WorldWideScience

Sample records for adhesion molecule-modified biomaterials

  1. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  3. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterial on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong; Chen, Liaobin

    2014-10-01

    In the present research, the effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterials on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells were investigated. The experiments were divided into three groups due to biomaterials used: Group A (composite materials of sintered bone modified with surface mineralization and P24, a peptide of bone morphogenetic protein-2); Group B (sintered bone modified with surface mineralization) and Group C (sintered bone only). The three groups were observed by scanning electron microscopy (SEM) before the experiments, respectively. Then MC3T3-E1 cells were cultured on the surfaces of the three kinds of material, respectively. The cell adhesion rate was assessed by precipitation method. The proliferative ability of MC3T3-E1 cells were measured with MTT assay. And the ALP staining and measurement of alkaline phosphatase (ALP) activity were performed to assess the differentiation of cells into osteoblasts. The SEM results showed that the materials in the three groups retained the natural pore structure and the pore sizes were in the range between 200-850 μm. The adhesive ratio measurements and MTT assay suggested that adhesion and proliferation of MC3T3-E1 cells in Group A were much higher than those in Group B and Group C (P bone modified with surface mineralization/P24 composite material was confirmed to improve the adhesion rate and proliferation and osteodifferentiation of MC3T3-E1 cells, and maintained their morphology.

  5. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  6. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy

    Directory of Open Access Journals (Sweden)

    Huailan Wang

    2018-04-01

    Full Text Available Summary: Lumbar laminectomy often results in failed back surgery syndrome. Most scholars support the three-dimensional theory of adhesion: Fibrosis surrounding the epidural tissues is based on the injured sacrospinalis behind, fibrous rings and posterior longitudinal ligaments. Approaches including using the minimally invasive technique, drugs, biomaterial and nonbiomaterial barriers to prevent the postoperative epidural adhesion were intensively investigated. Nevertheless, the results are far from satisfactory. Our review is based on various implant biomaterials that are used in clinical applications or are under study. We show the advantages and disadvantages of each method. The summary will help us to figure out ideas towards new techniques.The translational potential of this article: This review summarises recent biomaterials-related clinical and basic research that focuses on prevention of epidural adhesion after lumbar laminectomy. We also propose a novel possible translational method where a soft scaffold acts as a physical barrier in the early stage, engineered adipose tissue acts as a biobarrier in the later stage in the application of biomaterials and adipose-derived mesenchymal stem cells are used for prevention of epidural adhesion. Keywords: Adhesion, Biomaterials, Fibrosis, Implant, Laminectomy

  7. Reproducible Biofilm Cultivation of Chemostat-Grown Escherichia coli and Investigation of Bacterial Adhesion on Biomaterials Using a Non-Constant-Depth Film Fermenter

    Science.gov (United States)

    Lüdecke, Claudia; Jandt, Klaus D.; Siegismund, Daniel; Kujau, Marian J.; Zang, Emerson; Rettenmayr, Markus; Bossert, Jörg; Roth, Martin

    2014-01-01

    Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial

  8. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    Science.gov (United States)

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  10. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    Science.gov (United States)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  11. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  12. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  13. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  14. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  15. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  16. Current Strategies in Cardiovascular Biomaterial Functionalization

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2010-01-01

    Full Text Available Prevention of the coagulation cascade and platelet activation is the foremost demand for biomaterials in contact with blood. In this review we describe the underlying mechanisms of these processes and offer the current state of antithrombotic strategies. We give an overview of methods to prevent protein and platelet adhesion, as well as techniques to immobilize biochemically active molecules on biomaterial surfaces. Finally, recent strategies in biofunctionalization by endothelial cell seeding as well as their possible clinical applications are discussed.

  17. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  18. Albumin grafting on biomaterial surfaces using gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls

  19. Microjet impingement followed by scanning electron microscopy as a qualitative technique to compare cellular adhesion to various biomaterials.

    Science.gov (United States)

    Richards, R G; ap Gwynn, I; Bundy, K J; Rahn, B A

    1995-12-01

    Adhesion of cells to biomaterial surfaces is one of the major factors which mediates their biocompatibility. Quantitative or qualitative cell adhesion measurements would be useful for screening new implant materials. Microjet impingement has been evaluated by scanning electron microscopy, to determine to what extent it measures cell adhesion. The shear forces of the impingement, on the materials tested here, are seen to be greater than the cohesive strength of the cells in the impinged area, causing their rupture. The cell bodies are removed during impingement, leaving the sites of adhesion and other cellular material behind. Thus the method is shown not to provide quantification of cell adhesion forces for the metals and culture plastic tested. It is suggested that with highly adherent biomaterials, the distribution and patterns of these adhesion sites could be used for qualitative comparisons for screening of implant surfaces.

  20. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: In silico design of bone biomaterials

    International Nuclear Information System (INIS)

    Katti, Dinesh R.; Sharma, Anurag; Ambre, Avinash H.; Katti, Kalpana S.

    2015-01-01

    A simulations driven approach to design of a novel biomaterial nanocomposite system is described in this study. Nanoclays modified with amino acids (OMMT) were used to mineralize hydroxyapatite (HAP), mimicking biomineralization. Representative models of organically modified montmorillonite clay (OMMT) and OMMT-hydroxyapatite (OMMT-HAP) were constructed using molecular dynamics and validated using X-ray Diffraction (XRD), Fourier Transforms Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). Attractive interactions exist between Ca atoms of HAP and C=O group of aminovaleric acid, indicating chelate formation in OMMT-HAP. Interaction energy maps describe molecular interactions among different constituents and their quantitative contributions in the OMMT and OMMT-HAP systems at both parallel and perpendicular orientations. High attractive and high repulsive interactions were found between PO 4 3− and MMT clay as well as aminovaleric molecules in OMMT-HAP perpendicular and parallel models. Large non-bonded interactions in OMMT-HAP indicate influence of neighboring environment on PO 4 3− in in situ HAPclay. Extensive hydrogen bonds were observed between functional hydrogen atoms of modifier and MMT clay in OMMT-HAP as compared to OMMT. Thus, HAP interacts with clay through the aminovaleric acid. This computational study provides a framework for materials design and selection for biomaterials used in tissue engineering and other areas of regenerative medicine. - Highlights: • Representative models of a hybrid nanoclay-hydroxyapatite biomaterial are built. • Interaction energy maps are constructed using a molecular dynamics. • Quantitative interactions between the three components of the biomaterial are found. • The modeling and experimental approach provides insight into the complex nanomaterial

  1. Mechanisms of Staphylococcus epidermidis adhesion to model biomaterial surfaces: Establising a link between thrombosis and infection

    Science.gov (United States)

    Higashi, Julie Miyo

    Infections involving Staphylococcus epidermidis remain a life threatening complication associated with the use of polymer based cardiovascular devices. One of the critical steps in infection pathogenesis is the adhesion of the bacteria to the device surface. Currently, mechanisms of S. epidermidis adhesion are incompletely understood, but are thought to involve interactions between bacteria, device surface, and host blood elements in the form of adsorbed plasma proteins and surface adherent platelets. Our central hypothesis is that elements participating in thrombosis also promote S. epidermidis adhesion by specifically binding to the bacterial surface. The adhesion kinetics of S. epidermidis RP62A to host modified model biomaterial surface octadecyltrichlorosilane (OTS) under hydrodynamic shear conditions were characterized. Steady state adhesion to adsorbed proteins and surface adherent platelets was achieved at 90-120 minutes and 60-90 minutes, respectively. A dose response curve of S. epidermidis adhesion in the concentration range of 10sp7{-}10sp9 bac/mL resembled a multilayer adsorption isotherm. Increasing shear stress was found to LTA, and other LTA blocking agents significantly decreased S. epidermidis adhesion to the fibrin-platelet clots, suggesting that this interaction between S. epidermidis and fibrin-platelet clots is specific. Studies evaluated the adhesion of S. epidermidis to polymer immobilized heparin report conflicting results. Paulsson et al., showed that coagulase negative staphylococci adhered in comparable numbers to both immobilized heparin and nonheparinized surfaces, while exhibiting significantly greater adhesion to both surfaces than S. aureus. Preadsorption of the surfaces with specific heparin binding plasma proteins vitronectin, fibronectin, laminin, and collagen significantly increased adhesion. It was postulated that immobilized heparin contained binding sites for the plasma proteins, exposing bacteria binding domains of the

  2. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.

    Science.gov (United States)

    Pereira, Ana Margarida; Machado, Raul; da Costa, André; Ribeiro, Artur; Collins, Tony; Gomes, Andreia C; Leonor, Isabel B; Kaplan, David L; Reis, Rui L; Casal, Margarida

    2017-01-01

    The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. In vitro and in situ intercellular adhesion molecule-1 (ICAM-1) expression by endothelial cells lining a polyester fabric.

    Science.gov (United States)

    Rémy, M; Valli, N; Brethes, D; Labrugère, C; Porté-Durrieu, M C; Dobrova, N B; Novikova, S P; Gorodkov, A J; Bordenave, L

    1999-02-01

    In order to improve long-term patency of vascular grafts, the promising concept of endothelial cell seeding is actually under investigation. Our laboratory tested a polyester coated with albumin and chitosan which permits a rapid colonization by human umbilical vein endothelial cells (HUVEC) and it seems relevant to test in vitro the expression of adhesive molecules expressed by cells with regard to the inflammatory process. We studied intercellular adhesion molecule-1 (ICAM-1) expression and focused our work on the determination of ICAM-1 sites expressed per adherent cell lining the biomaterial, thus in situ, in comparison to control HUVEC on plastic wells: the results obtained by binding experiments were correlated to flow cytometry analyses and showed that the polyester does not induce a proinflammatory state and that HUVEC covering the structure are able to respond to a stimulus.

  4. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  5. Host factors that modify Plasmodium falciparum adhesion to endothelial receptors.

    Science.gov (United States)

    Mahamar, Almahamoudou; Attaher, Oumar; Swihart, Bruce; Barry, Amadou; Diarra, Bacary S; Kanoute, Moussa B; Cisse, Kadidia B; Dembele, Adama B; Keita, Sekouba; Gamain, Benoît; Gaoussou, Santara; Issiaka, Djibrilla; Dicko, Alassane; Duffy, Patrick E; Fried, Michal

    2017-10-24

    P. falciparum virulence is related to adhesion and sequestration of infected erythrocytes (IE) in deep vascular beds, but the endothelial receptors involved in severe malaria remain unclear. In the largest ever study of clinical isolates, we surveyed adhesion of freshly collected IE from children under 5 years of age in Mali to identify novel vascular receptors, and examined the effects of host age, hemoglobin type, blood group and severe malaria on levels of IE adhesion to a panel of endothelial receptors. Several novel molecules, including integrin α3β1, VE-cadherin, ICAM-2, junctional adhesion molecule-B (JAM-B), laminin, and cellular fibronectin, supported binding of IE from children. Severe malaria was not significantly associated with levels of IE adhesion to any of the 19 receptors. Hemoglobin AC, which reduces severe malaria risk, reduced IE binding to the receptors CD36 and integrin α5β1, while hemoglobin AS did not modify IE adhesion to any receptors. Blood groups A, AB and B significantly reduced IE binding to ICAM-1. Severe malaria risk varies with age, but age significantly impacted the level of IE binding to only a few receptors: IE binding to JAM-B decreased with age, while binding to CD36 and integrin α5β1 significantly increased with age.

  6. Bacterial Vaginosis Bacterial and Epithelial Cell Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Şayeste Demirezen

    2016-05-01

    molecules. The most important adhesion molecules of epithelium are cadherins, fibronectins, Toll like receptors and carbohydrates. In bacteria, pilis, lypopolysaccaharide and biofilm have primary importance. In this review, the adhesion molecules are discussed in detail and their roles in formation of clue cell are clarified.

  7. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    Directory of Open Access Journals (Sweden)

    Aldenhoff Y. B.J.

    2003-06-01

    Full Text Available Surface modification of polyurethanes (PUs by covalent attachment of dipyridamole (Persantinregistered is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP. This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3. In PU immobilised with 1 dipyridamole is directly linked to the surface, in PU immobilised with 2 there is a short hydrophilic spacer chain in between the surface and the dipyridamole, while conjugate molecule 3 is merely the spacer chain. Scanning electron microscopy (SEM was used to characterise platelet adhesion from human PRP under static conditions, and fluorescence imaging microscopy was used to study platelet adhesion from whole blood under flow. SEM experiments encompassed both density measurements and analysis of the morphology of adherent platelets. In the static experiments the surface immobilised with 2 showed the lowest platelet adherence. No difference between the three modified surfaces emerged from the flow experiments. The surfaces were also incubated with washed blood platelets and labeled with Oregon-Green Annexin V. No capture of Oregon-Green Annexin V was seen, implying that the adhered platelets did not expose any phosphatidyl serine at their exteriour surface.

  8. Cell Adhesion Molecules of the Immunoglobulin Superfamily in the Nervous System

    DEFF Research Database (Denmark)

    Walmod, Peter Schledermann; Pedersen, Martin Volmer; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) are proteins mediating cell-cell or cell-extracellular matrix (ECM) interactions. CAMs are traditionally divided into four groups, the cadherins, the selectins, the integrins and CAMs belonging to the immunoglobulin superfamily (IgSF). The present chapter describes...... CAMs belonging to IgSF, that exclusively or in part, are expressed in the nervous system. The chapter includes descriptions of myelin protein zero (P0), integrin-associated protein (CD47), neuroplastin, activated leukocyte-cell adhesion molecule (ALCAM), melanoma cell adhesion molecule (MCAM......), myelinassociated glycoprotein (MAG), the neural cell adhesion molecules 1 and 2 (NCAM, NCAM2), Down Syndrome cell adhesion molecule (DSCAM) and Down Syndrome cell adhesion molecule-like-1 (DSCAML1), sidekick 1 and 2 (SDK1, SDK2), signal-regulatory proteins (SIRPs), nectins, nectin-like proteins (necls...

  9. Epithelial cell adhesion molecule - More than a carcinoma marker and adhesion molecule

    NARCIS (Netherlands)

    Trzpis, Monika; McLaughlin, Pamela M. J.; de Leij, Lou M. F. H.; Harmsen, Martin C.

    The epithetial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of similar to 40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally

  10. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    Science.gov (United States)

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  11. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  12. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  13. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface

    NARCIS (Netherlands)

    Rochford, E. T. J.; Poulsson, A. H. C.; Salavarrieta Varela, J.; Lezuo, P.; Richards, R. G.; Moriarty, T. F.

    2014-01-01

    Despite extensive use of polyetheretherketone (PEEK) in biomedical applications, information about bacterial adhesion to this biomaterial is limited. This study investigated Staphylococcus aureus and Staphylococcus epidermidis adhesion to injection moulded and machined PEEK OPTIMA (R) using a

  14. Low-temperature plasma techniques in surface modification of biomaterials

    International Nuclear Information System (INIS)

    Feng Xiangfen; Xie Hankun; Zhang Jing

    2002-01-01

    Since synthetic polymers usually can not meet the biocompatibility and bio-functional demands of the human body, surface treatment is a prerequisite for them to be used as biomaterials. A very effective surface modification method, plasma treatment, is introduced. By immobilizing the bio-active molecules with low temperature plasma, polymer surfaces can be modified to fully satisfy the requirements of biomaterials

  15. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  16. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Jia, Xiaoling [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083 (China); Yang, Yang [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Yang, Qingmao; Gao, Chao [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083 (China); Zhao, Yunhui [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Fan, Yubo, E-mail: yubofan@buaa.edu.cn [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083 (China); National Research Center for Rehabilitation Technical Aids, Beijing 100176 (China); Yuan, Xiaoyan, E-mail: yuanxy@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  17. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    International Nuclear Information System (INIS)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-01-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  18. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    Science.gov (United States)

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P post partum, is not a feature of nonproteinuric gestational hypertension, and is not observed with other major leukocyte adhesion molecules. Induction of vascular cell adhesion molecule-1 expression in pre-eclampsia may contribute to leukocyte-mediated tissue injury in this condition or may reflect perturbation of other, previously unrecognized, functions of this molecule in pregnancy.

  19. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  20. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  1. Use of radiation in biomaterials science

    International Nuclear Information System (INIS)

    Benson, Roberto S.

    2002-01-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue

  2. Use of radiation in biomaterials science

    Science.gov (United States)

    Benson, Roberto S.

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  3. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications.

    Science.gov (United States)

    Hocaoglu-Emre, F Sinem; Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (Pmolecule levels were not correlated with the complication type. In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. Copyright © 2017 Korean Endocrine Society

  4. Highly Stable Aptamers Selected from a 2′-Fully Modified fGmH RNA Library for Targeting Biomaterials

    Science.gov (United States)

    Friedman, Adam D.; Kim, Dongwook; Liu, Rihe

    2014-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2′ modification. This study aims to develop a novel class of highly stable, 2′-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2′-F-dG, 2′-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2′-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and further deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials. PMID:25443790

  5. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  6. Biomaterials and mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Zippel, Nina; Schulze, Margit; Tobiasch, Edda

    2010-01-01

    The reconstruction of hard and soft tissues is a major challenge in regenerative medicine, since diseases or traumas are causing increasing numbers of tissue defects due to the aging of the population. Modern tissue engineering is increasingly using three-dimensional structured biomaterials in combination with stem cells as cell source, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds are developed that not only serve as cell carriers providing mechanical support, but actively influence cellular responses including cell attachment and proliferation. Chemical modifications such as the incorporation of chemotactic factors or cell adhesion molecules are examined for their ability to enhance tissue development successfully. E.g. growth factors have been investigated extensively as substances able to support cell growth, differentiation and angiogenesis. Thus, continuously new patents and studies are published, which are investigating the advantages and disadvantages of different biomaterials or cell types for the regeneration of specific tissues. This review focuses on biomaterials, including natural and synthetic polymers, ceramics and corresponding composites used as scaffold materials to support cell proliferation and differentiation for hard and soft tissues regeneration. In addition, the local delivery of drugs by scaffold biomaterials is discussed.

  7. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  8. The use of CD47-modified biomaterials to mitigate the immune response.

    Science.gov (United States)

    Tengood, Jillian E; Levy, Robert J; Stachelek, Stanley J

    2016-05-01

    Addressing the aberrant interactions between immune cells and biomaterials represents an unmet need in biomaterial research. Although progress has been made in the development of bioinert coatings, identifying and targeting relevant cellular and molecular pathways can provide additional therapeutic strategies to address this major healthcare concern. To that end, we describe the immune inhibitory motif, receptor-ligand pairing of signal regulatory protein alpha and its cognate ligand CD47 as a potential signaling pathway to enhance biocompatibility. The goals of this article are to detail the known roles of CD47-signal regulatory protein alpha signal transduction pathway and to describe how immobilized CD47 can be used to mitigate the immune response to biomaterials. Current applications of CD47-modified biomaterials will also be discussed herein. © 2016 by the Society for Experimental Biology and Medicine.

  9. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation......Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two...

  10. Research on effects of ionizing radiation of human peripheral blood white cell adhesive molecules

    International Nuclear Information System (INIS)

    Li Haijun; Cheng Ying; Le Chen; Min Rui

    2008-01-01

    Objective: To investigate the links between expression and function of adhesive molecule on the surface of irradiated peripheral blood white cells. Methods: Heparinized human peripheral blood was exposed to γ rays with different dose. At the different post-radiation time adhesive molecule expression on cellular surface was determined by double fluorescence labeling antibodies which were against adhesive molecule and special mark of granulocyte or mononuclear cell respectively with flow cytometry, and cellular adhesive ability to different matrixes mediated by adhesive molecule was estimated by commercializing enzyme-linked immunosorbent assay kit and crystalviolet dying. Results: A decline pattern of CD11b on surface of mononuclear cells and CD29 on surface of granulocyte with irradiation dose increase was found. The changes of adhesive ability of mononuclear cells to substance of β1-integrin and collagen-I was well related with irradiation dose. Conclusion: Good relationship shown by the changes of adhesive molecule expression and adhesive ability mediated by the molecules on the surface of peripheral blood white cells with radiation dose was primary base of further research on indicting exposure dose by biomarker. (authors)

  11. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    Science.gov (United States)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  12. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Increased Expression of Intercellular Adhesion Molecule-1, Vascular Cellular Adhesion Molecule-1 and Leukocyte Common Antigen in Diabetic Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Ningyan Bai; Shibo Tang; Jing Ma; Yan Luo; Shaofeng Lin

    2003-01-01

    Purpose: To understand the expression and distribution of intercellular adhesion molecule- 1(ICAM- 1),vascular cellular adhesion molecule- 1 (VCAM- 1)and CD45 (Leukocyte Common Antigen) in the control nondiabetic and various courses of diabetic rats retina. To explore the role of adhesion molecules (Ams) and the adhesion of leukocytes to vascular endothelial cells via Ams in diabetic retinopathy(DR).Methods: Sixty healthy adult male Wistar rats were randomly divided into diabetic groups(induced by Streptozotocin, STZ) and normal control groups. Rats in these two groups were further randomly divided into 3, 7, 14, 30, 90 and 180 days-group,including 5 rats respectively. The immunohistochemical studies of ICAM-1, VCAM-1 and CD45 were carried out in the retinal digest preparations or retinal paraffin sections, and the results were analyzed qualitatively, semi-quantitatively.Results: No positive reaction of VCAM-1 was found, and weak reactions of ICAM-1,CD45 were found in nondiabetic rats retina. The difference of 6 control groups had no statistical significance(P > 0.05). The increased ICAM-1 and CD45 staining pattern were detectable 3 days after diabetes induction, and a few VCAM-1 positive cells were observed in the retinal blood capillaries. The difference of diabetes and control is significant( P < 0.05).Following the course, the expressions of ICAM-1, VCAM-1 and CD45 were increasingly enhanced, reaching a peak at the 14th day.Conclusion: Increased expression of ICAM-1, VCAM-1 and leukocytes adhering and stacking in retinal capillaries are the very early events in DR. Coherence of expression and distribution of the three further accounts for it is the key point for the onset of DR that Ams mediates leukocytes adhesion and endothelial cell injury.

  14. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells

    International Nuclear Information System (INIS)

    Howlett, C.R.; Zreiqat, H.; O'Dell, R.; Noorman, J.; Evans, P.; Dalton, B.A.; McFarland, C.; Steele, J.G.

    1994-01-01

    Our group is investigating the potential of modifying the surface atomic layers of biomaterials by ion beam implantation in order to stimulate adhesion of bone cells to these treated biomaterials. In this study alumina that had been implanted with magnesium ions (Mg)-(Al 2 O 3 ), was compared to unmodified alumina (Al 2 O 3 ) for the adhesion of cells cultured from explanted human bone. The attachment and spreading of cultured human bone derived cells onto (Mg)-(Al 2 O 3 ) was significantly enhanced as compared to Al 2 O 3 . The role of adsorption of serum adhesive glycoproteins firbronectin (Fn) and vitronectin (Vn) in the adhesion of human bone derived cells to (Mg)-(Al 2 O 3 ) was determined. (Author)

  15. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion.

    Science.gov (United States)

    Palasuk, Jadesada; Windsor, L Jack; Platt, Jeffrey A; Lvov, Yuri; Geraldeli, Saulo; Bottino, Marco C

    2018-04-01

    This article evaluated the drug loading, release kinetics, and matrix metalloproteinase (MMP) inhibition of doxycycline (DOX) released from DOX-loaded nanotube-modified adhesives. DOX was chosen as the model drug, since it is the only MMP inhibitor approved by the U.S. Food and Drug Administration. Drug loading into the nanotubes was accomplished using DOX solution at distinct concentrations. Increased concentrations of DOX significantly improved the amount of loaded DOX. The modified adhesives were fabricated by incorporating DOX-loaded nanotubes into the adhesive resin of a commercial product. The degree of conversion (DC), Knoop microhardness, DOX release kinetics, antimicrobial, cytocompatibility, and anti-MMP activity of the modified adhesives were investigated. Incorporation of DOX-loaded nanotubes did not compromise DC, Knoop microhardness, or cell compatibility. Higher concentrations of DOX led to an increase in DOX release in a concentration-dependent manner from the modified adhesives. DOX released from the modified adhesives did not inhibit the growth of caries-related bacteria, but more importantly, it did inhibit MMP-1 activity. The loading of DOX into the nanotube-modified adhesives did not compromise the physicochemical properties of the adhesives and the released levels of DOX were able to inhibit MMP activity without cytotoxicity. Doxycycline released from the nanotube-modified adhesives inhibited MMP activity in a concentration-dependent fashion. Therefore, the proposed nanotube-modified adhesive may hold clinical potential as a strategy to preserve resin/dentin bond stability.

  16. Systemic Inflammatory Response and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    L. V. Molchanova

    2005-01-01

    Full Text Available The lecture presents the materials of foreign studies on the mechanisms responsible for the formation of a systemic inflammatory response syndrome (SIRS. The hypotheses accounting for the occurrence of SIRS in emergencies are described. Adhesion molecules (AM and endothelial dysfunction are apparent to be involved in the inflammatory process, no matter what the causes of SIRS are. The current classification of AM and adhesion cascades with altered blood flow is presented. There are two lines in the studies of AM. One line is to measure the concentration of AM in the plasma of patients with emergencies of various etiology. The other is to study the impact of antiadhesion therapy on the alleviation of the severity of terminal state and its outcome. The studies provide evidence for that an adhesive process is a peculiar prelude to a systemic inflammatory response.

  17. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  18. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  19. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  20. The association between soluble intercellular adhesion molecule-1 levels in drained dialysate and peritoneal injury in peritoneal dialysis.

    Science.gov (United States)

    Igarashi, Yusuke; Morishita, Yoshiyuki; Yoshizawa, Hiromichi; Imai, Reika; Imai, Toshimi; Hirahara, Ichiro; Akimoto, Tetsu; Ookawara, Susumu; Ishibashi, Kenichi; Muto, Shigeaki; Nagata, Daisuke

    2017-11-01

    Chronic inflammation of the peritoneum causes peritoneal injury in patients on peritoneal dialysis. Intercellular adhesion molecule-1 and its circulating form, soluble intercellular adhesion molecule-1, play pivotal roles in inflammation. However, their role in peritoneal injury is unclear. We measured changes in intercellular adhesion molecule-1 expression in the peritoneum of a peritoneal injury model in rats. The associations between soluble intercellular adhesion molecule-1 levels in drained dialysate and the solute transport rate (D/P-Cr and D/D0-glucose) determined by the peritoneal equilibration test, and matrix metalloproteinase-2 levels in drained dialysate were investigated in 94 peritoneal drained dialysate samples. Intercellular adhesion molecule-1 expression was increased in the peritoneum of rats with peritoneal injury. Soluble intercellular adhesion molecule-1 levels in drained dialysate were significantly positively correlated with D/P-Cr (r = .51, p molecule-1expression is increased in the peritoneum of a peritoneal injury model in the rat, and soluble intercellular adhesion molecule-1 levels in drained dialysate are associated with peritoneal injury in patients on peritoneal dialysis. These results suggest that soluble intercellular adhesion molecule-1 could be a novel biomarker of peritoneal injury in patients on peritoneal dialysis.

  1. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    Science.gov (United States)

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  2. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  3. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    International Nuclear Information System (INIS)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing

    2015-01-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF

  4. Adhesion molecules in breast carcinoma: a challenge to the pathologist

    Directory of Open Access Journals (Sweden)

    Claudia Rossetti

    2015-02-01

    Full Text Available The role of adhesion molecules is very important both in the activation of carcinogenesis and in the differentiation of subtypes of breast carcinoma, aiding in diagnosis, prognosis and therapeutic choice in these tumors. Therefore, understanding the functions and interrelationships among these molecules is crucial to the pathologist, who often uses these factors as a resource to differentiate tumors and further classify them according to a molecular point of view. Our goal is to describe the applicability and the difficulties encountered by the pathologist in the diagnosis of breast carcinoma, discussing the most commonly used markers of adhesion in routine analyses.

  5. UV-killed Staphylococcus aureus enhances adhesion and differentiation of osteoblasts on bone-associated biomaterials.

    Science.gov (United States)

    Somayaji, Shankari N; Huet, Yvette M; Gruber, Helen E; Hudson, Michael C

    2010-11-01

    Titanium alloys (Ti) are the preferred material for orthopedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix (ECM). Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermore, interaction of S. aureus with osteoblasts activates growth factor-related pathways that potentiate osteogenesis. Although UV-killed S. aureus cells retain their bone-adhesive ability, they do not stimulate significant immune modulator expression. All of the abovementioned properties were utilized for a novel implant coating so as to promote osteoblast recruitment and subsequent cell functions on the bone-implant interface. In this study, osteoblast adhesion, proliferation, and mineralized ECM synthesis were measured on Ti surfaces coated with fibronectin with and without UV-killed bacteria. Osteoblast adhesion was enhanced on Ti alloy surfaces coated with bacteria compared to uncoated surfaces, while cell proliferation was sustained comparably on both surfaces. Osteoblast markers such as collagen, osteocalcin, alkaline phosphatase activity, and mineralized nodule formation were increased on Ti alloy coated with bacteria compared to uncoated surfaces.

  6. Chronic Restraint Stress Induces an Isoform-Specific Regulation on the Neural Cell Adhesion Molecule in the Hippocampus

    Science.gov (United States)

    Touyarot, K.; Sandi, C.

