminal subgenomic RNAs (sgRNAs). The transcription start site of the MP sgRNA, previously mapped to positions 4838 (Y. Watanabe, T. Meshi, and Y. Okada (1984), FEBS Lett. 173, 247-250) and 4828 (K. Lehto, G. L. Grantham, and W. O. Dawson (1990), Virology 174, 145-157) for the TMV OM and U1 strains, respectively, has been reexamined and mapped to position 4838 for strain U1. Sequences of the MP and CP sgRNA promoters were delineated by deletion analysis. The boundaries for minimal and full MP sgRNA promoter activity were localized between -35 and +10 and -95 and +40, respectively, relative to the transcription start site. The minimal CP sgRNA promoter was mapped between -69 and +12, whereas the boundaries of the fully active promoter were between -157 and +54. Computer analysis predicted two stem-loop structures (SL1 and SL2) upstream of the MP sgRNA transcription start site. Deletion analysis and site-directed mutagenesis suggested that SL1 secondary structure, but not its sequence, was required for MP sgRNA promoter activity, whereas a 39-nt deletion removing most of the SL2 region increased MP sgRNA accumulation fourfold. Computer-predicted folding of the fully active CP sgRNA promoter revealed one long stem-loop structure. Deletion analysis suggested that the upper part of this stem-loop, located upstream of the transcription start site, was essential for transcription and that the lower part of the stem had an enhancing role. PMID:11017798

  18. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-01

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. PMID:27155306

  19. Human epididymis protein 4 (HE4) plays a key role in ovarian cancer cell adhesion and motility

    Highlights: ► We generated stable transduced HE4 overexpression and knockdown cells. ► HE4 was associated with EOC cell adhesion and motility. ► HE4 might have some effects on activation of EGFR-MAPK signaling pathway. ► HE4 play an important role in EOC tumorigenicity. -- Abstract: Human epididymis protein 4 (HE4) is a novel and specific biomarker for epithelial ovarian cancer (EOC). We previously demonstrated that serum HE4 levels were significantly elevated in the majority of EOC patients but not in subjects with benign disease or healthy controls. However, the precise mechanism of HE4 protein function is unknown. In this study, we generated HE4-overexpressing SKOV3 cells and found that stably transduced cells promoted cell adhesion and migration. Knockdown of HE4 expression was achieved by stable transfection of SKOV3 cells with a construct encoding a short hairpin DNA directed against the HE4 gene. Correspondingly, the proliferation and spreading ability of HE4-expressed cells were inhibited by HE4 suppression. Mechanistically, impaired EGFR and Erk1/2 phosphorylation were observed in cells with HE4 knockdown. The phosphorylation was restored when the knockdown cells were cultured in conditioned medium containing HE4. Moreover, in vivo tumorigenicity showed that HE4 suppression markedly inhibited the growth of tumors. This suggests that expression of HE4 is associated with cancer cell adhesion, migration and tumor growth, which can be related to its effects on the EGFR-MAPK signaling pathway. Our results provide evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of HE4 in EOC progression. The role of HE4 as a target for gene-based therapy might be considered in future studies.

  20. Marine biofouling of surfaces: morphology, and nanomechanics of Barnacle Cyprid adhesion proteins by AFM

    Phang, In Yee

    2008-01-01

    The understanding of biointerfaces in contact with seawater is crucially important in tackling the problems of marine biofouling. Such biointerfaces involve the bioadhesives used by marine organisms to attach temporary or permanently to the surfaces immersed in water. The aim of this Thesis is to address a particular problem, i.e. barnacle adhesion, to the biointerface and the corresponding fouling process. We try to understand the first steps of the fouling process of this species, and help ...

  1. Influence of preadsorbed milk proteins on adhesion of Listeria monocytogenes to hydrophobic and hydrophilic silica surfaces.

    al-Makhlafi, H; McGuire, J.; Daeschel, M

    1994-01-01

    The adsorption of beta-lactoglobulin, bovine serum albumin, alpha-lactalbumin, and beta-casein for 8 h and beta-lactoglobulin and bovine serum albumin for 1 h at silanized silica surfaces of low and high hydrophobicity, followed by incubation in buffer and contact with Listeria monocytogenes, resulted in different numbers of cells adhered per unit of surface area. Adhesion to both surfaces was greatest when beta-lactoglobulin was present and was lowest when bovine serum albumin was present. P...

  2. Effect of Milk Proteins on Adhesion of Bacteria to Stainless Steel Surfaces

    Barnes, L. M.; Lo, M. F.; Adams, M. R.; Chamberlain, A. H. L.

    1999-01-01

    Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. m...

  3. Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings.

    Vilardell, A M; Cinca, N; Jokinen, A; Garcia-Giralt, N; Dosta, S; Cano, I G; Guilemany, J M

    2016-01-01

    Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule-molecule interactions but also molecule-material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. PMID:27618911

  4. Cell Adhesion on Surface-Functionalized Magnesium.

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  5. Adhesion and interface problems of EB-PVD thermal barrier coatings; Grenzschichtproblematik und Haftung von EB-PVD-Waermedaemmschichtsystemen

    Fritscher, K.; Leyens, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Werkstoff-Forschung

    1996-12-31

    Loss of adhesion in thermal insulation layers produced by EB-PVD may be caused by surface morphologies or oxide phases resulting from previous process stages, e.g. shot peening, or inappropriate annealing conditions. These undesirable oxide phases are mostly spinels and silicates which pose mechanical problems. Annealing and densification must be modified in order to promote the formation of {alpha}-Al{sub 2}O{sub 3} layers. It may also be possible to avoid certain categories of flaws by changing one material partner (e.g. by using {beta}-NiAl-free adhesive layers). [Deutsch] Die Ursachen der Einbussen der Haftung in WDS-Systemen aus EB-PVD-Fertigung liegen oft in der Ausbildung von Oberflaechenmorphologien oder von Oxidphasen begruendet, die aus den der WDS-Beschichtung vorangehenden Verfahrensschritten wie z.B. des Glasperlstrahlens und von unangemessenen Gluehbedingungen herruehren koennen. Bei diesen unerwuenschten Oxidphasen handelt es sich u.a. um Spinelle und Silikate, die in mechanischer Hinsicht problematisch sind. Glueh- und Verdichtungsroutinen sind entsprechend zu modifizieren, um die Bildung von {alpha}-Al{sub 2}O{sub 3}-Schichten zu foerdern. Moeglicherweise sind gewisse Fehlerkategorien bereits dadurch zu umgehen, dass ein Materialpartner geaendert wird (Beispiel: {beta}-NiAl-freie Haftschichten anwenden). (orig.)

