WorldWideScience

Sample records for adhesion modification protein

  1. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  2. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  3. Laser surface modification and adhesion

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  4. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  5. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  6. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2014-11-01

    In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

  7. Modification on epoxy-based adhesive

    ZhengXiaoxia; QianChunxiang

    2003-01-01

    This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rapture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.

  8. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface

    Musílková, Jana; Kotelnikov, Ilya; Novotná, Katarína; Pop-Georgievski, Ognen; Rypáček, František; Bačáková, Lucie; Proks, Vladimír

    2015-01-01

    Roč. 26, č. 11 (2015), s. 253. ISSN 0957-4530 R&D Projects: GA ČR(CZ) GAP108/11/1857; GA ČR(CZ) GAP108/12/1168; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61389013 Keywords : protein repulsive surface * cell adhesion * RGD * endothelial cells Subject RIV: EI - Biotechnology ; Bionics; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.587, year: 2014

  9. Surface Modifications in Adhesion and Wetting

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous healing between a rubber surface and a glass cover slip. Study of the diffusion controlled healing of a blister can be made by

  10. Adhesives from modified soy protein

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  11. Rabbit cationic protein enhances leukocyte adhesiveness.

    Oseas, R S; Allen, J; Yang, H. H.; Baehner, R. L.; Boxer, L A

    1981-01-01

    Cationic protein purified from rabbit peritoneal polymorphonuclear leukocytes (PMN) was demonstrated to incite autoaggregation of the rabbit PMN and promote adhesiveness of human PMN to endothelial cells. PMN aggregation induced by supernatants derived from secretory PMN was blocked by a specific anticationic protein antibody. These studies reveal that a positively charged protein derived from the PMN can alter surface properties of the PMN itself and imply a role for this protein in PMN immo...

  12. Chemical Modification of Food Proteins

    Allaoua Achouri; Wang Zhang; Xu Shiying

    1999-01-01

    Acylation has been shown to be an effective tool for improving surface functional properties of plant proteins.Soy bean protein has been extensively modified through chemical and enzymatic treatments. Their effectiveness lies in their high nutritional value and low cost, which promote their use as ingredients for the formulation of food products.This paper reports a complete review of chemical modification of various proteins from plant and animal sources. The nutritive and toxicological aspects through in vitro and in vivo tests are also described.

  13. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  14. Soy protein modification: A review

    Barać Miroljub B.

    2004-01-01

    Full Text Available Soy protein products such as flour, concentrates and isolates are used in food formulation because of their functionality, nutritional value and low cost. To obtain their optimal nutritive and functional properties as well as desirable flavor different treatments are used. Soybean proteins can be modified by physical, chemical and enzymatic treatments. Different thermal treatments are most commonly used, while the most appropriate way of modifying soy proteins from the standpoint of safety is their limited proteolysis. These treatments cause physical and chemical changes that affect their functional properties. This review discusses three principal methods used for modification of soy protein products, their effects on dominant soy protein properties and some biologically active compounds.

  15. Modifications of therapeutic proteins: challenges and prospects

    Jenkins, Nigel

    2007-01-01

    The production of therapeutic proteins is one of the fastest growing sectors of the pharmaceutical industry. However, most proteins used in drug therapy require complex post-translational modifications for efficient secretion, drug efficacy and stability. Common protein modifications include variable glycosylation, misfolding and aggregation, oxidation of methionine, deamidation of asparagine and glutamine, and proteolysis. These modifications not only pose challenges for accurate and consist...

  16. Chromatin proteins and modifications as drug targets

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control is a ...

  17. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  18. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical

  19. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    Krishnamoorthy, Jayaraman

    This thesis work deals with (a) Curing of reactive, hot-melt polyurethane adhesives and (b) Adsorption studies using different interactions. Research on polyurethanes involves characterization of polyurethane prepolymers and a novel mechanism to cure isocyanate-terminated polyurethane prepolymer by a "trigger" mechanism. Curing of isocyanate-terminated polyurethane prepolymers has been shown to be influenced by morphology and environmental conditions such as temperature and relative humidity. Although the initial composition, final morphology and curing kinetics are known, information regarding the intermediate prepolymer mixture is yet to be established. Polyurethane prepolymers prepared by the reaction of diisocyanates with the primary hydroxyls of polyester diol (PHMA) and secondary hydroxyls of polyether diol (PPG) were characterized. The morphology and crystallization kinetics of a polyurethane prepolymer was compared with a blend of PPG prepolymer (the product obtained by the reaction of PPG with diisocyanate) and a PHMA prepolymer (the product obtained by the reaction of PHMA with diisocyanate) to study the effect of copolymer formed in the polyurethane prepolymer on the above-mentioned properties. Although the morphology of the polyurethane prepolymer is determined in the first few minutes of application, the chemical curing of isocyanate-terminated prepolymer occurs over hours to days. In the literature, different techniques are described to follow the curing kinetics. But there is no established technique to control the curing of polyurethane prepolymer. To make the curing process independent of environmental factors, a novel approach using a trigger mechanism was designed and implemented by using ammonium salts as curing agents. Ammonium salts that are stable at room temperature but decompose on heating to yield active hydrogen-containing compounds, NH3 and H2O, were used as 'Trojan horses' to cure the prepolymer chemically. Research on adsorption

  20. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Schaubroeck, David; Mader, Lothar; Dubruel, Peter; Vanfleteren, Jan

    2015-10-01

    In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  1. Laser processing of natural mussel adhesive protein thin films

    Doraiswamy, A. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States); Narayan, R.J. [Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575 (United States)]. E-mail: roger_narayan@unc.edu; Cristescu, R. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Lasers, Bucharest-Magurele (Romania); Chrisey, D.B. [United States Naval Research Laboratory, Washington, DC (United States)

    2007-04-15

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications.

  2. Laser processing of natural mussel adhesive protein thin films

    A novel laser processing technique is presented for depositing mussel adhesive protein thin films. Synthetic adhesives (e.g., acrylics, cyanoacrylates, epoxies, phenolics, polyurethanes, and silicones) have largely displaced natural adhesives in the automotive, aerospace, biomedical, electronic, and marine equipment industries over the past century. However, rising concerns over the environmental and health effects of solvents, monomers, and additives used in synthetic adhesives have led the adhesives community to seek natural alternatives. Marine mussel adhesive protein is a formaldehyde-free natural adhesive that demonstrates excellent adhesion to several classes of materials, including pure metals, metal oxides, polymers, and glasses. We have demonstrated the deposition of Mytilus edulis foot protein-1 thin films using matrix assisted pulsed laser evaporation (MAPLE). The Fourier transform infrared spectrum data suggest that the matrix assisted pulsed laser evaporation process does not cause significant damage to the chemical structure of M. edulis foot protein-1. In addition, matrix assisted pulsed laser evaporation appears to provide a better control over film thickness and film roughness than conventional solvent-based thin film processing techniques. MAPLE-deposited mussel adhesive protein thin films have numerous potential electronic, medical, and marine applications

  3. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and ch

  4. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  5. Optimized Baxter model of protein solutions: electrostatics versus adhesion

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the repulsive electrostatics against part of the bare adhesion. A theory similar in spirit is developed at nonzero concentrations by assuming an appropriate Baxter model as the reference state. The first-...

  6. Soy protein isolate molecular level contributions to bulk adhesive properties

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  7. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne; Bovet, Nicolas Emile; Martinez, Karen Laurence; Meldal, Morten Peter

    2015-01-01

    the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was......-transfer reaction. Subsequently, D-amino acid adhesion peptides could be immobilized on the surface by use of Cu(I)-catalyzed click chemistry. This enabled the study of cell adhesion to the metal surface. In contrast to unmodified surfaces, the peptide-modified surfaces were able to maintain cell adhesion during...

  8. Optimized Baxter model of protein solutions: electrostatics versus adhesion

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the rep

  9. High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating

    Lv, Ming; Liu, Jianguo; Zeng, Xiaoyan; Du, Qifeng; Ai, Jun

    2015-10-01

    Adhesion strength is a crucial factor for the performance and reliability of metallic patterns on insulator substrates. In this study, we present an efficient technique for selective metallization of alumina ceramic with high adhesion strength by using nanosecond laser modification and electroless copper plating. Specifically, a 355 nm Nd:YVO4 ultraviolet (UV) laser was employed not only to decompose palladium chloride film locally for catalyzing the electroless reaction, but also to modify the ceramic surface directly using its high fluence. An orthogonal experiment was undertaken to study the effects of processing parameters including laser fluence, scanning speed and scanning line interval on adhesion strength. The adhesion strength was measured by pulling a metallic wire soldered into the copper coating perpendicular to the substrate using a pull tester. The results have shown that a strong adhesion between the copper coating and the alumina ceramic, higher than the tensile strength of tin-lead solder was obtained. Surface and interface characteristics were investigated to understand that, whose results have shown that the high-aspect-ratio microstructures formed by the laser modification is the major reason for the improvement of adhesion.

  10. Mussel-mimetic protein-based adhesive hydrogel.

    Kim, Bum Jin; Oh, Dongyeop X; Kim, Sangsik; Seo, Jeong Hyun; Hwang, Dong Soo; Masic, Admir; Han, Dong Keun; Cha, Hyung Joon

    2014-05-12

    Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications. PMID:24650082

  11. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  12. Radiation induced modification of polyetherurethane films and tubes: platelet adhesion and in vivo experiments

    The measurement of platelet adhesion to polyetherurethane films grafted (via the preswelling technique) with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AAm), performed by means of the stagnation point flow experiment (SPFE-test) as well as with the aid of the bioluminescence assay, is described. Platelet adhesion is found to decrease if the interfacial free energy γ /sub sw/ of the polymer surfaces decreases. Adhesion to protein-coated, grafted polyetherurethane films (coated with albumin, γ-globulin, fibrinogen, fibronectin or a protein mixture) depends on the nature of the protein used: precoating of the films with albumin or γ-globulin leads to a decrease, precoating with fibrinogen or fibronectin to an increase in platelet adhesion. Also we report about early experiences with HEMA-grafted polyetherurethane tubes in implantation experiments

  13. Radiation induced modification of polyetherurethane films and tubes: platelet adhesion and in vivo experiments

    The measurement of platelet adhesion to polyetherurethane films grafted (via the preswelling technique) with 2-hydroxyethyl methacrylate (HEMA) and acrylamide, performed by means of the stagnation point flow experiment as well as with the aid of the bioluminescence assay, is described. Platelet adhesion is found to decrease if the interfacial free energy γsub(SW) of the polymer surfaces decreases. Adhesion to protein-coated, grafted polyetherurethane films depends on the nature of the protein used: precoating of the films with albumin or γ-globulin leads to a decrease, pre-coating with fibrinogen or fibronectin to an increase in platelet adhesion. Also we report about early experiences with HEMA-grafted polyetherurethane tubes in implantation experiments. (author)

  14. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.; Han, Songi

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were f...

  15. Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification.

    Berlowska, Joanna; Kregiel, Dorota; Ambroziak, Wojciech

    2013-07-01

    The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly. PMID:23420113

  16. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He+ ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He+ ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft

  17. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  18. Protein kinase C involvement in focal adhesion formation

    Woods, A; Couchman, J R

    1992-01-01

    still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form...... then treated with kinase inhibitors H7 and HA1004 for 2h, IRM indicated a reduction in focal adhesion formation at concentrations where protein kinase C (PKC) should be inhibited. In contrast, focal adhesions formed normally at concentrations of these inhibitors where cyclic AMP- or cyclic GMP......-dependent kinases should be inactivated. Inhibition of PKC, but not that of cyclic AMP- or cyclic GMP-dependent kinases, also prevented the formation of stress fibers and induced a dispersal of talin and vinculin, but not integrin beta 1 subunits, from small condensations present at 1h. Consistent with the...

  19. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Dowling, Catríona M., E-mail: Catriona.Dowling@ul.ie; Kiely, Patrick A., E-mail: Catriona.Dowling@ul.ie [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)

    2015-07-15

    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  20. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A) and...... antibody. The two polypeptides were sulfated in the trans-Golgi compartment and phosphorylated at the plasma membrane. D2-CAM underwent rapid intracellular transport, appearing at the cell surface within 35 min of synthesis. A and B were shown to be integral membrane proteins as seen by radioiodination by...... photoactivation employing a hydrophobic labeling reagent. In rat forebrain explant cultures, D2-CAM was synthesized as four polypeptides: A (195,000 Mr), B (137,000 Mr), C (115,000 Mr), and a group of polypeptides in the high molecular weight region (HMr) between 250,000 and 350,000. Peptide maps of the four...

