WorldWideScience

Sample records for adhesive composite resin

  1. Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems

    AlJehani, Yousef A.; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Pekka K. Vallittu

    2015-01-01

    Background With the increase in demand for cosmetics and esthetics, resin composite restorations and all-ceramic restorations have become an important treatment alternative. Taking into consideration the large number of prosthodontic and adhesive resins currently available, the strength and durability of these materials needs to be evaluated. This laboratory study presents the shear bond strengths of a range of veneering resin composites bonded to all-ceramic core material using different adh...

  2. Failure in a composite resin-dentin adhesive bond

    Composites are drawing more and more attention as preferred materials for teeth restoration. The success of teeth restoration has been generally limited by the Composite Resin-Dentin bond strength. A testing device has been developped to allow a satisfactory testing method for evaluating bonding strength in tension and shear, which led to reproducible results. A comparaison between different bond systems has shown no significant difference in the tensile and the shear strength as well as in the fracture behavior. Moreover, results showed difference between tensile and shear strength, when considering one same bond system. Failure mode examination turned out to be, either cohesive (composite rupture), or adhesive (interface rupture) or both (mixed rupture). (orig.)

  3. Effect of interchanging two composite resin system with a dentine adhesive.

    Henderson L; Soh G

    1990-01-01

    There is a tendency to interchange dentine adhesives and composite resins when using composite resins for restorations. This study used marginal contraction gaps to test the effect of changing composite resins with a dentine adhesive. Cylindrical butt-joint cavities were prepared entirely in dentine using extracted human teeth. Two groups of control cavities (30 cavities per group) were restored with Prisma-Bond/Prisma-Fil and Heliobond/Heliomolar respectively. Two groups of test cavities (30...

  4. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  5. Influence of surface roughness on streptococcal adhesion forces to composite resins

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    2011-01-01

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion fo

  6. Determination of Water Diffusion Coefficients and Dynamics in Adhesive/ Carbon Fiber Reinforced Epoxy Resin Composite Joints

    WANG Chao; WANG Zhi; WANG Jing; SU Tao

    2007-01-01

    To determinate the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxygen in the adhesive in adhesive/carbon fiber reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carbon fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analysis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of both energy dispersive X-ray spectroscopy and elemental analysis. The determined results with EDX analysis are almost the same as those determined with elemental analysis and the results also show that the durability of the adhesive/carbon fiber reinforced epoxy resin composite joints subjected to silane coupling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treatment.

  7. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  8. Effect of surface roughness and adhesive system on repair potential of silorane-based resin composite

    Mobarak, Enas H.

    2012-01-01

    This study was performed to evaluate the influence of surface roughness and adhesive system on the repair strength of silorane-based resin composite. Twenty-four substrate discs from silorane-based FiltekP90 were made and stored for 24 h. Half of the discs were roughened against 320 grit SiC paper while the other half was polished against 4000 grit SiC paper. All discs were etched with phosphoric acid. Repair resin composite, FiltekP90 or FiltekZ250, was bonded to the treated surfaces using t...

  9. Influence of storage time in water on the integrity of adhesive interface in resin composite restorations

    Tathy Aparecida Xavier

    2013-08-01

    Full Text Available When immersed in oral fluids, water absorption by the restorative resin composite material can occur, which is identified by some researchers as one of the causes of loss of aesthetic features and reduction of mechanical properties over time. On the other hand, some authors have suggested that the fluids sorption may contribute to the reduction of shrinkage stress generated at the adhesive interface and reduce the width of gaps. The aim of this study was verifying if the storage time in water of restorations carried out with different filling techniques could influence on the integrity of tooth-restoration adhesive interface. Eighteen cavities were built in bovine incisors and they were divided into 3 groups after the adhesive procedure: group B (“Bulk” received one single increment of light-cured resin composite; group I (“Increments” received the same composite in three oblique increments; and the group B+S (“Bulk + Self-cured resin composite”. The last one firstly received a flowable, self-cured resin composite, and then, it was inserted one single increment of light-cured composite. After 48 h of storage, the restorations were sliced, the first measurement was accomplished, and the analysis of the adhesive interface was made each 30 days over nine months of immersion in water. The results were subjected to a split-plot analysis of variance and Tukey’s test. It was not verified significant influence of immersion time in water on the gap width, or regular increase or decrease of percentage interface free of gaps over time for any of three filling techniques. Some hypothesis could explain this occurrence, such as gain of mass without significant increase in the volume; the expansion of restoration in directions that did not contributed to the gaps closure; and the simultaneous occurrence of hygroscopic expansion and hydrolytic degradation of the resin processes.

  10. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  11. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  12. Effect of adhesive cements on reduction of microleakage at the amalgam/composite-resin interface

    Khoroushi M

    2007-05-01

    Full Text Available Background and Aim: Patients always complain about metallic color of amalgam restorations. Covering amalgam by composite can solve this problem. Since polymerization shrinkage is a serious shortcoming in composites, application of the combined amalgam and composite restoration is one of the methods to reduce leakage in the cervical margins of posterior restorations. The aim of this invitro study was to evaluate the microleakage of amalgam/composite interface when Rely-X ARC adhesive resin cement was used in the joint. Materials and Methods: Twenty-four sound extracted premolars were chosen. Mesial and distal class II conventional cavities were prepared and the samples were divided into 4 groups of 12. In all groups, the bases of the cavities were restored with amalgam and then the remaining part was filled by composite resin. Specimens in groups 1 and 2 were restored with composite-resin, immediately after condensing amalgam without or with application of Rely-X ARC (3M, ESPE respectively. In groups 3 and 4, composite resin were applied 24 hours after condensation of amalgam, without or with application of Rely-X ARC respectively. After polishing and thermocycling, all specimens were prepared for dye penetration and the degree of leakage was scored and analyzed using Kruskall Wallis test with p<0.05 as the level of significance. Results: The frequency of dye penetration in different groups was obtained. The most and the least scores were observed in groups 3 and 4 respectively. No statistically significant difference was observed in different methods. Conclusion: None of the methods in this study could seal the amalgam/composite-resin interface.

  13. Clinical Effect of Dental Adhesive on Marginal Integrity in Class I And Class II Resin-Composite Restorations

    Manchorova-Veleva Neshka A.; Vladimirov Stoyan B.; Keskinova Donka А.

    2016-01-01

    BACKGROUND: Dental adhesives are believed to influence marginal adaptation and marginal discoloration when used under posterior resin-based composite restorations. Studies on the latest adhesive systems reveal that the group of the three-step etch-and-rinse adhesive (3-E&RA) and the one-step self-etch adhesive (1-SEA) have entirely different bonding mechanisms, as well as different bond strength and resistance to chemical, thermal and mechanical factors. STUDY OBJECTIVES: A hypothesis that a ...

  14. Microtensile bond strength of restorative composite bonded with self-adhesive resin cements to enamel and dentin

    Mohammed Al-Saleh

    2013-04-01

    Full Text Available PURPOSE: To determine the microtensile bond strength (µTBS of composite restorations when bonded with self-adhesive resin-cements. METHODS: Thirty caries-free extracted molars were sterilized, and divided into 5 equal groups according to adhesive used: SBMP (Scotch-Bond-Multipurpose, total-etch 3-step adhesive, 3M/ESPE, PAN (PanaviaF-2.0, resin-cement with self-etch primer, Kuraray, RXU (RelyX-Unicem, self-adhesive resin-cement, 3M/ESPE, BRZ (Breeze, self-adhesive resin-cement, Pentron and MON (Monocem, self-adhesive resin-cement, Shofu. Each group was divided into 2 subgroups (dentin or enamel. Bonding agents, used according to manufacturers’ directions, or a thin layer of resin cement was applied onto teeth flat surfaces. Six mm-thick Filtek-Z250 (3M/ESPE composite build up was made in three increments. Teeth were sectioned to obtain rectangular specimens which were subjected to tensile force until failure. Specimens were subjected to 1,000 thermo-cycles between 5oC-55°C. Means and standard deviation (SD were calculated and statistically-analyzed with ANOVA and Tukey’s t-test. Specimens’ failure modes were reported. RESULTS: SBMP showed the highest µTBS results with enamel (24.6(6.1 MPa, PAN showed high µTBS with enamel (12.1(3.9MPa and dentin (11.6(4.7MPa compared to the other self-adhesive cements. Failure modes were adhesive and mixed for self-adhesive resin-cements. MON subgroups and BRZ enamel subgroup underwent premature failure. CONCLUSION: self-adhesive resin-cements showed low µTBS compared to SBMP.

  15. Laboratorial comparison of color stability of resin composites after rebonding with two different adhesive materials

    Azita Kaviani

    2013-04-01

    Full Text Available Background and Aims: Discoloration of resin composites is considered to be the major factor in esthetic restoration failures. The aim of this study was to evaluate the color stability of resin composites after rebonding with two different adhesive materials. Materials and Methods: Forty five composite disc samples were divided into three groups (n=15. The surface of specimens was finished by polishing disc and rubber. In group 1, any additional phase was not performed. In group 2, composite discs were etched by %37 orthophosphoric acid, then Margin- bond was used for rebonding. In group 3, the etching procedure was in the same manner used for group 2, but Permaseal was used after etching. After the first phase of spectrophotometric measurement, the specimens were dipped in coffee mix for 3 weeks for aging the specimens. Then the second phase of spectrophotometric evaluation was performed. Collected data was analyzed using one-way ANOVA test followed by Tukey test. P<0.05 was considered as the level of significance. Results: The mean total color difference (∆E observed in groups 1 to 3 were 1.4±0.34, 5.24±1.51, and 7.44±1.34, respectively. Statistical significant differences were shown between the groups (P<0.001. Conclusion: Rebonding with adhesive materials used in this study did not increase the color stability of composite restorations.

  16. Effect of different adhesive systems on microleakage at the amalgam/composite resin interface.

    Hadavi, F; Hey, J H; Ambrose, E R; Elbadrawy, H E

    1993-01-01

    The objective of this study was to evaluate the effect of different bonding systems on teh microleakage at the amalgam/composite interface. The microleakage at the amalgam/composite resin interface was evaluated with a quantitative dye penetration method. Amalgam cylinders were made and a 2 mm composite base was added after the application of five different bonding systems to the roughened interface of the amalgam cylinders. The cylinders were filled with an exact volume of 0.05% fuchsin solution, and the total weight of the sample was measured. The cylinders were placed on a filter paper with the composite base down and evaluated for leakage after 1, 3, 6, and 24 hours. Weight loss and coloring of the filter paper represented microleakage. The results indicated that the application of Prisma Universal Bond 2 adhesive, Cover Up II, or Amalgambond (groups E, F, and G) reduced the amount of microleakage significantly as compared to the groups in which no adhesive system, 3M Porcelain Repair Kit (with and without acid etching of the amalgam surface), or Prisma Universal Bond 2 primer and adhesive (groups A, B, C or D) was applied. PMID:8332537

  17. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiOx thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiOx coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  18. Effect of delayed insertion of composite resin on the bond strength of self-etching adhesive systems

    Osmir Batista OLIVEIRA JÚNIOR

    2009-09-01

    Full Text Available Introduction: Technological advances in adhesive systems haveresulted in materials with simplified techniques, which require lessclinical steps. Objective: To determine the influence of immediate ordelayed insertion of restorative material on the values of bond strength self-etching adhesives by using the micro tensile test. Material and methods: Bovine incisors were used, which had its vestibular surface abraded to obtain a flat dentin surface. Self-etching adhesive systems were used: Clearfil SE Bond (CSEB, Clearfil Tri S Bond (CTSB,AdheSE (ADS and AdheSE One (ADO. The composite resin Z350 was adhered to this substrate at two different times: immediately and later (after 24 hours. Procedures were performed with simulated physiological pulpal pressure. Results were submitted to statistical analysis through Anova and Tukey’s test. Results: Except ADS, all materials tested showed reduction of the values of bond strength when composite resin was applied delayed, and only for single-step systems(CTSB and ADO this reduction was statistically significant.Conclusion: Special care shall be taken when using single-step self-etching adhesive systems. It is recommended the application of an additional layer of hydrophobic material in order to reduce permeation of adhesive layer, and the insertion of composite resin should be initiated immediately after the photopolymerization of adhesive system.

  19. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems.

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  20. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  1. Dentin Bond Strength of Two One-Bottle Adhesives after Delayed Activation of Light-Cured Resin Composites

    F. Shafiei

    2007-12-01

    Full Text Available Objective: Adverse surface interactions between one-bottle adhesives and chemical-cured composites may occur with delayed light activation of light-cured composites. The purpose of this study was to assess the Effects of delayed activation of light-cured compositeson shear bond strength of two one-bottle adhesives with different acidity to bovine dentin.Materials and Methods: Flat dentin surface was prepared on sixty-six bovine incisors using 600 grit carbide papers. Prime&Bond NT, and One-Step adhesives and resin composite were applied in six groups: 1 immediate curing of the composite, 2 the composite was left 2.5 minutes over the cured adhesive before light activation, 3 prior to delayed activation of the composite, the cured adhesive was covered with a layer of nonacidic hydrophobic porcelain bonding resin (Choice 2 and cured immediately. After thermocycling,shear bond strength (SBS test was performed using a universal testing machine at 1 mm/min crosshead speed. Data were analyzed with Friedmans two-way Non-parametric ANOVA.Results: The SBS of delayed activation of Prime&Bond was significantly lower than immediate activated (P<0.05. Decrease in the SBS of One-Step was not statistically significant after delayed activation. The SBS of delayed activation of Prime&Bond and One-Step with an additional resin layer was significantly higher than delayed activation (P<0.001.Conclusion: The bond strength of Prime&Bond might be compromised by the higher acidity of this adhesive during the 2.5 minutes delayed activation of light-cured composite.Addition of a layer of hydrophobic resin compensated the effect of delayed activation andimproved the bond strength.

  2. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  3. Sealing of adhesive systems in ferric sulfate-contaminated dentinal margins in class V composite resin restorations

    Shadman, Niloofar; Farzin Ebrahimi, Shahram; Mollaie, Najmeh

    2016-01-01

    Background. Hemostatic agents are applied to prepare an isolated bleeding-free condition during dental treatments and can influence adhesive restorations. This study evaluated the effect of a hemostatic agent (ViscoStat) on microleakage of contaminated dentinal margin of class V composite resin restorations with three adhesives. Methods. Sixty freshly extracted human molars were selected and class V cavities (3×3×1.5 mm) were prepared on buccal and lingual surfaces. Gingival margins of the cavities were placed below the cementoenamel junction. The teeth were divided into six groups randomly. The adhesives were Excite, AdheSE and AdheSE One. In three groups, the gingival walls of the cavities were contaminated with ViscoStat and then rinsed. The cavities were restored with composite resin and light-cured. After storage in distilled water (37°C) for 24 hours and polishing, the samples were thermocycled and sealed with nail varnish. Then they were stored in 1% basic fuchsin for 24 hours, rinsed and mounted in self-cured acryl resin, followed by sectioning buccolingually. Dye penetration was observed under a stereomicroscope and scored. Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U tests. Peffects on dentin microleakage (P > 0.05). In the contaminated groups, Excite had significantly less microleakage than the others (P = 0.003). AdheSE and AdheSE One did not exhibit significant difference in microleakage (P > 0.05). Conclusion. ViscoStat hemostatic agent increased dentinal microleakage in AdheSE and AdheSE One adhesives with no effect on Excite. PMID:27092210

  4. Temperature Rise during Primer, Adhesive, and Composite Resin Photopolymerization of a Low-Shrinkage Composite Resin under Caries-Like Dentin Lesions

    Sayed-Mostafa Mousavinasab; Maryam Khoroushi; Mohammadreza Moharreri

    2012-01-01

    Objective. This study evaluated temperature rise of low-shrinkage (LS) self-etch primer (P), LS self-etch adhesive (A), and P90 silorane-based composite resin systems, photopolymerized under normal and artificially demineralized dentin. Methods. Forty 1.5 mm-thick dentin discs were prepared from sound human molars, half of which were demineralized. Temperature rise was measured during photopolymerization using a K-type thermocouple under the discs: 10 s and 40 s irradiation of the discs (cont...

  5. Effect of delayed insertion of composite resin on the bond strength of etch-and-rinse adhesive systems

    Edson Alves CAMPOS

    2009-12-01

    Full Text Available Introduction: Etch-and-rinse adhesive systems are characterized bythe dental acid etching previously to the monomer application. Thesematerials can be classified as 3-step (when primer and bond are applied separately or 2-step (when the primer and bond functions are carried out by a single component. Objective: To determine the influence of immediate or delayed insertion of restorative material on the values of bond strength of 2-step and 3-step etch-and-rinse adhesive systems using the microtensile test. Material and methods: Bovine incisors were used, which had its vestibular surface abraded to obtain a flat dentin surface. 3-step (Scotchbond Multi-Purpose – SMP; Optibond FL – OFL; Bond-It – BIT and 2-step (Single-Bond – SB; Optibond Solo Plus – OSP; Bond-1 – B1 etch-and-rinse adhesive systems were used, and composite resin (Z-350 was adhered to this substrate at two different times: immediately and later (after 24 hours. Procedures were performed with simulated physiological pulpal pressure. Results were submitted to statistical analysis through Anova and Tukey’s test (p < 0.05. Results: When the composite resin was immediately inserted all the adhesive systems showed similar results. 3-step adhesive systems did not show reduction in bond strength values related to delayed insertion of composite. On the other hand, 2-step adhesive systems showed significant reduction in the values of bond strength. Reduction was around 30.24% to SB, 27.19% to OSP and 28.21% to B1. Conclusion: 2-step etch-and-rinse adhesive systems should be used very carefully. It is advisable to insert and polymerize the composite resin immediately after the conclusion of adhesive procedure.

  6. Resin composites

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian;

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity but...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p<0.0001). More paramarginal enamel fractures were observed after loading in teeth restored with Grandio when compared to Charisma (p=0.......008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can be...

  7. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Maryam Khoroushi; Tayebeh Mansouri Karvandi; Bentolhoda Kamali; Hamid Mazaheri

    2012-01-01

    Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI) restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm) were prepared on buccal and palatal a...

  8. The effect of oxalate desensitizers on the microleakage of resin composite restorations bonded by etch and rinse adhesive systems.

    Shafiei, Fereshteh; Motamedi, Mehran; Alavi, Ali Asghar; Namvar, Babak

    2010-01-01

    This in vitro study evaluated the effect of an oxalate desensitizer (OX) on the marginal microleakage of resin composite restorations bonded by two three-step and two two-step etch and rinse adhesives. Class V cavities were prepared on the buccal surfaces of 126 extracted premolars at the cementoenamel junction and randomly divided into nine groups of 14 each. In the control groups (1-4), four adhesives were applied, respectively, including Adper Scotchbond Multi-Purpose (SBMP), Optibond FL (OBFL), One-Step Plus (OS) and Excite (EX). In the experimental groups (5-8), the same adhesives, in combination with OX (BisBlock), were applied. And, in one group, OX was applied without any adhesive, as the negative control group (9). All the groups were restored with a resin composite. After 24 hours of storage in distilled water and thermocycling, the samples were placed in 1% methylene blue dye solution. The dye penetration was evaluated using a stereomicroscope. The data were analyzed using non-parametric tests. The OX application, in combination with OBFL and EX, resulted in significantly increasing microleakage at the gingival margins (p 0.05). At the occlusal margins, no significant difference in microleakage was observed after OX application for each of four adhesives (p > 0.05). PMID:21180008

  9. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  10. 5-year results comparing mineral trioxide aggregate and adhesive resin composite for root-end sealing in apical surgery

    von Arx, Thomas; Hänni, Stefan; Jensen, Simon Storgård

    2014-01-01

    INTRODUCTION: Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study...... by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS: A total of 271 patients and teeth from a 1-year follow-up sample of 339 could...

