WorldWideScience

Sample records for adhesive binding mechanism

  1. Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms

    1988-01-01

    The neuron-glia cell adhesion molecule (Ng-CAM) is present in the central nervous system on postmitotic neurons and in the periphery on neurons and Schwann cells. It has been implicated in binding between neurons and between neurons and glia. To understand the molecular mechanisms of Ng-CAM binding, we analyzed the aggregation of chick Ng- CAM either immobilized on 0.5-micron beads (Covaspheres) or reconstituted into liposomes. The results were correlated with the binding of these particles t...

  2. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts

    Woods, A; Longley, R L; Tumova, S;

    2000-01-01

    fibroblasts attach and spread following integrin ligation, but do not form focal adhesions unless treated with a heparin-binding fragment of fibronectin (HepII), a peptide from this domain, or phorbol esters to activate protein kinase C. Syndecan-4 heparan sulfate proteoglycan is a transmembrane component......Cell adhesion to extracellular matrix involves signaling mechanisms which control attachment, spreading and the formation of focal adhesions and stress fibers. Fibronectin can provide sufficient signals for all three processes, even when protein synthesis is prevented by cycloheximide. Primary...... present together with integrins in focal adhesions. Syndecan-4 binds and activates protein kinase Calpha, whose activity is needed for focal adhesion formation. We now report that the glycosaminoglycan chains of syndecan-4 bind recombinant HepII and it is incorporated into forming focal adhesions....

  3. Mechanical strength of adhesive-bonding

    In order to meet the prospective application of a GFRP dewar for energy storage system using a large superconducting magnet, the dewar with a complex structure together with a large size are desired to be made. It is difficult to manufacture such a type of the dewars in one united body. These dewars can be manufactured by the adhesive-bonding method. In the present study, the mechanical strength of adhesive-bonding is studied from this point of view. The mechanical strength of the adhesive-bonding has been investigated by the static tensile method and the impact loading method using small test samples. From the static tensile tests, the following results have been obtained. For the sample adhesive-bonded with insertion structure, the mechanical strength of the adhesive-bonding is found to depend on the adhesives used and on the difference of the thermal contraction between the materials which are adhesive-bonded each other. Using a soft adhesive as Araldite 106, the mechanical strength of the adhesive-bonding is small at room temperature, but it remarkably increases at cryogenic temperatures. For a hard adhesive as Araldite 103 and Stycast 2850 FT, it is large at room temperature, and it further increases at cryogenic temperatures. The dewar has to be strong enough not only at cryogenic temperatures but also at room temperature. A soft adhesive is not suitable for constructing the dewar. For the sample adhesive-bonded with screwing structure, the mechanical strength of the adhesive-bonding depends on the shear strength of GFRP itself. The mechanical strength of the adhesive-bonded part increases with the decreasing temperature. Therefore, this screwing method is advantageous for the construction of the dewar. According to the impact loading tests, it is found that the adhesive-bonding of screwing structure is not brittle at cryogenic temperature. This is due to inherent property of GFRP. (J.P.N.)

  4. Adhesive mechanisms in cephalopods: a review.

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  5. Critical length scale controls adhesive wear mechanisms

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  6. Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin.

    Formosa-Dague, Cécile; Feuillie, Cécile; Beaussart, Audrey; Derclaye, Sylvie; Kucharíková, Soňa; Lasa, Iñigo; Van Dijck, Patrick; Dufrêne, Yves F

    2016-03-22

    The development of bacterial biofilms on surfaces leads to hospital-acquired infections that are difficult to fight. In Staphylococci, the cationic polysaccharide intercellular adhesin (PIA) forms an extracellular matrix that connects the cells together during biofilm formation, but the molecular forces involved are unknown. Here, we use advanced force nanoscopy techniques to unravel the mechanism of PIA-mediated adhesion in a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strain. Nanoscale multiparametric imaging of the structure, adhesion, and elasticity of bacteria expressing PIA shows that the cells are surrounded by a soft and adhesive matrix of extracellular polymers. Cell surface softness and adhesion are dramatically reduced in mutant cells deficient for the synthesis of PIA or under unfavorable growth conditions. Single-cell force spectroscopy demonstrates that PIA promotes cell-cell adhesion via the multivalent electrostatic interaction with polyanionic teichoic acids on the S. aureus cell surface. This binding mechanism rationalizes, at the nanoscale, the well-known ability of PIA to strengthen intercellular adhesion in staphylococcal biofilms. Force nanoscopy offers promising prospects for understanding the fundamental forces in antibiotic-resistant biofilms and for designing anti-adhesion compounds targeting matrix polymers. PMID:26908275

  7. Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding

    1984-01-01

    Binding of the plant lectin wheat germ agglutinin (WGA) to erythrocyte membranes causes membrane rigidification. One of our objectives has been to directly measure the effects of WGA binding on membrane rigidity and to relate rigidification to the kinetics and levels of WGA binding. Our other objective has been to measure the strength of adhesion and mechanics of cell separation for erythrocytes bound together by WGA. The erythrocyte membrane rigidity was measured on single cells by micropipe...

  8. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion. PMID:27102288

  9. RNA-binding IMPs promote cell adhesion and invadopodia formation

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars; Borup, Rehannah; Wewer, Ulla M; Christiansen, Jan; Nielsen, Finn C

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and...... invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  10. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C...

  11. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase.

    Jun Feng

    Full Text Available Focal adhesion kinase (FAK is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through conformational change, and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2 are known to facilitate this process. PIP2 binding alters the autoinhibited conformation of the FERM and kinase domains and subsequently exposes the activation loop to phosphorylation. However, the detailed molecular mechanism of PIP2 binding and its role in FAK activation remain unclear. In this study, we conducted coarse-grained molecular dynamics simulations to investigate the binding of FAK to PIP2. Our simulations identified novel areas of basic residues in the kinase domain of FAK that potentially undergo transient binding to PIP2 through electrostatic attractions. Our investigation provides a molecular picture of PIP2-initiated FAK activation and introduces promising new pathways for future studies of FAK regulation.

  12. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  13. Mechanically Robust, Negative-Swelling, Mussel-Inspired Tissue Adhesives

    Barrett, Devin G.; Grace G. Bushnell; Messersmith, Phillip B.

    2012-01-01

    Most synthetic polymer hydrogel tissue adhesives and sealants swell considerably in physiologic conditions, which can result in mechanical weakening and adverse medical complications. Herein, we describe the synthesis and characterization of mechanically tough zero- or negative-swelling mussel-inspired surgical adhesives based on catechol-modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copolymers. The formation, swelling, bulk mechanical, and tissue adhesive properties o...

  14. Sulfated polymannuroguluronate inhibits Tat-induced SLK cell adhesion via a novel binding site, a KKR spatial triad

    Yan-lin WU; Jing AI; Jing-ming ZHAO; Bing XIONG; Xiao-jie XIN; Mei-yu GENG; Xian-liang XIN; Han-dong JIANG

    2011-01-01

    Aim: Sulfated polymannuroguluronate (SPMG), a candidate anti-AIDS drug, inhibited HIV replication and interfered with HIV entry into host T lymphocytes. SPMG has high binding affinity for the transactivating factor of the HIV-1 virus (Tat) via its basic domain. However, deletion or substitution of the basic domain affected, but did not completely eliminated Tat-SPMG interactions. Here, we sought to identify other SPMG binding sites in addition to the basic domain.Methods: The potential SPMG binding sites were determined using molecular simulation and a surface plasmon resonance (SPR) based competitive inhibition assay. The effect of SPMG on Tat induced adhesion was evaluated using a cell adhesion assay. Results: The KKR domain, a novel high-affinity heparin binding site, was identified, which consisted of a triad of Lys12, Lys41, and Arg78. The KKR domain, spatially enclosed SPMG binding site on Tat, functions as another binding domain for SPMG. Further func- tional evaluation demonstrated that SPMG inhibits Tat-mediated SLK cell adhesion by directly binding to the KKR region.Conclusion: The KKR domain is a novel high-affinity binding domain for SPMG. Our findings provide important new insights into the molecular mechanisms of SPMG and a potential therapeutic intervention for Tat-induced cell adhesion.

  15. On the mechanical properties of bovine serum albumin (BSA) adhesives.

    Berchane, N S; Andrews, M J; Kerr, S; Slater, N K H; Jebrail, F F

    2008-04-01

    Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples. PMID:18197367

  16. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns

    ZHANG XiangJun; LIU Yuan; LIU YongHe; AHMED S.I.-U.

    2009-01-01

    Some insects and animals, such as bugs, grasshoppers and tree frogs, realize their efficient adhesion mechanism to glass surface, wall and ceiling by injecting a wetting liquid thin film into the pad-substrate contact area. Their ability to control adhesion (attaching or detaching from a surface) is in many cases connected to the contact geometry and surface patterns of their attachment pads. This paper focuses on the dependence of the capillary adhesion (wet adhesion) on the micro patterns of the bio-adhesive pads. The objective is to reveal the possible mechanism for a bio-adhesive pad to control capillary force through adjusting its micro-scale surface pattern and topography. A capillary adhesion force model is built up taking account of the combined role of micro-dimple geometry as well as the wetting behavior of the confined liquid thin film. Calculated results of the apparent contact angle on the regularly micro-dimpled surfaces are compared with and in good agreement with the experimental measurements. Simulation of the capillary adhesion force reveals that it is controllable in a large mag-nitude by adjusting a dimensionless surface pattern parameter k defined as a/(a+b), where a is the dia-meter of micro dimple, and (a+b) is the side length of one pattern cell. When adjusting the parameter k more than 0.75, the capillary adhesion force could be switchable from attractive to repulsive. This effect of micro patterns on the interfacial capillary force is proved to be dominant when the pad-substrate clearance decreases to the nano/micrometer scale. These results indicate that a controllable and switchable capillary adhesive mechanism might be utilized by a living insect or animal to realize its stable adhesion and quick releasing movement through adjusting the micro-pattern topography of its bio-adhesive pad.

  17. Mechanisms of temporary adhesion in benthic animals

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  18. Mechanics of Cellular Adhesion to Artificial Artery Templates

    Knöner, Gregor; Rolfe, Barbara E.; Campbell, Julie H.; Parkin, Simon J.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135...

  19. Contact mechanics, friction and adhesion with application to quasicrystals

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.;

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces is the s...

  20. Mechanics of robust and releasable adhesion in biology

    Yao, Haimin

    2006-01-01

    Nature has found, through billions years of natural evolution, many ingenious ways to produce materials with superior mechanical properties. It would be a convenient and practical way for us to explore the existing biological systems for the ideas of designing novel materials. In this thesis, our attention will be focused on dry adhesion, a specific phenomenon observed frequently in many animal species like gecko, fly and insects. Our goal is to elucidate the adhesion mechanism behind these p...

  1. GIT1 Utilizes a Focal Adhesion Targeting-Homology Domain to Bind Paxillin

    Schmalzigaug, Robert; Garron, Marie-Line; Tyler Roseman, J.; Xing, Yanghui; Davidson, Collin E.; Arold, Stefan T.; Premont, Richard T.

    2007-01-01

    The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C...

  2. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase

    Jun Feng; Blake Mertz

    2015-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through confor...

  3. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives.

    Barrett, Devin G; Bushnell, Grace G; Messersmith, Phillip B

    2013-05-01

    Most synthetic polymer hydrogel tissue adhesives and sealants swell considerably in physiologic conditions, which can result in mechanical weakening and adverse medical complications. This paper describes the synthesis and characterization of mechanically tough zero- or negative-swelling mussel-inspired surgical adhesives based on catechol-modified amphiphilic poly(propylene oxide)-poly(ethylene oxide) block copolymers. The formation, swelling, bulk mechanical, and tissue adhesive properties of the resulting thermosensitive gels were characterized. Catechol oxidation at or below room temperature rapidly resulted in a chemically cross-linked network, with subsequent warming to physiological temperature inducing a thermal hydrophobic transition in the PPO domains and providing a mechanism for volumetric reduction and mechanical toughening. The described approach can be easily adapted for other thermally sensitive block copolymers and cross-linking strategies, representing a general approach that can be employed to control swelling and enhance mechanical properties of polymer hydrogels used in a medical context. PMID:23184616

  4. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R; Woods, Anne

    2003-01-01

    Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC......, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase....

  5. The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers

    Tramacere, Francesca; Beccai, Lucia; Kuba, Michael; Gozzi, Alessandro; Bifone, Angelo; Mazzolai, Barbara

    2013-01-01

    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both mor...

  6. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Francesca Tramacere

    Full Text Available The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa. In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species.

  7. The morphology and adhesion mechanism of Octopus vulgaris suckers.

    Tramacere, Francesca; Beccai, Lucia; Kuba, Michael; Gozzi, Alessandro; Bifone, Angelo; Mazzolai, Barbara

    2013-01-01

    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species. PMID:23750233

  8. On the mechanical characterization of carbon nanotube reinforced epoxy adhesives

    Highlights: • We examine the mechanical properties of carbon nanotube reinforced epoxy adhesives. • We identify a critical nanotube concentration that results in the largest improvements. • Critical concentration is shown to be a result of nanotube agglomeration. • Rheological assessments indicate that agglomeration is due to increased resin viscosity. - Abstract: In this work, the mechanical properties of carbon nanotube reinforced epoxy adhesives are investigated experimentally. The investigations are intended to characterize the physical and mechanical properties of nano-reinforced structural epoxy adhesives and to further highlight some of the complex phenomena associated with these materials. We describe the dispersion methodology used to disperse the carbon nanotubes into the considered adhesive and provide details pertaining to adherent surface preparation, bondline thickness control and adhesive curing conditions. Furthermore, the following tests are described: (i) dogbone tensile testing, (ii) tensile bond testing, (iii) double lap shear and (iv) double cantilever beam fracture toughness testing. The experimental observations indicate a critical carbon nanotube concentration in the vicinity of 1.5 wt% that results in the largest improvements in the measured properties. At concentrations exceeding this critical value, the properties begin to degrade, in some cases, to levels below that of the pure epoxy. Advanced electron microscopy techniques and rheological assessments indicate that this is mainly due to the agglomeration of the carbon nanotubes at higher concentrations as a result of increased resin viscosity and the consequent resistance to dispersion

  9. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of [3H]serotonin, or alter the dose-responsive binding of 125I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF

  10. DNA-binding residues and binding mode prediction with binding-mechanism concerned models

    Oyang Yen-Jen; Liu Yu-Cheng; Huang Chun-Chin; Huang Yu-Feng; Huang Chien-Kang

    2009-01-01

    Abstract Background Protein-DNA interactions are essential for fundamental biological activities including DNA transcription, replication, packaging, repair and rearrangement. Proteins interacting with DNA can be classified into two categories of binding mechanisms - sequence-specific and non-specific binding. Protein-DNA specific binding provides a mechanism to recognize correct nucleotide base pairs for sequence-specific identification. Protein-DNA non-specific binding shows sequence indepe...

  11. The neural cell adhesion molecule binds to fibroblast growth factor receptor 2

    Christensen, Claus; Lauridsen, Jes B; Berezin, Vladimir; Bock, Elisabeth; Kiselyov, Vladislav V

    2006-01-01

    The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface...

  12. The Adhesion and Formation Mechanism of Blast Furnace Gunning Layer

    2006-01-01

    Basing on the study of the equilibrium relationship of interfacial tension among gunning particles, repaired surface and atmosphere, this test is in a position to draw a conclusion concerning the adhesion mechanism of the gunning refractory and the repaired surface, which illustrates the formation of the bottom gunning layer by moist fine gunning particles on the repaired surface. Also involved within the scope of discussion and probe are the patterns formed under this contacting effect and the formation mechanism of gunning layer. The analytic research regarding the behavior of gunning interface has ascribed the influence upon adhesion intensity to the quality of furnace gunning refractory, the state of the repaired surface and the gunning techniques.

  13. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  14. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  15. Mechanical behaviour of adhesive joints such as a concrete epoxy

    Aguiar, J. L. Barroso de; Reymond, M. C.; Paillère, A. M.

    1987-01-01

    The sample DCB is separated in two parts then sticked by epoxy to study adhesion between concrete and epoxy resin. The crack propagation was initiated at a notch in a double cantilever beam. The notch of the test sample was opened by an Instron tensile machin. The crack extension was followed through direct optical observations. The displacement was measured by an extensometer. During the fracture test, mechanical behaviour of the sample was monitored with various techniques: the experimental...