  1. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  2. The Mussel Adhesive Protein (Mefp-1) : A GREEN Corrosion Inhibitor

    Zhang, Fan

    2013-01-01

    Corrosion of metallic materials is a natural process, and our study shows that even in an alkaline environment severe corrosion may occur on a carbon steel surface. While corrosion cannot be stopped it can be retarded. Many of the traditional anti-corrosion approaches such as the chromate process are effective but hazardous to the environment and human health. Mefp-1, a protein derived from blue mussel byssus, is well known for its extraordinary adhesion and film forming properties. Moreover,...

  3. UV-assisted surface modification of PET fiber for adhesion improvement

    Highlights: ► A facile and highly efficient approach for surface modification of PET fiber was introduced. ► FTIR spectrum analysis proves that MDI is fixed on the PET surface. ► The chemical bonding at the interface between the fiber and matrix based on the reaction of -NCO + HO-R → NH-COO-R. ► The PET fiber modified with -NCO groups have a potential usage for composite fabrication. - Abstract: A facile and highly efficient method for adhesion improvement of PET/TPU laminates was introduced. A considerable improvement in adhesion was achieved by treating PET fabric with isocyanate (MDI) in toluene solution. Compared with unmodified ones, the maximal peel strength reaches to 2.27 kN/m (up to three times). The fabrics were also treated with NaOH and CDT (corona discharge treatment) and the results were compared respectively. It is considered that the improvement mainly depends on the strengthening of chemical bonding and mechanical interlocking between the fiber and the adhesive matrix. As the difference directly affects the effective transference of the stress (tension force) from matrix to fiber. The failure surface of PET fiber was severely destroyed which could be examined by scanning electron microscopy (SEM).

  4. Dynamics of allosteric action in multisite protein modification

    Milotti, E; Fabbro, A D; Pellegrina, C D; Chignola, Roberto; Fabbro, Alessio Del; Milotti, Edoardo; Pellegrina, Chiara Dalla

    2006-01-01

    Protein functions in cells may be activated or modified by the attachment of several kinds of chemical groups. While protein phosphorylation, i.e. the attachment of a phosphoryl (PO$_3^-$) group, is the most studied form of protein modification, and is known to regulate the functions of many proteins, protein behavior can also be modified by nitrosylation, acetylation, methylation, etc. A protein can have multiple modification sites, and display some form of transition only when enough sites are modified. In a previous paper we have modeled the generic equilibrium properties of multisite protein modification (R.Chignola, C. Dalla Pellegrina, A. Del Fabbro, E.Milotti, Physica A {\\bf 371}, 463 (2006)) and we have shown that it can account both for sharp, robust thresholds and for information transfer between processes with widely separated timescales. Here we use the same concepts to expand that analysis and describe multisite modification dynamics with a nonlinear differential system. We utilize the differenti...

  5. Modification of resolution in capillary electrophoresis for protein profiling in identification of genetic modification in foods

    Latoszek, A.; Cifuentes, Alejandro

    2011-01-01

    The capillary electrophoresis with UV detection was employed for protein profiling in extracts from maize and soybeans. Modifications of back-ground electrolyte and coating the capillary wall with polybrene was employed in order to decrease the protein adsorption on the capillary walls. The obtained protein profiles were compared for transgenic and non-transgenic variants, showing in some cases significant changes that might be employed for identification of genetic modifications ...

  6. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila.

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-07-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth. PMID:23397109

  7. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood

    Fang, Lu; Chang, Liang; Guo, Wen-jing; Chen, Yongping; Wang, Zheng

    2014-01-01

    In this study, wood-plastic plywood was fabricated with high density polyethylene (HDPE) film and poplar veneer by hot-pressing. To improve the interfacial adhesion between the wood veneer and HDPE film, silane A-171 (vinyltrimethoxysilane) was used to treat the surface of poplar veneer by spraying. The effects of silane agent on the veneer surface properties as well as the physical-mechanical performance of wood-plastic plywood were evaluated. The adsorption of several prehydrolyzed alkoxysilanes onto the veneer surface and the existence of a covalent bonding between the wood veneer and silane agent were confirmed using FTIR, XPS and contact angle. Silane surface treatment resulted in enhancement of shear strength and water resistance. When one layer HDPE film was used as adhesive, it caused 293.2% increase in shear strength, 34.6% and 40.8% reduction in water absorption and thickness swelling, respectively. In addition, the wood failure also increased from 5% to 100% due to the silane modification. Dynamic mechanical analysis (DMA) results showed that treated plywood have higher storage modulus, lower tan δ peak value and lagged temperature for tan δ peak value with respect to untreated plywood. Experimental results of interfacial morphology by SEM further revealed better interaction between silane A-171 treated veneer and HDPE film.

  8. Posttranslational Modifications of Chloroplast Proteins: An Emerging Field.

    Lehtimäki, Nina; Koskela, Minna M; Mulo, Paula

    2015-07-01

    Posttranslational modifications of proteins are key effectors of enzyme activity, protein interactions, targeting, and turnover rate, but despite their importance, they are still poorly understood in plants. Although numerous reports have revealed the regulatory role of protein phosphorylation in photosynthesis, various other protein modifications have been identified in chloroplasts only recently. It is known that posttranslational N(α)-acetylation occurs in both nuclear- and plastid-encoded chloroplast proteins, but the physiological significance of this acetylation is not yet understood. Lysine acetylation affects the localization and activity of key metabolic enzymes, and it may work antagonistically or cooperatively with lysine methylation, which also occurs in chloroplasts. In addition, tyrosine nitration may help regulate the repair cycle of photosystem II, while N-glycosylation determines enzyme activity of chloroplastic carbonic anhydrase. This review summarizes the progress in the research field of posttranslational modifications of chloroplast proteins and points out the importance of these modifications in the regulation of chloroplast metabolism. PMID:25911530

  9. Unraveling oxidation-induced modifications in proteins by proteomics.

    Panis, Carolina

    2014-01-01

    Oxidative stress-driven modifications can occur in lipids, proteins, and DNA and form the basis of several chronic pathologies. The metabolites generated during oxidative responses consist of very reactive substances that result in oxidative damage and modulation of redox signaling as the main outcomes. Oxidative modifications occurring in proteins are poorly understood; among the several methods employed to study such modifications, the most promising strategies are based on proteomics approaches. Proteomics has emerged as one of the most powerful and sensitive analytical tools for mapping the oxidative changes present in proteins in a wide range of sample types and disease models. This chapter addresses the main aspects of redox processes, including an overview of oxidative stress and its biological consequences on proteins. Moreover, major proteomic strategies that can be employed as powerful tools for understanding protein oxidative modifications detected in chronic pathologies are discussed, highlighting cancer research as a model. PMID:24629184

  10. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors

    Hamann, Jörg; Aust, Gabriela; Araç, Demet;

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic ...

  11. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    Miller, Daniel J.

    2012-08-01

    Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.

  12. Principles of protein group SUMO modification substantiated in DNA repair

    Psakhye, Ivan

    2013-01-01

    Posttranslational modifications (PTMs) of proteins by covalent attachment of functional groups (like phosphorylation, acetylation, methylation, glycosylation, etc.) are of key importance for the cell as they regulate various aspects of protein behavior after its synthesis, e.g., dictate protein interaction properties, change catalytic activity of enzymes, induce conformational changes, guide subcellular localization and determine protein stability. A special class of protein PTMs is the conju...

  13. Enhanced cell adhesion to silicone implant material through plasma surface modification.

    Hauser, J; Zietlow, J; Köller, M; Esenwein, S A; Halfmann, H; Awakowicz, P; Steinau, H U

    2009-12-01

    Silicone implant material is widely used in the field of plastic surgery. Despite its benefits the lack of biocompatibility this material still represents a major problem. Due to the surface characteristics of silicone, protein adsorption and cell adhesion on this polymeric material is rather low. The aim of this study was to create a stable collagen I surface coating on silicone implants via glow-discharge plasma treatment in order to enhance cell affinity and biocompatibility of the material. Non-plasma treated, collagen coated and conventional silicone samples (non-plasma treated, non-coated) served as controls. After plasma treatment the change of surface free energy was evaluated by drop-shape analysis. The quality of the collagen coating was analysed by electron microscopy and Time-Of-Flight Secondary Ion Mass Spectrometry. For biocompatibility tests mouse fibroblasts 3T3 were cultivated on the different silicone surfaces and stained with calcein-AM and propidium iodine to evaluate cell viability and adherence. Analysis of the different surfaces revealed a significant increase in surface free energy after plasma pre-treatment. As a consequence, collagen coating could only be achieved on the plasma activated silicone samples. The in vitro tests showed that the collagen coating led to a significant increase in cell adhesion and cell viability. PMID:19641852

  14. Protein modification by acrolein: Formation and stability of cysteine adducts

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2009-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to iden...

  15. Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications

    Encinas, N.; Abenojar, J.; Martínez, M A

    2012-01-01

    The present work deals with the problematic adhesive bonding of substrates with low surface energy. Different approaches have been explored with the aim of creating adequate adhesive joints based on polyolefinic substrate and polyurethane adhesive. The selected material under study was polypropylene (PP) as adherend, and a commercial Sikaflex®-252 polyurethane one component based structural adhesive (PU) as joint fluid. Among the diverse pre-treatments typically used to prepare surfaces prior...

  16. Dissecting signaling and functions of adhesion G protein-coupled receptors

    Araç, Demet; Aust, Gabriela; Calebiro, Davide;

    2012-01-01

    G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matri...

  17. Research progress in protein post-translational modification

    2006-01-01

    Protein post-translational modification plays an important role in organism. It makes the protein obtain more complicated structures, perfect functions, more accurate regulations and more specific operations. The most common protein post- translational modifications include ubiquitylation, phosphorylation, glycosylation, lipodation, methylation, and acetylation and so on. Ubiquitylation plays an essential role in cellular functions such as cellular differentiation, apoptosis, DNA repair, antigen processing, and stress response. Phosphorylation is related to physiological and pathological processes including cellular signal conduction, nervous activity, muscle contraction and proliferation, development and differentiation of cells. Protein glycosylation is of great importance for many cell processes like immunoprotection, virus replication, cell growth, and occurrence of inflammation and so on. Lipodation is vital to signal conduction. Histone methylation and acetylation are responsible for transcription regulation. In vivo, different post-translational modifications do not occur isolatedly, but influence each other's function and cooperate with each other. Understanding what influences the post-translational modifications will help to uncover cellular processes and protein network in molecular level and finally direct more precise drug design targeting molecules. Post-translational modification mimics are set to dominate the next wave of protein therapeutics and become powerful medicinal tools in the 21st century.

  18. Protein modification: Standing out from the crowd

    Huang, Yichao; Liu, Lei

    2016-02-01

    The discovery of a tetrapeptide containing a reactive cysteine provides a method to site-selectively modify peptides and proteins, even if other cysteine residues are present in the polypeptide chain.

  19. Solid-binding Proteins for Modification of Inorganic Substrates

    Coyle, Brandon Laurence

    Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically driven manufacturing, biosensing and bioimaging. In this work, we identify a new set of carbon binding peptides that vary in overall hydrophobicity and charge, and engineer two of these sequences (Car9 and Car15) within the framework of various proteins to exploit their binding ability. In addition, we conducted a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbon and silicon surfaces. Through these insights, we were able to develop proteins suitable for dispersing graphene flakes and carbon nanotubes in aqueous solutions, while retaining protein activity. Additionally, our investigation into the mechanisms of adhesion for our carbon binding peptides inspired a cheap, disposable protein purification system that is more than 10x cheaper than commonly used His-tag protein purification. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications.

  20. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis.

  1. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  2. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    Yildirim, Eda D; Gueceri, Selcuk; Sun, Wei [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Besunder, Robyn; Allen, Fred [Drexel University, School of Biomedical Engineering Science and Health System, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pappas, Daphne, E-mail: edy22@drexel.ed [Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2010-03-15

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  3. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E;

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for......Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial...

  4. 环氧树脂胶粘剂的改性%Modification on epoxy-based adhesive

    郑孝霞; 钱春香

    2003-01-01

    采用了4种方法增韧环氧树脂胶粘剂,分别是端羟基聚丁二烯液体橡胶改性、硅橡胶改性、聚丙烯酸酯复合弹性体微粒乳液改性及化学接枝共聚改性.研究过程中测试了剪切强度和断裂伸长率,并分别运用了扫描电镜图和红外光谱图分析了界面特性及改性剂与环氧树脂间的化学反应.研究结果表明,复合弹性体微粒改性和化学接枝改性能够取得更好的效果.%This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rupture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.