  11. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    Morakot Piemjai

    2015-01-01

    Full Text Available A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa than that of cast metal (9.2 ± 3.5 MPa restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred.

  12. Adhesion improvement of electroless copper plating on phenolic resin matrix composite through a tin-free sensitization process

    Wang, Yong; Bian, Cheng; Jing, Xinli

    2013-04-01

    In order to improve the adhesion of electroless copper plating on phenolic resin matrix composite (PRMC), a new and efficient tin-free sensitization process has been developed. Electroless copper plating could be achieved in three steps, namely: (i) chemical etching with potassium permanganate solution; (ii) sensitization and activation with glucose and silver nitrate solution respectively; and (iii) electroless copper plating. Compared with the sample sensitized with stannous chloride (SnCl2), the copper plating obtained in the tin-free process showed excellent adhesion with the PRMC substrate, but had lower plating rate and conductivity. Additionally, the morphology of the copper plating was affected by the sensitization process, and the tin-free process was conducive to the formation of the large spherical copper polycrystal. Although the process is slightly complicated, the new sensitization process is so low-cost and environment-friendly that it is of great significance and could be applied into large-scale commercial manufacturing.

  13. A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites.

    Ikemura, Kunio; Endo, Takeshi

    2010-10-01

    This paper reviews our recent studies on radical photopolymerization initiators, which are used in the design of light-curing dental adhesives and resin composites, by collating information of related studies from original scientific papers, reviews, and patent literature. The photopolymerization reactivities of acylphosphine oxide (APO) and bisacylphosphine oxide (BAPO) derivatives, and D,L-camphorquinone (CQ)/tertiary amine were investigated, and no significant differences in degree of conversion (DC) were found between BAPO and CQ/amine system (p>0.05). In addition, a novel 7,7-dimethyl-2,3-dioxobicyclo[2.2.1]heptane-1-carbonyldiphenyl phosphine oxide (DOHC-DPPO=CQ-APO) was synthesized and its ultraviolet and visible (UV-VIS) spectral behavior was investigated. CQ-APO possessed two maximum absorption wavelengths (λmax) at 350-500 nm [372 nm (from APO group) and 475 nm (from CQ moiety)], and CQ-APO-containing resins exhibited good photopolymerization reactivity, excellent color tone, relaxed operation time, and high mechanical strength. It was also found that a newly synthesized, water-soluble photoinitiator (APO-Na) improved adhesion to ground dentin. PMID:20859059

  14. Wood Composite Adhesives

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  15. Review: Resin Composite Filling

    Desmond Ng

    2010-02-01

    Full Text Available The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  16. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  17. High energy radiation cure of resin systems for structural adhesives and composite applications

    Radiation cure polymerisation of a commercial diglycidyl ether of bisphenol F epoxy resin has been achieved using a 60Co irradiation source, compounding the monomer with few percentage of an onium salt catalyst. The cure process has been monitored by a gamma-calorimetric technique and systems irradiated at doses corresponding to different positions in the gamma-calorimetric curve have been characterised via solubility tests and dynamic mechanical torsion analysis. Changes in both the measured gel fractions and tan δ values were associated with the progress of polymerisation and crosslinking reactions and these were dose dependent. Furthermore, systems irradiated at lower doses exhibited a latent thermal reactivity, undergoing further crosslinking by high temperature treatments, thus suggesting that synergy by the combination of radiation and thermal cure can help to achieve the desired applicative properties of these systems. These results have been discussed in the light of the most accredited radiation-induced polymerisation mechanisms for epoxy resins.

  18. High energy radiation cure of resin systems for structural adhesives and composite applications

    Dispenza, C. E-mail: dispenza@dicpm.unipa.it; Scro, F.; Valenza, A.; Spadaro, G

    2002-01-01

    Radiation cure polymerisation of a commercial diglycidyl ether of bisphenol F epoxy resin has been achieved using a {sup 60}Co irradiation source, compounding the monomer with few percentage of an onium salt catalyst. The cure process has been monitored by a gamma-calorimetric technique and systems irradiated at doses corresponding to different positions in the gamma-calorimetric curve have been characterised via solubility tests and dynamic mechanical torsion analysis. Changes in both the measured gel fractions and tan {delta} values were associated with the progress of polymerisation and crosslinking reactions and these were dose dependent. Furthermore, systems irradiated at lower doses exhibited a latent thermal reactivity, undergoing further crosslinking by high temperature treatments, thus suggesting that synergy by the combination of radiation and thermal cure can help to achieve the desired applicative properties of these systems. These results have been discussed in the light of the most accredited radiation-induced polymerisation mechanisms for epoxy resins.

  19. Microtensile bond strength of current adhesive systems when compared to cohesive strength of sound dentin and a resin-based composite

    Paulo Eduardo Capel Cardoso

    2004-12-01

    Full Text Available Purpose: To evaluate the microtensile bond strength (µTBS to dentin of 4 adhesive systems, the micromorphology of the adhesive/dentin interface and to compare the results to the µTS (cohesive strength of sound dentin and resin composite. Occlusal surfaces of 24 extracted caries-free human molars were cut flat to expose the dentin surface. They were randomly assigned to 4 groups (n = 6: Adper Scotchbond Multi Purpose Plus (MP, Adper Single Bond (SB, Clearfil Protect Bond (CP and Adper Prompt (AP. Adhesive systems were applied and "crowns" were built using Z100. Other 5 human molars were sectioned to obtain square-shaped dentin blocks and 5 resin blocks were built using a composite resin, Z100. After storage in distilled water at 37 °C for 24 h, stick-shaped specimens were obtained for all groups (n = 5 with 0.8 mm² and subjected to µTBS or µTS test. Results were analyzed using One-Way ANOVA and Tukey's test at p 0.05. The lowest result was found for AP (27.4 + 4.7 MPa, although not statistically different from MP. Most specimens (89.4% showed predominant adhesive failure. None of the systems tested reached the µTS values of dentin (108.5 + 9.4 MPa and Z100 (86.5 + 3.6 MPa. Bonded interfaces showed lower µTBS than those µTS of dentin and resin composite blocks. The all-in-one self-etching adhesive had the lowest µTBS.

  20. Adhesives Based on Furan Resin for Structural Laminated Timber

    Octavia ZELENIUC

    2013-06-01

    Full Text Available In wood laminated products manufacturing thephenol-based adhesives are especially used. Recentlyother adhesives such as polyurethanes were promotedon the market for structural applications withremarkable properties. Structural adhesives have tofulfil the requirements according to their uses, underwet or dry conditions as adhesive type I and type IIrespectively. Criteria for evaluating structuraladhesives, includes delamination resistance, shearstrength of bond and percent of wood failure. Thisstudy has the objective to evaluate the bondingperformance of furan based resin and its suitability forstructural purposes. There are some investigationsabout the possibility of incorporating the furan resin intowood adhesive formulations but their industrialexploitation is still modest. Three experimentaladhesive compositions based on furan and ureaformaldehyderesins, were used to cold-glue beechand spruce lamellas to form a structural timber likeglued laminated timber. Adhesive formulations includedmixed furan resin with furfuryl alcohol (FC2 and twomodified furan resins with urea-formaldehyde resin(UR/FC2 and UR/FC3 at 50% UR. Bond shearstrength by longitudinal tensile and resistance todelamination were performed according to SR EN302:2004. The best performance was obtained withadhesive FC2 which showed shear strength above thevalues indicated for structural adhesives in EN301:2004. FC2 adhesive performed significantly betterin delamination tests too, both in dry and wetconditions, compared to the other two adhesives,showing promise for its use in load-bearing timberstructures.

  1. Adhesion of resin composites to biomaterials in dentistry: an evaluation of surface conditioning methods

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA based luting cement to glass ceramics, glass infiltrated alumina, glass infiltrated ZrO2 reinforced alumina. The three conditioning methods assesed were: (1) HF acid etching, (2) Air-borne particle ab...

  2. Status of high-temperature laminating resins and adhesives

    Hergenrother, P. M.; Johnston, N. J.

    1980-01-01

    High-temperature polymers now being developed as adhesives and composite matrices are reviewed, including aromatic polyimides, polybenzimidazoles, polyphenylquinoxalines, nadic end-capped imide oligomers, maleimide end-capped oligomers, and acetylene-terminated imide oligomers. The mechanical properties of laminates based on these resins are reported together with preliminary test results on the adhesive properties for titanium-to-titanium and composite-to-composite lap shear specimens.

  3. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  4. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  5. Microleakage of Dual-Cured Adhesive Systems in Class V Composite Resin Restorations

    S Kasraie

    2012-01-01

    Full Text Available Objective: Microleakage is a major factor affecting longevity of composite restorations. This study evaluated the effect of polymerization mode of bonding agent on microleakage of composite restorations.Materials and Methods: Forty-eight Class V cavities were prepared on buccal and lingual surfaces of 24 extracted human premolars. Occlusal and gingival margins were placed in the enamel and dentin, respectively. Teeth were divided into four groups as follows: Group I: Optibond Solo Plus (light-cured; Group II: Optibond Solo Plus (dual-cured; Group III: Prime & Bond NT (light-cured, Group IV: Prime & Bond NT (dual-cured. Teeth were restored using Z250 composite in three increments. After polishing the restorations, samples were thermocycled for 1000 cycles and stored in distilled water for 3 months. Then they were placed in 2% fuchsine solution for 48 hours. The samples were sectioned longitudinally and evaluated for microleakage under a stereomicroscope at ×40magnification. Dye penetration was scored on a 0-3 ordinal scale. Data were analyzed using Kruskal-Wallis, Bonferroni and Wilcoxon signed ranks test.Results: Microleakage was significantly lower in enamel margins compared to dentin margins (P0.05. Prime & Bond NT had less microleakage compared to Optibond SoloPlus, but the difference was not significant (P>0.05.Conclusion: There was no difference in the amount of microleakage in Class V composite restorations using light-cured and dual-cured bonding systems. Dentinal margins of restorations exhibited more microleakage than enamel margins.

  6. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi;

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  7. Biocompatibility of composite resins

    Sayed Mostafa Mousavinasab

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concern...

  8. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    Velagala L Deepa

    2016-01-01

    Full Text Available Aims: To compare and evaluate the bonding ability of resin composite (RC to three different liners: TheraCal LC TM (TLC, a novel resin-modified (RM calcium silicate cement, Biodentine TM (BD, and resin-modified glass ionomer cement (RMGIC using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC, Group B (BD, and Group C (RMGIC. Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA and post hoc test using Statistical Package for the Social Sciences (SPSS version 20. Results: No significant difference was observed between group A and group C (P = 0.573 while group B showed the least bond strength values with a highly significant difference (P = 0.000. The modes of failure were predominantly cohesive in Groups A and B (TLC and BD while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive.

  9. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MP...

  10. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    -based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years...

  11. Microleakage of Composite Resin Restorations Using a Type of Fifth and Two Types of Seventh Generations of Adhesive Systems: A Comparative Study

    Mitra Tabari

    2015-12-01

    Full Text Available Introduction: In recent dentin adhesive systems etching of enamel/dentin are achieved simultaneously. The objective was to evaluate the microleakage of composite restorations using Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. Methods: Class V cavities were prepared on  45 extracted intact premolars with gingival margins at the cementoenamel junction and they were randomly divided into 3 groups (n=15 based on the type of adhesives: Single Bond2 (5th generation, Clearfil S3 Bond and G Bond (7th generation. After applying the adhesives, the cavities were filled with Z250 composite resin. The occlusal and gingival microleakage was evaluated using 2% basic fuchsin staining technique. Data were analyzed using Kruskal-Wallis and Bonferroni corrected Mann-Whitney U tests. Results: The mean rank of occlusal microleakage exhibited significant differences by comparison of G Bond, Clearfil S3 Bond and Single Bond2 (21.07, 30.67 and 17.27, respectively (P=0.005. There was a significant difference in gingival microleakage of different bonding agents (34.40, 17.83 and 16.77 for G Bond, Clearfil S3 Bond and Single Bond2, respectively (P

  12. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  13. Eight-year randomized clinical evaluation of Class II nanohybrid resin composite restorations bonded with a one-step self-etch or a two-step etch-and-rinse adhesive

    van Dijken, Jan WV; Pallesen, Ulla

    2015-01-01

    -based nanohybrid resin composite (Ceram X) bonded with either a one-step self-etch adhesive (Xeno III) or a control two-step etch-and-rinse adhesive (Excite). The 165 restorations were evaluated using slightly modified United States Public Health Services (USPHS) criteria at baseline and then yearly during 8 years......Objectives: The aimof this study is to observe the durability of Class II nanohybrid resin composite restorations, placed with two different adhesive systems, in an 8-year follow-up. Methods: Seventy-eight participants received at random at least two Class II restorations of the ormocer....... Results: One hundred and fifty-eight restorations were evaluated after 8 years. Three participants with five restorations (three Xeno III, two Excite) were registered as dropouts. Twenty-one failed restorations (13.3 %) were observed during the follow-up. Twelve in the one-step self-etch adhesive group...

  14. Adhesion strength improvement of epoxy resin reinforced with nanoelastomeric copolymer

    Research highlights: → Elastomeric nanoparticle (ENP) was prepared via miniemulsion polymerization. → ENP was added to epoxy resin (ER) with different amounts. → The lap shear strength (LSS) of different ENP/ER was measured. → The fractured surfaces were examined by scanning electron microscopy (SEM). - Abstract: Nano-sized copoly(styrene-butylacrylate-ethylenglycoldimethacrylate) (St-BA-EGDMA) particles were added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin (ER) using piperidine as a curing agent. Transmission electron microscopy (TEM) proved that nanoelastomer was finely dispersed in the epoxy adhesive. To compare the adhesion strength of different adherents utilizing both modified and unmodified epoxy adhesive, the lap shear strength (LSS) test was measured as a function of elastomeric nanoparticles (ENP) amount. Scanning electron microscopy (SEM) and FTIR were used to investigate the interface morphology and chemical composition of adherent and epoxy adhesive. The result indicated that the adhesion strength was increased dramatically by addition of nanoparticles compared with that of pure epoxy adhesive. The highest adhesion strength was obtained with 20 wt% elastomeric nanoparticles. It was found that reinforcement with nanoparticles improved the fracture toughness.

  15. Adhesion strength improvement of epoxy resin reinforced with nanoelastomeric copolymer

    Khoee, Sepideh, E-mail: Khoee@Khayam.ut.ac.ir [Polymer Laboratory, Chemistry Department, School of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Hassani, Narges [Polymer Laboratory, Chemistry Department, School of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of)

    2010-09-25

    Research highlights: {yields} Elastomeric nanoparticle (ENP) was prepared via miniemulsion polymerization. {yields} ENP was added to epoxy resin (ER) with different amounts. {yields} The lap shear strength (LSS) of different ENP/ER was measured. {yields} The fractured surfaces were examined by scanning electron microscopy (SEM). - Abstract: Nano-sized copoly(styrene-butylacrylate-ethylenglycoldimethacrylate) (St-BA-EGDMA) particles were added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin (ER) using piperidine as a curing agent. Transmission electron microscopy (TEM) proved that nanoelastomer was finely dispersed in the epoxy adhesive. To compare the adhesion strength of different adherents utilizing both modified and unmodified epoxy adhesive, the lap shear strength (LSS) test was measured as a function of elastomeric nanoparticles (ENP) amount. Scanning electron microscopy (SEM) and FTIR were used to investigate the interface morphology and chemical composition of adherent and epoxy adhesive. The result indicated that the adhesion strength was increased dramatically by addition of nanoparticles compared with that of pure epoxy adhesive. The highest adhesion strength was obtained with 20 wt% elastomeric nanoparticles. It was found that reinforcement with nanoparticles improved the fracture toughness.

  16. Four-year clinical evaluation of Class II nano-hybrid resin composite restorations bonded with a one-step self-etch and a two-step etch-and-rinse adhesive

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical trial was to evaluate the 4-year clinical performance of an ormocer-based nano-hybrid resin composite (Ceram X; Dentsply/DeTrey) in Class II restorations placed with a one-step self-etch (Xeno III; Dentsply/DeTrey) and two-step etch-and-rinse adhesive...

  17. Indirect resin composites

    Nandini Suresh

    2010-01-01

    Full Text Available Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ′indirect resin composites,′ composite inlays,′ and ′fiber-reinforced composites.′

  18. Micromorphology and bond strength evaluation of adhesive interface of a self-adhering flowable composite resin-dentin: Effect of surface treatment.

    Shafiei, Fereshteh; Saadat, Maryam

    2016-05-01

    This study evaluated the effect of dentin surface treatment on the micromorphology and shear bond strength (SBS) of a self-adhering flowable composite, Vertis Flow (VF). Flat dentin surfaces obtained from sixty extracted human molars were divided into six groups (n = 10) according to the following surface treatments: (G1) control, no treatment; (G2) self-etching adhesive, Optibond All-in-One; (G3) phosphoric acid etching for 15 s; (G4) polyacrylic acid for 10 s; (G5) EDTA for 60 s; and G6) sodium hypochlorite (NaOCl) for 15 s. After restoration using VF, SBS was measured in MPa. Data were analyzed using one-way ANOVA and Tamhane test (α = 0.05). Six additional specimens were prepared for scanning electron microscopy analysis. SBS was significantly affected by surface treatment (P < 0.001). SBS of six groups from the highest to the lowest were as follows: (G3) 13.5(A) ; (G5) 8.98(AB) ; (G2) 8.85(AB) ; (G4) 8.21(AB) ; (G1) 7.53(BC) ; and (G6) 4.49(C) (groups with the same superscript letter were statistically similar). Morphological analysis revealed numerous long resin tags at the adhesive interface for acid-etched group, with a few short resin tags for the control group and small gap formation for NaOCl-treated group. In conclusion, dentin surface treatments tested differently affected bonding performance of VF; only acid-etching effectively improved this. Microsc. Res. Tech. 79:403-407, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918399

  19. Effect of different blood contaminated adherent surface treatments on shear bond strength of compomer and composite resin to dentin, using a self etching adhesive

    Mortazavi V.

    2005-06-01

    Full Text Available Statement of Problem: Blood contamination is a common problem in dentistry that can decrease bond strength dramatically which may be affected by methods of decontamination as well. Purpose: The aim of this study was to evaluate and compare the influence of blood contamination on shear bond strength of composite and compomer to dentin using Prompt L-Pop as an adhesive system. Also, to assess the effectiveness of different surface treatments on the bond strength. Materials and Methods: In this experimental study, 120 molar teeth were sectioned to provide flat occlusal dentinal surfaces. Specimens were embedded in acrylic resin with the flat surface exposed. The dentinal expose surfaces were polished to 600 grit. The teeth were randomly divided into five groups of twelve specimens (F1–F5 for compomer material and five other groups (Z1- Z5 for composite resin. After application of Promt L-Pop to dentinal surfaces of specimens, the surfaces in all groups, except for F1 and Z1, (as controls were contaminated with human blood and then one of the following surface treatments was applied. Groups F2 and Z2 without any treatment, groups F3 and Z3 rinsing with water, groups F4 and Z4 rinsing with water and reapplication of adhesive, groups F5 and Z5 rinsing with NaOCl and using Prompt L-Pop again. Restorative materials were applied to treated surfaces using plastic molds. After thermocycling, shear bond strengths, mode of failures and morphology of dentin-material interfaces were evaluated. The data were statistically analyzed using Factorial analysis of Variance, One-Way ANOVA, Duncan, T-student and Chi-Square tests with P<0.05 as the limit of significance. Results: Compomer showed statistically significant higher bond strength in comparison to composite (P<0.001. Duncan test showed significant differences between all compomer groups, except between groups F4 and F5, and between all composite groups except for groups Z1 and Z4 and for groups Z2 and Z3

  20. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Octarina Octarina; Andi Soufyan; Yosi Kusuma Eriwati

    2013-01-01

    Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV) is obtained using multi-step (MS) resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC) was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS) of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups...