  16. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  17. The emerin-binding transcription factor Lmo7 is regulated by association with p130Cas at focal adhesions

    Michele A. Wozniak

    2013-08-01

    Full Text Available Loss of function mutations in the nuclear inner membrane protein, emerin, cause X-linked Emery-Dreifuss muscular dystrophy (X-EDMD. X-EDMD is characterized by contractures of major tendons, skeletal muscle weakening and wasting, and cardiac conduction system defects. The transcription factor Lmo7 regulates muscle- and heart-relevant genes and is inhibited by binding to emerin, suggesting Lmo7 misregulation contributes to EDMD disease. Lmo7 associates with cell adhesions and shuttles between the plasma membrane and nucleus, but the regulation and biological consequences of this dual localization were unknown. We report endogenous Lmo7 also associates with focal adhesions in cells, and both co-localizes and co-immunoprecipitates with p130Cas, a key signaling component of focal adhesions. Lmo7 nuclear localization and transcriptional activity increased significantly in p130Cas-null MEFs, suggesting Lmo7 is negatively regulated by p130Cas-dependent association with focal adhesions. These results support EDMD models in which Lmo7 is a downstream mediator of integrin-dependent signaling that allows tendon cells and muscles to adapt to and withstand mechanical stress.

  18. Dynamic mechanical and thermal properties of seven polyurethane adhesives

    Hoffman, D.M.

    1981-03-01

    Seven polyurethane adhesives have been developed at Lawrence Livermore National Laboratory (LLNL). These adhesives, designated Halthanes were synthesized because of OSHA restrictions on the use of the curing agent methylene bis(2-chloroaniline). Four of the Halthanes were made from LLNL-developed 4,4'-methylene bis(phenylisocyanate) terminated prepolymers cured with a blend of polyols; three were made from an LLNL-developed prepolymer terminated with Hylene W and cured with aromatic diamines. In this paper the dynamic mechanical and thermal behavior of these seven segmented polyurethanes are discussed. The chemical structure of the hard and soft segments, the concentrations of each block, and the presence of tetrafunctional crosslinker determined the dynamic mechanical and thermal properties of the three types of polyurethane adhesives, 73-, 87-, and 88-series Halthanes studied. Aromatic-aliphatic MDI- butanediol urethane hard segments produce lower modulus (10/sup 6/ Pa) materials in the rubbery region than cyclic unsaturated-aromatic urea hard segments. Incorporation of chemical crosslinks in the hard segments extended the rubbery plateau beyond the hard segment transitions up to temperatures where the polymer begins to degrade. Concentration of hard and soft segments can also be used to control the modulus between the glass transition temperatures of the two blocks.

  19. Temporal mechanisms of multimodal binding

    Burr, D.; Silva, O; Cicchini, G. M.; Banks, M. S.; Morrone, M. C.

    2009-01-01

    The simultaneity of signals from different senses—such as vision and audition—is a useful cue for determining whether those signals arose from one environmental source or from more than one. To understand better the sensory mechanisms for assessing simultaneity, we measured the discrimination thresholds for time intervals marked by auditory, visual or auditory–visual stimuli, as a function of the base interval. For all conditions, both unimodal and cross-modal, the thresholds followed a chara...

  20. Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts.

    Laterra, J; Ansbacher, R; Culp, L A

    1980-01-01

    Glycosaminoglycans (GAGs) and glycoprotein-derived glycopeptide from mouse BALB/c3T3 and simian virus 40-transformed 3T3 whole cells or their adhesion sites, which are left bound to the serum-coated tissue culture substratum after detachment of cells mediated by [ethylenebis-(oxyethylenenitrilo]tetraacetic acid (EGTA), were analyzed for specific binding to Sepharose columns derivatized with cold-insoluble globulin (CIg). CIg is the serum-contained form of fibronectin and is required for the a...

  1. 25 Years of Tension over Actin Binding to the Cadherin Cell Adhesion Complex: The Devil is in the Details.

    Nelson, W James; Weis, William I

    2016-07-01

    Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. PMID:27166091

  2. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  3. Mechanical Behaviour of Adhesive Joints in Cartonboard for Packaging

    Korin, Christer

    2009-01-01

    A cartonboard package is often sealed and closed with an adhesive – either a hot-melt adhesive (adhesives that are applied in a molten state on the cartonboard) or a dispersion adhesive (adhesives that are applied as water-based dispersions). This thesis focuses on the process of hot-melt gluing, and how material properties and process conditions affect the performance of the adhesive joint. Requirements vary depending on how the package is to be used. A package that is only supposed to prote...

  4. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  5. Quantifying adhesion energy of mechanical coatings at atomistic scale

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  6. Compression Pressure Effect on Mechanical & Combustion Properties of Sawdust Briquette using Styrofoam adhesive as binder.

    Abdulrasheed A

    2015-08-01

    Full Text Available In this paper, briquettes were produced from sawdust at different compression pressure using Styrofoam (Polystyrene foam adhesive as binding material. The effects of changing the compression pressure used in moulding of briquettes on its combustion and mechanical properties were investigated. In evaluating Combustion properties, 0.940kg of water was boiled using oven-dried sample of briquette in the combustion chamber with air flow velocity supplied to the combustion chamber at 10.2m/s. Combustion properties investigated were afterglow time, burning rate, specific fuel consumption, power output, percentage heat utilized, flame propagation rate and percentage ash content. The mechanical properties investigated included density, compressive strength, impact resistance, water resistance and abrasion resistance. The blends of sieved sawdust and binder were prepared in the ratio of 4:1 and compacted at pressures ranging from 40 – 90 kN/m2 at 10 kN/m2 interval in a hydraulic press machine with a dwell time of 5minutes. The pressures of moulding were varied to evaluate the range that gives the best quality in terms of combustion and mechanical properties of the briquette produced. The potential use of Polystyrene foam adhesive as a binder in production of briquettes was found promising.

  7. Structures and host-adhesion mechanisms of lactococcal siphophages

    ChristianCambillau

    2014-01-01

    Full Text Available The Siphoviridae family of bacteriophages is the largest viral family on earth and comprises members infecting both bacteria and archaea. Lactococcal siphophages infect the Gram-positive bacterium Lactococcus lactis, which is widely used for industrial milk fermentation processes (e.g. cheese production. As a result, lactococcal phages have become one of the most thoroughly characterized class of phages from a genomic standpoint. They exhibit amazing and intriguing characteristics. First, each phage has a strict specificity towards a unique or a handful of L. lactis host strains. Second, most lactococcal phages possess a large organelle at their tail tip (termed the baseplate, bearing the receptor binding proteins and mediating host adsorption. The recent accumulation of structural and functional data revealed the modular structure of their building blocks, their different mechanisms of activation and the fine specificity of their receptor binding proteins. These results also illustrated similarities and differences between lactococcal Siphoviridae and Gram-negative infecting Myoviridae.

  8. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif.

    Shigeki Suzuki

    Full Text Available Phosphophoryn (PP is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP. Gene duplications in the ancestor dentin matrix protein-1 (DMP-1 genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs. Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH. This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  9. Fracture mechanics characterisation of medium-size adhesive joint specimens

    Sørensen, Bent F.; Jacobsen, T.K.

    2004-01-01

    Medium-size specimens (<2 m in length), consisting of two glass-fibre beams bonded together by an adhesive layer were tested in four point bending to determine their load carrying capacity. Specimens having different thickness were tested. Except for onespecimen, the cracking occurred as cracking...... along the adhesive layer; initially cracking occurred along the adhesive/laminate interface, but after some crack extension the cracking took place inside the laminate (for one specimen the later part of thecracking occurred unstably along the adhesive/ laminate interface). Crack bridging by fibres was...

  10. Role of Streptococcus gordonii Amylase-Binding Protein A in Adhesion to Hydroxyapatite, Starch Metabolism, and Biofilm Formation

    Rogers, Jeffrey D.; Palmer, Robert J.; Kolenbrander, Paul E; Scannapieco, Frank A.

    2001-01-01

    Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. α-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (Ab...

  11. Divergent evolution of vitamin B9 binding underlies Juno-mediated adhesion of mammalian gametes.

    Han, Ling; Nishimura, Kaoru; Sadat Al Hosseini, Hamed; Bianchi, Enrica; Wright, Gavin J; Jovine, Luca

    2016-02-01

    The interaction between egg and sperm is the first necessary step of fertilization in all sexually reproducing organisms. A decade-long search for a protein pair mediating this event in mammals culminated in the identification of the glycosylphosphatidylinositol (GPI)-anchored glycoprotein Juno as the egg plasma membrane receptor of sperm Izumo1 [1,2]. The Juno-Izumo1 interaction was shown to be essential for fertilization since mice lacking either gene exhibit sex-specific sterility, making these proteins promising non-hormonal contraceptive targets [1,3]. No structural information is available on how gamete membranes interact at fertilization, and it is unclear how Juno - which was previously named folate receptor (FR) 4, based on sequence similarity considerations - triggers membrane adhesion by binding Izumo1. Here, we report the crystal structure of Juno and find that the overall fold is similar to that of FRα and FRβ but with significant flexibility within the area that corresponds to the rigid ligand-binding site of these bona fide folate receptors. This explains both the inability of Juno to bind vitamin B9/folic acid [1], and why mutations within the flexible region can either abolish or change the species specificity of this interaction. Furthermore, structural similarity between Juno and the cholesterol-binding Niemann-Pick disease type C1 protein (NPC1) suggests how the modified binding surface of Juno may recognize the helical structure of the amino-terminal domain of Izumo1. As Juno appears to be a mammalian innovation, our study indicates that a key evolutionary event in mammalian reproduction originated from the neofunctionalization of the vitamin B9-binding pocket of an ancestral folate receptor molecule. PMID:26859261

  12. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering.

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J

    2011-08-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  13. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation

    Woods, A; McCarthy, J B; Furcht, L T;

    1993-01-01

    Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process of...... focal adhesion and stress fiber formation requires additional interactions. Heparin-binding fragments of fibronectin can provide this signal. The COOH-terminal heparin-binding domain of fibronectin contains five separate heparin-binding amino acid sequences. We show here that all five sequences, as...... synthetic peptides coupled to ovalbumin, can support cell attachment. Only three of these sequences can promote focal adhesion formation when presented as multicopy complexes, and only one of these (WQPPRARI) retains this activity as free peptide. The major activity of this peptide resides in the sequence...

  14. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    Wagner Shin Nishitani; Adriano Mesquita Alencar; Yingxiao Wang

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium i...

  15. Mechanism of tantalum adhesion on SiLKTM

    Tantalum adhesion on SiLKTM was investigated using first-principles method based on density functional theory. Phenylene groups were found to play a major role and the adjacent semi-benzene rings also contribute significantly to Ta adhesion on SiLKTM. In addition, the degradation effects of H2/He reactive plasma clean on Ta adhesion on SiLKTM was investigated. Based on our findings, argon plasma treatment was suggested and implemented after reactive plasma cleaning process, which resulted in integration of SiLKTM with Cu up to seven metal layers

  16. Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning

    Køhler, Lene B; Christensen, Claus; Rossetti, Clara; Fantin, Martina; Sandi, Carmen; Bock, Elisabeth; Berezin, Vladimir

    2010-01-01

    Neural cell adhesion molecule (NCAM)-mediated cell adhesion results in activation of intracellular signaling cascades that lead to cellular responses such as neurite outgrowth, neuronal survival, and modulation of synaptic activity associated with cognitive processes. The crystal structure of the...... between Ig1 and Ig3 and between Ig2 and Ig2, respectively, observed in the crystal structure. Although the two dennexin peptides differed in amino acid sequence, they both modulated cell adhesion, reflected by inhibition of NCAM-mediated neurite outgrowth. Both dennexins also promoted neuronal survival...... immunoglobulin (Ig) 1-2-3 fragment of the NCAM ectodomain has revealed novel mechanisms for NCAM homophilic adhesion. The present study addressed the biological significance of the so called dense zipper formation of NCAM. Two peptides, termed dennexinA and dennexinB, were modeled after the contact interfaces...

  17. The effect of adhesive layer elasticity on the fracture mechanics of a blister test specimen

    Updike, D. P.

    1975-01-01

    An analytical model of a blister type specimen for evaluating adhesive bond strength was developed. Plate theory with shear deformation was used to model the deformation of the plate, and elastic deformation of the adhesive layer is taken into account. It is shown that the inclusion of the elastic deformation of the adhesive layer can have a significant influence in the energy balance calculations of fracture mechanics.

  18. Effects of class I heparin binding growth factor and fibronectin on platelet adhesion and aggregation

    Fibronectin and heparin binding growth factor-type 1 have been affixed to vascular graft surfaces to enhance the attachment and the proliferation of transplanted endothelial cells, respectively. The current study examines the effect of fibronectin and heparin binding growth factor-type 1 on platelet adhesion and activation in vivo and on platelet aggregation in vitro. Expanded polytetrafluoroethylene prostheses (5 cm x 4 mm internal diameter) were treated either with fibronectin (n = 9), fibronectin/heparin/heparin binding growth factor-type 1/heparin (n = 12), or neither (n = 13) and were interposed into canine aortoiliac systems bilaterally. Autogenous radiolabeled (Indium 111 oxine, 650 microCi) platelets were injected intravenously before reestablishment of circulation. Perfusion was maintained for 30 minutes, and prostheses were removed with segments of native aorta and distal iliac arteries bilaterally. Specimens were examined for thrombus-free surface area, by gamma well counting for adherent radiolabeled platelets, and by light microscopy and transmission and scanning electron microscopic techniques. Results showed that both the fibronectin and fibronectin/heparin/heparin binding growth factor-type 1/heparin pretreated prostheses contained significantly greater numbers of platelets and adherent radioactivity than did control graft segments when normalized to their ipsilateral iliac arteries. Fibronectin/heparin/heparin binding growth factor-type 1/heparin pretreated prostheses contained 27 +/- 16 times more radioactivity per square millimeter than ipsilateral iliac arteries, fibronectin pretreated prostheses had 13 +/- 8 times more radioactivity per square millimeter than ipsilateral iliac arteries, and untreated expanded polytetrafluoroethylene had 4 +/- 3 times more radioactivity per square millimeter than ipsilateral iliac arteries

  19. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  20. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives. PMID:19241096

  1. An adhesion-dependent switch between mechanisms that determine motile cell shape.

    Erin L Barnhart

    2011-05-01

    Full Text Available Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes.

  2. Nano-mechanics of Tunable Adhesion using Non Covalent Forces

    Kenneth Liechti

    2012-09-08

    The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.

  3. Lactobacillus Adhesion to Mucus

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  4. Mechanical pretreatment for improved adhesion of diamond coatings

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  5. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model.

    Zhang, Lin; Sun, Yan

    2014-04-29

    Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases. PMID:24697616

  6. Tuning the kinetics of cadherin adhesion

    Sivasankar, Sanjeevi

    2013-01-01

    Cadherins are Ca2+ dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particu...

  7. Mechanical Properties and Adhesion of a Micro Structured Polymer Blend

    Brunero Cappella

    2011-07-01

    Full Text Available A 50:50 blend of polystyrene (PS and poly(n-butyl methacrylate (PnBMA has been characterized with an Atomic Force Microscope (AFM in Tapping Mode and with force-distance curves. The polymer solution has been spin-coated on a glass slide. PnBMA builds a uniform film on the glass substrate with a thickness of @200 nm. On top of it, the PS builds an approximately 100 nm thick film. The PS-film undergoes dewetting, leading to the formation of holes surrounded by about 2 µm large rims. In those regions of the sample, where the distance between the holes is larger than about 4 µm, light depressions in the PS film can be observed. Topography, dissipated energy, adhesion, stiffness and elastic modulus have been measured on these three regions (PnBMA, PS in the rims and PS in the depressions. The two polymers can be distinguished in all images, since PnBMA has a higher adhesion and a smaller stiffness than PS, and hence a higher dissipated energy. Moreover, the polystyrene in the depressions shows a very high adhesion (approximately as high as PnBMA and its stiffness is intermediate between that of PnBMA and that of PS in the rims. This is attributed to higher mobility of the PS chains in the depressions, which are precursors of new holes.

  8. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  9. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  10. Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface Roughness and Adhesion Effects

    Song, Zhichao

    2012-01-01

    The main objective of this dissertation was to analyze surface contact interaction at different length scales and to elucidate the effects of material properties (e.g., adhesion and mechanical properties), normal and shear (friction) surface tractions, and topography parameters (e.g., roughness) on contact deformation. To accomplish this objective, a surface adhesion model based on an interatomic potential was incorporated into finite element contact models of rough surfaces exhibiting multi-...