  5. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive.

    Liu, Dagang; Chen, Huihuang; Chang, Peter R; Wu, Qinglin; Li, Kaifu; Guan, Litao

    2010-08-01

    Despite the biodegradability, non-toxicity, and renewability, commercially available soy protein-based adhesives still have not been widely adopted by industry, partially due to their disappointing performances, i.e., low glue strength in the dry state and no glue strength in the wet state. In this study, biomimetic soy protein/CaCO(3) hybrid wood glue was devised and an attempt made to improve the adhesion strength. The structure and morphology of the adhesive and its fracture bonding interface and adhesion strength were investigated. Results showed that the compact rivets or interlocking links, and ion crosslinking of calcium, carbonate, hydroxyl ions in the adhesive greatly improving the water-resistance and bonding strength of soy protein adhesives. Glue strength of soy protein hybrid adhesive was higher than 6 MPa even after three water-immersion cycles. This green and sustainable proteinous hybrid adhesive, with high glue strength and good water-resistance, is a good substitute for formaldehyde wood glues. PMID:20307978

  6. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  7. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of ...

  8. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F, E-mail: mgabriel@uni-mainz.de [Department of Cardiothoracic and Vascular Surgery, Johannes Gutenberg-University School of Medicine, Mainz (Germany)

    2011-06-15

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  9. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Muhammad Pervaiz

    2011-04-01

    Full Text Available In this study, secondary sludge (SS from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as recovered sludge protein (RSP was tested for crude protein, moisture, and other contents. A significant process yield of 90% in terms of precipitation of soluble protein from disintegrated sludge was estimated through calorimetric studies, whereas an overall material balance confirmed a RSP yield of up to 23% based on total suspended solids of raw sludge. The RSP containing 30% crude protein was used as a wood adhesive and its adhesion performance was compared with soy protein isolate (SPI and phenol formaldehyde (PF resin. The testing of plywood lap joints has shown up to 41% shear strength level of RSP adhesive compared to PF. This work demonstrates the technical feasibility and potential of SS as a biomass resource to develop eco-friendly adhesives for wood composite applications.

  10. Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis

    Silverman, Heather G.; Roberto, Francisco F.

    2006-02-07

    The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  11. Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis

    Silverman, Heather G.; Roberto, Francisco F.

    2006-01-17

    The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  12. Recent approaches in physical modification of protein functionality.

    Mirmoghtadaie, Leila; Shojaee Aliabadi, Saeedeh; Hosseini, Seyede Marzieh

    2016-05-15

    Today, there is a growing demand for novel technologies, such as high hydrostatic pressure, irradiation, ultrasound, filtration, supercritical carbon dioxide, plasma technology, and electrical methods, which are not based on chemicals or heat treatment for modifying ingredient functionality and extending product shelf life. Proteins are essential components in many food processes, and provide various functions in food quality and stability. They can create interfacial films that stabilize emulsions and foams as well as interact to make networks that play key roles in gel and edible film production. These properties of protein are referred to as 'protein functionality', because they can be modified by different processing. The common protein modification (chemical, enzymatic and physical) methods have strong effects on the structure and functionality of food proteins. Furthermore, novel technologies can modify protein structure and functional properties that will be reviewed in this study. PMID:26776016

  13. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  14. Study of green film-forming corrosion inhibitor based on mussel adhesive protein

    Holmér, Camilla

    2013-01-01

    Today there are numerous methods to slow down a corrosion process of metallic materials. However, due to environmental effects and health risk issues, several traditional corrosion inhibitors have to be phased out. Hence, it is of great importance to develop new corrosion inhibitors that are “green”, safe, smart and multifunctional. In this essay, the focus is on mussel adhesive protein (MAP) and its possibility to reduce the rate of the corrosion process. The protein exhibit great adhesive s...

  15. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei

    Linder, Markus; Szilvay, Geza R.; Nakari-Setälä, Tiina; Söderlund, Hans; Penttilä, Merja

    2002-01-01

    Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and...

  16. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  17. PROTEIN EXTRACTION FROM SECONDARY SLUDGE OF PAPER MILL WASTEWATER AND ITS UTILIZATION AS A WOOD ADHESIVE

    Muhammad Pervaiz; Mohini Sain

    2011-01-01

    In this study, secondary sludge (SS) from a kraft paper mill was used as a source of biomass to recover protein and investigate its potential use as a wood adhesive. The process of protein recovery involved disruption of the floc structure in alkaline medium to disintegrate and release intercellular contents into the aqueous phase followed by separation of soluble protein. Finally, the soluble protein was subjected to low pH precipitation and the pelletized sludge protein, referred to as reco...

  18. UV-assisted surface modification of PET fiber for adhesion improvement

    Liu, Xiang-Dong; Sheng, De-Kun; Gao, Xiu-Mei; Li, Tong-Bing; Yang, Yu-Ming

    2013-01-01

    A facile and highly efficient method for adhesion improvement of PET/TPU laminates was introduced. A considerable improvement in adhesion was achieved by treating PET fabric with isocyanate (MDI) in toluene solution. Compared with unmodified ones, the maximal peel strength reaches to 2.27 kN/m (up to three times). The fabrics were also treated with NaOH and CDT (corona discharge treatment) and the results were compared respectively. It is considered that the improvement mainly depends on the strengthening of chemical bonding and mechanical interlocking between the fiber and the adhesive matrix. As the difference directly affects the effective transference of the stress (tension force) from matrix to fiber. The failure surface of PET fiber was severely destroyed which could be examined by scanning electron microscopy (SEM).

  19. Surface modification of polyethylene terephthalate substrates by high frequency air discharge plasma. Structure, morphology, adhesion performance

    Effect of high frequency air discharge plasma on the surface and adhesion performance of polyethylene terephthalate (PET) substrates of different thickness was investigated. Based upon X-ray photoelectron spectroscopy, contact angle measurements and ATF FTIR was shown that chemical composition of thin surface layer changes even after first 5 minutes of plasma treatment in spite of mild conditions of etching. Structure changes were estimated by AFM and TEM. It was shown that plasma treatment reveals phase structure organization of PET, but total surface relief changes insignificantly. Dramatic change in surface energy after treatment was revealed by contact angle measurements. At the same time, it was shown that surface energy relaxation occurs during storage of substrate in room conditions. These results are in good agreement with adhesion performance of PET substrate to model silicon scotch estimated by 180º Peel Test. Key words: surface energy, adhesion properties, plasma etching of PET surface

  20. Effect of adhesion proteins and surface chemistry on the procoagulant state of adherent platelets

    Grunkemeier, John Mark

    Poor hemocompatibility of a blood contacting device can lead to blood clotting, reduced blood flow, and depletion of platelets from the blood. Improved understanding of the processes by which blood-material contact leads to these responses could result in more hemocompatible materials. Platelets accelerate blood clotting by adhesion, aggregation, secretion of proteins and agonists and acceleration of thrombin generation. Platelets are said to be "procoagulant" after phosphatidylserine residues flip from the cytosolic to the extracellular face of the lipid bilayer. This then allows for the assembly of the prothrombinase complex (Xa, Va and calcium) on the platelet membrane, which can rapidly convert prothrombin to thrombin. In this study, three different methods confirmed that adhesion causes platelets to become procoagulant: shortening of clotting times of recalcified plasma, binding of FITC-annexin V, and generation of thrombin in the presence of Va, Xa and prothrombin by adherent platelets. Adherent platelets were 10--23 times more activated than bulk phase unactivated platelets and 10--24 times less activated than bulk phase platelets activated by calcium ionophore. The role of adsorbed fibrinogen, vWF, mixtures of fibrinogen and vWF, fibronectin, whole and dilute plasma, and plasma deficient in adhesion proteins in stimulating platelet procoagulant activity was investigated. The results of these experiments suggested that adhesion proteins affect procoagulant activation to varying degrees and that surfaces preadsorbed with mixtures of adhesion proteins are more activating that surfaces preadsorbed with single adhesion proteins. The hypothesis that materials that affect tightness of binding of adsorbed adhesion proteins affect platelet procoagulant activity was investigated. These studies showed that increasing fluorine content of RFGD polymerized films caused reduced platelet adhesion, but increased procoagulant activity, possibly due to their ability to adsorb

  1. Proteomic Analysis of Protein Posttranslational Modifications by Mass Spectrometry.

    Swaney, Danielle L; Villén, Judit

    2016-01-01

    The addition of posttranslational modifications (PTMs) to proteins is an influential mechanism to temporally control protein function and ultimately regulate entire cellular processes. Most PTMs are present at low stoichiometry and abundance, which limits their detection when analyzing whole cell lysates. PTM purification methods are thus required to comprehensively characterize the presence and dynamics of PTMs using mass spectrometry-based proteomics approaches. Here we describe several of the most influential PTMs and discuss the fundamentals of proteomics experiments and PTM purification methods. PMID:26933252

  2. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  3. Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5

    Tan, Minjia; Peng, Chao; Anderson, Kristin A.;

    2014-01-01

    We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical metho...

  4. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths.

    Thormann, Esben; Mizuno, Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M Soledad; Arias, José Luis; Rutland, Mark W; Pai, Ranjith Krishna; Bergström, Lennart

    2012-07-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO(3). The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. PMID:22653376

  5. Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis.

    Riau, Andri K; Mondal, Debasish; Yam, Gary H F; Setiawan, Melina; Liedberg, Bo; Venkatraman, Subbu S; Mehta, Jodhbir S

    2015-10-01

    Patients with advanced corneal disease do poorly with conventional corneal transplantation and require a keratoprosthesis (KPro) for visual rehabilitation. The most widely used KPro is constructed using poly(methyl methacrylate) (PMMA) in the central optical core and a donor cornea as skirt material. In many cases, poor adherence between the PMMA and the soft corneal tissue is responsible for device "extrusion" and bacterial infiltration. The interfacial adhesion between the tissue and the PMMA was therefore critical to successful implantation and device longevity. In our approach, we modified the PMMA surface using oxygen plasma (plasma group); plasma followed by calcium phosphate (CaP) coating (p-CaP); dopamine followed by CaP coating (d-CaP); or plasma followed by coating with (3-aminopropyl)triethoxysilane (3-APTES). To create a synthetic KPro model, we constructed and attached 500 μm thick collagen type I hydrogel on the modified PMMA surfaces. Surface modifications produced significantly improved interfacial adhesion strength compared to untreated PMMA (p strength was observed in p-CaP group over time (p human corneal stromal fibroblasts, except for the 3-APTES group, which showed no live cells at 72 h of culture. In contrast, cells on d-CaP surface showed good anchorage, evidenced by the expression of focal adhesion complex (paxillin and vinculin), and prominent filopodia protrusions. In conclusion, d-CaP can not only enhance and provide stability to the adhesion of collagen hydrogel on the PMMA surface but also promote biointegration. PMID:26389670

  6. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. PMID:27104583

  7. Identification, characterization, and expression levels of putative adhesive proteins from the tube-dwelling polychaete Sabellaria alveolata.