  1. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration. PMID:23484179

  2. Tensile bond srength between composite resin using different adhesive systems
    Avaliação da resistência à ruptura por tração entre resina composta e diversos adesivos dentinários

    Patrícia Dias; Raul Santos de Sá; Jorge Augusto César; Guilherme Augusto de Barros Nolasco; Fátima Cristina de Sá

    2002-01-01

    The aim of this study was evaluate the tensile bond strength (TBS) among nine adhesive systems and one composite resin. The groups were made as follows: Single Bond/3M (G1), Etch & Prime 3.0 /Degussa (G2), Bond 1/Jeneric/Pentron (G3), Prime & Bond 2.1/Dentsply (G4), OptiBond FL/Kerr (G5), Stae/SDI (G6), Snap Bond/ Copalite-Cooley & Cooley (G7), Prime & Bond NT/Dentsply (G8), Scotchbond Multi Purpose Plus/3M (G9). The control group (G10) was made only with the composite resin (Z100/3M). One hu...

  3. Effect of delayed insertion of composite resin on the bond strength of etch-and-rinse adhesive systems

    Edson Alves de CAMPOS; SAAD, José Roberto Cury; Sizenando Toledo PORTO NETO; Campos, Lucas Arrais; de Andrade, Marcelo Ferrarezi

    2009-01-01

    Introduction: Etch-and-rinse adhesive systems are characterized bythe dental acid etching previously to the monomer application. Thesematerials can be classified as 3-step (when primer and bond are applied separately) or 2-step (when the primer and bond functions are carried out by a single component). Objective: To determine the influence of immediate or delayed insertion of restorative material on the values of bond strength of 2-step and 3-step etch-and-rinse adhesive systems using the mic...

  4. Adhesion between high-strength concrete, epoxy resin and CFRP

    Aguiar, J. L. Barroso de; Krzywon, Rafal; Camões, Aires; Gorski, M.; Dawczynski, Szymon

    2008-01-01

    This paper presents a study on the adhesion between high-strength concrete, epoxy resin and CFRP. The adhesion of the high-strength concrete was compared with the same property measured in conventional concrete. Shear tests were made to test adhesion from concretes to epoxy resin. Flexural tests were used to evaluate the adhesion between concretes, epoxy and CFRP. The effect of temperature was also evaluated. For ordinary temperatures (20 ºC) the results showed a better flexural performance o...

  5. Bulk-Fill Resin Composites

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and...... three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low...

  6. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    Khoroushi, Maryam

    2016-01-01

    Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively) were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D) and three dimensional (3D) dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc.), using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002). The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively). The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003). The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001). The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique. PMID:27200275

  7. Amalgam stained dentin: a proper substrate for bonding resin composite?

    Feilzer, A.J.; Özcan, M.; Kleverlaan, C. J.; Scholtanus, J.D. (Hans)

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and attributed to penetration of corrosion products, is an adequate substrate for bonding resin composite restorations. Previous studies revealed tin and zinc as main metals from amalgam in stained dentin and...

  8. Evaluation of bond strength between glass fiber and resin composite using different protocols for dental splinting

    Amaral R Fabrício; Queiroz C José Renato; Leite P. P. Fabíola; Reskalla N. J. F. Helcio; Rodrigo Furtado de Carvalho; Özcan Mutlu

    2013-01-01

    Context: Many different polymeric materials to chair-side application on pre-impregnated glass fibers (PGF) are available and different protocols are used in clinical procedure. Aims: This study evaluated protocols used for dental splinting on adhesion between PGF and resin. Settings and Design: 42 pair of nano composite resin blocks with (6 × 6 × 8) mm 3 were assigned into seven groups (n=6) and bonded according to the protocol: Gar) adhesive, resin; Ggr) glass fiber, resin; Ggar) glass fibe...

  9. Resin impregnation process for producing a resin-fiber composite

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  10. Indirect resin composites

    Nandini Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search ...

  11. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  12. Effect of adhesive resin type for bonding to zirconia using two surface pretreatments

    P. Samimi; A. Hasankhani; J.P. Matinlinna; H. Mirmohammadi

    2015-01-01

    Purpose: This laboratory study evaluated the short-term adhesive properties of one 10-MDP-containing and two MDP-free resin composite cements, using two types of zirconia surface pretreatments. Materials and Methods: Eighteen sintered zirconia disks (Procera, Nobel Biocare) were randomly divided int

  13. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R.; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theor...

  14. Synthesis of melamine-glucose resin adhesive

    CHEN; Shuanhu; ZHANG; Lei

    2005-01-01

    The synthesis of a novel melamine-glucose adhesive that is similar to urea-formaldehyde adhesive is reported in this paper. The conditions of synthesis, such as the initial pH, the quantity of catalyst, the temperature of reaction, the percentage of each reactant and the time of reaction, were optimized by using the orthogonal experimental method.

  15. Amalgam stained dentin: a proper substrate for bonding resin composite?

    J.D. Scholtanus

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and attribu

  16. Thermal conductivity enhancement with different fillers for epoxy resin adhesives

    Heat dissipation is an important issue for electronic devices. In the present work, we prepared eight kinds of thermal adhesives by filling the epoxy resin with natural graphite, copper, aluminum, zinc oxide, boron nitride, aluminum oxide, diamond and silver powders, and measured the thermal conductivity of all samples. The results show the eight fillers can efficiently improve the thermal conductivity of the epoxy resin. Meanwhile, we found the layer-shape filler is more favorable than the ball-shape filler and the sharp-corner-shape filler to enhance the thermal conductivity of epoxy resin, and the low price layer-shape natural graphite-epoxy adhesive had the highest thermal conductivity up to 1.68 W m−1 K−1 at weight 44.3% of the eight thermal adhesives. All the fillers and the cross sections of thermal adhesives morphologies images were characterized by scanning electron microscopy, and the thermal conductivities of all the samples were measured by Hot Disk TPS-2500 thermal constants analyzer. - Highlights: •Thermal conductive adhesives with 8 different fillers were tested. •The layer-shape filler is beneficial to form the heat pathways. •The sharp-corner-shape filler is most difficult to achieve the heat pathways. •The adhesive filled with the natural graphite has higher thermal conductivity

  17. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements. PMID:20668359

  18. Effect of surface pretreatments on resin composite bonding to PEEK.

    Silthampitag, Patcharawan; Chaijareenont, Pisaisit; Tattakorn, Kittipong; Banjongprasert, Chaiyasit; Takahashi, Hidekazu; Arksornnukit, Mansuang

    2016-01-01

    This study evaluated the effect of surface pretreatments on resin composite bonding to polyetheretherketone (PEEK). Four groups of surface pretreatment (no pretreatment, etched with 98% sulfuric acid, etched with piranha solution and sandblasting with 50 µm alumina) were performed on PEEK. Surface roughness, Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis were examined. Shear bond strength (SBS) and interface characteristics were also evaluated after the specimens were bonded with resin materials. Two-way ANOVA analysis revealed significance on two main effects and interactions. Tukey's multiple comparisons test showed that the SBS of resin composite on PEEK were the highest in the group etched with 98% sulfuric acid and bonded with Heliobond(®) (p<0.05). All pretreatments produced similar spectra of FTIR patterns. SEM demonstrated porosities and pitting from chemical etching, which suggested a significant influence on the adhesion between PEEK and resin materials. PMID:27477234

  19. Resina fluida autoadhesiva utilizada como sellante de fosas y fisuras: Estudio de microinfiltración Self-adhesive flowable composite-resin as a fissure sealant: A microleakage study

    D De Nordenflycht

    2013-04-01

    Full Text Available Objetivo: Evaluar la capacidad de sellado de una resina fluida autoadhesiva (Fusio Liquid Dentin, Pentron Clinical utilizada como sellante de fosas y fisuras con distintos acondicionamientos de la superficie de esmalte. Materiales y Métodos: Se seleccionaron 140 terceros molares recientemente extraídos, los que fueron distribuidos aleatoriamente en cuatro grupos (n=35 y recibieron una técnica de acondicionamiento del esmalte y aplicación de un sellante. Se establecieron los siguientes grupos: Grupo 1, grabado ácido y aplicación de sellante (Clinpro, 3M ESPE; Grupo 2, grabado ácido y aplicación de resina autoadhesiva (Fusio Liquid Dentin, Pentron Clinical; Grupo 3, aplicación de resina autoadhesiva; Grupo 4, microarenado del esmalte y aplicación de resina autoadhesiva. Los dientes sellados fueron termociclados (500 ciclos, 5-55°C, y posteriormente sumergidos en solución de nitrato de plata amoniacal por 24 h (pH=14 y luego en revelador radiográfico (GBX, Kodak por 8h. Posteriormente, los dientes fueron cortados para obtener 2 láminas por diente que fueron observadas bajo magnificación (4x y analizadas digitalmente para evaluar la microinfiltración y la penetración en la fisura. Los resultados fueron analizados estadísticamente (ANOVA, Dunnett, pAim: To evaluate the sealing ability of a self-adhesive flowable composite-resin (Fusio Liquid Dentin, Pentron Clinical with different conditioning treatments of the enamel surface used as a fissure sealant. Materials and Method: 140 recently extracted human third molars were selected and randomly divided into four groups (n=35. Each group received an enamel conditioning treatment and a sealant application. The following groups were established: Group 1, acid etching and sealant application (Clinpro, 3M ESPE; Group 2, acid etching and self-adhesive flowable composite-resin (Fusio Liquid Dentin, Pentron Clinical; Group 3, self-adhesive flowable composite-resin; Group 4, sandblasting and

  20. Analysis of residual stress in the resin of metal-resin adhesion structures by scanning acoustic microscopy.

    Ohno, Hiroki; Endo, Kazuhiko; Nagano-Takebe, Futami; Ida, Yusuke; Kakino, Ken; Narita, Toshio

    2013-01-01

    The residual stress caused by polymerization shrinkage and thermal contraction of a heat-curing resin containing 4-META on a metal-resin structure was measured by a scanning acoustic microscope. The tensile residual stress in the resin occurred within 70 µm of the adhesion interface with a flat plate specimen. The maximum tensile stress was about 58 MPa at the interface. On a metal plate specimen with retention holes, ring-like cracks in the resin occurred around the retention holes with the adhesive specimen and many linear cracks occurred in the resin vertical to the longitudinal direction of the metal frame with the non-adhesive specimens. There was tensile residual stress on the resin surface at the center of the retention holes of the adhesion specimen, indicating that the stress in the specimen with surface treatment for adhesion was higher than in that without surface treatment. PMID:24240901

  1. Fiber reinforced silicon-containing arylacetylene resin composites

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  2. Bending rigidity of composite resin coating clasps.

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  3. Adhesion of PBO Fiber in Epoxy Composites

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  4. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm2, Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm2) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than others ones

  5. Microleakage of adhesive resinous materials in root canals

    Jason Gilbert Wong

    2013-01-01

    Full Text Available Aim: The purpose of this study was to compare the in vitro micro-leakage resistance of adhesive resin materials to long-used zinc oxide-eugenol and epoxy resin sealers. Materials and Methods: Seven materials, five test (Real Seal, Real Seal XT, Panavia F 2.0, Infinity Syringeable, GCEM and two controls (Tubliseal, AH Plus, were evaluated for micro-leakage resistance in a bovine incisor root model, with 12 roots per material. Teeth were root canal treated, stored in water, artificially aged by thermal-cycling, stained with silver nitrate, sectioned to yield eight measurement points per tooth (four coronal and four apical, giving 672 measurement points. Stain penetration was measured using digital positioners and a toolmakers microscope; then analyzed using descriptive statistics, two-way analysis of variance and multiple comparisons testing ( P < 0.05. Results: All modern adhesive resinous materials leaked significantly less than long-used zinc oxide-eugenol and epoxy resin sealers ( P < 0.05. Mean leakage values and their associated (standard deviations in mm were: Infinity Syringeable 2.5 (1.5, Real Seal XT 3.2 (1.4, Real Seal 3.4 (1.6, Panavia F 2.0 3.8 (2.7, GCEM 4.2 (1.8, Tubli-seal 5.4 (2.8, AH Plus 6.3 (2.3. Overall, more leakage occurred apically than coronally ( P < 0.0001. Many materials exhibited dimensional instability: Marked contraction, expansion, or lack of cohesion. Conclusion: A variety of adhesive resinous materials, endodontic sealers and crown cements, reduced micro-leakage in comparison to long and widely used zinc oxide- eugenol and epoxy sealers.

  6. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  7. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Ivan Michalec; Milan Marônek

    2013-01-01

    Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  8. Luminous Efficient Compositions Based on Epoxy Resin

    R.S. Palaiah

    2006-07-01

    Full Text Available Magnesium/sodium nitrate illuminating compositions with epoxy resin - E 605 have beenstudied for luminosity and luminous efficiency by varying fuel oxidizer ratio and binder content.The compositions have been evaluated for impact and friction sensitivities, burn rate, thermalcharacteristics, and mechanical properties. Flame temperature and combustion products areevaluated theoretically by using REAL program. Experimental results show that, luminosity,burn rate, and calorimetric value are higher for polyester resin-based compositions. The highluminous efficiency composition is achieved with magnesium/sodium nitrate ratio of 70/30 with4 per cent epoxy resin.

  9. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device composed of an adhesive compound, such as polymethylmethacrylate, intended to cement an orthodontic...

  10. Bond Strength of Repaired Composite Resin Restorations

    Rodrigo Máximo de ARAÚJO

    2007-05-01

    Full Text Available Purpose: To evaluate the bond strength of direct composite resins and composite repairs, using 3 different commercial brands - GI: Palfique Estelite Ó (Tokuyama, GII: Filtek Z350 (3M/ESPE and GIII: Te Econon (Ivoclar/Vivadent - and the use of AdperTM Single Bond 2 (3M/ESPE adhesive system at the base/repair interface. Method: Thirty conic bases (5 mm x 5 mm x 3 mm of each commercial brand of composite resin were fabricated. All bases of each group were submitted to a thermocycling regimen of 20,000 cycles (5ºC to 55ºC ± 2ºC, for 30 s. The bases of each group were randomly assigned to 3 sub-groups, in which a combination of the commercial brands was performed for the repairs. The specimens were stored in distilled water at 37°C during 7 days and were thereafter tested in tensile strength in a universal testing machine (EMIC - MEM 2000 with 500 kgf load cell running at a crosshead speed of 1.0 mm/min until fracture. Data in MPa were submitted to ANOVA and Tukey’s test (5%.Results: The following results were found: GI: Palfique Estelite Ó (11.22±4.00 MPa, Te Econom (12.03±3.47 MPa and Filtek Z350 (10.66±2.89 MPa; GII: Palfique Estelite Ó (8.88±2.04 MPa, Te Econom (7.77±1.64 MPa and Filtek Z350 (10.50±6.14 MPa; and GIII: Palfique Estelite Ó (8.41±2.50 MPa, Te Econom (12.33±3.18 MPa and Z350 (11.73±3.54 MPa.Conclusion: The bond strengths at the interface of the different composite resins submitted to repair were statistically similar regardless of the commercial brand.

  11. Microshear bond strength between restorative composites and resin cements

    Rubens Nazareno GARCIA; Mário Fernando de GÓES; Marcelo GIANNINI

    2008-01-01

    Introduction and objective: The techniques of adhesive cementationhave been widely used in dental restoration. The purpose of this studywas to evaluate the microshear bond strength between restorativecomposites and resin cements. Material and methods: Twenty composites blocks were prepared in order to obtain a flat surface, using 600-grid sandpaper. The samples were randomly divided in four groups(n=15) according to the experimental groups: [1] Z250 block + Single Bond + cylinder of RelyX ARC...

  12. Tensile bond srength between composite resin using different adhesive systems Avaliação da resistência à ruptura por tração entre resina composta e diversos adesivos dentinários

    Patrícia Dias

    2002-11-01

    Full Text Available The aim of this study was evaluate the tensile bond strength (TBS among nine adhesive systems and one composite resin. The groups were made as follows: Single Bond/3M (G1, Etch & Prime 3.0 /Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/ Copalite-Cooley & Cooley (G7, Prime & Bond NT/Dentsply (G8, Scotchbond Multi Purpose Plus/3M (G9. The control group (G10 was made only with the composite resin (Z100/3M. One hundred specimens were made, 10 for each group. There were significant differences on TBS among groups. G3 showed the hightest TBS in comparison to other tested groups. G10 presented higher TBS than all groups. O objetivo desta pesquisa foi investigar in vitro a resistência de união entre uma resina composta e nove sistemas adesivos dentinários. Os adesivos estudados foram assim agrupados: Single Bond/3M (G1, Etch & Prime 3.0/ Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/Copalite (G7, Prime & Bond NT/Dentsply (G 8, Scotchbond Multi Purpose Plus/3M (G9. O Grupo controle (G10. foi confeccionado somente com a resina composta (Z100/3M. Foram confeccionados 100 espécimes, 10 para cada grupo. Houve diferenças estatísticas significantes entre os grupos. O grupo 3 foi o que mostrou a mais alta resistência em comparação aos nove testados. O grupo controle (G10 apresentou a mais alta resistência entre todos os Grupos.  

  13. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Alireza Eshghi; Maryam Khoroushi; Alireza Rezvani

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces r...

  14. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  15. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives.

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-06-01

    The purpose of this study was to investigate the shear bond strength (SBS) and surface free-energy (SFE) of short fiber-reinforced resin composite (SFRC), using different adhesive systems, in comparison with other composite restoratives. The resin composites used were everX Posterior (EP), Clearfil AP-X (CA), and Filtek Supreme Ultra Universal Restorative (FS). The adhesive systems used were Scotchbond Multi-Purpose (SM), Clearfil SE Bond (CS), and G-Premio Bond (GB). Resin composite was bonded to dentin, and SBS was determined after 24 h of storage in distilled water and after 10,000 thermal cycles (TCs). The SFEs of the resin composites and the adhesives were determined by measuring the contact angles of three test liquids. The SFE values and SFE characteristics were not influenced by the type of resin composite, but were influenced by the type of adhesive system. The results of this study suggest that the bonding performance and interfacial characteristics of SFRC are the same as for other composite restoratives, but that these parameters are affected by the type of adhesive system. The bonding performance of SFRC was enhanced by thermal cycling in a manner similar to that for other composite restoratives. PMID:26954878

  16. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in

  17. UV-cured adhesives for carbon fiber composite applications

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  18. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  19. Volumetric polymerization shrinkage of contemporary composite resins

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  20. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding.

    Soghra Yassaei

    2014-06-01

    Full Text Available The aim of this study was to compare the shear bond strength (SBS of resin modified glass ionomer (RMGI and composite resin for bonding metal and ceramic brackets.Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22. In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT, respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan. After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°. The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA.RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI scores between the groups indicated that the bracket failure mode was significantly different among groups (P<0.001 with more adhesive remaining on the teeth bonded with composite resin.RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range.