    2002-01-01

    Existing evidence indicates that 21-days exposure of rats to restraint stress induces dendritic atrophy in pyramidal cells of the hippocampus. This phenomenon has been related to altered performance in hippocampal-dependent learning tasks. Prior studies have shown that hippocampal expression of cell adhesion molecules is modified by such stress treatment, with the neural cell adhesion molecule (NCAM) decreasing and L1 increasing, their expression, at both the mRNA and protein levels. Given that NCAM comprises several isoforms, we investigated here whether chronic stress might differentially affect the expression of the three major isoforms (NCAM-120, NCAM-140, NCAM-180) in the hippocampus. In addition, as glucocorticoids have been implicated in the deleterious effects induced by chronic stress, we also evaluated plasma corticosterone levels and the hippocampal expression of the corticosteroid mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The results showed that the protein concentration of the NCAM-140 isoform decreased in the hippoampus of stressed rats. This effect was isoform-specific, because NCAM-120 and NCAM-180 levels were not significantly modified. In addition, whereas basal levels of plasma corticosterone tended to be increased, MR and GR concentrations were not significantly altered. Although possible changes in NCAM-120, NCAM-180 and corticosteroid receptors at earlier time points of the stress period cannot be ignored; this study suggests that a down-regulation of NCAM-140 might be implicated in the structural alterations consistently shown to be induced in the hippocampus by chronic stress exposure. As NCAM-140 is involved in cell-cell adhesion and neurite outgrowth, these findings suggest that this molecule might be one of the molecular mechanisms involved in the complex interactions among neurodegeneration-related events. PMID:12757368

  7. Circulating cellular adhesion molecules and risk of diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA).

    Science.gov (United States)

    Pankow, J S; Decker, P A; Berardi, C; Hanson, N Q; Sale, M; Tang, W; Kanaya, A M; Larson, N B; Tsai, M Y; Wassel, C L; Bielinski, S J

    2016-07-01

    To test the hypothesis that soluble cellular adhesion molecules would be positively and independently associated with risk of diabetes. Soluble levels of six cellular adhesion molecules (ICAM-1, E-selectin, VCAM-1, E-cadherin, L-selectin and P-selectin) were measured in participants in the Multi-Ethnic Study of Atherosclerosis, a prospective cohort study. Participants were then followed for up to 10 years to ascertain incident diabetes. Sample sizes ranged from 826 to 2185. After adjusting for age, sex, race/ethnicity, BMI and fasting glucose or HbA1c , four cellular adhesion molecules (ICAM-1, E-selectin, VCAM-1 and E-cadherin) were positively associated with incident diabetes and there was a statistically significant trend across quartiles. Comparing the incidence of diabetes in the highest and lowest quartiles of each cellular adhesion molecule, the magnitude of association was largest for E-selectin (hazard ratio 2.49; 95% CI 1.26-4.93) and ICAM-1 (hazard ratio 1.76; 95% CI 1.22-2.55) in fully adjusted models. Tests of effect modification by racial/ethnic group and sex were not statistically significant for any of the cellular adhesion molecules (P > 0.05). The finding of significant associations between multiple cellular adhesion molecules and incident diabetes may lend further support to the hypothesis that microvascular endothelial dysfunction contributes to risk of diabetes. © 2016 Diabetes UK.

  8. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    Science.gov (United States)

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  9. Biomaterial thin film deposition and characterization by means of MAPLE technique

    International Nuclear Information System (INIS)

    Bloisi, F.; Vicari, L.; Papa, R.; Califano, V.; Pedrazzani, R.; Bontempi, E.; Depero, L.E.

    2007-01-01

    Polyethylene glycol (PEG) is a polymer with technologically important applications, especially as a biomaterial. Several biomedical applications (such as tissue engineering, spatial patterning of cells, anti-biofouling and biocompatible coatings) require the application of high quality PEG thin films. In order to have a good adhesion to substrate chemically modified polymer molecules have been used, but for some 'in vivo' applications it is essential to deposit a film with the same chemical and structural properties of bulk PEG. Pulsed laser deposition (PLD) technique is generally able to produce high quality thin films but it is inadequate for polymer/organic molecules. MAPLE (Matrix Assisted Pulsed Laser Evaporation) is a recently developed PLD based thin film deposition technique, particularly well suited for organic/polymer thin film deposition. Up to now MAPLE depositions have been carried out mainly by means of modified PLD systems, using excimer lasers operating in UV, but the use of less energetic radiations can minimize the photochemical decomposition of the polymer molecules. We have used a deposition system explicitly designed for MAPLE technique connected to a Q-switched Ng:YAG pulsed laser which can be operated at different wavelength ranging from IR to UV in order to optimise the deposition parameters. The capability of MAPLE technique to deposit PEG has been confirmed and preliminary results show that visible (532 nm wavelength) radiation gives better results with respect to UV (355 nm) radiation. Despite usually UV wavelengths have been used and even if more systematic tests must be performed, it is important to underline that the choice of laser wavelength plays an important role in the application of MAPLE thin film deposition technique

  10. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  11. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    International Nuclear Information System (INIS)

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  12. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    Science.gov (United States)

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  13. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  14. An Evolutionary-Conserved Function of Mammalian Notch Family Members as Cell Adhesion Molecules

    Science.gov (United States)

    Murata, Akihiko; Yoshino, Miya; Hikosaka, Mari; Okuyama, Kazuki; Zhou, Lan; Sakano, Seiji; Yagita, Hideo; Hayashi, Shin-Ichi

    2014-01-01

    Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion. PMID:25255288

  15. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  16. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    OpenAIRE

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (?-TCP, without coating or ...

  17. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    Science.gov (United States)

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  18. The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules.

    Science.gov (United States)

    Nam, Jungyong; Mah, Won; Kim, Eunjoon

    2011-07-01

    Synaptic adhesion molecules play important roles in various stages of neuronal development, including neurite outgrowth and synapse formation. The SALM (synaptic adhesion-like molecule) family of adhesion molecules, also known as Lrfn, belongs to the superfamily of leucine-rich repeat (LRR)-containing adhesion molecules. Proteins of the SALM family, which includes five known members (SALMs 1-5), have been implicated in the regulation of neurite outgrowth and branching, and synapse formation and maturation. Despite sharing a similar domain structure, individual SALM family proteins appear to have distinct functions. SALMs 1-3 contain a C-terminal PDZ-binding motif, which interacts with PSD-95, an abundant postsynaptic scaffolding protein, whereas SALM4 and SALM5 lack PDZ binding. SALM1 directly interacts with NMDA receptors but not with AMPA receptors, whereas SALM2 associates with both NMDA and AMPA receptors. SALMs 1-3 form homo- and heteromeric complexes with each other in a cis manner, whereas SALM4 and SALM5 do not, but instead participate in homophilic, trans-cellular adhesion. SALM3 and SALM5, but not other SALMs, possess synaptogenic activity, inducing presynaptic differentiation in contacting axons. All SALMs promote neurite outgrowth, while SALM4 uniquely increases the number of primary processes extending from the cell body. In addition to these functional diversities, the fifth member of the SALM family, SALM5/Lrfn5, has recently been implicated in severe progressive autism and familial schizophrenia, pointing to the clinical importance of SALMs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    Science.gov (United States)

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  20. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  1. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  2. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture

    Science.gov (United States)

    Ruskowitz, Emily R.; Deforest, Cole A.

    2018-02-01

    Biological signalling is regulated through a complex and tightly choreographed interplay between cells and their extracellular matrix. The spatiotemporal control of these interactions is essential for tissue function, and disruptions to this dialogue often result in aberrant cell fate and disease. When disturbances are well understood, correct biological function can be restored through the precise introduction of therapeutics. Moreover, model systems with modifiable physiochemical properties are needed to probe the effects of therapeutic molecules and to investigate cell-matrix interactions. Photoresponsive biomaterials benefit from spatiotemporal tunability, which allows for site-specific therapeutic delivery in vivo and 4D modulation of synthetic cell culture platforms to mimic the dynamic heterogeneity of the human body in vitro. In this Review, we discuss how light can be exploited to modify different biomaterials in the context of photomediated drug delivery and phototunable cell culture platforms. We survey various photochemistries for their applicability in vitro and in vivo and for the biochemical and biophysical modification of materials. Finally, we highlight emerging tools and provide an outlook for the field of photoresponsive biomaterials.

  3. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    Science.gov (United States)

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  4. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline......% confidence interval: 95.0-208.7 microg/liter); P cells, there was no direct stimulatory effect of either GH or IGF-I on the expression of VCAM-1 and E-selectin, but serum from GH-treated healthy subjects significantly increased the expression of VCAM-1 (P

  5. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    Science.gov (United States)

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Nano-modified adhesive by graphene: the single lap-joint case

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Almir; Cruz, Diego Thadeu Lopes da; Avila, Antonio Ferreira, E-mail: aavila@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica

    2013-11-01

    This paper addresses the performance study on, low viscosity, nano-modified adhesives by graphene. For achieving this goal, single-lap joints following ASTM D 5868-01 were manufactured and tested. X-ray diffraction, scanning electron microscopy and nanoindentation were employed for graphene based nanostructures characterization. The increase on joint strength was around 57% when compared against the control group. Furthermore, all failures for the nano-modified adhesive were cohesive failure for the carbon fibre/epoxy composites indicating that the adhesive was tested. X-ray diffractions signatures indicate formation of nano-structures with 17-19 nm diameters. Moreover, nanoindentation tests revealed a homogeneous dispersion of graphene. (author)

  7. INFLUENCE OF SOLUBLE PLACENTAL TISSUE-DERIVED MOLECULES UPON EXPRESSION OF ADHESION MOLECULES BY EA.HY926 ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2011-01-01

    Full Text Available Abstract.  Leukocyte  recruitment  to  placental  tissue  is  an  important  factor  of  its  development.  In  this respect, adhesion molecules at the endothelial cell surface represent a key determining factor of leukocyte adhesion and their trans-endothelial migration. The goal of investigation was to evaluate changed expression of adhesion molecules on the endothelial cells induced by supernates of placental tissue cultures. Placental tissue supernatants produced by the first- and third-trimester placental tissue from normal pregnancy, as well as from women with gestosis, induced higher expression of CD31, CD9, CD62E, CD62P, CD34, CD54, CD51/61, CD49d  and  integrin  β7  expression  by  endothelial  cells,  as  compared  with  their  baseline  levels.  However, the  supernates  from  pre-eclamptic  placental  tissue (3rd  trimester  caused  an  increased  CD9  expression by  endothelial  cells,  as  compared  with  effects  of placental  supernates  from  eclampsia-free  cases.  Our data  contribute  to  understanding  a  possible  role  of endothelial cell adhesion molecules in recruitment of leukocytes to placental tissue and possible participation of adhesion molecules in pathogenesis of pre-eclampsia. The work was supported by a grant from Russian Ministry of Education and Science ГК №02.740.11.0711 and Presidential grant № НШ-3594.2010.7 and МД-150.2011.7. (Med. Immunol., 2011, vol. 13, N 6, pp 589-596

  8. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  9. Irradiation of Polystyrene and Polypropylene to study NIH 3T3 fibroblasts adhesion

    International Nuclear Information System (INIS)

    Arbeitman, C.R.; Grosso, M.F. del; Ibanez, I.; Garcia Bermudez, G.; Duran, H.; Chappa, V.C.; Mazzei, R.; Behar, M.

    2010-01-01

    When polymers are irradiated with heavy ions new chemical groups are created in a few microns of the material. The irradiation changed the polarity and wettability on the surface so that could enhance the biocompatibility of the modified polymer. The study of chemistry and nanoscale topography of the biomaterial is important in determining its potential applications in medicine and biotechnology, because their strong influence on cell function, adhesion and proliferation. In this study, thin films of Polystyrene and Polypropylene samples were modified by irradiation with low energy ion beams (30-150 keV) and swift heavy ions both with various fluences and energies. The changes were evaluated with different methods. Adhesion of NIH 3T3 fibroblasts onto unirradiated and irradiated surfaces has been studied by in vitro techniques. The correlations between physicochemical properties as a function of different irradiations parameters were compared with cell adhesion on the modified polymer surface.

  10. Adhesion Molecules Associated with Female Genital Tract Infection.

    Directory of Open Access Journals (Sweden)

    Jamal Qualai

    Full Text Available Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut. Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes.

  11. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    Directory of Open Access Journals (Sweden)

    Aliyev Emil

    2004-04-01

    Full Text Available Abstract Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1 in patients with unstable angina pectoris (AP. Methods Thirty-five patients with unstable AP (Group I, ten patients with stable AP (Group II and ten subjects who had angiographycally normal coronary arteries (Group III were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15 received tirofiban and Group IB (n = 20 did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point.

  12. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Liam M. Ashander

    2016-01-01

    Full Text Available Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1 mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1, in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α, and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (siRNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.

  13. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  14. Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

    Directory of Open Access Journals (Sweden)

    Kroiča Juta

    2016-08-01

    Full Text Available Infections continue to spread in all fields of medicine, and especially in the field of implant biomaterial surgery, and not only during the surgery, but also after surgery. Reducing the adhesion of bacteria could decrease the possibility of biomaterial-associated infections. Bacterial adhesion could be reduced by local antibiotic release from the biomaterial. In this in vitro study, hydroxyapatite biomaterials with antibiotics and biodegradable polymers were tested for their ability to reduce bacteria adhesion and biofilm development. This study examined the antibacterial efficiency of hydroxyapatite biomaterials with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa. The study found that hydroxyapatite biomaterials with antibiotics and biodegradable polymers show longer antibacterial properties than hydroxyapatite biomaterials with antibiotics against both bacterial cultures. Therefore, the results of this study demonstrated that biomaterials that are coated with biodegradable polymers release antibiotics from biomaterial samples for a longer period of time and may be useful for reducing bacterial adhesion on orthopedic implants.

  15. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  16. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    Science.gov (United States)

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. ADHESION MOLECULES IN INTESTINAL DESTRUCTIVE-INFLAMMATORY PROCESS IN THE CHILDREN WITH ULCERATIVE COLITIS

    Directory of Open Access Journals (Sweden)

    V. I. Ashkinazi

    2013-01-01

    Full Text Available Aim: to study the content of serum soluble cell adhesion molecules in children with ulcerative colitis that mediate the initial and final stages of the migration of leukocytes to the focus of inflammation: sP-selectin (soluble platelet selectin and Specam-1 (soluble platelet-endothelial cell adhesion molecule 1 as well some earlier unexplored factors associated with their level. Patients and methods: we examined 107 patients with ulcerative colitis aged from 6 up to 17 years. The diagnosis was set on the base of a comprehensive examination. The content of serum soluble adhesion molecules sP-selectin and sPECAM-1 as well cytokine status and neopterin were evaluated by ELISA. Respiratory metabolism was investigated by using chemiluminescent reactions. Results: it was shown that the content of sP-selectin and sPECAM-1 is significantly higher in patients than in the control group, which may influence on the migration of leukocytes into tissues for realization of their effector potential. It is confirmed by morphological analyses of the intestine biopsies, where it was observed the increasing of the number of leukocytes in vascular endothelium and epithelial layer. At the same time strengthening of the oxygen-dependent metabolism of neutrophils, the increase of the concentration of neopterin and tumor necrosis factor α were noted. Conclusions: the correlation of the studied adhesion molecules with a number of inflammatory markers (TNFα (tumor necrosis factor α, free radicals, neopterin was revealed, which indicates the diagnostic value of serum levels of the membrane antigens. The increase of the concentration of adhesion molecules sP-selectin and sPECAM-1 may be one of the links of the pathogenesis of ulcerative colitis. 

  18. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1982-01-01

    In present-day surgery and medicine use is increasingly made of materials foreign to the organism in order to remedy a physiological defect either temporarily or permanently. These materials, known as ''biomaterials'', take widely varying forms: plastics, metals, cements, ceramics, etc. Biomaterials can be classified in accordance with their function: (a) Devices designed to be fully implanted in the human body in order to replace an anatomical structure, either temporarily or permanently, such as articular, vascular, mammary and osteosynthetic prostheses, etc.; (b) Devices having prolonged contact with mucous tissues, such as intra-uterine devices, contact lenses, etc.; (c) Extracorporeal devices designed to treat blood such as artificial kidneys, blood oxygenators, etc.; and (d) Biomaterials can also be taken to mean chemically inert, implantable materials designed to produce a continuous discharge of substances containing pharmacologically active molecules, such as contraceptive devices or ocular devices (for treating glaucoma). The two most important criteria for a biomaterial are those of biological compatibility and biological functionality. Techniques using ionizing radiation as an energy source provide an excellent tool for synthesizing or modifying the properties of plastics. The properties of polymers can be improved, new polymers can be synthesized without chemical additives (often the cause of incompatibility with tissue or blood) and without increased temperature, and polymerization can be induced in the solid state using deep-frozen monomers. Also, radiation-induced modifications in polymers can be applied to semi-finished or finished products. Examples are also given of marketed biomaterials that have been produced using radiation chemistry techniques

  19. Expression of adhesion and activation molecules on lymphocytes during open-heart surgery with cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Toft, P; Tønnesen, Else Kirstine; Zülow, I

    1997-01-01

    Open-heart surgery with cardiopulmonary bypass (CPB) and abdominal surgery are associated with lymphocytopenia. We measured a panel of adhesion and activation molecules on lymphocytes to clarify possible association of CPB with increased expression of these molecules. Eight patients undergoing open...... open-heart and abdominal surgery. The proportion of CD11a/CD18-positive lymphocytes rose from 67.6 +/- 8% to 86.4 +/- 3% after aortic declamping (p ... was associated with increased expression of the adhesion molecule CD11a/CD18 on lymphocytes, while the expression of activation molecules on lymphocytes was unchanged....

  20. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    Science.gov (United States)

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum

  1. Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

    International Nuclear Information System (INIS)

    De Wit, J. H. W.; Van den Brand, J.; De Wit, F. M.; Mol, J. M. C.

    2008-01-01

    The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. in addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond

  2. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  3. Effect of irradiation on gene expression of rat liver adhesion molecules. In vivo and in vitro studies

    International Nuclear Information System (INIS)

    Moriconi, Federico; Malik, Ihtzaz; Ahmad, Ghayyor; Dudas, Joszef; Ramadori, Giuliano; Rave-Fraenk, Margret; Vorwerk, Hilke; Hille, Andrea; Hess, Clemens Friedrich; Christiansen, Hans

    2009-01-01

    Background and purpose: Migration of leukocytes into tissue is a key element of innate and adaptive immunity. An animal study showed that liver irradiation, in spite of induction of chemokine gene expression, does not lead to recruitment of leukocytes into the parenchyma. The aim of this study was to analyze gene expression of adhesion molecules, which mediate leukocyte recruitment into organs, in irradiated rat liver in vivo and rat hepatocytes in vitro. Material and methods: Rat livers in vivo were irradiated selectively at 25 Gy. Isolated hepatocytes in vitro were irradiated at 8 Gy. RNA extracted within 48 h after irradiation in vivo and in vitro was analyzed by real-time PCR (polymerase chain reaction) and Northern blot. Adhesion molecule concentration in serum was measured by ELISA (enzyme-linked immunosorbent assay). Cryostat sections of livers were used for immunohistology. Results: Significant radiation-induced increase of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), JAM-1 (junctional adhesion molecule-1), β 1 -integrin, β 2 -integrin, E-cadherin, and P-selectin gene expression could be detected in vivo, while PECAM-1 (platelet-endothelial cell adhesion molecule-1) gene expression remained unchanged. In vitro, β 1 -integrin, JAM-1, and ICAM-2 showed a radiation-induced increased expression, whereas the levels of P-selectin, ICAM-1, PECAM-1, VCAM-1, Madcam-1 (mucosal addressin cell adhesion molecule-1), β 2 -integrin, and E-cadherin were downregulated. However, incubation of irradiated hepatocytes with either tumor necrosis factor-(TNF-)α, interleukin-(IL-)1β, or IL-6 plus TNF-α led to an upregulation of P-selectin, ICAM-1 and VCAM-1. Conclusion: The findings suggest that liver irradiation modulates gene expression of the main adhesion molecules in vivo and in cytokine-activated hepatocytes, with the exception of PECAM-1. This may be one reason for the lack of inflammation in the irradiated rat liver. (orig.)

  4. Interleukin-6 but not soluble adhesion molecules has short-term ...

    African Journals Online (AJOL)

    Interleukin-6 but not soluble adhesion molecules has short-term prognostic value on mortality in patients with acute ST-segment elevation myocardial infarction. ZX Fan, Q Hua, J Tan, J Gao, RK Liu, Z Yang ...

  5. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells

    Directory of Open Access Journals (Sweden)

    Williams Michael J

    2009-03-01

    Full Text Available Abstract Background When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Results Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1 1. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1 fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. Conclusion The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At

  6. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  7. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    Science.gov (United States)

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  8. Patterning biomaterials for the spatiotemporal delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Silvia eMinardi

    2016-06-01

    Full Text Available The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors, and stem cells has been at the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Towards this aim, the combination of scaffolds and growth factors is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.

  9. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  10. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    DEFF Research Database (Denmark)

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the surro......Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact...... extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct...

  11. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  12. Levels Of Serum Intercellular And Vascular Adhesion Molecules In ...

    African Journals Online (AJOL)

    The study evaluated the possible significant role of soluble intercellular and vascular adhesion molecule-1 (sICAM-1 and sVCAM-1), sE-selectin and interluekin-1β in development nephropathy in patients with insulin dependent diabetes mellitus (IDDM). This study included 60 patients with type 1 diabetes mellitus (IDDM) ...

  13. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules

    Directory of Open Access Journals (Sweden)

    Looareesuwan Sornchai

    2004-06-01

    Full Text Available Abstract Introduction Oxidative stress has been demonstrated in malaria. The potential oxidative modification of lipoproteins derived from malaria patients was studied. These oxidized lipids may have role in pathogenesis of malaria. Method The plasma lipid profile and existence of oxidized forms of very low density lipoprotein (VLDL, low density lipoprotein (LDL and high density lipoprotein (HDL were investigated in malaria (17 mild and 24 severe patients and 37 control subjects. Thiobarbituric acid reactive substances (TBARs, conjugated dienes, tryptophan fluorescence and fluidity of lipoproteins were determined as markers of oxidation. The biological effect of malarial lipoproteins was assessed by the expression of adhesion molecules on endothelial cells. Results Malarial lipoproteins had decreased cholesterol (except in VLDL and phospholipid. The triglyceride levels were unchanged. The cholesterol/phospholipid ratio of LDL was decreased in malaria, but increased in VLDL and HDL. TBARs and conjugate dienes were increased in malarial lipoproteins, while the tryptophan fluorescence was decreased. The fluidity of lipoproteins was increased in malaria. These indicated the presence of oxidized lipoproteins in malaria by which the degree of oxidation was correlated with severity. Of three lipoproteins from malarial patients, LDL displayed the most pronounced oxidative modification. In addition, oxidized LDL from malaria patients increased endothelial expression of adhesion molecules. Conclusion In malaria, the lipoproteins are oxidatively modified, and the degree of oxidation is related with severity. Oxidized LDL from malarial patients increases the endothelial expression of adhesion molecules. These suggest the role of oxidized lipoproteins, especially LDL, on the pathogenesis of disease.

  14. Cell adhesion to textured silicone surfaces : The influence of time of adhesion and texture on focal contact and fibronectin fibril formation

    NARCIS (Netherlands)

    van Kooten, TG; von Recum, AF

    Cell adhesion and spreading on biomaterials is a key issue in the study of cell-biomaterial interactions. With the development of new disciplines within biomaterials research such as tissue engineering and cellular therapy, information at molecular and structural levels is needed in order to

  15. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  16. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  17. Intercellular Adhesion Molecule-1 Levels in Experimental Brain Injury and the Effects of Alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Nilgun Senol

    2014-06-01

    Full Text Available Aim: The mechanisms, responsible for the secondary injuries occuring after acute injury of the brain are; release of nitrous oxide which is an inflammatory mediator, abnormal formation of free oxygen radicals and excessive stimulation of excitatory aminoacids. In this study, it is aimed to investigate changes in intercellular adhesion molecule levels in the brain, that occur subsequent to blunt head trauma, and after administration of an antioxidant agent, vitamin E. Material and Method: In this study, rats were divided into 4 groups. In group A; rats had only skin incision, group B; rats were traumatized after the skin incision, group C; isotonic (30mg/kg was given intraperitoneally after 30 minutes of the trauma, group D; alpha-tocopherol (30mg/kg was given intraperitoneally, after 30 minutes of the trauma. All the rats in these groups were sacrified after 24 hours. Biparietal and bifrontal lobs were taken about 3x5x1mm tickness and intercellular adhesion molecule-1 levels were studied by enzyme-linked immunosorbent assay kit. Results: As the result of the statistical analysis, it is detected that although there is an increase in intercellular adhesion molecule levels in brain parenchyma after trauma, it is statistically unsignificant. However, as the traumatized group and the group given alpha-tocopherol after trauma was compared, a statistically significant decrease in intercellular adhesion molecule-1 levels in the alpha-tocopherol given group was seen. Discussion: Alpha-tocopherol, an antioxidant agent, causes decrease in intercellular adhesion molecule levels, by decreasing inflammation.

  18. Cytokines and soluble adhesion molecules in children and adolescents with a tic disorder.

    Science.gov (United States)

    Bos-Veneman, Netty G P; Bijzet, Johan; Limburg, Pieter C; Minderaa, Ruud B; Kallenberg, Cees G; Hoekstra, Pieter J

    2010-12-01

    Dysregulation of the immune system may play a role in tic disorders. We screened for immune disturbances by investigating serum levels of cytokines and soluble adhesion molecules in patients with a tic disorder. Serum levels of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, soluble IL-2 receptor (sIL2R), tumor necrosis factor (TNF)-α, interferon (IFN)-γ, soluble vascular cell adhesion molecule-1 (sVCAM-1), and intercellular adhesion molecule-1 (sICAM-1) of 66 children and adolescents with a tic disorder and 71 healthy volunteers were compared. We also addressed possible relations between concentrations of the immune markers and severity of tics and comorbid obsessive-compulsive symptoms. Median serum concentrations did not differ significantly between patients and healthy subjects. Serum IL-2 concentrations were positively associated with tic severity ratings; serum IL-12 concentrations negatively with severity ratings of obsessive-compulsive symptoms. These preliminary findings do not reveal major immune activation in children with a tic disorder but may suggest more subtle disturbances related to disease expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Cytokines, cytokine antagonists, and soluble adhesion molecules in pediatric OMS and other neuroinflammatory disorders.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; McGee, Nathan R; Colliver, Jerry A

    2013-03-15

    To test for hypothesized disease- and treatment-induced changes in cytokines and adhesion molecules in children with opsoclonus-myoclonus syndrome (OMS). Multiplex bead assay technology was used for simultaneous measurement of 34 soluble cytokines in cerebrospinal fluid (CSF) and serum. Soluble intercellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule-1 (sVCAM-1) were measured by ELISA. In total, there were 388 children (239 OMS, 114 controls, and 35 other inflammatory neurological disorders (OIND)). In untreated OMS, mean CSF IL-6 was elevated 2.3-fold, but 67-fold in OIND, without significant differences in other CSF cytokines. Mean serum concentrations of sIL-2Ra (+50%) and CXCL1 (+70%) (pOMS than controls (p=0.005), as was serum CCL11 and IL-13 in treated OMS. Mean CSF CCL4 and IL-1Ra were selectively higher in IVIg-treated OMS (p≤0.0001). CSF sICAM-1 was elevated only in OIND (3.3-fold); serum sICAM-1 was higher in untreated OMS (+21%); and sVCAM-1 was not affected. No correlations with OMS severity or duration were identified. Novel cytokine, cytokine antagonist, and soluble adhesion molecule abnormalities due to OMS or treatment were found. However, the normality of much of the data strengthens previous findings implicating B cell mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Upregulation of adhesion molecules on leukemia targets improves the efficacy of cytotoxic T cells transduced with chimeric anti-CD19 receptor.

    Science.gov (United States)

    Laurin, David; Marin, Virna; Biagi, Ettore; Pizzitola, Irene; Agostoni, Valentina; Gallot, Géraldine; Vié, Henri; Jacob, Marie Christine; Chaperot, Laurence; Aspord, Caroline; Plumas, Joël

    2013-04-01

    T lymphocytes engineered to express chimeric antigen receptors (CARs) interact directly with cell surface molecules, bypassing MHC antigen presentation dependence. We generated human anti-CD19ζ CAR cytotoxic T lymphocytes and cytokine-induced killer cells and studied their sensitivity to the expression of adhesion molecules for the killing of primary B-lineage acute lymphoblastic leukemia (B-ALL) targets. Despite a very low basal expression of surface adhesion molecules, B-ALL blasts were lysed by the anti-CD19ζ-CAR transduced effectors as expected. We next investigated the regulatory role of adhesion molecules during CAR-mediated cytolysis. The blocking of these accessory molecules strongly limited the chimeric effector's cytotoxicity. Thereafter, B-ALL cells surface adhesion molecule level expression was induced by IFN-γ or by the combined use of CD40L and IL-4 and the cells were submitted to anti-CD19ζ-CAR transduced effectors lysis. Upregulation of adhesion molecules expression by blasts potentiated their killing. The improved cytotoxicity observed was dependent on target surface expression of adhesion molecules, particularly CD54. Taken together, these results indicate that adhesion molecules, and principally CD54, are involved in the efficiency of recognition by effector chimeric ζ. These observations have potential implications for the design of immunotherapy treatment approaches for hematological malignancies and tumors based on the adoption of CAR effector cells.