    Becker, Pierre T; Lambert, Aurélie; Lejeune, Annabelle; Lanterbecq, Déborah; Flammang, Patrick

    2012-10-01

    The shelter of the tube-dwelling polychaete Sabellaria alveolata is composed of mineral particles assembled with spots of a proteinaceous cement. The adhesive proteins constituting the cement were identified on the basis of their sequence similarity with proteins of a phylogenetically related species, Phragmatopoma californica. Two positively charged proteins, Sa-1 and Sa-2, share common features: they both have a mass of 22 kDa; are rich in glycine, tyrosine and basic residues; and show repeated peptide motifs. The consensus repeat of Sa-1 is KGAYGAKGLGYGNKAGYGAYG (occurring 6-8 times), while Sa-2 displays the consensus heptapeptide VHKAAWG (5 times) and undecapeptide VHKAAGYGGYG (8 times). Two variants of a serine-rich protein, Sa-3A (22 kDa) and Sa-3B (21 kDa), were also identified. Their serine residues account for 75 mol% and are probably phosphorylated, meaning that Sa-3 is very acidic and negatively charged. Moreover, tyrosine residues of all adhesive proteins are presumably modified into DOPA. Although protein sequences are not well-conserved between S. alveolata and P. californica, their main characteristics (including amino acid composition, post-translational modifications, repeated patterns, isoelectric point, and mass) are shared by both species. This suggests that these features are more important for their function than the primary structure of the proteins. The mRNA abundance for each protein was estimated by quantitative real-time PCR, revealing relative expression levels of about 5, 11, 1.5, and 1 for Sa-1, -2, -3A, and -3B, respectively. These levels could be indicative of charge neutralization phenomena or could reflect their function (interface vs. bulk) in the cement. PMID:23111133

  8. 改性水性聚氨酯胶黏剂研究进展%Progress of modification of waterborne polyurethane adhesive

    邓威; 黄洪; 傅和青

    2011-01-01

    The classification and preparation of waterborne polyurethane adhesive are introduced. The modification methods of waterborne polyurethane, such as acrylate modification, epoxy resin modification, organic fluorine modification, silicone, nanomaterials modification, multi-modification and hyperbranched prepolymer modification are summarized. The advantages and disadvantages of these modification methods are compared, and the application of the modified waterborne polyurethane adhesive is proposed. The development of waterborne polyurethane adhesive is discussed.%介绍了水性聚氨酯胶黏剂的分类和合成方法.综述了水性聚氨酯的改性方法,包括丙烯酸酯改性、环氧树脂改性、有机氟改性、有机硅改性、纳米材料改性、复合改性和超支化预聚体改性.比较了各种改性方法的优势和缺陷,提出了每种方法改性的胶黏剂的适用领域,指出了水性聚氨酯胶黏剂的发展趋势.

  9. Protein Phosphorylation and Redox Modification in Stomatal Guard Cells.

    Balmant, Kelly M; Zhang, Tong; Chen, Sixue

    2016-01-01

    Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding. PMID:26903877

  10. Transience of plasma surface modification as an adhesion promoter for polychlorotrifluorethylene

    Subramanian, S; Love, B J; Romand, M; Charbonnier, M

    2002-01-01

    Poly(chlorotrifluoroethylene) (PCTFE) and other fluoropolymers are increasingly used as inner layer dielectrics. However, these polymers have low surface energies and correspondingly poor adhesive properties. Results are presented on the use of a low-pressure ammonia plasma to enhance the surface bondability of PCTFE. The plasma modified PCTFE film surfaces were characterized by x-ray photoelectron spectroscopy and contact angle measurements. Surface modified films exhibited improved adhesion to electroless copper deposits (180 deg. peel test) compared to coated PCTFE controls and that underwent no plasma exposure. Annealing studies were conducted between 30 and 100 deg. C to examine the stability of the plasma-modified surfaces. For samples annealed below T sub g , contact angle measurements indicated that the plasma-introduced groups remained bound on the surface for four weeks. For specimens annealed above T sub g , the surface functionalities were absorbed within the bulk and surface rearrangement occurre...

  11. Biomolecular modification of carbon nanotubes for studies of cell adhesion and migration

    Luo, Wei; Yousaf, Muhammad N.

    2011-12-01

    We report a strategy for tailoring and patterning carbon nanotubes (CNTs) for biospecific cell studies. We synthesized a new electroactive hydroquinone terminated pyrene molecule to tailor CNTs. These modified CNTs can be oxidized and chemoselectively reacted with oxyamine tethered ligands to generate various ligand tethered CNTs. A cell adhesive Arg-Gly-Asp peptide (RGD) is immobilized to the CNTs and a new microfluidic patterning method is employed to generate multiplex patterned surfaces for biospecific cell adhesion and migration studies. This work demonstrates the integration of a new functionalization strategy to immobilize a variety of ligands to CNTs for a range of potential drug delivery, tissue imaging and cellular behavior studies and a microfluidic patterning strategy for generating complex high-throughput surfaces for biotechnological and cell based assay applications.

  12. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  13. Effect of Monocyte Chemotactic Protein-1 on the Intraperitoneal Adhesion Formation

    2000-01-01

    In order to study the role of monocyte chemotactic protein-1 (MCP-1) in the intra-peritoneal adhesion formation, 23 infertile patients undergoing laparoscopic operation were divided into two groups: experimental group including 12 patients with intra-peritoneal adhesion and control group including 11 patients without intra-peritoneal adhesion. Peritoneal fluid (PF) and peritoneum were collected from these patients during laparoscopic examination. The expression levels of MCP-l protein and MCP-1 mRNA were detected by using enzyme-linked immunosorbent assay (ELISA) and dot blot analysis method respectively. It was found that the levels of MCP-1 protein in PF of the patients with peritoneal adhesion were significantly higher than in the control group (0. 44±0.11 ng/ml vs 0. 19+0. 09 ng/ml respectively, P<0. 01 ). The level of MCP-1 mRNA in the peritoneum of the patients with peritoneal adhesion was significantly higher than in the control group (48.61±3.72 vs 19. 87±2.54 respectively, P<0. 01). It was suggested that MCP-1 might play a role in the adhesion formation, and chemotactic cytokines expressing in the peritoneal mesothelial cells might be take part in the process.

  14. Cell Adhesion Modification of Streptococcus viridians in the Presence of Xylitol

    Esmacher, Jason; Vidakovich, Blair; Giangrande, Michael; Hoffmann, Peter

    2012-10-01

    There is scientific documentation that those who chew gum sweetened by the sugar alcohol xylitol report a dramatically lower incident of both dental caries and otitis media compared to those who chew conventional gum sweetened by sucrose. An explanation contends that xylitol interferes with the ability of Streptococcus viridian (SV) to form biofilms which is a necessary precursor to the bacteria's ability to damage human tissues. We have used atomic force microscopy to study the cell wall/fimbria properties at the nanonewton level in both the presence and absence of xylitol. The first set of measurements used varying concentrations of xylitol incorporated within the incubation medium. The second used non-xylitol grown bacteria, the xylitol was added externally at various concentrations. Our study suggests that growing SV with xylitol reduces their ability to adhere together. Additionally, externally added xylitol showed grouping of cell adhesion to a relatively narrow nanonewton spread that is concentration dependent. Measurement of the adhesion properties of the bacterial cell wall have found that there is a dramatic increase in the cell wall's firmness which simultaneously accompanied a decrease in its ability to support adhesion, even at very low concentrations of xylitol.

  15. Adhesion modification of neural stem cells induced by nanoscale ripple patterns

    Pedraz, P.; Casado, S.; Rodriguez, V.; Giordano, M. C.; Buatier de Mongeot, F.; Ayuso-Sacido, A.; Gnecco, E.

    2016-03-01

    We have studied the influence of anisotropic nanopatterns (ripples) on the adhesion and morphology of mouse neural stem cells (C17.2) on glass substrates using cell viability assay, optical microscopy and atomic force microscopy. The ripples were produced by defocused ion beam sputtering with inert Ar ions, which physically remove atoms from the surface at the energy of 800 eV. The ripple periodicity (∼200 nm) is comparable to the thickness of the cytoplasmatic microspikes (filopodia) which link the stem cells to the substrate. All methods show that the cell adhesion is significantly lowered compared to the same type of cells on flat glass surfaces. Furthermore, the AFM analysis reveals that the filopodia tend to be trapped parallel or perpendicular to the ripples, which limits the spreading of the stem cell on the rippled substrate. This opens the perspective of controlling the micro-adhesion of stem cells and the orientation of their filopodia by tuning the anisotropic substrate morphology without chemical reactions occurring at the surface.

  16. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. PMID:25407640

  17. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  18. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  19. Site-selective protein immobilization by covalent modification of GST fusion proteins.

    Zhou, Yiqing; Guo, Tianlin; Tang, Guanghui; Wu, Hui; Wong, Nai-Kei; Pan, Zhengying

    2014-11-19

    The immobilization of functional proteins onto solid supports using affinity tags is an attractive approach in recent development of protein microarray technologies. Among the commonly used fusion protein tags, glutathione S-transferase (GST) proteins have been indispensable tools for protein-protein interaction studies and have extensive applications in recombinant protein purification and reversible protein immobilization. Here, by utilizing pyrimidine-based small-molecule probes with a sulfonyl fluoride reactive group, we report a novel and general approach for site-selective immobilization of Schistosoma japonicum GST (sjGST) fusion proteins through irreversible and specific covalent modification of the tyrosine-111 residue of the sjGST tag. As demonstrated by sjGST-tagged eGFP and sjGST-tagged kinase activity assays, this immobilization approach offers the advantages of high immobilization efficiency and excellent retention of protein structure and activity. PMID:25340706

  20. Cardiovascular Proteomics: Assessment of Protein Post-translational Modifications

    Šťastná, Miroslava; Zhang, P.; Murphy, A.; Van Eyk, J.E.

    First edition. London : Academic Press, 2012 - (Hill, J.; Olson, E.), s. 261-271 ISBN 978-0-12-415890-0. - (Volume 1) Institutional research plan: CEZ:AV0Z40310501 Keywords : cardiac cell subproteomes * post-translational modifications * cardiovascular proteomics * protein separation * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation http://aleph.nkp.cz/F/XBEQK7PM32M6AY2U7E1H3G67CQLULGBBAPPVB7XTIE3CDJ73HI-74473?func=full-set-set&set_number=019920&set_entry=000002&format=999

  1. Staphylococcus aureus and Staphylococcus epidermidis adhesion to nanohydroxyapatite in the presence of model proteins

    Bacterial infections can have adverse effects on the efficacy, lifetime, and safety of an implanted device. The aim of this study was to investigate the initial adhesion of several strains, namely S. aureus and S. epidermidis, on two distinct types of nanohydroxyapatite (nanoHA), sintered at 725 °C and 1000 °C. A comparison was also made with nanohydroxyapatite having adsorbed fetal bovine serum (FBS), human fibronectin (FN) and human serum albumin (HSA). Adhered bacterial cells were examined by scanning electron microscopy and quantified as colony forming units after being released by sonication. The wettability of the sample surface with and without adsorbed protein was assessed by contact-angle measurements. NanoHA sintered at 1000 °C showed lower bacterial adhesion than this heat-treated at 725 °C. Adsorption of FBS onto the nanoHA surface caused a decrease in the adhesion of all strains on both materials. The bacterial adhesion patterns in the presence of FN were different for both nanoHA substrates; the adherence of the bacterial strains, except for the clinical strain of S. epidermidis, was significantly higher on nanoHA 1000 in comparison to nanoHA 1000 without protein and the bacterial adhesion on the FN-coated nanoHA 725 was lower in comparison to the bare nanoHA 725. The effect of HSA on bacterial adhesion was concentration and bacterial strain dependent. (paper)

  2. Adhesion of Mussel Foot Protein Mefp-5 to Mica: An Underwater Superglue†

    Danner, Eric W.; Kan, Yajing; Hammer, Malte U.; Israelachvili, Jacob N.; Waite, J. Herbert

    2012-01-01

    Mussels have a remarkable ability to attach their holdfast, or byssus, opportunistically to a variety of substrata that are wet, saline, corroded, and/or fouled by biofilms. Mytilus edulis foot protein-5 (Mefp-5) is one of several proteins in the byssal adhesive plaque of the mussel M. edulis. The high content of 3,4 dihydroxyphenylalanine (Dopa) (~30 mol%) and its localization near the plaque-substrate interface have often prompted speculation that Mefp-5 plays a key role in adhesion. Using ...

  3. Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating.

    Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo

    2011-06-01

    Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test. PMID:21770184

  4. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  5. Tyrosine Sulfation as a Protein Post-Translational Modification

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  6. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  7. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-01-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native a...

  8. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion

    Zhang, Ning

    2012-05-18

    POx bottle-brush brushes (BBBs) are synthesized by SIPGP of 2-isopropenyl-2-oxazoline and consecutive LCROP of 2-oxazolines on 3-aminopropyltrimethoxysilane-modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Alteration and modulation of protein activity by varying post-translational modification

    Thompson, David N.; Reed, David W.; Thompson, Vicki S.; Lacey, Jeffrey A.; Apel, William A.

    2016-07-12

    Embodiments of the invention include methods of altering the enzymatic activity or solubility of an extremophilic enzyme or post-translationally modifying a protein of interest via using isolated or partially purified glycosyltransferases and/or post-translational modification proteins, extracts of cells comprising glycosyltransferases and/or post-translational modification proteins, and/or in cells comprising one or more glycosyltransferases and/or post-translational modification proteins.