  6. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    2010-07-01

    ...; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. 174.515 Section 174.515 Protection of...

  7. 40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.

    2010-07-01

    ...; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of plum pox virus; exemption from the requirement of a tolerance. 174.531 Section 174.531 Protection of...

  8. Acetylene plasma coated surfaces for covalent immobilization of proteins

    A modified plasma enhanced chemical vapor method was used for acetylene plasma polymerization of biocompatible surfaces on a range of substrates. Smooth polymerized surfaces with excellent mechanical properties were achieved suitable for a wide range of biochemical and biomedical applications. Horseradish peroxidase activity analysis showed that the proteins immobilized on the plasma polymerized surfaces maintained their biological function for a much longer period of time compared to untreated surfaces. The plasma polymerized surfaces and the protein immobilization were also analyzed using quartz crystal microbalance with dissipation analysis, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and tensile strength analysis. The results indicate that the plasma polymerized surfaces provide covalent bonding sites and immobilize a dense monolayer of proteins after incubation in protein containing solution.

  9. Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics.

    Perisic, Ljubica; Lal, Mark; Hulkko, Jenny; Hultenby, Kjell; Önfelt, Björn; Sun, Ying; Dunér, Fredrik; Patrakka, Jaakko; Betsholtz, Christer; Uhlen, Mathias; Brismar, Hjalmar; Tryggvason, Karl; Wernerson, Annika; Pikkarainen, Timo

    2012-11-01

    Pleckstrin homology domain-containing, family H (with MyTH4 domain), member 2 (Plekhh2) is a 1491-residue intracellular protein highly enriched in renal glomerular podocytes for which no function has been ascribed. Analysis of renal biopsies from patients with focal segmental glomerulosclerosis revealed a significant reduction in total podocyte Plekhh2 expression compared to controls. Sequence analysis indicated a putative α-helical coiled-coil segment as the only recognizable domain within the N-terminal half of the polypeptide, while the C-terminal half contains two PH, a MyTH4, and a FERM domain. We identified a phosphatidylinositol-3-phosphate consensus-binding site in the PH1 domain required for Plekhh2 localization to peripheral regions of cell lamellipodia. The N-terminal half of Plekkh2 is not necessary for lamellipodial targeting but mediates self-association. Yeast two-hybrid screening showed that Plekhh2 directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Plekhh2 and Hic-5 coprecipitated and colocalized at the soles of podocyte foot processes in situ and Hic-5 partially relocated from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. In addition, Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Our findings suggest a structural and functional role for Plekhh2 in the podocyte foot processes. PMID:22832517

  10. Coassembly of Tobacco Mosaic Virus Coat Proteins into Nanotubes with Uniform Length and Improved Physical Stability.

    Zhou, Kun; Eiben, Sabine; Wang, Qiangbin

    2016-06-01

    Using tobacco mosaic virus coat proteins (TMVcp) from both sources of the plant and bacterial expression systems as building blocks, we demonstrate here a coassembly strategy of TMV nanotubes in the presence of RNA. Specifically, plant-expressed cp (cpp) efficiently dominates the genomic RNA encapsidation to determine the length of assembled TMV nanotubes, whereas the incorporated Escherichia coli-expressed cp (cpec) improves the physical stability of TMV nanotubes by introducing disulfide bonds between the interfaces of subunits. We expect this coassembly strategy can be expanded to other virus nanomaterials to obtain desired properties based on rationally designed protein-RNA and protein-protein interfacial interactions. PMID:27188634

  11. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112

    Peeters, Miriam C; Mos, Iris; Lenselink, Eelke B;

    2016-01-01

    The adhesion G protein-coupled receptors (ADGRs/class B2 G protein-coupled receptors) constitute an ancient family of G protein-coupled receptors that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight into the struct......The adhesion G protein-coupled receptors (ADGRs/class B2 G protein-coupled receptors) constitute an ancient family of G protein-coupled receptors that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight...... identified several potential equivalent motifs and subjected those to mutational analysis. The importance of the mutated residues was evaluated by examining their effect on the high constitutive activity of the N-terminally truncated ADGRG4/GPR112 in a 1-receptor-1-G protein Saccharomyces cerevisiae...

  12. Application of Bonded Joints for Quantitative Analysis of Adhesion

    Jarmila Trpčevská

    2016-01-01

    Full Text Available The performance of hot-dip coated steel sheets is associated with properties of the zinc coatings on steel substrate. For the characterization of the adhesion behaviour of zinc coating on steel various tests were employed. The study was focused on quantification assessment of galvanized coating adhesion to substrates. Methods for evaluation of the bonding strength of zinc coating by the shear strength and the T-peel tests applying four special types of adhesives were used. The experimental tests of bonded joints show that the adhesion of the zinc coating to the substrate was higher than that of the applied adhesive with the highest strength.