  1. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    Science.gov (United States)

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    Science.gov (United States)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  4. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    Science.gov (United States)

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  5. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    Science.gov (United States)

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  6. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  7. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    Science.gov (United States)

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  9. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Science.gov (United States)

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  10. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    Science.gov (United States)

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  11. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  12. Adhesion molecule profiles of B-cell non-Hodgkin's lymphomas in the leukemic phase

    Directory of Open Access Journals (Sweden)

    D.M. Matos

    2006-10-01

    Full Text Available We evaluated the expression of 10 adhesion molecules on peripheral blood tumor cells of 17 patients with chronic lymphocytic leukemia, 17 with mantle-cell lymphoma, and 13 with nodal or splenic marginal B-cell lymphoma, all in the leukemic phase and before the beginning of any therapy. The diagnosis of B-cell non-Hodgkin's lymphomas was based on cytological, histological, immunophenotypic, and molecular biology methods. The mean fluorescence intensity of the adhesion molecules in tumor cells was measured by flow cytometry of CD19-positive cells and differed amongst the types of lymphomas. Comparison of chronic lymphocytic leukemia and mantle-cell lymphoma showed that the former presented a higher expression of CD11c and CD49c, and a lower expression of CD11b and CD49d adhesion molecules. Comparison of chronic lymphocytic leukemia and marginal B-cell lymphoma showed that the former presented a higher expression of CD49c and a lower expression of CD11a, CD11b, CD18, CD49d, CD29, and CD54. Finally, comparison of mantle-cell lymphoma and marginal B-cell lymphoma showed that marginal B-cell lymphoma had a higher expression of CD11a, CD11c, CD18, CD29, and CD54. Thus, the CD49c/CD49d pair consistently demonstrated a distinct pattern of expression in chronic lymphocytic leukemia compared with mantle-cell lymphoma and marginal B-cell lymphoma, which could be helpful for the differential diagnosis. Moreover, the distinct profiles of adhesion molecules in these diseases may be responsible for their different capacities to invade the blood stream.

  13. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration.

    Science.gov (United States)

    Jonas, Jost B; Tao, Yong; Neumaier, Michael; Findeisen, Peter

    2010-10-01

    To examine intraocular concentrations of monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), and vascular endothelial growth factor (VEGF) in eyes with exudative age-related macular degeneration (AMD). The investigation included a study group of 28 patients (28 eyes) with exudative AMD and a control group of 25 patients (25 eyes) with cataract. The concentrations of MCP-1, sICAM-1, sVCAM-1, and VEGF in aqueous humor samples obtained during surgery were measured using a solid-phase chemiluminescence immunoassay. The study group as compared with the control group had higher aqueous concentrations of sICAM-1 (mean [SD], 844 [2073] vs 246 [206] pg/mL, respectively; P < .001), sVCAM-1 (mean [SD], 7978 [7120] vs 2999 [1426] pg/mL, respectively; P < .001), and MCP-1 (mean [SD], 587 [338] vs 435 [221] pg/mL, respectively; P = .07). The concentration of VEGF did not vary significantly between the groups (P = .76). The MCP-1 concentration was significantly associated with macular thickness (r = 0.40; P = .004). It decreased significantly with the type of subfoveal neovascular membrane (classic membrane type, occult membrane, retinal pigment epithelium detachment) (P = .009). The concentrations of sICAM-1, sVCAM-1, and VEGF were not significantly associated with membrane type and macular thickness (P ≥ .18). Concentrations of MCP-1, sICAM-1, and sVCAM-1 are significantly associated with exudative AMD, even in the presence of normal VEGF concentrations. Intraocular MCP-1 concentrations are correlated with the subfoveal neovascular membrane type and the amount of macular edema. One may infer that MCP-1, sICAM-1, and sVCAM-1 could potentially be additional target molecules in therapy for exudative AMD.

  14. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  15. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain

    Directory of Open Access Journals (Sweden)

    Honnold Shelley P

    2011-04-01

    Full Text Available Abstract Background Neuroinvasion of Venezuelan equine encephalitis virus (VEEV and subsequent initiation of inflammation in the brain plays a crucial role in the outcome of VEEV infection in mice. Adhesion molecules expressed on microvascular endothelial cells in the brain have been implicated in the modulation of the blood brain barrier (BBB and inflammation in brain but their role in VEEV pathogenesis is not very well understood. In this study, we evaluated the expression of extracellular matrix and adhesion molecules genes in the brain of VEEV infected mice. Findings Several cell to cell adhesion molecules and extracellular matrix protein genes such as ICAM-1, VCAM-1, CD44, Cadherins, integrins, MMPs and Timp1 were differentially regulated post-VEEV infection. ICAM-1 knock-out (IKO mice infected with VEEV had markedly reduced inflammation in the brain and demonstrated a delay in the onset of clinical symptoms of disease. A differential regulation of inflammatory genes was observed in the IKO mice brain compared to their WT counterparts. Conclusions These results improve our present understanding of VEEV induced inflammation in mouse brain.

  16. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  17. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2016-01-01

    Full Text Available The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.

  18. Effect of Hyaluronic Acid Incorporation Method on the Stability and Biological Properties of Polyurethane-Hyaluronic Acid Biomaterials

    Science.gov (United States)

    Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.

    2014-01-01

    The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670

  19. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  20. Organization of central synapses by adhesion molecules.

    Science.gov (United States)

    Tallafuss, Alexandra; Constable, John R L; Washbourne, Philip

    2010-07-01

    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during the development of the nervous system, and the formation of appropriate synapses is crucial for the establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies have revealed a diverse and vast assortment of molecules that are present at the synapse. It is now important to untangle this large array of proteins and determine how it assembles into a functioning unit. Here we focus on recent reports describing how synaptic cell adhesion molecules interact with and organize the presynaptic and postsynaptic specializations of both excitatory and inhibitory central synapses. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules

    Directory of Open Access Journals (Sweden)

    Villa-Verde D.M.S.

    1999-01-01

    Full Text Available Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  2. Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique

    Science.gov (United States)

    Pamatmat, J. K.; Gillado, A. V.; Herrera, M. U.

    2017-05-01

    Polyaniline molecules are embedded on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique. The infrared spectrum shows the existence of molecular vibrational modes associated with the presence of polyaniline molecules on the sample. With the addition of polyaniline molecules, the conductivity of adhesive tape increases. Surface conductivity increases with number of dipping cycle until it reaches a certain value. Beyond this value, surface conductivity begins to decrease. The surface conductivity of the sample is associated with the connectivity of the embedded polyaniline molecules. The connectivity increases as the number of dipping cycle progresses. Meanwhile, the decrease in surface conductivity is attributed to the eroding of existing embedded structure at higher number of dipping cycle.

  3. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    Science.gov (United States)

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Kulahin, Nikolaj; Kristensen, Ole

    2008-01-01

    The crystal structure of the first immunoglobulin (Ig1) domain of neural cell adhesion molecule 2 (NCAM2/OCAM/RNCAM) is presented at a resolution of 2.7 A. NCAM2 is a member of the immunoglobulin superfamily of cell adhesion molecules (IgCAMs). In the structure, two Ig domains interact by domain...

  5. The role of adhesive molecules in endometrial cancer: part II

    Directory of Open Access Journals (Sweden)

    Andrzej Malinowski

    2010-12-01

    Full Text Available The carcinogenesis is a result of both functional and structural disorders in the tissue. It initiates as a mutationin a gene encoding protein that is essential for cellular function. The subsequent cascade of eventsleads to accumulation of mutations and loss of cellular function. The cell loses its tissue-specific morphology,disconnects from other cells and extracellular matrix and migrates – the invasion begins. It is now clear thatadhesive molecules are a key player in this cascade. These proteins of the cell membrane surface are responsiblefor attachment of the cells to each other and to the extracellular matrix. These interactions are crucial forboth structural and functional tissue organization. Lack of this homeostasis destroys the tissue architectureand impairs its function and results in invasion. Abnormal expression of adhesive molecules was reported in allexamined cancers, including endometrial cancer.Endometrial cancer is the most common gynaecological cancer in developed countries. Although in many casesdiagnosed and treated in early stages, and thus with good results, some patients cannot be cured. Completeknowledge of the pathogenesis of the disease will be helpful in identifying the patients with negative prognosticfactors, increased risk of recurrence and, perhaps, to find other therapeutic options. In the paper we are trying tosum up the up-to-date knowledge of the role of adhesive molecules in pathogenesis of endometrial cancer.

  6. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line

    DEFF Research Database (Denmark)

    Holland, J; Owens, T

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B...... cell activation. While it was originally believed that ICAM-1 played a purely adhesive role, recent evidence suggests that it can itself transduce biochemical signals. We demonstrate that cross-linking of ICAM-1 results in the up-regulation of class II major histocompatibility complex, and we...... investigate the biochemical mechanism for the signaling role of ICAM-1. We show that cross-linking of ICAM-1 on the B lymphoma line A20 induces an increase in tyrosine phosphorylation of several cellular proteins, including the Src family kinase p53/p56(lyn). In vitro kinase assays showed that Lyn kinase...

  7. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    Directory of Open Access Journals (Sweden)

    Wang Fang

    2011-01-01

    Full Text Available Abstract Self-assembled monolayer (SAM with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry.

  8. Expression of adhesion and activation molecules on lymphocytes during open-heart surgery with cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Toft, P; Tønnesen, Else Kirstine; Zülow, I

    1997-01-01

    Open-heart surgery with cardiopulmonary bypass (CPB) and abdominal surgery are associated with lymphocytopenia. We measured a panel of adhesion and activation molecules on lymphocytes to clarify possible association of CPB with increased expression of these molecules. Eight patients undergoing open...

  9. Thromboelastometric and platelet responses to silk biomaterials.

    Science.gov (United States)

    Kundu, Banani; Schlimp, Christoph J; Nürnberger, Sylvia; Redl, Heinz; Kundu, S C

    2014-05-13

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls.

  10. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.

    Science.gov (United States)

    Tsai, W B; Grunkemeier, J M; Horbett, T A

    1999-02-01

    The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule. Copyright 1999 John Wiley & Sons, Inc.

  11. Soluble endothelial cell-selective adhesion molecule and incident cardiovascular events in a multiethnic population.

    Science.gov (United States)

    Ren, Hao-Yu; Khera, Amit; de Lemos, James A; Ayers, Colby R; Rohatgi, Anand

    2017-09-01

    Cell adhesion molecules are key regulators of atherosclerotic plaque development, but circulating levels of soluble fragments, such as intercellular adhesion molecule (sICAM-1) and vascular cell adhesion molecule (sVCAM-1), have yielded conflicting associations with atherosclerotic cardiovascular disease (ASCVD). Endothelial cell-selective adhesion molecule (ESAM) is expressed exclusively in platelets and endothelial cells, and soluble ESAM (sESAM) levels have been associated with prevalent subclinical atherosclerosis. We therefore hypothesized that sESAM would be associated with incident ASCVD. sESAM, sICAM-1, and sVCAM-1 were measured in 2,442 participants without CVD in the Dallas Heart Study, a probability-based population sample aged 30-65 years enrolled between 2000 and 2002. ASCVD was defined as first myocardial infarction, stroke, coronary revascularization, or CV death. A total of 162 ASCVD events were analyzed over 10.4 years. Increasing sESAM was associated with ASCVD, independent of risk factors (HR Q4 vs Q1: 2.7, 95% CI 1.6-4.6). Serial adjustment for renal function, sICAM-1, VCAM-1, and prevalent coronary calcium did not attenuate these associations. Continuous ESAM demonstrated similar findings (HR 1.31, 95% CI 1.2-1.4). Addition of sESAM to traditional risk factors improved discrimination and reclassification (delta c-index: P = .009; integrated-discrimination-improvement index P = .001; net reclassification index = 0.42, 95% CI 0.15-0.68). Neither sICAM-1 nor sVCAM-1 was independently associated with ASCVD. sESAM but not sICAM-1 or sVCAM-1 levels are associated with incident ASCVD. Further studies are warranted to investigate the role of sESAM in ASCVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cytokines, chemokines and soluble adhesion molecules in aqueous humor of children with uveitis.

    Science.gov (United States)

    Sijssens, Karen M; Rijkers, Ger T; Rothova, Aniki; Stilma, Jan S; Schellekens, Peter A W J F; de Boer, Joke H

    2007-10-01

    Uveitis in childhood is a visual threatening disease with a complication rate of more than 75%. Despite extensive research, the etiology of uveitis is still unclear although the general opinion is now that uveitis is a T-cell mediated disease. The purpose of this study was to investigate the profile of cytokines, chemotactic cytokines (chemokines) and soluble adhesion molecules in the aqueous humor (AqH) of children with uveitis in order to identify the factors that control the immune response in the eye. In this clinical laboratory investigation we analyzed, with a multiplex immunoassay, 16 immune mediators in the AqH of 25 children with uveitis and 6 children without uveitis. Increased levels of interleukin-2 (IL-2), IL-6, IL-10, IL-13, IL-18, interferon-gamma, tumor necrosis factor-alpha, soluble intercellular adhesion molecule-1, RANTES, IL-8 and interferon-inducible 10-kDa protein were found in the AqH of children with uveitis compared with controls. No significant differences were found for IL-1 beta, IL-4, IL-12 p-70, soluble vascular cell adhesion molecule 1 and Eotaxin. Lower levels of IL-10 and IL-8 were found in quiet stage uveitis (surgical) samples compared with active uveitis (diagnostic) samples and in samples of patients treated with methotrexate (MTX) compared with samples of patients not treated with MTX. Lower levels of IL-10 were as well found in samples taken during the first 3 months after the diagnosis of uveitis than samples taken later during the disease process. No significant differences were found between patients treated with or without topical or systemic (perioperative and long term) corticosteroids. In conclusion, in children with uveitis, multiple intraocular cytokines, chemokines and soluble adhesion molecules are increased in the AqH regardless of active or inactive inflammation. Whether the IL-8 and IL-10 levels in AqH of children with uveitis are correlated with uveitis activity, early or late phase of the course of the disease

  13. Identification of a cytotoxic molecule in heat-modified citrus pectin.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cambier, Pierre; El Bkassiny, Sandy; Tikad, Abdellatif; Dieu, Marc; Vincent, Stéphane P; Van Cutsem, Pierre; Michiels, Carine

    2016-02-10

    Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus.

    Science.gov (United States)

    Sandau, Ursula S; Mungenast, Alison E; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel; Ojeda, Sergio R

    2011-06-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.

  15. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    Energy Technology Data Exchange (ETDEWEB)

    Shotorbani, Behnaz Banimohamad [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Alizadeh, Effat, E-mail: Alizadehe@tbzmed.ac.ir [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Salehi, Roya [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Barzegar, Abolfazl [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2017-02-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  16. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    International Nuclear Information System (INIS)

    Shotorbani, Behnaz Banimohamad; Alizadeh, Effat; Salehi, Roya; Barzegar, Abolfazl

    2017-01-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  17. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion

    International Nuclear Information System (INIS)

    Galli, C; Parisi, L; Smerieri, A; Lumetti, S; Manfredi, E; Macaluso, G M; Elviri, L; Bianchera, A; Bettini, R; Lagonegro, P

    2016-01-01

    The aim of the present study was to investigate whether chitosan-based scaffolds modified with D-(+) raffinose and enriched with thiol-modified gelatin could selectively improve osteoblast adhesion and proliferation. 2, 3 and 4.5% chitosan films were prepared. Chitosan suitability for tissue engineering was confirmed by protein adsorption assay. Scaffolds were incubated with a 2.5 mg ml −1 BSA solution and the decrease of protein content in the supernatants was measured by spectrophotometry. Chitosan films were then enriched with thiol-modified gelatin and their ability to bind BSA was also measured. Then, 2% chitosan discs with or without thiol-modified gelatin were used as culture substrates for MC3T3-E1 cells. After 72 h cells were stained with trypan blue or with calcein AM and propidium iodide for morphology, viability and proliferation assays. Moreover, cell viability was measured at 48, 72, 96 and 168 h to obtain a growth curve. Chitosan films efficiently bound and retained BSA proportionally to the concentration of chitosan discs. The amount of protein retained was higher on chitosan enriched with thiol-modified gelatin. Moreover, chitosan discs allowed the adhesion and the viability of cells, but inhibited their proliferation. The functionalization of chitosan with thiol-modified gelatin enhanced cell spreading and proliferation. Our data confirm that chitosan is a suitable material for tissue engineering. Moreover, our data show that the enrichment of chitosan with thiol-modified gelatin enhances its biological properties. (paper)

  18. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Riley, Caroline Hasselbalch; Skov, Vibe; Larsen, Thomas Stauffer

    2011-01-01

    for the egress of CD34+ cells from the bone marrow. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 has been implicated in cell adhesion, cellular invasiveness, angiogenesis, and inflammation, which are all key processes in the pathophysiology of PMF. Accordingly, CEACAMs may play an important...

  19. Cytokines and adhesion molecules in multiple sclerosis patients treated with interferon-beta1b

    DEFF Research Database (Denmark)

    Jensen, Jakob; Krakauer, Martin; Sellebjerg, Finn

    2005-01-01

    inconsistent. We found decreases in CD4 and CD8 T cell expression of the CD49d/VLA-4 molecule, increases in plasma concentrations of soluble vascular cell adhesion molecule (sVCAM-1), and increases in plasma concentrations of tumor necrosis factor and interleukin (IL)-12 p40 chain in patients with MS who were...

  20. Infusion of hypertonic saline (7.5%) does not change neutrophil oxidative burst or expression of endothelial adhesion molecules after abdominal hysterectomy

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Rasmussen, Torsten Bøgh; Krog, Jan

    2006-01-01

    of leukocyte and differential count, neutrophil membrane expression of endothelial adhesion molecules by flow cytometry, and O2- -generation by superoxide dismutase-inhibitable reduction of cytochrome C. RESULTS: Surgery induced well-known changes in the number and distribution of white blood cells, reduced...... the expression of adhesion molecules, and halved the superoxide production unrelated to the tonicity or volume of the infused fluids. CONCLUSION: Infusion of a clinically relevant dose of hypertonic saline has no detectable effect on the membrane expression of endothelial adhesion molecules or O2- -generation...

  1. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  2. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    effects on peptide conformation. pi-orbital interactions at the molecular level were observed to be very sensitive to intermolecular distance and orientation of the chromophores attached to the alpha-helical peptide templates. When the methylstilbene or Oxa-PPV molecules were arranged on the same side of the helix with intermolecular spacing of 6A, the chromophores interacted strongly with each other forming excimers. Such interactions were absent when the molecules were arranged on the opposite side of the helix. These peptide-templated systems therefore offer enormous opportunities for the elucidation of complex photophysical phenomena that occur in relatively aggregated morphologies of conjugated species, but under dilute solution conditions in which the number of chromphores in the aggregate can be manipulated. Part 2. Synthesis and characterization of biocompatible polypeptide elastomer. Lately, the significance of mechanical forces and biological cues involved in tissue remodeling are highly valued; thus the capacity of a biomaterial to present a fitting mechanical and biological environment for optimal tissue generation has become a key parameter for biomaterial design. In addition to having suitable mechanical properties, materials used for these applications need to be biologically active, i.e. trigger dynamic interactions with cells and stimulate explicit cell and tissue responses. Thus, we have designed a resilin-based modular biomaterial incorporating both mechanically and biologically active domains to sense and aptly respond to the bio-mechanical demand or changes in their environment. The use of resilin-like polypeptides offers access to a class of hydrophilic elastomers with excellent resilience and high frequency responsiveness, which can be used for encapsulating hydrophilic drugs like proteins for drug delivery, and provides hydrophilic extracellular matrix mimicking cell adhesive and enzyme degradable substrate for tissue engineering. Hence, we have

  3. Molecular Characterization of Macrophage-Biomaterial Interactions.

    Science.gov (United States)

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  4. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Science.gov (United States)

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  5. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes.

    Science.gov (United States)

    Parsanathan, Rajesh; Jain, Sushil K

    2018-04-06

    L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.

  6. Cell Adhesion Molecules Are Mediated by Photobiomodulation at 660 nm in Diabetic Wounded Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nicolette N. Houreld

    2018-04-01

    Full Text Available Diabetes affects extracellular matrix (ECM metabolism, contributing to delayed wound healing and lower limb amputation. Application of light (photobiomodulation, PBM has been shown to improve wound healing. This study aimed to evaluate the influence of PBM on cell adhesion molecules (CAMs in diabetic wound healing. Isolated human skin fibroblasts were grouped into a diabetic wounded model. A diode laser at 660 nm with a fluence of 5 J/cm2 was used for irradiation and cells were analysed 48 h post-irradiation. Controls consisted of sham-irradiated (0 J/cm2 cells. Real-time reverse transcription (RT quantitative polymerase chain reaction (qPCR was used to determine the expression of CAM-related genes. Ten genes were up-regulated in diabetic wounded cells, while 25 genes were down-regulated. Genes were related to transmembrane molecules, cell–cell adhesion, and cell–matrix adhesion, and also included genes related to other CAM molecules. PBM at 660 nm modulated gene expression of various CAMs contributing to the increased healing seen in clinical practice. There is a need for new therapies to improve diabetic wound healing. The application of PBM alongside other clinical therapies may be very beneficial in treatment.

  7. Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study

    Directory of Open Access Journals (Sweden)

    Shida T

    2013-10-01

    Full Text Available Takayuki Shida,1 Hironobu Koseki,1 Itaru Yoda,1 Hidehiko Horiuchi,1 Hideyuki Sakoda,2 Makoto Osaki11Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, Nagasaki, Japan; 2Division of Medical Devices, National Institute of Health Sciences, Tokyo, JapanAbstract: Bacterial adhesion to the surface of biomaterials is an essential step in the pathogenesis of implant-related infections. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis to adhere to the surface of solid biomaterials, including oxidized zirconium-niobium alloy (Oxinium, cobalt-chromium-molybdenum alloy, titanium alloy, commercially pure titanium, and stainless steel, and performed a biomaterial-to-biomaterial comparison. The test specimens were physically analyzed to quantitatively determine the viable adherent density of the S. epidermidis strain RP62A (American Type Culture Collection [ATCC] 35984. Field emission scanning electron microscope and laser microscope examination revealed a featureless, smooth surface in all specimens (average roughness <10 nm. The amounts of S. epidermidis that adhered to the biomaterial were significantly lower for Oxinium and the cobalt-chromium-molybdenum alloy than for commercially pure titanium. These results suggest that Oxinium and cobalt-chromium-molybdenum alloy are less susceptible to bacterial adherence and are less inclined to infection than other materials of a similar degree of smoothness.Keyword: bacterial adhesion, implant, infection, surface character

  8. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    Science.gov (United States)

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  9. Unfavorable cytokine and adhesion molecule profiles during and after pregnancy, in women with gestational diabetes mellitus.

    Science.gov (United States)

    Roca-Rodríguez, María Del Mar; López-Tinoco, Cristina; Fernández-Deudero, Álvaro; Murri, Mora; García-Palacios, María Victoria; García-Valero, María Del Amor; Tinahones, Francisco José; Aguilar-Diosdado, Manuel

    2017-01-01

    Gestational diabetes mellitus is a significant risk factor for metabolic syndrome and cardiovascular disease. To assess the relationships between components of the metabolic syndrome and cytokine and adhesion molecule levels in women with GDM during pregnancy and after delivery. A prospective case-control study on a sample of 126 pregnant women (63 with and 63 without gestational diabetes mellitus). In an intra-subject analysis, 41 women with history of gestational diabetes mellitus and 21 controls were re-assessed in the postpartum period. Clinical data and levels of cytokines and adhesion molecules were recorded during weeks 24-29 of pregnancy and 12 months after delivery. In the postpartum period, there were significantly higher levels of tumor necrosis factor alpha in both cases and controls, and of adiponectin in controls. Cases showed higher leptin levels, with no significant differences during and after pregnancy. No significant differences were seen in adhesion molecules and interleukin-6 between cases and controls during pregnancy and in the postpartum period, but levels of both were higher in cases. During pregnancy and after delivery, adiponectin decreased in cases and increased in controls. Significant positive correlations were seen between adiponectin and fasting blood glucose levels and vascular cell adhesion molecule-1, and also between leptin and tumor necrosis factor alpha levels. The results suggest that increased inflammation and transient hyperglycemia during pregnancy would represent a latent form of metabolic syndrome, with an increased risk for type 2 diabetes mellitus and future cardiovascular disease. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  11. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    Science.gov (United States)

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  12. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  13. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    Directory of Open Access Journals (Sweden)

    Miyuki Matsuda

    2012-01-01

    Full Text Available The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  14. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K

    2013-01-01

    Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1...... (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species...

  15. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  16. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  17. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  18. Albumin grafting on polymer surfaces by gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.; Park, K.; DeMeo, D.

    1993-01-01

    Polymeric biomaterial surfaces were modified by albumin grafting to improve their blood compatibility. Albumin molecules were functionalized by introduction of double bonds. The functionalized albumin was covalently attached to polypropylene fibers, polycarbonate, and poly(vinyl chloride) by gamma-irradiation. ESCA and ATR/FTIR analysis of the control and grafted surfaces was conducted. Albumin grafting efficiency was found to be dependent on the gamma-irradiation time and the concentration of albumin as indicated by platelet adhesion studies. The grafted albumin molecules were not displaced when exposed to blood for prolonged time period. Finally, PLEXUS oxygenators grafted with albumin using this approach showed a significant reduction in platelet adhesion when compared to control

  19. A role for adhesion molecules in contact-dependent T help for B cells

    DEFF Research Database (Denmark)

    Owens, T

    1991-01-01

    The role of cell contact in T-dependent B cell activation was examined. Small resting B cells from C57BL/6 mice were cultured with CBA-derived, non-alloreactive cloned T helper cells in anti-T cell receptor V beta 8-coated microwells. This induced polyclonal B cell activation to enter cell cycle...... that continued cell contact involving adhesion/accessory molecules induces B cells to proliferate and to respond to T cell lymphokines. A signaling role for cell interaction molecules on B cells is proposed, similar to the role of these and analogous molecules on T cells....

  20. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  1. The Role of Cell Adhesion Molecule Genes Regulating Neuroplasticity in Addiction

    Directory of Open Access Journals (Sweden)

    Dawn E. Muskiewicz

    2018-01-01

    Full Text Available A variety of genetic approaches, including twin studies, linkage studies, and candidate gene studies, has established a firm genetic basis for addiction. However, there has been difficulty identifying the precise genes that underlie addiction liability using these approaches. This situation became especially clear in genome-wide association studies (GWAS of addiction. Moreover, the results of GWAS brought into clarity many of the shortcomings of those early genetic approaches. GWAS studies stripped away those preconceived notions, examining genes that would not previously have been considered in the study of addiction, consequently creating a shift in our understanding. Most importantly, those studies implicated a class of genes that had not previously been considered in the study of addiction genetics: cell adhesion molecules (CAMs. Considering the well-documented evidence supporting a role for various CAMs in synaptic plasticity, axonal growth, and regeneration, it is not surprising that allelic variation in CAM genes might also play a role in addiction liability. This review focuses on the role of various cell adhesion molecules in neuroplasticity that might contribute to addictive processes and emphasizes the importance of ongoing research on CAM genes that have been implicated in addiction by GWAS.

  2. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    Science.gov (United States)

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  3. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  4. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    International Nuclear Information System (INIS)

    Skopinska-Wisniewska, J.; Sionkowska, A.; Kaminska, A.; Kaznica, A.; Jachimiak, R.; Drewa, T.

    2009-01-01

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in biomaterial

  5. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Skopinska-Wisniewska, J., E-mail: joanna@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Sionkowska, A.; Kaminska, A. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kaznica, A.; Jachimiak, R.; Drewa, T. [Collegium Medicum, Nicolaus Copernicus University, Karlowicz 24, 85-092 Bydgoszcz (Poland)

    2009-07-15

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in

  6. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  7. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors.

    Science.gov (United States)

    Pisamai, Sirinun; Rungsipipat, Anudep; Kalpravidh, Chanin; Suriyaphol, Gunnaporn

    2017-08-01

    Perturbation of cell adhesion can be essential for tumor cell invasion and metastasis, but the current knowledge on the gene expression of molecules that mediate cell adhesion in canine oral tumors is limited. The present study aimed to investigate changes in the gene expression of cell adhesion molecules (E-cadherin or CDH1, syndecan 1 or SDC1, NECTIN2 and NECTIN4), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), in canine oral tumors, including benign tumors, oral melanoma (OM) and non-tonsillar oral squamous cell carcinoma (OSCC), by quantitative real-time reverse transcription PCR. When compared with the normal gingival controls, decreased CDH1, SDC1 and NECTIN4 expression levels were observed in OSCC and OM, reflecting a possible role as cell adhesion molecules and tumor suppressors in canine oral cancers in contrast to the upregulation of MMP2 expression. Downregulated MMP7 was specifically revealed in the OM group. In the late-stage OM, the positive correlation of MMP7 and CDH1 expression was noticed as well as that of SDC1 and NECTIN4. Enhanced TIMP1 expression was shown in all tumor groups with prominent expression in the benign tumors and the early-stage OM. MMP14 expression was notable in the early-stage OM. Higher MMP9 and TIMP1 expression was observed in the acanthomatous ameloblastoma. In conclusion, this study revealed that the altered expression of cell adhesion molecules, MMP7 and MMP2 was correlated with clinicopathologic features in canine oral cancers whereas TIMP1 and MMP14 expression was probably associated with early-stage tumors; therefore, these genes might serve as molecular markers for canine oral tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  9. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties.