  10. Functional Characteristics of Milk Protein Concentrates and Their Modification.

    Uluko, Hankie; Liu, Lu; Lv, Jia-Ping; Zhang, Shu-Wen

    2016-05-18

    A major deterrent to the usage of milk protein concentrate (MPC), a high-protein milk product with increasing demand as a food and sports drink ingredient, has been its poor functional characteristics when compared with other milk protein products such as whey protein concentrate and sodium caseinates. This review discusses the recent research on functional properties of MPC, focusing on factors that may contribute to the poor functional characteristics before, during, and after production. Current research, methods employed, and new understanding on the causes of poor solubility of MPC at mild temperatures (about 20°C) has been presented, including loss of solubility during storage as these areas have received unprecedented attention over the past decade, and also affects other useful functional properties of MPC, such as emulsifying properties, gelation, and foaming. Processing methods, which include heat treatment, high-pressure application, microwave heating, ultrasound application, and enzyme and salts modification, have been used or have potential to modify or improve the functional properties of MPCs. Future research on the effects of these processing methods on the functional properties, including effects of enzyme hydrolysis on bitterness and bioactivity, has also been discussed. PMID:26048645

  11. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors

    Liebscher, Ines; Ackley, Brian; Araç, Demet;

    2014-01-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region...

  12. Low-Cost Soybean Protein Products as Extenders in Plywood Adhesives

    Soybean flour and meal were evaluated as alternate protein extenders in plywood adhesives. This research is part of our laboratory’s efforts to develop new uses for the proteinaceous co-products from soybean and cereal processing. Ground soybean meal was tested as replacement for wheat flour in gl...

  13. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  14. Role of Cbl-associated protein/ponsin in receptor tyrosine kinase signaling and cell adhesion

    Ritva Tikkanen

    2012-10-01

    Full Text Available The Cbl-associated protein/ponsin (CAP is an adaptor protein that contains a so-called Sorbin homology (SoHo domain and three Src homology 3 (SH3 domains which are engaged in diverse protein-protein interactions. CAP has been shown to function in the regulation of the actin cytoskeleton and cell adhesion and to be involved in the differentiation of muscle cells and adipocytes. In addition, it participates in signaling pathways through several receptor tyrosine kinases such as insulin and neurotrophin receptors. In the last couple of years, several studies have shed light on the details of these processes and identified novel interaction partners of CAP. In this review, we summarize these recent findings and provide an overview on the function of CAP especially in cell adhesion and membrane receptor signaling.

  15. STRUCTURAL AND FUNCTIONAL CHARACTERISATION OF MUCUS ADHESION PROTEINS OF LACTOBACILLUS REUTERI

    Etzold, Sabrina

    2013-01-01

    Mucus is the first point of contact between the gut microbiota and the host. Mucus adhesins are thought to be key mediators in the mucus adhesion of commensal Lactobacillus species. However, knowledge on the structural or functional basis of adhesin interaction with mucin glycoproteins, the main component of mucus, is limited. This work describes the biochemical and structural properties of two cell-surface proteins from Lactobacillus reuteri, the mucus-binding protein (MUB) and the Lar0958 p...

  16. Protein N-myristoylation in Escherichia coli: Reconstitution of a eukaryotic protein modification in bacteria

    Protein N-myristoylation refers to the covalent attachment of a myristoyl group (C14:0), via amide linkage, to the NH2-terminal glycine residue of certain cellular and viral proteins. Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes this cotranslational modification. The authors have developed a system for studying the substrate requirements and biological effects of protein N-myristoylation as well as NMT structure-activity relationships. Expression of the yeast NMT1 gene in Escherichia coli, a bacterium that has no endogenous NMT activity, results in production of the intact 53-kDa NMT polypeptide as well as a truncated polypeptide derived from proteolytic removal of its NH2-terminal 39 amino acids. By using a dual plasmid system, N-myristoylation of a mammalian protein was reconstituted in E. coli by simultaneous expression of the yeast NMT1 gene and a murine cDNA encoding the catalytic (C) subunit of cAMP-dependent protein kinase (PK-A). A major advantage of the bacterial system over eukaryotic systems is the absence of endogenous NMT and substrates, providing a more straightforward way of preparing myristoylated, analog-substituted, and nonmyristoylated forms of a given protein for comparison of their structural and functional properties. The experimental system may prove useful for recapitulating other eukaryotic protein modifications in E. coli so that structure-activity relationships of modifying enzymes and their substrates can be more readily assessed

  17. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board. PMID:19329303

  18. Pulsed laser cleaning of aluminium-magnesium alloys: effect of surface modifications on adhesion

    Autric, Michel; Oltra, Roland

    2008-05-01

    Surface cleaning is a key step in many industrial processes and especially in laser surface treatments. During laser cleaning of metallic alloys using pulsed lasers, surface modification can be induced due to transient thermal effect. In ambient atmospheric conditions, an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate. A Q-switched Nd:YAG laser (1.06 μm) with 10 ns pulse duration was used for this study. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy were used for surface analysis of irradiated samples. Thermal oxidation took place on the aluminium-magnesium alloy (5000 series) during the irradiation in air (fluence range 0.6-1.4 Jcm-2). It has been demonstrated that this 10 ns laser thermal oxidation and the steady state thermal oxidation have the same mechanism. When the laser fluence reached 1 J cm -2 , the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous magnesium oxide layer.

  19. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed. PMID:25832889

  20. Fumonisin mycotoxicosis in broilers: plasma proteins and coagulation modifications.

    Espada, Y; Ruiz de Gopegui, R; Cuadradas, C; Cabañes, F J

    1997-01-01

    The effects of fumonisin B1 (FB1) intoxication in chickens were evaluated in three experiments. Two-day-old broiler chicks were fed a diet containing 10 mg pure FB1/kg feed for 6 days; some chicks were necropsied at this time, and others were allowed to recover for 5 wk before necropsy. In two other experiments, 2-day-old chicks were fed a broiler starter ration prepared with Fusarium moniliforme culture material containing FB1; one group received 30 mg/kg for 2 wk, and another received 300 mg FB1/kg for 8 days. Compared with controls, intoxicated chicks exhibited decreased prothrombin time, increased plasma fibrinogen (not included for the group receiving 30 mg/kg of culture material), and increased antithrombin III activity. Simultaneously decreased serum albumin concentration and increased serum globulins could be observed in groups intoxicated with F. moniliforme culture material containing FB1. The group allowed to recover for 5 wk did not exhibit modifications in hemostasis or serum proteins compared with controls. The results indicate that low doses of pure FB1 (10 mg/kg) and FB1 from F. moniliforme culture material (30 mg/kg) may alter hemostasis and serum proteins in young chicks. PMID:9087322

  1. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.

    Finlay, John A; Bennett, Stephanie M; Brewer, Lenora H; Sokolova, Anastasiya; Clay, Gemma; Gunari, Nikhil; Meyer, Anne E; Walker, Gilbert C; Wendt, Dean E; Callow, Maureen E; Callow, James A; Detty, Michael R

    2010-08-01

    Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, gamma(C) and surface energies, gamma(S), and duplicated the 'Baier curve'. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with gamma(C) and increased wettability as measured by the static water contact angle, theta(Ws), of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R(2) = 0.74 for percentage removal as a function of theta(Ws) and R(2) = 0.69 for percentage removal as a function of gamma(C)). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with theta(Ws) (R(2) = 0.84) and gamma(C) (R(2) = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes). PMID:20645195

  2. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  3. Characterization of the in vitro binding and inhibition kinetics of primary amine oxidase/vascular adhesion protein-1 by glucosamine.

    Olivieri, Aldo

    2012-04-01

    Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

  4. Comprehensive Analysis of Protein Modifications by Top-down Mass Spectrometry

    Zhang, Han; Ge, Ying

    2011-01-01

    Mass spectrometry (MS)-based proteomics is playing an increasingly important role in cardiovascular research. Proteomics includes not only identification and quantification of proteins, but also the characterization of protein modifications such as post-translational modifications and sequence variants. The conventional bottom-up approach, involving proteolytic digestion of proteins into small peptides prior to MS analysis, is routinely used for protein identification and quantification with ...

  5. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Jutta Messing; Michael Niehues; Anna Shevtsova; Thomas Borén; Andreas Hensel

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with beta-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ...

  6. Cell adhesion-dependent inactivation of a soluble protein kinase during fertilization in Chlamydomonas.

    Zhang, Y.; Luo, Y.; Emmett, K; Snell, W J

    1996-01-01

    Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar...

  7. Posttranslational Modifications of Proteins in the Pathobiology of Medically Relevant Fungi

    Leach, M. D.; A. J. P. Brown

    2012-01-01

    Posttranslational modifications of proteins drive a wide variety of cellular processes in eukaryotes, regulating cell growth and division as well as adaptive and developmental processes. With regard to the fungal kingdom, most information about posttranslational modifications has been generated through studies of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, where, for example, the roles of protein phosphorylation, glycosylation, acetylation, ubiquitination, sumoyla...

  8. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Kinberger, Garth A; Prakash, Thazha P; Nichols, Joshua G; Crooke, Stanley T

    2016-05-01

    RNase H1-dependent antisense oligonucleotides (ASOs) are chemically modified to enhance pharmacological properties. Major modifications include phosphorothioate (PS) backbone and different 2'-modifications in 2-5 nucleotides at each end (wing) of an ASO. Chemical modifications can affect protein binding and understanding ASO-protein interactions is important for better drug design. Recently we identified many intracellular ASO-binding proteins and found that protein binding could affect ASO potency. Here, we analyzed the structure-activity-relationships of ASO-protein interactions and found 2'-modifications significantly affected protein binding, including La, P54nrb and NPM. PS-ASOs containing more hydrophobic 2'-modifications exhibit higher affinity for proteins in general, although certain proteins, e.g. Ku70/Ku80 and TCP1, are less affected by 2'-modifications. We found that Hsp90 protein binds PS-ASOs containing locked-nucleic-acid (LNA) or constrained-ethyl-bicyclic-nucleic-acid ((S)-cEt) modifications much more avidly than 2'-O-methoxyethyl (MOE). ASOs bind the mid-domain of Hsp90 protein. Hsp90 interacts with more hydrophobic 2' modifications, e.g. (S)-cEt or LNA, in the 5'-wing of the ASO. Reduction of Hsp90 protein decreased activity of PS-ASOs with 5'-LNA or 5'-cEt wings, but not with 5'-MOE wing. Together, our results indicate Hsp90 protein enhances the activity of PS/LNA or PS/(S)-cEt ASOs, and imply that altering protein binding of ASOs using different chemical modifications can improve therapeutic performance of PS-ASOs. PMID:26945041

  9. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration

    Cornelia Peeters, Miriam; Fokkelman, Michiel; Boogaard, Bob;

    2015-01-01

    Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which origin...... the adhesion GPCR ADGRG2 is critically involved in the adhesion and migration of certain breast cancer cells through mechanisms including a non-canonical NFkB pathway and that ADGRG2 could be a target for treatment of certain types of cancer.......Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which...... activity through the adhesion- and migration-related transcription factors serum response element (SRE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) presumably via coupling to Gα12/13 and Gαq. However, activation of these two pathways appears to occur through distinct molecular...

  10. Phosphorylation of the beta-subunit of CD11/CD18 integrins by protein kinase C correlates with leukocyte adhesion.

    Valmu, L; Autero, M; Siljander, P; Patarroyo, M; Gahmberg, C G

    1991-11-01

    Adhesion of activated leukocytes to cells is of critical functional importance. The adhesion is known to be mediated mainly by the CD11/CD18 integrins, also known as leukocytic cell adhesion molecules, or Leu-CAM. We have now studied the phosphorylation of Leu-CAM by protein kinase C and the correlation of phosphorylation with the generation of the adhesive phenotype among human peripheral blood mononuclear leukocytes during cell activation. We here show that a good correlation exists between the phosphorylation of the beta subunit of Leu-CAM (CD18), and the extent of cell-to-cell adhesion. The phosphorylated CD18 subunit was associated with both CD11a and CD11b. Purified protein kinase C was able to phosphorylate the beta subunit of isolated Leu-CAM in vitro. The phosphorylation occurred mainly on serine residues. PMID:1682156

  11. Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain

    Edwards, Alistair V G; Edwards, Gregory J; Schwämmle, Veit;

    2014-01-01

    Protein post-translational modification (PTM) is a powerful way to modify the behavior of cellular proteins and thereby cellular behavior. Multiple recent studies of evolutionary trends have shown that certain pairs of protein post-translational modifications tend to occur closer to each other than...... observations of increasingly frequent and diverse protein modification in cell biology. In this study, we use mass spectrometry and proteomic strategies to present biological data showing spatiotemporal PTM co-localization across multiple PTM categories, which display changes over development of the brain...