  1. Process for producing a radiation curable resin composition

    A radiation curable resin composition can be cured with a very low radiation dose by adding a fluorescent material and/or a photoconductive material to the resin. The process comprises the steps of adding a fluorescent material, a photoconductive material or both of them at the same time to a resin composition having polymerizable unsaturated radicals in the molecules of the resin. The process is advantageous in that it can be completely cured with a low dose in a short period of time. The process can increase the productivity of the continuous coating process applied to plywood, particle boards and aluminum and steel coil coating. In one embodiment, a first coating composition consists of 47% of an unsaturated polyester resin, 19.5% of styrene, 3% of carbon black, 15% of barium sulfate, 15% of a fluorescent material of the sulfide series (zinc oxide/zinc) and 0.5% of an additive. In another embodiment, a second coating composition consists of 45% of an unsaturated polyester resin, 19.5% styrene, 20% of titanium oxide, 15% of a fluorescent material of the sulfide series (zinc oxide/zinc) and 0.5% of an additive. The first and second coating compositions are mixed, dispersed with a pebble mill and applied to a plywood with an applicator. The coating is irradiated under the following conditions: voltage 300 kV, current 25 mA, linear velocity 15 m/minute and dose 1.5 Mrad/frequency. The product has a thickness of 76 microns with a superior appearance, adhesiveness and chemical corrosion resistance. (Iwakiri, K.)

  2. The curative effect observation of super adhesive bonding of light cured composite resin inlay in the repair of deciduous teeth Ⅱ complex cavities%超级黏接剂黏接光固化复合树脂嵌体在修复乳牙Ⅱ类复面洞型的疗效观察

    辜赵娜

    2015-01-01

    目的:观察超级黏接剂黏接材料黏接复合树脂嵌体在修复乳牙Ⅱ类洞型的临床疗效。方法:收治乳牙Ⅱ类洞型患者18例,采用超级黏接剂黏接材料黏接复合树脂嵌体进行修复治疗,观察临床效果。结果:经过随访观察,用超级黏接剂黏接材料黏接光固化复合树脂嵌体在口腔无脱落,嵌体边缘继发龋发生率4.8%。结论:使用超级黏接剂材料黏接光固化复合树脂嵌体具有很好防止脱落和防止继发龋的效果。%Objective:To explore the curative effect observation of super adhesive bonding of light cured composite resin inlay in the repair of deciduous teeth Ⅱ complex cavities.Methods:18 patients with deciduous teeth Ⅱ complex cavities were selected. They were treated by super adhesive bonding of light cured composite resin inlay.We observed the clinical effect.Results:After follow-up observation,with super adhesive bonding of light cured composite resin inlay,there was no shedding in oral,and secondary caries incidence at inlay edge was 4.8%.Conclusion:Using super adhesive bonding of light cured composite resin inlay was good to prevent the shedding and prevent the incidence of secondary caries.

  3. Comparison of Adhesive Resistance to Chewing Gum among Denture Base Acrylic Resin, Cobalt-Chromium Alloy, and Zirconia.

    Wada, Takeshi; Takano, Tomofumi; Ueda, Takayuki; Sakurai, Kaoru

    2016-01-01

    The purpose of this study was to compare the adhesiveness of chewing gum to acrylic resin, cobalt-chromium alloy, and zirconia. Test specimens were fabricated using acrylic resin (resin), cobalt-chromium alloy (Co-Cr), and Ceria stabilized tetragonal zirconia polycrystal-based nanostructured zirconia/alumina composite (zirconia). Specimens of each material were attached to the upper and lower terminals of a digital force gauge. The operator masticated chewing gum, wiped off any saliva, and placed the gum on the lower specimen. The gum was compressed to a thickness of 1 mm between the upper and lower specimens. Thereafter, traction was applied to the upper specimen at a cross-head speed of 100 mm/min under 3 different conditions (dry, wet with distilled water, and wet with artificial saliva) to determine the maximum adhesive strength of the chewing gum. The statistical analysis was performed using the Bonferroni test after a one-way analysis of variance (α=0.05). Under dry conditions, adhesive force was 14.8±6.8 N for resin, 14.0±4.8 N for Co-Cr, and 4.3±2.3 N for zirconia. Significant differences were noted between resin and zirconia, and between Co-Cr and zirconia. When distilled water was applied to the specimen surface, the adhesive strength was 16.8±1.7 N for resin, 8.3±2.1 N for Co-Cr, and 2.7±0.8 N for zirconia. Significant differences were noted between resin and Co-Cr, resin and zirconia, and Co-Cr and zirconia. When artificial saliva was applied to the specimen surface, the adhesive force was 18.5±2.8 N for resin, 5.3±0.8 N for Co-Cr, and 3.0±1.7 N for zirconia. Significant differences were noted between resin and Co-Cr, and resin and zirconia. Chewing gum adhered less strongly to zirconia than to acrylic resin or cobalt-chromium alloy. PMID:26961330

  4. Do resin cements influence the cuspal deflection of teeth restored with composite resin inlays?

    da Rosa, Helen C V; Marcondes, Maurem L; de Souza, Niélli C; Weber, João B B; Spohr, Ana M

    2015-04-01

    The aim of this study was to evaluate the influence of different resin cements on the cuspal deflection of endodontically treated teeth restored with composite resin inlays. Sixty upper premolars were randomly divided into five groups (n=12): 1 - sound teeth; 2 - cavity; 3 - Rely X ARC; 4 - RelyX Unicem; 5 - SeT. The teeth from groups 2, 3, 4 and 5 received a MOD preparation and endodontic treatment. Impressions were made with vinyl polysiloxane and poured using type IV die stone in groups 3, 4 and 5. Inlays with composite resin were built over each cast and luted with the resin cements. A 200 N load was applied on the occlusal surface, and cuspal deflection was measured using a micrometer. After 24 h, cuspal deflection was measured again using a 300 N load. The Student t-test showed that there was no statistically significant difference between the 200 N and 300 N occlusal loads only for the sound teeth group (p = 0.389) and the RelyX ARC group (p = 0.188). ANOVA and Tukey'test showed that the sound teeth had the lowest mean cuspal deflection, differing statistically from the other groups (p<0.05). The highest cuspal deflections were obtained in the SeT group and the cavity group, with no statistical difference between them. Intermediate values were obtained in RelyX ARC group and RelyX Unicem group, which differed statistically. The self-adhesive resin cements RelyX Unicem and SeT showed less capacity to maintain the stiffness of the tooth/restoration complex than the conventional resin cement RelyX ARC. PMID:25950160

  5. PMR Resin Compositions For High Temperatures

    Vannucci, Raymond D.

    1989-01-01

    Report describes experiments to identify polymer matrix resins suitable for making graphite-fiber laminates used at 700 degree F (371 degree C) in such applications as aircraft engines to achieve higher thrust-to-weight ratios. Two particular high-molecular-weight formulations of PMR (polymerization of monomer reactants) resins most promising. PMR compositions of higher FMW exhibit enhanced thermo-oxidative stability. Formation of high-quality laminates with these compositions requires use of curing pressures higher than those suitable for compositions of lower FMW.

  6. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    Shahin Kasraie

    2013-01-01

    Full Text Available Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4. Four cylinders of composite resin (z250 were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001. Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used.

  7. Formulation of lignin phenol formaldehyde resins as a wood adhesive

    This work describes the potential of reducing phenol with lignin in phenol formaldehyde resin formulation. The physical and chemical properties between lignin phenol formaldehyde resin (LPF) and commercial phenol formaldehyde resin (CPF) were compared. Phenol had been replaced by lignin [that was extracted from black liquor of oil palm empty fruit bunch (EFB)] in synthesizing resin with a ratio lignin to phenol 1:1. The IR spectra showed that there were similarities in functional groups between LPF resin and CPF resin. The comparison of physical strength properties via tensile strength test between LPF resin and CPF resin showed that the newly formulated resin has higher bonding strength compared to commercial resin. Kinematics viscosity test showed that LPF resin has lower kinematics viscosity compared to CPF resin in 21 days storage time. SEM images for both resin showed similarities in the effect of resin penetration into woods vessel existed. (author)

  8. Shear bond strength of composite resin to amalgam: an experiment in vitro using different bonding systems.

    Hadavi, F; Hey, J H; Ambrose, E R

    1991-01-01

    The shear bond strength between amalgam and composite resin with and without the use of adhesive systems was evaluated. It was found that the application of Cover-Up II or Prisma Universal Bond prior to placement of composite resin enhanced the shear bond strength between amalgam and composite resin more than five times; and a shear strength of 4.34 and 4.30 MPa was measured respectively. Acid-etching of the roughened amalgam surface prior to application of Prisma Universal Bond decreased the bond strength by nearly 45%. PMID:1784535

  9. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Octarina Octarina

    2013-07-01

    Full Text Available Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV is obtained using multi-step (MS resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups: IRCV without sandblasting (n=20 and with sandblasting for 10 seconds (n=20 and then bonded to enamel using MS (n=10 and SADRC (n=10, respectively. After 24h SBS of specimens were tested using a Universal Testing Machine. Data were analyzed statistically by one-way ANOVA. Results: The average SBS value of IRCV without SB and bonded with MS was 18.95+7.80MPa and MS with SB was 19.30+ SB (4.85+2.12MPa and SADRC with SB (9.57+3.45MPa(p<0.05. Conclusion: increased SBS VIRK to enamel using MS resin cement than SADRC.  

  10. Simulated Wear of Self-Adhesive Resin Cements.

    Takamizawa, T; Barkmeier, W W; Latta, M A; Berry, T P; Tsujimoto, A; Miyazaki, M

    2016-01-01

    One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p<0.001) and the interaction of the cement and cure method (p<0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a

  11. Silicone Resin Applications for Ceramic Precursors and Composites

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  12. Color stability of recent composite resins

    Ardu, Stefano; Duc, Olivier; Di Bella, Enrico; Krejci, Ivo

    2016-01-01

    The objective of the study was to evaluate the color stability of 8 recently developed resin composites when exposed to various staining agents. Six disc-shaped specimens made out of 8 resin composite materials were immersed in artificial saliva, coffee, coke, tea, orange juice and red wine. The initial color (T0) of the 288 specimens was assessed by a calibrated reflectance spectrophotometer (SpectroShade, MHT) over a black as well as a white background. All specimens were kept in an incubat...

  13. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  14. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Mostafa Sadeghi

    2016-01-01

    Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12) and treated as follows: without any treatment (negative control group); total-e...

  15. Optical characterization of one dental composite resin using bovine enamel as reinforcing filler

    Tribioli, J. T.; Jacomassi, D.; Rastelli, A. N. S.; Pratavieira, S.; Bagnato, V. S.; Kurachi, C.

    2012-01-01

    The use of composite resins for restorative procedure in anterior and posterior cavities is highly common in Dentistry due to its mechanical and aesthetic properties that are compatible with the remaining dental structure. Thus, the aim of this study was to evaluate the optical characterization of one dental composite resin using bovine enamel as reinforcing filler. The same organic matrix of the commercially available resins was used for this experimental resin. The reinforcing filler was obtained after the gridding of bovine enamel fragments and a superficial treatment was performed to allow the adhesion of the filler particles with the organic matrix. Different optical images as fluorescence and reflectance were performed to compare the experimental composite with the human teeth. The present experimental resin shows similar optical properties compared with human teeth.

  16. Composite fabrication via resin transfer molding technology

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  17. Color change of composite resins subjected to accelerated artificial aging

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  18. Treatment of liquid wastes using composite resins

    Composite ion exchange resins were prepared by coating copper ferrocyanide and hydrous manganese oxide powders on polyurethane foam. The binder used was polyvinyl acetate in alcohol/acetone medium. Studies were conducted in pilot scale using 50 L ion exchange column and treated category III radioactive liquid wastes. About 2000 to 2400 bed volumes of liquid wastes containing radioactive 137Cs and 90Sr were treated. Digestion of the resins was carried out in a 25 L column using alkaline KMnO4. The digested liquid was fixed in cement matrix and the matrices were characterized with respect to compressive strength, biological and leach resistance. (author)

  19. Handling sticky resin by Stingless Bees: adhesive properties of surface structures.

    Gastauer, Markus; Campos, Lucio A O; Wittmann, Dieter

    2013-09-01

    Many Stingless Bees (Hymenoptera: Meliponini) like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily. PMID:24068098

  20. Magnitude and distribution of stresses in composite resin and sound dentine interface with mechanical retentions

    Kuramochi, Gisaku; Borie, Eduardo; ORSI, Iara Augusta; Del Sol, Mariano

    2015-01-01

    Background Adhesive systems are constantly subjected to mechanical and chemical stresses that negatively impact the integrity and durability of the dentine-adhesive interface. Despite the lack of evidence to support or reject the clinical indication for mechanical retention, the potential further contribution of these preparations to the behavior of the composite resin-sound dentine bond has been rarely addressed. The authors evaluated by finite element analysis the effect of mechanical reten...

  1. Tensile bond strength between different glass ionomer cement and composite resin using three adhesive systems
    Avaliação da resistência de união interfacial entre diferentes cimentos de ionômero de vidro e resina composta, usando três sistemas adesivos

    Patrícia Dias; Raul Santos de Sá; Jorge Augusto César; Guilherme Augusto de Barros Nolasco; Fátima Cristina de Sá

    2005-01-01

    The purpose of this study was to evaluate the tensile bond strength (TBS) among a Composite Resin (Filtek Z250) and six conventional Glass Ionomer Cements, three used for lining (Bioglass F, Vidrion F and Glass Ionomer L.C.) and three for restorations (Ketac Fil, Vidrion R and Glass Ionomer type II) etched and non etched, using three adhesive systems (Single Bond, Bond 1 and Stae). Thirty-six groups were made, ten samples for each group, totalizing 360 specimens. There were significant differ...

  2. Effect on Micro-Leakage of Composite Resoration with Two Different Adhesives after Bleaching

    Nazish Fatima; Sidr Mohiuddin; Wasif Iqbal

    2015-01-01

    OBJECTIVE: To evaluate the effects of two different adhesive systems after bleaching with 38% Hydrogen peroxide onmicroleakage of Class V composite resin restorations. MATERIALS & METHODS: The materials used in this study included Nano composite (Filtek Z350), Scotchbond™ Dual Cure Dental Adhesive (3M™ ESPE™), Prime and bond elect (Dentsply) and Power whitening gel (White Smile 2011, Germany). Sixty sound human premolars were stored in thymol solution (Buffered 0.1% pH 7.00) for about one ...

  3. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  4. Matrix Resin Characterization in Cured Graphite Composites Using Diffuse Reflectance-Ftir

    Young, P. R.; Chang, A. C.

    1984-01-01

    The chemical characterization of cured graphite fiber reinforced polymer matrix composites is complicated by the fact that the resins are insoluble and the composites are apaque. Standard analyses which depend either on the ability to dissolve the sample or to detect transmitted radiation are impossible. As a result, data reported on environmentally exposed composites primarily concern macroscopic information such as weight loss or changes in selected mechanical properties. Diffuse reflectance in combination with fourier transform infrared spectroscopy was developed to gain a basic chemical understanding of composite and adhesive behavior. Several composite and adhesive materials were characterized before and after environmental exposure. In each case significant changes in resin molecular structure were observed and correlated with changes in mechanical properties, providing new insights into material performance.

  5. A COMBINATION OF POLYETHYLENIMINE AND PHENOLIC RESIN AS AN ADHESIVE FOR WOOD-BASED PANELS

    Olaf Georg Treusch,

    2012-01-01

    Full Text Available The purpose of this study is to develop a low-formaldehyde-emitting resin system for medium density fibreboards (MDF. A combination of polyamines with phenolic resins seems to be suitable for this purpose. To produce panels with such a resin system, polyethylenimine, and a phenolic resin were separately applied on fibres and subsequently made into boards in a thermal pressing process. It was demonstrated that thickness swelling and the mechanical properties of the boards produced with the new adhesive system were comparable to those conventionally manufactured with urea-formaldehyde resins. Even with adhesive contents of just 2 to 3%, the panels attained satisfactory internal bond strength. MDF panels with a total adhesive content of between 1.25 and 5% were produced from a mixture of polyethylenimine and phenolic resins (resol type at different ratios. All boards were tested for physical (thickness swelling and water absorption and mechanical properties (internal bond, modulus of elasticity, flexural strength. It was demonstrated that thickness swelling and the mechanical properties of the boards produced can be improved by a combination of polyethylenimine and phenolic resin.

  6. Mini fiberglass post for composite resin restorations: A clinical report.

    Morgan, Luís Fernando Dos Santos Alves; Martins, Adriana Vieira; Albuquerque, Rodrigo de Castro; Silveira, Rodrigo Richard; Silva, Nelson Renato França Alves; Moreira, Allysson Nogueira

    2016-06-01

    Threaded metal pins have been used to create additional retention for large composite resin restorations. However, their dark appearance may compromise esthetic outcome. The use of small fiberglass posts has been advocated as an alternative. This clinical report describes a mini fiberglass post (MFP) used to provide additional retention in a fractured anterior tooth that received a composite resin restoration. The MFP represents a promising option for creating additional retention for large composite resin restorations. PMID:26724848

  7. Polyurethane structural adhesives applied in automotive composite joints

    Josue Garcia Quini

    2012-06-01

    Full Text Available In recent years structural adhesives technology has demonstrated great potential for application due to its capacity to transform complex structures into solid unitary and monolithic assemblies using different materials. Thus, seams or joints integrate these structures providing, besides a reduction in weight, a considerable increase in the mechanical resistance and stiffness. The increase in the industrial use of structural adhesives is mainly due to their ability to efficiently bond different materials in an irreversible manner, even replacing systems involving mechanical joints. In the automobile industry structural adhesives have been widely used for the bonding of metal substrates, thermoplastics and composites, frequently employing these in combination, particularly glass fiber and polyester resin composites molded using RTM and SMC processes. However, the use of urethane structural adhesives in applications involving composites and thermoplastics has been the subject of few investigations. In this study the effects of temperature and time on the shear strength of RTM, SMC and ABS joints, applying temperatures of -40, 25, 80, 120 and 177 °C and times of 20 minutes and 500 hours, were determined. The objective was to evaluate the performance under extreme conditions of use in order to assess whether these joints could be used in passenger or off-road vehicles. The results showed that the urethane structural adhesive promoted the efficient bonding of these materials, considering that due to the high adhesive strength the failures occurred in the substrates without adversely affecting the bonded area. For each test condition the joint failure modes were also determined.

  8. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-01-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system; however, demineralization also introduce...

  9. Bond strength durability of self-etching adhesives and resin cements to dentin

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  10. Comparison of Shear Bond Strength between Composite Resin and Porcelain Using Different Bonding Systems

    E.Yassini

    2005-03-01

    Full Text Available Statement of Problem: Ceramics as in ceramo-metallic and all ceramic tooth restorations have grown popular owing to their high tissue compatibility and esthetic advantages. Such restorations have the capability to deliver valuable services over a long period of time; however, failures under intraoral conditions are not unanticipated.Purpose: The purpose of this in-vitro study was to investigate the shear bond strength of composite resin to porcelain using different bonding system materials.Materials and Methods: In this experimental study forty porcelain blocks were prepared and randomly divided into four equal groups. The porcelain surfaces were then etched with HF for 2 minutes, washed with water for 2 minutes and treated with a silane layer. The silane treated porcelain surfaces were left for one minute and then the specimens were bonded to composite resin as follow:Group 1 (control group, hybrid composite Z100 was applied and light cured from four directions for 20 seconds. Group 2, flowable composite was applied and light cured for 20 seconds. Group 3, unfilled resin was used and photo cured for 20 seconds. Group 4,(Dentin bonding agent adhesive resin was used followed by 20 seconds photo curing.Hybrid composite resin Z100 was subsequently applied on all porcelain surfaces of groups 2, 3 and 4, and light cured for 20 seconds from four directions. Specimens were then subjected to thermocycling 1000 times. Shear bond strength was determined by a Universal testing machine. The data obtained was subjected to a one-way ANOVA test.Results: The results indicate that there is a statistically significant difference between adhesive group and the other three groups of hybrid, flowable and unfilled resin (P<0.05.Conclusion: The results from this study showed that the shear bond strength of composite resin to porcelain was significantly higher for porcelain bonded surfaces using a dentin bonding agent than that of other materials tested.