  13. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  14. Distinct Mechanisms Regulate ATGL-Mediated Adipocyte Lipolysis by Lipid Droplet Coat Proteins

    Yang, Xingyuan; Heckmann, Bradlee L; Zhang, Xiaodong; Smas, Cynthia M.; Liu, Jun

    2012-01-01

    Adipose triglyceride lipase (ATGL) is the key triacylglycerol hydrolase in adipocytes. The precise mechanisms by which ATGL action is regulated by lipid droplet (LD) coat proteins and responds to hormonal stimulation are incompletely defined. By combining usage of loss- and gain-of-function approaches, we sought to determine the respective roles of perilipin 1 and fat-specific protein 27 (FSP27) in the control of ATGL-mediated lipolysis in adipocytes. Knockdown of endogenous perilipin 1 expre...

  15. 75 FR 29431 - Coat Protein of Plum Pox Virus; Exemption from the Requirement of a Tolerance

    2010-05-26

    ... Findings In the Federal Register of November 14, 2008 (73 FR 67512) (FRL- 8388-3), EPA issued a notice... fact that plum pox virus coat protein has been in the human diet without adverse effects, and the... the human diet and exist in the human intestine without negative effects was reviewed by the...

  16. Polyclonal Antibodies to a Recombinant Coat Protein of Potato Virus A

    Čeřovská, Noemi; Moravec, Tomáš; Velemínský, Jiří

    2002-01-01

    Roč. 46, - (2002), s. 147-151. ISSN 0001-723X R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato virus A * recombinant coat protein * Escherichia coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.660, year: 2002

  17. Importance of coat protein and RNA silencing in satellite RNA/virus interactions

    RNA silencing is a major defense mechanism that plants use to fight an invading virus. The silencing suppressor of Turnip crinkle virus (TCV) is the viral coat protein (CP), which obstructs the DCL2/DCL4 silencing pathway. TCV is associated with a virulent satellite RNA (satC) that represses the a...

  18. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco; Deryabina, Maria; Hansen, Mikkel Fougt; Metlushko, Vitali; Ilic, Bojan; Cantoni, Matteo; Petti, Daniela; Brivio, Stefano; Bertacco, Riccardo

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...

  19. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption. PMID:27078512

  20. Evaluation of the Correlation between Focal Adhesion Kinase Phosphorylation and Cell Adhesion Force Using “DEP” Technology

    Huaang-Youh Hurng

    2012-05-01

    Full Text Available Dielectrophoresis (DEP is the phenomenon in which a particle, such as a living cell, is polarized and moved by electrical gravity in a non-uniform electric field. In the present study, the DEP force is utilized to act on the cells to induce spatial movement for investigating the correlation between the cell adhesion force and activation level of focal adhesion kinase (FAK. The DEP force produced by the non-uniform electric field was used to measure the cell adhesion force of ECV304 cells, on type 1 collagen (COL1- and fibronectin (FN-coated polydimethylsiloxane (PDMS membranes. For COL1-coating, ECV304 cells revealed weak and variable adhesion force (0.343–0.760 nN in the first eight hours of incubation. Interestingly, the cell adhesion force of ECV304 at two and five hours of cultivation was significantly high and matched their FAK activation level. In comparison, ECV304 on FN-coated membrane had higher and more stable cell adhesion force (0.577–2.053 nN. FN coating intensified the cell adhesion force of ECV304 with culture time and similar outcome was present on the activation level of FAK. Therefore, this study demonstrated a relationship between cell adhesion force and FAK activation level that was dependant on the choice of the extracellular matrix (ECM component. Subsequently, two tyrosine kinase inhibitors (AG18 and genistein and one PI3K inhibitor (LY294002 were applied to study the influence of protein phosphorylation on the cell adhesion force. FAK plays an important role on cell attachment and DEP force measurement is a useful technique for studying cell adhesion.

  1. Radiation induced modification of polyetherurethane films and tubes: platelet adhesion and in vivo experiments

    The measurement of platelet adhesion to polyetherurethane films grafted (via the preswelling technique) with 2-hydroxyethyl methacrylate (HEMA) and acrylamide, performed by means of the stagnation point flow experiment as well as with the aid of the bioluminescence assay, is described. Platelet adhesion is found to decrease if the interfacial free energy γsub(SW) of the polymer surfaces decreases. Adhesion to protein-coated, grafted polyetherurethane films depends on the nature of the protein used: precoating of the films with albumin or γ-globulin leads to a decrease, pre-coating with fibrinogen or fibronectin to an increase in platelet adhesion. Also we report about early experiences with HEMA-grafted polyetherurethane tubes in implantation experiments. (author)

  2. A role for the WH-30 protein in sperm-sperm adhesion during rouleaux formation in the guinea pig.

    Flaherty, S P; Swann, N J; Primakoff, P; Myles, D G

    1993-03-01

    Mammalian spermatozoa participate in specific cell adhesion phenomena during their development and functional lifespan; this includes interaction with Sertoli cells, the zona pellucida, and the oolemma. In some species such as the guinea pig, an additional sperm-sperm adhesion occurs during epididymal maturation which results in the formation of rouleaux in which the sperm heads are stacked one upon the other and the periacrosomal plasma membranes of adjacent sperm are linked by periodic cross-bridges. In this study, we have used a monoclonal antibody to investigate the role of the WH-30 protein on the sperm surface in the formation of the junctional zones between adjacent guinea pig sperm in rouleaux. WH-30 monoclonal antibodies caused a dose- and time-dependent dissociation of rouleaux and an increase in the percentage of single, acrosome-intact sperm; there were no effects on sperm motility (maintained at 80-90%) or ultrastructure during the 120-min incubations. The maximal effect of about 80% single sperm was obtained with a 1:4 dilution of the WH-30 hybridoma supernatant or 5-50 micrograms/ml of purified WH-30 IgG. In contrast, incubation of sperm in AH-20 IgG, myeloma cell supernatants, or purified, nonspecific mouse IgG1 had no effect on rouleaux. Treatment of sperm with a WH-30 Fab fragment resulted in almost complete dissociation of rouleaux without any observed effect on sperm motility or acrosomal status. Surface labeling of sperm followed by immunoprecipitation and SDS-PAGE revealed that the WH-30 antibody recognizes a single polypeptide of 43-45 kDa. Using immunofluorescence, the WH-30 protein was localized over the entire surface of the sperm head (whole-head pattern), and immunogold labeling showed that WH-30 is localized in the glycocalyx on both the dorsal and ventral surfaces of the periacrosomal and postacrosomal plasma membranes. These results indicate that the WH-30 protein on the sperm surface is a cell adhesion protein which is involved in

  3. Biomechanical properties of Achilles tendon repair augmented with a bioadhesive-coated scaffold

    Brodie, Michael; Vollenweider, Laura; John L. Murphy; Xu, Fangmin; Lyman, Arinne; Lew, William D; Lee, Bruce P.