  11. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array

    Directory of Open Access Journals (Sweden)

    Bekő Gabriella

    2010-12-01

    Full Text Available Abstract Background Preeclampsia is a severe complication of pregnancy characterized by an excessive maternal systemic inflammatory response with activation of both the innate and adaptive arms of the immune system. Cytokines, chemokines and adhesion molecules are central to innate and adaptive immune processes. The purpose of this study was to determine circulating levels of cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia in a comprehensive manner, and to investigate their relationship to the clinical features and laboratory parameters of the study participants, including markers of overall inflammation (C-reactive protein, endothelial activation (von Willebrand factor antigen and endothelial injury (fibronectin, oxidative stress (malondialdehyde and trophoblast debris (cell-free fetal DNA. Results Serum levels of interleukin (IL-1beta, IL-1 receptor antagonist (IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, IL-18, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, transforming growth factor (TGF-beta1, interferon-gamma-inducible protein (IP-10, monocyte chemotactic protein (MCP-1, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 were measured in 60 preeclamptic patients, 60 healthy pregnant women and 59 healthy non-pregnant women by multiplex suspension array and ELISA. In normal pregnancy, the relative abundance of circulating IL-18 over IL-12p70 and the relative deficiency of the bioactive IL-12p70 in relation to IL-12p40 might favour Th2-type immunity. Although decreased IL-1ra, TNF-alpha and MCP-1 concentrations of healthy pregnant relative to non-pregnant women reflect anti-inflammatory changes in circulating cytokine profile, their decreased serum IL-10 and increased IP-10 levels might drive pro-inflammatory responses. In addition to a shift towards Th1-type immunity (expressed by the increased IL-2/IL-4 and IFN-gamma/IL-4 ratios, circulating levels of

  12. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun; Song, Gyu-Yong; Chung, Young Chul; Roh, Seong Hwan; Jeong, Hye Gwang

    2006-01-01

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  13. Expression Levels of Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166 in Primary Breast Carcinoma and Distant Breast Cancer Metastases

    Directory of Open Access Journals (Sweden)

    M. Ihnen

    2010-01-01

    Full Text Available Introduction: Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166 gained increasing attention regarding tumorprogression and metastatic spread in breast cancer. The aim of this study was to examine ALCAM expression levels in primary breast cancer and distant metastases of the same patient within 29 autopsy cases to better understand the underlying mechanisms of metastases and the role of adhesion molecules in this process.

  14. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  15. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  16. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  17. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    Science.gov (United States)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  18. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    International Nuclear Information System (INIS)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  20. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  1. Time-related contact angle measurements with human plasma on biomaterial surfaces

    NARCIS (Netherlands)

    Rakhorst, G; Van der Mei, HC; van Oeveren, W; Spijker, HT; Busscher, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) was used to assess in time contact angle changes of human plasma drops placed on four different biomaterials. Results were related with conventional blood compatibility measurements: albumin adsorption, fibrinogen adsorption and platelet adhesion.

  2. Cytokines and soluble adhesion molecules in children and adolescents with a tic disorder

    NARCIS (Netherlands)

    Bos-Veneman, Netty G.P.; Bijzet, Johan; Limburg, Pieter C.; Minderaa, Rudolf; Kallenberg, C.; Hoekstra, Pieter J.

    2010-01-01

    Aim: Dysregulation of the immune system may play a role in tic disorders. We screened for immune disturbances by investigating serum levels of cytokines and soluble adhesion molecules in patients with a tic disorder. Methods: Serum levels of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, soluble IL-2

  3. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  4. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides

    Directory of Open Access Journals (Sweden)

    Annj Zamuner

    2017-09-01

    Full Text Available Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP mapped on [351–359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  5. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides.

    Science.gov (United States)

    Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica

    2017-09-01

    Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  6. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    Science.gov (United States)

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons.

    Science.gov (United States)

    Triana-Baltzer, Gallen B; Liu, Zhaoping; Gounko, Natalia V; Berg, Darwin K

    2008-09-01

    Neuroligin, SynCAM, and L1-CAM are cell adhesion molecules with synaptogenic roles in glutamatergic pathways. We show here that SynCAM is expressed in the chick ciliary ganglion, embedded in a nicotinic pathway, and, as shown previously for neuroligin and L1-CAM, acts transcellularly to promote synaptic maturation on the neurons in culture. Moreover, we show that electroporation of chick embryos with dominant negative constructs disrupting any of the three molecules in vivo reduces the total amount of presynaptic SV2 overlaying the neurons expressing the constructs. Only disruption of L1-CAM and neuroligin, however, reduces the number of SV2 puncta specifically overlaying nicotinic receptor clusters. Disrupting L1-CAM and neuroligin together produces no additional decrement, indicating that they act on the same subset of synapses. SynCAM may affect synaptic maturation rather than synapse formation. The results indicate that individual neurons can express multiple synaptogenic molecules with different effects on the same class of nicotinic synapses.

  8. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  9. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses.

    Science.gov (United States)

    Itoh, K; Stevens, B; Schachner, M; Fields, R D

    1995-11-24

    Development of the mammalian nervous system is regulated by neural impulse activity, but the molecular mechanisms are not well understood. If cell recognition molecules [for example, L1 and the neural cell adhesion molecule (NCAM)] were influenced by specific patterns of impulse activity, cell-cell interactions controlling nervous system structure could be regulated by nervous system function at critical stages of development. Low-frequency electrical pulses delivered to mouse sensory neurons in culture (0.1 hertz for 5 days) down-regulated expression of L1 messenger RNA and protein (but not NCAM). Fasciculation of neurites, adhesion of neuroblastoma cells, and the number of Schwann cells on neurites was reduced after 0.1-hertz stimulation, but higher frequencies or stimulation after synaptogenesis were without effect.

  10. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  11. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  12. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    Science.gov (United States)

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  13. [Estimation of relation between homocysteine concentration and selected lipid parameters and adhesion molecules concentration in children with atherosclerosis risk factors].

    Science.gov (United States)

    Sierakowska-Fijałek, Anna; Baj, Zbigniew; Kaczmarek, Piotr; Stepień, Mariusz; Rysz, Jacek

    2008-10-01

    Atherosclerosis begins in childhood. At present among numerous risk factors of atherosclerosis the role of hiperhomocysteinemia in development of cardiovascular heart disease is taken under consideration. Atherogenic effect of homocystein is related to its cytotoxin action, conducting to endothelial dysfunction and damage. It is correlated with increase of the lipid levels in the blood serum and change of expression of the soluble forms of adhesion molecules. The aim of this study was to estimate relations between the homocystein serum concentration, expression of the selected adhesion molecules and the lipid levels in the blood serum in children with atherosclerosis risk factors. The group consisted of 670 children, 76 of them had atherosclerosis risk factors. In further examination 48 children have taken a part, whose parents were agreed for theirs participation in the program. The comparative group composed of 25 children without the risk factors. We determined total cholesterol (TC), triglycerides (TG), LDL cholesterol fraction (LDL-C), HDL cholesterol fraction (HDL-C), serum homocysteine concentration (Hcy), the expression of the soluble forms of adhesion molecules (sCAM): sP-selectin and sVCAM-1 (vascular cell adhesion molecule-1). Obesity, hypertension and lipid disorders in the shape of higher concentration of TC, LDL-C, TG and lower HDL-C were the most frequent risk factors in the investigated children. No significant differences in serum homocysteine concentration were observed between the investigated groups. However, its concentration was significantly higher in children with two atherosclerosis risk factors. No significant differences in expression of s-VCAM-1 were observed in the investigated groups, concentration of sP-selectin was significantly higher in children with atherosclerosis risk factors (phomocysteine and chosen adhesion molecules in children with atherosclerosis risk factors might potentially constitute the marker of early

  14. Irradiation induces increase of adhesion molecules and accumulation of β2-integrin-expressing cells in humans

    International Nuclear Information System (INIS)

    Handschel, Joerg; Prott, Franz-Josef; Sunderkoetter, Cord; Metze, Dieter; Meyer, Ulrich; Joos, Ulrich

    1999-01-01

    Purpose: The purpose of our investigation was to describe the dose- and time-dependent histomorphologic alterations of the irradiated tissue, the composition of the infiltrate, and the expression patterns of various adhesion molecules. Methods and Materials: We analyzed immunohistochemically alterations in oral mucosa in 13 head and neck cancer patients before radiotherapy and with 30 Gy and 60 Gy. All had oral mucosa irradiation, with a final dose of 60 Gy using conventional fractionation. Snap-frozen specimens were stained using the indirect immunoperoxidase technique. Histomorphology was studied in paraffin-embedded sections. In addition, we determined the clinical degree of oral mucositis. Results: Histomorphologic evaluation showed no vascular damage. Irradiation caused a steep increase of β 2 -integrin-bearing cells (p 1 -integrin-positive cells remained at low levels. Additionally we found an increase in the expression of endothelial intercellular adhesion molecule-1 (ICAM-1) (p 2 is more involved than β 1 . Pharmaceuticals that block leukocyte adhesion to E-selectin or ICAM-1 may prevent radiation-mediated inflammation in oral mucosa

  15. Modified silyl-terminated polyether polymer blends with bisphenol A diglycidyl ether epoxy for adhesive applications

    International Nuclear Information System (INIS)

    Bitenieks, J; Meri, R Merijs; Zicans, J; Berzins, R; Umbraško, J; Rekners, U

    2016-01-01

    Modified silyl-terminated polyether polymer (MS Polymer) was blended with bisphenol A diglycidyl ether (DGEBPA) epoxy at MS Polymer/epoxy ratio from 30/70 to 70/30. MS Polymer/epoxy systems were examined for two-component adhesive formulation with additional fillers. Applicability of the MS Polymer/epoxy system at the ratio of the components 60/40 is demonstrated for the development of adhesive formulation. Rheological analysis of the components A and B shows suitable viscosity values for development of two- component adhesives formulation. Curing dynamics as well as tensile stress-strain properties and Shore A hardness of the chosen adhesive formulation are reasonable for the development of MS Polymer/epoxy type adhesive. (paper)

  16. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    International Nuclear Information System (INIS)

    Pirzer, T; Geisler, M; Hugel, T; Scheibel, T

    2009-01-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C 16 or dimeric (QAQ) 8 NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH 2 PO 4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C 16 shows a higher adhesion force than (QAQ) 8 NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion

  17. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    Science.gov (United States)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  18. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    Science.gov (United States)

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.

  19. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways

    NARCIS (Netherlands)

    Braunstahl, G. J.; Overbeek, S. E.; Kleinjan, A.; Prins, J. B.; Hoogsteden, H. C.; Fokkens, W. J.

    2001-01-01

    BACKGROUND: Allergic rhinitis (AR) and asthma are characterized by means of a similar inflammatory process in which eosinophils are important effector cells. The migration of eosinophils from the blood into the tissues is dependent on adhesion molecules. OBJECTIVE: To analyze the aspects of

  20. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  1. Expression of adhesion and activation molecules on lymphocytes during open-heart surgery with cardiopulmonary bypass

    DEFF Research Database (Denmark)

    Toft, P; Tønnesen, Else Kirstine; Zülow, I

    1997-01-01

    Open-heart surgery with cardiopulmonary bypass (CPB) and abdominal surgery are associated with lymphocytopenia. We measured a panel of adhesion and activation molecules on lymphocytes to clarify possible association of CPB with increased expression of these molecules. Eight patients undergoing open-heart...... open-heart and abdominal surgery. The proportion of CD11a/CD18-positive lymphocytes rose from 67.6 +/- 8% to 86.4 +/- 3% after aortic declamping (p open-heart as well as abdominal operations. Thus CPB...

  2. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  3. Handheld skin printer: in situ formation of planar biomaterials and tissues.

    Science.gov (United States)

    Hakimi, Navid; Cheng, Richard; Leng, Lian; Sotoudehfar, Mohammad; Ba, Phoenix Qing; Bakhtyar, Nazihah; Amini-Nik, Saeid; Jeschke, Marc G; Günther, Axel

    2018-05-15

    We present a handheld skin printer that enables the in situ formation of biomaterial and skin tissue sheets of different homogeneous and architected compositions. When manually positioned above a target surface, the compact instrument (weight <0.8 kg) conformally deposits a biomaterial or tissue sheet from a microfluidic cartridge. Consistent sheet formation is achieved by coordinating the flow rates at which bioink and cross-linker solution are delivered, with the speed at which a pair of rollers actively translate the cartridge along the surface. We demonstrate compatibility with dermal and epidermal cells embedded in ionically cross-linkable biomaterials (e.g., alginate), and enzymatically cross-linkable proteins (e.g., fibrin), as well as their mixtures with collagen type I and hyaluronic acid. Upon rapid crosslinking, biomaterial and skin cell-laden sheets of consistent thickness, width and composition were obtained. Sheets deposited onto horizontal, agarose-coated surfaces were used for physical and in vitro characterization. Proof-of-principle demonstrations for the in situ formation of biomaterial sheets in murine and porcine excisional wound models illustrate the capacity of depositing onto inclined and compliant wound surfaces that are subject to respiratory motion. We expect the presented work will enable the in situ delivery of a wide range of different cells, biomaterials, and tissue adhesives, as well as the in situ fabrication of spatially organized biomaterials, tissues, and biohybrid structures.

  4. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  5. Nature's Mechanisms for Tough, Self-healing Polymers and Polymer Adhesives

    Science.gov (United States)

    Hansma, Paul

    2007-03-01

    Spider silk^2 and the natural polymer adhesives in abalone shells^3 and bone^4,5 can give us insights into nature's mechanisms for tough, self-healing polymers and polymer adhesives. The natural polymer adhesives in biomaterials have been optimized by evolution. An optimized polymer adhesive has five characteristics. 1) It holds together the strong elements of the composite. 2) It yields just before the strong elements would otherwise break. 3) It dissipates large amounts of energy as it yields. 4) It self heals after it yields. 5) It takes just a few percent by weight. Both natural polymer adhesives and silk rely on sacrificial bonds and hidden length for toughness and self-healing.^6 A relatively large energy, of order 100eV, is required to stretch a polymer molecule after a weak bond, a sacrificial bond, breaks and liberates hidden length, which was previously hidden, typically in a loop or folded domain, from whatever was stretching the polymer. The bond is called sacrificial if it breaks at forces well below the forces that could otherwise break the polymer backbone, typically greater than 1nN. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby also providing a ``self-healing'' property to the material.^2-4 Individual polymer adhesive molecules based on sacrificial bonds and hidden length can supply forces of order 300pN over distances of 100s of nanometers. Model calculations show that a few percent by weight of adhesives based on these principles could be optimized adhesives for high performance composite materials including nanotube and graphene sheet composites. ^2N. Becker, E. Oroudjev, S. Mutz et al., Nature Materials 2 (4), 278 (2003). ^3B. L. Smith, T. E. Schaffer, M. Viani et al., Nature 399 (6738), 761 (1999). ^4J. B. Thompson, J. H. Kindt, B. Drake et al., Nature 414 (6865), 773 (2001). ^5G. E. Fantner, T. Hassenkam, J. H. Kindt et al., Nature Materials 4, 612 (2005). ^6G. E. Fantner, E. Oroudjev, G

  6. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  7. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  8. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  9. Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials.

    Science.gov (United States)

    Mondal, Dibakar; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2017-11-01

    Organic-inorganic class II hybrid materials have domain sizes at the molecular level and chemical bonding between the organic and inorganic phases. We have previously reported the synthesis of class II hybrid biomaterials from alkoxysilane-functionalized polycaprolactone (PCL) and borophosphosilicate (B 2 O 3 -P 2 O 5 -SiO 2 ) glass (BPSG) through a non-aqueous sol-gel process. In the present study, the mechanical properties and degradability of these PCL/BPSG hybrid biomaterials were studied and compared to those of their conventional composite counterparts. The compressive strength, modulus and toughness of the hybrid biomaterials were significantly greater compared to the conventional composites, likely due to the covalent bonding between the organic and inorganic phases. A hybrid biomaterial (50wt% PCL and 50wt% BPSG) exhibited compressive strength, modulus and toughness values of 32.2 ± 3.5MPa, 573 ± 85MPa and 1.54 ± 0.03MPa, respectively; whereas the values for composite of similar composition were 18.8 ± 1.6MPa, 275 ± 28MPa and 0.76 ± 0.03MPa, respectively. Degradation in phosphate-buffered saline was slower for hybrid biomaterials compared to their composite counterparts. Thus, these hybrid materials possess superior mechanical properties and more controlled degradation characteristics compared to their corresponding conventional composites. To assess in vitro cytocompatibility, MC3T3-E1 pre-osteoblastic cells were seeded onto the surfaces of hybrid biomaterials and polycaprolactone (control). Compared to polycaprolactone, cells on the hybrid material displayed enhanced spreading, focal adhesion formation, and cell number, consistent with excellent cytocompatibility. Thus, based on their mechanical properties, degradability and cytocompatibility, these novel biomaterials have potential for use as scaffolds in bone tissue engineering and related applications. Copyright © 2017. Published by Elsevier Ltd.

  10. Soluble intercellular adhesion molecule-1 and interleukin-6 levels reflect endothelial dysfunction in patients with primary hypercholesterolaemia treated with atorvastatin.

    Science.gov (United States)

    Nawawi, H; Osman, N S; Annuar, R; Khalid, B A K; Yusoff, K

    2003-08-01

    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.

  11. Serum of patients with antiphospholipid syndrome induces adhesion molecules in endothelial cells.

    Science.gov (United States)

    Engel, Bettina; Müller, Gregor; Roch, Beate; Schröder, Hans-Egbert; Aringer, Martin; Bornstein, Stefan R; Morawietz, Henning

    2017-11-01

    The antiphospholipid syndrome (APS) is a systemic auto-immune disease with an unclear pathophysiology. The aim of our study was to understand the development of APS on a cellular level. Therefore, we analyzed the influence of human serum of APS patients on endothelial expression of specific genes and proteins in comparison to a control group. In this study, we analyzed the expression of ICAM-1, VCAM-1, E-selectin and annexin V in primary cultures of human umbilical vein endothelial cells (HUVEC) in response to 10% (v/v) serum of control patients (n = 6), patients with systemic lupus erythematosus (SLE) and no APS (n = 4) or APS patients (n = 9) for 24 h. Total RNA was prepared from confluent endothelial cell layers and mRNA expression of ICAM-1, VCAM-1 and E-selectin was analyzed by reverse transcription polymerase-chain reaction (RT-PCR). The protein expression was determined by Western blot. Serum protein concentrations of soluble forms of adhesion molecules sICAM-1 and sVCAM-1 were quantified by ELISA. Gene expression data were correlated with clinical parameters. The mRNA expression of ICAM-1 was increased in cells incubated with serum from APS patients (166 ± 22% of control; P = 0.023). Serum of patients with (SLE)/no APS caused a 1.4-fold higher ICAM-1 mRNA level. Western blot analysis showed an increase in protein expression of adhesion molecules ICAM-1 (260 ± 49%; P = 0.011) and VCAM-1 (357 ± 97%; P = 0.023) in cells that were incubated with serum from APS patients. Plasma analysis showed elevated levels of sVCAM-1 in APS patients (189 ± 34%; P = 0.045) compared to the levels measured in the control group. The sVCAM-1 plasma level was correlating with the frequency of abortions. An augmented expression of endothelial adhesion molecules is involved in the pathophysiology of patients with antiphospholipid syndrome. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells.

    Science.gov (United States)

    Kudo, Keiko; Hasegawa, Shunji; Suzuki, Yasuo; Hirano, Reiji; Wakiguchi, Hiroyuki; Kittaka, Setsuaki; Ichiyama, Takashi

    2012-11-01

    Kawasaki disease is an acute febrile vasculitis of childhood that is associated with elevated production of inflammatory cytokines, causing damage to the coronary arteries. The production of proinflammatory cytokines and expression of adhesion molecules in human coronary arterial endothelial cells (HCAECs) is regulated by nuclear transcription factor-κB (NF-κB) activation. We have previously reported that the active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)), inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activation. In this study, we examined the anti-inflammatory effects of 1α,25-(OH)(2)D(3) on TNF-α-induced adhesion molecule expression (vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)) and cytokine production (interleukin-6 (IL-6) and IL-8) in HCAECs. Pretreatment with 1α,25-(OH)(2)D(3) significantly inhibited TNF-α-induced VCAM-1 expression and IL-8 production in HCAECs. Our results suggest that adjunctive 1α,25-(OH)(2)D(3) therapy may modulate the inflammatory response during Kawasaki disease vasculitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis of adhesive radiohardenable resins of the modified polyepoxide type

    International Nuclear Information System (INIS)

    Acquacalda, J.-M.

    1972-01-01

    Eight adhesive radiohardenable resins of the modified epoxide type have been synthesized. Four were obtained from commercial resins: EPON 812, 827, 871 and ARALDITE 106. The synthesis of the four others required the development of analytical techniques to characterize of the reagents beforehand and then to identify the resins themselves. From a study of behavior under irradiation it seems that all the compounds obey a law of acrylic double bond disappearance with the logarithm of irradiation dose for which it is hard to find a detailed theoretical interpretation. The fracture of irradiated adhesive assemblies and their comparison has shown that for acceptable irradiation doses the synthesized resins, especially the product of Bisphenol A condensation on glycidyl acrylate, behave quite as well as polyepoxide resins without possessing the disadvantages inherent to the incorporation of standard chemical hardeners [fr

  14. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  15. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay

    International Nuclear Information System (INIS)

    Azzarello, Joseph; Ihnat, Michael A; Kropp, Bradley P; Warnke, Linda A; Lin, H.-K.

    2007-01-01

    The angiogenic potential of a biomaterial is a critical factor for successful graft intake in tissue engineering. We developed a modified, rapid and reproducible chicken embryo chorioallantoic membrane (CAM) assay to evaluate the ability of biomaterials in inducing blood vessel density. Five biomaterials including one-layer porcine small intestinal submucosa (SIS), two-layer SIS, four-layer vacuum pressed (VP) SIS, polyglycolic acid (PGA) and PGA modified with poly(lactic-co-glycolic acid) (PLGA) were analyzed. A circular section (1.2 mm diameter) of each biomaterial was placed near a group of blood vessels in the CAM. Blood vessels around the biomaterials were captured with black and white images at 96 h post implantation; and the images were subjected to densitometry evaluation. One-layer SIS induced a significant increase in blood vessel density as compared to the cellulose nitrate negative control, and had the greatest increase in blood vessel density as compared to four-layer VP SIS, PGA, or PLGA modified PGA. Although two-layer SIS has enhanced physical structure for surgical manipulation, its induction in blood vessel density was significantly lower than the one-layer SIS. Stripping the SIS proteins or incubating one-layer SIS with neutralizing antibodies against basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) resulted in decreased angiogenesis. Consistent with results obtained from bladder augmentation animal models, these results confirmed that angiogenic growth factors were present in SIS and affected the angiogenic potential of biomaterials. These data also demonstrated that the CAM assay can be used to ascertain methodically the angiogenic potential of biomaterials

  16. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi [Niigata Univ. (Japan). Brain Research Inst.

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  17. Bond durability of adhesives containing modified-monomer with/without-fluoride after aging in artificial saliva and under intrapulpal pressure simulation.

    Science.gov (United States)

    El-Deeb, H A; Al Sherbiney, H H; Mobarak, E H

    2013-01-01

    To evaluate the dentin bond strength durability of adhesives containing modified-monomer with/without-fluoride after storage in artificial saliva and under intrapulpal pressure simulation (IPPS). The occlusal enamel of 48 freshly extracted teeth was trimmed to expose midcoronal dentin. Roots were sectioned to expose the pulp chamber and to connect the specimens to the pulpal-pressure assembly. Specimens were assigned into four groups (n=12) according to adhesive system utilized: a two-step etch-and-rinse adhesive system (SB, Adper Single Bond 2, 3M ESPE), a two-step self-etch adhesive system (CSE, Clearfil SE Bond, Kuraray Medical Inc), and two single-step self-etch adhesives with the same modified monomer (bis-acrylamide)-one with fluoride (AOF, AdheSE One F, Ivoclar-Vivadent) and the other without (AO, AdheSE One, Ivoclar-Vivadent). Bonding was carried out while the specimens were subjected to 15-mm Hg IPPS. Resin composite (Valux Plus, 3M ESPE) buildups were made. After curing, specimens were aged in artificial saliva and under 20-mm Hg IPPS at 37°C in a specially constructed incubator either for 24 hours or six months prior to testing. Bonded specimens (n=6/group) were sectioned into sticks (n=24/group) with a cross section of 0.9 ± 0.01 mm(2) and subjected to microtensile bond strength (μTBS) testing using a universal testing machine. Data were statistically analyzed using two-way analysis of variance (ANOVA) with repeated measures, one-way ANOVA tests, and a t-test (partificial saliva and under IPPS, yet these values remained significantly higher than those for the other two adhesives with modified monomers. There was no significant difference in the bond strength values between fluoride-containing and fluoride-free self-etch adhesive systems (AOF and AO) after 24 hours or six months. Modes of failure were mainly adhesive and mixed. Based on the results of this study, 1) Fluoride addition did not affect dentin bond durability; and 2) despite the fact that

  18. [Value of adhesion molecules for evaluating the efficiency of therapy for ulcerative colitis and Crohn's disease].

    Science.gov (United States)

    Parfenov, A I; Boldyreva, O N; Ruchkina, I N; Knyazev, O V; Sagynbaeva, V E; Shcherbakov, P L; Khomeriki, S G; Lazebnik, L B; Konoplyannikov, A G

    2014-01-01

    To define the value of adhesion molecules (sVCAM-1 integrin, P-selectin, E-selectin, and L-selectin) for the prediction and evaluation of the efficiency of treatment in patients with ulcerative colitis (UC) and Crohn's disease. Twenty-six patients with UC and 14 patients with CD were examined. Of them, 16 patients took infliximab (INF) in a dose of 5 mg/kg of body weight according to the standard scheme; 14 patients received cultured mesenchymal stem stromal cells (MSSCs) in a quantity of 150 x 10(8) cells, and 10 had azathioprine (AZA) 2 mg/kg and glucocorticosteroids (GCS) 1 mg/kg of body weight. Enzyme immunoassay was used to determine the serum concentration of the adhesion molecules (L-selectin, E-selectin, P-selectin, and sVCAM-1 integrin) before and 2 months after treatment. The signs of bowel inflammatory disease activity and the elevated levels of adhesion molecules whose synthesis did not occur under normal conditions remained in the patients receiving GCS and AZA. INF treatment caused a decrease in P-selectin, E-selectin, and sVCAM-1 levels to 8.9 +/- 1.0, 5.5 +/- 1.7, and 9.5 +/- 4.4 ng/ml, respectively (p 0.1); that of L-selectin did not drop after MSSC administration and INF induction therapy. P-selectin, E-selectin, L-selectin, and sVCAM-1 integrin are current inflammatory markers and may be used to evaluate the efficiency of standard and biological therapies for inflammatory bowel diseases and to predict disease course.

  19. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  20. Applications of atomic force microscopy to the studies of biomaterials in biomolecular systems

    Science.gov (United States)

    Ma, Xiang

    Atomic force microscopy (AFM) is a unique tool for the studies of nanoscale structures and interactions. In this dissertation, I applied AFM to study transitions among multiple states of biomaterials in three different microscopic biomolecular systems: MukB-dependent DNA condensation, holdfast adhesion, and virus elasticity. To elucidate the mechanism of MukB-dependent DNA condensation, I have studied the conformational changes of MukB proteins as indicators for the strength of interactions between MukB, DNA and other molecular factors, such as magnesium and ParC proteins, using high-resolution AFM imaging. To determine the physical origins of holdfast adhesion, I have investigated the dynamics of adhesive force development of the holdfast, employing AFM force spectroscopy. By measuring rupture forces between the holdfast and the substrate, I showed that the holdfast adhesion is strongly time-dependent and involves transformations at multiple time scales. Understanding the mechanisms of adhesion force development of the holdfast will be critical for future engineering of holdfasts properties for various applications. Finally, I have examined the elasticity of self-assembled hepatitis B virus-like particles (HBV VLPs) and brome mosaic virus (BMV) in response to changes of pH and salinity, using AFM nanoindentation. The distributions of elasticity were mapped on a single particle level and compared between empty, RNA- and gold-filled HBV VLPs. I found that a single HBV VLP showed heterogeneous distribution of elasticity and a two-step buckling transition, suggesting a discrete property of HBV capsids. For BMV, I have showed that viruses containing different RNA molecules can be distinguished by mechanical measurements, while they are indistinguishable by morphology. I also studied the effect of pH on the elastic behaviors of three-particle BMV and R3/4 BMV. This study can yield insights into RNA presentation/release mechanisms, and could help us to design novel drug

  1. Ambient pollutants, polymorphisms associated with microRNA processing and adhesion molecules: the Normative Aging Study

    Directory of Open Access Journals (Sweden)

    Vokonas Pantel S

    2011-05-01

    Full Text Available Abstract Background Particulate air pollution has been associated with cardiovascular morbidity and mortality, but it remains unclear which time windows and pollutant sources are most critical. MicroRNA (miRNA is thought to be involved in cardiovascular regulation. However, little is known about whether polymorphisms in genes that process microRNAs influence response to pollutant exposure. We hypothesized that averaging times longer than routinely measured one or two day moving averages are associated with higher soluble intercellular adhesion molecule-1 (sICAM-1 and vascular cell adhesion molecule-1 (sVCAM-1 levels, and that stationary and mobile sources contribute differently to these effects. We also investigated whether single nucleotide polymorphisms (SNPs in miRNA-processing genes modify these associations. Methods sICAM-1 and sVCAM-1 were measured from 1999-2008 and matched to air pollution monitoring for fine particulate matter (PM2.5 black carbon, and sulfates (SO42-. We selected 17 SNPs in five miRNA-processing genes. Mixed-effects models were used to assess effects of pollutants, SNPs, and interactions under recessive inheritance models using repeated measures. Results 723 participants with 1652 observations and 1-5 visits were included in our analyses for black carbon and PM2.5. Sulfate data was available for 672 participants with 1390 observations. An interquartile range change in seven day moving average of PM2.5 (4.27 μg/m3 was associated with 3.1% (95%CI: 1.6, 4.6 and 2.5% (95%CI: 0.6, 4.5 higher sICAM-1 and sVCAM-1. Interquartile range changes in sulfates (1.39 μg/m3 were associated with 1.4% higher (95%CI: 0.04, 2.7 and 1.6% (95%CI: -0.4, 3.7 higher sICAM-1 and sVCAM-1 respectively. No significant associations were observed for black carbon. In interaction models with PM2.5, both sICAM-1 and sVCAM-1 levels were lower in rs1062923 homozygous carriers. These interactions remained significant after multiple comparisons

  2. Virgin olive oil, palm olein and coconut oil diets do not raise cell adhesion molecules and thrombogenicity indices in healthy Malaysian adults.