  11. P-Selectin Cross-Links PSGL-1 and Enhances Neutrophil Adhesion to Fibrinogen and ICAM-1 in a Src Kinase-Dependent, but GPCR-Independent Mechanism

    Xu, Tao; Zhang, Lei; Geng, Zhen H; Wang, Hai-Bo; Wang, Jin-Tao; Chen, Ming; Geng, Jian-Guo

    2007-01-01

    Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeri...

  12. A New Self-Loading Locomotion Mechanism for Wall Climbing Robots Employing Biomimetic Adhesives

    Amirpasha Peyvandi; Parviz Soroushian; Jue Lu

    2013-01-01

    A versatile locomotion mechanism is introduced and experimentally verified.This mechanism comprises four rectangular wheels (legs) with rotational phase difference which enables the application of pressure to each contacting surface for securing it to the surface using bio-inspired or pressure-sensitive adhesives.In this mechanism,the adhesives are applied to two rigid plates attached to each wheel via hinges incorporating torsional springs.The springs force the plates back to their original position after the contact with the surface is lost in the course of locomotion.The wheels are made of low-modulus elastomers,and the pressure applied during contact is controlled by the elastic modulus,geometry and phase difference of wheels.This reliable adhesion system does not rely upon gravity for adhering to surfaces,and provides the locomotion mechanism with the ability to climb walls and transition from horizontal to vertical surfaces.

  13. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells.

    Bamezai, A; Rock, K L

    1995-01-01

    The Ly-6 locus encodes several cell surface proteins whose functions are unknown. Although it is hypothesized that these proteins may be receptors, there is no direct evidence that they bind a ligand. Herein we present evidence that Ly-6A.2, a Ly-6 protein expressed on T lymphocytes, binds a ligand expressed on normal thymocytes and splenic B and T cells. We find that transgenic thymocytes that overexpress Ly-6A.2 spontaneously aggregate in culture. This homotypic adhesion requires the overex...

  14. Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.

    Chen, Bin; Gao, Huajian

    2010-05-19

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tension is to shift the interfacial failure mode from cracklike propagation toward uniform bond failure within the contact region, thereby greatly increasing the adhesion lifetime. Since stress fibers are the primary load-bearing components of cells, as well as the basic functional units of cytoskeleton that facilitate cell adhesion, this study suggests a feasible mechanism by which cell adhesion could be actively controlled via cytoskeletal contractility and proposes that pre-tension may be a general principle in biological adhesion. PMID:20483323

  15. Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects

    Pressure-sensitive adhesives such as tapes become easily contaminated by dust particles. By contrast, animal adhesive pads are able to self-clean and can be reused millions of times over a lifetime with little reduction in adhesion. However, the detailed mechanisms underlying this ability are still unclear. Here we test in adhesive pads of stick insects (Carausius morosus) (1) whether self-cleaning is enhanced by the liquid pad secretion, and (2) whether alternating push–pull movements aid the removal of particles. We measured attachment forces of insect pads on glass after contamination with 10 µm polystyrene beads. While the amount of fluid present on the pad showed no effect on the pads' susceptibility to contamination, the recovery of adhesive forces after contamination was faster when higher fluid levels were present. However, this effect does not appear to be based on a faster rate of self-cleaning since the number of spheres deposited with each step did not increase with fluid level. Instead, the fluid may aid the recovery of adhesive forces by filling in the gaps between contaminating particles, similar to the fluid's function on rough surfaces. Further, we found no evidence that an alternation of pushing and pulling movements, as found in natural steps, leads to a more efficient recovery of adhesion than repeated pulling slides. (paper)

  16. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  17. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  18. A sequential binding mechanism in a PDZ domain

    Chi, Celestine N; Bach, Anders; Engström, Åke; Wang, Huiqun; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2009-01-01

    Conformational selection and induced fit are two well-known mechanisms of allosteric protein-ligand interaction. Some proteins, like ubiquitin, have recently been found to exist in multiple conformations at equilibrium, suggesting that the conformational selection may be a general mechanism of...... interaction, in particular for single-domain proteins. Here, we found that the PDZ2 domain of SAP97 binds its ligand via a sequential (induced fit) mechanism. We performed binding experiments using SAP97 PDZ2 and peptide ligands and observed biphasic kinetics with the stopped-flow technique, indicating that...... ligand binding involves at least a two-step process. By using an ultrarapid continuous-flow mixer, we then detected a hyperbolic dependence of binding rate constants on peptide concentration, corroborating the two-step binding mechanism. Furthermore, we found a similar dependence of the rate constants on...

  19. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  20. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri.

    Mackenzie, Donald A; Jeffers, Faye; Parker, Mary L; Vibert-Vallet, Amandine; Bongaerts, Roy J; Roos, Stefan; Walter, Jens; Juge, Nathalie

    2010-11-01

    Mucus-binding proteins (MUBs) have been revealed as one of the effector molecules involved in mechanisms of the adherence of lactobacilli to the host; mub, or mub-like, genes are found in all of the six genomes of Lactobacillus reuteri that are available. We recently reported the crystal structure of a Mub repeat from L. reuteri ATCC 53608 (also designated strain 1063), revealing an unexpected recognition of immunoglobulins. In the current study, we explored the diversity of the ATCC 53608 mub gene, and MUB expression levels in a large collection of L. reuteri strains isolated from a range of vertebrate hosts. This analysis revealed that the MUB was only detectable on the cell surface of two highly related isolates when using antibodies that were raised against the protein. There was considerable variation in quantitative mucus adhesion in vitro among L. reuteri strains, and mucus binding showed excellent correlation with the presence of cell-surface ATCC 53608 MUB. ATCC 53608 MUB presence was further highly associated with the autoaggregation of L. reuteri strains in washed cell suspensions, suggesting a novel role of this surface protein in cell aggregation. We also characterized MUB expression in representative L. reuteri strains. This analysis revealed that one derivative of strain 1063 was a spontaneous mutant that expressed a C-terminally truncated version of MUB. This frameshift mutation was caused by the insertion of a duplicated 13 nt sequence at position 4867 nt in the mub gene, producing a truncated MUB also lacking the C-terminal LPxTG region, and thus unable to anchor to the cell wall. This mutant, designated 1063N (mub-4867(i)), displayed low mucus-binding and aggregation capacities, further providing evidence for the contribution of cell-wall-anchored MUB to such phenotypes. In conclusion, this study provided novel information on the functional attributes of MUB in L. reuteri, and further demonstrated that MUB and MUB-like proteins

  1. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  2. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    Gaharwar, Akhilesh K., E-mail: agaharwa@purdue.edu; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-04-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  3. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  4. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives. PMID:25244526

  5. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  6. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  7. Insights into the Alteration of Osteoblast Mechanical Properties upon Adhesion on Chitosan

    Antonia G. Moutzouri

    2014-01-01

    Full Text Available Cell adhesion on substrates is accompanied by significant changes in shape and cytoskeleton organization, which affect subsequent cellular and tissue responses, determining the long-term success of an implant. Alterations in osteoblast stiffness upon adhesion on orthopaedic implants with different surface chemical composition and topography are, thus, of central interest in the field of bone implant research. This work aimed to study the mechanical response of osteoblasts upon adhesion on chitosan-coated glass surfaces and to investigate possible correlations with the level of adhesion, spreading, and cytoskeleton reorganization. Using the micropipette aspiration technique, the osteoblast elastic modulus was found higher on chitosan-coated than on uncoated control substrates, and it was found to increase in the course of spreading for both substrates. The cell-surface contact area was measured throughout several time points of adhesion to quantify cell spreading kinetics. Significant differences were found between chitosan and control surfaces regarding the response of cell spreading, while both groups displayed a sigmoidal kinetical behavior with an initially elevated spreading rate which stabilizes in the second hour of attachment. Actin filament structural changes were confirmed after observation with confocal microscope. Biomaterial surface modification can enhance osteoblast mechanical response and induce favorable structural organization for the implant integration.

  8. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation. PMID:19429369

  9. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board. PMID:19329303

  10. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. PMID:27008865

  11. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.

    Gaharwar, Akhilesh K; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K; Schmidt, Gudrun

    2013-04-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. PMID:23827639

  12. Theory of the mechanical response of focal adhesions to shear flow

    Biton, Y Y; Safran, S A, E-mail: yoav.biton@weizmann.ac.i, E-mail: sam.safran@weizmann.ac.i [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  13. Fullerenes as adhesive layers for mechanical peeling of metallic, molecular and polymer thin films

    Maria B. Wieland

    2014-04-01

    Full Text Available We show that thin films of C60 with a thickness ranging from 10 to 100 nm can promote adhesion between a Au thin film deposited on mica and a solution-deposited layer of the elastomer polymethyldisolaxane (PDMS. This molecular adhesion facilitates the removal of the gold film from the mica support by peeling and provides a new approach to template stripping which avoids the use of conventional adhesive layers. The fullerene adhesion layers may also be used to remove organic monolayers and thin films as well as two-dimensional polymers which are pre-formed on the gold surface and have monolayer thickness. Following the removal from the mica support the monolayers may be isolated and transferred to a dielectric surface by etching of the gold thin film, mechanical transfer and removal of the fullerene layer by annealing/dissolution. The use of this molecular adhesive layer provides a new route to transfer polymeric films from metal substrates to other surfaces as we demonstrate for an assembly of covalently-coupled porphyrins.

  14. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the...... extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct...... surroundings via the extracellular domain and bind to the cytoskeleton via their intracellular domain. In addition, several CAMs induce signaling events via direct interactions with intracellular proteins or via interactions with cell surface receptors. Thus, CAMs are obvious candidates for transmitting...

  15. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    Awada, Houssein, E-mail: houssein.awada@uqtr.c [Centre Integre en Pates et Papiers, Universite du Quebec a Trois-Rivieres (UQTR), 3351, boul. des Forges Trois-Rivieres, G9A 5H7, Quebec (Canada); Noel, Olivier [Universite du Maine, Molecular landscapes and biophotonics, CNRS-UMR 6087, Le Mans (France); Hamieh, Tayssir [Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA, CHAMSI) Faculty of Sciences, Lebanese University, Beirut (Lebanon); Kazzi, Yolla [Faculty of Sciences, Lebanese University, Beirut (Lebanon); Brogly, Maurice [Laboratoire LECOB, Universite de Haute-Alsace, 68057 Mulhouse Cedex (France)

    2011-03-31

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  16. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives: Focussing on Bonding Glass

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap length of the epoxy adhesive results in the highest maximum bond stress. However, there is nosignificant difference in maximum bond stresses due to different overlap lengths of the MS polymer. When...

  17. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues.

    Sanders, Lindsey; Stone, Roland; Webb, Kenneth; Mefford, Thompson; Nagatomi, Jiro

    2015-03-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a four-arm poly(propylene oxide)-poly(ethylene oxide) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive (Cho et al., Acta Biomater 2012;8:2223-2232; Barrett et al., Adv Health Mater 2012;1-11; Balakrishnan, Evaluating mechanical performance of hydrogel-based adhesives for soft tissue applications. Clemson University, All Theses, Paper 1574: Tiger Prints; 2013). Building on the success of these studies, this study explored bifunctionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni and bifunctional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone. Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bifunctional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of this study provided evidence that the bifunctional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  18. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis

    Danen, Erik H J; Sonneveld, Petra; Brakebusch, Cord; Fassler, Reinhard; Sonnenberg, Arnoud

    2002-01-01

    We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of...... RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated...... fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3...

  19. A room temperature cured low dielectric hyperbranched epoxy adhesive with high mechanical strength

    Bibekananda De; Niranjan Karak

    2014-05-01

    A low dielectric constant hyperbranched epoxy thermoset with excellent adhesive and mechanical strength is the demand for advanced electronics and engineering applications. The present investigation provided a room temperature, curable hyperbranched epoxy, obtained by an A2 + B3 polycondensation reaction. The synthesized hyperbranched epoxy was cured by a combined hardener system consisting of a commercial poly(amido-amine) and a first generation aliphatic poly(amido-amine) dendrimer (PAD) prepared by Michael addition reaction of methyl acrylate and aliphatic amines. The thermoset exhibited high mechanical strength, excellent adhesive strength, low dielectric constant, good thermal stability and excellent weather resistance along with very good moisture resistance. The results showed the influence of the amount of PAD on the performance of the thermoset. Thus, the study revealed that the combined poly(amido-amine) cured hyperbranched epoxy has high potential in advanced electrical packaging and microelectronic devices.

  20. Tuning the mechanical properties of bioreducible multilayer films for improved cell adhesion and transfection activity

    Blacklock, Jenifer; Vetter, Andreas; Lankenau, Andreas; Oupický, David; Möhwald, Helmuth

    2010-01-01

    A simple approach to the mechanical modulation of layer-by-layer (LbL) films is through manipulation of the film assembly. Here, we report results based on altering the salt concentration during film assembly and its effect on film rigidity. Based on changes in film rigidity, cell adhesion characteristics and transfection activity were investigated in vitro. LbL films consisting of reducible hyperbranched poly(amide amine) (RHB) have been implemented along with DNA for investigating fibroblas...

  1. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    Liu, Heli; Focia, Pamela J.; He, Xiaolin (NWU, MED)

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  2. A mineralogical study of the binding mechanisms in chromite briquettes

    Briquettes are made of chromite fines and a suitable binding material which are fed into a pillow-shaped mould, and pressure is applied to compact the material. The Council for Mineral Technology and Middelburg Steel and Alloys have taken out a provisional patent for the manufacturing of composite briquettes containing not only reducing agents but also fluxes, which will improve the efficiency of the reduction process. Briquettes were examined and the results were correlated with the strengths of the briquettes, which were measured in drop tests, compressive strength and abrasive resistance. The mineralogical procedures included differential thermal analysis, x-ray diffraction, infrared spectroscopy, scanning electron microscope, energy-dispersive spectroscopy and the use of the electron microprobe. The information obtained by these procedures enabled the determination of the nature of the binding mechanisms. Six different types of briquettes, with their respective binding mechanisms were studied

  3. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    Kruth, J.-P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the bin

  4. Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands

    Roein-Peikar, Mehdi; Xu, Qian; Wang, Xuefeng; Ha, Taekjip

    2016-01-01

    Integrins, a class of membrane proteins involved in cell adhesion, participate in the cell's sensing of the mechanical environments. We previously showed that, for the initial cell adhesion to occur, single integrins need to experience a threshold force of 40 pico-Newton (pN) through their bond with surface-bound ligands. This force requirement was determined using a series of double-stranded DNA tethers called tension gauge tethers (TGTs), each with a different rupture force, linked to the ligand. Here, we performed cell-adhesion experiments using surfaces coated with two different TGTs, one of a strong rupture force (around 54 pN) and the other of a weak rupture force (around 12 pN). When presented with one type of TGT only, cells adhered to the strong TGT-coated surface but not to the weak TGT-coated surface. However, when presented with both, the presence of the strong TGTs transforms the way cells respond to the weak TGTs such that cells treat both TGTs the same, as if the weak TGTs were strong. Furthermore, a subpopulation of cells can adhere to and spread on a surface displaying just a few molecules of the strong TGTs per cell if, and only if, they are presented along with many weak TGTs. This ultrasensitivity to just a few tethers that can withstand strong forces raises a question of how the cells can achieve such remarkable sensitivity to their mechanical environment without amplifying noise.