    2011-01-01

    The Achilles tendon is the most frequently ruptured tendon. Both acute and chronic (neglected) tendon ruptures can dramatically affect a patient’s quality of life, and require a prolonged period of recovery before return to pre-injury activity levels. This paper describes the use of an adhesive-coated biologic scaffold to augment primary suture repair of transected Achilles tendons. The adhesive portion consisted of a synthetic mimic of mussel adhesive proteins that can adhere to various surf...

  4. Self-assembled covalent capillary coating of diazoresin/carboxyl fullerene for analysis of proteins by capillary electrophoresis and a comparison with diazoresin/graphene oxide coating.

    Yu, Bing; Shu, Xi; Cong, Hailin; Chen, Xin; Liu, Huwei; Yuan, Hua; Chi, Ming

    2016-03-11

    Self-assembled and covalently linked capillary coatings of carboxyl fullerenes (C60-COOH) were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/C60-COOH coatings based on ionic bonding was fabricated first on the inner surface of silica capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. The covalently bonded coatings had the ability of suppressing protein adsorption on the inner surface of silica capillary, and thus the baseline separation of lysozyme (Lys), cytochrome c (Cyt-c), bovine serum albumin (BSA) and myoglobin (Mb) was achieved within 13min by using capillary electrophoresis (CE). The covalently linked DR/C60-COOH capillary coatings presented good chemical stability and repeatability. The reproducibility of the separation of proteins was less than 1%, 2.5%, and 3.5%, respectively, for run-to-run, day-to-day, capillary-to-capillary, respectively; and the RSD of migration time for the proteins are all less than 2.5% after a continuous 100 times running in a coating column. Compared with DR/graphene oxide (GO) coatings prepared by the same method, the DR/C60-COOH capillary coatings showed excellent protein separation performance due to a self-lubrication based anti-fouling mechanism. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE. PMID:26875118

  5. ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs.

    Shimazaki, A; Tanaka, Y; Shinosaki, T; Ikeda, M; Watada, H; Hirose, T; Kawamori, R; Maeda, S

    2006-11-01

    We have previously identified the engulfment and cell motility 1 (ELMO1) as a susceptibility gene for diabetic nephropathy. To elucidate the role of ELMO1 in the pathogenesis of chronic renal injury, we examined the expression of Elmo1 in the kidney of a rat model for chronic glomerulonephritis (uninephrectomy plus anti-Thy1.1 antibody [E30] injection). We found that the expression of the Elmo1 was significantly increased in the renal cortex and glomeruli of uninephrectomized rats injected with E30 compared to controls. By in situ hybridization, the expression of Elmo1 was shown to be elevated in the diseased kidney, especially in glomerular epithelial cells. In COS cells, the overexpression of ELMO1 resulted in a substantial increase in fibronectin expression, whereas the depletion of the ELMO1 by small interfering RNA (siRNA) targeting ELMO1 significantly suppressed the fibronectin expression in ELMO1 overexpressing and control cells. We also found that the expression of integrin-linked kinase (ILK) was significantly increased in ELMO1 overexpressing cells, and the ELMO1-induced increase in fibronectin was partially, but significantly, inhibited by siRNA targeting ILK. Furthermore, we identified that the cell adhesion to ECMs was considerably inhibited in cells overexpressing ELMO1. These results suggest that the ELMO1 contributes to the development and progression of chronic glomerular injury through the dysregulation of ECM metabolism and the reduction in cell adhesive properties to ECMs. PMID:17021600

  6. Alfalfa mosaic virus coat protein bridges RNA and RNA-dependent RNA polymerase in vitro.

    Reichert, Vienna L; Choi, Mehee; Petrillo, Jessica E; Gehrke, Lee

    2007-07-20

    Alfalfa mosaic virus (AMV) RNA replication requires the viral coat protein (CP). AMV CP is an integral component of the viral replicase; moreover, it binds to the viral RNA 3'-termini and induces the formation of multiple new base pairs that organize the RNA conformation. The results described here suggest that AMV coat protein binding defines template selection by organizing the 3'-terminal RNA conformation and by positioning the RNA-dependent RNA polymerase (RdRp) at the initiation site for minus strand synthesis. RNA-protein interactions were analyzed by using a modified Northwestern blotting protocol that included both viral coat protein and labeled RNA in the probe solution ("far-Northwestern blotting"). We observed that labeled RNA alone bound the replicase proteins poorly; however, complex formation was enhanced significantly in the presence of AMV CP. The RNA-replicase bridging function of the AMV CP may represent a mechanism for accurate de novo initiation in the absence of canonical 3' transfer RNA signals. PMID:17400272

  7. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport.

    Costaguta, G; Stefan, C J; Bensen, E S; Emr, S D; Payne, G S

    2001-06-01

    Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the "ear" domain of the clathrin adaptor AP-1 gamma subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Delta), the major Gga protein, accentuates growth and alpha-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Delta or a deletion of the AP-1 beta subunit gene (apl2Delta) alone are phenotypically normal, but cells carrying both gga2Delta and apl2Delta are defective in growth, alpha-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes. PMID:11408593

  8. Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating.