    Science.gov (United States)

    Voon, P T; Ng, T K W; Lee, V K M; Nesaretnam, K

    2015-06-01

    Effects of high-protein diets that are rich in saturated fats on cell adhesion molecules, thrombogenicity and other nonlipid markers of atherosclerosis in humans have not been firmly established. We aim to investigate the effects of high-protein Malaysian diets prepared separately with virgin olive oil (OO), palm olein (PO) and coconut oil (CO) on cell adhesion molecules, lipid inflammatory mediators and thromobogenicity indices in healthy adults. A randomized cross-over intervention with three dietary sequences, using virgin OO, PO and CO as test fats, was carried out for 5 weeks on each group consisting of 45 men and women. These test fats were incorporated separately at two-thirds of 30% fat calories into high-protein Malaysian diets. For fasting and nonfasting blood samples, no significant differences were observed on the effects of the three test-fat diets on thrombaxane B2 (TXB2), TXB2/PGF1α ratios and soluble intracellular and vascular cell adhesion molecules. The OO diet induced significantly lower (Pvirgin OO do not alter the thrombogenicity indices-cellular adhesion molecules, thromboxane B2 (TXB2) and TXB2/prostacyclin (PGF1α) ratios. However, the OO diet lowered plasma proinflammatory LTB4, whereas the PO diet raised the antiaggregatory plasma PGF1α in healthy Malaysian adults. This trial was registered at clinicaltrials.gov as NCT 00941837.

  3. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  4. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC.

    Science.gov (United States)

    Asadinezhad, Ahmad; Novák, Igor; Lehocký, Marián; Sedlarík, Vladimir; Vesel, Alenka; Junkar, Ita; Sáha, Petr; Chodák, Ivan

    2010-06-01

    Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the adherence of E. coli. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    DEFF Research Database (Denmark)

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A...

  7. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  8. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    Science.gov (United States)

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  9. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  10. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yan Huang [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: luxy@seu.edu.cn; Ma Jingwu [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Nan Huang [Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: nhuang@263.com

    2008-11-15

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG (R{sub A/I}) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ({gamma}{sub S,Alb}) to interfacial tension between surface and IgG ({gamma}{sub S,IgG}) ({gamma}{sub S,Alb}/{gamma}{sub S,IgG}). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of {gamma}{sub S,Alb}/{gamma}{sub S,IgG} may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  11. Surface modification of biomaterials and biomedical devices using additive manufacturing.

    Science.gov (United States)

    Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit

    2018-01-15

    The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The effect of Atorvastatin therapy tumour necrosis factor- and vascular adhesion molecules in patients with type 2 diabetes mellitus with no prior history of coronary heart disease

    NARCIS (Netherlands)

    Soedamah-Muthu, S.S.; Charlton-Menys, V.; Bao, W.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Colhoun, H.M.; Betteridge, D.J.; Durrington, P.; Hitman, G.; Neil, H.A.W.; Livingstone, S.J.; Fuller, J.H.; DeMicco, D.A.; Preston, G.M.

    2011-01-01

    We examined the effect of atorvastatin (and placebo) on tumour necrosis factor (TNF)a, soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular cell adhesion molecule-1 (sICAM-1) in patients with type 2 diabetes without prior cardiovascular disease (CVD) and investigated whether

  13. In Vitro and In Vivo Characterization of Biodegradable Reactive Isocyanate-Terminated Three-Armed- and Hyperbranched Block Copolymeric Tissue Adhesives

    NARCIS (Netherlands)

    Bochynska, Agnieszka I.; Hannink, Gerjon; Rongen, Jan J.; Grijpma, Dirk W.; Buma, Pieter

    2017-01-01

    Tissue adhesives are an attractive class of biomaterials, which can serve as a treatment for meniscus tears. In this study, physicochemical and adhesive properties of novel biodegradable three-armed- and hyperbranched block copolymeric adhesives are evaluated. Additionally, their degradation in

  14. The effect of lidocaine on in vitro neutrophil and endothelial adhesion molecule expression induced by plasma obtained during tourniquet-induced ischaemia and reperfusion.

    LENUS (Irish Health Repository)

    Lan, W

    2012-02-03

    BACKGROUND: Changes in neutrophil and endothelial adhesion molecule expression occur during perioperative ischaemia and reperfusion (I\\/R) injury. We investigated the effects of lidocaine on neutrophil-independent changes in neutrophil and endothelial adhesion molecule expression associated with tourniquet-induced I\\/R. METHODS: Plasma was obtained from venous blood samples (tourniquet arm) taken before (baseline), during, 15 min, 2 and 24 h following tourniquet release in seven patients undergoing elective upper limb surgery with tourniquet application. Isolated neutrophils from healthy volunteers (n = 7) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1) for 1 h, and then incubated with I\\/R plasma for 2 h. Human umbilical vein endothelial cells (HUVECs) were pretreated in the presence or absence of lidocaine (0.005, 0.05 and 0.5 mg mL(-1)) for 1 h, and then incubated with the plasma for 4 h. Adhesion molecule expression was estimated using flow cytometry. Data were analysed using ANOVA and post hoc Student-Newman-Keuls tests. RESULTS: I\\/R plasma (withdrawn 15 min following tourniquet release) increased isolated neutrophil CD11b (P = 0.03), CD18 (P = 0.01) and endothelial intercellular adhesion molecule-1 (ICAM-1) (P = 0.008) expression compared to baseline. CD11b, CD18 and ICAM-1 expression on lidocaine (0.005 mg mL(-1)) treated neutrophils was similar to control. CD11b (P < 0.001), CD18 (P = 0.03) and ICAM-1 (P = 0.002) expression on lidocaine (0.05 mg mL(-1)) treated neutrophils and HUVECs was less than that on controls. CONCLUSION: Increased in vitro neutrophil and endothelial cell adhesion molecule expression on exposure to plasma obtained during the early reperfusion phase is diminished by lidocaine at greater than clinically relevant plasma concentrations.

  15. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study

    International Nuclear Information System (INIS)

    Vlad, M D; Lopez, J; Torres, R; Barraco, M; Fernandez, E; Valle, L J; Poeata, I

    2010-01-01

    In this study, the cytocompatibility of new 'iron-modified/alpha-tricalcium phosphate (IM/α-TCP) and calcium sulfate dihydrate (CSD)' bone cement (IM/α-TCP/CSD-BC) intended for spinal applications has been approached. The objective was to investigate by direct-contact osteoblast-like cell cultures (from 1 to 14 days) the in vitro cell adhesion, proliferation, morphology and cytoskeleton organization of MG-63 cells seeded onto the new cements. The results were as follows: (a) quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion, proliferation and viability were not affected with time by the presence of iron in the cements; (b) double immunofluorescent labeling of F-actin and α-tubulin showed a dynamic interaction between the cell and its porous substrates sustaining the locomotion phenomenon on the cements' surface, which favored the colonization, and confirming the biocompatibility of the experimental cements; (c) SEM-cell morphology and cytoskeleton observations also evidenced that MG-63 cells were able to adhere, to spread and to attain normal morphology on the new IM/α-TCP/CSD-BC which offered favorable substratum properties for osteoblast-like cells proliferation and differentiation in vitro. The results showed that these new iron-modified cement-like biomaterials have cytocompatible features of interest not only as possible spinal cancellous bone replacement biomaterial but also as bone tissue engineering scaffolds.

  16. Polymeric biomaterials for nerve regeneration applications: From promoting cellular organization to the delivery of bioactive molecules

    Science.gov (United States)

    Delgado-Rivera, Roberto L.

    Thousands of new cases of injury to the central nervous system (CNS) occur each year in the USA and all over the world. However, despite recent advances, at present there is no cure for the resulting paraplegia or quadriplegia. This research is directed towards engineering biomaterial platforms to promote cellular organization at the surface of polymer scaffolds that will be conducive to proper regeneration of injured CNS. In addition, the formulation of a delivery system for neuroactive molecules using polymer-based materials will be evaluated to establish its potential to treat CNS disorders. Initial studies involved the chemical modification of an electrospun nonwoven matrix of nanofibers with fibroblast growth factor 2 (FGF-2). Nanofibers alone up-regulated FGF-2, albeit to a lesser extent than nanofibers covalently modified with FGF-2. These results underscore the importance of both surface topography and growth factor presentation on cellular function. Moreover, that FGF-2 modified nanofibrillar scaffolds may demonstrate utility in tissue engineering applications for replacement and regeneration of damaged tissue following CNS injury or disease. Subsequent research efforts focused on a novel micropatterning technique called microscale plasma-initiated patterning (microPIP). This patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. FGF-2 and laminin-1 were applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. In this work it, was possible to demonstrate that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization. Finally, a microsphere system capable of encapsulating proteins while minimizing the mechanisms of protein degradation and providing a controlled release was investigated. Microspheres were comprised of

  17. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    Science.gov (United States)

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  18. Adhesion molecules, chemokines and matrix metallo-proteinases response after albendazole and albendazole plus steroid therapy in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Singh, Amrita; Tripathi, Mukesh; Gupta, Rakesh K

    2017-11-01

    The treatment of neurocysticercosis (NCC) varies with location, number and stage of the Taenia solium cysticerci (cysts). Albendazole (ABZ) effectively kills cysticerci, and subsequently induces neuro-inflammation facilitated by leukocyte infiltration. We hypothesize that immune response varies around drug responder (degenerating/dying) and non-responder (viable) cysts after ABZ and ABZ plus steroid (ABZS) therapy, which may determine the disease pathogenesis. Twenty cysticercotic swine were treated with ABZ (n = 10; group1) and ABZS (n = 10; group2). Expression of adhesion molecules, chemokines and matrix metallo-proteinases (MMPs) was measured by qRT-PCR (quantitative reverse transcriptase-polymerase chain reaction) and ELISA. Gelatin gel zymography was performed to detect the activity of MMP-2 and -9. In group1, ABZ therapy induced higher expressions of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), E-selectin, MCP-1 (monocyte chemotactic protein-1), Eotaxin-1, MIP-1α (macrophage inflammatory protein-1α), RANTES (regulated on activation, normal T cell expressed and secreted), MMP-2 and MMP-9 around ABZ responder (AR) cysts. Three pigs with cyst burdens ≥10 died following ABZ therapy. However, in group2, moderate expressions of ICAM-1, VCAM-1, E-selectin, RANTES and MMP-9 were associated with ABZS responder (ASR), whereas low expressions of these molecules were associated with ABZS non-responder (ASNR) cysts. In conclusion, ABZ alone therapy is not safe since it causes death of pigs due to higher inflammatory immune response around dying cysts. However, combination therapy is an effective treatment regimen even with the high cyst burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. CyclinD1, CDK4, and P21 expression by IEC-6 cells in response to NiTi alloy and polymeric biomaterials

    International Nuclear Information System (INIS)

    Wang, Zhanhui; Yan, Jun; Zheng, Qi; Wang, Zhigang

    2012-01-01

    In order to investigate how cells recognize biomaterials, mRNA that was expressed in attached Intestinal epithelial cells (IEC-6) on various suture substrates was evaluated. The expressed cell cycle regulators (cyclin D1, CDK4 and p21) mRNA were then isolated and detected using the real time- polymerase chain reaction (PCR) method. As a result, cyclin D1 gene expression was affected by cell-polymer adhesion and was associated with cell proliferation. In addition, CDK4 gene expression was affected by cell proliferation rather than by cell-biomaterial interaction. The p21 mRNA gene expression was higher in cells on more hydrophilic surfaces than on hydrophobic surfaces. Further, the cyclin D1, CDK4 and p21 gene expression were also influenced by the surface chemistry of suture materials. We concluded that the expression of cyclin D1, CDK4 and p21 mRNA was a powerful method for studying cell-biomaterial interactions or the evaluation of the carcinogenic activity of biomaterials. - Highlights: ►We evaluated the effects of biomaterials on the cyclin D1, CDK4 and p21 expression. ►Cell-polymer adhesion and cell proliferation affected cyclin D1 and CDK4 expression. ►The p21 expression was higher on more hydrophilic surfaces than on hydrophobic. ►They were also influenced by surface chemistry of biomaterials.

  20. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  1. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    International Nuclear Information System (INIS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-01-01

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  2. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  3. Structure of deformable diatomic molecules: a modified n-butane liquid

    International Nuclear Information System (INIS)

    Jang, Seanea; Kim, Soonchul; Lee, Songhi

    2005-01-01

    The density functional approximation for polyatomic molecules, which is based on the bridge function of the intermolecular interaction, was developed and applied to investigate the thermodynamic and the structural properties of deformable diatomic molecules. The Percus trick was employed to calculate the uniform structure of modified n-butane. The calculated static correlation functions were used to predict the density behaviors of a modified n-butane liquid at liquid-solid interfaces. The theoretical results show that (i) at low densities, the hypernetted-chain (HNC) equation compares with the density functional approximation based on the bridge function and that (ii) the relative population between the gauche and the trans states strongly affects the liquid structure at liquid-solid interfaces.

  4. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J. [Univ. of Antwerp (Belgium)

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  6. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  7. Role of Plasma Fibronectin in the Foreign Body Response to Biomaterials

    OpenAIRE

    Keselowsky, Benjamin G.; Bridges, Amanda W.; Burns, Kellie L.; Tate, Ciara C.; Babensee, Julia E.; LaPlaca, Michelle C.; García, Andrés J.

    2007-01-01

    Host responses to biomaterials control the biological performance of implanted medical devices. Upon implantation, synthetic materials adsorb biomolecules which trigger an inflammatory cascade comprising coagulation, leukocyte recruitment/adhesion, and foreign body reaction. The foreign body reaction and ensuing fibrous encapsulation severely limit the in vivo performance of numerous biomedical devices. While it is well established that plasma fibrinogen and secreted cytokines modulate leukoc...

  8. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  9. Changes of Serum Intercellular Adhesion Molecule – 1, Vascular Adhesion Molecule-1 and C – Reactive Protein in Middle-Aged Men with Heart Failure after Eight Weeks of Aerobic Exercise

    Directory of Open Access Journals (Sweden)

    Hoda Haghir

    2017-03-01

    Full Text Available Introduction: The evidence has shown that expansion of cardiovascular disease has inflammation base, and general inflammation (systemic plays a pivotal role in the development of atherosclerosis. The purpose of this research was evaluation of changes in intercellular adhesion molecule – 1, vascular adhesion molecule-1 and C – reactive protein in middle-aged men with heart failure after eight weeks of aerobic exercise. Methods: Twenty four middle-aged men with heart failure were selected as volunteers, and were divided into two groups; the aerobic training and the control groups. Aerobic training program was eight weeks, three times per week with the intensity of 40%-70% maximum heart rate. Fasting blood samples were taken from all subjects before and after eight weeks of aerobic exercise. . Data were analyzed by paired sample t-test and independent sample t-test at a significance levels of P<0.05. Results: In the aerobic training group, comparison within groups showed, serum levels of ICAM-1, VCAM-1 and CRP (respectively P=0.001, P=0.001 and P=0.001 were significantly reduced. There was a significant reduction in comparison between groups only for VCAM-1 (P=0.001 and CRP (P=0.002. Conclusion: Aerobic exercise with reducing levels of inflammatory markers ICAM-1 and CRP may play an important role in the prevention and control of cardiovascular diseases in middle-aged men with heart failure.

  10. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Qian; Xing, Dongming; Ma, Lie; Gao, Changyou

    2017-01-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between L-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine. - Highlights: • P(MTMC-LA) was synthesized through ring-opening copolymerization and retro Diels-Alder reaction. • P(MTMC-LA) was modified by dBMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry. • E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation.

  11. Synthesis of E7 peptide-modified biodegradable polyester with the improving affinity to mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qian; Xing, Dongming; Ma, Lie, E-mail: liema@zju.edu.cn; Gao, Changyou

    2017-04-01

    As the most promising stem cell, bone marrow-derived mesenchymal stem cells (BMSCs) has attracted many attentions and applied widely in regenerative medicine. A biodegradable polyester with tunable affinity to BMSCs plays critical role in determining the properties of the BMSCs-based constructs. In this study, maleimide functionalized biodegradable polyester (P(MTMC-LA)) was synthesized through ring-opening copolymerization between L-lactide (LA) and furan-maleimide functionalized trimethylene carbonate (FMTMC) and a subsequent retro Diels-Alder reaction. P(MTMC-LA) was modified by different amounts of BMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry to investigate the effect on BMSCs. The E7 peptide modified P(MTMC-LA) was casted into films on glass slides and BMSCs were seeded onto the films. In vitro study showed that E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation compared to unmodified P(MTMC-LA) film. Besides, the adhesion and proliferation were enhanced by the increasing peptide grafting ratio. These results indicated that the novel biodegradable polyester can serve as a biomaterial with great potential application in tissue engineering and regenerative medicine. - Highlights: • P(MTMC-LA) was synthesized through ring-opening copolymerization and retro Diels-Alder reaction. • P(MTMC-LA) was modified by dBMSCs specific affinity peptide (EPLQLKM, E7) through click-chemistry. • E7 peptide modified P(MTMC-LA) films supported BMSCs adhesion and proliferation.

  12. Effect of methylprednisolone on the oxidative burst activity, adhesion molecules and clinical outcome following open heart surgery

    DEFF Research Database (Denmark)

    Toft, P; Christiansen, K; Tønnesen, Else Kirstine

    1997-01-01

    and the control group regarding the expression of adhesion molecules or the oxidative burst activity. In the steroid group the fluid gain during extracorporeal circulation (ECC) was 683 ml (median) compared to 1488 ml in the control group. Steroids prevented hyperthermia in the postoperative period but did...

  13. Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors

    OpenAIRE

    Aletsee-Ufrecht, M. C.; Langley, O. K.; Gratzl, O.; Gratzl, Manfred

    1990-01-01

    We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal human hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. ...

  14. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  15. Junctional Adhesion Molecule (JAM)-C Deficient C57BL/6 Mice Develop a Severe Hydrocephalus

    Science.gov (United States)

    Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H.; Aurrand-Lions, Michel; Plate, Karl H.; Imhof, Beat A.; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C. PMID:23029139

  16. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    Science.gov (United States)

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  17. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  18. Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules

    Science.gov (United States)

    Serkova, Valentina K.; Pavlov, Sergey V.; Romanava, Valentina A.; Monastyrskiy, Yuriy I.; Ziepko, Sergey M.; Kuzminova, Nanaliya V.; Wójcik, Waldemar; DzierŻak, RóŻa; Kalizhanova, Aliya; Kashaganova, Gulzhan

    2017-08-01

    Theoretical and practical substantiation of the possibility of the using the level of soluble vascular adhesion molecules (sVCAM) is performed. Expert system for the assessment of coronary heart disease (CHD) destabilization on the base of the analysis of soluble vascular adhesion molecules level is developed. Correlation between the increase of VCAM level and C-reactive protein (CRP) in patients with different variants of CHD progression is established. Association of chronic nonspecific vascular inflammation activation and CHD destabilization is shown. The expedience of parallel determination of sVCAM and CRP levels for diagnostics of CHD destabilization and forecast elaboration is noted.

  19. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    Science.gov (United States)

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  20. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  1. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  2. Markers of inflammation and cellular adhesion molecules in relation to insulin resistance in nondiabetic elderly: the Rotterdam study

    NARCIS (Netherlands)

    A.E. Hak (Liesbeth); H.A.P. Pols (Huib); C.D. Stehouwer (Coen); J. Meijer (John); A.J. Kiliaan (Amanda); M.M.B. Breteler (Monique); J.C.M. Witteman (Jacqueline); A. Hofman (Albert)

    2001-01-01

    textabstractInsulin resistance, which is highly prevalent in the elderly, is suggested to be accompanied by an increased acute phase response. Until now, it is unclear whether cellular adhesion molecules are involved in the clustering of insulin resistance. In the present study, we

  3. Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere

    Czech Academy of Sciences Publication Activity Database

    Heitz, J.; Švorčík, V.; Bačáková, Lucie; Ročková, K.; Ratajová, E.; Gumpenberger, T.; Bäuerle, D.; Dvořánková, B.; Kahr, H.; Graz, I.; Romanin, C.

    67A, č. 1 (2003), s. 130-137 ISSN 0021-9304 R&D Projects: GA AV ČR IAA5011301 Grant - others:FWF(AT) P14476-TPH; GA FRVŠ(CZ) 283-2002-G1; CZ-AT Scientific-Technical Cooperation(CZ) 2002-7 Institutional research plan: CEZ:AV0Z5011922 Keywords : cell adhesion * UV-modified polymer * amino acid grafting Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.397, year: 2003

  4. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  5. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Directory of Open Access Journals (Sweden)

    Su Yeon eChoi

    2015-07-01

    Full Text Available Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2–/– mice display moderate hyperactivity in a familiar but not novel environment and novel object recognition deficit with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2–/– dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

  6. Interactions between bone cells and biomaterials: An update.

    Science.gov (United States)

    Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie

    2016-06-01

    As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.

  7. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    Science.gov (United States)

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  8. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  9. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Science.gov (United States)

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  10. The effect of acute physical and mental stress on soluble cellular adhesion molecule concentration.

    Science.gov (United States)

    Crabb, E Blake; Franco, R Lee; Caslin, Heather L; Blanks, Anson M; Bowen, Mary K; Acevedo, Edmund O

    2016-07-15

    This study investigated the impact of acute physical and mental stress on serum concentrations of vascular cell adhesion molecule (VCAM)-1 and CX3CL1/fractalkine. Male volunteers (n=20; 21.3±0.55years of age) completed a graded treadmill test to exhaustion and a 20-minute mental stress task (Stroop Color-Word Test, mental arithmetic) on separate, non-consecutive days. Heart rate (HR) was measured at baseline and throughout exercise and mental stress. Blood was collected at baseline (PRE), immediately following (POST) and 30min after (POST30) exercise and mental stress. Soluble VCAM-1 and fractalkine were quantified in participant serum via enzyme-linked immunosorbent assays. Both treadmill exercise and the mental stress task significantly increased participant HR; although, exercise resulted in a substantially greater increase in participant HR compared to mental stress (197.82±11.99 vs. 38.67±3.10% [pstress task did not significantly alter serum VCAM-1 or fractalkine at any time point. In conclusion, maximal aerobic exercise results in a significant elevation of the soluble adhesion molecules VCAM-1 and fractalkine in the serum of adult males that does not occur following laboratory-induced mental stress. The findings of the current investigation may suggest a novel protective role for acute aerobic exercise in vascular health via exercise-induced CAM proteolysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyachandran, Y L [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Venkatachalam, S [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Karunagaran, B [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Narayandass, Sa K [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Mangalaraj, D [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Bao, C Y [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, C L [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2007-01-15

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film.

  12. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Jeyachandran, Y.L.; Venkatachalam, S.; Karunagaran, B.; Narayandass, Sa.K.; Mangalaraj, D.; Bao, C.Y.; Zhang, C.L.

    2007-01-01

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film

  13. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  14. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    Science.gov (United States)

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  16. High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor

    Directory of Open Access Journals (Sweden)

    Justin D. Lathia

    2014-01-01

    Full Text Available Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC adhesion, we performed a flow cytometry screen on patient-derived glioblastoma (GBM cells and identified junctional adhesion molecule A (JAM-A as a CSC adhesion mechanism essential for self-renewal and tumor growth. JAM-A was dispensable for normal neural stem/progenitor cell (NPC function, and JAM-A expression was reduced in normal brain versus GBM. Targeting JAM-A compromised the self-renewal of CSCs. JAM-A expression negatively correlated to GBM patient prognosis. Our results demonstrate that GBM-targeting strategies can be identified through screening adhesion receptors and JAM-A represents a mechanism for niche-driven CSC maintenance.

  17. Focal adhesion interactions with topographical structures: a novel method for immuno-SEM labelling of focal adhesions in S-phase cells.

    Science.gov (United States)

    Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J

    2008-07-01

    Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.

  18. Cellular adhesion molecules on endothelial cells participate in radiation-mediated inflammation

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Clark, Elizabeth T.; Kuchibhotla, Jaya; Gewertz, Bruce L.

    1995-01-01

    Purpose: The acute and subacute clinical manifestations of ionizing radiation mimic the inflammatory response to a number of stimuli. During the early stages of the inflammatory response, endothelial cells rapidly and transiently express a number of glycoproteins such as E-selectin, P-selectin, ICAM-1 and VCAM-1 which influence leucocyte adhesion. We quantified the expression of these cellular adhesion molecules (CAMs) in irradiated endothelial cells in order to determine whether these glycoproteins participate in radiation-mediated inflammation. Methods: Primary cultures of human umbilical vein endothelial cells (HUVEC) and HMEC cells were grown to 90% confluence and irradiated with a GE Maxitron x-ray generator. The cells were incubated with primary IgG1 antibody (mouse anti-human ICAM-1, VCAM-1, P-selectin and E-selectin and incubated with FITC-conjugated secondary antibody (goat anti-mouse IgG1). Fluorescence-activated cell sorting (FACS) analysis was utilized for quantitation of receptor expression of each CAM on irradiated endothelial cells. Electrophoretic mobility gel shift assays of nuclear protein extracts from irradiated HUVEC cells were performed using the E-selectin NFkB binding sequence (5'AGCTTAGAGGGGATTTCCGAGAGGA-3'). The E-selectin promoter was ligated to the growth hormone reporter. Plasmids pE-sel(-587 +35)GH or pE-sel(-587 +35)GH Δ NFκB (5 μg) was transfected into HMEC or HUVEC cells by use of lipofection. Transfectants were incubated for 16 h after transfection followed by treatment with 10 Gy (1 Gy/min, GE Maxitron) of ionizing radiation, and or with TNF or IL-1. Leukocyte adhesion to irradiated endothelial cells was quantified by HL-60 binding. Results: The log fluorescence of cells incubated with the antibody to E-selectin shifted by 32% at 4 h after irradiation. In comparison, a shift of 35% occurred 20 h after irradiation for cells incubated with the antibody to ICAM. However, there was no significant increase in P-selectin or VCAM

  19. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    Science.gov (United States)

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  20. Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity.

    Science.gov (United States)

    Schroeder, Anna; de Wit, Joris

    2018-04-09

    The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits.

  1. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, E

    1998-01-01

    surgery. The ability to respond with an oxidative burst was measured by means of flow cytometry using 123-dihydrorhodamine. The adhesion molecules CD11a/CD18, CD11c/CD18, CD44 were measured using monoclonal antibodies. Blood samples from eight patients undergoing open-heart surgery were taken before...... to an increased per-operative oxidative burst activity, and the induction of adhesion molecules on granulocytes associated with the cardiopulmonary bypass and surgery. In conclusion, open-heart surgery with cardiopulmonary bypass was associated with a rapid and pronounced activation of leukocytes which may play...

  2. Biosynthesis of the D2 cell adhesion molecule: pulse-chase studies in cultured fetal rat neuronal cells

    DEFF Research Database (Denmark)

    Lyles, J M; Norrild, B; Bock, E

    1984-01-01

    D2 is a membrane glycoprotein that is believed to function as a cell adhesion molecule (CAM) in neural cells. We have examined its biosynthesis in cultured fetal rat brain neurones. We found D2-CAM to be synthesized initially as two polypeptides: Mr 186,000 (A) and Mr 136,000 (B). With increasing...

  3. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Science.gov (United States)

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  4. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.

    Science.gov (United States)

    Solouk, Atefeh; Cousins, Brian G; Mirahmadi, Fereshteh; Mirzadeh, Hamid; Nadoushan, Mohammad Reza Jalali; Shokrgozar, Mohammad Ali; Seifalian, Alexander M

    2015-01-01

    To date, there are no small internal diameter (nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation. POSS-PCU was activated by plasma treatment in air/O2 to from hydroperoxides (-OH, -OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests. Poly-AA content on each of the plasma treated nanocomposite films increased on Low, Med and High samples due to more carboxylic acid (-COOH) groups at the surface forming amide (-NH2) bonds. The amount of -COOH groups on each of the Low, Med and High nanocomposites correlated with Poly-AA grafting density at 14.7±0.9, 18.9±0.9, and 34.2±2.4 μg/cm(2). Immobilisation of collagen type I on to nanocomposite surface was also found to increase significantly on the Low, Med and High samples from 22±4, 150±15, and 219±17 μg/cm(2), respectively. The level of ECs and their

  5. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  6. Trends in polymeric electrospun fibers and their use as oral biomaterials.

    Science.gov (United States)

    Meireles, Agnes B; Corrêa, Daniella K; da Silveira, João Vw; Millás, Ana Lg; Bittencourt, Edison; de Brito-Melo, Gustavo Ea; González-Torres, Libardo A

    2018-05-01

    Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials

  7. Reflections about Adhesive Systems

    OpenAIRE

    de Freitas Borges, Marciano; Diesel, Pâmela Gutheil; Corrêa, Fernanda Gomez; Bernardi, Eledana; Fernandes Montagner, Anelise; Skupien, Jovito Adiel; Susin, Alexandre Henrique

    2010-01-01

    The adhesive systems are responsible for an efficient union between teeth and resin, resulting in a longevity restoration. They are organic molecules di or multifunctional that contain reactive groups that interact with dentin and with the resin monomer of composite resin. The adhesive systems are characterized by wet adhesion, which is a result of presence of hidrophylics radicals in their compositions, to promote a better bond and the best properties of the adhesion. Adhesive systems may us...

  8. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  9. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1.