  5. Improved electro-mechanical performance of gold films on polyimide without adhesion layers

    Thin metal films on polymer substrates are of interest for flexible electronic applications and often utilize a thin interlayer to improve adhesion of metal films on flexible substrates. This work investigates the effect of a 10 nm Cr interlayer on the electro-mechanical properties of 50 nm Au films on polyimide substrates. Ex situ and in situ fragmentation experiments reveal the Cr interlayer causes brittle electro-mechanical behaviour, and thin Au films without an interlayer can support strains up to 15% without significantly degrading electrical conductivity

  6. Mechanical characterization of particulate aluminum foams. Strain-rate, density and matrix alloy versus adhesive effects

    Lehmhus, Dirk [ISIS Sensorial Materials Scientific Centre, University of Bremen (Germany); Baumeister, Joachim; Stutz, Lennart; Stoebener, Karsten [Fraunhofer IFAM Bremen (Germany); Schneider, Eduard [University of Bremen (Germany); Avalle, Massimiliano; Peroni, Lorenzo; Peroni, Marco [Dipartimento di Meccanica, Politecnico di Torino Vercelli (Italy)

    2010-07-15

    The study evaluates mechanical properties of APM particulate aluminum foams built up from adhesively bonded Al foam spheres. Foams of matrix alloy AlSi10 are compared, with PM AlSi7 foams used as reference. The influence of density is studied both for quasi-static and dynamic compressive loading in a range from {proportional_to}0.35 to 0.71 g cm{sup -3}. The effect of varying the bonding agent is evaluated for a single density and both strain rate levels by replacing the standard, high-strength epoxy-based adhesive with a polyamide of greatly increased ductility. The result is a clear shift of fracture events to higher strain levels, as well as the introduction of a strain-rate dependency of strength. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  8. The intermediate filament protein vimentin binds specifically to a recombinant integrin α2/β1 cytoplasmic tail complex and co-localizes with native α2/β1 in endothelial cell focal adhesions

    Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short α and β cytoplasmic tails will help to elucidate the molecular mechanisms by which integrins mediate bi-directional signaling across the plasma membrane. Integrin α2β1 is a major collagen receptor but to date, only few proteins have been shown to interact with the α2 cytoplasmic tail or with the α2β1 complex. In order to identify novel binding partners of a α2β1cytoplasmic domain complex, we have generated recombinant GST-fusion proteins, incorporating the leucine zipper heterodimerization cassettes of Jun and Fos. To ascertain proper functionality of the recombinant proteins, interaction with natural binding partners was tested. GST-α2 and GST-Jun α2 bound His-tagged calreticulin while GST-β1 and GST-Fos β1 proteins bound talin. In screening assays for novel binding partners, the immobilized GST-Jun α2/GST-Fos β1 heterodimeric complex, but not the single subunits, interacted specifically with endothelial cell-derived vimentin. Vimentin, an abundant intermediate filament protein, has previously been shown to co-localize with αvβ3-positive focal contacts. Here, we provide evidence that this interaction also occurs with α2β1-enriched focal adhesions and we further show that this association is lost after prolonged adhesion of endothelial cells to collagen

  9. The binding mechanism of a peptidic cyclic serine protease inhibitor

    Jiang, Longguang; Svane, Anna S P; Sørensen, Hans Peter; Jensen, Jan K; Hosseini, Masood; Chen, Zhuo; Weydert, Caroline; Nielsen, Jakob T; Christensen, Anni; Yuan, Cai; Jensen, Knud Jørgen; Nielsen, Niels Chr; Malmendal, Anders; Huang, Mingdong; Andreasen, Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  10. INTERACTION OF MECHANICALLY ACTIVATED WATER WITH THE CEMENT BINDING AGENT

    Gujumdzhjan Perch Pogosovich

    2012-10-01

    Full Text Available The article presents the procedure of interaction between the water and the particles of the cement binding agent, if subjected to high-speed processing inside an intensive mixing device that represents a hydrodynamic stirrer composed of a rotor and variable section turbines. The proposed method of modification (mechanical activation of the cement and water suspension makes it possible to reduce the cost of concrete due to reduction of the cement consumption rate. The research of strength-related properties of the cement stone has proven that high-speed mechanical processing of the binding agent, if mixed with the water, may improve mechanical properties of concrete by 25 to 30 %.

  11. Adhesion and Cohesion

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  12. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  13. Polyampholyte- and nanosilicate-based soft bionanocomposites with tailorable mechanical and cell adhesion properties.

    Jain, Minkle; Matsumura, Kazuaki

    2016-06-01

    Engineered tissues are excellent substitutes for treating organ failure associated with disease, injury, and degeneration. Designing new biomaterials with controlled release profiles, good mechanical properties, and cell adhesion characteristics can be useful for the formation of specific functional tissues. Here, we report the formulation of nanocomposite hydrogels based on carboxylated poly-l-lysine and synthetic clay laponite XLG in which four-arm polyethylene glycol with N-hydroxy succinimide ester (PEG-NHS) was used as the chemical crosslinker. Interestingly, the degradation of this gel could be adjusted from a few days to a few months. Incorporation of laponite XLG resulted in the formation of mechanically tough hydrogels and conferred cytocompatibility. The mechanical properties of the nanocomposite could be modulated by changing the crosslinking density and laponite concentration. The feasibility of using this system for cellular therapies was investigated by evaluating cell adhesion on the nanocomposite surface. Thus, these nanocomposites can serve as scaffolds with tunable mechanical and degradation properties that also provide structural integrity to tissue constructs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1379-1386, 2016. PMID:26833827

  14. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  15. Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions

    Beningo, Karen A.; Lo, Chun-Min; Wang, Yu-Li

    2002-01-01

    We have described a powerful tool for the study of mechanical interactions between cells and their physical environment. Although the approach has already been used in a variety of ways to measure traction forces and to characterize active and passive responses of cultured cells to mechanical stimulation, it can be extended easily and combined with other microscopic approaches, including fluorescent analog imaging (Beningo et al., 2001), photobleaching, calcium imaging, micromanipulation, and electrophysiology. This method will be particularly useful for studying the functions of various components at focal adhesions, and the effects of mechanical forces on focal adhesion-mediated signal transduction. In addition, the method can be extended to a 3D setting, e.g., by sandwiching cultured cells between two layers of polyacrylamide to create an environment mimicking that in the tissue of a multicellular organism. Whereas chemical interactions between cells and the environment have been investigated extensively, many important questions remain as to the role of physical forces in cellular functions and the interplay between chemical and physical mechanisms of communication. The present approach, as well as other approaches capable of probing physical interactions, should fill in this important gap in the near future.

  16. Guanine Nucleotide-Binding Proteins of the G(12) Family Shape Immune Functions by Controlling CD4(+) T Cell Adhesiveness and Motility

    S. Herroeder; P. Reichardt; A. Sassmann; B. Zimmermann; D. Jaeneke; J. Hoeckner; M.W. Hollmann; K.D. Fischer; S. Vogt; R. Grosse; N. Hogg; M. Gunzer; S. Offermanns; N. Wettschureck

    2009-01-01

    Integrin-mediated adhesion plays a central role in T cell trafficking and activation. Genetic inactivation of the guanine nucleotide-binding (G) protein alpha-subunits G alpha(12) and G alpha(13) resulted in an increased activity of integrin leukocyte-function-antigen-1 in murine CD4(+) T cells. The

  17. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro.

    Jensen, Hanne; Roos, Stefan; Jonsson, Hans; Rud, Ida; Grimmer, Stine; van Pijkeren, Jan-Peter; Britton, Robert A; Axelsson, Lars

    2014-04-01

    Lactobacillus reuteri, a symbiotic inhabitant of the gastrointestinal tract in humans and animals, is marketed as a probiotic. The ability to adhere to intestinal epithelial cells and mucus is an interesting property with regard to probiotic features such as colonization of the gastrointestinal tract and interaction with the host. Here, we present a study performed to elucidate the role of sortase (SrtA), four putative sortase-dependent proteins (SDPs), and one C-terminal membrane-anchored cell surface protein of Lactobacillus reuteri ATCC PTA 6475 in adhesion to Caco-2 cells and mucus in vitro. This included mutagenesis of the genes encoding these proteins and complementation of mutants. A null mutation in hmpref0536_10255 encoding srtA resulted in significantly reduced adhesion to Caco-2 cells and mucus, indicating involvement of SDPs in adhesion. Evaluation of the bacterial adhesion revealed that of the five putative surface protein mutants tested, only a null mutation in the hmpref0536_10633 gene, encoding a putative SDP with an LPxTG motif, resulted in a significant loss of adhesion to both Caco-2 cells and mucus. Complementation with the functional gene on a plasmid restored adhesion to Caco-2 cells. However, complete restoration of adhesion to mucus was not achieved. Overexpression of hmpref0536_10633 in strain ATCC PTA 6475 resulted in an increased adhesion to Caco-2 cells and mucus compared with the WT strain. We conclude from these results that, among the putative surface proteins tested, the protein encoded by hmpref0536_10633 plays a critical role in binding of Lactobacillus reuteri ATCC PTA 6475 to Caco-2 cells and mucus. Based on this, we propose that this LPxTG motif containing protein should be referred to as cell and mucus binding protein A (CmbA). PMID:24473252

  18. INTERACTION OF MECHANICALLY ACTIVATED WATER WITH THE CEMENT BINDING AGENT

    Gujumdzhjan Perch Pogosovich; Vetrenko Tat'jana Grigor'evna; Ladaev Nikolaj Mihajlovich; Zinov'eva Ekaterina Vital'evna

    2012-01-01

    The article presents the procedure of interaction between the water and the particles of the cement binding agent, if subjected to high-speed processing inside an intensive mixing device that represents a hydrodynamic stirrer composed of a rotor and variable section turbines. The proposed method of modification (mechanical activation) of the cement and water suspension makes it possible to reduce the cost of concrete due to reduction of the cement consumption rate. The research of strength-re...

  19. Influence of adhesion of silica and ceria abrasive nanoparticles on Chemical-Mechanical Planarization of silica surfaces

    We report on a direct measurement of adhesion between abrasive nanoparticles of irregular shape, which are used in semiconductor industry in the process of Chemical-Mechanical Planarization (CMP), and silica surface. The adhesion of ceria and silica nanoparticles to silica surface is measured in multiple chemistries of different CMP slurries using a specially developed atomic force microscopy (AFM) method. Using this method, we study the influence of adhesion on the main parameters of CMP, removal rate and defectivity, scratches. While being plausible to expect correlation between these parameters and adhesion, it has not been systematically studied as of yet. We observed direct correlation between adhesion and removal rate. Comparing the measured defectivity and adhesion, we observe the presence of some correlation between these parameters. We conclude that both adhesion and shape of abrasive particles influence defectivity, micro-scratches. Direct measurements of the adhesion between abrasive nano-particles and surface can be used in the screening of new slurries as well as various modeling related to wearing of the surfaces.

  20. The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 α3 chain is crucial for integrin α3β1 binding and cell adhesion

    Laminin-5 regulates various cellular functions, including cell adhesion, spreading, and motility. Here, we expressed the five human laminin α3 chain globular (LG) domains as monomeric, soluble fusion proteins, and examined their biological functions and signaling. Recombinant LG3 (rLG3) protein, unlike rLG1, rLG2, rLG4, and rLG5, played roles in cell adhesion, spreading, and integrin α3β1 binding. More significantly, we identified a novel motif (PPFLMLLKGSTR) in the LG3 domain that is crucial for these responses. Studies with the synthetic peptides delineated the PPFLMLLKGSTR peptide within LG3 domain as a major site for both integrin α3β1 binding and cell adhesion. Substitution mutation experiments suggest that the Arg residue is important for these activities. rLG3 protein- and PPFLMLLKGSTR peptide-induced keratinocyte adhesion triggered cell signaling through FAK phosphorylation at tyrosine-397 and -577. To our knowledge, this is the first report demonstrating that the PPFLMLLKGSTR peptide within the LG3 domain is a novel motif that is capable of supporting integrin α3β1-dependent cell adhesion and spreading

  1. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment.

    Dhawan, Abhishek; Friedrichs, Jens; Bonin, Malte von; Bejestani, Elham Peshali; Werner, Carsten; Wobus, Manja; Chavakis, Triantafyllos; Bornhäuser, Martin

    2016-08-01

    Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy. PMID:27207667

  2. Mixed-Mode Cohesive Damage Model Applied to the Simulation of the Mechanical Behaviour of Laminated Composite Adhesive Joints

    de Moura, MFSF; Campilho, RDSG; Goncalves, JPM

    2009-01-01

    A study of the mechanical behaviour of laminated composite adhesive joints is presented in this paper. The study consists of both numerical simulations and experimental tests. It concentrates on single lap-shear joints made of carbon-epoxy laminated composites and an epoxy adhesive. The main objective is to verify the adequacy of cohesive damage models for the strength prediction of bonded joints. These models are attractive in modelling fracture problems since they do not require the definit...

  3. Mechanical joining and adhesive bonding - basics, technology, applications; Fuegen durch Umformen und Kleben - Grundlagen, Technologie, Anwendungen

    Meschut, G. [Volkswagen AG, Konzern-Forschung, Wolfsburg (Germany)

    2001-07-01

    This contribution uses material combinations current in the automotive industry to demonstrate the mutual dependence of joining processes and their implications for the geometric shaping of fasteners in the combined shaping and adhesive bonding joining process. The mechanical properties of joints made using combined and elementary methods are compared taking into consideration quasi static, oscillating and impact-type loads, and ageing characteristics. The results demonstrate that the combination of mechanical and adhesive bonding methods produces joints of technologically high quality which can be implemented in optimised light-weight construction. General information is provided on the use of low-heat hybrid joining technology for project planning of this type of connections in industrial practice. (orig.) [German] Der Beitrag verdeutlicht anhand von aktuellen Werkstoffkombinationen aus dem Fahrzeugbau die gegenseitige Beeinflussung der Fuegeprozesse und die Folgen fuer die Fuegeelementausbildung bei der Verfahrenskombination Fuegen durch Umformen und Kleben. Die mechanischen Eigenschaften von kombiniert gefuegten und elementar gefuegten Verbindungen unter quasistatischer, schwingender und stossartiger Belastung sowie das Alterungsverhalten werden gegenuebergestellt. Die Ergebnisse zeigen, dass mittels der Kombination mechanischer Fuegeverfahren mit dem Kleben technologisch hochwertige Verbindungen fuer den eigenschaftsoptimierten Leichtbau realisierbar sind. Fuer die Projektierung derartiger Verbindungen in der industriellen Praxis werden allgemeingueltige Hinweise zum Einsatz der waermearmen Hybridfuegetechnik gegeben. (orig.)

  4. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  5. The role of penetrant structure in the transport and mechanical properties of a thermoset adhesive

    Kwan, Kermit S.

    In this work the relationships between penetrant structure, its transport properties, and its effects on the mechanical properties of a polymer matrix were investigated. Although there is a vast amount of data on the diffusion of low molecular weight molecules into polymeric materials and on the mechanical properties of various polymer-penetrant systems, no attempts have been made to inter-relate the two properties with respect to the chemical structure of the diffusant. Therefore, two series of penetrants---n-alkanes and esters---were examined in this context, with the goal of correlating molecular size, shape, and chemical nature of the penetrant to its final transport and matrix mechanical properties. These correlations have been demonstrated to allow quantitative prediction of one property, given a reasonable set of data on the other parameters. A series of n-alkanes (C6--C17) and esters (C5--C17) have been used to separate the effects of penetrant size and shape, from those due to polymer-penetrant interactions, in the diffusion through a polyamide polymeric adhesive. These effects have been taken into account in order to yield a qualitative relationship that allows for prediction of diffusivity based upon penetrant structural information. Transport properties have been analyzed using mass uptake experiments as well as an in-situ FTIR-ATR technique to provide detailed kinetic as well as thermodynamic information on this process. The phenomenon of diffusion and its effects on the resulting dynamic mechanical response of a matrix polymeric adhesive have been studied in great detail using the method of reduced variables. The concept of a diffusion-time shift factor (log aDt) has been introduced to create doubly-reduced master curves, taking into account the effects of temperature and the variations in the polymer mechanical response due to the existence of a low molecular weight penetrant.

  6. Neuritogenic and survival-promoting effects of the P2 peptide derived from a homophilic binding site in the neural cell adhesion molecule

    Pedersen, Martin V; Køhler, Lene B; Ditlevsen, Dorte K;

    2004-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, and plasticity. NCAM mediates adhesion and subsequent signal transduction through NCAM-NCAM binding. Recently, a peptide ligand termed P2 corresponding to a 12-amino-acid sequence in the FG loop of...... fragmentation were lowered by P2. Finally, treatment of neurons with P2 resulted in phosphorylation of the ser/thr kinase Akt. Thus, a small peptide mimicking homophilic NCAM interaction is capable of inducing differentiation as reflected by neurite outgrowth in several neuronal cell types and inhibiting...

  7. A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures

    Schargott, M [Institute of Mechanics, Technische Universitaet Berlin, Strd 17 Juni 135, 10623 Berlin (Germany)], E-mail: martin.schargott@tu-berlin.de

    2009-06-01

    A 3D model for hierarchical biomimetic adhesive pads is constructed. It is based on the main principles of the adhesive pads of the Tokay gecko and consists of hierarchical layers of vertical or tilted beams, where each layer is constructed in such a way that no cohesion between adjacent beams can occur. The elastic and adhesive properties are calculated analytically and numerically. For the adhesive contact on stochastically rough surfaces, the maximum adhesion force increases with increasing number of hierarchical layers. Additional calculations show that the adhesion force also depends on the height spectrum of the rough surface.