    Chong, Yu; Ge, Cuicui; Yang, Zaixing; Garate, Jose Antonio; Gu, Zonglin; Weber, Jeffrey K; Liu, Jiajia; Zhou, Ruhong

    2015-06-23

    The advent and pending wide use of nanoscale materials urges a biosafety assessment and safe design of nanomaterials that demonstrate applicability to human medicine. In biological microenvironment, biomolecules will bind onto nanoparticles forming corona and endow nanoparticles new biological identity. Since blood-circulatory system will most likely be the first interaction organ exposed to these nanomaterials, a deep understanding of the basic interaction mechanisms between serum proteins and foreign nanoparticles may help to better clarify the potential risks of nanomaterials and provide guidance on safe design of nanomaterials. In this study, the adsorption of four high-abundance blood proteins onto the carbon-based nanomaterial graphene oxide (GO) and reduced GO (rGO) were investigated via experimental (AFM, florescence spectroscopy, SPR) and simulation-based (molecular dynamics) approaches. Among the proteins in question, we observe competitive binding to the GO surface that features a mélange of distinct packing modes. Our MD simulations reveal that the protein adsorption is mainly enthalpically driven through strong π-π stacking interactions between GO and aromatic protein residues, in addition to hydrophobic interactions. Overall, these results were in line with previous findings related to adsorption of serum proteins onto single-walled carbon nanotubes (SWCNTs), but GO exhibits a dramatic enhancement of adsorption capacity compared to this one-dimensional carbon form. Encouragingly, protein-coated GO resulted in a markedly less cytotoxicity than pristine and protein-coated SWCNTs, suggesting a useful role for this planar nanomaterial in biomedical applications. PMID:26040772

  9. SCB1, a BURP-domain protein gene, from developing soybean seed coats.

    Batchelor, Anthea K; Boutilier, Kim; Miller, S Shea; Hattori, Jiro; Bowman, Lu Anne; Hu, Ming; Lantin, Sylviane; Johnson, Douglas A; Miki, Brian L A

    2002-08-01

    We describe a gene, SCB1 (Seed Coat BURP-domain protein 1), that is expressed specifically within the soybean (Glycine max [L.] Merrill) seed coat early in its development. Northern blot analysis and mRNA in situ hybridization revealed novel patterns of gene expression during seed development. SCB1 mRNA accumulated first within the developing thick-walled parenchyma cells of the inner integument and later in the thick- and thin-walled parenchyma cells of the outer integument. This occurred prior to the period of seed coat maturation and seed filling and before either of the layers started to degrade. SCB1 may therefore play a role in the differentiation of the seed coat parenchyma cells. In addition, the protein product appears to be located within cell walls. The SCB1 gene codes for a new member of a class of modular proteins that possess a carboxy-terminal BURP domain and a variety of different repeated sequences. The sequence of the genomic clone revealed the insertion of a Tgm transposable element in the upstream promoter region but it is not certain whether it contributes to the tissue-specific pattern of SCB1 expression. PMID:12172833

  10. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant

    He, Shu; Zhou, Ping; Wang, Linxin; Xiong, Xiaoling; Zhang, Yifei; Deng, Yi; Wei, Shicheng

    2014-01-01

    Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine...

  11. Application of Bonded Joints for Quantitative Analysis of Adhesion

    Jarmila Trpčevská; Mária Kollárová; Eva Zdravecká; Jana Tkáčová

    2016-01-01

    The performance of hot-dip coated steel sheets is associated with properties of the zinc coatings on steel substrate. For the characterization of the adhesion behaviour of zinc coating on steel various tests were employed. The study was focused on quantification assessment of galvanized coating adhesion to substrates. Methods for evaluation of the bonding strength of zinc coating by the shear strength and the T-peel tests applying four special types of adhesives were used. The experimental te...

  12. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.

    Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle

    2015-08-18

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive

  13. Two proteins of the Dictyostelium spore coat bind to cellulose in vitro.

    Zhang, Y; Brown, R D; West, C M

    1998-07-28

    The spore coat of Dictyostelium contains nine different proteins and cellulose. Interactions between protein and cellulose were investigated using an in vitro binding assay. Proteins extracted from coats with urea and 2-mercaptoethanol could, after removal of urea by gel filtration, efficiently bind to particles of cellulose (Avicel), but not Sephadex or Sepharose. Two proteins, SP85 and SP35, were enriched in the reconstitution, and they retained their cellulose binding activities after purification by ion exchange chromatography under denaturing conditions to suppress protein--protein interactions. Neither protein exhibited cellulase activity, though under certain conditions SP85 copurified with a cellulase activity which appeared after germination. Amino acid sequencing indicated that SP85 and SP35 are encoded by the previously described pspB and psvA genes. This was confirmed for SP85 by showing that natural M(r) polymorphisms correlated with changes in the number of tetrapeptide-encoding sequence repeats in pspB. Using PCR to reconstruct missing elements from the recombinogenic middle region of pspB, SP85 was shown to consist of three sequence domains separated by two groups of the tetrapeptide repeats. Expression of partial pspB cDNAs in Escherichia coli showed that cellulose-binding activity resided in the Cys-rich COOH-terminal domain of SP85. This cellulose-binding activity can explain SP85's ultrastructural colocalization with cellulose in vivo. Amino acid composition and antibody binding data showed that SP35 is derived from the Cys-rich N-terminal region of the previously described psvA protein. SP85 and SP35 may link other proteins to cellulose during coat assembly and germination. PMID:9692967

  14. Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF{sub 2}/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells

    Zhang, Guangchun; Zhao, Jianhua; Green, Martin A. [Photovoltaics Special Research Centre, University of New South Wales, Sydney, NSW (Australia)