  11. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    Summary Aim To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Methods Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Pendodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. Conclusions No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations. PMID:27486505

  12. Polymerization shrinkage evaluation of three packable composite resins using a gas pycnometer

    Amore Ricardo

    2003-01-01

    Full Text Available Modern restorative dentistry has been playing an outstanding role lately since composite resins, allied to adhesive systems, have been widely applied on anterior and posterior teeth restorations. The evolution of composite resins has mostly been verified due to the improvement of their aesthetic behavior and the increase in their compressive and abrasive strengths. In spite of these developments, the polymerization shrinkage inherent to the material has been a major deficiency that, so far, has been impossible to avoid. Using a gas pycnometry, this research investigated the polymerization shrinkage of three packable composite resins: Filtek P60 (3M, Prodigy Condensable (Kerr, and SureFil (Dentsply/Caulk, varying the distance from the light source to the surface of the resins (2 mm or 10 mm. The pycnometer Accupyc 1330 (Micromeritics, USA precisely records helium displacement, allowing fast and reliable measurements of the volume of composite resin immediately before and after polymerization, without interference of temperature or humidity. Results were not found to be statistically different for the three tested resins, either for 2 mm or 10 mm-distance from the light source to the composite surface.

  13. Characterization of Composite Fan Case Resins

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  14. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  15. Study on Curing Kinetics of Heat-resistant Flexible Polyamide Modified Epoxy Resin Adhesive

    Hua Li

    2015-04-01

    Full Text Available In order to study the effects of numerous variables affecting the reaction rate of heat-resistant flexible modified epoxy resin adhesive, the curing kinetics of polyamide modified epoxy resin was studied. The heat-resistant flexible modified epoxy resin adhesive cured at room-temperature was prepared with epoxy resin, polysulfide rubber and organosilicone as adhesive component, polyamide as main curing agent and addition of different modified filler and the curing agent containing benzene ring structure. The curing kinetics of polyamide modified epoxy resin was studied by Differential Scanning Calorimetry (DSC at different heating speeds and the characteristic temperatures of the curing process were analyzed and confirmed. the kinetics parameters of activation energy was calculated using Flynn-Wall-Ozawa equation and Kissinger equation, respectively, then the kinetic model of curing reaction was built as d&alpha/dt = 4.38×107 exp (-57740/RT (1-&alpha0.93, the results show that the two-parameter model is adequate to represent the curing reaction process, the model can well describe the curing reaction process of the studied resin. The DSC curves obtained using the experimental data show a good agreement with that theoretically calculated. The research results will provide theoretical basis for the choice of manufacturing process and the optimization of processing window.

  16. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  17. Bonding Analysis of Amino Resin Wood Adhesive with Pesticide Using Response Surface Method

    Bono, Awang; Rajin, Mariani; Siambun, Nancy Julius

    Wood base industries are among the dominant players in Malaysia economic activities. In this research, by using Response Surface Method (RSM), studies of bonding between Disodium Tetraborate Decahydrate (DTD) pesticide and various formulation of wood adhesive i.e., Melamine-Urea-Formaldehyde (MUF) resin is carried out. The RSM formulated twenty-five MUF formulations, consisting combination of different amount of formaldehyde, melamine, urea added in stage-1 and stage-2 of resin synthesis and DTD pesticide. The liquid products of resin are then hardened and tested using Fourier Transformation Infra-Red (FTIR) and visible spectrophotometer (VIS), to analyse the bonding of the resin and pesticide. The data from the FTIR and VIS analysis were then compiled and analysed using Response Surface Method. The results show that, different amount of the formaldehyde, melamine, urea and DTD pesticide, gives specific impact to the strength of MUF resin-pesticide bonding.

  18. Adhesive joint and composites modeling in SIERRA.

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  19. Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites

    He, Hong-Wei; Gao, Feng [Taiyuan Univ. of Technology (China). College of Materials Science and Engineering; Taiyuan Univ. of Technology (China). Key Laboratory of Interface Science and Engineering in Advanced Materials; Li, Kai-Xi [Chinese Academy of Sciences, Taiyuan, Shanxi (China). Key Laboratory of Carbon Materials

    2013-09-15

    Three kinds of epoxy resins, i.e. tetraglycidyl diaminodiphenyl methane (AG80), difunctional diglycidyl ether of bisphenol-A (E51) and novolac type epoxy resin (F46) were selected as matrices for carbon fiber/epoxy composites. The objective of this work is to study the mechanical properties of fiber/epoxy composites by using these three kinds of epoxy resins with different physical and chemical performance. The results show that the composites fabricated with AG80 present the best stiffness and the composites prepared with E5 1have the best toughness. The stiffness and toughness of the composites prepared with F46 are middle values located between those for AG80/epoxy and E51/epoxy composites. Thus, the mixed epoxy resin is a promising approach for industrial production. (orig.)

  20. Composite restorations: influence of flowable and self-curing resin composite linings on microleakage in vitro.

    Peutzfeldt, Anne; Asmussen, Erik

    2002-01-01

    This in vitro study evaluated the microleakage at enamel (occlusal) and dentin (gingival) margins of MOD resin composite restorations made with different incremental insertion techniques. MOD cavities were prepared on 60 extracted human molars with the proximal margins placed 1 mm below the cemento-enamel junction. All teeth were acid-etched and treated with One-Step adhesive, then restored with a hybrid resin composite (Renew) with and without a flowable composite (AEliteflo) or a self-curing composite (Bisfil 2B) as the first increment in the proximal boxes. The time of placement of the second increment in relation to curing of the first increment was also varied. After polishing, the teeth were soaked in 0.5% basic fuchsin for 24 hours, sectioned and evaluated for dye penetration. None of the restorative techniques prevented microleakage at the enamel and dentin margins. However, microleakage at dentin margins were significantly reduced by the use of a flowable composite as the first increment in the proximal boxes. Time of placement in relation to curing had no influence on microleakage. Microleakage was lower at enamel margins than at dentin margins; however, besides microleakage at the enamel-restoration interface, 37 of the 60 restored teeth (62%) displayed at least one white line in enamel adjacent to the composite restoration. PMID:12413221

  1. Bond Strength of Composite Resin to Enamel: Assessment of Two Ethanol Wet-Bonding Techniques

    Maryam Khoroushi; Mojgan Rafizadeh; Pouran Samimi

    2014-01-01

    Objective Ethanol wet-bonding (EWB) technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength. Materials and Methods: Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL) adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control); Protocol 1 of the EWB technique: absolu...

  2. Repair bond strength of dual-cured resin composite core buildup materials.

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage. PMID:26966567

  3. Laminated composite based on polyester geotextile fibers and polyurethane resin for coating wood structures

    Yuri Andrey Olivato Assagra

    2013-01-01

    Full Text Available New environmental laws have restricted the use of hardwood trees in overhead power lines structures, such as, poles and cross-arms, leading companies to seek alternative materials. Reforested wood coated with polymeric resin has been proposed as an environmental friendly solution, with improved electrical properties and protection against external agents, e.g. moisture, ultraviolet radiation and fungi. However, the single thin layer of resin, normally applied on such structures reveal to be inefficient, due to be easily damage during handling. In this paper, we present a composite coating, based on geotextile fibers and polyurethane resin that is suitable for wooden structures. Results obtained from two different tree species (from managed and reforested areas coated with the composite reveal that the additional layer not only provided a stronger adhesion between wood and ccoating layer but also a further improvement in the electrical properties and better protection against abrasion and moisture.

  4. Distribution of calcium ions at the interface between resin bonding materials and tooth dentin. Use of commercially available adhesive systems.

    Hanaizumi, Y; Maeda, T; Takano, Y

    1998-01-01

    It has been proposed that calcium ions play a key role in chemical (chelate) binding between the adhesive resin and dentin surface. However, no data is available concerning how calcium ions are distributed at the binding sites. The aim of this study is to demonstrate calcium ions at the resin-dentin interface by means of X-ray microanalysis and calcium ion-sensitive histochemical staining. The dentin surface in human teeth was ground by use of 240 grit silicon carbide abrasive paper under running water and treated with the dentin-primer and adhesive resin in Clearfil Liner Bond System or IMPERVA Bond System according to the manufacturer's instructions. After removing dentin matrix and isolating adhesive resin by the KOH-digestion method, one half of the samples were processed for scanning electron microscopy. The rest were embedded in Epon 812 and processed either for glyoxal bis (2-hydroxyanil) (GBHA) staining or transmission electron microscopy combined with X-ray microanalysis. Transmission electron microscopy revealed Ca-phosphate deposits at the bottom of the resin-impregnated layer. The adhesive resin above the resin-impregnated layer was amorphous and showed no precipitates of Ca-phosphate. GBHA displayed intense calcium reactions throughout the resin-impregnated layer and also moderate ones in the 10 microns (Clearfil Liner Bond System) or 30 microns (IMPERVA Bonding System) thick boundary zone of the adhesive resin as well as in the resin tags. These data are the first to offer a distinct localization of calcium ions within the adhesive resin at the dentin-resin interface. PMID:9800373

  5. In vitro evaluation of marginal microleakage in class V restorations with composite resin in bovine teeth. Laser irradiation influences and the adhesive system in the dentin pre-treatment; Avaliacao in vitro da microinfiltracao marginal em restauracoes de classe V com resina composta em dentes bovinos. Influencia da irradiacao laser e sistema adesivo no pre-tratamento dentinario

    Carvalho, Wendell Lima de

    2003-07-01

    Microleakage is one of the most important reasons to restorations failure, it is the responsible for marginal colors changing, new caries, hipersensibility and pulpar diseases. Several techniques and materials have been studied to eliminate or, at least, to decrease microleakage. The cavities preparation with Er:YAG laser and autoconditioning adhesive are some of these techniques and materials. This research has the objective to compare, in vitro, microleakage in class V cavities, prepared with high rotation (conventional treatment), Er:YAG laser (Enamel-400 mj/2 Hz/128,38 J/Cm{sup 2}, Dentin 250 mJ/ 2 Hz/ 80,24 J/Cm{sup 2}) and the treatment made at dentin with autoconditioning adhesive (Clerafil SE Bond) using Er:YAG laser (with water or not water) or not using Er:YAG laser. It was used 48 bovines teeth with cavities prepared in vestibular face and gingival wall on cement enamel junction and oclusal wall on enamel. The materials used were autoconditioning adhesive (Clerafil SE Bond) and composite resin Z250. Teeth were divided into four groups of twelve samples each one, according to dentin treatment. Group 1 - Conventional cavity and autoconditioning adhesive. Group 2- Cavity prepared with Er: YAG laser and autoconditioning adhesive. Group 3 - Cavity prepared with Er:YAG laser and dentin conditioning with Er:YAG laser associated to water and autoconditioning adhesive. Group 4 - Cavity prepared with Er:YAG laser and dentin conditioning with Er: YAG laser without water and associated to autoconditioning adhesive. Teeth were restored and stocked at 37 deg C, thermocycled and placed into a 50% silver nitrate solution. Right after, teeth were sliced and evaluated on a stereo microscopic magnifying glass in order to see microleakage degree trying to follow a score from 0 to 3. The findings were submitted to Fisher, Anderson-Darling tests and to the not parametric Sen and Puri test. The results indicated that in gingival edge, the Group 2 showed less microleakage than

  6. Ballistic properties of bidirectional fiber/resin composites

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V50) versus areal weight has shown a linear increase of V50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  7. Characterization and Process Development of Cyanate Ester Resin and Composite

    Frame, B.J.

    1998-03-01

    Cyanate ester (or polycyanate) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14A polycyanate resin as the constituent materials. Process trials, tests and analyses were conducted in order to gain insight into factors that can affect final properties of the cured cyanate ester resin and its composites. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to cure is also crucial as it affects the T{sub g} of the resin and composite. Recommendations for reducing moisture contact with the resin during wet-winding are presented. High fiber volume fraction ({approximately}80%) composites wound and cured with these methods yielded excellent hoop tensile strengths (660 to 670 ksi average with individual rings failing above 700 ksi), which are believed to be the highest recorded strengths for this class of materials. The measured transverse properties were also exceptional for these high fiber fraction composites. Based on the available data, this cyanate ester resin system and its composites are recommended for space and vacuum applications only. Further testing is required before these materials can be recommended for long term use at elevated temperatures in an ambient air environment. The results of all analyses and tests performed as part of this study are presented as well as baseline process for fabricating thick, stage-cured composites. The manufacture of a 1 in. thick composite cylinder made with this process is also described.

  8. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Si-Eun Lee; Ji-Hyeon Bae; Jae-Won Choi; Yong-Chan Jeon; Chang-Mo Jeong; Mi-Jung Yoon; Jung-Bo Huh

    2015-01-01

    This study compared shear bond strength (SBS) of six self-adhesive resin cements (SARC) and one resin-modified glass ionomer cement (RMGIC) to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm) of six SARCs (G-CEM LinkAce (GLA), Maxcem Elite (MAX), Clearfil SA Luting (CSL), PermaCem 2.0 (PM2), Rely-X U200 (RXU), Smartcem 2 (SC2)) were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC)) was bonded to the specimens with self-c...

  9. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    ZHAI Lan-lan; LING Guo-ping

    2004-01-01

    The influence of nano-Al2O3 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  10. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    ZHAILan-lan; LINGGuo-ping

    2004-01-01

    The influence of nano-A1203 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  11. Surface Modification of Silver Coated Glass Microsphere Core-shell Composite Particles and the Electrical Properties of Their Epoxy Resin-based Adhesives%银包玻珠核壳复合粒子的表面处理及环氧导电胶的电性能

    张威; 王一龙; 赵素玲; 官建国

    2012-01-01

    Using silver coated glass microsphere composite particles (Ag/GM) synthesized by liquid chemical reduction method as raw materials, and ethylenediamine as surface modification agents, Ag/GM with ethylene-diamine on their surface were prepared and used as conductive fillers to fabricate electrically conductive adhesive. Compared with the Ag/GM synthesized by chemical reduction method and modified with boiling water, the Ag/GM modified with ethylenediamine are dispersed in the epoxy adhesive more effectively and the interface energy between them and epoxy resin matrix is reduced because of the formation of the chemical bonding between the epoxy resin and the ethylenediamine adsorbed on the surface of Ag/GM. The as-fabricated electrically conductive adhesives show a relative high conductivity and low conductive percolation threshold, which is reasonably explained by the conductive percolation theory and equivalent circuit diagram. The result provides a simple and effective way to improve the conductivity of electrically conductive adhesive.%以化学还原法合成的银包玻珠核壳复合粒子(Ag/GM)为原料,乙二胺为表面处理剂,制备了表面吸附有乙二胺的Ag/GM,并用它作为导电填料组成了导电胶.与化学还原法直接合成或沸水处理的Ag/GM相比,乙二胺处理的Ag/GM能更有效地分散在环氧树脂胶黏剂中,且能与环氧树脂基体产生化学键合,降低Ag/GM和环氧树脂基体间的界面能,用其制备的导电胶的导电率较高,导电渗滤阈值较低.同时,结合导电网络理论和等效电路图,阐明了用乙二胺处理的Ag/GM作填料制备的导电胶具有较低体积电阻率的原因.

  12. Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review.

    D'Arcangelo, Camillo; Vanini, Lorenzo; Casinelli, Matteo; Frascaria, Massimo; De Angelis, Francesco; Vadini, Mirco; D'Amario, Maurizio

    2015-09-01

    The authors conducted a literature review focused on materials and techniques used in adhesive cementation for indirect composite resin restorations. It was based on English language sources and involved a search of online databases in Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus using related topic keywords in different combinations; it was supplemented by a traditional search of peer-reviewed journals and cross-referenced with the articles accessed. The purpose of most research on adhesive systems has been to learn more about increased bond strength and simplified application methods. Adherent surface treatments before cementation are necessary to obtain high survival and success rates of indirect composite resin. Each step of the clinical and laboratory procedures can have an impact on longevity and the esthetic results of indirect restorations. Cementation seems to be the most critical step, and its long-term success relies on adherence to the clinical protocols. The authors concluded that in terms of survival rate and esthetic long-term outcomes, indirect composite resin techniques have proven to be clinically acceptable. However, the correct management of adhesive cementation protocols requires knowledge of adhesive principles and adherence to the clinical protocol in order to obtain durable bonding between tooth structure and restorative materials. PMID:26355440

  13. Integrating electrostatic adhesion to composite structures

    Heath, Callum; Bond, Ian; Potter, Kevin

    2015-01-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Usin...

  14. Radiation curable pressure sensitive adhesive composition

    Radiation curable pressure sensitive adhesive composition comprises: a polyoxyalkylene homo- or copolymer which is either a polyoxyethylene homopolymer or a poly (oxyethylene-oxypropylene) copolymer, or mixture thereof, having a molecular weight of from 1,700 to 90,000, in which at least 40 percent by weight of the oxyalkylene units are oxyethylene units; a liquid carbamyloxy alkyl acrylate; and, optionally, a photoinitiator

  15. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity h...

  16. Surface discoloration of composite resins: Effects of staining and bleaching

    Claudio Poggio

    2012-01-01

    Full Text Available Background: The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet·X HD, Clearfil AP-X, Gradia Direct and five nanohybrid composite resins (Ceram·X, GC Kalore, G-aenial, Grandio, GrandioSO, after staining and bleaching procedures. Materials and Methods: The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h, for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco. The color of specimens was measured with a spectrophotometer according to the CIE LFNx01aFNx01bFNx01 system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DE abFNx01 between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA. Results: All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Conclusions: Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  17. Preparation and properties of lignin-epoxy resin composite

    Quanfu Yin; Weijun Yang; Chengjun Sun; Mingwei Di

    2012-01-01

    A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed tha...

  18. Bond strength of self-adhesive resin cements to tooth structure

    Susan Hattar; Hatamleh, Muhanad M.; Faleh Sawair; Mohammad Al-Rabab’ah

    2015-01-01

    Objectives: The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods: Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results w...

  19. Resin-dentin bond strength of 10 contemporary etch-and-rinse adhesive systems after one year of water storage.

    Fontes, Silvia Terra; Cubas, Gloria Beatriz de Azevedo; Flores, Josiane Barcelos; Montemezzo, Murieli Leonor; Pinto, Marcia Bueno; Piva, Evandro

    2010-01-01

    To compare the resin-dentin bond degradation of 10 contemporary etch-and-rinse adhesive systems after one year of water storage, 100 bovine incisors were randomly separated into 10 groups and their superficial coronal dentin was exposed. According to manufacturers' instructions, dentin surfaces were bonded with one of seven two-step etch-and-rinse adhesives or one of three three-step etch-and-rinse adhesives. Composite buildups were constructed incrementally. Restored teeth were sectioned to obtain sticks (0.5 mm²). The specimens were subjected to a microtensile bond strength test after storage in distilled water (at 37°C) for one year. Data (MPa) were analyzed using Kruskal-Wallis and Tukey's tests at α = 0.05. Of the adhesives tested, One Step, All Bond 2, and Optibond FL attained the highest bond strength to dentin after one year in water storage, while Magic Bond DE and Master Bond presented a high number of premature debonded flaws. PMID:21062710

  20. Studies on acrylated epoxydised triglyceride resin-co-butyl methacrylate towards the development of biodegradable pressure sensitive adhesives.