  8. Adhesion/decalcification mechanisms of acid interactions with human hard tissues.

    Yoshioka, M; Yoshida, Y; Inoue, S; Lambrechts, P; Vanherle, G; Nomura, Y; Okazaki, M; Shintani, H; Van Meerbeek, B

    2002-01-01

    In order to study adhesion/decalcification mechanisms of acid interactions with human hard tissues such as bones and teeth, the chemical interaction of five carboxylic acids (acetic, citric, lactic, maleic, and oxalic) and two inorganic acids (hydrochloric and nitric) with enamel and two synthetic hydroxyapatite (HAp) powders with, respectively, a high and a low crystallinity were analyzed using X-ray photoelectron spectroscopy (XPS), atomic absorption spectrophotometry (AAS), and spectrophotometry (S). X-ray diffraction revealed that the crystallinity of the highly crystallized HAp was considerably higher than that of enamel while the crystallinity of the poorly crystallized HAp was similar to that of dentin and bone. XPS of acid-treated enamel demonstrated for all carboxylic acids ionic bonding to calcium of HAp. AAS and S showed for both HAps that all carboxylic and inorganic acids except oxalic acid extracted Ca significantly more than P, leading to a Ca/P ratio close to that of synthetic HAp (2.16 w/w). Oxalic acid extracted hardly any Ca, but substantially more P, leading to a significantly smaller Ca/P ratio than that of HAp. AAS showed that the calcium salt of oxalic acid hardly could be dissolved, whereas the calcium salts of all the other acids were very soluble in their respective acid solution. These results confirm the adhesion/decalcification concept (AD-concept) previously advanced. Depending on the dissolution rate of the respective calcium salts, acids either adhere to or decalcify apatitic substrates. It is concluded that the AD-concept that originally dictated the interaction of carboxylic acids with human hard tissues can be extended to inorganic acids, such as hydrochloric and nitric acid. Furthermore, HAp crystallinity was found not to affect the adhesion/decalcification behavior of acids when interacting with apatitic substrates, so that the AD-concept can be applied to all human hard tissues with varying HAp crystallinity. PMID:11745537

  9. Fracture mechanics applied to the determination of adhesion strength between epoxies and hydraulic mortars

    Aguiar, J. L. Barroso de

    2001-01-01

    The determination of adhesion strength between polymers and mortars always creates problems. The use of traditional tests like direct tension, flexure or shear, normally doesn`t make possible the correct determination of the adhesion strength. If the adhesive is good and the mortar surfaces are well prepared, the failure is in the mortar. With this kind of failures it is possible to say that adhesion strength is higher than the failure stress. But is not possible to give a numerical value of ...

  10. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart; Mellody, Kieran; Freeman, Lyle; Younger, Kerri; Shuttleworth, C Adrian; Humphries, Martin J; Couchman, John R; Kielty, Cay M

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated a...

  11. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  12. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  13. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion

  14. Mono- and multiple TiN(/Ti) coating adhesion mechanism on a Ti-13Nb-13Zr alloy

    Li, Jianzhong; Zheng, Hua; Sinkovits, Theo; Hee, Ay Ching; Zhao, Yue

    2015-11-01

    Mono- and multiple TiN(/Ti) coatings deposited on Ti-13Nb-13Zr alloy substrates by the filtered arc deposition system were examined using scratch testing and depth-sensing indentation in terms of the relationship between the coating adhesion, deformation mechanism, and microstructure, and mechanical properties at the film/substrate interface. The results show that multilayer TiN/Ti coatings offer a greater resistance to cracking and delamination than monolithic TiN coatings under the same conditions on the Ti-13Nb-13Zr alloys substrates. And increasing the number of layers for TiN multilayer coating improves the coatings adhesion. In contrast, for the coatings on the Ti-13Nb-13Zr alloys substrates that were heat-treated to a higher hardness, the limited deformation in the substrates improved remarkably the coating adhesion indiscriminately. The substrate mechanical properties play the major roles in controlling the coating adhesion, and increasing thickness and layers of the TiN multilayer have a limited improvement to the adhesion of coating.

  15. Dynamic force spectroscopy to probe adhesion strength of living cells

    Prechtel, K.; Bausch, A. R.; Marchi-Artzner, V.; Kantlehner, M.; Kessler, H; Merkel, R

    2002-01-01

    We studied the mechanical strength of the adhesion of living cells to model membranes. The latter contained a RGD lipopeptide which is a high affinity binding site for a cell adhesion molecule (integrin alpha(V)beta(3)). Cells adhered specifically to the vesicles. We used micropipette aspiration for breaking this adhesion with well defined forces. Systematic variation of the rate of force application revealed pronounced kinetic effects. The dependence of the detachment forces on the loading r...

  16. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    Hua-jin Zeng; Ran Yang; Jing You; Ling-bo Qu; Yan-jun Sun

    2016-01-01

    The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly thro...

  17. Phosphoproteomic analysis of adhesion receptor signalling

    Robertson, Joseph

    2014-01-01

    The binding of integrin adhesion receptors to their extracellular matrix (ECM) ligands activates intracellular signalling pathways that control diverse and fundamental aspects of cell behaviour. While it is clear that protein kinases and phosphatases play an integral role in such adhesion-mediated signalling, current knowledge of the phosphorylation events regulated downstream of integrin ligation is limited and prohibits a systems-level understanding of the molecular mechanisms through which...

  18. AND-34, a novel p130Cas-binding thymic stromal cell protein regulated by adhesion and inflammatory cytokines.

    Cai, D; Clayton, L K; Smolyar, A; Lerner, A

    1999-08-15

    We have characterized a novel cDNA whose steady state mRNA levels rise in the thymus 2 to 6 h following the induction of CD4+CD8+ thymocyte apoptosis by in vivo cross-linking of CD3 epsilon. This cDNA, AND-34-1, contains an open reading frame (ORF) encoding a protein with an amino-terminal Src homology 2 (SH2) domain and a carboxyl-terminal domain homologous to GDP-exchange factors (GEFs). Northern analysis demonstrates widespread expression of the AND-34 gene. Anti-CD3 epsilon treatment induces up-regulation of the AND-34 mRNA levels in total thymic RNA but not in RNA from purified thymocytes, suggesting that this transcript is derived from a thymic stromal cell population. IL-1 and TNF increase AND-34 transcript levels in thymic cortical reticular, thymic nurse, and fibroblast cell lines. In the thymic cortical reticular cell line, IL-1 and TNF induce a protein of the predicted 93-kDa size reactive with anti-AND-34 peptide antisera. Fifteen minutes of serum stimulation of vanadate-pretreated AND-34-1-transfected NIH3T3 fibroblasts induces tyrosine phosphorylation of AND-34 as well as coprecipitating 95-, 125-, and 130-kDa proteins. One of these tyrosine phosphorylated proteins is identified as p130Cas (Crk-associated substrate), a signaling molecule previously known to bind to a GDP-exchange factor (C3G) and inducibly associate with the focal adhesion complex. Consistent with such an association, AND-34 tyrosine phosphorylation is induced following adherence of trypsinized fibroblasts to fibronectin or poly-L -lysine-coated surfaces. PMID:10438950

  19. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  20. Understanding Marine Mussel Adhesion

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  1. Understanding marine mussel adhesion.

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  2. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions

    Katsikogianni M.

    2004-12-01

    Full Text Available This article reviews the mechanisms of bacterial adhesion to biomaterial surfaces, the factors affecting the adhesion, the techniques used in estimating bacteria-material interactions and the models that have been developed in order to predict adhesion. The process of bacterial adhesion includes an initial physicochemical interaction phase and a late molecular and cellular one. It is a complicated process influenced by many factors, including the bacterial properties, the material surface characteristics, the environmental factors, such as the presence of serum proteins and the associated flow conditions. Two categories of techniques used in estimating bacteria-material interactions are described: those that utilize fluid flowing against the adhered bacteria and counting the percentage of bacteria that detach, and those that manipulate single bacteria in various configurations which lend themselves to more specific force application and provide the basis for theoretical analysis of the receptor-ligand interactions. The theories that are reviewed are the Derjaguin-Landau-Verwey-Overbeek (DLVO theory, the thermodynamic approach and the extended DLVO theory. Over the years, significant work has been done to investigate the process of bacterial adhesion to biomaterial surfaces, however a lot of questions still remain unanswered.

  3. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region 'collapsed' into a smooth SiOx layer (final surface roughness <2 nm). PDMS containing heterogeneously distributed, aggregated filler particles (Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the 'collapse' of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ∼140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments

  4. Adhesion in microelectronics

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  5. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  6. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  7. Mechanical Strength of Particleboard Produced from Fonio Husk with Gum Arabic Resin Adhesive as Binder

    Ndububa E. E

    2015-04-01

    Full Text Available Fonio (“Acha” husk passing through a maximum 4mm sieve aperture was blended with an adhesive liquid resin of gum Arabic to form Fonio Husk Particleboard (FHP samples. The resin binder was a product of crushed balls of gum Arabic that was mixed with water at ratio 4:3 by weight. The resin was introduced at percentage levels of 20%, 25%, 30%, 35%, 40% and 45% by weight. After pressing, heat treatments and curing, the particleboard samples were tested for mechanical strengths. The compressive strength ranged from 0.057N/mm2 at 20% level to 0.369N/mm2 at 45% level. Tensile strength increased steadily with increase in resin levels peaking at 0.792 N/mm2 for 45% level. The flexural strength followed the same trend peaking at 45% level with 3.697 N/mm2 . Some of the values met the minimum values prescribed by British, American and European Standards. The boards may not be used as load bearing materials but will be better suited as internal wall partitions and ceiling materials.

  8. Mechanism and Prevention of Intestinal Adhesion%肠粘连的形成机制及其预防

    孔令源

    2013-01-01

    The intestinal adhesion is a common complication of abdominal surgery. It makes troubles to patients and causes severe intestinal obstruction and chronic abdominal pain. So far the mechanism of intestinal adhesion is still not clear. It is generally believed that the overuse injury and inflammation lead to abnormal repair and healing of the tissue. There are many methods for clinical preventions of intestinal adhesion, which could be broadly divided into general surgical procedures, barriers and drugs. Here is to make a review on the definition epidemiology,consequences,mechanisms and preventions of intestinal adhesion.%肠粘连是腹部手术术后的常见并发症,不仅给患者带来不便,严重时还会导致肠梗阻、慢性腹痛等.目前,对肠粘连的形成机制尚无明确的认识,一般认为过度损伤和炎性反应导致组织的异常修复和愈合.临床上预防肠粘连的方法较多,可大致分为一般手术操作、屏障及药物治疗.该文就肠粘连的定义、流行病学与相关后果、肠粘连的机制及预防等方面进行综述.

  9. Adhesions due to peritoneal carcinomatosis caused by a renal carcinoma leading to mechanical gastric outlet obstruction: a case report

    Gruttadauria Salvatore

    2011-07-01

    Full Text Available Abstract Introduction Gastric outlet obstruction is a clinical syndrome caused by a variety of mechanical obstructions. Peptic ulcer disease used to be responsible for most gastric outlet obstruction, but in the last 40 years the prevalence of malignant tumors has risen significantly. Adhesive disease is an infrequent and insidious cause of mechanical gastric outlet obstruction. Case presentation We report the case of a 78-year-old Caucasian man who had a clinical history of a right nephrectomy for malignancy three years earlier and who was admitted for a severe gastric outlet obstruction (score of 1 confirmed both by an upper endoscopy and by a fluoroscopic view after contrast injection. A computed tomography scan and a laparotomy, with omental biopsies, showed a peritoneal carcinomatosis with the development of abdominal adhesions that prompted an abnormal gastric rotation around the perpendicular axis of his antrum with a dislocation in the empty space of his right kidney. Symptoms disappeared after surgical bypass through a gastrojejunostomy. Conclusions Our patient experienced a very rare complication characterized by the development of adhesions due to peritoneal carcinomatosis caused by a renal carcinoma treated with nephrectomy. These adhesions prompted an abnormal dislocation of his antrum, as an internal hernia, in the empty space of his right kidney.

  10. Mechanical Principle of Enhancing Cell-Substrate Adhesion via Pre-Tension in the Cytoskeleton

    Chen, Bin; Gao, Huajian

    2010-01-01

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tensi...

  11. Adhesion mechanisms of Vibrio fluvialis to skin mucus of Epinephelus awoara

    鄢庆枇; 赵敏慧; 王晓露; 邹文政; 陈昌生

    2010-01-01

    Vibrio fluvialis incubated in trypticase soy broth(TSB)showed stronger adhesion to the skin mucus of Epinephelus awoara than V.fluvialis grown on trypticase soy agar(TSA),and this bacterial adhesion was assessed in terms of saturation kinetics.Treating bacteria with antibody against O-antigens resulted in significantly reduced bacterial adhesion.In the early growth stage,the adhering bacteria numbers increased with incubation time,peaked at 24 h,and then dropped sharply.Prior heat treatment of the mucus at ...

  12. Motion of an Adhesive Gel in a Swelling Gradient a Mechanism for Cell Locomotion

    Joanny, J F; Prost, J; Joanny, Jean-Francois; Julicher, Frank; Prost, Jacques

    2003-01-01

    Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-generated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.

  13. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond

    Evans, Evan; Leung, Andrew; Heinrich, Volkmar; Zhu, Cheng

    2004-08-01

    Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisX produces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.

  14. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae.

    Soares de Lima, Cristiana; Zulianello, Laurence; Marques, Maria Angela de Melo; Kim, Heejin; Portugal, Michelle Iespa; Antunes, Sérgio Luiz; Menozzi, Franco Dante; Ottenhoff, Tom Henricus Maria; Brennan, Patrick Joseph; Pessolani, Maria Cristina Vidal

    2005-07-01

    Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein. PMID:15919224

  15. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS. PMID:18820259

  16. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  17. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with ac...

  18. A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-01-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s i...

  19. Raman spectroscopy in investigations of mechanism of binding of human serum albumin to molecular probe fluorescein

    The mechanism of binding of molecular probe fluorescein to molecules of human serum albumin was studied by the Raman spectroscopy method. The position of binding Center on human serum albumin molecule for fluorescein is determined. The amino acid residues of albumin molecule, participating in binding of fluorescein at different pH values of solution, are established. The conformation rearrangements of globules of human serum albumin, taking place at binding of fluorescein at different pH values of solution, are registered

  20. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion

    Xianqiang Song; Jun Qin; Jun Yang; Jamila Hirbawi; Sheng Ye; H Dhanuja Perera; Esen Goksoy; Pallavi Dwivedi; Edward F Plow; Rongguang Zhang

    2012-01-01

    The activation of heterodimeric (α/β) integrin transmembrane receptors by cytosolic protein talin is crucial for regulating diverse cell-adhesion-dependent processes,including blood coagulation,tissue remodeling,and cancer metastasis.This process is triggered by the coincident binding of N-terminal FERM (four-point-one-protein/ezrin/radixin/moesin) domain of talin (talin-FERM) to the inner membrane surface and integrin β cytoplasmic tail,but how these binding events are spatiotemporally regulated remains obscure.Here we report the crystal structure of a dormant talin,revealing how a C-terminal talin rod segment (talin-RS) self-masks a key integrin-binding site on talin-FERM via a large interface.Unexpectedly,the structure also reveals a distinct negatively charged surface on talin-RS that electrostatically hinders the talin-FERM binding to the membrane.Such a dual inhibitory topology for talin is consistent with the biochemical and functional data,but differs significantly from a previous model.We show that upon enrichment with phosphotidylinositol-4,5-bisphosphate (PIP2) - a known talin activator,membrane strongly attracts a positively charged surface on talin-FERM and simultaneously repels the negatively charged surface on talin-RS.Such an electrostatic "pull-push" process promotes the relief of the dual inhibition of talin-FERM,which differs from the classic "steric clash" model for conventional PIP2-induced FERM domain activation.These data therefore unravel a new type of membrane-dependent FERM domain regulation and illustrate how it mediates the talin on/off switches to regulate integrin transmembrane signaling and cell adhesion.