    1998-02-27

    This paper reports experimental results with substrate heating during thermal evaporation of MgF{sub 2}/ZnS DLAR (double-layer antireflection) coatings. The higher substrate temperature significantly improves the adhesion and humidity resistance of such coatings, while marginally reducing the performance of high-efficiency silicon PERL (passivated emitter, rear locally diffused) cells. The optimum substrate temperature for the evaporation of such DLAR coatings on the PERL cells is about 150C. At this temperature, the DLAR coatings have good durability, but give only slightly reduced PERL cell performance compared to the unheated substrate case. This reduction in the PERL cell performance is believed due to the partial removal of the hydrogen passivation, which was introduced through a standard `alneal` (aluminium anneal) process

  15. Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival

    Conway, Anne E.; Van Nostrand, Eric L.; Pratt, Gabriel A.; Aigner, Stefan; Wilbert, Melissa L.; Sundararaman, Balaji; Freese, Peter; Lambert, Nicole J.; Sathe, Shashank; Liang, Tiffany Y.; Essex, Anthony; Landais, Severine; Burge, Christopher B.; Jones, D. Leanne; Yeo, Gene W.

    2016-01-01

    SUMMARY Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3′UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. PMID:27068461

  16. Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

    Rocheleau, Gail; Petrillo, Jessica; Guogas, Laura; Gehrke, Lee

    2004-08-01

    The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity. PMID:15254175

  17. Abdominal Adhesions

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  18. Preparation and testing of plant seed meal-based wood adhesives.

    He, Zhongqi; Chapital, Dorselyn C

    2015-01-01

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications. PMID:25867092

  19. Spatial determinants of the alfalfa mosaic virus coat protein binding site.

    Laforest, Siana M; Gehrke, Lee

    2004-01-01

    The biological functions of RNA-protein complexes are, for the most part, poorly defined. Here, we describe experiments that are aimed at understanding the functional significance of alfalfa mosaic virus RNA-coat protein binding, an interaction that parallels the initiation of viral RNA replication. Peptides representing the RNA-binding domain of the viral coat protein are biologically active in initiating replication and bind to a 39-nt 3'-terminal RNA with a stoichiometry of two peptides: 1 RNA. To begin to understand how RNA-peptide interactions induce RNA conformational changes and initiate replication, the AMV RNA fragment was experimentally manipulated by increasing the interhelical spacing, by interrupting the apparent nucleotide symmetry, and by extending the binding site. In general, both asymmetric and symmetric insertions between two proposed hairpins diminished binding, whereas 5' and 3' extensions had minimal effects. Exchanging the positions of the binding site hairpins resulted in only a moderate decrease in peptide binding affinity without changing the hydroxyl radical footprint protection pattern. To assess biological relevance in viral RNA replication, the nucleotide changes were transferred into infectious genomic RNA clones. RNA mutations that disrupted coat protein binding also prevented viral RNA replication without diminishing coat protein mRNA (RNA 4) translation. These results, coupled with the highly conserved nature of the AUGC865-868 sequence, suggest that the distance separating the two proposed hairpins is a critical binding determinant. The data may indicate that the 5' and 3' hairpins interact with one of the bound peptides to nucleate the observed RNA conformational changes. PMID:14681584

  20. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  1. Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by NaOH treatment.

    Tanahashi, M; Yao, T; Kokubo, T; Minoda, M; Miyamoto, T; Nakamura, T; Yamamuro, T

    1994-01-01

    A dense, uniform and highly biologically active bone-like apatite layer can be formed in arbitrary thickness on any kind and shape of solid substrate surface by the following biomimetic method at ordinary temperature and pressure. First, a substrate is set in contact with particles of bioactive CaO SiO2 based glass soaked in a simulated body fluid (SBF) with inorganic ion concentrations nearly equal to those of human blood plasma. Second, the substrate is soaked in another solution with ion concentrations 1.5 times those of SBF (1.5 SBF). In the present study, organic polymer substrates treated with 5 M NaOH solution were subjected to the above mentioned biomimetic process. The induction periods for the apatite nucleation on polyethyleneterephthalate (PET), polymethylmethacrylate (PMMA), polyamide 6 (PA6), and polyethersulfone (PESF) substrates were reduced from 24 to 12 h with the NaOH treatment. The adhesive strength of the formed apatite layer were increased from 3.5 to 8.6 MPa, from 1.1 to 3.4 MPa, and from 0.6 to 5.3 MPa with the NaOH treatment, for PET, PMMA, and PA 6, respectively. It was assumed that highly polar groups, such as carboxyl and sulfinyl ones formed by the hydrolysis of an ester group on PET and PMMA and of an amide group on PA 6, or of a sulfonyl group on PESF with the NaOH treatment, attached a large number of hydrated silica dissolved from the glass particles, to accelerate the apatite nucleation, and also to form a strong bond with the apatite. The apatite-organic polymer composites thus obtained are expected to be useful as bone-repairing as well as soft tissue-repairing materials. PMID:8580541

  2. Surface-tethered polymers to influence protein adsorption and microbial adhesion

    Norde, Willem

    2007-01-01

    In various applications it is desired that biological cells or protein molecules are immobilized at surfaces. Examples are enzymes or cells in bioreactors and biosensors, immuno-proteins in solid-state diagnostics and proteinaceous farmacons in drug delivery systems. In order to retain biological ac

  3. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.

    Xiaohui Zou

    Full Text Available Mycoplasma bovis (M. bovis is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX. Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX. Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL, and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1.

  4. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development.

    Woo, Jooyeon; Kwon, Seok-Kyu; Nam, Jungyong; Choi, Seungwon; Takahashi, Hideto; Krueger, Dilja; Park, Joohyun; Lee, Yeunkum; Bae, Jin Young; Lee, Dongmin; Ko, Jaewon; Kim, Hyun; Kim, Myoung-Hwan; Bae, Yong Chul; Chang, Sunghoe; Craig, Ann Marie; Kim, Eunjoon

    2013-06-10

    Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor- and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2. PMID:23751499

  5. Effect of whey protein coating on quality attributes of low-fat, aerobically packaged sausage during refrigerated storage.