    Science.gov (United States)

    Muro, Silvia; Dziubla, Thomas; Qiu, Weining; Leferovich, John; Cui, Xiumin; Berk, Erik; Muzykantov, Vladimir R

    2006-06-01

    Targeting of diagnostic and therapeutic agents to endothelial cells (ECs) provides an avenue to improve treatment of many maladies. For example, intercellular adhesion molecule 1 (ICAM-1), a constitutive endothelial cell adhesion molecule up-regulated in many diseases, is a good determinant for endothelial targeting of therapeutic enzymes and polymer nanocarriers (PNCs) conjugated with anti-ICAM (anti-ICAM/PNCs). However, intrinsic and extrinsic factors that control targeting of anti-ICAM/PNCs to ECs (e.g., anti-ICAM affinity and PNC valency and flow) have not been defined. In this study we tested in vitro and in vivo parameters of targeting to ECs of anti-ICAM/PNCs consisting of either prototype polystyrene or biodegradable poly(lactic-coglycolic) acid polymers (approximately 200 nm diameter spheres carrying approximately 200 anti-ICAM molecules). Anti-ICAM/PNCs, but not control IgG/PNCs 1) rapidly (t1/2 approximately 5 min) and specifically bound to tumor necrosis factor-activated ECs in a dose-dependent manner (Bmax approximately 350 PNC/cell) at both static and physiological shear stress conditions and 2) bound to ECs and accumulated in the pulmonary vasculature after i.v. injection in mice. Anti-ICAM/PNCs displayed markedly higher EC affinity versus naked anti-ICAM (Kd approximately 80 pM versus approximately 8 nM) in cell culture and, probably because of this factor, higher value (185.3 +/- 24.2 versus 50.5 +/- 1.5% injected dose/g) and selectivity (lung/blood ratio 81.0 +/- 10.9 versus 2.1 +/- 0.02, in part due to faster blood clearance) of pulmonary targeting. These results 1) show that reformatting monomolecular anti-ICAM into high-affinity multivalent PNCs boosts their vascular immuno-targeting, which withstands physiological hydrodynamics and 2) support potential anti-ICAM/PNCs utility for medical applications.

  10. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    Science.gov (United States)

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  11. Neural cell adhesion molecule (NCAM) and prealbumin in cerebrospinal fluid from depressed patients

    DEFF Research Database (Denmark)

    Jørgensen, Ole Steen

    1988-01-01

    The size of the soluble form of the human cerebrospinal fluid (CSF) neural cell adhesion molecule, NCAM-sol, was by gel permeation chromatography estimated to 160-250 kDa. Within the CSF the concentration of NCAM-sol was found about 15-25% increased in lumbar fluid and 25% increased in ventricular...... fluid, both compared to cisternal fluid. Whereas prealbumin was found evenly distributed in CSF, albumin was relatively enriched in lumbar fluid. The concentrations of NCAM-sol and prealbumin were measured in lumbar CSF from psychiatric patients. Prealbumin was increased 7.2% and NCAM-sol was decreased...

  12. Nanotechnology in medicine: nanofilm biomaterials.

    Science.gov (United States)

    Van Tassel, Paul R

    2013-12-13

    By interrogating nature at the length scale of important biological molecules (proteins, DNA), nanotechnology offers great promise to biomedicine. We review here our recent work on nanofilm biomaterials: "nanoscopically" thin, functional, polymer-based films serving as biocompatible interfaces. In one thrust, films containing carbon nanotubes are shown to be highly antimicrobial and, thus, to be promising as biomedical device materials inherently resistive to microbial infection. In another thrust, strategies are developed toward films of independently controllable bioactivity and mechanical rigidity - two key variables governing typical biological responses.

  13. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  14. Serum levels of tumor necrosis factor-α and soluble adhesion molecules in relation to magnetic resonance imaging results and clinical activity in multiple sclerosis

    International Nuclear Information System (INIS)

    Millers, A.; Metra, M.; Mastina, M.; Platkajis, A.; Kukaine, R.

    2001-01-01

    One direction of research in pathogenesis of multiple sclerosis (MS) has been to identify immunological markers associated with disease activity that are capable of predicting subsequent course of disease and are sensitive to intervention by immunomodulatory therapies. Adhesion molecules and tumor necrosis factor-α of the cytokine superfamily are associated with inflammation-mediated blood-brain barrier dysfunction and demyelination in the central nervous system (CNS). This study investigates the relationship between the serum level of soluble vascular adhesion molecule-1 (sVCAM), soluble intercellular adhesion molecule-1 (alCAM), tumor necrosis factor-α (TNF-α) and magnetic resonance imaging (MRI) activity in 18 patients with relapsing-remitting (RR) MS with different clinical activity. Patients with active gadolinium (Gd)-enhanced lesions on MRI showed a higher serum level of TNF-α, sVCA-1, slCAM-1 than RR MS patients without Gd-enhanced lesions. Control individuals (n=10) without MRI abnormalities had significantly lower serum levels of the above immunological parameters. These results suggest that serum levels of TNF-α and adhesion molecules slCAM-1 in RR MS patients are correlated with Gd-enhanced MRI and disease clinical activity and that they can be used as biological markers of disease activity. The soluble form of VCAM levels in peripheral blood did not correlate with disease activity and Gd-enhanced lesions of MRI. sVCAM as an early indicator of blood-brain barrier dysfunction may also serve as marker of beneficial activity in the relapsing phase of MS course. (authors)

  15. Distribution of cytoskeletal proteins, integrins, leukocyte adhesion molecules and extracellular matrix proteins in plastic-embedded human and rat kidneys

    NARCIS (Netherlands)

    van Goor, H; Coers, W; van der Horst, MLC; Suurmeijer, AJH

    2001-01-01

    OBJECTIVE: To study the distribution of cytoskeletal proteins (actin, alpha -actinin, vinculin, beta -tubulin, keratin, vimentin, desmin), adhesion molecules for cell-matrix interations (very later antigens [VLA1-6], beta1, beta2 [CD18], vitronectin receptor [alphav beta3], CD 11b), leukocyte

  16. Effect of intercellular adhesion molecule 1 expression in radiation otitis media murine model

    International Nuclear Information System (INIS)

    Wang Shengzi; Cheng Qingfang; Lu Shenbin; Liu Jianping; Wang Shuyi

    2003-01-01

    Objective: To characterize the dose- and time-dependent changes in intercellular adhesion molecule 1 (ICAM-1) expression and the role of this molecule as a mediator of middle ear inflammation induced by radiation. Methods: Radiation-induced otitis media animal models were established by using guinea pigs after 60 Co irradiation with 3 Gy/fraction per day, 5 times per week to a total dose of 15, 30, 45 Gy. The expression of ICAM-1 was studied by SP immunohistochemistry with the relation between radiation dose and infiltration of leukocytes investigated. Results: ICAM-1 was not expressed in the normal epithelium of the middle ear mucosa. Mucosal epithelium strongly expressed ICAM-1 after having been administered with 45 Gy of irradiation showing a significant correlation between the expression of ICAM-1 and the infiltration of leukocytes. Conclusions: Irradiation increases the expression of ICAM-1 in the middle ear mucosa. ICAM-1 may be related to the inflammation in the middle ear after irradiation

  17. H-1 and N-15 resonance assignment of the second fibronectin type III module of the neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Kiselyov, Vladislav V; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    We report here the NMR assignment of the second fibronectin type III module of the neural cell adhesion molecule (NCAM). This module has previously been shown to interact with the fibroblast growth factor receptor (FGFR), and the FGFR-binding site was mapped by NMR to the FG-loop region of the mo......We report here the NMR assignment of the second fibronectin type III module of the neural cell adhesion molecule (NCAM). This module has previously been shown to interact with the fibroblast growth factor receptor (FGFR), and the FGFR-binding site was mapped by NMR to the FG-loop region...... of the module. The FG-loop region also contains a putative nucleotide-binding motif, which was shown by NMR to interact with ATP. Furthermore, ATP was demonstrated to inhibit binding of the second F3 module of NCAM to FGFR....

  18. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair.

    Science.gov (United States)

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-09-28

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen's adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™--a product cleared in the EU for cartilage repair--was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis.

  19. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  20. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  1. Semiclassical theory of resonance inelastic electron-molecule collisions

    International Nuclear Information System (INIS)

    Kazanskij, A.K.

    1986-01-01

    Semiclassical approach to the theory of resonance electron-molecule collisions, unlocal with respect to interatomic distance was developed. Two problems were considered: modified adiabatic approach for sigle-pole approximation of R-matrix and Fano-Feshbach-Bardsley theory. It is shown that these problems are similar in semiclassical approximation. A simple equation system with coefficients expressed in quadratures was obtained. It enables to determine amplitudes of all processes (including dissociation adhesion, association ejection, free-free and free-bound transitions) in energetic representation with respect to nucleus vibrations in molecule with allowance for both descrete and continuous spectra of nucleus motion in molecule. Quantitative investigation of the system results to the notion of dynamic energy curve of intermediate state, generalizing the motion of such curve in boomerang theory

  2. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2017-03-01

    Full Text Available The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF, extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.

  3. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    Science.gov (United States)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (pbracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  4. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    Science.gov (United States)

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  5. Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor alpha-induced adhesion molecule expression in human umbilical vein endothelial cells

    NARCIS (Netherlands)

    Weber, Nina C.; Kandler, Jennis; Schlack, Wolfgang; Grueber, Yvonne; Frädorf, Jan; Preckel, Benedikt

    2008-01-01

    BACKGROUND: The barrier properties of the endothelium are of critical importance during pathophysiologic processes. These barrier properties depend on an intact cytoskeleton and are regulated by cell adhesion molecules. Tumor necrosis factor alpha (TNF-alpha) is known to induce cell adhesion

  6. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis.

    Science.gov (United States)

    Kotteas, Elias A; Boulas, Panagiotis; Gkiozos, Ioannis; Tsagkouli, Sofia; Tsoukalas, George; Syrigos, Konstantinos N

    2014-09-01

    The intercellular cell-adhesion molecule-1 (ICAM-1) is a transmembrane molecule and a distinguished member of the Immunoglobulin superfamily of proteins that participates in many important processes, including leukocyte endothelial transmigration, cell signaling, cell-cell interaction, cell polarity and tissue stability. ICAM-1and its soluble part are highly expressed in inflammatory conditions, chronic diseases and a number of malignancies. In the present article we present the implications of ICAM-1 in the progression and prognosis of one of the major global killers of our era: lung cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Hunnicutt, G.R.

    1989-01-01

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their M r , sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine

  8. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  9. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials.

    Science.gov (United States)

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H

    2017-07-01

    Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    Science.gov (United States)

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  12. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  13. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.

    Science.gov (United States)

    Lo, Kevin W-H; Ulery, Bret D; Kan, Ho Man; Ashe, Keshia M; Laurencin, Cato T

    2014-09-01

    Osteoblast cell adhesion and differentiation on biomaterials are important achievements necessary for implants to be useful in bone regenerative engineering. Recombinant bone morphogenetic proteins (BMPs) have been shown to be important for these processes; however, there are many challenges associated with the widespread use of these proteins. A recent report demonstrated that the small molecule phenamil, a diuretic derivative, was able to induce osteoblast differentiation and mineralization in vitro via the canonical BMP signalling cascade (Park et al., 2009). In this study, the feasibility of using phenamil as a novel biofactor in conjunction with a biodegradable poly(lactide-co-glycolide acid) (PLAGA) polymeric scaffold for engineering bone tissue was evaluated. The in vitro cellular behaviour of osteoblast-like MC3T3-E1 cells cultured on PLAGA scaffolds in the presence of phenamil at 10 μM were characterized with regard to initial cell adhesion, proliferation, alkaline phosphatase (ALP) activity and matrix mineralization. The results demonstrate that phenamil supported cell proliferation, promoted ALP activity and facilitated matrix mineralization of osteoblast-like MC3T3-E1 cells. Moreover, in this study, we found that phenamil promoted integrin-mediated cell adhesion on PLAGA scaffolds. It was also shown that phenamil encapsulated within porous, microsphere PLAGA scaffolds retained its osteogenic activity upon release. Based on these findings, the small molecule phenamil has the potential to serve as a novel biofactor for the repair and regeneration of bone tissues. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Generation and Nuclear Translocation of Sumoylated Transmembrane Fragment of Cell Adhesion Molecule L1

    Science.gov (United States)

    Lutz, David; Wolters-Eisfeld, Gerrit; Joshi, Gunjan; Djogo, Nevena; Jakovcevski, Igor; Schachner, Melitta; Kleene, Ralf

    2012-01-01

    The functions of the cell adhesion molecule L1 in the developing and adult nervous system are triggered by homophilic and heterophilic interactions that stimulate signal transductions that activate cellular responses. Here, we show that stimulation of signaling by function-triggering L1 antibodies or L1-Fc leads to serine protease-dependent cleavage of full-length L1 at the plasma membrane and generation of a sumoylated transmembrane 70-kDa fragment comprising the intracellular and transmembrane domains and part of the extracellular domain. The 70-kDa transmembrane fragment is transported from the plasma membrane to a late endosomal compartment, released from endosomal membranes into the cytoplasm, and transferred from there into the nucleus by a pathway that depends on importin and chromatin-modifying protein 1. Mutation of the sumoylation site at Lys1172 or of the nuclear localization signal at Lys1147 abolished L1-stimulated generation or nuclear import of the 70-kDa fragment, respectively. Nuclear import of the 70-kDa fragment may activate cellular responses in parallel or in association with phosphorylation-dependent signaling pathways. Alterations in the levels of the 70-kDa fragment during development and in the adult after spinal cord injury or in a mouse model of Alzheimer disease suggest that this fragment is functionally implicated in development, regeneration, neurodegeneration, tumorigenesis, and possibly synaptic plasticity in the mature nervous system. PMID:22431726

  15. A review of the biomaterials technologies for infection-resistant surfaces.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2013-11-01

    Anti-infective biomaterials need to be tailored according to the specific clinical application. All their properties have to be tuned to achieve the best anti-infective performance together with safe biocompatibility and appropriate tissue interactions. Innovative technologies are developing new biomaterials and surfaces endowed with anti-infective properties, relying either on antifouling, or bactericidal, or antibiofilm activities. This review aims at thoroughly surveying the numerous classes of antibacterial biomaterials and the underlying strategies behind them. Bacteria repelling and antiadhesive surfaces, materials with intrinsic antibacterial properties, antibacterial coatings, nanostructured materials, and molecules interfering with bacterial biofilm are considered. Among the new strategies, the use of phages or of antisense peptide nucleic acids are discussed, as well as the possibility to modulate the local immune response by active cytokines. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. Many of them exhibit a great potential in preclinical models. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of anti-infective biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  16. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling

    DEFF Research Database (Denmark)

    Zecchini, Silvia; Bombardelli, Lorenzo; Decio, Alessandra

    2011-01-01

    glycoprotein involved in brain development and plasticity, in EOC. NCAM is absent from normal ovarian epithelium but becomes highly expressed in a subset of human EOC, in which NCAM expression is associated with high tumour grade, suggesting a causal role in cancer aggressiveness. We demonstrate that NCAM......Epithelial ovarian carcinoma (EOC) is an aggressive neoplasm, which mainly disseminates to organs of the peritoneal cavity, an event mediated by molecular mechanisms that remain elusive. Here, we investigated the expression and functional role of neural cell adhesion molecule (NCAM), a cell surface...... stimulates EOC cell migration and invasion in vitro and promotes metastatic dissemination in mice. This pro-malignant function of NCAM is mediated by its interaction with fibroblast growth factor receptor (FGFR). Indeed, not only FGFR signalling is required for NCAM-induced EOC cell motility, but targeting...

  17. Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.

    Science.gov (United States)

    Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti

    2012-04-01

    The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.

  18. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner

    DEFF Research Database (Denmark)

    Cox, F F; Berezin, V; Bock, E

    2013-01-01

    Fibroblast growth loop (FGL) is a neural cell adhesion molecule (NCAM)-mimetic peptide that mimics the interaction of NCAM with fibroblast growth factor receptor (FGFR). FGL increases neurite outgrowth and promotes neuronal survival in vitro, and it has also been shown to have neuroprotective eff...

  19. Silk fibroin as biomaterial for bone tissue engineering.

    Science.gov (United States)

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  1. Role Of Adhesion Molecules Vcam-1 And Ve-Cadherin In Endothelium Dysfunction Development At Hemorrhagic Fever With Renal Syndrome

    Directory of Open Access Journals (Sweden)

    А.А. Baygildina

    2009-12-01

    Full Text Available The research goal is to determine the changes in concentration of both sVCAM-1 and VE-cadherin in blood serum of patients suffered from hemorrhagic fever with renal syndrome (HFRS. 87 patients aged 15-65 were examined. Concentrations of both sVCAM-1 and VE- cadherin in blood serum by means of "Bender MedSystems" (Austria ELISA test were determined. It was shown that in both medium severe and severe forms of HFRS statistically the significant rise of sVCAM-1 concentration in blood with high indices in oliguric period took place. Complicated form was characterized by high indices of sVCAM-1 level in fever period, extremely decreasing in concentration in oliguric period and tendency to normalizing in clinical convalescence period. VE-cadherin level in blood was predominantly lower than control in all the observed groups with the exception of fever period in group with medium severe disease form. Negative correlation of normal intensity between adhesion molecules levels in blood was revealed. In conclusion it is necessary to point out that high VCAM-1 expression by endotheliocytes evidences the development of an adhesion form of endothelial dysfunction, low VE-cadherin production in a base for development of angiogenic form of endothelial dysfunction and changes in expression of these adhesion molecules that have adaptive metabolic response to macroorganism of HFRS pathogenic action

  2. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  3. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    we make. All of which are based on biological principles. Such evolution-inspired biomaterials have the potential to generate innovative solutions, which match with existing bioengineering problems, in vital areas of clinical materials translation that include tissue engineering, gene delivery, drug delivery, immunity modulation, and scar-less wound healing. Evolution by natural selection is a powerful generator of innovations in molecular, materials and structures. Man has influenced evolution for thousands of years, to create new breeds of farm animals and crop plants, but now molecular and materials can be molded in the same way. Biological molecules and simple structures can be evolved, literally in the laboratory. Furthermore, they are re-designed via lessons learnt from evolutionary history. Through a 3-step process to (1) create variants in material building blocks, (2) screen the variants with beneficial traits/properties and (3) select and support their self-assembly into usable materials, improvements in design and performance can emerge. By introducing biological molecules and small organisms into this process, it is possible to make increasingly diversified, sophisticated and clinically relevant materials for multiple roles in biomedicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Effects of alpha-tocopherol on superoxide production and plasma intercellular adhesion molecule-1 and antibodies to oxidized LDL in chronic smokers

    NARCIS (Netherlands)

    Tits, van L.J.; Waart, de F.; Hak-Lemmers, H.L.M.; Heijst, P.; Graaf, de J.; Demacker, P.N.; Stalenhoef, A.F.

    2001-01-01

    Antioxidants have been postulated to exert beneficial effects in atherosclerosis. Atherosclerosis is associated with raised plasma levels of soluble intercellular adhesion molecule-1 (sICAM-1) and autoantibodies against oxidized low-density lipoprotein (oxLDL). It is not known whether antioxidants

  5. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo; Kim, Jong Young

    2011-01-01

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  6. Depression-like behaviour in neural cell adhesion molecule (NCAM)-deficient mice and its reversal by an NCAM-derived peptide, FGL

    DEFF Research Database (Denmark)

    Aonurm-Helm, Anu; Jurgenson, Monika; Zharkovsky, Tamara

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in brain plasticity. Brain plasticity itself has a crucial role in the development of depression. The aim of this study was to analyze whether NCAM-deficient (NCAM(-/-)) mice exhibit depression-like behaviour and whether a peptide term...

  7. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival

    DEFF Research Database (Denmark)

    Køhler, Lene B; Soroka, Vladislav; Korshunova, Irina

    2010-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and synaptic plasticity. The crystal structure of a fragment of NCAM comprising the three N-terminal immunoglobulin (Ig)-like modules indicates that the first and second Ig modules bind to each other, t...

  8. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Bogyu; Kim, Soyon; Lin, Brian; Wu, Benjamin M; Lee, Min

    2014-11-26

    Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.

  9. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts.

    Science.gov (United States)

    Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou

    2018-05-01

    Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides

  10. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    Science.gov (United States)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    International Nuclear Information System (INIS)

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-01-01

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression

  12. Biodistribution studies of epithelial cell adhesion molecule (EpCAM)-directed monoclonal antibodies in the EpCAM-transgenic mouse tumor model

    NARCIS (Netherlands)

    Kosterink, Jos G. W.; McLaughlin, Pamela M. J.; Lub-de Hooge, Marjolijn N.; Hendrikse, Harry H.; Van Zanten, Jacoba; Van Garderen, Evert; Harmsen, Martin C.; De Leij, Lou F. M. H.

    2007-01-01

    The human pancarcinoma-associated epithelial cell adhesion molecule (EpCAM) (EGP-2, CO17-1A) is a well-known target for carcinoma-directed immunotherapy. Mouse-derived mAbs directed to EpCAM have been used to treat colon carcinoma patients showing well-tolerable toxic side effects but limited

  13. TM9/Phg1 and SadA proteins control surface expression and stability of SibA adhesion molecules in Dictyostelium.

    Science.gov (United States)

    Froquet, Romain; le Coadic, Marion; Perrin, Jackie; Cherix, Nathalie; Cornillon, Sophie; Cosson, Pierre

    2012-02-01

    TM9 proteins form a family of conserved proteins with nine transmembrane domains essential for cellular adhesion in many biological systems, but their exact role in this process remains unknown. In this study, we found that genetic inactivation of the TM9 protein Phg1A dramatically decreases the surface levels of the SibA adhesion molecule in Dictyostelium amoebae. This is due to a decrease in sibA mRNA levels, in SibA protein stability, and in SibA targeting to the cell surface. A similar phenotype was observed in cells devoid of SadA, a protein that does not belong to the TM9 family but also exhibits nine transmembrane domains and is essential for cellular adhesion. A contact site A (csA)-SibA chimeric protein comprising only the transmembrane and cytosolic domains of SibA and the extracellular domain of the Dictyostelium surface protein csA also showed reduced stability and relocalization to endocytic compartments in phg1A knockout cells. These results indicate that TM9 proteins participate in cell adhesion by controlling the levels of adhesion proteins present at the cell surface.

  14. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  15. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Arkesteijn, I.T.M.; Wessling, Matthias; Poot, Andreas A.; Stamatialis, Dimitrios

    2013-01-01

    Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid

  16. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  17. Adhesive coatings based on melanin-like nanoparticles for surgical membranes.

    Science.gov (United States)

    Scognamiglio, Francesca; Travan, Andrea; Turco, Gianluca; Borgogna, Massimiliano; Marsich, Eleonora; Pasqua, Mattia; Paoletti, Sergio; Donati, Ivan

    2017-07-01

    Adhesive coatings for implantable biomaterials can be designed to prevent material displacement from the site of implant. In this paper, a strategy based on the use of melanin-like nanoparticles (MNPs) for the development of adhesive coatings for polysaccharidic membranes was devised. MNPs were synthesized in vitro and characterized in terms of dimensions and surface potential, as a function of pH and ionic strength. The in vitro biocompatibility of MNPs was investigated on fibroblast cells, while the antimicrobial properties of MNPs in suspension were evaluated on E. coli and S. aureus cultures. The manufacturing of the adhesive coatings was carried out by spreading MNPs over the surface of polysaccharidic membranes; the adhesive properties of the nano-engineered coating to the target tissue (intestinal serosa) were studied in simulated physiological conditions. Overall, this study opens for novel approaches in the design of naturally inspired nanostructured adhesive systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  20. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology.

    Science.gov (United States)

    Polizu, Stefania; Savadogo, Oumarou; Poulin, Philippe; Yahia, L'Hocine

    2006-07-01

    One of the facets of nanotechnology applications is the immense opportunities they offer for new developments in medicine and health sciences. Carbon nanotubes (CNTs) have particularly attracted attention for designing new monitoring systems for environment and living cells as well as nanosensors. Carbon nanotubes-based biomaterials are also employed as support for active prosthesis or functional matrices in reparation of parts of the human body. These nanostructures are studied as molecular-level building blocks for the complex and miniaturized medical device, and substrate for stimulation of cellular growth. The CNTs are cylindrical shaped with caged molecules which can act as nanoscale containers for molecular species, well required for biomolecular recognition and drug delivery systems. Endowed with very large aspect ratios, an excellent electrical conductivity and inertness along with mechanical robustness, nanotubes found enormous applications in molecular electronics and bioelectronics. The ballistic electrical behaviour of SWNTs conjugated with functionalization promotes a large variety of biosensors for individual molecules. Actuative response of CNTs is considered very promising feature for nanodevices, micro-robots and artificial muscles. An description of CNTs based biomaterials is attempted in this review, in order to point out their enormous potential for biomedical nanotechnology and nanobiotechnology.

  1. Ground state analysis of magnetic nanographene molecules with modified edge

    International Nuclear Information System (INIS)

    Gorjizadeh, Narjes; Ota, Norio; Kawazoe, Yoshiyuki

    2013-01-01

    Highlights: ► Graphene molecules can become ferromagnetic by edge modifications. ► Dihydrogenation of one zigzag edge of rectangular flakes make them ferromagnetic. ► Triangular flakes become high-spin state by dehydrogenization of one zigzag edge. - Abstract: We study spin states of edge modified nanographene molecules with rectangular and triangular shapes by first principle calculations using density functional theory (DFT) and Hartree–Fock (HF) methods with Møller–Plesset (MP) correlation energy correction at different levels. Anthracene (C 14 H 10 ) and phenalenyl (C 13 H 9 ), which contain three benzene rings combined in two different ways, can be considered as fragments of a graphene sheet. Carbon-based ferromagnetic materials are of great interest both in fundamental science and technological potential in organic spintronics devices. We show that non-magnetic rectangular molecules such as C 14 H 10 can become ferromagnetic with high-spin state as the ground state by dihydrogenization of one of the zigzag edges, while triangular molecules such as C 13 H 9 become ferromagnetic with high-spin state by dehydrogenization of one of the zigzag edges

  2. A Review of Injectable and Implantable Biomaterials for Treatment and Repair of Soft Tissues in Wound Healing

    Directory of Open Access Journals (Sweden)

    Shih-Feng Chou

    2017-01-01

    Full Text Available The two major topics concerning the development of nanomedicine are drug delivery and tissue engineering. With the advance in nanotechnology, scientists and engineers now have the ability to fabricate functional drug carriers and/or biomaterials that deliver and release drugs locally as well as promote tissue regeneration. In this short review, we address the use of nanotechnology in the fabrication of biomaterials (i.e., nanoparticles and nanofibers and their therapeutic function in wound healing as dressing materials. Furthermore, we discuss the use of surface nanofeatures to regulate cell adhesion, migration, proliferation, and differentiation, which is a crucial step in wound healing associated with tissue regeneration. Given that nanotechnology-based biomaterials exhibit superior pharmaceutical performance as compared to the traditional medicine, this short review provides current status and future directions of how nanotechnology is and will be used in biomedical field, especially in wound healing.

  3. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  4. Abdominal wall healing in incisional hernia using different biomaterials in rabbits

    Directory of Open Access Journals (Sweden)

    Ana Letícia Gomes Aramayo

    2013-04-01

    Full Text Available PURPOSE: To investigate abdominal wound healing using specific biomaterials in incisional hernias. METHODS: Incisional hernias were produced in 40 rabbits, after that they were reoperated with or without the use of meshes: PREMILENE® (PPL, ULTRAPRO® (UP, PROCEED® (PCD or repairing without mesh (TRANSPALB. After 30 days a macroscopic and microscopic study of the part withdrawn from the abdominal wall was performed. RESULTS: Macroscopic: adhesion Area: PPL> UP and PCD (p = 0.031. Vascularization: PPL> UP and PCD (p = 0.001. PPL groups (p = 0.032 and PCD (p PPL, UP and TRANSPALB (p = 0.010; eosinophils: PPL> UP, and TRANSPALB PCD (p = 0.010; granulation tissue: PPL and PCD> UP and TRANSPALB (p TRANSPALB (p UP (p = 0.009 and TRANSPALB (p TRANSPALB (p PCD and TRANSPALB (p <0.001. CONCLUSION: All types of meshes caused the formation of adhesions. The UP and PCD groups showed lower area and vascularization of the adhesions. The PPL and PCD groups showed higher meshes shrinkage and there was a predominance of acute inflammatory process in the PCD group.

  5. Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning

    DEFF Research Database (Denmark)

    Køhler, Lene B; Christensen, Claus; Rossetti, Clara

    2010-01-01

    , and the effect of dennexinA was independent of polysialic acid expression. Consistent with the effect of dennexinA on NCAM-mediated adhesion in vitro, the peptide impaired long-term memory retention in rats in the Morris water maze test. Thus, dennexins are novel site-specific pharmacological tools...