  1. Excellent Adhesion of Carbon Fibers to Polyurethane Matrix and Substantial Improvement of the Mechanical Properties of Polyurethane

    Seydibeyoglu, M. Ozgur

    2011-01-01

    In this study, polyurethane-carbon fiber composites were prepared with excellent interface with perfect adhesion of carbon fibers with the polyurethane matrix. The polyurethane was thermoplastic polyurethane and the carbon fiber was polyacrylonitrile based with 7 micron meter thickness. The composites were prepared with solvent casting technique. The composite materials were characterized with tensile testing, dynamic mechanical analysis, scanning electron microscope, and thermogravimetric an...

  2. Effect of Fluoride-Releasing Adhesive Systems on the Mechanical Properties of Eroded Dentin.

    Guedes, Ana Paula Albuquerque; Moda, Mariana Dias; Suzuki, Thaís Yumi Umeda; Godas, André Gustavo de Lima; Sundfeld, Renato Herman; Briso, André Luiz Fraga; Santos, Paulo Henrique dos

    2016-01-01

    The aim of the study was to evaluate the effect of erosive pH cycling with solutions that simulate dental erosion on Martens hardness (HMV) and elastic modulus (Eit) of dentin restored with fluoride-releasing adhesive systems. Twenty-seven bovine dentin slabs were restored with three adhesive systems: Adper Single Bond 2 total-etch adhesive system, One Up Bond F and Clearfil SE Protect fluoride-containing self-etching adhesive systems. The restorations were made with Filtek Z250. The HMV and Eit values at distances of 10, 30, 50 and 70 µm from the interface were evaluated using a dynamic ultra microhardness tester before and after immersion in deionized water, citric acid and hydrochloric acid (n=9). Data were submitted to repeated-measures ANOVA and Fisher's PLSD tests (=0.05). After erosive cycling, HMV values of dentin decreased in all groups. For dentin restored with Adper Single Bond 2, the lowest values were found closer to the hybrid layer, while for One Up Bond F and Clearfil SE Protect, the values remained unaltered at all distances. For dentin restored with fluoride-releasing adhesive systems, a decrease in Eit was found, but after 30 µm this difference was not significant. The acid substances were able to alter HMV and Eit of the underlying dentin. For fluoride-releasing adhesives, the greater the distance from bonded interface, the lower the Eit values. The fluoride in One Up Bond F and Clearfil SE Protect was able to protect the underlying dentin closer to the materials. In this way, the fluoride from adhesive systems could have some positive effect in the early stages of erosive lesions. PMID:27058377

  3. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  4. Ideal, catch, and slip bonds in cadherin adhesion

    Rakshit, Sabyasachi; Zhang, Yunxiang; Manibog, Kristine; Shafraz, Omer; Sivasankar, Sanjeevi

    2012-01-01

    Classical cadherin cell-cell adhesion proteins play key morphogenetic roles during development and are essential for maintaining tissue integrity in multicellular organisms. Classical cadherins bind in two distinct conformations, X-dimer and strand-swap dimer; during cellular rearrangements, these adhesive states are exposed to mechanical stress. However, the molecular mechanisms by which cadherins resist tensile force and the pathway by which they convert between different conformations are ...

  5. Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties

    Mahalingam, Yashithra; Gallagher, John T; Couchman, John R

    2006-01-01

    Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibron...

  6. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma.

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong; Xu, Xiaohong; He, Song

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1(S102) were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1(S102) nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. PMID:27397581

  7. Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay.

    Raymond Wilson

    Full Text Available BACKGROUND: The binding of Leishmania promastigotes to the midgut epithelium is regarded as an essential part of the life-cycle in the sand fly vector, enabling the parasites to persist beyond the initial blood meal phase and establish the infection. However, the precise nature of the promastigote stage(s that mediate binding is not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue we have developed an in vitro gut binding assay in which two promastigote populations are labelled with different fluorescent dyes and compete for binding to dissected sand fly midguts. Binding of procyclic, nectomonad, leptomonad and metacyclic promastigotes of Leishmania infantum and L. mexicana to the midguts of blood-fed, female Lutzomyia longipalpis was investigated. The results show that procyclic and metacyclic promastigotes do not bind to the midgut epithelium in significant numbers, whereas nectomonad and leptomonad promastigotes both bind strongly and in similar numbers. The assay was then used to compare the binding of a range of different parasite species (L. infantum, L. mexicana, L. braziliensis, L. major, L. tropica to guts dissected from various sand flies (Lu. longipalpis, Phlebotomus papatasi, P. sergenti. The results of these comparisons were in many cases in line with expectations, the natural parasite binding most effectively to its natural vector, and no examples were found where a parasite was unable to bind to its natural vector. However, there were interesting exceptions: L. major and L. tropica being able to bind to Lu. longipalpis better than L. infantum; L. braziliensis was able to bind to P. papatasi as well as L. major; and significant binding of L. major to P. sergenti and L. tropica to P. papatasi was observed. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that Leishmania gut binding is strictly stage-dependent, is a property of those forms found in the middle phase of development (nectomonad and leptomonad

  8. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [titanium alloys

    Chen, W.; Dwight, D. W.; Wightman, J. P.

    1978-01-01

    Various surface preparations for titanium 6-4 alloy were studied. An anodizing method was investigated, and compared with the results of other chemical treatments, namely, phosphate/fluoride, Pasa-Jell and Turco. The relative durability of the different surface treatments was assessed by monitoring changes in surface chemistry and morphology occasioned by aging at 505 K (450 F). Basic electron spectroscopic data were collected for polyimide and polyphenylquinoxaline adhesives and synthetic precursors. Fractographic studies were completed for several combinations of adherend, adhesive, and testing conditions.

  9. Peritoneal Adhesions as a Cause of Mechanical Small Bowel Obstruction Based on Own Experience

    Morawski Bartłomiej

    2015-02-01

    Full Text Available Bowel obstruction is a condition which has been known for many years. As time goes by, the problem is still often encountered at surgical emergency rooms. More than 20% of emergency surgical interventions are performed because of symptoms of digestive tract obstruction with the disease mostly situated in the small bowel. Rates of causative factors of the disease have changed over recent years and there have been increasingly more cases of small bowel obstruction caused by peritoneal adhesions, i.e., adhesive small bowel obstruction (ASBO.

  10. A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion.

    Jing Ai

    Full Text Available Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat-heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events.

  11. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  12. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface Ra and Ry values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  13. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir; Bock, Elisabeth

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...

  14. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    Liebscher, Ines; Ackley, Brian; Araç, Demet;

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region...

  15. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells*

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-01-01

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  16. Extracellular membrane-proximal domain of HAb18G/CD147 binds to metal ion-dependent adhesion site (MIDAS) motif of integrin β1 to modulate malignant properties of hepatoma cells.

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-02-10

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp(179) in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  17. Bacillus subtilis TRAP binds to its RNA target by a 5' to 3' directional mechanism.

    Barbolina, Maria V; Li, Xiufeng; Gollnick, Paul

    2005-01-28

    TRAP is an 11 subunit RNA-binding protein that regulates expression of the Bacillus subtilis trpEDCFBA operon by transcription attenuation and translation control mechanisms. Tryptophan-activated TRAP acts by binding to a site in the 5'-untranslated leader region of trp mRNA consisting of 11 (G/U)AG repeats. We used mung bean nuclease footprinting to analyze the interaction of TRAP with several artificial binding sites composed of 11 GAG repeats in nucleic acids that lack secondary structure. Affinities for individual repeats within a binding site did not vary significantly. In contrast, the association rate constants were highest for repeats at the 5' end and lowest for those at the 3' end of all binding sites tested. These results indicate that TRAP binds to its RNA targets by first associating with one or more repeat at the 5' end of its binding site followed by wrapping the remainder of binding site around the protein in a 5' to 3' direction. This directional binding is novel among RNA-binding proteins. We suggest that this mechanism of binding is important for TRAP-mediated transcription attenuation control of the trp operon. PMID:15588817

  18. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  19. Particle adhesion and removal

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  20. Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion

    Reigle, Kristin L.; Di Lullo, Gloria; Turner, Kevin R.; Last, Jerold A; Chervoneva, Inna; Birk, David E.; Funderburgh, James L.; Elrod, Elizabeth; Markus W. Germann; Surber, Charles; Sanderson, Ralph D.; San Antonio, James D.

    2008-01-01

    Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans1(PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-co...

  1. Atomistic simulations to micro-mechanisms of adhesion in automotive applications

    Sen, Fatih Gurcag

    This study aimed at depicting atomistic and microstructural aspects of adhesion and friction that appear in different automotive applications and manufacturing processes using atomistic simulations coupled with tribological tests and surface characterization experiments. Thin films that form at the contact interfaces due to chemical reactions and coatings that are developed to mitigate or enhance adhesion were studied in detail. The adhesion and friction experiments conducted on diamond-like carbon (DLC) coatings against Al indicated that F incorporation into DLC decreased the coefficient of friction (COF) by 30% -with respect to H-DLC that is known to have low COF and anti-adhesion properties against Al- to 0.14 owing to formation of repulsive F-F interactions at the sliding interface as shown by density functional theory (DFT) calculations. F atoms transferred to the Al surface with an increase in the contact pressure, and this F transfer led to the formation of a stable AlF3 compound at the Al surface as confirmed by XPS and cross-sectional FIB-TEM. The incorporation of Si and O in a F-containing DLC resulted in humidity independent low COF of 0.08 due to the hydration effect of the Si-O-Si chains in the carbonaceous tribolayers that resulted in repulsive OH-OH interactions at the contact interface. At high temperatures, adhesion of Al was found to be enhanced as a result of superplastic oxide fibers on the Al surface. Molecular dynamics (MD) simulations of tensile deformation of Al nanowires in oxygen carried out with ReaxFF showed that native oxide of Al has an oxygen deficient, low density structure and in O2, the oxygen diffusion in amorphous oxide healed the broken Al-O bonds during applied strain and resulted in the superplasticity. The oxide shell also provided nucleation sites for dislocations in Al crystal. In fuel cell applications, where low Pt/carbon adhesion is causing durability problems, spin-polarized DFT showed that metals with unfilled d

  2. Binding mechanisms in chromite briquettes at low and high temperatures

    A high percentage of South African chromium ore occurs as fines. One way in which these fines can be utilized in an arc furnace, which is currently the most widely used type of furnace for the reduction of chromium ore, is as briquettes. The briquettes should have reasonable green strength to facilitate handling and, after being cured, they should be strong enough to be fed to the furnace. Cohesion should also be maintained up to high temperatures, preferably close to the sintering temperature of chromite under reducing conditions, i.e. 1200 to 1300 degrees Celsius for South African chromite. With this in mind, a series of briquettes made with different binding media were subjected to mineralogical examination such as x-ray diffraction, infrared spectroscopy, differential thermal analysis and energy-dispersive spectroscopy with a scanning electron microscope, so that the reactions that take place in the binding media and the temperatures at which they take place could be established. In this report, the results are discussed and correlated with the strength of the briquettes in each case. The assumptions on which the calculations for the binding materials were based are detailed in an appendix

  3. The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    Nomme, Julian; Fanning, Alan S.; Caffrey, Michael; Lye, Ming F.; Anderson, James M.; Lavie, Arnon (NIH); (UNC); (UIC)

    2012-01-20

    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe{sup -2} and Ser{sup -3} residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.

  4. Adhesion Mechanism of Water Droplets on Hierarchically Rough Superhydrophobic Rose Petal Surface

    Hannu Teisala; Mikko Tuominen; Jurkka Kuusipalo

    2011-01-01

    Extremely hydrophobic surfaces, on which water droplets sit in a spherical shape leaving air entrapped into the roughness of the solid, are often called superhydrophobic. Hierarchically rough superhydrophobic surfaces that possess submicron scale fine structures combined with micron scale structures are generally more hydrophobic, and water droplet adhesion to those surfaces is lower in comparison with surfaces possessing purely micrometric structures. In other words, usually a fine structure...

  5. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    Huang YT

    2016-03-01

    Full Text Available Yu-ting Huang,1,* Lan Zhao,1,* Zheng Fu,1 Meng Zhao,1 Xiao-meng Song,1 Jing Jia,1 Song Wang,1 Jin-ping Li,1 Zhi-feng Zhu,1 Gang Lin,1,2 Rong Lu,1,2 Zhi Yao1,3 1Department of Immunology, Tianjin Medical University, Tianjin, 2Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, 3Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People’s Republic of China *These authors contributed equally to this paper Abstract: Tyroservatide (YSV can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin ß1 and integrin ß3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. Keywords: tyroservatide, integrin, focal adhesion kinase, FAK, MMP-2, MMP-9

  6. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  7. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    List, K; Høyer-Hansen, G; Rønne, E;

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or...

  8. PVD-Alumina Coatings on Cemented Carbide Cutting Tools: A Study About the Effect on Friction and Adhesion Mechanism

    S.E. Cordes

    2012-01-01

    Crystalline PVD γ-alumina coatings are interesting for machining operations due to their outstanding characteristics, such as high hot hardness, high thermal stability and low tendency to adhesion. In the present work (Ti,Al)N/γ-Al2O3-coatings are deposited on cemented carbide by means of MSIP. Objectives of this work are to study the effects of coating and cutting fluid regarding friction in tribological tests and to study the wear mechanisms and cutting performance of γ-Al2O3-based coated c...

  9. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    Martin Keith R

    2010-07-01

    Full Text Available Abstract Background Cardiovascular disease (CVD is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC were incubated overnight with control media with dimethylsulfoxide (DMSO vehicle (1% v/v or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL, which included Agaricus bisporus (white button and crimini, Lentinula edodes (shiitake, Pleurotus ostreatus (oyster, and Grifola frondosa (maitake. Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM. AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support the notion that dietary mushrooms can be protective against CVD.

  10. Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury

    West, CR; Goosey-Tolfrey, VL; Campbell, IG; Romer, LM

    2014-01-01

    West CR, Goosey-Tolfrey VL, Campbell IG, Romer LM. Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. J Appl Physiol 117: 36–45, 2014. First published May 22, 2014; doi:10.1152/japplphysiol.00218.2014.—We asked whether elastic binding of the abdomen influences respiratory mechanics during wheelchair propulsion in athletes with cervical spinal cord injury (SCI). Eight Paralympic wheelchair rugby players with m...

  11. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model

    Muddana, Hari S.; Gilson, Michael K.

    2012-01-01

    The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy functi...

  12. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    Zeng, Hua-jin; Yang, Ran; You, Jing; Qu, Ling-bo; Sun, Yan-jun

    2016-01-01

    The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly through electrostatic and hydrophobic interactions with one binding site. Synchronous fluorescence, three-dimensional fluorescence, and molecular docking results revealed that liquiritigenin bound directly to the enzyme cavity site and this binding influenced the microenvironment of the hyaluronidase activity site, resulting in reduced hyaluronidase activity. The present study provides useful information for clinical applications of liquiritigenin as a hyaluronidase inhibitor. PMID:27313960

  13. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow

    Evani, Shankar J.; Prabhu, Rajesh G.; Gnanaruban, V.; Finol, Ender A.; Anand K. Ramasubramanian

    2013-01-01

    Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynam...

  14. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers

  15. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    Gray, J.E. [Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road Sudbury, Ontario, P3E 2C6 (Canada)]. E-mail: jgray@laurentian.ca; Norton, P.R. [Department of Chemistry and Interface Science Western, University of Western Ontario, London, Ontario, N6A 5B (Canada)]. E-mail: pnorton@uwo.ca; Griffiths, K. [Department of Chemistry and Interface Science Western, University of Western Ontario, London, Ontario, N6A 5B (Canada)

    2005-07-22

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers.

  16. Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury.

    West, Christopher R; Goosey-Tolfrey, Victoria L; Campbell, Ian G; Romer, Lee M

    2014-07-01

    We asked whether elastic binding of the abdomen influences respiratory mechanics during wheelchair propulsion in athletes with cervical spinal cord injury (SCI). Eight Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) performed submaximal and maximal incremental exercise tests on a treadmill, both with and without abdominal binding. Measurements included pulmonary function, pressure-derived indices of respiratory mechanics, operating lung volumes, tidal flow-volume data, gas exchange, blood lactate, and symptoms. Residual volume and functional residual capacity were reduced with binding (77 ± 18 and 81 ± 11% of unbound, P tolerance. Changes in respiratory mechanics with binding may benefit O2 transport capacity by an improvement in central circulatory function. PMID:24855136

  17. Full quantum mechanical study of binding of HIV-1 protease drugs

    Zhang, Da W.; Zhang, John Z. H.