    Shon, J; Chin, K B

    2008-08-01

    Whey protein-based edible coating was used to reduce oxidative degradation and microbial growth of low-fat sausages (LFSs) stored at 4 degrees C for 8 wk, under aerobic package. Whey protein coating reduced (P<0.05) thiobarbituric acid-reactive substances (TBARS) and peroxide value (PV) formation compared to control sausages. The percent inhibition of TBARS and PV for whey protein-coated sausages, compared to the control, was 31.3% and 27.1%, respectively. The ability of the whey protein coating to provide a moisture barrier for the sausages was reduced (P<0.05). In addition, a reduction of moisture loss by 36.7% compared to the control was achieved by whey coating. However, whey protein coating of LFSs did not inhibit the growth of either the total number of aerobic bacteria or of Listeria monocytogenes. These results indicated that whey protein coating had an antioxidative activity in LFSs under aerobic package during refrigerated storage. PMID:19241536

  6. Cofolding organizes alfalfa mosaic virus RNA and coat protein for replication.

    Guogas, Laura M; Filman, David J; Hogle, James M; Gehrke, Lee

    2004-12-17

    Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3' termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines and guanines in reverse order in the duplex. The results suggest that a uniform, organized 3' conformation, similar to that found on viral RNAs with transfer RNA-like ends, may be essential for replication. PMID:15604410

  7. Guanine Nucleotide-Binding Proteins of the G(12) Family Shape Immune Functions by Controlling CD4(+) T Cell Adhesiveness and Motility

    S. Herroeder; P. Reichardt; A. Sassmann; B. Zimmermann; D. Jaeneke; J. Hoeckner; M.W. Hollmann; K.D. Fischer; S. Vogt; R. Grosse; N. Hogg; M. Gunzer; S. Offermanns; N. Wettschureck

    2009-01-01

    Integrin-mediated adhesion plays a central role in T cell trafficking and activation. Genetic inactivation of the guanine nucleotide-binding (G) protein alpha-subunits G alpha(12) and G alpha(13) resulted in an increased activity of integrin leukocyte-function-antigen-1 in murine CD4(+) T cells. The

  8. RACK1 Targets the Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway To Link Integrin Engagement with Focal Adhesion Disassembly and Cell Motility

    Vomastek, Tomáš; Iwanicki, M. P.; Schaeffer, J.; J.; Tarcsafalvi, A.; Parsons, J. T.; Weber, M. J.

    2007-01-01

    Roč. 27, č. 23 (2007), s. 8296-8305. ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * adhesion * cell Subject RIV: EE - Microbiology, Virology Impact factor: 6.420, year: 2007

  9. WHEY PROTEIN-BASED WATER RESISTANT AND ENVIRONMENTALLY SAFE ADHESIVES FOR PLYWOOD

    Zongyan Zhao; Wenbo Wang; Zhenhua Gao; Mingruo Guo

    2011-01-01

    Whey protein is a renewable and environmentally safe biomaterial, a by-product of cheese production. It can be utilized for non-food applications for value-added products. The substances glyoxal (GO), glutaraldehyde (GA), polymeric methylene biphenyl diisocyanate (p-MDI), urea-formaldehyde (UF) resin, and phenol-formaldehyde oligomer (PFO) that contain reactive groups were applied together with whey protein as modifier in order to increase crosslinking density and molecular weight for improvi...

  10. Sequences of the coat protein gene from brazilian isolates of Papaya ringspot virus

    LIMA ROBERTO C. A.; SOUZA JR. MANOEL T.; PIO-RIBEIRO GILVAN; LIMA J. ALBERSIO A.

    2002-01-01

    Papaya ringspot virus (PRSV) is the causal agent of the main papaya (Carica papaya) disease in the world. Brazil is currently the world's main papaya grower, responsible for about 40% of the worldwide production. Resistance to PRSV on transgenic plants expressing the PRSV coat protein (cp) gene was shown to be dependent on the sequence homology between the cp transgene expressed in the plant genome and the cp gene from the incoming virus, in an isolate-specific fashion. Therefore, knowledge o...

  11. AN ATTEMPT TO APPLY A PULLULAN AND PULLULAN-PROTEIN COATINGS TO PROLONG APPLES SHELF-LIFE STABILITY

    Anna Chlebowska-Śmigiel

    2007-03-01

    Full Text Available The aim of the research was to study the influence of the pullulan and pullulan- -protein edible coatings on the reduction of the apples mass loss during the storage. The research was carried out on pullulan received from A. pullulans white mutant B-1 in a batch cultivation process and the ‘Malinova’ and ‘Champion’ apples. In the first stage of the research the apples were covered with 15% and 20% pullulan water solution and stor-age at 4°C and 22°C during 39 days. In the second stage of the research the apples were covered with pullulan-protein coating obtained from the mixture of pullulan and soy pro-tein. Apples covered with the pullulan-protein coatings were stored at the temperature of 2°C during 10 weeks. Mass losses of apples, durability of the pullulan and pullulan-pro¬tein coatings as well as changes in the appearance of the surface coating covered fruit in comparison with the one uncovered were evaluated. Pullulan edible coating significantly limited apples mass losses. Apples covered with coatings showed lower mass losses than the ones uncovered. The smallest mass losses were observed in apples covered with the coatings where the pullulan to protein ratios were: 6:4 and 5:5. It was observed that by adding protein to pullulan the coating stuck better to apples surface. During the storage process the protein-containing layer was less susceptible to crumbling and to peeling off.

  12. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated

  13. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    Burcza, Anna, E-mail: anna.burcza@mri.bund.de; Gräf, Volker; Walz, Elke; Greiner, Ralf [Max Rubner-Institute, Department of Food Technology and Bioprocess Engineering (Germany)

    2015-11-15

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.