  12. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology. PMID:26060076

  13. The functional properties, modification and utilization of whey proteins

    B. G. Venter; A. E. J. McGill

    1986-01-01

    Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chem...

  14. The functional properties, modification and utilization of whey proteins

    B. G. Venter

    1986-03-01

    Full Text Available Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chemical recovery processes have been designed. Chemically and enzymatically modified whey protein is manufactured to obtain technological and functional advantages. The important functional properties of whey proteins, namely hydration, gelation, emulsifying and foaming properties, are reviewed.

  15. Down regulation of NO signaling in Trypanosoma cruzi upon parasite-extracellular matrix interaction: changes in protein modification by nitrosylation and nitration.

    Milton Pereira

    2015-04-01

    Full Text Available Adhesion of the Trypanosoma cruzi trypomastigotes, the causative agent of Chagas' disease in humans, to components of the extracellular matrix (ECM is an important step in host cell invasion. The signaling events triggered in the parasite upon binding to ECM are less explored and, to our knowledge, there is no data available regarding •NO signaling.Trypomastigotes were incubated with ECM for different periods of time. Nitrated and S-nitrosylated proteins were analyzed by Western blotting using anti-nitrotyrosine and S-nitrosyl cysteine antibodies. At 2 h incubation time, a decrease in NO synthase activity, •NO, citrulline, arginine and cGMP concentrations, as well as the protein modifications levels have been observed in the parasite. The modified proteins were enriched by immunoprecipitation with anti-nitrotyrosine antibodies (nitrated proteins or by the biotin switch method (S-nitrosylated proteins and identified by MS/MS. The presence of both modifications was confirmed in proteins of interest by immunoblotting or immunoprecipitation.For the first time it was shown that T. cruzi proteins are amenable to modifications by S-nitrosylation and nitration. When T. cruzi trypomastigotes are incubated with the extracellular matrix there is a general down regulation of these reactions, including a decrease in both NOS activity and cGMP concentration. Notwithstanding, some specific proteins, such as enolase or histones had, at least, their nitration levels increased. This suggests that post-translational modifications of T. cruzi proteins are not only a reflex of NOS activity, implying other mechanisms that circumvent a relatively low synthesis of •NO. In conclusion, the extracellular matrix, a cell surrounding layer of macromolecules that have to be trespassed by the parasite in order to be internalized into host cells, contributes to the modification of •NO signaling in the parasite, probably an essential move for the ensuing invasion step.

  16. XPS study on the weakest zone in the adhesion structure between resin containing 4-META and precious metal alloys treated with different surface modification methods.

    Ohno, H; Endo, K; Yamane, Y; Kawashima, I

    2001-03-01

    Three precious metal alloys, Type IV gold alloy, 14 K gold alloy, and silver-based alloy, were treated with different surface modifications including a metal primer (VBATDT) application, a SiOx coating method, high-temperature oxidation, modification method with a liquid Ga-Sn alloy, and tin electroplating. Then thin PMMA films were bonded with a resin containing 4-META. Water durability at the adhesion interface was evaluated after water immersion, followed by thermal cycling used liquid nitrogen. The weakest zone at the interface was investigated using XPS only for the Ag-Pd alloy specimens that had been surface-treated with as-polishing, adhesive primer, and the SiOx coating method, since peeling of the PMMA film on the surface of specimens surface-treated by other methods was not observed. Metal elements were detected from the resin side at the adhesion interface. The chemical states of Cu in the resin before argon ion etching were characterized as metal oxides and/or states of chemical interaction with 4-META, VBATDT, or SiOx. PMID:11441491

  17. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  18. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  19. Protein-protein binding before and after photo-modification of albumin

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  20. Proteins Play Important Role in Intercellular Adhesion Affecting on Fruit Textural Quality

    Bahadur Adhikari, Khem; Shomer, Ilan

    2012-01-01

    Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA strength......Fruit textural quality is becoming a major quality parameter for export, postharvest preservation, handling and processing. The main determinant of textural quality is intercellular adhesion (ICA) as attributed by the cell wall (CW) and its components. The importance of CW protein in ICA...... strengthening was exempli ed in Medjoul date (Phoenix dactylifera L.) fruit, as a model. Fruit mesocarp sensitively responded to culture environment which was assayed in vitro at pH 3.5(< pKa) and pH 6.5(> pKa) in presence of organic acid molecules. The max penetration force, as a measure of ICA strength, of p......H 3.5 (< pKa) incubated mesocarp (~10.5 N) was signi cantly higher than that of pH 6.5 (> pKa) incubated fruits (~2 N). The protein bands at ~29 kDa, ~75 kDa, ~32 kDa and 87 kDa were exclusively or prominently found in ICA strengthened fruits (pH 3.5< pKa) compared to texturally injured fruits (pH 6...

  1. Protein micro patterned lattices to probe a fundamental lengthscale involved in cell adhesion

    Guillou, Herve; Chaussy, Jacques; Block, Marc R

    2009-01-01

    Cell adhesion, a fundamental process of cell biology is involved in the embryo development and in numerous pathologies especially those related to cancers. We constrained cells to adhere on extracellular matrix proteins patterned in a micro lattices. The actin cytoskeleton is particularly sensitive to this constraint and reproducibly self organizes in simple geometrical patterns. Such highly organized cells are functional and proliferate. We performed statistical analysis of spread cells morphologies and discuss the existence of a fundamental lengthscale associated with active processes required for spreading.

  2. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.;

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... cells ( HeLa) and fluorescence labeled proteins (isothiocyanate-labeled bovine serum albumin, i.e. FITC-BSA). The PEO-like coatings were fabricated by plasma polymerization of 12-crown-4 (ppCrown) with plasma polymerized hexene (ppHexene) as adhesion layer. The coatings were micro patterned using...

  3. Glycoproteomic Analysis of Seven Major Allergenic Proteins Reveals Novel Post-translational Modifications*

    Halim, Adnan; Carlsson, Michael C.; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y.; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L.; Wandall, Hans H.

    2014-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited.

  4. Oxidative modification of protein in the ats' liver by the action of X-ray

    We studied the 30 days long influence fractioned X-ray in total doses 0,3, 0,6, 0,9 and 1,2 Gr on the oxidative modification of protein in the rats liver. X-ray caused the increase of protein oxidative modification as well as neutral, so the main character after the completion of X-ray at all doses on the first and the tenth days; by this fact the level of aldegido- end keto- derivatives of main character was higher. After 20 and 30 days the level of oxidative modification of protein verge to control (data verification). The higher level of protein oxidative modification has been saved till 30 days long after the completion of X-ray

  5. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    Brown, Alan; Turner, Louise; Christoffersen, Stig;

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The...

  6. A comprehensive resource for integrating and displaying protein post-translational modifications

    Wang Ting-Yuan

    2009-06-01

    Full Text Available Abstract Background Protein Post-Translational Modification (PTM plays an essential role in cellular control mechanisms that adjust protein physical and chemical properties, folding, conformation, stability and activity, thus also altering protein function. Findings dbPTM (version 1.0, which was developed previously, aimed on a comprehensive collection of protein post-translational modifications. In this update version (dbPTM2.0, we developed a PTM database towards an expert system of protein post-translational modifications. The database comprehensively collects experimental and predictive protein PTM sites. In addition, dbPTM2.0 was extended to a knowledge base comprising the modified sites, solvent accessibility of substrate, protein secondary and tertiary structures, protein domains, protein intrinsic disorder region, and protein variations. Moreover, this work compiles a benchmark to construct evaluation datasets for computational study to identifying PTM sites, such as phosphorylated sites, glycosylated sites, acetylated sites and methylated sites. Conclusion The current release not only provides the sequence-based information, but also annotates the structure-based information for protein post-translational modification. The interface is also designed to facilitate the access to the resource. This effective database is now freely accessible at http://dbPTM.mbc.nctu.edu.tw/.

  7. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  8. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  9. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts

    Ahmed, Emad K; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter;

    2010-01-01

    Summary Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins...... build up and potentially affect cellular function during replicative senescence of WI-38 fibroblasts, proteins targeted by these modifications have been identified using a bidimensional gel electrophoresis-based proteomic approach coupled with immunodetection of HNE-, AGE-modified and carbonylated...... proteins. 37 proteins targeted for either one of these modifications were identified by mass spectrometry and are involved in different cellular functions such as protein quality control, energy metabolism and cytoskeleton. Almost half of the identified proteins were found to be mitochondrial, which...

  10. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  11. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives. PMID:27217558

  12. Understanding Marine Mussel Adhesion

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  13. Understanding marine mussel adhesion.

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  14. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide

    Caccavo, F. Jr.

    1999-11-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

  15. Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material.

    Choi, Yoo Seong; Kang, Dong Gyun; Lim, Seonghye; Yang, Yun Jung; Kim, Chang Sup; Cha, Hyung Joon

    2011-08-01

    Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ∼1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material. PMID:21770718

  16. Protein Modifications after Foxtail Millet Extrusion: Solubility and Molecular Weight

    Xuewei Zhao

    2015-03-01

    Full Text Available With the aim of illustrating the effects of extrusion cooking on the solubility of proteins in foxtail millet and their molecular basis, foxtail millet was extruded at five barrel temperature profiles and feed moisture contents. The proteins of raw and extrudate samples were extracted with six solutions sequentially. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE of total protein and Starch Granule-Associate Protein (SGAP was performed. Extrusion caused a significant decrease in globulin, setarin and glutelin fractions with a corresponding increase in SDS- and SDS+2-ME-soluble and residual fractions. Increasing extrusion temperature or moisture content all led to SDS-soluble fraction decrease, while SDS+2-ME-soluble fraction increase. SDS-PAGE demonstrated that disulfide bond cross-linking occurred among glutelin and with setarin subunits. Extrusion had a less pronounced impact on the 60 kDa SGAP than the other middle-high molecular weight subunits. It is the protein-protein interaction shift from electrostatic force to hydrophobic and/or hydrogen forces and covalent disulfide cross-links that contributed to the decreased solubility of protein in foxtail millet extrudates.

  17. 2'-Phosphoadenylylation of eukaryotic proteins: a type of covalent modification.

    Hilz, H; Fanick, W; Klapproth, K

    1986-01-01

    An enzymatic system in rat liver microsomal preparations has been detected that catalyzes the transfer of the 2'-phospho-AMP moiety from NADP to endogenous polypeptides; the major acceptor is a polypeptide of about 40 kDa (p40). Modification of the acceptor by 2'-phospho-AMP residues was deduced from the simultaneous transfer of 2'-[33P]phosphate and [3H]adenine residues from double-labeled NADP, while no incorporation of radioactivity into p40 was seen with NADP species labeled in the NMN mo...

  18. Protein-RNA linkage and posttranslational modifications of feline calicivirus and murine norovirus VPg proteins

    Olspert, Allan; Hosmillo, Myra; Chaudhry, Yasmin; Peil, Lauri; Truve, Erkki

    2016-01-01

    Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV) and murine norovirus (MNV). These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5′ end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP) moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle. PMID:27375966

  19. Biotinylated probes for the analysis of protein modification by electrophiles.

    Codreanu, Simona G; Kim, Hye-Young H; Porter, Ned A; Liebler, Daniel C

    2012-01-01

    Formation of covalent protein adducts by lipid electrophiles contributes to diseases and toxicities linked to oxidative stress, but analysis of the adducts presents a challenging analytical problem. We describe selective adduct capture using biotin affinity probes to enrich protein and peptide adducts for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). One approach employs biotinamidohexanoic acid hydrazide to covalently label residual carbonyl groups on adducts. The other employs alkynyl analogs of lipid electrophiles, which form adducts that can be postlabeled with azidobiotin tags by Cu(+)-catalyzed cycloaddition (Click chemistry). To enhance the selectivity of adduct capture, we use an azidobiotin reagent with a photocleavable linker, which allows recovery of adducted proteins and peptides under mild conditions. This approach allows both the identification of protein targets of lipid electrophiles and sequence mapping of the adducts. PMID:22065220

  20. Protein Modification by Dicarbonyl Molecular Species in Neurodegenerative Diseases

    Wesley M. Williams

    2011-01-01

    Full Text Available Neurodegeneration results from abnormalities in cerebral metabolism and energy balance within neurons, astrocytes, microglia, or microvascular endothelial cells of the blood-brain barrier. In Alzheimer's disease, -amyloid is considered the primary contributor to neuropathology and neurodegeneration. It now is believed that certain systemic diseases, such as diabetes mellitus, can contribute to neurodegeneration through the effects of chronic hyperglycemia/insulin resistance resulting in protein glycation, oxidative stress and inflammation within susceptible brain regions. Here, we present an overview of research focusing on the role of protein glycation, oxidative stress, and inflammation in the neurodegenerative process. Of special interest in this paper is the effect of methylglyoxal (MGO, a cytotoxic byproduct of glucose metabolism, elevated in neurodegenerative disease, and diabetes mellitus, on cerebral protein function and oxidative stress. How MGO interacts with amino acid residues within -amyloid, and small peptides within the brain, is also discussed in terms of the affect on protein function.