    Fully quantum mechanical studies of detailed binding interactions between HIV-1 protease and six FDA (Food and Drug Administration)-approved drugs (saquinavir, indinavir, ritonavir, nelfinavir, amprenavir, and lopinavir) are carried out using a recently developed MFCC (molecular fractionation with conjugate caps) method. The MFCC calculation produces a quantum mechanical interaction spectrum for any protease drug binding complex. Detailed quantitative analysis on binding of lopinavir to specific residues of the protease is given from the current study. The present calculation shows that the dominant binding of lopinavir to the protease is through the formation of a strong hydrogen bond between the central hydroxyl group of the drug to the aspartate oxygen of Asp25 in one of the two chains of the protease (A chain). This is closely followed by hydrogen binding of the drug to Asp29 in the B chain and somewhat weak hydrogen bonding to Asp30, Gly27, Gly48, and Ile50 in both chains. By partitioning all six drugs into four building blocks besides the central component containing the hydroxyl group, MFCC calculation finds that block III has essentially no binding interaction with the protease and the major binding interactions of these drugs are from blocks II and IV, in addition to the dominant central hydroxyl group. This detailed quantitative information on drug binding to the protease is very useful in rational design of new and improved inhibitors of HIV-1 protease and its mutants.

  18. Mechanical characteristics of antibacterial epoxy resin adhesive wood biocomposites against skin disease.

    Chen, Zi-Xiang; Zhang, Zhong-Feng; Aqma, Wan Syaidatul

    2016-01-01

    Moldy wood can cause some skin disease. However epoxy resin adhesive (EP) can inhibit mold growth. Therefore, antibacterial EP/wood biocomposites were reinforced and analyzed by the nonlinear finite element. Results show that glass fiber cloth and aluminum foil have the obvious reinforced effect under flat pressure, but this was not the case under side pressure. And when the assemble pattern was presented in 5A way, the strengthening effect was better. The nonlinear finite element showed that the aluminum foil and glass fiber cloth have the obvious reinforced effect. The mutual influence and effect of span, thickness and length on the ultimate bearing capacity of specimen were studied. And the simulation results agreed with the test. It provided a theoretical basis on the preparation of antibacterial EP/wood biocomposites against skin disease. PMID:26858557

  19. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).

    Martinez-Nunez, Rocio T; Louafi, Fethi; Friedmann, Peter S; Sanchez-Elsner, Tilman

    2009-06-12

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We establish that human PU.1 is a direct target for miR-155 and localize the target sequence for miR-155 in the 3'-untranslated region of PU.1. Also, overexpression of miR-155 in the THP1 monocytic cell line decreases PU.1 protein levels and DC-SIGN at both the mRNA and protein levels. We prove a link between the down-regulation of PU.1 and reduced transcriptional activity of the DC-SIGN promoter, which is likely to be the basis for its reduced mRNA expression, after miR-155 overexpression. Finally, we show that, by reducing DC-SIGN in the cellular membrane, miR-155 is involved in regulating pathogen binding as dendritic cells exhibited the lower binding capacity for fungi and HIV protein gp-120 when the levels of miR-155 were higher. Thus, our results suggest a mechanism by which miR-155 regulates proteins involved in the cellular immune response against pathogens that could have clinical implications in the way pathogens enter the human organism. PMID:19386588

  20. Simulation of Cell Adhesion using a Particle Transport Model

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  1. Abdominal Adhesions

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  2. INTERFACIAL ADHESION AND MECHANICAL PROPERTIES OF PMMA-COATED CaCO3 NANOPARTICLE-REINFORCED PVC COMPOSITES

    Xuehua Chen; Chunzhong Li; Shoufang Xu; Ling Zhang; Wei Shao; H. L. Du

    2006-01-01

    Polymethyl methacrylate (PMMA)-coated nano-CaCO3 particles were prepared by in-situ emulsion polymerization. The mechanical properties of nano-CaCO3 particles-reinforced PVC were investigated using an AG-2000A universal testing machine and an XJU-2.75 izod impact tester; interfacial adhesion between CaCO3 nanoparticles and PVC matrix by SEM, and structure of PMMA coated on the surface of CaCO3 by FTIR and 1H-NMR. The results indicate that the PMMA coated on the nano CaCO3 particles consists mainly of syndiotactic structure, and their three tacticity contents were rr 52.8%, mm 7.3% and mr 39.9%, respectively. The interfacial adhesion between CaCO3 nanoparticles and PVC matrix was significantly improved when the CaCO3 nanoparticles were coated with PMMA, which led to increased Young's moduli and tensile strengths of the PMMA-coated CaCO3/PVC composites. The izod impact strengths of the composites were strongly affected by the PMMA coating thickness and increased significantly with increasing the volume fraction of CaCO3 filler in the composites.

  3. Neutralisation of TGF beta or binding of VLA-4 to fibronectin prevents rat tendon adhesion following transection.

    Jørgensen, Heather G; McLellan, Sarah D; Crossan, James F; Curtis, Adam S G

    2005-05-21

    Following tendon injury, severe loss of function often occurs either as a result of obliteration of the synovial canal with fibrous scar tissue or from rupture of the repaired tendon. The role of cell engineering in tendon repair is to promote strong and rapid healing of tendon whilst at the same time facilitating rapid reconstitution of the synovial canal. Modification of the immediate inflammatory response around healing tendon has been found to be of value. Experimentally this has been achieved by neutralisation of transforming growth factor-beta over the first 3 days following injury, or by blockade of inflammatory cell binding to the CS-1 locus on fibronectin with an anti-VLA-4 antibody, or with the synthetic VLA-4 inhibitor, CS-1 peptide, in a rat model of tendon transection. It is concluded from this pilot study that the treatments described hold promise in improving outcomes of the common clinical problem of tendon injury in man. PMID:15863394

  4. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  5. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines.

    Chukwudi, Chinwe U

    2016-08-01

    The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions. PMID:27246781

  6. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins.

    Sandhya, B; Hegde, Ashwini H; Seetharamappa, J

    2013-05-01

    The binding of stavudine (STV) to two human blood proteins [human hemoglobin (HHb) and human serum albumin (HSA)] was studied in vitro under simulated physiological conditions by spectroscopic methods viz., fluorescence, UV absorption, resonance light scattering, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence. The binding parameters of STV-blood protein were determined from fluorescence quenching studies. Stern-Volmer plots indicated the presence of static quenching mechanism in the interaction of STV with blood proteins. The values of n close to unity indicated that one molecule of STV bound to one molecule of blood protein. The binding process was found to be spontaneous. Analysis of thermodynamic parameters revealed the presence of hydrogen bond and van der Waals forces between protein and STV. Displacement experiments indicated the binding of STV to Sudlow's site I on HSA. Secondary structures of blood proteins have undergone changes upon interaction with STV as evident from the reduction of α-helices (from 46.11% in free HHb to 38.34% in STV-HHb, and from 66.44% in free HSA to 52.26% in STV-HSA). Further, the alterations in secondary structures of proteins in the presence of STV were confirmed by synchronous and 3D-fluorescence spectral data. The distance between the blood protein (donor) and acceptor (STV) was found to be 5.211 and 5.402 nm for STV-HHb and STV-HSA, respectively based on Föster's non-radiative energy transfer theory. Effect of some metal ions was also investigated. The fraction of STV bound to HSA was found to be 87.8%. PMID:23275205

  7. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading.

    Greg M Harris

    Full Text Available Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol hydrogels using Dip Pen Nanolithography (DPN, we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.

  8. Cell adhesion strength from cortical tension - an integration of concepts.

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  9. Mechanisms of DNA Binding and Regulation of Bacillus anthracis DNA Primase

    Biswas, Subhasis B; Wydra, Eric; Biswas, Esther E.

    2009-01-01

    DNA primases are pivotal enzymes in chromosomal DNA replication in all organisms. In this article, we report unique mechanistic characteristics of recombinant DNA primase from Bacillus anthracis (B. anthracis). The mechanism of action of B. anthracis DNA primase (DnaGBA) may be described in several distinct steps as follows. Its mechanism of action is initiated when it binds to single-stranded DNA (ssDNA) in the form of a trimer. Although DnaGBA binds to different DNA sequences with moderate ...

  10. Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells.

    Hsueh, Hsiang-Yun; Yueh, Pei-Ying; Yu, Bi; Zhao, Xin; Liu, Je-Ruei

    2010-12-01

    The collagen-binding protein gene cnb was cloned from the probiotic Lactobacillus reuteri strain Pg4. The DNA sequence of the cnb gene (792 bp) has an open reading frame encoding 263 amino acids with a calculated molecular weight of 28.5 kDa. The cnb gene was constructed so as to constitutively express under the control of the Lactococcus lactis lacA promoter and was transformed into Lactobacillus casei ATCC 393, a strain isolated from dairy products with poor ability to adhere to intestinal epithelial cells. Confocal immunofluorescence microscopic and flow cytometric analysis of the transformed strain Lb. casei pNZ-cnb indicated that Cnb was displayed on its cell surface. Lb. casei pNZ-cnb not only showed a higher ability to adhere to Caco-2 cells but also exhibited a higher competition ability against Escherichia coli O157:H7 and Listeria monocytogenes adhesion to Caco-2 cells than Lb. casei ATCC 393. PMID:21070005

  11. Mechanism of Mcl-1 Conformational Regulation Upon Small Molecule Binding Revealed by Molecular Dynamic Simulation.

    Wang, Anhui; Song, Ting; Wang, Ziqian; Liu, Yubo; Fan, Yudan; Zhang, Yahui; Zhang, Zhichao

    2016-04-01

    Inhibition of interactions between Mcl-1 and proapoptotic proteins is considered to be a therapeutic strategy to induce apoptosis in cancer cells. Here, we adopted molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to study the inhibition mechanism of three Mcl-1 inhibitors, compounds 1, 2 and 3. Analysis of energy components shows that the better binding free energy of compound 3 than compounds 1 and 2 is attributable to the van der Waals energy (ΔEvdw ) and non-polar solvation energy (ΔGnp ) upon binding. In addition to the excellent agreement with previous experimentally determined affinities, our simulation results further show a bend of helix 4 on Mcl-1 upon compound 3 binding, which is driven by hydrophobic interaction with residue Val(253) , leading to a narrowed BH3-binding groove to impede Puma(BH) (3) binding. The computational result is consistent with our competitive isothermal titration calorimetry (ITC) assays, which shows that the competitive ability of compound 3 toward Mcl-1/Puma(BH) (3) complex is improved beyond its direct binding affinity toward Mcl-1 itself, and compound 3 exhibits much more efficiency to compete with Puma(BH) (3) than compound 2. Our study provides a new strategy to improve inhibitory activity on Mcl-1 based on the conformational dynamic change. PMID:26518611

  12. Formation Mechanism and Binding Energy for Body-Centred Regular Octahedral Structure of Li7 Cluster

    2007-01-01

    The formation mechanism for the body-centred regular octahedral structure of Lh cluster is proposed. The curve of the total energy versus the separation R between the nucleus at tie centre and nuclei at the apexes for this structure of Lh has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-52.169 73 a.u. at R= 5.06a0. When R approaches infinity, the totai energy of seven lithium atoms has the value of -51.996 21 a.u. So the binding energy of Lh with respect to seven lithium atoms is 0.173 52 a.u. Therefore the binding energy per atom for hit is 0.024 79 a.u. or 0.674 eV, which is greater than the binding energy per atom of 0.453 eV for Lii, the binding energy per atom of 0.494 eV for Liz and the binding energy per atom of 0.632 eV for Li& calculated previously by us. This means that the Lh cluster may be formed stably in a body-centred regular octahedral structure with a greater binding energy.

  13. Formation Mechanism and Binding Energy for Regular Tetrahedral Structure of Li4

    GOU Qing-Quan; YANG Jian-Hui; LI Ping

    2006-01-01

    The formation mechanism for the regular tetrahedral structure of Li4 cluster is proposed. The curve of the total energy versus the separation R between the two nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-29.8279 a.u. at R=14.50 a0. When R approaches infinity the total energy of four lithium atoms has the value of-29.7121 a.u. So the binding energy of Li4 with respect to four lithium atoms is the difference of 0.1158 a.u.for the above two energy values. Therefore the binding energy per atom for Li4 is 0.029 a.u., or 0.7878 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, the binding energy pcr atom of 0.494 eV for Li3 and the binding energy per atom of 0.632 eV for Li5 calculated previously by us. This means that the Li4 cluster may be formed stably in a regular tetrahedral structure of side length R=14.50 a0 with a greater binding energy.

  14. [The molecular mechanism of interaction of trivalent dimethylarsinous acid (DMA(III)) binding to rat hemoglobin].

    Zhang, Min; Wang, Wen-Wen; Jin, Hui-Fang; Bao, Ling-Ling; Naranmandura, Hua; Qin, Ying-Jie; Li, Chun-Hui

    2014-05-01

    In our previous work, we found that trivalent dimethylarsinous acid (DMA(III)) have high affinity binding to cysteine residue 13 of rat hemoglobin. However, it is still unknown why arsenic intermediate metabolite DMA(III) has high binding affinity for Cysl3 but not for other cysteine residues 93, 140, 111 and 125. In order to better understand the molecular mechanism of DMA(III) with rat hemoglobin, we have done current study. So, SD rats were divided into control and arsenic-treated groups randomly. Arsenic species in lysate of red blood cells were analyzed by HPLC-ICP-MS, and then determined by a hybrid quadrupole TOF MS. In addition, trivalent DMA(III) binds to different cysteine residues in rat hemoglobin alpha and beta chains were also simulated by Molecular Docking. Only Cys13 in alpha chain is able to bind to DMA(III) from the experiment results. Cys13 of alpha chain in rat hemoglobin is a specific binding site for DMA(III), and we found that amino acids compose pockets structure and surround Cys13 (but not other cysteine residues), make DMA(III) much easy to bind cysteine 13. Taken together, the DMA(III) specific binding to Cys13 is related to spatial structure of Cys13. PMID:25151739

  15. Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding.

    Tomlinson, Christopher G; Moye, Aaron L; Holien, Jessica K; Parker, Michael W; Cohen, Scott B; Bryan, Tracy M

    2015-01-15

    The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight. PMID:25365545

  16. A Directed Binding Mechanism of Processive Motion for the Kinesin Motor Protein Families

    A novel physical mechanism is discussed for the processive propagation of two-headed motor proteins such as kinesin along protein filaments. Our model uses the fact that the binding of each head must be directionality oriented to the protein filament. The binding sites are realized by a 2D periodic potential due to the filament's surface. The deviation of the geometry of the kinesin from the relaxed state to the state where both motor domains are simultaneously bound to the filament results in an internal stress of the molecule. Un-binding of one of the motor domains from the filament, which is due to the release of chemical energy from ATP hydrolysis, results in a mechanical movement until the relaxed state is reached again. We develop a simple mathematical and mechanical model in which directed binding of the heads to the filament results in a directed twist away from its relaxed state of the molecule, occurring probably in the neck linker region. Un-binding of the head from the filament relaxes the twist and defines the propagation direction. We show that there must be at least one torsional spring for every head to store elastic energy. It is the internal structure both of the relaxed and tensed-up state that defines the walking direction of kinesin. Calculations based on the model are in good quantitative agreement with experimental observations. (author)

  17. A Directed Binding Mechanism of Processive Motion for the Kinesin Motor Protein Families

    Bolterauer, H.; Tuszynski, J. A.; Unger, E.

    2006-05-01

    A novel physical mechanism is discussed for the processive propagation of two-headed motor proteins such as kinesin along protein filaments. Our model uses the fact that the binding of each head must be directionality oriented to the protein filament. The binding sites are realized by a 2D periodic potential due to the filament's surface. The deviation of the geometry of the kinesin from the relaxed state to the state where both motor domains are simultaneously bound to the filament results in an internal stress of the molecule. Un-binding of one of the motor domains from the filament, which is due to the release of chemical energy from ATP hydrolysis, results in a mechanical movement until the relaxed state is reached again. We develop a simple mathematical and mechanical model in which directed binding of the heads to the filament results in a directed twist away from its relaxed state of the molecule, occurring probably in the neck linker region. Un-binding of the head from the filament relaxes the twist and defines the propagation direction. We show that there must be at least one torsional spring for every head to store elastic energy. It is the internal structure both of the relaxed and tensed-up state that defines the walking direction of kinesin. Calculations based on the model are in good quantitative agreement with experimental observations.