  14. ADHESION-INDUCE PROTEIN TYROSINE PHOSPHORY-LATION IS ASSOCIATED WITH INVASIVE AND METASTATIC POTENTIALS IN B16-BL6 MELANOMA CELLS

    Yan Chunhong; Han Rui

    1998-01-01

    Objective: The interaction of cancer cell with extracellular matrix (ECM) happens as an earlier and specific event in the invasive and metastatic cascade. To explore the key element(s) in cancer metastasis and observe the cell-ECM interaction and its role. Methods:To interrupt the cell-ECM interaction by suppression of adhesion-induced protein tyrosine phosphorylation with protein tyrosine kinase inhibitor genistein in B16-B16mouse melanoma cells. Results: When B16-BL6 cells attached to Matrigel, a solubilized basement membrane preparation from EHS sarcoma, a 125 kDa protein increased its phosphotyrosine content dramatically. In contrast, when the cells were pretreated with 20μM or 30μM genistein for 3 days, it was revealed a less increase in the phosphotyrosine content of this 125 kDa protein inresponse to cell attachment to ECM was revealed with immunoblot analysis. Accompanied by the lower level of adhesion-induced protein tyrosine phosphorylation the genistein-treated cells exhibited a decrease in their capabilities of adhesion to Matrigel and invasion through reconstituted basement membrane. The potentials of and forming lung metastatic nodules were also shown to be decreased dramatically in these genistein-treated cells.Conclusion: It was suggested that protein tyrosine phosphorylation in cell-ECM interaction might be associated with invasive and metastatic potentials in cancer cells.

  15. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133

    Ines Liebscher

    2014-12-01

    Full Text Available Adhesion G protein-coupled receptors (aGPCRs comprise the second largest yet least studied class of the GPCR superfamily. aGPCRs are involved in many developmental processes and immune and synaptic functions, but the mode of their signal transduction is unclear. Here, we show that a short peptide sequence (termed the Stachel sequence within the ectodomain of two aGPCRs (GPR126 and GPR133 functions as a tethered agonist. Upon structural changes within the receptor ectodomain, this intramolecular agonist is exposed to the seven-transmembrane helix domain, which triggers G protein activation. Our studies show high specificity of a given Stachel sequence for its receptor. Finally, the function of Gpr126 is abrogated in zebrafish with a mutated Stachel sequence, and signaling is restored in hypomorphic gpr126 zebrafish mutants upon exogenous Stachel peptide application. These findings illuminate a mode of aGPCR activation and may prompt the development of specific ligands for this currently untargeted GPCR family.

  16. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  17. The study of adhesive forces between the type-3 fimbriae of Klebsiella pneumoniae and collagen-coated surfaces by using optical tweezers

    Chan, Chiahan; Fan, Chia-chieh; Huang, Ying-Jung; Peng, Hwei-Ling; Long, Hsu

    2004-10-01

    Adherence to host cells by a bacterial pathogen is a critical step for establishment of infection. It will contribute greatly to the understanding of bacterial pathogenesis by studying the biological force between a single pair of pathogen and host cell. In our experiment, we use a calibrated optical tweezers system to detach a single Klebsiella pneumoniae, the pathogen, from collagen, the host. By gradually increasing the laser power of the optical tweezers until the Klebsiella pneumoniae is detached from the collagen, we obtain the magnitude of the adhesive force between them. This happens when the adhesive force is barely equal to the trapping force provided by the optical tweezers at that specific laser power. This study is important because Klebsiella pneumoniae is an opportunistic pathogen which causes suppurative lesions, urinary and respiratory tract infections. It has been proved that type 3 fimbrial adhesin (mrkD) is strongly associated with the adherence of Klebsiella pneumoniae. Besides, four polymorphic mrkD alleles: namely, mrkDv1, v2, v3, and v4, are typed by using RFLP. In order to investigate the relationship between the structure and the function for each of these variants, DNA fragments encoding the major fimbrial proteins mrkA, mrkB, mrkC are expressed together with any of the four mrkD adhesins in E. coli JM109. Our study shows that the E. coli strain carrying the mrkDv3 fimbriae has the strongest binding activity. This suggests that mrkDv3 is a key factor that enhances the adherence of Klebsiella Pneumoniae to human body.

  18. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    Highlights: ► AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. ► AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. ► AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPARγ), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPARγ-agonist or forced expression of FSP27, while it was synergized by a PPARγ-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological situations; one is a supportive response against nutritional deprivation achieved by

  19. Using circular permutation analysis to redefine the R17 coat protein binding site.

    Gott, J M; Pan, T; LeCuyer, K A; Uhlenbeck, O C

    1993-12-14

    The bacteriophage R17 coat protein binding site consists of an RNA hairpin with a single purine nucleotide bulge in the helical stem. Circular permutation analysis (CPA) was used to examine binding effects caused by a single break in the phosphodiester backbone. This method revealed that breakage of all but one phosphodiester bond within a well-defined binding site substantially reduced the binding affinity. This is probably due to destabilization of the hairpin structure upon breaking the ribose phosphates at these positions. One circularly permuted isomer with the 5' and 3' ends at the bulged nucleotide bound with wild-type affinity. However, extending the 5' end of this CP isomer greatly reduces binding, making it unlikely that this circularly permuted binding site will be active when embedded in a larger RNA. CPA also locates the 5' and 3' boundaries of protein binding sites on the RNA. The 5' boundary of the R17 coat protein site as defined by CPA was two nucleotides shorter (nucleotides -15 to +2) than the previously determined site (-17 to +2). The smaller binding site was verified by terminal truncation experiments. A minimal-binding fragment (-14 to +2) was synthesized and was found to bind tightly to the coat protein. The site size determined by 3-ethyl-1-nitrosourea-modification interference was larger at the 5' end (-16 to +1), probably due, however, to steric effects of ethylation of phosphate oxygens. Thus, the apparent site size of a protein binding site is dependent upon the method used. PMID:7504949

  20. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and