  6. Bone induction by surface-double-modified true bone ceramics in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Jingfeng; Chen, Liaobin; Deng, Yu; Zheng, Qixin; Guo, Xiaodong; Zou, Zhenwei; Liu, Yudong; Lan, Shenghui

    2013-01-01

    True bone ceramic (TBC), obtained by twice sintering fresh bovine cancellous bone at high temperatures, is an osteoconductive and bioactive bone substitute material that exhibits excellent biocompatibility with hard tissue. The authors have previously synthesized a novel BMP-2-related peptide, P24, and found that it could enhance the osteoblastic differentiation of cells. The objective of the present study was to construct a double-modified TBC via mineralization into simulated body fluid and P24 incorporation for enhanced bone formation. In vitro experiments revealed that surface mineralization-modified (SMM) TBC scaffolds demonstrated efficiency for sustained release of P24. The P24/SMM-TBC composite exhibited increased osteogenic activity by cell adhesion rate determination, MTT assay, alkaline phosphatase staining, and calcium nodule staining with alizarin red compared with SMM-TBC and TBC. In vivo studies showed that the P24/SMM-TBC composite scaffold promoted significant bone defect repair, in marked contrast to stand-alone SMM-TBC and TBC, based on the results of radiographic evaluation and histological examination. These findings indicate that SMM-TBC is a good scaffold for the controlled release of P24 and that the P24/SMM-TBC composite could improve the adhesion, proliferation and differentiation of cells and repair bone defects. The double-modified P24/SMM-TBC composite biomaterial shows potential for clinical application in bone tissue engineering. (paper)

  7. Role of plasma fibronectin in the foreign body response to biomaterials.

    Science.gov (United States)

    Keselowsky, Benjamin G; Bridges, Amanda W; Burns, Kellie L; Tate, Ciara C; Babensee, Julia E; LaPlaca, Michelle C; García, Andrés J

    2007-09-01

    Host responses to biomaterials control the biological performance of implanted medical devices. Upon implantation, synthetic materials adsorb biomolecules, which trigger an inflammatory cascade comprising coagulation, leukocyte recruitment/adhesion, and foreign body reaction. The foreign body reaction and ensuing fibrous encapsulation severely limit the in vivo performance of numerous biomedical devices. While it is well established that plasma fibrinogen and secreted cytokines modulate leukocyte recruitment and maturation into foreign body giant cells, mediators of chronic inflammation and fibrous encapsulation of implanted biomaterials remain poorly understood. Using plasma fibronectin (pFN) conditional knock-out mice, we demonstrate that pFN modulates the foreign body response to polyethylene terephthalate disks implanted subcutaneously. Fibrous collagenous capsules were two-fold thicker in mice depleted of pFN compared to controls. In contrast, deletion of pFN did not alter acute leukocyte recruitment to the biomaterial, indicating that pFN modulates chronic fibrotic responses. The number of foreign body giant cells associated with the implant was three times higher in the absence of pFN while macrophage numbers were not different, suggesting that pFN regulates the formation of biomaterial-associated foreign body giant cells. Interestingly, cellular FN (cFN) was present in the capsules of both normal and pFN-depleted mice, suggesting that cFN could not compensate for the loss of pFN. These results implicate pFN in the host response to implanted materials and identify a potential target for therapeutic intervention to enhance the biological performance of biomedical devices.

  8. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  9. In silico design of anti-atherogenic biomaterials.

    Science.gov (United States)

    Lewis, Daniel R; Kholodovych, Vladyslav; Tomasini, Michael D; Abdelhamid, Dalia; Petersen, Latrisha K; Welsh, William J; Uhrich, Kathryn E; Moghe, Prabhas V

    2013-10-01

    Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  11. Nucleotide-binding oligomerization domain 1 regulates Porphyromonas gingivalis-induced vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression in endothelial cells through NF-κB pathway.

    Science.gov (United States)

    Wan, M; Liu, J; Ouyang, X

    2015-04-01

    Porphyromonas gingivalis has been shown to actively invade endothelial cells and induce vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) overexpression. Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition reporter, and its involvement in this process was unknown. This study focused on endothelial cells infected with P. gingivalis, the detection of NOD1 expression and the role that NOD1 plays in the upregulation of VCAM-1 and ICAM-1. The human umbilical vein endothelial cell line (ECV-304) was intruded by P. gingivalis W83, and cells without any treatment were the control group. Expression levels of NOD1, VCAM-1, ICAM-1, phosphorylated P65 between cells with and without treatment on both mRNA and protein levels were compared. Then we examined whether mesodiaminopimelic acid (NOD1 agonist) could increase VCAM-1 and ICAM-1 expression, meanwhile, NOD1 gene silence by RNA interference could reduce VCAM-1, ICAM-1 and phosphorylated P65 release. At last, we examined whether inhibition of NF-κB by Bay117082 could reduce VCAM-1 and ICAM- 1 expression. The mRNA levels were measured by real-time polymerase chain reaction, and protein levels by western blot or electrophoretic mobility shift assays (for phosphorylated P65). P. gingivalis invasion showed significant upregulation of NOD1, VCAM-1 and ICAM-1. NOD1 activation by meso-diaminopimelic acid increased VCAM-1 and ICAM-1 expression, and NOD1 gene silence reduced VCAM-1 and ICAM-1 release markedly. The NF-κB signaling pathway was activated by P. gingivalis, while NOD1 gene silence decreased the activation of NF-κB. Moreover, inhibition of NF-κB reduced VCAM-1 and ICAM-1 expression induced by P. gingivalis in endothelial cells. The results revealed that P. gingivalis induced NOD1 overexpression in endothelial cells and that NOD1 played an important role in the process of VCAM-1 and ICAM-1 expression in endothelial cells infected with P

  12. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Olfat Gsib

    2017-12-01

    Full Text Available Interpenetrating polymer networks (IPNs have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO. First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%. The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues and migration (skin, intestine than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  13. Microleakage after Thermocycling of Three Self-Etch Adhesives under Resin-Modified Glass-Ionomer Cement Restorations

    Directory of Open Access Journals (Sweden)

    Sabine O. Geerts

    2010-01-01

    Full Text Available This study was designed to evaluate microleakage that appeared on Resin-Modified Glass-Ionomer Cement (RMGIC restorations. Sixty class V cavities (h×w×l=2mm×2mm×3mm were cut on thirty extracted third molars, which were randomly allocated to three experimental groups. All the buccal cavities were pretreated with polyacrylic acid, whereas the lingual cavities were treated with three one-step Self-Etch adhesives, respectively, Xeno III (Dentsply Detrey GmbH, Konstanz, Germany, iBond exp (Heraeus Kulzer gmbH & Co. KG, Hanau, Germany, and Adper Prompt-L-Pop (3M ESPE AG, Dental products Seefeld, Germany. All cavities were completely filled with RMGIC, teeth were thermocycled for 800 cycles, and leakage was evaluated. Results were expressed as means ± standard deviations (SDs. Microleakage scores were analysed by means of generalized linear mixed models (GLMMs assuming an ordinal logistic link function. All results were considered to be significant at the 5% critical level (<.05. The results showed that bonding RMGIC to dentin with a Self-Etch adhesive rather than using polyacrylic acid did not influence microleakage scores (=.091, except for one tested Self-Etch adhesive, namely, Xeno III (<.0001. Nevertheless, our results did not show any significant difference between the three tested Self-Etch adhesive systems. In conclusion, the pretreatment of dentin with Self-Etch adhesive system, before RMGIC filling, seems to be an alternative to the conventional Dentin Conditioner for the clinicians as suggested by our results (thermocycling and others (microtensile tests.

  14. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  15. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    Science.gov (United States)

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  16. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    Science.gov (United States)

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  17. Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Beili; Ryu, Chong-Min; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-11-01

    Highlights: • Silica nanoparticles were modified to carry the vinyl groups for photo-crosslinking. • Acrylic copolymer was modified to have the vinyl groups for photo-crosslinking. • Strong and extensive interfacial bondings were formed between polymer and silica. • Thermal stability of PSA was improved by forming nanocomposite with modified silica. -- Abstract: Pressure sensitive adhesives (PSAs) with higher thermal stability were successfully prepared by forming composite with the silica nanoparticles modified via reaction with 3-methacryloxypropyltrimethoxysilane. The acrylic copolymer was synthesized as a base resin for PSAs by solution polymerization of 2-EHA, EA, and AA with AIBN as an initiator. The acrylic copolymer was further modified with GMA to have the vinyl groups available for UV curing. The peel strength decreased with the increase of gel content which was dependent on both silica content and UV dose. Thermal stability of the composite PSAs was improved noticeably with increasing silica content and UV dose mainly due to the strong and extensive interfacial bonding between the organic polymer matrix and silica.

  18. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  19. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  20. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  1. Temporal Patterns of Soluble Adhesion Molecules in Cerebrospinal Fluid and Plasma in Patients with the Acute Brain Infraction

    Directory of Open Access Journals (Sweden)

    Vesna Selakovic

    2009-01-01

    Full Text Available The aim of this study was to define concentration changes of soluble adhesion molecules (sICAM-1, sVCAM-1 and sE-Selectin in cerebrospinal fluid and plasma, as well as, number of peripheral blood leukocytes and the albumin coefficient in the patients with the acute brain infarction. We also, analyzed the correlation between the measured levels, the infarct volume and the degree of neurological and the functional deficit. The study included 50 patients with the acute cerebral infarction and the control group consisted of 16 patients, age and sex matched. Obtained results showed significant increase in number of leukocytes, the albumin coefficient and the level of soluble adhesion molecules within the first seven days in patients. The highest values of measured parameters were noted within the third and the fourth day after the insult, which is the suggested period of maximal intensity of inflammatory reactions. Significant correlation was found between measured parameters and the infarct volume, the degree of neurological and the functional deficit. The results suggest that investigated parameters in CSF and blood represent a dynamic index of inflammatory events as one of the fundametal mechanisms responsible for neuron damage during acute phase of brain infarction.

  2. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids

    NARCIS (Netherlands)

    Roosjen, Astrid; de Vries, Jacob; van der Mei, HC; Norde, W; Busscher, HJ

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about

  3. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids

    NARCIS (Netherlands)

    Roosjen, A.; Vries, de J.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2005-01-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about

  4. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...... rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  5. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  6. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery

    DEFF Research Database (Denmark)

    Toft, P; Nielsen, C H; Tønnesen, Else Kirstine

    1998-01-01

    Cardiac and major abdominal surgery are associated with granulocytosis in peripheral blood. The purpose of the present study was to describe the granulocyte and monocyte oxidative burst and the expression of adhesion molecules following cardiac surgery with cardiopulmonary bypass and abdominal...... during cardiopulmonary bypass was observed. The percentage of CD11a-positive granulocytes increased from 30% pre-operatively to 75% following cardiopulmonary bypass, while CD44-positive granulocytes increased from 5% to 13%. Despite the extent of the changes, these were not significant. The oxidative...... to an increased per-operative oxidative burst activity, and the induction of adhesion molecules on granulocytes associated with the cardiopulmonary bypass and surgery. In conclusion, open-heart surgery with cardiopulmonary bypass was associated with a rapid and pronounced activation of leukocytes which may play...

  7. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells

    Directory of Open Access Journals (Sweden)

    Sebastian Werneburg

    2015-05-01

    Full Text Available Oligodendrocyte precursor cells (OPCs are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  8. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement.

    Science.gov (United States)

    Ibrahim, Marrwa A; Neo, Jennifer; Esguerra, Roxanna J; Fawzy, Amr S

    2015-10-01

    The aim is to investigate the effect of modifying the liquid phase of a conventional glass ionomer restorative material with different chitosan volume contents on the antibacterial properties and adhesion to dentin. The liquids of commercially available restorative glass ionomer cements (GIC) were modified with chitosan (CH) solutions at different volume contents (5%, 10%, 25%, and 50%). The GIC powders were mixed with the unmodified and the CH-modified liquids at the desired powder/liquid (P/L) ratio. For the characterization of the antibacterial properties, Streptococcus mutans biofilms were formed on GIC discs and characterized by scanning electron microscope (SEM), confocal microscopy, colony forming unit (CFU) count, and cell viability assay (MTS). The unmodified and CH-modified GICs were bonded to dentin surfaces and the micro-tensile bond strength (µTBs) was evaluated and the interface was investigated by SEM. Modification with CH solutions enhanced the antibacterial properties against S. mutans in terms of resistance to biofilm formation, CFU count, and MTS assay. Generally, significant improvement in the antibacterial properties was found with the increase in the CH volume content. Modification with 25% and 50% CH adversely affected the µTBs with predominant cohesive failure in the GIC. However, no difference was found between the control and the 5% and 10% CH-modified specimens. Incorporation of acidic solutions of chitosan in the polyacrylic acid liquid of GIC at v/v ratios of 5-10% improved the antibacterial properties of conventional glass ionomer cement against S. mutans without adversely affecting its bonding to dentin surface. © The Author(s) 2015.

  9. Antibodies against Shigella flexneri adhesion molecule outer ...

    African Journals Online (AJOL)

    OMP) as an adhesion factor and examine its ability to cross-react with the OMPs of other Shigella species. Methods: OMP was isolated from the bacterium S. flexneri after shaving the pili using a pili bacterial cutter in a solution of 0.5 ...

  10. Short communication: Conservation of Streptococcus uberis adhesion molecule and the sua gene in strains of Streptococcus uberis isolated from geographically diverse areas.

    Science.gov (United States)

    Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P

    2014-12-01

    The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taekyung [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Cheongwan [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); Jung, Myungki; Lee, Jinhyung; Park, Changsu [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Kang, Shinill, E-mail: snlkang@yonsei.ac.kr [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-12-15

    Highlights: • A design method using the Derjaguin approximation with FEA for low-adhesion surface. • Fabrication of nanostructures with small adhesion forces by presented design method. • Characterization of adhesion force via AFM FD-curve with modified atypical tips. • Verification of low-adhesion of designed surfaces using centrifugal detachment tests. • Investigation of interdependence of hydrophobicity and anti-adhesion force. - Abstract: With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  12. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    Science.gov (United States)

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  13. Cell reactions with biomaterials: the microscopies

    Directory of Open Access Journals (Sweden)

    Curtis A. S.G.

    2001-01-01

    Full Text Available The methods and results of optical microscopy that can be used to observe cell reactions to biomaterials are Interference Reflection Microscopy (IRM, Total Internal Reflection Fluorescence Microscopy (TIRFM, Surface Plasmon Resonance Microscopy (SPRM and Forster Resonance Energy Transfer Microscopy (FRETM and Standing Wave Fluorescence Microscopy. The last three are new developments, which have not yet been fully perfected. TIRFM and SPRM are evanescent wave methods. The physics of these methods depend upon optical phenomena at interfaces. All these methods give information on the dimensions of the gap between cell and the substratum to which it is adhering and thus are especially suited to work with biomaterials. IRM and FRETM can be used on opaque surfaces though image interpretation is especially difficult for IRM on a reflecting opaque surface. These methods are compared with several electron microscopical methods for studying cell adhesion to substrata. These methods all yield fairly consistent results and show that the cell to substratum distance on many materials is in the range 5 to 30 nm. The area of contact relative to the total projected area of the cell may vary from a few per cent to close to 100% depending on the cell type and substratum. These methods show that those discrete contact areas well known as focal contacts are frequently present. The results of FRETM suggest that the separation from the substratum even in a focal contact is about 5 nm.

  14. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  15. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    International Nuclear Information System (INIS)

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-01-01

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone (β-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist α-naphthoflavone (α-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with β-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis

  16. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction.

    Science.gov (United States)

    Nayyer, Leila; Jell, Gavin; Esmaeili, Ali; Birchall, Martin; Seifalian, Alexander M

    2016-05-01

    Current biomaterials for auricular replacement are associated with high rates of infection and extrusion. The development of new auricular biomaterials that mimic the mechanical properties of native tissue and promote desirable cellular interactions may prevent implant failure. A porous 3D nanocomposite scaffold (NS) based on POSS-PCU (polyhedral oligomeric silsesquioxane nanocage into polycarbonate based urea-urethane) is developed with an elastic modulus similar to native ear. In vitro biological interactions on this NS reveal greater protein adsorption, increased fibroblast adhesion, proliferation, and collagen production compared with Medpor (the current synthetic auricular implant). In vivo, the POSS-PCU with larger pores (NS2; 150-250 μm) have greater tissue ingrowth (≈5.8× and ≈1.4 × increase) than the POSS-PCU with smaller pores (NS1; 100-50 μm) and when compared to Medpor (>100 μm). The NS2 with the larger pores demonstrates a reduced fibrotic encapsulation compared with NS1 and Medpor (≈4.1× and ≈1.6×, respectively; P response for all materials may indicate that the elastic modulus and pore size of the implant scaffold could be important design considerations for influencing fibrotic responses to auricular and other soft tissue implants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Soluble intercellular adhesion molecule 1 and flow-mediated dilatation are related to the estimated risk of coronary heart disease independently from each other

    NARCIS (Netherlands)

    Witte, D.R.; Broekmans, W.M.R.; Kardinaal, A.F.M.; Klöpping-Ketelaars, I.A.A.; Poppel, G. van; Bots, M.L.; Kluft, C.; Princen, J.M.G.

    2003-01-01

    Background: Flow mediated dilatation (FMD) of the brachial artery and soluble intercellular adhesion molecule 1 (sICAM-1) are measures of distinct functions of the endothelium, reflecting nitric oxide (NO)-mediated and pro-inflammatory status, respectively. The comparative value of the two measures

  18. Candida biofilms: is adhesion sexy?

    Science.gov (United States)

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.

  19. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    Science.gov (United States)

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biomaterials for artificial organs

    CERN Document Server

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  1. Cerebrospinal fluid and plasma concentration of soluble intercellular adhesion molecule1, vascular cell adhesion molecule1 and endothelial leukocyte adhesion molecule in patients with acute ischemic b

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available Background. Leukocyte migration into the ischemic area is a complex process controlled by adhesion molecules (AM in leukocytes and endothelium, by migratory capacity of leukocytes and the presence of hemotaxic agents in the tissue. In this research it was supposed that in the blood and cerebrospinal fluid (CSF of patients in the acute phase of ischemic brain disease (IBD there were relevant changes in the concentration of soluble AM (sICAM-1 sVCAM-1 and sE-selectin, that could have been the indicators of the intensity of damaging processes in central nervous system (CNS. Methods. The study included 45 IBD patients, 15 with transient ischemic attack (TIA 15 with reversible ischemic attack (RIA, and 15 with brain infarction (BI of both sexes, mean age 66±7. Control group consisted of 15 patients with radicular lesions of discal origin, subjected to diagnostic radiculography without the signs of interruption in the passage of CSF. Changes of selected biochemical parameters were determined in all patients in frame 72 hours since the occurence of an ischemic episode. Concentrations of soluble AM were determined in plasma and CSF by ELISA. Total number of leukocytes (TNL in peripheral blood was determined by hematological analyzer. Results. The results showed that during the first 72 hrs of IBD significant increases occured in TNL and that the increase was progressive compared to the severeness of the disease. Significant increase of soluble AM concentration was shown in plasma of IBD patients. The increase was highest in BI somewhat lower in RIA and the lowest in TIA patients compared to the control. In CSF concentrations of sICAM-1, sVCAM-1 and sE-selectin demonstrated similar increasing trend as in plasma. Conclusion. TNL, as well as the soluble AM concentrations in plasma and CSF, were increased during the acute IBD phase and progressive in relation to the severeness of the disease, so that they might have been the indicators of CNS inflammatory

  2. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  3. Ablation of CD11c(hi) dendritic cells exacerbates Japanese encephalitis by regulating blood-brain barrier permeability and altering tight junction/adhesion molecules.

    Science.gov (United States)

    Kim, Jin Hyoung; Hossain, Ferdaus Mohd Altaf; Patil, Ajit Mahadev; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Park, Sang-Youel; Lee, John-Hwa; Kim, Bumseok; Kim, Koanhoi; Eo, Seong Kug

    2016-10-01

    Japanese encephalitis (JE), characterized by extensive neuroinflammation following infection with neurotropic JE virus (JEV), is becoming a leading cause of viral encephalitis due to rapid changes in climate and demography. The blood-brain barrier (BBB) plays an important role in restricting neuroinvasion of peripheral leukocytes and virus, thereby regulating the progression of viral encephalitis. In this study, we explored the role of CD11c(hi) dendritic cells (DCs) in regulating BBB integrity and JE progression using a conditional depletion model of CD11c(hi) DCs. Transient ablation of CD11c(hi) DCs resulted in markedly increased susceptibility to JE progression along with highly increased neuro-invasion of JEV. In addition, exacerbated JE progression in CD11c(hi) DC-ablated hosts was closely associated with increased expression of proinflammatory cytokines (IFN-β, IL-6, and TNF-α) and CC chemokines (CCL2, CCL3, CXCL2) in the brain. Moreover, our results revealed that the exacerbation of JE progression in CD11c(hi) DC-ablated hosts was correlated with enhanced BBB permeability and reduced expression of tight junction and adhesion molecules (claudin-5, ZO-1, occluding, JAMs). Ultimately, our data conclude that the ablation of CD11c(hi) DCs provided a subsidiary impact on BBB integrity and the expression of tight junction/adhesion molecules, thereby leading to exacerbated JE progression. These findings provide insight into the secondary role of CD11c(hi) DCs in JE progression through regulation of BBB integrity and the expression of tight junction/adhesion molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  5. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-08-01

    Full Text Available Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  6. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Pei Changlong; Song Jizhong; Zhu Di; Chen Jie

    2010-01-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  7. Biomaterials and their applications

    Science.gov (United States)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  8. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18.

    Science.gov (United States)

    Lecoanet-Henchoz, S; Plater-Zyberk, C; Graber, P; Gretener, D; Aubry, J P; Conrad, D H; Bonnefoy, J Y

    1997-09-01

    CD23 is expressed on a variety of hemopoietic cells. Recently, we have reported that blocking CD23 interactions in a murine model of arthritis resulted in a marked improvement of disease severity. Here, we demonstrate that CD11b, the alpha chain of the beta 2 integrin adhesion molecule complex CD11b/CD18 expressed on monocytes interacts with CD23. Using a recombinant fusion protein (ZZ-CD23), murine CD23 was shown to bind to peritoneal macrophages and peripheral blood cells isolated from mice as well as the murine macrophage cell line, RAW. The interactions between mouse ZZ-CD23 and CD11b/CD18-expressing cells were significantly inhibited by anti-CD11b monoclonal antibodies. A functional consequence was then demonstrated by inducing an up-regulation of interleukin-6 (IL-6) production following ZZ-CD23 incubation with monocytes. The addition of Fab fragments generated from the monoclonal antibody CD11b impaired this cytokine production by 50%. Interestingly, a positive autocrine loop was identified as IL-6 was shown to increase CD23 binding to macrophages. These results demonstrate that similar to findings using human cells, murine CD23 binds to the surface adhesion molecule, CD11b, and these interactions regulate biological activities of murine myeloid cells.

  9. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  10. Enhanced attachment and growth of periodontal cells on glycine-arginine-glycine-aspartic modified chitosan membranes

    Directory of Open Access Journals (Sweden)

    Hsiao-Pei Tu

    2016-01-01

    Full Text Available Background: Chitosan, a polymeric carbohydrate derived from the exoskeleton of arthropod, has been suggested to be an excellent biomaterial for improving wound healing, especially for bones. To improve the periodontal cell attachment and growth, the cell adhesive peptide glycine-arginine-glycine-aspartic acid (Gly-Arg-Gly-Asp, GRGD grafted chitosan membrane was introduced in this study. Materials and Methods: Two types of commercial chitosan, three types of primary cultured cells, and two established cell lines were used. Human gingival and periodontal fibroblasts (hGF and hPDL, human root derived cell (hRDC, and rat calvaria bone cell (rCalB were cultured on the GRGD-fixed by ultraviolet light photochemical method on the chitosan membrane. With (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium assay and propidium iodine (PI staining, the cell adhesion and growth on GRGD-grafted chitosan were examined. Basal mRNA expressions of the receptors for GRGD, integrin αv (ITG αv and ITG β3, in the human gingival fibroblast cell line and mouse osteoblast cell line (MC3T3-E1 were examined with real-time polymerase chain reaction. Results: Because the cell adhesion/growth patterns on two chitosan membranes were similar, the GRGD modification was performed on one membrane (Primex only. For periodontal cells (hGFs, hPDLs, and hRDCs, the number of attached cells were increased on the membrane with the high concentration of GRGD than those on the membrane unmodified or modified with low concentration GRGD. For rCalBs cells, a different pattern was noted: GRGD modification did not enhance the calvaria cells attachment or growth. Moreover, mRNA expressions of ITG αv and β3 in AG09319 cells were significantly higher than those in MC3T3-E1 cells. Conclusions: With the limitation of this study, we suggested that GRGD-modified chitosan, especially at high concentration, could enhance the growth of various periodontal

  11. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    Science.gov (United States)

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  12. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  13. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  15. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Hinsby, Anders Mørkeberg

    2008-01-01

    The neuronal cell adhesion molecule (CAM) L1 promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). The present study demonstrates a direct interaction between L1 fibronectin type III (FN3) modules I-V and FGFR1 immunoglobulin (Ig) modules II...

  16. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  17. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  19. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  20. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  1. Influence of the nano-micro structure of the surface on bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Carolina Díaz

    2007-03-01

    Full Text Available Biomaterials failures are frequently associated to the formation of bacterial biofilms on the surface. The aim of this work is to study the adhesion of non motile bacteria streptococci consortium and motile Pseudomonas fluorescens. Substrates with micro and nanopatterned topography were used. The influence of surface characteristics on bacterial adhesion was investigated using optical and epifluorescence microscopy, scanning electron microscopy (SEM and atomic force microscopy (AFM. Results showed an important influence of the substratum nature. On microrough surfaces, initial bacterial adhesion was less significant than on smooth surfaces. In contrast, nanopatterned samples showed more bacterial attachment than the smooth control. It was also noted a remarkable difference in morphology, orientation and distribution of bacteria between the smooth and the nanostructured substrate. The results show the important effect of substratum nature and topography on bacterial adhesion which depended on the relation between roughness characteristics dimensions and bacterial size.

  2. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  3. Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study

    Science.gov (United States)

    Lecocq, Mathieu; Bernard, Cécile; Felix, Marie Solenne; Chaves-Jacob, Julien; Decherchi, Patrick; Dousset, Erick

    2017-01-01

    Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not) with two weeks of the neuro-myoelectrostimulation (NMES) rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al2O3) and two metallic (Ti6Al4V and CrCo) compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD) and Tibialis Anterior (TA), were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al2O3 and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al2O3, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD) compared to the indirectly stimulated one (TA). This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES. PMID:28696371

  4. Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    2017-07-01

    Full Text Available Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not with two weeks of the neuro-myoelectrostimulation (NMES rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al2O3 and two metallic (Ti6Al4V and CrCo compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD and Tibialis Anterior (TA, were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al2O3 and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al2O3, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD compared to the indirectly stimulated one (TA. This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES.

  5. The Influence of Biochemical Modification on the Properties of Adhesive Compounds

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2016-12-01

    Full Text Available The main objective of this study was to determine the effect of biochemical modification of epoxy adhesive compounds on the mechanical properties of a cured adhesive exposed to various climatic factors. The epoxy adhesive was modified by lyophilized fungal metabolites and prepared by three methods. Additionally, the adhesive compound specimens were seasoned for two months at a temperature of 50 °C and 50% humidity in a climate test chamber, Espec SH 661. The tensile strength tests of the adhesive compounds were performed using a Zwick/Roell Z150 testing machine in compliance with the DIN EN ISO 527-1 standard. The examination of the adhesive specimens was performed using two microscopes: a LEO 912AB transmission electron microscope equipped with Quantax 200 for EDS X-ray spectroscopy and a Zeiss 510 META confocal microscope coupled to an AxioVert 200M. The experiments involved the use of a CT Skyscan 1172 tomograph. The results revealed that some mechanical properties of the modified adhesives were significantly affected by both the method of preparation of the adhesive compound and the content of the modifying agent. In addition, it was found that seasoning of the modified adhesives does not lead to a decrease in some of their mechanical properties.

  6. Adhesive interactions with wood

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  7. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Jouet, M.; Kenwick, S. [Univ. of Cambridge (United Kingdom); Moncla, A. [Hopital d`Enfants de la Timone, Marseillas (United Kingdom)] [and others

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the first examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.

  8. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM–EGL-15/FGFR Receptor Complex

    Directory of Open Access Journals (Sweden)

    Carlos A. Díaz-Balzac

    2015-06-01

    Full Text Available Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig domains of SAX-7/L1CAM and the FN(III domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system.

  9. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  10. Exercise-induced changes in stress hormones and cell adhesion molecules in obese men

    Directory of Open Access Journals (Sweden)

    Park J

    2018-03-01

    Full Text Available Jinkyung Park,1 Darryn S Willoughby,2 Joon Jin Song,3 Brian C Leutholtz,2 Yunsuk Koh2 1Department of Kinesiology, George Mason University, Manassas, VA, USA; 2Department of Health, Human Performance, Recreation, Baylor University, Waco, TX, USA; 3Department of Statistical Science, Baylor University, Waco, TX, USA Purpose: The current study examined the relationship between exercise-induced changes in stress hormones (epinephrine, norepinephrine, and cortisol and vascular inflammatory markers (soluble intracellular adhesion molecule-1 [sICAM-1], soluble endothelial selectin [sE-selectin], and soluble vascular adhesion molecule-1 [sVCAM-1] in obese men over a 24-hour period following exercise at lower and higher intensity.Patients and methods: Fifteen physically inactive, obese, college-aged men performed a single bout of cycling exercise at lower and higher intensities (lower intensity: 50% of maximal heart rate, and higher intensity: 80% of maximal heart rate in random order. Overnight fasting blood samples were collected at baseline, immediately postexercise (IPE, 1-hour PE (1-h PE, and 24-hour PE. Changes in stress hormones and inflammatory markers were analyzed with a repeated-measures analysis of variance using Bonferroni multiple comparisons and a linear regression analysis (p<0.05.Results: sICAM-1, sVCAM-1, epinephrine, and norepinephrine did not change over time, while sE-selectin was significantly lower at 1-h PE (10.25±1.07 ng/mL, p=0.04 than at baseline (12.22±1.39 ng/mL. Cortisol and sICAM-1 were negatively related at 1-h PE following lower-intensity exercise (r2=0.34, p=0.02, whereas cortisol and sVCAM-1 were positively related at IPE following higher-intensity exercise (r2=0.36, p=0.02.Conclusion: Regardless of intensity, an acute bout of aerobic exercise may lower sE-selectin in sedentary obese men. Responses of cortisol are dependent on exercise intensity, and cortisol may be a key stress hormone playing a major role in

  11. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro

    Science.gov (United States)

    Yosef, Nejla; Ubogu, Eroboghene E.