  1. Modification of tooth development by heat shock protein 60

    Papp Tamás; Polyák Angéla; Papp Krisztina; Mészár Zoltán (1977-) (állatorvos); Zákány Róza (1963-) (anatómus-, kötőszövetbiológus); Mészár-Katona Éva (1986-) (Ph.D hallgató); Terdik Tünde (1969-) (analitikus); Chang, Hwa Ham; Felszeghy Szabolcs Béla (1972-) (fogorvos, anatómus, kötőszövetbiológus)

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). H...

  2. High-throughput mass spectrometric discovery of protein post-translational modifications.

    Wilkins, M R; Gasteiger, E; Gooley, A A; Herbert, B R; Molloy, M P; Binz, P A; Ou, K; Sanchez, J C; Bairoch, A; Williams, K L; Hochstrasser, D F

    1999-06-11

    The availability of genome sequences, affordable mass spectrometers and high-resolution two-dimensional gels has made possible the identification of hundreds of proteins from many organisms by peptide mass fingerprinting. However, little attention has been paid to how information generated by these means can be utilised for detailed protein characterisation. Here we present an approach for the systematic characterisation of proteins using mass spectrometry and a software tool FindMod. This tool, available on the internet at http://www.expasy.ch/sprot/findmod.html , examines peptide mass fingerprinting data for mass differences between empirical and theoretical peptides. Where mass differences correspond to a post-translational modification, intelligent rules are applied to predict the amino acids in the peptide, if any, that might carry the modification. FindMod rules were constructed by examining 5153 incidences of post-translational modifications documented in the SWISS-PROT database, and for the 22 post-translational modifications currently considered (acetylation, amidation, biotinylation, C-mannosylation, deamidation, flavinylation, farnesylation, formylation, geranyl-geranylation, gamma-carboxyglutamic acids, hydroxylation, lipoylation, methylation, myristoylation, N -acyl diglyceride (tripalmitate), O-GlcNAc, palmitoylation, phosphorylation, pyridoxal phosphate, phospho-pantetheine, pyrrolidone carboxylic acid, sulphation) a total of 29 different rules were made. These consider which amino acids can carry a modification, whether the modification occurs on N-terminal, C-terminal or internal amino acids, and the type of organisms on which the modification can be found. We illustrate the utility of the approach with proteins from 2-D gels of Escherichia coli and sheep wool, where post-translational modifications predicted by FindMod were confirmed by MALDI post-source decay peptide fragmentation. As the approach is amenable to automation, it presents a

  3. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas.

    Kostoro, Joanna; Chang, Shu-Jyuan; Clark Lai, Yen-Chang; Wu, Chun-Chieh; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-06-01

    Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p astrocytoma. PMID:26935340

  4. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  5. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    Melnichuk, Iurii, E-mail: iurii.melnichuk@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Choukourov, Andrei, E-mail: choukourov@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Bilek, Marcela, E-mail: m.bilek@physics.usyd.edu.au [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); School of Physics, University of Sydney, NSW 2006 (Australia); Weiss, Anthony, E-mail: tony.weiss@sydney.edu.au [School of Molecular Bioscience, University of Sydney, NSW 2006 (Australia); Vandrovcová, Marta, E-mail: Marta.Vandrovcova@fgu.cas.cz [Institute of Physiology of Czech Academy of Science, Prague 14220 (Czech Republic); Bačáková, Lucie, E-mail: Lucie.Bacakova@fgu.cas.cz [Institute of Physiology of Czech Academy of Science, Prague 14220 (Czech Republic); Hanuš, Jan, E-mail: jan.hanus@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Kousal, Jaroslav, E-mail: jarda@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Shelemin, Artem, E-mail: artem.shelemin@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); Solař, Pavel, E-mail: pawell.solar@seznam.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, Prague 18000 (Czech Republic); and others

    2015-10-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment.

  6. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens.

    Hennebert, Elise; Wattiez, Ruddy; Waite, J Herbert; Flammang, Patrick

    2012-01-01

    Sea stars are able to make firm but temporary attachments to various substrata by secretions released by their tube feet. After tube foot detachment, the adhesive secretions remain on the substratum as a footprint. Proteins presumably play a key role in sea star adhesion, as evidenced by the removal of footprints from surfaces after a treatment with trypsin. However, until now, characterisation was hampered by their high insolubility. In this study, a non-hydrolytic method was used to render most of the proteins constituting the adhesive footprints soluble. After analysis by SDS-PAGE, the proteins separated into about 25 bands, which ranged from 25 to 450 kDa in apparent molecular weight. Using mass spectrometry and a homology-database search, it was shown that several of the proteins are known intracellular proteins, presumably resulting from contamination of footprint material with tube foot epidermal cells. However, 11 protein bands, comprising the most abundant proteins, were not identified and might correspond to novel adhesive proteins. They were named 'Sea star footprint proteins' (Sfps). Tandem mass spectrometry analysis of the protein bands yielded 43 de novo-generated peptide sequences. Most of them were shared by several, if not all, Sfps. Polyclonal antibodies were raised against one of the peptides (HEASGEYYR from Sfp-115) and were used in immunoblotting. They specifically labelled Sfp-115 and other bands with lower apparent molecular weights. The different results suggest that all Sfps might belong to a single family of related proteins sharing similar motifs or, alternatively, they are the products of polymerization and/or degradation processes. PMID:22439774

  7. Proteins isolated from regenerating sciatic nerves of rats form aggregates following posttranslational amino acid modification

    Soluble proteins of regenerating sciatic nerves of rats can be posttranslationally, covalently modified by a variety of radioactive amino acids. The present study shows that once modified by a mixture of 15 amino acids, many of those proteins form aggregates that are unable to pass through a 0.45-micron filter and pellet following 20,000g centrifugation (suggesting a size of greater than 2 x 10(6) Da). Aggregation of proteins also occurs following modification by Arg or Lys alone, but does not occur following protein modification in nonregenerating nerves or in brain. Aggregates are not disrupted by treatment with 100 mM beta mercaptoethanol or by exposure to 1.0 M NaCl, but aggregates are solubilized by treatment with urea and by boiling in 1.5% SDS. Amino acid analysis of proteins modified by a mixture of [3H]amino acids shows a similar proportion of posttranslationally incorporated Ser, Pro, Val, Ala, Leu, Phe, Lys, and Arg in the soluble and pelletable fractions. Two-dimensional PAGE profiles of soluble and pelletable modified proteins show that the modified proteins in both fractions are in similar pI and molecular weight ranges, except that the soluble modified proteins include a high-molecular-weight component that is absent in the pelleted modified proteins. Kinetic studies show that while half-maximal levels of protein modification occur within 30 seconds of incubation, the appearance of the pelletable modified protein fraction is delayed significantly. These results indicate that amino acid modification of soluble proteins in regenerating sciatic nerves of rats results in physical changes in those proteins so that they form high-molecular-weight aggregates

  8. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  9. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review.

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  10. Site-selective protein-modification chemistry for basic biology and drug development

    Krall, Nikolaus; da Cruz, Filipa P.; Boutureira, Omar; Bernardes, Gonçalo J. L.

    2016-02-01

    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

  11. Adhesion G protein-coupled receptors in nervous system development and disease.

    Langenhan, Tobias; Piao, Xianhua; Monk, Kelly R

    2016-09-01

    Members of the adhesion G protein-coupled receptor (aGPCR) class have emerged as crucial regulators of nervous system development, with important implications for human health and disease. In this Review, we discuss the current understanding of aGPCR functions during key steps in neural development, including cortical patterning, dendrite and synapse formation, and myelination. We focus on aGPCR modulation of cell-cell and cell-matrix interactions and signalling to control these varied aspects of neural development, and we discuss how impaired aGPCR function leads to neurological disease. We further highlight the emerging hypothesis that aGPCRs can be mechanically activated and the implications of this property in the nervous system. PMID:27466150

  12. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes

    2009-01-01

    This article concerns the investigation of blood protein adsorption on carbon paper and multi-wall carbon nanotubes (MWCNTs). Mouse fibroblast cell adhesion and growth on MWCNTs was also studied. The results showed that fibrinogen adsorption on carbon paper was much lower than that on MWCNTs, which means that platelets readily aggregate on the surface of MWCNTs. Mouse fibroblast cells implanted on MWCNTs tended to grow more prolifically than those implanted on carbon paper. The cell concentration observed on MWCNTs increased from 1.2×105/mL for a single day culture to 2×105/mL for a 7-day culture. No toxicity reaction was observed during the culturing period. These results indicated that MWCNTs possessed excellent tissue compatibility.

  13. Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs)

    Xuchen Xu; Ming Li; Qian Liu; Zhaojun Jia; Yuying Shi; Yan Cheng; Yufeng Zheng; L.Q. Ruan

    2014-01-01

    Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed a novel and convenient method to modify the biodegradable Fe plates with heparin. Iron was first treated by a facile one-step pH-induced polymerization of dopamine, and then a high density heparin was successfully grafted onto the surface via coupling with polydopamine (PDA) active layer. Heparin immobilization contributed much longer blood clotting coagulation time than the pure Fe sample, and hence reduced the risk of thrombosis. Cell viability tests suggested that the heparin modified Fe plates were more favorable to the proliferation of ECV304 cells. In summary, the heparin modified Fe plates with good anti-thrombus properties and inhibiting the proliferation of VSMC cells provide great prospects for biodegradable iron.

  14. Facile immobilization of heparin on bioabsorbable iron via mussel adhesive protein (MAPs

    Xuchen Xu

    2014-10-01

    Full Text Available Motivated by adhesive proteins in mussels, strategies using dopamine to modified surface have become particularly attractive. In the present work, we developed a novel and convenient method to modify the biodegradable Fe plates with heparin. Iron was first treated by a facile one-step pH-induced polymerization of dopamine, and then a high density heparin was successfully grafted onto the surface via coupling with polydopamine (PDA active layer. Heparin immobilization contributed much longer blood clotting coagulation time than the pure Fe sample, and hence reduced the risk of thrombosis. Cell viability tests suggested that the heparin modified Fe plates were more favorable to the proliferation of ECV304 cells. In summary, the heparin modified Fe plates with good anti-thrombus properties and inhibiting the proliferation of VSMC cells provide great prospects for biodegradable iron.

  15. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...... has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...

  16. Multienzyme Modification of Hemp Protein for Functional Peptides Synthesis

    Ranjana Das

    2015-01-01

    Full Text Available Functional foods and nutraceuticals are of special importance, particularly for their impact on human health and prevention of certain chronic diseases. Consequently, the production and properties of bioactive peptides have received an increasing scientific interest over past few years. Present work intends to compare the competence of metalloendopeptidases (“Protease N” and “Protease A” with papain for getting functional peptides from hemp seed meal, which is an obligatory waste of hemp fiber production industry. As a measure of the functional potential hemp protein hydrolysates were analyzed for their antiradical properties in DPPH system. “Protease N” modified protein hydrolysate exhibited comparatively superior radical scavenging activity in DPPH system. Overall findings represent the importance of “Protease N,” as endopeptidase in getting peptides of good antiradical properties from various protein sources.

  17. Modification of viral structural proteins of herpesvirus sylvilagus by glycosylation and phosphorylation.

    Rouhandeh, H.; Cohrs, R

    1984-01-01

    The structural proteins of herpesvirus sylvilagus, a lymphotropic gamma herpesvirus, were analyzed by sodium dodecyl sulfate and two-dimensional polyacrylamide gel electrophoreses. Modification of the proteins by glycosylation and phosphorylation was shown by the incorporation of [14C]glucosamine or 32Pi into material which comigrated with [35S]methionine-labeled proteins. One-dimensional gel electrophoresis resolved four major glycoproteins and four major phosphoproteins. By two-dimensional ...

  18. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Wani, Revati; Nagata, Asako; Murray, Brion W.

    2014-01-01

    The perception of reactive oxygen species has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g., cancer). New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically distinct alterations to the protein (e.g., sulfenic/sulfinic/sulfonic acid, disu...