  18. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model

    Knott, Michael [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Best, Robert B., E-mail: robertbe@helix.nih.gov [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-07

    Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.

  19. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  20. Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism

    Stryhn, A; Pedersen, L O; Holm, A; Buus, S

    2000-01-01

    and C termini of a bound peptide interact through hydrogen bonding networks to conserved residues at either end of the class I binding site. Accordingly, it is thought that the termini are fixed and that only minor variations in peptide size are possible through a central bulging mechanism. We find...

  1. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity

    Yan, Jing; Gong, Yuewen; She, Yi-Min; Wang, Guqi; Roberts, Michael S; Burczynski, Frank J.

    2009-01-01

    Hepatocytes expressing liver fatty acid binding protein (L-FABP) are known to be more resistant to oxidative stress than those devoid of this protein. The mechanism for the observed antioxidant activity is not known. We examined the antioxidant mechanism of a recombinant rat L-FABP in the presence of a hydrophilic (AAPH) or lipophilic (AMVN) free radical generator. Recombinant L-FABP amino acid sequence and its amino acid oxidative products following oxidation were identified by MALDI quadrup...

  2. Marginal Micro-leakage of Self-etch and All-in One Adhesives to Primary Teeth, with Mechanical or Chemo-Mechanical Caries Removal

    Nouzari A

    2016-06-01

    Full Text Available Statement of Problem: Chemo-mechanical caries removal is an effective alternative to the traditional rotary drilling method. One of the factors that can influence micro-leakage is the method of caries removal. Objectives: To compare the micro-leakage of resin composite in primary dentition using self-etch and all-in one adhesives following conventional and chemo-mechanical caries removal. Materials and Methods: Sixty extracted human primary anterior teeth with class III carious lesions were collected. The selected teeth were divided randomly into two groups each consisting of 30 teeth. In group1 carious lesions were removed using Carisolv multi mix gel. In group 2, caries was removed using round steel burs in a slow–speed hand piece. Then, the specimens in each group were randomly divided into two subgroups (A and B of 15 and treated by either Clearfil SE Bond (CSEB or Scotch bond. All prepared cavities were filled with a resin composite (Estellite. All the specimens were stored in distilled water at 37ºC for 24 hours and then thermocycled in 5ºC and 55ºC water with a dwell time of 20 seconds for 1500 cycles. The specimens were immersed in 1% methylene blue solution for 24 hours, removed, washed and sectioned mesiodistally. The sectioned splits were examined under a stereomicroscope to determine the micro-leakage scores. The data were analyzed using Kruskal-Wallis Test in SPSS version 21. Results: There were no significant differences between micro-leakage scores among the four groups (p = 0.127. Score 0 of micro-leakage was detected for 60% of the specimens in group 1-A (Carisolv + CSEB, 73% of the group 2-A (hand piece + CSEB, 80% of the group 1-B (Carisolv + Scotch bond, and 93% of the group 2-B in which caries was removed using hand piece and bonded with Scotch bond . Conclusions: Although caries removal using hand piece bur along with using Scotch bond adhesive performed less micro-leakage, it would seems that the use of Carisolv

  3. Formation Mechanism and Binding Energy for Body-Centred Regular Tetrahedral Structure of Li5

    LI Ping; YANG Jian-Hui; GOU Qing-Quan

    2006-01-01

    The formation mechanism for the body-centred regular tetrahedral structure of Li5 cluster is proposed.The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li5 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics(MACQM). The result shows that the curve has a minimal energy of-37.2562 a.u. at R = 14.5a0. When R approaches infinity the total energy of five lithium atoms has the value of-37.1401 a.u. So the binding energy of Li5 with respect to five lithium atoms is the difference of 0.1161 a.u. for the above two energy values. Therefore the binding energy per atom for Li5 is 0.023 22 a.u., or 0.632 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 and the binding energy per atom of 0.494 eV for Li3 calculated previously by us. This means that the Li5 cluster may be formed stably in a body-centred regular tetrahedral structure with a greater binding energy.

  4. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody

    Chai, Ning; Swem, Lee R.; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D.; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-01-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  5. Formation Mechanism and Binding Energy for Regular Octahedral Structure of Li6 Cluster

    ZHAO Yan-Ping; LI Ping; GOU Qing-Quan; LIU Wei-Na

    2008-01-01

    The formation mechanism for the regular octahedral structure of Li6cluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-44.736 89 a.u. At R=5.07α0. When R approaches infinity, the total energy of six lithium atoms has the value of-44.568 17 a.u. So the binding energy of Li6 with respect to six lithium atoms is 0.1687 a.u. Therefore, the binding energy per atom for Li6 is 0.028 12 a.u., or 0.7637 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 arid the binding energy per atom of 0.494 eV for Li3 calculated in our previous work. This means that the Li6 cluster may be formed in a regular octahedral structure with a greater binding energy.

  6. Apotransferrin has a second mechanism for anticandidal activity through binding of Candida albicans.

    Han, Yongmoon

    2014-02-01

    It has been reported that transferrin has antibacterial and antifungal activities via iron chelation in the environment surrounding the microbes. In the present study, we investigated whether the binding of transferrin to Candida albicans mediates growth inhibition. By using cultures that contained iron-free (apo)transferrin glycoprotein either in contact with candidal cells or separated from candidal cells by a dialysis membrane, we distinguished the growth inhibition by transferrin-cell interaction from that of simple iron chelation. Maximal growth inhibition always occurred when the apotransferrin interacted directly with the cells. Additionally, there was partial inhibition even when candidal cells were in contact with iron-saturated transferrin. Binding studies with (59)Fe(3+) radiolabeled-transferrin indicated that the apo-protein can bind to the candidal cell surface. The binding sites were saturable and it was dose dependent. Chemicals (hydrogen peroxide, dithiothreitol, sodium dodecyl sulfate) blocked transferrin binding to C. albicans, and among the three, hydrogen peroxide (HP) was the most effective for the blocking. When HP-treated yeast cells were added to the culture that was pretreated with apotransferrin, candidal cell growth increased by 5-fold as compared to the growth of HP-untreated candidal cells under apotransferrin-regulation (P mechanism of anticandidal activity that is mediated by binding to the surface of C. albicans yeast cells. PMID:24155020

  7. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    Yi Zheng; Zhi-Zhu He; Jun Yang; Jing Liu

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, t...

  8. Unbinding and unfolding of adhesion protein complexes through stretching: Interplay between shear and tensile mechanical clamps

    Rozycki, Bartosz; Mioduszewski, Lukasz; Cieplak, Marek

    2015-01-01

    Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pull...

  9. Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration

    2013-06-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.

  10. Exploring the binding mechanisms of MIF to CXCR2 using theoretical approaches.

    Xu, Lei; Li, Youyong; Li, Dan; Xu, Peng; Tian, Sheng; Sun, Huiyong; Liu, Hui; Hou, Tingjun

    2015-02-01

    Macrophage migration inhibitory factor (MIF) is a multi-functional protein that acts as a cytokine and as an enzyme. Recently, MIF was identified as a non-canonical ligand of G protein-coupled chemokine receptor CXCR2 with low nanomolar affinity in leukocyte arrest and chemotaxis, but the precise knowledge of the molecular determinants of the MIF-CXCR2 interface has remained unknown. Therefore, we employed homology modeling, protein-protein docking, molecular dynamics (MD) simulations, Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy calculations and MM/GBSA binding free energy decomposition to obtain insights into the molecular recognition of MIF with CXCR2. The predicted binding pattern of MIF-CXCR2 is in good agreement with the experimental data and sheds light on the functional role of important MIF-CXCR2 interface residues in association with binding and signaling. According to our predictions, the R11A/D44A double mutations of MIF exhibit a pronounced defect in the binding affinity of MIF to CXCR2, resulting in large conformational changes. The potential two-site binding model for the MIF-CXCR2 recognition was proposed: initialized primarily by the non-polar interactions including the van der Waals and hydrophobic interactions, the N-terminal region of CXCR2 contacts the N-like loop and β-sheet of MIF (site 1), and then the ECL2 and ECL3 regions of CXCR2 form strong interactions with the pseudo-(E)LR motif and C-terminus of MIF, which induces the molecular thermodynamic motion of TMs for signal transduction (site 2). This study will extend our understanding to the binding mechanisms of MIF to CXCR2 and provide useful information for the rational design of potent inhibitors selectively targeting the MIF-CXCR2 interactions. PMID:25526079

  11. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori

    Backert, Steffen

    2011-11-01

    Abstract Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA\\/B, SabA, AlpA\\/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA\\/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.

  12. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori

    Backert Steffen

    2011-11-01

    Full Text Available Abstract Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ and the cag (cytotoxin-associated genes pathogenicity island encoding a type IV secretion system (T4SS. The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.

  13. Syndecan proteoglycans and cell adhesion

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  14. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  15. Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts

    Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.

    2014-05-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.

  16. Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications.

    Bae, Yoon Ju; Kratzsch, Juergen

    2015-10-01

    Corticosteroid-binding globulin (CBG) is the principal transport protein of glucocorticoids. Approximately 80-90% of serum cortisol binds to CBG with high affinity and only about 5% of cortisol remain unbound and is considered biologically active. CBG seems to modulate and influence the bioavailability of cortisol to local tissues. In this review, we will discuss physicochemical properties of CBG and structure of CBG in the mechanisms of binding and release of cortisol. This review describes several factors affecting CBG functions, such as genetic factors or temperature. Furthermore, clinical implications of CBG abnormalities and the measurement of CBG and its use for assessment of free cortisol levels are described in this review. PMID:26522460

  17. Adhesive Categories

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  18. Adhesive Categories

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  19. Inhibitory mechanisms and binding site location for serotonin selective reuptake inhibitors on nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Bhumireddy, Pankaj; Ortells, Marcelo O

    2010-05-01

    Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit h alpha1beta1 gammadelta AChR-induced Ca(2+) influx with higher potencies than dizocilpine. The potency of fluoxetine is increased approximately 10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-(3)H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [(3)H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13') and leucine (position 9') rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20', 21', and 24'. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20') rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization. PMID:20079457

  20. Unbinding and unfolding of adhesion protein complexes through stretching: interplay between shear and tensile mechanical clamps.

    Różycki, Bartosz; Mioduszewski, Łukasz; Cieplak, Marek

    2014-11-01

    Using coarse-grained molecular dynamics simulations, we analyze mechanically induced dissociation and unfolding of the protein complex CD48-2B4. This heterodimer is an indispensable component of the immunological system: 2B4 is a receptor on natural killer cells whereas CD48 is expressed on surfaces of various immune cells. So far, its mechanostability has not been assessed either experimentally or theoretically. We find that the dissociation processes strongly depend on the direction of pulling and may take place in several pathways. Interestingly, the CD48-2B4 interface can be divided into three distinct patches that act as units when resisting the pulling forces. At experimentally accessible pulling speeds, the characteristic mechanostability forces are in the range between 100 and 200 pN, depending on the pulling direction. These characteristic forces need not be associated with tensile forces involved in the act of separation of the complex because prior shear-involving unraveling within individual proteins may give rise to a higher force peak. PMID:25142868

  1. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: Spectroscopic approach

    Sandhya, B.; Hegde, Ashwini H.; K. C., Ramesh; Seetharamappa, J.

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.

  2. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  3. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach.

    B, Sandhya; Hegde, Ashwini H; K C, Ramesh; J, Seetharamappa

    2012-02-01

    The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein. PMID:22112579

  4. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in me...

  5. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  6. Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain.

    Anisimov, Victor M; Cavasotto, Claudio N

    2011-07-30

    The accurate and efficient calculation of binding free energies is essential in computational biophysics. We present a linear-scaling quantum mechanical (QM)-based end-point method termed MM/QM-COSMO to calculate binding free energies in biomolecular systems, with an improved description of entropic changes. Molecular dynamics trajectories are re-evaluated using a semiempirical Hamiltonian and a continuum solvent model; translational and rotational entropies are calculated using configurational integrals, and internal entropy is calculated using the harmonic oscillator approximation. As an application, we studied the binding of a series of phosphotyrosine tetrapeptides to the human Lck SH2 domain, a key component in intracellular signal transduction, modulation of which can have therapeutic relevance in the treatment of cancer, osteoporosis, and autoimmune diseases. Calculations with molecular mechanics Poisson-Boltzmann, and generalized Born surface area methods showed large discrepancies with experimental data stemming from the enthalpic component, in agreement with an earlier report. The empirical force field-based solvent interaction energy scoring function yielded improved results, with average unsigned error of 3.6 kcal/mol, and a better ligand ranking. The MM/QM-COSMO method exhibited the best agreement both for absolute (average unsigned error = 0.7 kcal/mol) and relative binding free energy calculations. These results show the feasibility and promise of a full QM-based end-point method with an adequate balance of accuracy and computational efficiency. PMID:21484840

  7. Formation Mechanism and Binding Energy for Body-Centred Regular Icosahedral Structure of Li13 Cluster

    LIU Wei-Na; LI Ping; GOU Qing-Quan; ZHAO Yan-Ping

    2008-01-01

    The formation mechanism for the body-centred regular icosahedral structure of Li13 cluster is proposed. The curve of the total energy versus the separation R between the nucleus at the centre and nuclei at the apexes for this structure of Li13 has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-96.951 39 a.u. at R = 5.46a0. When R approaches to infinity, the total energy of thirteen lithium atoms has the value of-96.564 38 a.u. So the binding energy of Li13 with respect to thirteen lithium atoms is 0.387 01 a.u. Therefore the binding energy per atom for Li13 is 0.029 77 a.u. or 0.810 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, 0.494 eV for Lia, 0.7878 eV for Li4, 0.632 eV for Lis, and 0.674 eV for Lit calculated by us previously. This means that the Li13 cluster may be formed stably in a body-centred regular icosahedral structure with a greater binding energy.

  8. Formation Mechanism and Binding Energy for Equilateral Triangle Structure of Li3 Cluster

    2005-01-01

    The formation mechanism for the equilateral triangle structure of Li3 cluster is proposed. The curve of the total energy versus the interatomic distance for this structure has been calculated by using the method of Gou's Modified Arrangement Channel Quantum Mechanics. The result shows that the curve has a minimal energy of-22.338 60 a.u at R = 5.82 a0. The total energy of Li3 when R approaches ∞ has the value of-22.284 09 a.u. This is also the total energy of three lithium atoms dissociated from Li3. The difference value of 0.0545 08 a.u. for the above two energy values is the dissociation energy of Li3 cluster, which is also its binding energy. Therefore the binding energy per lithium atom for Li3 is 0.018 169 a.u. = 0.494 eV, which is greater than the binding energy of 0.453 eV per atom for Li2 calculated in a previous work. This means that the Li3 cluster may be formed in the equilateral triangle structure of side length R = 5.82a0 stably with a stronger binding from the symmetrical interaction among the three lithium atoms.

  9. Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding

    Jia, Chen; Qian, Min-Ping; Jiang, Da-Quan; Zhang, Yu-Ping

    2010-01-01

    In this paper, we thoroughly investigate the kinetic behavior of the general modifier mechanism of Botts and Morales at both equilibrium steady state assuming equilibrium substrate- and modifier-binding steps and non-equilibrium steady state (NESS) without assuming equilibrium binding steps. We introduce the net flux into discussion and propose a method which gains a strong advantage over early approaches involving King-Atman method and even the numerical computations in dealing with the cyclic reaction systems. Using this new approach, the expression of product rate at NESS gives clear biophysical significance. Moreover, we classify the kinetic behavior of the modifier into three categories, namely hyperbolic behavior, bell-shaped behavior, and switching behavior. It turns out that a modifier cannot be regarded as overall activator or inhibitor when the reaction system is not at equilibrium. The switching-behaved modifier may convert between activator and inhibitor via the general modifier mechanism when the...

  10. A Study on Efficient Mobile IPv6 Fast Handover Scheme Using Reverse Binding Mechanism

    Tolentino, Randy S.; Lee, Kijeong; Kim, Sung-Gyu; Kim, Miso; Park, Byungjoo

    This paper proposes a solution for solving the packet handover issues of MIPv6. We propose an efficient scheme that can support fast handover effectively in standard Mobile IPv6 (MIPv6) by optimizing the associated data and the flow of signal during handover. A new signaling message Reverse Packet Binding Mechanism is defined and utilized to hasten the handover procedure by adding a buffer in access point (AP) and home agent (HA).