    2012-01-01

    The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879

  12. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  13. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer

    Directory of Open Access Journals (Sweden)

    Chen Hairu

    2010-10-01

    Full Text Available Abstract Background Activated leukocyte cell adhesion molecule (ALCAM is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. Results A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. Conclusion Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.

  14. Changes in lymphocyte subpopulations and adhesion/activation molecules following endotoxemia and major surgery

    DEFF Research Database (Denmark)

    Toft, P; Hokland, Marianne; Hansen, Tom Giedsing

    1995-01-01

    Major surgery as well as endotoxin-induced sepsis is accompanied by lymphocytopenia in peripheral blood. The purpose of this study was to investigate the redistribution of lymphocyte subpopulations and adhesion/activation molecules on lymphocytes. Twenty-four rats were included in the investigation....... Eight rats received an intraperitoneal injection of E. coli endotoxin (2 mg kg-1), eight rats had a sham operation performed while eight rats received isotonic saline and served as a control group. Blood samples were obtained by making an incision in the tail before and 2 and 5 h after surgery...... or administration of endotoxin or saline. After isolation of lymphocytes by gradient centrifugation, flow-cytometric immunophenotyping was performed using CD2, CD3, CD4, CD8, CD11/CD18, CD20, CD44 and MHC II monoclonal antibodies. Endotoxemia and surgery were both accompanied by increased serum cortisol...

  15. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    Science.gov (United States)

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  16. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  17. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: A preliminary assessment of endothelial cell adhesion and haemocompatibility

    International Nuclear Information System (INIS)

    Solouk, Atefeh; Cousins, Brian G.; Mirahmadi, Fereshteh; Mirzadeh, Hamid; Nadoushan, Mohammad Reza Jalali; Shokrgozar, Mohammad Ali; Seifalian, Alexander M.

    2015-01-01

    Background: To date, there are no small internal diameter (< 5 mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation. Methods: POSS-PCU was activated by plasma treatment in air/O 2 to from hydroperoxides (–OH, –OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5 mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests. Results: Poly-AA content on each of the plasma treated nanocomposite films

  18. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: A preliminary assessment of endothelial cell adhesion and haemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Solouk, Atefeh [Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Cousins, Brian G., E-mail: brian.cousins@ucl.ac.uk [Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London (United Kingdom); Mirahmadi, Fereshteh [Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mirzadeh, Hamid [Polymer Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nadoushan, Mohammad Reza Jalali [Department of Pathology, School of Medicine, Shahed University, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Seifalian, Alexander M. [Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London (United Kingdom)

    2015-01-01

    Background: To date, there are no small internal diameter (< 5 mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation. Methods: POSS-PCU was activated by plasma treatment in air/O{sub 2} to from hydroperoxides (–OH, –OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5 mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests. Results: Poly-AA content on each of the plasma treated nanocomposite films

  19. A novel injectable tissue adhesive based on oxidized dextran and chitosan.

    Science.gov (United States)

    Balakrishnan, Biji; Soman, Dawlee; Payanam, Umashanker; Laurent, Alexandre; Labarre, Denis; Jayakrishnan, Athipettah

    2017-04-15

    A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm 2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides

  20. Preparation of S-sulfo albumin film and its cell adhesive property

    International Nuclear Information System (INIS)

    Yamazoe, Hironori; Yamauchi, Kiyoshi; Tanabe, Toshizumi

    2009-01-01

    Recently, large-scale production of the pharmaceutical grade recombinant human serum albumin was achieved, and several clinical trials have proved its safety and efficacy. Albumin is thought to be a candidate for a safe biopolymer sources for application to biomaterials. In this study, we treated albumin with sodium sulfite and sodium tetrathionate to give S-sulfo albumin, which was found to loose native albumin structure by CD spectra analysis and dye-binding assay. A water-insoluble S-sulfo albumin films were prepared by drying S-sulfo albumin solution and subsequent reformation of disulfide bonds by the oxidation with iodine. Ultimate strength, ultimate elongation and Young's modulus of S-sulfo albumin film prepared at room temperature were 3.3 ± 0.4 MPa, 30.8 ± 3.2% and 40.8 ± 3.3 MPa before oxidative treatment and changed to 13.8 ± 4.2 MPa, 5.6 ± 2.8% and 401.7 ± 15.3 MPa after oxidative treatment. When the film was prepared at 60 deg. C, similar tendency was observed. Thus, the disulfide bonds formation between albumin molecules by oxidative treatment converted the film stronger and stiffer. Cell adhesion and proliferation on the films were evaluated using mouse L929 fibroblast cells. Cell adhesion largely depended on the albumin structure; that is, cells did not attach to native albumin coated surfaces, while cell adhesion and proliferation occurred on the S-sulfo albumin films which lost their native albumin structure. Eighty percent of seeded cells were adhered on S-sulfo albumin films and proliferated well in a similar manner to those on the conventional culture dish. Our results indicate that S-sulfo albumin is a favorable cell culture substrate.

  1. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  2. Early Detection of Junctional Adhesion Molecule-1 (JAM-1 in the Circulation after Experimental and Clinical Polytrauma

    Directory of Open Access Journals (Sweden)

    Stephanie Denk

    2015-01-01

    Full Text Available Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1 was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18 during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score. The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

  3. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    Science.gov (United States)

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Kalbitz, Miriam; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  4. The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo

    DEFF Research Database (Denmark)

    Dallérac, Glenn; Zerwas, Meike; Novikova, Tatiana

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have...... a beneficial impact on normal memory functioning, as well as to rescue some pathological cognitive impairments. Whether its facilitating impact may be mediated through promoting neuronal plasticity is not known. The present study was therefore designed to test whether FGL modulates the induction...

  5. Long-term impact of radiation on plasma concentrations of cytokines (IL-1 and IL-6) and adhesion molecules (ICAM-1 and P-selectin) in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Kirsfinks, M.; Hagina, E.; Socnevs, A.

    2001-01-01

    Study was undertaken to evaluate plasma concentrations of interleukin-1beta (IL-1), interleukin-6 (IL-6), and adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and P-selectin in persons who participated in the clean-up work of the Chernobyl NPP explosion aftereffects. 40 Chernobyl clean-up workers suffering from most common neurological diseases - polyneuropathy and encephalopathy, and 40 healthy blood donors were analyzed for plasma levels of IL-6, IL1-β, sICAM-1 and sP-selectin 13 years after the accident. The documented external radiation dosage to the investigated Chernobyl clean-up workers was exposed from 0,009 to 0,28 Gy. Significantly elevated plasma concentrations of IL-6 and P-selectin but not of IL-1β were found in Chernobyl clean-up labourers as compared to those in healthy blood donors. (p<0.01). There was no obvious association of cytokine and adhesion molecule levels with radiation doses, as individuals working in the Chernobyl area in 1986 at a time when the external radiation exposure was higher revealed similar plasma concentrations if compared to those of a later period of time (1987-1990). (authors)

  6. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    Science.gov (United States)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.

  7. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Murillo L., E-mail: murillolongo@gmail.com [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Calabresi, Marcos F.; Quini, Caio; Matos, Juliana F.; Miranda, José R.A.; Saeki, Margarida J. [Instituto de Biociências, Universidade Estadual Paulista, CP 510, 18618–970 Botucatu SP (Brazil); Bordallo, Heloisa N. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark)

    2015-03-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system.

  8. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel

    International Nuclear Information System (INIS)

    Martins, Murillo L.; Calabresi, Marcos F.; Quini, Caio; Matos, Juliana F.; Miranda, José R.A.; Saeki, Margarida J.; Bordallo, Heloisa N.

    2015-01-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn–Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH = 3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system

  9. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel.

    Science.gov (United States)

    Martins, Murillo L; Calabresi, Marcos F; Quini, Caio; Matos, Juliana F; Miranda, José R A; Saeki, Margarida J; Bordallo, Heloisa N

    2015-03-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn-Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH=3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells.

    Science.gov (United States)

    Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  12. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.

    Science.gov (United States)

    Lv, Fang; Wang, Jie; Xu, Peng; Han, Yiming; Ma, Hongshi; Xu, He; Chen, Shijie; Chang, Jiang; Ke, Qinfei; Liu, Mingyao; Yi, Zhengfang; Wu, Chengtie

    2017-09-15

    Diabetic wound is a common complication of diabetes. Biomaterials offer great promise in inducing tissue regeneration for chronic wound healing. Herein, we reported a conducive Poly (caprolactone) (PCL)/gelatin nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) for diabetic wound healing. NAGEL bioceramic particles were well distributed in the inner of PCL/gelatin nanofibers via co-electrospinning process and the Si ions maintained a sustained release from the composite scaffolds during the degradation process. The nanofibrous scaffolds significantly promoted the adhesion, proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human keratinocytes (HaCaTs) in vitro. The in vivo study demonstrated that the scaffolds distinctly induced the angiogenesis, collagen deposition and re-epithelialization in the wound sites of diabetic mice model, as well as inhibited inflammation reaction. The mechanism for nanofibrous composite scaffolds accelerating diabetic wound healing is related to the activation of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vivo and in vitro. Our results suggest that the released Si ions and nanofibrous structure of scaffolds have a synergetic effect on the improved efficiency of diabetic wound healing, paving the way to design functional biomaterials for tissue engineering and wound healing applications. In order to stimulate tissue regeneration for chronic wound healing, a new kind of conducive nanofibrous composite scaffold containing silicate-based bioceramic particles (Nagelschmidtite, NAGEL, Ca 7 P 2 Si 2 O 16 ) were prepared via co-electrospinning process. Biological assessments revealed that the NAGEL bioceramic particles could active epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) pathway in vitro and in vivo. The new composite scaffold

  13. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  14. [Engineered spider silk: the intelligent biomaterial of the future. Part I].

    Science.gov (United States)

    Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna

    2011-06-17

    The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution.

  15. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    Science.gov (United States)

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  16. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    Science.gov (United States)

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  17. Circulating Cellular Adhesion Molecules and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study

    Directory of Open Access Journals (Sweden)

    Cynthia Yursun Yoon

    2017-05-01

    Full Text Available ObjectiveHigher circulating concentrations of cellular adhesion molecules (CAMs can be used as markers of endothelial dysfunction. Given that the brain is highly vascularized, we assessed whether endothelial function is associated with cognitive performance.MethodWithin the Coronary Artery Risk Development in Young Adults (CARDIA Study, excluding N = 54 with stroke before year 25, we studied CAMs among N = 2,690 black and white men and women in CARDIA year 7 (1992–1993, ages 25–37 and N = 2,848 in CARDIA year 15 (2000–2001, ages 33–45. We included subjects with levels of circulating soluble CAMs measured in year 7 or 15 and cognitive function testing in year 25 (2010–2011, ages 43–55. Using multiple regression analysis, we evaluated the association between CAMs and year 25 cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT, memory, Digit Symbol Substitution Test (DSST, speed of processing, and the Stroop Test (executive function.ResultAll CAM concentrations were greater in year 15 vs. year 7. Adjusting for age, race, sex, education, smoking, alcohol, diet, physical activity, participants in the fourth vs. the first quartile of CARDIA year 7 of circulating intercellular adhesion molecule-1 (ICAM-1 scored worse on RAVLT, DSST, and Stroop Test (p ≤ 0.05 in CARDIA year 25. Other CAMs showed little association with cognitive test scores. Findings were similar for ICAM-1 assessed at year 15. Adjustment for possibly mediating physical factors attenuated the findings.ConclusionHigher circulating ICAM-1 at average ages 32 and 40 was associated with lower cognitive skills at average age 50. The study is consistent with the hypothesis that endothelial dysfunction is associated with worse short-term memory, speed of processing, and executive function.

  18. Circulating Cellular Adhesion Molecules and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study.

    Science.gov (United States)

    Yoon, Cynthia Yursun; Steffen, Lyn M; Gross, Myron D; Launer, Lenore J; Odegaard, Andrew; Reiner, Alexander; Sanchez, Otto; Yaffe, Kristine; Sidney, Stephen; Jacobs, David R

    2017-01-01

    Higher circulating concentrations of cellular adhesion molecules (CAMs) can be used as markers of endothelial dysfunction. Given that the brain is highly vascularized, we assessed whether endothelial function is associated with cognitive performance. Within the Coronary Artery Risk Development in Young Adults (CARDIA) Study, excluding N  = 54 with stroke before year 25, we studied CAMs among N  = 2,690 black and white men and women in CARDIA year 7 (1992-1993, ages 25-37) and N  = 2,848 in CARDIA year 15 (2000-2001, ages 33-45). We included subjects with levels of circulating soluble CAMs measured in year 7 or 15 and cognitive function testing in year 25 (2010-2011, ages 43-55). Using multiple regression analysis, we evaluated the association between CAMs and year 25 cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT, memory), Digit Symbol Substitution Test (DSST, speed of processing), and the Stroop Test (executive function). All CAM concentrations were greater in year 15 vs. year 7. Adjusting for age, race, sex, education, smoking, alcohol, diet, physical activity, participants in the fourth vs. the first quartile of CARDIA year 7 of circulating intercellular adhesion molecule-1 (ICAM-1) scored worse on RAVLT, DSST, and Stroop Test ( p  ≤ 0.05) in CARDIA year 25. Other CAMs showed little association with cognitive test scores. Findings were similar for ICAM-1 assessed at year 15. Adjustment for possibly mediating physical factors attenuated the findings. Higher circulating ICAM-1 at average ages 32 and 40 was associated with lower cognitive skills at average age 50. The study is consistent with the hypothesis that endothelial dysfunction is associated with worse short-term memory, speed of processing, and executive function.

  19. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Changjiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Hu, Youdong [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an 223003 (China); Hou, Yu; Liu, Tao; Lin, Yuebin; Ye, Wei; Hou, Yanhua; Gong, Tao [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2017-01-01

    In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates

  20. Differential Cell Adhesion of Breast Cancer Stem Cells on Biomaterial Substrate with Nanotopographical Cues

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2015-04-01

    Full Text Available Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24−/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC, breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC cells obtained from patients’ samples, on micro- and nano-patterned poly-L-lactic acid (PLLA films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24−/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24− in MCF7. A slightly higher percentage of CD44+CD24−/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24−ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells.

  1. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    Science.gov (United States)

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  2. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    Science.gov (United States)

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  3. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  4. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold.

    Science.gov (United States)

    Chen, Shuangshuang; Lu, Xuemin; Hu, Ying; Lu, Qinghua

    2015-01-01

    Inspired by the typically adhesive behaviors of fish skin and Parthenocissus tricuspidata, two different decorations of polystyrene honeycomb membrane (PSHCM) prepared by the breath figure approach were carried out with poly(N-(3-Sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine)(polySBMA) to explore controllable bioadhesive surfaces. Casting and dip-coating were employed to graft polySBMA onto the plasma treated PSHCM. The polySBMA casted PSHCM showed a uniform covering layer on the PSHCM similar to the mucus layer of fish skin, presenting excellent antifouling properties. On the contrary, a dip-coated one showed the polySBMA aggregating on the honeycomb pore walls forming a large number of sucking disks such as the adhesive disks of the tendrils of P. tricuspidata, which remarkably boosts cell adhesion on substrates. Thus, bioadhesion could be regulated as desired by tuning the distribution of zwitterionic polymer on the honeycomb surface. The results may provide a new approach for the design of biomaterial surfaces.

  5. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  6. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  7. Syndecan-4 and focal adhesion function

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  8. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  9. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  10. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  11. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  12. The modified connection formulae for the rotational transition cross sections in diatomic molecules for slow collisions

    International Nuclear Information System (INIS)

    Ostrovsky, V.N.; Ustimov, V.I.

    1984-01-01

    The formulae connecting the cross sections for various rotational transitions in diatomic molecules colliding with atomic particles are valid in the framework of the sudden approximation. In order to extend the applicability domain of these formulae to the slow-collision region a semi-empirical correction factor is introduced with an exponential dependence on the translation rotation energy transfer and on the inverse collision velocity. The modified connection formulae are applied to the rotational transitions in an HD molecule colliding with an H 2 molecule. (author)

  13. Novel association of soluble intercellular adhesion molecule 1 and soluble P-selectin with the ABO blood group in a Chinese population.

    Science.gov (United States)

    Zhang, Wenjing; Xu, Qun; Zhuang, Yunlong; Chen, Yuanfeng

    2016-08-01

    Recent studies have reported that the ABO gene can affect circulating expression levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble P-selectin (sP-selectin) in Caucasians. However, several factors may affect the association, including the distribution and variations of the ABO gene, ethnic diversity and the inflammatory response status. The aim of the present study was to investigate this issue in Asian subjects of various blood groups. A total of 800 blood samples were randomly selected from healthy blood donors. The ABO blood groups were examined using standard serological tests, and ABO genotypes of group A and group AB specimens were analyzed. Plasma concentrations of sICAM-1 and sP-selectin were detected by standard enzyme-linked immunosorbent assays. In healthy Chinese individuals, blood group A was detected to be significantly associated with lower circulating expression levels of sICAM-1 and sP-selectin, compared with group O. Individuals with ≥1 A1 allele had significantly lower expression levels of sICAM-1 and sP-selectin compared with all other ABO groups. The data indicate the significant association of ABO blood group antigens with sICAM-1 and sP-selectin expression levels in a healthy Chinese population, independent of the specific variations and distributions of ABO blood groups among ethnic populations. This result provides evidence for the previously unidentified role of ABO blood group antigens in the regulation of the inflammatory adhesion process. Accordingly, it can be proposed that ABO blood groups may require consideration when soluble adhesion molecules are identified as predictors for cardiovascular disease.

  14. Change in organic molecule adhesion on α-alumina (Sapphire) with change in NaCl and CaCl2 solution salinity

    DEFF Research Database (Denmark)

    Juhl, Klaus; Bovet, Nicolas Emile; Hassenkam, Tue

    2014-01-01

    We investigated the adhesion of two functional groups to α-alumina as a model for the adsorption of organic molecules on clay minerals. Interactions between organic compounds and clay minerals play an important role in processes such as drinking water treatment, remediation of contaminated soil...... the growth of bones, teeth, and shells. Adhesion of carboxylic acid, -COO(H), and pyridine, -C5H5N(H+), on the {0001} plane of α-alumina wafers has been investigated with atomic force microscopy (AFM) in chemical force mapping (CFM) mode. Both functional groups adhered to α-alumina in deionized water at p...... in surface properties, controlling surface tension (i.e., contact angle) and adsorption affinity on α-alumina and, by analogy, on clay minerals....

  15. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  16. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  17. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  18. Structural basis of cell-cell adhesion by NCAM

    DEFF Research Database (Denmark)

    Kasper, C; Rasmussen, H; Kastrup, Jette Sandholm Jensen

    2000-01-01

    The neural cell adhesion molecule NCAM, a member of the immunoglobulin superfamily, mediates cell-cell recognition and adhesion via a homophilic interaction. NCAM plays a key role during development and regeneration of the nervous system and is involved in synaptic plasticity associated with memory...

  19. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  20. Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India

    Directory of Open Access Journals (Sweden)

    Tyagi Prajesh K

    2008-12-01

    Full Text Available Abstract Background Host adhesion molecules play a significant role in the pathogenesis of Plasmodium falciparum malaria and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study was to investigate the association of SNPs of three adhesion molecule genes, ICAM1, PECAM1 and CD36, with severity of falciparum malaria in a malaria-endemic and a non-endemic region of India. Methods The frequency distribution of seven selected SNPs of ICAM1, PECAM1 and CD36 was determined in 552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD plots were generated using PHASE and Haploview, respectively. Odds-ratio (OR for risk assessment was estimated using EpiInfo™ version 3.4. Results Association of the ICAM1 rs5498 (exon 6 G allele and the CD36 exon 1a A allele with increased risk of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively. The CD36 rs1334512 (-53 T allele as well as the TT genotype associated with protection from severe disease (severe versus control, TT versus GG, OR = 0.37, P = 0.004. Interestingly, a SNP of the PECAM1 gene (rs668, exon 3, C/G with low minor allele frequency in populations of the endemic region compared to the non-endemic region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in the endemic region, but exhibited significant association with protection from disease in the non-endemic region. Conclusion The data highlights the significance of variations in the ICAM1, PECAM1 and CD36 genes in the manifestation of falciparum malaria in India. The PECAM1 exon 3 SNP exhibits altered association with disease in the

  1. Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols

    Directory of Open Access Journals (Sweden)

    Yuji Naito

    2004-01-01

    Full Text Available Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols

  2. On the nature of biomaterials.

    Science.gov (United States)

    Williams, David F

    2009-10-01

    The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.

  3. Peptide array-based screening of human mesenchymal stem cell-adhesive peptides derived from fibronectin type III domain

    International Nuclear Information System (INIS)

    Okochi, Mina; Nomura, Shigeyuki; Kaga, Chiaki; Honda, Hiroyuki

    2008-01-01

    Human mesenchymal stem cell-adhesive peptides were screened based on the amino acid sequence of fibronectin type III domain 8-11 (FN-III 8-11 ) using a peptide array synthesized by the Fmoc-chemistry. Using hexameric peptide library of FN-III 8-11 scan, we identified the ALNGR (Ala-Leu-Asn-Gly-Arg) peptide that induced cell adhesion as well as RGDS (Arg-Gly-Asp-Ser) peptide. After incubation for 2 h, approximately 68% of inoculated cells adhere to the ALNGR peptide disk. Adhesion inhibition assay with integrin antibodies showed that the ALNGR peptide interacts with integrin β1 but not with αvβ3, indicating that the receptors for ALNGR are different from RGDS. Additionally, the ALNGR peptide expressed cell specificities for adhesion: cell adhesion was promoted for fibroblasts but not for keratinocytes or endotherial cells. The ALNGR peptide induced cell adhesion and promoted cell proliferation without changing its property. It is therefore useful for the construction of functional biomaterials

  4. Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization.

    Science.gov (United States)

    Mendes de Aguiar, Claudia B N; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio; Trentin, Andréa Gonçalves

    2002-11-01

    Proteoglycans are considered to be important molecule in cell-microenvironment interactions. They are overexpressed in neoplastic cells modifying their growth and migration in hosts. In this work we verified that undersulfation of proteoglycans and other sulfated molecules, induced by sodium chlorate treatment, inhibited C6 glioma cells proliferation in a dose-dependent way. This effect was restored by the addition of exogenous heparin. We could not detect significant cell mortality in our culture condition. The treatment also impaired in a dose-dependent manner, C6 cell adhesion to extracellular matrix (ECM) proteins (collagen IV, laminin and fibronectin). In addition, sodium chlorate treatment altered C6 glioma cell morphology, from the fibroblast-like to a more rounded one. This effect was accompanied by increased synthesis of fibronectin and alterations in its extracellular network organization. However, we could not observe modifications on laminin organization and synthesis. The results suggest an important connection between sulfation degree with important tumor functions, such as proliferation and adhesion. We suggest that proteoglycans may modulate the glioma microenvironment network during tumor cell progression and invasion.

  5. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects

    Science.gov (United States)

    Huang, Zih-Ning; Chung, Her Min; Fang, Su-Chiung; Her, Lu-Shiun

    2017-01-01

    Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely unknown. Here we show that HAP40 overexpression causes mitochondrial dysfunction and reduces cell viability in the immortalized mouse striatal neurons. HAP40-associated mitochondrial dysfunction is associated with reduction of adhesion regulating molecule 1 (ADRM1) protein. Consistently, depletion of ADRM1 by shRNAs impaired mitochondrial functions and increased mitochondrial fragmentation in mouse striatal cells. Moreover, reducing ADRM1 levels enhanced activity of fission factor dynamin-related GTPase protein 1 (Drp1) via increased phosphorylation at serine 616 of Drp1 (Drp1Ser616). Restoring ADRM1 protein levels was able to reduce HAP40-induced ROS levels and mitochondrial fragmentation and improved mitochondrial functions and cell viability. Moreover, reducing Drp1 activity by Drp1 inhibitor, Mdivi-1, ameliorates both HAP40 overexpression- and ADRM1 depletion-induced mitochondrial dysfunction. Taken together, our studies suggest that HAP40-mediated reduction of ADRM1 alters the mitochondrial fission activity and results in mitochondrial fragmentation and mitochondrial dysfunction. PMID:29209146

  6. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    International Nuclear Information System (INIS)

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-01

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  7. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle

    DEFF Research Database (Denmark)

    Andersson, A M; Olsen, M; Zhernosekov, D

    1993-01-01

    Neural cell adhesion molecule (NCAM) is expressed by muscle and involved in muscle-neuron and muscle-muscle cell interactions. The expression in muscle is regulated during myogenesis and by the state of innervation. In aged muscle, both neurogenic and myogenic degenerative processes occur. We here...... report quantitative and qualitative changes in NCAM protein and mRNA forms during aging in normal rat skeletal muscle. Determination of the amount of NCAM by e.l.i.s.a. showed that the level decreased from perinatal to adult age, followed by a considerable increase in 24-month-old rat muscle. Thus NCAM...... concentration in aged muscle was sixfold higher than in young adult muscle. In contrast with previous reports, NCAM polypeptides of 200, 145, 125 and 120 kDa were observed by immunoblotting throughout postnatal development and aging, the relative proportions of the individual NCAM polypeptides remaining...

  8. Determination of Ca, P, Sr and Mg in the synthetic biomaterial aragonite by NAA

    International Nuclear Information System (INIS)

    Oudadesse, H.; Derrien, A.C.; Lucas-Girot, A.

    2004-01-01

    In orthopaedic surgery, synthetic biomaterials encountered a great success. In this work, the 'in-vivo' behaviour of aragonite synthesized in our laboratory was studied. The in vivo experiments have been carried out on femurs sites of nine ovine. Neutron activation analysis was applied to evaluate the ossification kinetics of synthetic aragonite. The content of several elements (Ca, P, Sr and Mg and phosphorous to calcium ratio) were determined versus time after implantation. Results showed that the biomaterial undergoes a lot of transformations during time. The chemical composition of the aragonite was modified and progress to become close to that of an ovine bone. Biological studies assess its biocompatibility. (author)

  9. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    Directory of Open Access Journals (Sweden)

    Arnauld eSergé

    2016-05-01

    Full Text Available The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation and metastasis.

  10. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.

    Science.gov (United States)

    Chen, Yang; Wang, Manli; Fang, Liang

    2013-01-01

    The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.

  11. Novel keratin (KeraStat™) and polyurethane (Nanosan(R)-Sorb) biomaterials are hemostatic in a porcine lethal extremity hemorrhage model.

    Science.gov (United States)

    Burnett, Luke R; Richter, Jillian G; Rahmany, Maria B; Soler, Roberto; Steen, Julie A; Orlando, Giuseppe; Abouswareb, Tamer; Van Dyke, Mark E

    2014-02-01

    Traumatic injury is the leading cause of death in people aged 44 or less in the US. It is also estimated that 82% of deaths from battlefield hemorrhage may be survivable with better treatment options. In this study, two biomaterial hemostats having disparate mechanisms were evaluated in a large animal lethal hemorrhage model and compared to a commercial product and standard cotton gauze. We hypothesized that the biomaterial with a biologically active mechanism, as opposed to a mechanical mechanism, would be the most effective in this model. Using a published study protocol, the femoral artery in swine was punctured and treated. KeraStat™ (KeraNetics) and Nanosan®-Sorb (SNS Nano) hemostats were compared to a commercial chitosan dressing (second generation Hemcon®) and cotton gauze. Both KeraStat and Nanosan increased survival, significantly increased mean arterial pressure (MAP), and significantly decreased shock index compared to both controls. The Hemcon dressing was no different than gauze. Platelet adhesion assays suggested that the KeraStat mechanism of action involves β1 integrin mediated platelet adhesion while Nanosan-Sorb operates similar to one reported mechanism for Hemcon, absorbing fluid and concentrating clotting components. The Nanosan also swelled considerably and created pressure within the wound site even after direct pressure was removed.

  12. High-performance mussel-inspired adhesives of reduced complexity.

    Science.gov (United States)

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  13. Alternative Splicing in Adhesion- and Motility-Related Genes in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Rosanna Aversa

    2016-01-01

    Full Text Available Breast cancer is the most common tumor and the second leading cause of cancer death among woman, mainly caused by the metastatic spread. Tumor invasiveness is due to an altered expression of adhesion molecules. Among them, semaphorins are of peculiar interest. Cancer cells can manipulate alternative splicing patterns to modulate the expression of adhesion- and motility-related molecules, also at the isoform level. In this study, combining RNA-Sequencing on MCF-7 to targeted experimental validations—in human breast cell lines and breast tumor biopsies—we identified 12 new alternative splicing transcripts in genes encoding adhesion- and motility-related molecules, including semaphorins, their receptors and co-receptors. Among them, a new SEMA3F transcript is expressed in all breast cell lines and breast cancer biopsies, and is translated into a new semaphorin 3F isoform. In silico analysis predicted that most of the new putative proteins lack functional domains, potentially missing some functions and acquiring new ones. Our findings better describe the extent of alternative splicing in breast cancer and highlight the need to further investigate adhesion- and motility-related molecules to gain insights into breast cancer progression.

  14. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  15. In vitro characterization of multivalent adhesion molecule 7-based inhibition of multidrug-resistant bacteria isolated from wounded military personnel

    Science.gov (United States)

    Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim

    2012-01-01

    Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens. PMID:22722243

  16. Design strategies and applications of nacre-based biomaterials.

    Science.gov (United States)

    Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian

    2017-05-01

    The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the

  17. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  18. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Directory of Open Access Journals (Sweden)

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  19. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    Science.gov (United States)

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  20. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    Science.gov (United States)

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.