    David, S Begila; Sathiyalekshmi, K; Gnana Raj, G Allen

    2009-12-01

    The potential chemical utility of Soya bean oil for the preparation of novel biodegradable polymeric pressure sensitive adhesive has been investigated. Epoxy resin was prepared through in situ epoxidation of Soya bean oil under controlled reaction conditions. Acrylated epoxidised triglyceride resin (AET resin) and copolymer of AET resin with butyl methacrylate were prepared and evaluated. Higher the concentration of butyl methacrylate higher is the degree of copolymerization of AET resin with butyl methacrylate. An optimum concentration of AET resin with butyl methacrylate (100 : 0.40) yields favourable shear holding time and peel strength to qualify as pressure sensitive adhesive. The candidate PSA formulation is biodegradable with antimicrobial activity against gram positive S. aureus ATCC 25923. PMID:18584126

  1. Radiation processed composite materials of wood and elastic polyester resins

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  2. Effect of resin hydrophilicity on water-vapour permeability of dental adhesive films.

    King, Nigel M; Hiraishi, Noriko; Yiu, Cynthia K Y; Pashley, Edna L; Loushine, Robert J; Rueggeberg, Fred A; Pashley, David H; Tay, Franklin R

    2005-10-01

    This study examined the water-vapour permeability of thin polymerized resin films fabricated from five co-monomer blends of increasing degrees of hydrophilicity, as measured by their Hoy's solubility parameters. Neat resin films were prepared from five experimental light-curable resins (n = 10). Each film was mounted in a Fisher permeability cup with 8 g of water placed inside the cup. The experiments were conducted in a modified twin-outlet desiccator connected to a vacuum pump in one outlet to permit a continuous airflow to encourage water evaporation. Weight losses by water evaporation were measured at 3, 6, 9, 24, 30, and 48 h by using an analytical balance. Additional resin films were examined by using transmission electron microscopy (TEM) after immersion in ammoniacal silver nitrate. A significant correlation was observed between the cumulative water loss at 48 h and the Hoy's total cohesive energy density (delta(t)). Transmission electron microscopy revealed silver-filled channels along film peripheries and silver grains of decreasing dimensions toward the film centres in co-monomer blends 3, 4, and 5 of increasing hydrophilicity. Hydrophilic dentin adhesives polymerized in thin films are prone to water loss by evaporation. This probably accounts for the water droplets seen on the surface of vital-bonded dentin after the application of simplified dentin adhesives. PMID:16202033

  3. The Study of the Adhesive Activity and Modification Possibilities of Melamine-Urea-Formaldehyde (MUF), Urea-Formaldehyde (UF) Resins

    Kajaks, J; Kolbins, A

    2014-01-01

    Two types of thermosetting resins MUF and UF have been used as glues for birch wood veneer. As resins modifiers polyvinylacetate emulsion (PVA), polyvinylbutiral (PVB) (powder and solution), rubber latex, adipic (Ad) and sebacic (Seb) acids have been utilized. For glued system shear strength and deformation, bending properties and impact strength have been tested. The best properties: adhesive activity and elasticity have been shown by resins modified with PVB powder, rubber latex, adipic and...

  4. The Effect of Different Disinfecting Agents on Bond Strength of Resin Composites

    Ahmed Mohammed Hassan

    2014-01-01

    Full Text Available Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials. Methods. A total of 80 sound posterior teeth were used. They were divided into four groups (n=20 according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%. Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one. Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram. Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed by t-test and one-way ANOVA followed by Tukey’s post hoc test. Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength. Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface.

  5. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    Dijken, Jan WVvan; Pallesen, Ulla

    2016-01-01

    as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using slightly modified......OBJECTIVE: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. MATERIAL AND METHODS: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.......4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4mm...

  6. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy

  7. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid. Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  8. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  9. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite.......The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  10. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    Sasiwimol Sanohkan

    2013-01-01

    Full Text Available Aims: To determine the in vitro shear bond strengths (SBS of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental specimens (10 mm in diameter and 2 mm thick were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10. Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE, AP (Alloy Primer, Kuraray Medical, and MP (Monobond Plus, Ivoclar Vivadent AG. One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa were analyzed with one-way analysis of variance (ANOVA and the Tukey′s Honestly Significant Difference (HSD test (α = 0.05. Results: Group AP yielded the highest mean and standard deviation (SD value of SBS (16.8 ± 2.5 MPa and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa. The SBS did not differ significantly among the groups (P = 0.079. Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different.

  11. [Is amalgam stained dentin a proper substrate for bonding resin composite?].

    Scholtanus, J D

    2016-06-01

    After the removal of amalgam restorations, black staining of dentin is often observed, which is attributed to the penetration of corrosion products from amalgam. A study was carried out to determine whether this amalgam stained dentin is a proper substrate for bonding resin composites. A literature study and an in vitro study showed that Sn and Zn in particular are found in amalgam stained dentin, and this was the case only in demineralised dentin. In vitro, demineralised dentin acted as porte d'entrÈe for amalgam corrosion products. Bond strength tests with 5 adhesive strategies showed no differences between bond strengths to amalgam stained and to sound dentin, but did show different failure types. A clinical study showed good survival of extensive cusp replacing resin composite restorations. No failures were attributed to inadequate adhesion. It is concluded that staining of dentin by amalgam corrosion products has no negative effect upon bond strength of resin composite. It is suggested that Sn and Zn may have a beneficial effect upon dentin, thus compensating the effects of previous carious attacks, preparation trauma and physico-chemical challenges during clinical lifetime. PMID:27275662

  12. Application of atmospheric pressure plasma in polymer and composite adhesion

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  13. Analysis of surface hardness of artificially aged resin composites

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  14. Long-term deterioration of composite resin and amalgam restorations.

    Smales, R J

    1991-01-01

    Previous long-term longitudinal studies of two different methods of placing an auto-cured conventional anterior composite resin, and of a low- and a high-copper amalgam alloy, had shown similar restoration survivals despite the different resin treatment methods used or the types of amalgam alloy placed. Therefore, the aim of the present study was to assess several clinical factors or characteristics of these restorations that were believed to affect the survival of the restorative materials. The 950 composite resin and the 1042 amalgam restorations examined were placed by many operators in numerous patients attending a dental hospital. The composite resin restorations were placed using unetched- and etched-enamel-bonding treatment methods, and the amalgam restorations were polished after insertion. Clinical ratings supplemented by color transparencies were used for the assessment of four factors for the resin, and four factors for the amalgam restoration. Significant deterioration differences were found for several of the clinical factors assessed for both the two different composite resin treatment methods, and for the two different amalgam alloys, which were not directly related to the restoration survivals. PMID:1840079

  15. 纤维根管桩根管内固定联合复合树脂粘接修复儿童前牙冠根联合折%Fibrous root canal dowel internal fixation combined with composite resin adhesion in treatment of crown-root fracture of anterior teeth in children

    汪隼; 曹慧珍

    2012-01-01

    Objective To investigate the clinical effect of fibrous root canal dowel internal fixation combined with composite resin adhesion in treatment of crown-root fracture of anterior teeth in children. Methods Eleven children (11 teeth) aged 11 to 14 with crown-root fracture caused by trauma of upper mandible medial incisor were selected. All were horizontal fracture or oblique fracture, and there was no longitudinal fracture and alveolar bone fracture. Patients received one-visit endodontics treatment after external fixation of the injured teeth, and were follow up for one week. The crown-root broken ends were restored with fibrous root canal dowel internal fixation combined with composite resin adhesion. Results Nine teeth were successfully restored, and were cosmetically and functionally resumed in short term. One patient failed due to lower palatal fracture line, with more wound hemorrhage and exudation. And the other patient failed due to consumption of hard food, which led to the loose broken ends. Conclusion Fibrous root canal dowel internal fixation combined with composite resin adhesion may be an ideal temporary restoration method in treatment of crown-root fracture of anterior teeth in children, which can resume cosmetics and function in short term and decrease loss in dental and periodontal tissues to the full extent.%目的 观察纤维根管桩根管内固定联合复合树脂粘接对儿童前牙冠根联合折的修复效果.方法 上颌中切牙外伤致冠根联合折断的患者11例(患牙11颗),年龄11 ~ 14岁,均为横折或斜折,无纵折,无牙槽骨骨折;就诊予以断牙外固定后即刻行一次性根管治疗,观察1周;采用纤维根管桩根管内固定加冠根断端复合树脂粘接的方法进行断端自体牙修复.结果 11颗患牙中,9例治疗成功,短期内恢复美观和功能,效果满意;失败2例,其中1例为腭侧折断,折断线较低,出血、渗出较多;另1例患儿未遵医嘱食用硬物

  16. Effect of Curing Mode on Shear Bond Strength of Self-Adhesive Cement to Composite Blocks

    Jin-Young Kim; Ga-Young Cho; Byoung-Duck Roh; Yooseok Shin

    2016-01-01

    To overcome the disadvantages of computer-aided design/computer-aided manufacturing (CAD/CAM) processed indirect restorations using glass-ceramics and other ceramics, resin nano ceramic, which has high strength and wear resistance with improved polish retention and optical properties, was introduced. The purpose of this study was to evaluate the shear bond strength and fracture pattern of indirect CAD/CAM composite blocks cemented with two self-etch adhesive cements with different curing mode...

  17. Resin infusion of large composite structures modeling and manufacturing process

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  18. Characterization and Process Development of Cyanate Ester Resin Composites

    Frame, B.J.

    1999-05-23

    Cyanate ester resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption, and radiation resistance. This paper describes the results of a processing study to develop a high-strength hoop-wound composite by the wet-filament winding method using Toray TI 000G carbon fiber and YLA RS- 14A cyanate ester resin as the constituent materials. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to and during cure is also crucial as it affects the glass transition temperature of the resin and composite. Composite cylinders wound and cured with these methods yielded excellent ring tensile strengths both at room and elevated temperature. A summary of the measured mechanical and thermal property data for these composites is presented. Potential applications for these materials include flywheeI energy storage systems for space and satellite structures.

  19. Effect of thermal shock loadings on stability of dentin-composite polymer material adhesive interfaces

    Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Gribov, Andrey N.

    2015-03-01

    In the past several decades the problem of longevity and durability of adhesive interfaces between hard tooth tissues and composite resin-based materials are of great interest among dental researchers and clinicians. These parameters are partially determined by adhesive system mechanical properties. In the present research project nanoindentation has been examined to test hardness of dental adhesive systems. A series of laboratory experiments was performed to study the effect of light curing time and oxygen inhibition phenomenon on light-cured adhesive material hardness. An adhesive system AdperTM Single Bond (3M ESPE) was selected as a material for testing. The analysis of experimental data revealed that the maximum values of hardness were observed after the material had been light-cured for 20 seconds, as outlined in guidelines for polymerization time of the adhesive system. The experimental studies of oxygen inhibition influence on adhesive system hardness pointed out to the fact that the dispersive layer removal led to increase in adhesive system hardness. A long - time exposure of polymerized material of adhesive system at open air at room temperature resulted in no changes in its hardness, which was likely to be determined by the mutual effect of rival processes of air oxygen inhibition and directed light curing.

  20. Effects of modeling liquid/resin and polishing on the color change of resin composite.

    Sedrez-Porto, José Augusto; Münchow, Eliseu Aldrighi; Brondani, Lucas Pradebon; Cenci, Maximiliano Sergio; Pereira-Cenci, Tatiana

    2016-01-01

    Modeling liquids/resins have been used to build up resin composite (RC) restorations, although there is a lack of information regarding their effects on the color stability of the latter. Therefore, the purpose of the present study was to evaluate the effects of the presence of modeling liquid between layers of RC and the finishing/polishing state of the material on color change in specimens exposed to red wine staining over time. Specimens were prepared by placing four increments (±0.5 mm thick) of RC (Filtek™ Z350 XT, 3M ESPE) into molds; half of which were prepared by applying modeling liquid (Scotchbond™ Multi-Purpose™ Adhesive, SBMP, 3M ESPE) between the layers of RC, whereas the other half were prepared without SBMP (control). Light-activation was performed after application of the final RC layer using a light-emitting diode (Radii, SDI) curing unit with an irradiance of 900 mW/cm2 for 20 s. Each group was divided according to the surface finishing protocol (n = 7): nothing (non-polished) or polishing with Sof-Lex™/diamond paste (polished). Initial colors of the specimens were evaluated with a digital spectrophotometer and the CIEL*a*b* color system. The specimens were stored in wine (37°C) for 12 months, and the color measurements were reassessed after 4, 6, and 12 months of storage. Scanning electron microscopy (SEM) analysis was performed at the end. Data were analyzed using ANOVA and Tukey's test (α = 5%). The presence of SBMP resulted in lower overall color change of the RC as compared with the control. The non-polished specimens exhibited a significantly higher color change than the polished specimens. SEM images corroborated the previous findings. In summary, the use of modeling liquid between layers of RC shows potential for application to reduce or delay the staining process of RC over time. Moreover, polishing is essential to provide increased color stability of the RC restoration. PMID:27556554

  1. Characterisation of a phenolic resin and sugar cane pulp composite

    Leite, J.L.; A. T. N. Pires; S. M. A. G. Ulson de Souza; A.A.Ulson de Souza

    2004-01-01

    Polymeric materials are increasingly replacing metallic materials as a result of their properties. In this work a composite of phenolic resin and sugar cane pulp was developed. The sugar cane pulp has been previously alkalinised, dried, and milled and the particles had been classified in a range of grain sizes. Experimental assays were performed, varying the proportion of the resin and the reinforcement and the size of the cane pulp fibre, keeping the pressure and moulding temperature constan...

  2. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    Lio, Wilber Yaote [Iowa State Univ., Ames, IA (United States)

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  3. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  4. Preparation and properties of lignin-epoxy resin composite

    Quanfu Yin

    2012-11-01

    Full Text Available A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed that the epoxy resin can be cured by lignin, and the curing temperature for the blends can be reduced by the introduction of a polyamine cure agent. The properties of the composite, such as bending strength, impact strength, glass-transition temperature, and thermal stability, were evidently influenced by the molding process. A good interfacial combination was formed between lignin and epoxy resin. Increasing the molding temperature and pressure proved beneficial to achieve a better interfacial combination for the composite, and the degree of ductile fracture was increased in the fracture surface of the composite.

  5. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    Volkan TURP; Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etc...

  6. A Study on Effect of Surface Treatments on the Shear Bond Strength between Composite Resin and Acrylic Resin Denture Teeth

    Chatterjee, Nirmalya; Gupta, Tapas K.; Banerjee, Ardhendu

    2011-01-01

    Visible light-cured composite resins have become popular in prosthetic dentistry for the replacement of fractured/debonded denture teeth, making composite denture teeth on partial denture metal frameworks, esthetic modification of denture teeth to harmonize with the characteristics of adjacent natural teeth, remodelling of worn occlusal surfaces of posterior denture teeth etc. However, the researches published on the bond strength between VLC composite resins and acrylic resin denture teeth i...

  7. Comparative study of etched enamel and dentin for the adhesion of composite resins with the Er:YAG 2,94 μm laser and CO2 9,6 μm laser: morphological (SEM) and tensile bond strength analysis

    The aim of this study was to evaluate and compare the tensile bond strength of a composite resin adhered to the enamel and dentin which have received superficial irradiation with an Er:YAG laser (2.94 μm) or with CO2 laser ( 9.6 μm) and later on etched with the phosphoric acid at 35%. After the use of the adhesive system, resin cones were made on the etched surfaces by both lasers and tensile bond strength tests were performed. All samples were observed at the SEM - there was an increase of the degree of fusion and resolidification in the irradiated enamel and dentin samples with the CO2 laser (9.6 μm), creating a vitrified layer with tiny craters. With the Er:YAG laser (2.94 μm) there were typical morphological explosive microablation with the exposition of the tubules in the dentin.The surface acquired by the association of the CO2 laser ( 9.6 μm) plus acid etching no longer presented the aspect of fusion being this layer completely removed. There were statistical significant differences among ali three methods of etching in the treatment of the enamel and dentin surface. The tensile bond strength test showed that etching of these enamel and dentin surfaces with acid exclusively (control group) presented great values, surpassing the values of the etching acquired with the Er:YAG laser (2.94 μ) plus acid or the CO2 laser (9.6 μm) plus acid. With the parameters used in this experiment the Er:YAG laser (2.94 μm) showed to be more effective than the CO2 laser (9.6 μm) for the hard dental surfaces etching procedure. (author)

  8. Preparation and characterization of UV-curable cationic composite adhesive

    UV-curable cationic composite adhesives containing TiO2 nanostructures were prepared by using 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate(CE) as monomer, triphenylsulfonium hexafluorophosphate salt (PI-432) as photoinitiator and titanium isopropoxide (TIP) as inorganic precursor. The morphology of the composite adhesives was characterized by atom force microscopy (AFM). The effect of TIP content on refractive index and transmittance of adhesives were studied. The results show that TiO2 nanostructures, the average diameter of which is 20 nm or so, can be uniformly dispersed in polymers of composite adhesives. The refractive index of adhesives can be adjusted from 1.501 9 to 1.544 9 with the change of TIP content. The transmittance of adhesives has a slight reduce with the increase of TIP content. When TIP content is up to 40%, the transmittance of composite adhesives remains around 90% or so. (authors)

  9. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37oC. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  10. Integrating electrostatic adhesion to composite structures

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  11. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  12. Resin-composite Blocks for Dental CAD/CAM Applications

    Ruse, N.D.; Sadoun, M.J.

    2014-01-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. PMID:25344335

  13. Mechanical Strength of Particleboard Produced from Fonio Husk with Gum Arabic Resin Adhesive as Binder

    Ndububa E. E

    2015-04-01

    Full Text Available Fonio (“Acha” husk passing through a maximum 4mm sieve aperture was blended with an adhesive liquid resin of gum Arabic to form Fonio Husk Particleboard (FHP samples. The resin binder was a product of crushed balls of gum Arabic that was mixed with water at ratio 4:3 by weight. The resin was introduced at percentage levels of 20%, 25%, 30%, 35%, 40% and 45% by weight. After pressing, heat treatments and curing, the particleboard samples were tested for mechanical strengths. The compressive strength ranged from 0.057N/mm2 at 20% level to 0.369N/mm2 at 45% level. Tensile strength increased steadily with increase in resin levels peaking at 0.792 N/mm2 for 45% level. The flexural strength followed the same trend peaking at 45% level with 3.697 N/mm2 . Some of the values met the minimum values prescribed by British, American and European Standards. The boards may not be used as load bearing materials but will be better suited as internal wall partitions and ceiling materials.

  14. Fatty Acid Composition of Tobacco Seed Oil and Synthesis of Alkyd Resin

    MUKHTAR,Azam; ULLAH,Habib; MUKHTAR,Hamid

    2007-01-01

    The fatty acid composition of tobacco seed oil revealed that the oil is rich in unsaturated fatty acids, having linoleic acid (71.63%), oleic acid (13.46%) and palmitic acid (8.72%) as the most abundant unsaturated and saturated fatty acids respectively. So the tobacco oil was characterized as semi-drying type on the basis of fatty acid composition. The synthesis of alkyd resin was carried out by alcoholysis or monoglyceride process using an alkali refined tobacco seed oil, pentaerythritol, cis-1,2,3,6-tetrahydrophthalic anhydride along with lithium hydroxide as catalyst.The alkyd resin so prepared was found to be bright and of low color with high gloss. The drying and hardness properties and adhesion of the tobacco seed oil derived alkyd resin were also found a bit superior to those of other alkyd resins of the same oil length. In addition, the water and acid resistance of the said alkyd was also found comparable to the other alkyds.

  15. Post-irradiation vickers microhardness development of novel resin composites

    Hanadi Yousif Marghalani

    2010-01-01

    The aim of this study was to evaluate the effect of post-irradiation dry aging at different periods of time on Vickers microhardness of some dental composites based on various resin matrices. Sixty four disc-shaped specimens of the resin composites were prepared in a split Teflon mold (8 × 2 mm) and irradiated by Optilux 501 light cure (500 mW.cm-2 for 40 seconds) on their top side. The specimens were aged-dry in dark at 23 and 37 °C for the following storage periods; immediate, 1/2 an hour, ...

  16. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  17. Influence of Different Bonding Agents and Composite Resins on Fracture Resistance of Reattached Incisal Tooth Fragment

    Davari AR.

    2014-03-01

    Full Text Available Statement of Problem: Reattachment of the fractured tooth fragment should be considered as a conservative treatment and valid alternative to a composite restoration. Purpose: This in vitro study was to evaluate the influence of different adhesives and composite resins on fracture resistance of dental fragment reattached to sectioned incisal edges. Materials and Method: 120 sound human maxillary central incisors were selected under standard conditions and randomly divided into 3 groups, 12 sound teeth were used as a control group and the remaining teeth were assigned to 3 groups (n=36 and each group into three subgroups (n=12. The incisal third of samples was sectioned using a diamond disk and the respective fragments were then reattached utilizing different intermediate restorative materials, namely: i adhesive materials alone (OptiBond S or OptiBond XTR or OptiBond All-in-One; ii Premise flowable composite and iii Point 4 composite in the one of mentioned adhesive interface. After storage for two weeks at 37°C and 100% humidity and then thermocycling; shear bond strength (SBS was recorded in kilogram force (kgf by applying a load in the middle incisal third with a Zwick Universal Testing Machine at a cross-head speed of 1 mm/min. Data was analyzed with one-way ANOVA and Tukey HSD (p< 0.05. Results: The control group had a significantly higher SBS than other groups (p= 0.001; the highest SBS values was obtained using the premise flowable composite and OptiBond S adhesive (112.44±30.46 Mpa; and the lowest with OptiBond All-in-One alone (33.97± 15.63 Mpa. Conclusion: Although, none of the tested materials provided fracture resistance similar to that found with the intact maxillary central incisors; utilizing the premise flowable composite and OptiBond S adhesive improved the SBS of the reattached fragment than other materials.

  18. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    Interface is Key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  19. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    Liu Ping; Guan Qingbao [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Gu Aijuan, E-mail: ajgu@suda.edu.cn [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Liang Guozheng, E-mail: lgzheng@suda.edu.cn [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Yuan Li; Chang Jianfei [Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China)

    2011-10-15

    Interface is Key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  20. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites.

    Ozcan, M; Alander, P; Vallittu, P K; Huysmans, M-C; Kalk, W

    2005-01-01

    The use of resin-based composite materials in operative dentistry is increasing, including applications in stress-bearing areas. However, composite restorations, in common with all restorations, suffer from deterioration and degradation in clinical service. Durable repair alternatives by layering a new composite onto such failed composite restorations, will eliminate unnecessary loss of tooth tissue and repeated insults to the pulp. The objective of this study was to evaluate the effect of three surface conditioning methods on the repair bond strength of a particulate filler resin-composite (PFC) to 5 PFC substrates. The specimens were randomly assigned to one of the following surface conditioning methods: (1) Hydrofluoric (HF) acid gel (9.5%) etching, (2) Air-borne particle abrasion (50 microm Al2O3), (3) Silica coating (30 microm SiOx, CoJet-Sand). After each conditioning method, a silane coupling agent was applied. Adhesive resin was then applied in a thin layer and light polymerized. The low-viscosity diacrylate resin composite was bonded to the conditioned substrates in polyethylene molds. All specimens were tested in dry and thermocycled (6.000, 5-55 degrees C, 30 s) conditions. One-way ANOVA showed significant influence of the surface conditioning methods (p < 0.001), and the PFC types (p < 0.0001) on the shear bond strength values. Significant differences were observed in bond strength values between the acid etched specimens (5.7-14.3 MPa) and those treated with either air-borne particle abrasion (13.0-22.5 MPa) or silica coating (25.5-41.8 MPa) in dry conditions (ANOVA, p < 0.001). After thermocycling, the silica coating process resulted in the highest bond values in all material groups (17.2-30.3 MPa). PMID:15754140

  1. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words:Composite

  2. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    Farahnaz Sharafeddin; Mohammad Mehdi Choobineh

    2016-01-01

    Statement of the Problem: In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose: The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method: In this experimental stu...

  3. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium. PMID:22123007

  4. One-year clinical evaluation of posterior packable resin composite restorations.

    Loguercio, A D; Reis, A; Rodrigues Filho, L E; Busato, A L

    2001-01-01

    This study evaluated the clinical performance of four packable resin composite restorative materials in posterior teeth (Class I and II) compared with one hybrid composite after one year. Eighty-four restorations were placed in 16 patients. Each patient received at least five restorations. The tested materials were: (1) Solitaire + Solid Bond; (2) ALERT + Bond-1; (3) Surefil + Prime & Bond NT (4) Filtek P60 + Single Bond and; (5) TPH Spectrum + Prime & Bond 2.1. All restorations were made using rubber dam isolation, and the cavity design was restricted to the elimination of carious tissue. Deeper cavities were covered with calcium hydroxide and/or glass ionomer cement. In shallow and medium cavities, no protection was performed except for the respective adhesive system used in each group. Each adhesive system and resin composite was placed according to the manufacturer's instructions. One week later, the restorations were finished/polished and evaluated according to the USPHS modified criteria. All patients attended the one-year recall, and the 84 restorations were evaluated at that time based on the same evaluation criteria. The scores were submitted to statistical analysis (Chi-square test, p<0.05). Solitaire and TPH showed some fractures at marginal ridges. Solitaire, ALERT and TPH showed some concerns related to color match and surface texture. Surefil and Filtek P60 showed an excellent clinical performance after one year. PMID:11551005

  5. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  6. Bond strength of resin composite to differently conditioned amalgam

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    2006-01-01

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  7. A clinical evaluation on adhesive posts in extensive composite restorations

    Ghavamnasiri M. Associate Professor

    2003-06-01

    Full Text Available Problem: A few studies have been conducted about bioglass posts."nAim: The aim of this study was to compare bioglass posts with prefabricated metallic posts in clinical performance of extensive composite restorations for anterior endodontically treated teeth. Materials and Methods: Sixty endodontocally maxillary anterior teeth, with horizontally or vertically destruction, were selected. Teeth were divided into two groups based on the kind of post: Metallic prefabricated parapost and bioglass post. Each group was divided into three subgroups based on anterior bite: normal, deep bite and edge to edge. Gutta-percha was removed from 2/3 of canal length for parapost and 1/3 for bioglass post. After etching with phosphoric-acid (37% and applying dentine bonding syntac, Duo cement was used for the adhesion of bioglass post and a self cured composite (Degufil for parapost. Restoration was done with a hybrid composite (Heliomolar. Follow up studies, radio-graphically and clinically, were done every three months for a 1.5-year period. Exact Fisher and Pearson tests were used for data analysis."nResults: Apical lesion was not observed in any of the radiographs. Post seal was increased by resin cement and dentin bonding agent. Post type did not significantly affect on the clinical success rate of the restorations. The retention of restoration, for both posts, was the same. Crown destruction had no significant effect on success rate. The type of anterior bite had a significant effect on success rate, as the total 6.6% failure rate was related to the patients with anterior deep bite."nConclusion: It is suggested to use metallic paraposts and bioglass posts, in extensive composite restorations for patients with deep-bite, more conservatively.

  8. The application of nanotechnology in the improvement of dental composite resins

    Xia Yang; Xie Haifeng; Zhang Feimin; Gu Ning

    2012-01-01

    In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the back- ground of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.

  9. Light induced polymerization of resin composite restorative materials

    Blažić Larisa

    2004-01-01

    Full Text Available Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

  10. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120digC and 170digC were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  11. Comparative Shear-Bond Strength of Six Dental Self-Adhesive Resin Cements to Zirconia

    Si-Eun Lee

    2015-06-01

    Full Text Available This study compared shear bond strength (SBS of six self-adhesive resin cements (SARC and one resin-modified glass ionomer cement (RMGIC to zirconia before and after thermocycling. The cylinder shape (Φ 2.35 mm × 3 mm of six SARCs (G-CEM LinkAce (GLA, Maxcem Elite (MAX, Clearfil SA Luting (CSL, PermaCem 2.0 (PM2, Rely-X U200 (RXU, Smartcem 2 (SC2 were bonded to the top surface of the zirconia specimens with light-curing. RMGIC (Fujicem (FJC was bonded to the specimens with self-curing. The shear bond strength of all cemented specimens was measured with universal testing machine. Half of the specimens were thermocycled 5000 times before shear bonding strength testing. Fractured surfaces were examined with a field-emission SEM (10,000× and analyzed by energy dispersive x-ray analysis. MAX, PM2, SC2 group without thermocycling and GLA, MAX, PM2 group with thermocycling showed adhesive failure, but GLA, CSL, RXU, FJC group without thermocycling and SLC, RXU, SC2, FJC group with thermocycling indicated cohesive failure. Within the limitation of this study, All of SARCs except MAX demonstrated higher bond strength than that of RMGIC regardless of thermocycling. Also, SARC containing MDP monomers (CSL retained better bonds than other cements.

  12. Retention of overdenture posts cemented with self-adhesive resin cements.

    Elsayed, Mohamed Ezzat; El-Mowafy, Omar; Fenton, Aaron

    2009-01-01

    This study investigated the effects of two self-adhesive resin cements on the retention of overdenture anchor posts after 30 days of aging in water. Forty caries-free human canines were randomly assigned to four test groups. Uni-Anchor posts were cemented to specimens in groups A and B with Breeze and Maxcem self-adhesive resin cements, respectively. In groups C and D, Fuji glass-ionomer cement and Fleck's zinc phosphate cement were used, respectively. Specimens were stored in distilled water at 37 degrees C for 30 days. Each specimen was loaded in tension in an Instron universal testing machine. The maximum force required to dislodge each post was recorded. Means and standard deviations (SDs) were calculated and data were statistically analyzed with analysis of variance (ANOVA). Means and SDs were 706.5 +/- 204.6 N for Breeze, 585.1 +/- 213.5 N for Maxcem, 449.2 +/- 181.1 N for Fuji, and 330.4 +/- 120.6 N for Fleck's. ANOVA revealed significant differences among the means (P Breeze cement (group A) resulted in the highest retention force and most frequent cohesive failure and thus would be expected to clinically perform in a superior manner. PMID:19548412

  13. In-vitro evaluation of an experimental method for bonding of orthodontic brackets with self-adhesive resin cements

    Barat Ali Ramazanzadeh

    2013-01-01

    Full Text Available Background: Self-adhesive resin cements do not require the surface treatment of teeth and are said to release fluoride, which makes them suitable candidates for bonding of orthodontic brackets. The objectives of this study was to investigate the shear bond strength (SBS of self-adhesive resin cements on etched on non-etched surfaces in vitro and to assess their fluoride release features. Materials and Methods: Four fluoride-releasing dual-cure self-adhesive resin cements were investigated. For SBS experiment, 135 freshly extracted human maxillary premolars were used and divided into nine groups of 15 teeth. In the control group, brackets were cemented by Transbond XT (3M Unitek, USA, in four groups self-adhesive resin cements were used without acid-etching and in four groups self-adhesive cements were applied on acid-etched surfaces and the brackets were then deboned in shear with a testing machine. Adhesive remnant index (ARI scores were also calculated. For fluoride release investigation, 6 discs were prepared for each self-adhesive cement. Transbond XT and Fuji Ortho LC (GC, Japan served as negative and positive control groups, respectively. The fluoride release of each disc into 5 ml of de-ionized water was measured at days 1, 2, 3, 7, 14, 28, and 56 using a fluoride ion-selective electrode connected to an ion analyzer. To prevent cumulative measurements, the storage solutions were changed daily. Results: The SBS of brackets cemented with Transbond XT were significantly higher compared to self-adhesives applied on non-etched surfaces (P<0.001. However, when the self-adhesive resin cements were used with enamel etching, no significant differences was found in the SBS compared to Transbond XT, except for Breeze. The comparisons of the ARI scores indicated that bracket failure modes were significantly different between the etched and non-etched groups. All self-adhesive cements released clinically sufficient amounts of fluoride for an extended

  14. Effectiveness of bleaching agent on composite resin discoloration

    Galih Sampoerno

    2012-01-01

    Background: The discoloration of teeth, especially anterior teeth, is one of aesthetic problems. The use of tooth bleaching agents for discolored natural teeth is becoming increasingly popular. Many dentists, however, get many problems when they conduct bleaching process since there is much composite filling on patient’s anterior teeth. Although many research have focused on the discoloration of composite resin after bleaching process, the problem still becomes debatable. Purpose: The purpose...

  15. Ceramic matrix and resin matrix composites - A comparison

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  16. Ceramic matrix and resin matrix composites: A comparison

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  17. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the

  18. Development and Testing Of Natural Fiber Reinforced Composites With Polyester Resin.

    S.P. Akbar Hussain

    2013-10-01

    Full Text Available Now --a – days most of the automotive parts are made with different materials which cannot be recycled. Recently European Union (E.U and Asian countries have released stringent norms concerning automotive end-life requirements i.e the parts of the automotives should be recycled. This increased the use of natural fibres in composite materials. Natural fibers have recently become more attractive to researchers, engineers and scientists as an alternative reinforcement for fiber reinforced polymer composites. Due to their low cost, low density, stiffness, fairly good mechanical properties, high specific strength, non-abrasive, eco-friendly and biodegradable characteristics, they are exploited as a replacement for the conventional fiber, such as glass, aramid and carbon. The tensile properties of natural fiber reinforced polymers (both thermoplastics and thermosets are mainly influenced by the interfacial adhesion between the matrix and the fibers. Further the mechanical properties can be improved with several chemical modifications on the composites. In the present work, natural fiber (sisal, hemp, hemp and sisal combination reinforced polyester resin composites were produced and are tested for mechanical properties and further compared with the normal plastics. The mechanical properties of sisal and hemp reinforced polyester resin composites were found to increase with increasing fiber weight fraction. In important properties hemp and sisal combination composite showed the best.

  19. Creep of experimental short fiber-reinforced composite resin.

    Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J

    2012-01-01

    The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC. PMID:23037835

  20. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic

    de Carvalho, Rodrigo Furtado; Caroline COTES; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Sil...

  1. An In Vitro Comparative Study of Shear Bond Strength of Composite Resin to Bleached Enamel using Synthetic and Herbal Antioxidants

    Suneetha, Ram; Pavithra, S; Thomas, John; Nanga, G Swapna Priya; Shiromany, Aseem; Shivrayan, Amit

    2014-01-01

    Background: The bond strength to bleached enamel is reduced, if adhesive restorations are carried out immediately. So the purpose of this in vitro study was an attempt to regain the lost bond strength, for which, the comparison of shear bond strength of composite resin to bleached enamel was carried out using various antioxidants: 10% Sodium ascorbate, Rosemary extracts, Pedicularis extracts. Materials and Methods: Fifty human extracted single rooted teeth were collected. They were decoronate...

  2. Composite resin bond strength to caries-affected dentin contaminated with 3 different hemostatic agents.

    Khoroushi, Maryam; Hosseini-Shirazi, Moeen; Farahbod, Foroozan; Keshani, Fatemeh

    2016-01-01

    Bonding of composite resins to sound and caries-affected dentin in cervical areas may necessitate the use of hemostatic agents to control sulcular fluid and hemorrhage. The aim of this in vitro study was to evaluate the bond strengths of a self-etching adhesive system to sound and caries-affected dentin after the use of 3 different hemostatic agents. Composite resin cylinders were bonded to 48 caries-affected and 48 sound dentin surfaces in 8 groups. Groups 1-4 utilized caries-affected dentin: group 1, uncontaminated control; 2, ViscoStat; 3, ViscoStat Clear; and 4, trichloroacetic acid (TCA). Groups 5-8 utilized sound dentin: group 5, uncontaminated control; 6, ViscoStat; 7, ViscoStat Clear; and 8, TCA. The hemostatic agents were applied for 2 minutes and rinsed. After 500 rounds of thermocycling, shear bond strength tests were carried out. Data were analyzed with 1- and 2-way analyses of variance, t test, and post hoc Tukey tests at a significance level of P dentin type (F = 38.23; P = 0.0001) and hemostatic agent (F = 6.32; P = 0.001). Furthermore, groups 2 and 6 (ViscoStat) showed significantly lower bond strength values than the control groups (groups 1 and 5) in both affected and sound dentin (P = 0.043 and P = 0.009, respectively). Within the limitations of this study, the bond strength of composite resin to caries-affected dentin was significantly reduced compared to that with sound dentin. Among the studied hemostatic agents, ViscoStat resulted in a greater decrease in dentin bond strength. Contamination of both sound and caries-affected dentin with hemostatic agents decreased composite resin bond strength. Of the 3 hemostatic agents used, ViscoStat Clear appeared to have the least detrimental effect on bond strength. PMID:27367640

  3. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.

    Mitha, M K; Jayabalan, M

    2009-12-01

    Biodegradable hydroxyl terminated-poly(castor oil fumarate) (HT-PCF) and poly(propylene fumarate) (HT-PPF) resins were synthesized as an injectable and in situ-cross linkable polyester resins for orthopedic applications. An injectable adhesive formulation containing this resin blend, N-vinyl pyrrolidone (NVP), hydroxy apatite, free radical initiator and accelerator was developed. The Composite adhesives containing the ratio of resin blend and NVP, 2.1:1.5, 2.1:1.2 and 2.1:1.0 set fast with tolerable exothermic temperature as a three dimensionally cross linked toughened material. Crosslink density and mechanical properties of the crosslinked composite increase with increase of NVP. The present crosslinked composite has hydrophilic character and cytocompatibility with L929 fibroblast cells. PMID:18592346

  4. Study on the structural evolution of modified phenol-formaldehyde resin adhesive for the high-temperature bonding of graphite

    A novel adhesive for carbon materials composed of phenol-formaldehyde resin, boron carbide and fumed silica, was prepared. The adhesive property of graphite joints bonded by the above adhesive treated at high-temperatures was tested. Results showed that the adhesive was found to have outstanding high-temperature bonding properties for graphite. The adhesive structure was dense and uniform even after the graphite joints were heat-treated at 1500 deg. C. Bonding strength was 17.1 MPa. The evolution of adhesive structure was investigated. The results indicated that the addition of the secondary additive, fumed silica, improved the bonding performance greatly. Borosilicate phase with better stability was formed during the heat-treatment process, and the volume shrinkage was restrained effectively, which was responsible for the satisfactory high-temperature bonding performance of graphite

  5. Investigation of fiber-reinforced modified epoxy resin composites

    The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites. (author)

  6. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions. PMID:19415350

  7. Comparative evaluation of shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown

    Khatri A

    2007-06-01

    Full Text Available To evaluate and compare the shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown. The study samples consisted of 30 primary anterior stainless steel crowns (Unitek TM , size R4, embedded in resin blocks with crown, in test groups of 15 samples each. Mounting of the crown was done using resin block with one crown each. Sandblasting was done and the bonding agent Prime and Bond NT (Dentsply was applied on the labial surface of the primary anterior sandblasted crown. The composite resin and nanocomposite resin were placed into the well of Teflon jig and bonded to Stainless Steel Crowns. The cured samples were placed in distilled water and stored in incubator at 37°C for 48 hours. Shear bond strength was measured using universal testing machine (Hounsefield U.K. Model, with a capacity of 50 KN. Independent sample ′t′ test revealed a nonsignificant ( P < 0.385 difference between mean shear bond strength values of conventional and nanocomposite group. The bond strength values revealed that nanocomposite had slightly higher mean shear bond strength (21.04 ± 0.56 compared to conventional composite (20.78 ± 0.60. It was found that conventional composite resin and nanocomposite resin had statistically similar mean shear bond strength, with nanocomposite having little more strength compared to conventional composite.

  8. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  9. Profile of Fluoride Release from a Nanohybrid Composite Resin

    Raquel Assed Bezerra Silva

    2015-02-01

    Full Text Available The aim of this study was to evaluate in vitro the amount and profile of fluoride release from a fluoride-containing nanohybrid composite resin (Tetric® N-Ceram by direct potentiometry. Thirty specimens (5 mm diameter x 3 mm high; n=10/material were made of Tetric® N-Ceram, Vitremer® resin-modified glass ionomer cement (RMGIC (positive control or Filtek® Z350 nanofill composite resin (negative control. The specimens were stored individually in plastic tubes containing 1 mL of artificial saliva at 37°C, which was daily renewed during 15 days. At each renewal of saliva, the amount of fluoride ions released in the solution was measured using a fluoride ion-selective electrode with ion analyzer, and the values obtained in mV were converted to ppm (µg/mL. Data were analyzed statistically by ANOVA and Tukey’s post-hoc test at a significance level of 5%. The results showed that the resins Tetric® N-Ceram and Filtek® Z350 did not release significant amounts of fluoride during the whole period of evaluation (p>0.05. Only Vitremer® released significant amounts of fluoride ions during the 15 days of the experiment, with greater release in first 2 days (p0.05. In conclusion, the nanohybrid composite resin Tetric® N-Ceram did not present in vitro fluoride-releasing capacity throughout the 15 days of study.

  10. Effect of Bleaching Agents on the Nanohardness of Tooth Enamel, Composite Resin, and the Tooth-Restoration Interface.

    Abe, A T; Youssef, M N; Turbino, M L

    2016-01-01

    This in vitro study aimed to evaluate the nanohardness of tooth enamel, composite resin, dental adhesive, and enamel hybrid layer exposed to 35% hydrogen peroxide-based bleaching agents and analyze the tooth-restoration interface using scanning electron microscopy (SEM). This study used 40 crowns of bovine incisors, which were embedded in epoxy resin. A 2 × 2 × 2-mm cavity was prepared in the medial third of the flattened buccal surface of each tooth and restored (two-step etch-and-rinse Adper Single Bond 2 + nanocomposite resin Filtek Z350 XT). The specimens were polished and divided into four groups (n=10), corresponding to each bleaching agent used (TB: Total Blanc Office, pH=7.22-6.33; HPB: Whiteness HP Blue, pH=8.89-8.85; HP: Whiteness HP, pH=6.65-6.04; PO: Pola Office, pH=3.56-3.8), applied in accordance with manufacturer protocols. The nanohardness of the substrates was measured before and immediately after the bleaching procedure and after 7-day storage in artificial saliva with an Ultra-Microhardness Tester (DUH-211S, Shimadzu). Loads used were 100 mN for tooth enamel and composite resin and 10 mN for adhesive and enamel hybrid layer. For SEM analysis, epoxy replicas were prepared through high-precision impressions of the specimens. For nanohardness, the statistical tests two-way analysis of variance and Tukey (pinterface was observed immediately after application of agent PO. No bleaching agent used changed the nanohardness of the composite resin and adhesive layer. PMID:26266649

  11. Effect of curing unit and adhesive system on marginal adaptation of composite restorations.

    Casselli, Denise Sa Maia; Faria-e-Silva, Andre Luis; Casselli, Henrique; Martins, Luis Roberto Marcondes

    2012-01-01

    This study sought to evaluate how a curing unit and adhesive system affected the marginal adaptation of resin composite restorations. Class V cavities were prepared in bovine teeth with a gingival margin in dentin and an incisal margin in enamel. The cavities were restored with a micro-hybrid resin composite using one of four adhesives: Single Bond 2, Prime & Bond NT, Clearfil SE Bond, Xeno IV. The light-activations were performed using a quartz-tungsten-halogen (QTH) lamp or a second-generation light-emitting diode (LED). Restorations were finished and polished and epoxy replicas were prepared. Marginal adaptation was analyzed by using scanning electronic microscopy (magnification 500X). The widest gaps in each margin were recorded, and data were submitted to Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests (α = 0.05). Differences between the adhesives were observed only when the dentin margins were evaluated: Clearfil SE Bond demonstrated better marginal adaptation than Prime & Bond NT or Single Bond 2 (which demonstrated the widest gaps in the dentin margin). The type of curing unit only affected the results for Xeno IV when the enamel margin was analyzed; the LED lamp promoted smaller gaps than the QTH lamp. PMID:23220321

  12. Mechanical characteristics of antibacterial epoxy resin adhesive wood biocomposites against skin disease.

    Chen, Zi-Xiang; Zhang, Zhong-Feng; Aqma, Wan Syaidatul

    2016-01-01

    Moldy wood can cause some skin disease. However epoxy resin adhesive (EP) can inhibit mold growth. Therefore, antibacterial EP/wood biocomposites were reinforced and analyzed by the nonlinear finite element. Results show that glass fiber cloth and aluminum foil have the obvious reinforced effect under flat pressure, but this was not the case under side pressure. And when the assemble pattern was presented in 5A way, the strengthening effect was better. The nonlinear finite element showed that the aluminum foil and glass fiber cloth have the obvious reinforced effect. The mutual influence and effect of span, thickness and length on the ultimate bearing capacity of specimen were studied. And the simulation results agreed with the test. It provided a theoretical basis on the preparation of antibacterial EP/wood biocomposites against skin disease. PMID:26858557

  13. High temperature resistant composites from bismaleimide resin.

    Gilwee, W. J.; Rosser, R. W.; Parker, J. A.

    1973-01-01

    It is shown that bismaleimide/woven fiberglass composites molded at moderate pressures (100 psi) yield void-free laminates of good integrity. The strength of the laminates at room temperature compares favorably with epoxy/glass laminates; at 260 C, the laminates are far superior in oxidative aging to epoxy and silicon laminates. The synthesis, processing, and fabrication of a bismaleide polymer are discussed.

  14. Silicone Resin Applications for Ceramic Precursors and Composites

    Masaki Narisawa

    2010-01-01

    This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °...

  15. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    Horieh Moosavi

    2012-01-01

    Full Text Available To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n=10. Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37∘C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth.

  16. The effect of elapsed time following bleaching on enamel bond strength of resin composite.

    Cavalli, V; Reis, A F; Giannini, M; Ambrosano, G M

    2001-01-01

    Recent studies have concluded that carbamide peroxide bleaching agents significantly affect the bond strength of composite to bleached enamel. This study evaluated the effects of bleaching regimen with different carbamide peroxide concentrations and post-treatment times on composite bond strength to enamel. Two hundred and four flat buccal and lingual enamel surfaces obtained from erupted sound third molars were randomly divided into 17 groups (n = 12). Sixteen experimental groups comprised the evaluation of four carbamide peroxide home bleaching agents (Opalescence 10%-20% and Whiteness 10%-16%) and four time intervals after bleaching (one day, one, two and three weeks). Specimens of control group were not submitted to bleaching and were stored in artificial saliva at 37 degrees C for 10 days. The specimens of experimental groups were exposed to one daily application of carbamide peroxide for six hours for 10 consecutive days. After each daily treatment and post-bleaching, the specimens were stored in artificial saliva solution. Bonds were formed with Scotchbond MP and Z-100 composite resin, and shear bond test was carried out 24 hours after adhesive-composite application. Two-way ANOVA showed that the bond strengths were significantly different (p < 0.05). For the first two weeks post-bleaching, the bond strengths of resin to enamel were low. After a lapse of three weeks, the bond strength returned to that of the untreated control group. Increased concentration did not prolong the time needed prior to bonding. PMID:11699184

  17. Strengthening of Porcelain Provided by Resin Cements and Flowable Composites.

    Spazzin, A O; Guarda, G B; Oliveira-Ogliari, A; Leal, F B; Correr-Sobrinho, L; Moraes, R R

    2016-01-01

    This study evaluated the effect of mechanical properties of resin-based luting agents on the strength of resin-coated porcelain. The luting agents tested were two flowable resin composites (Filtek Z350 Flow and Tetric-N Flow), a light-cured resin cement (Variolink Veneer [VV]), and a dual-cured resin cement (Variolink II) in either light-cured (base paste) or dual-cured (base + catalyst pastes [VD]) mode. Flexural strength (σf) and modulus of elasticity (Ef) of the luting agents were measured in three-point bending mode (n=5). Porcelain discs (Vita VM7) were tested either untreated (control) or acid etched, silanized, and coated with the luting agents. Biaxial flexural strength (σbf) of the porcelain discs was tested using a ball-on-ring setup (n=30). The σbf of the resin-coated specimens was calculated at z-axial positions for multilayer specimens in the ball-on-ring test: position z = 0 (ceramic surface at the bonded interface) and position z = -t2 (luting agent surface above ring). The σf and Ef data were subjected to analysis of variance and the Student-Newman-Keuls test (α=0.05). A Weibull analysis was performed for σbf data. Weibull modulus (m) and characteristic strength (σ0) were calculated. Linear regression analyses investigated the relationship between mechanical properties of the luting agents and the strengthening of porcelain. VD had higher and VV had lower mechanical strength than the other materials. At z = 0, all resin-coated groups had higher σbf than the control group. No significant differences between the luting agents were observed for σbf and σ0. At z = -t2, VD had the highest σbf and σ0, whereas VV had the poorest results. No significant differences in m were observed across groups. A linear increase in flexural strength of the porcelain was associated with increased σf and Ef of the luting agents at position z = -t2. In conclusion, resin coating and use of luting agents with better physical properties generally improved the

  18. On the improved adhesion of NiTi wires embedded in polyester and vinylester resins

    Mattia Merlin

    2015-01-01

    Full Text Available This paper discusses the effect of different surface treatments on shape memory alloy wires embedded in PolyEster (PE and VinylEster (VE polymeric matrices. In particular, two types of chemical etching and a chemical bonding with a silane coupling agent have been performed on the surfaces of the wires. Pull-out tests have been carried out on samples made from a specifically designed Teflon mould. Considering the best results of the pull-out tests obtained with PE resin, the debonding induced by strain recovery of 4%, 5% and 6% pre-strained NiTi wires has been evaluated with the wires being subjected to different surface treatment conditions and then being embedded in the PE matrix. The results prove that the wires functionalised and embedded in the PE resin show the maximum pull-out forces and the highest interfacial adhesion. Finally, it has been found that debonding induced by strain recovery is strongly related to the propagation towards the radial direction of sharp cracks at the debonding region.

  19. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  20. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    Dobrzyńska-Mizera, Monika, E-mail: monika.dobrzynska-mizera@doctorate.put.poznan.pl; Sterzyński, Tomasz [Poznan University of Technology, Institute of Materials Technology, Polymer Division, Piotrowo, 3, 61-138 Poznan (Poland); Dutkiewicz, Michał [Centre for Advanced Technologies, Adam Mickiewicz University, Umultowska 89 C, 61-614 Poznan (Poland); Di Lorenzo, Maria Laura [Consiglio Nazionale delle Ricerche, Istituto per i Polimeri, Compositi e Biomateriali, c/o Comprensorio Olivetti, Via Campi Flegrei, 34, 80078 Pozzuoli (Italy)

    2015-12-17

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  1. Process for curing ionizing radiation-highly sensitive resin composition

    A process is described for curing a radiation curable composition consisting essentially of (a) an amide represented by the formula R,CONR2R3 and (b) an unsaturated polyester resin by irradiating the composition with an ionizing radiation. R1 is H, an alkyl groups having from 1 to 17 carbon atoms or an alkenyl groups having from 1 to 17 carbon atoms, and R2 and R3 are each -H, -CH3, or -CH2OH. R1 and R2 taken together represent alkylene having 2 to 5 carbon atoms

  2. Adhesion analysis of non-woven natural fibres in unsaturated polyester resin

    Omri, Med Amin; Triki, A.; Guicha, M.; Ben Hassen, Med; Arous, M.; Ahmed El Hamzaoui, H.; Bulou, A.

    2015-03-01

    The presence of wool fibres in non-woven Alfa fibres sheet was investigated as a mean of improving adhesion of Alfa fibre-reinforced unsaturated polyester composite. FT-IR and Raman spectroscopy results revealed that such improvement could occur by a decrease in the hydrophilic character of the Alfa fibres owing to the presence of wool fibres. Hence, physical and chemical interactions could happen between the reinforcement and the matrix as demonstrated by FT-IR and Raman spectroscopy results. Tensile testing performed on this composite confirmed that such adhesion could occur according to its excellent specific parameters despite of its low tensile strength attributed to a higher fibre to fibre contact of wool fibres.

  3. Comparative Evaluation of the Compressive Strength of a Direct Composite Resin and Two Laboratorial Resins

    Alexandre Costa Reis BRITO

    2007-05-01

    Full Text Available Purpose: To compare the compressive strength of two commercially available laboratorial resins - Solidex® (Shofu and Cristobal® (Dentsply - to that of a direct composite resin (Concept®; Vigodent, as a control group.Method: Five specimens of each tested material were fabricated using stainless steel matrices with the following dimensions: 8 mm of internal diameter on the base, 9 mm of internal diameter on the top and 4 mm of height. The specimens were stored in distilled water for 72 hours and submitted to an axial load by the action of a 2-mm-diameter round-end tip adapted to a universal testing machine (EMIC 500. A 200 kgf load cell was used running at a crosshead speed of 0.5 mm/min. The load and the point of failure were recorded. Results: Means, in kgf, were: Concept® (Ct = 124.26; Cristobal® (C =184.63; Solidex® (S =173.58. Data (means and standard deviations were analyzed statistically by ANOVA and Tukey’s for comparisons among the groups using the SPSS software (version 10.0. Significance level was set at á=0.05 (95%. Concept® presented significantly lower (p<0.05 compressive strength than the other two materials, Cristobal® and Solidex®, which, in turn, did not differ significantly to each other.Conclusion: Cristobal® and Solidex® laboratorial resins did not show significant difference to each other and both presented compressive strength significantly higher than that of Concept® direct resin.

  4. Tribological performance of resin impregnated gunny (RIG) and resin reinforced honeycomb (RRH) material composites

    Highlights: ► Gunny and honeycomb composites were fabricated using hand-lay-up and cold-press techniques. ► Wear rate and frictional response was studied using pin-on-disk machine. ► Wear endurance (around 0.35 mg/N) is better performed in RRH. ► Minimum friction was 0.01 for both RIG and RRH. ► RRH deformation is due to cracking and fatigue failure. - Abstract: Temptation to recycle gunny fiber and honeycomb chassis as part of tribo-composite has been realized for body shell application. In this exploration, tribological performance of resin impregnated gunny (RIG) and resin reinforced honeycomb (RRH) material composites have been studied in response to wear and frictional coefficient on dry sliding against steel counter-face using pin-on-disk (POD) influenced by applied loads (5–25 N) and sliding velocities (1.12–22.56 m/s). The specific wear rate (from weight loss) for RIG is lower approximately around 0.35 mg/N and comparable at increasing velocity at approximately 0.16 mg/N. Friction was minimized at 0.01. Compression result shows RIG has more than 8 N. The average maximum displacement is highest for RRH at 1.8 cm. Finally, the worn surface morphology was studied using scanning electron microscope (SEM) for its wear mechanisms

  5. Considerations Regarding the Optical Properties of the Composite Resin Restorative Materials

    Manolea, H.; Râcă, R.; Coleş, Evantia; Preotu, Gabriela; Mărăşescu, P.

    2011-01-01

    The purpose of this study has been to investigate the effects of certain substances frequently used in alimentation on the color stability of the composite resin restorative materials. The research hypothesis was that color stability of the composite resin is affected by the type of composite material used and by the polishing procedure. 14 samples of 5X15X2mm have been prepared from seven universal light curing restorative composite resins. The materials have manipulated and cured using LA 5...

  6. Influence of nanometric silicon carbide on phenolic resin composites properties

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  7. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  8. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  9. Short-pulse Er:YAG laser increases bond strength of composite resin to sound and eroded dentin

    Cersosimo, Maria Cecília Pereira; Matos, Adriana Bona; Couto, Roberta Souza D.'Almeida; Marques, Márcia Martins; de Freitas, Patricia Moreira

    2016-04-01

    This study evaluated the influence of the irradiation with a short-pulse Er:YAG laser on the adhesion of composite resin to sound and eroded dentin (SD and ED). Forty-six samples of occlusal dentine, obtained from human molars, had half of their surface protected, while the other half was submitted to erosive cycles. Afterward, 23 samples were irradiated with Er:YAG laser, resulting in four experimental groups: SD, sound irradiated dentine (SID-Er:YAG, 50 μs, 2 Hz, 80 mJ, and 12.6 J/cm2), ED, and eroded irradiated dentin (EID-erosion + Er:YAG laser). A self-etching adhesive system was used, and then cylinders of composite resin were prepared. A microshear bond strength test was performed after 24 h storage (n=20). The morphology of SD and ED, with or without Er:YAG laser irradiation, was evaluated under scanning electron microscopy (n=3). Bond strength values (MPa) were subjected to analysis of variance followed by Tukey's test. Statistically significant differences were found among the experimental groups: SD (9.76±3.39 B), SID (12.77±5.09 A), ED (5.12±1.72 D), and EID (7.62±3.39 C). Even though erosion reduces the adhesion to dentin, the surface irradiation with a short-pulse Er:YAG laser increases adhesion to both ED and SD.

  10. COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTAL ENAMEL CONDITIONED WITH PHOSPHORIC ACID OR Nd: YAG LASER

    EDUARDO Carlos de Paula

    1997-01-01

    Full Text Available This study has been focused on a comparison between the shear bond strength of a composite resin attached to dental enamel surface, after a 35% phosphoric acid etching and after a Nd:YAG laser irradiation with 165.8 J/cm2 of energy density per pulse. After etching and attaching resin to these surfaces, the specimens were thermocycled and then underwent the shearing bond strength tests at a speed of 5 mm/min. The results achieved, after statistical analysis with Student's t-test, showed that the adhesion was significantly greater in the 35% phosphoric acid treated group than in the group treated with the Nd:YAG laser, thus demonstrating the need for developing new studies to reach the ideal parameters for an effective enamel surface conditioning as well as specific adhesives and composite resins when Nd:YAG laser is used