  19. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1–0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  20. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. PMID:21216704

  1. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  2. The Study of the Adhesive Activity and Modification Possibilities of Melamine-Urea-Formaldehyde (MUF), Urea-Formaldehyde (UF) Resins

    Kajaks, J; Kolbins, A

    2014-01-01

    Two types of thermosetting resins MUF and UF have been used as glues for birch wood veneer. As resins modifiers polyvinylacetate emulsion (PVA), polyvinylbutiral (PVB) (powder and solution), rubber latex, adipic (Ad) and sebacic (Seb) acids have been utilized. For glued system shear strength and deformation, bending properties and impact strength have been tested. The best properties: adhesive activity and elasticity have been shown by resins modified with PVB powder, rubber latex, adipic and...

  3. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  4. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion.

    Contreras-Caceres, Rafael; Santos, Catherine M; Li, Siheng; Kumar, Amit; Zhu, Zhiling; Kolar, Satya S; Casado-Rodriguez, Miguel A; Huang, Yongkai; McDermott, Alison; Lopez-Romero, Juan Manuel; Cai, Chengzhi

    2015-11-15

    In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days. PMID:26210101

  5. The recognition of adsorbed and denatured proteins of different topographies by β2 integrins and effects on leukocyte adhesion and activation

    Brevig, T.; Holst, B.; Ademovic, Z.;

    2005-01-01

    Leukocyte beta(2) integrins Mac-1 and p150,95 are promiscuous cell-surface receptors that recognise and mediate cell adhesion to a variety of adsorbed and denatured proteins. We used albumin as a model protein to study whether leukocyte adhesion and activation depended on the nm-scale topography ...

  6. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    -dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of......The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine...

  7. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  8. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Giugliano Loreny

    2004-04-01

    Full Text Available Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants.

  9. Influence of levofloxacin on soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis

    Qing-Zhou He; Qian-Shu Hu

    2016-01-01

    Objective:To observe the influence of levofloxacin on soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis. Methods:A total of 50 patients with pulmonary tuberculosis who had been treated in our hospital from March 2014 to April 2015 were randomly divided into the control group (conventional treatment) and the observation group (conventional treatment plus levofloxacin). Each group had 25 cases. Then, the soluble selection,interleukin,adhesion molecule and pulmonary surfactant protein levels of the two groups at the second, fourth and sixth months before and after treatment were compared. Results:Before treatment, the differencess of the levels of the soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of the two groups were significant (P>0.05), while the detection levels of all the aspects of the observation group at the second, fourth and sixth months after treatment were all significantly lower than those of the control group (P<0.05). The detection results of the two groups at the second, fourth and sixth months after treatment showed significant differences. Conclusions:Lvofloxacin has significant effect on the soluble selection, interleukin, adhesion molecule and pulmonary surfactant protein of patients with pulmonary tuberculosis.

  10. Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces

    In vitro, degradable aliphatic polyesters are widely used as cell carriers for bone tissue engineering, despite their lack of biological cues. Their biological active surface is rather determined by an adsorbed layer of proteins from the surrounding media. Initial cell fate, including adhesion and proliferation, which are key properties for efficient cell carriers, is determined by the adsorbed layer of proteins. Herein we have investigated the ability of human bone marrow derived stem cells (hBMSC) to adhere to extracellular matrix (ECM) proteins, including fibronectin and vitronectin which are present in plasma and serum. hBMSC expressed integrins for collagens, laminins, fibronectin and vitronectin. Accordingly, hBMSC strongly adhered to these purified ECM proteins by using the corresponding integrins. Although purified fibronectin and vitronectin adsorbed to aliphatic polyesters to a lower extent than to cell culture polystyrene, these low levels were sufficient to mediate adhesion of hBMSC. It was found that plasma- and serum-coated polystyrene adsorbed significant levels of both fibronectin and vitronectin, and fibronectin was identified as the major adhesive component of plasma for hBMSC; however, aliphatic polyesters adsorbed minimal levels of fibronectin under similar conditions resulting in impaired cell adhesion. Altogether, the results suggest that the efficiency of aliphatic polyesters cell carriers could be improved by increasing their ability to adsorb fibronectin. (paper)

  11. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH2 (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH3+ (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic

  12. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok; Park, Jong-Chul

    2013-08-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH2 (399.70 eV) was increased significantly and -N=CH (400.80 eV) and -NH3+ (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  13. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  14. Dysbiosis may trigger autoimmune diseases via inappropriate posttranslational modification of host proteins

    Aaron eLerner

    2016-02-01

    Full Text Available The gut ecosystem with myriads of microorganisms and the high concentration of immune system cells can be considered as a separate organ on its own. The balanced interaction between the host and microbial cells has been shaped during the long co-evolutionary process. In dysbiotic conditions, however, this balance is compromised and results in abnormal interaction between the host and microbiota. It is hypothesize here that the changed spectrum of microbial enzymes involved in posttranslational modification of proteins may contribute to the aberrant modification of host proteins thus generating autoimmune responses by the host, resulting in autoimmune diseases.

  15. Modification-specific proteomics of plasma membrane proteins

    Elortza, Felix; Mohammed, Shabaz; Bunkenborg, Jakob;

    2006-01-01

    that phospholipase D (PLD) treatment of human and plant plasma membrane fractions leads to the release of GPI-anchored proteins that were identified and characterized by capillary liquid chromatography and tandem mass spectrometry. In contrast to phospholipase C, the PLD enzyme is not affected by structural......-recognized as they are candidate cell surface biomarker molecules with potential diagnostic and therapeutic applications in molecular medicine. GPI-APs have also attracted interest in plant biotechnology because of their role in root development and cell remodeling. Using a shave-and-conquer concept, we demonstrate...

  16. Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133)

    Fischer, Liane; Wilde, Caroline; Schöneberg, Torsten; Liebscher, Ines

    2016-01-01

    Background: A large number of human inherited and acquired diseases and phenotypes are caused by mutations in G protein-coupled receptors (GPCR). Genome-wide association studies (GWAS) have shown that variations in the ADGRD1 (GPR133) locus are linked with differences in metabolism, human height and heart frequency. ADGRD1 is a Gs protein-coupled receptor belonging to the class of adhesion GPCRs. Results: Analysis of more than 1000 sequenced human genomes revealed approximately 9000 single nu...

  17. Allicin Induces Thiol Stress in Bacteria through S-Allylmercapto Modification of Protein Cysteines*

    Müller, Alexandra; Eller, Jakob; Albrecht, Frank; Prochnow, Pascal; Kuhlmann, Katja; Bandow, Julia Elisabeth; Slusarenko, Alan John

    2016-01-01

    Allicin (diallyl thiosulfinate) from garlic is a highly potent natural antimicrobial substance. It inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains. However, the precise mode of action of allicin is unknown. Here, we show that growth inhibition of Escherichia coli during allicin exposure coincides with a depletion of the glutathione pool and S-allylmercapto modification of proteins, resulting in overall decreased total sulfhydryl levels. This is accompanied by the induction of the oxidative and heat stress response. We identified and quantified the allicin-induced modification S-allylmercaptocysteine for a set of cytoplasmic proteins by using a combination of label-free mass spectrometry and differential isotope-coded affinity tag labeling of reduced and oxidized thiol residues. Activity of isocitrate lyase AceA, an S-allylmercapto-modified candidate protein, is largely inhibited by allicin treatment in vivo. Allicin-induced protein modifications trigger protein aggregation, which largely stabilizes RpoH and thereby induces the heat stress response. At sublethal concentrations, the heat stress response is crucial to overcome allicin stress. Our results indicate that the mode of action of allicin is a combination of a decrease of glutathione levels, unfolding stress, and inactivation of crucial metabolic enzymes through S-allylmercapto modification of cysteines. PMID:27008862

  18. The Effect of Gas-Discharge Plasma Radiation on Erythrocyte Protein Modification

    Trofimova S.V.

    2014-09-01

    Full Text Available The aim of the investigation was to estimate the effect of spark plasma radiation on oxidative protein modification in solutions and erythrocytes in experiments and in vitro. Materials and Methods. Pulse spark discharge generating low-temperature plasma radiation was formed using an experimental device PILIMIN series IR-10 (Russia. The characteristics of a discharge were the following: capacity of pulse capacitor — 3.3 nF, ballast resistance — 10 MΩ, power supply voltage — 11 kV, pulse recurrence frequency — 10 Hz. Tryptophan, albumin, hemoglobin solutions, and erythrocyte suspensions of intact animals and animals with experimental sarcoma were used as research subjects. 4 ml samples were treated in sterile Petri plates. Structural state of tryptophan, albumin and hemoglobin molecules was assessed by UV absorption spectra. Oxidative protein damage degree in solutions and cells was estimated by bityrosine and tryptophan fluorescence. Results. The increase of oxidative protein modification in solutions after spark discharge plasma radiation is due to the presence of complexes of tryptophan, albumin and hemoglobin molecules with nitro compounds, nitric radicals, hydroperoxyl radicals formed under discharge generation. Erythrocyte protein structures of animals with experimental sarcoma are characterized by more intense oxidative modification compared to erythrocytes of intact animals. Oxidative modification of erythrocyte proteins under plasma radiation to greater degree is due to the accumulation of bityrosine cross-links.

  19. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  20. Modification of tooth development by heat shock protein 60.

    Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262

  1. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model.

    Siu, Erica R; Wong, Elissa W P; Mruk, Dolores D; Sze, K L; Porto, Catarina S; Cheng, C Yan

    2009-07-01

    Several integral membrane proteins that constitute the blood-testis barrier (BTB) in mammalian testes, in particular rodents, are known to date. These include tight junction (TJ) proteins (e.g. occludin, junctional adhesion molecule-A, claudins), basal ectoplasmic specialization proteins (e.g. N-cadherin), and gap junction proteins (e.g. connexin43). However, the regulators (e.g. protein kinases and phosphatases) that affect these proteins, such as their interaction with the cytoskeletal actin, which in turn confer cell adhesion at the TJ, remain largely unknown. We report herein that focal adhesion kinase (FAK) is a putative interacting partner of occludin, but not claudin-11 or junctional adhesion molecule-A. Immunohistochemistry and fluorescence microscopy studies illustrated that the expression of FAK in the seminiferous epithelium of adult rat testes was stage specific. FAK colocalized with occludin at the BTB in virtually all stages of the seminiferous epithelial cycle but considerably diminished in stages VIII-IX, at the time of BTB restructuring to facilitate the transit of primary leptotene spermatocytes. Using Sertoli cells cultured in vitro with established TJ-permeability barrier and ultrastructures of TJ, basal ectoplasmic specialization and desmosome-like junction that mimicked the BTB in vivo, FAK was shown to colocalize with occludin and zonula occludens-1 (ZO-1) at the Sertoli-Sertoli cell interface. When these Sertoli cell cultures were treated with CdCl(2) to perturb the TJ-barrier function, occludin underwent endocytic-mediated internalization in parallel with FAK and ZO-1. Thus, these findings demonstrate that FAK is an integrated regulatory component of the occludin-ZO-1 protein complex, suggesting that functional studies can be performed to study the role of FAK in BTB dynamics. PMID:19213829

  2. Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling.

    de Lima, Camila Bento; Tamura, Eduardo K; Montero-Melendez, Trindad; Palermo-Neto, João; Perretti, Mauro; Markus, Regina P; Farsky, Sandra Helena Poliselli

    2012-01-13

    The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. PMID:22209795

  3. Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins

    Gaucher, S.P.; Redding, A.M.; Mukhopadhyay, A.; Keasling, J.D.; Singh, A.K.

    2008-03-01

    Recent developments in shotgun proteomics have enabled high-throughput studies of a variety of microorganisms at a proteome level and provide experimental validation for predicted open reading frames in the corresponding genome. More importantly, advances in mass spectrometric data analysis now allow mining of large proteomics data sets for the presence of post-translational modifications(PTMs). Although PTMs are a critical aspectof cellular activity, such information eludes cell-wide studies conducted at the transcript level. Here, we analyze several mass spectrometric data sets acquired using two-dimensional liquid chromatography tandem mass spectrometry, 2D-LC/MS/MS, for the sulfate reducing bacterium, Desulfovibrio vulgaris Hildenborough. Our searches of the raw spectra led us to discover several post-translationally modified peptides in D. vulgaris. Of these, several peptides containing a lysine with a +42 Da modification were found reproducibly across all data sets. Both acetylation and trimethylation have the same nominal +42 Da mass, and are therefore candidates for this modification. Several spectra were identified having markers for trimethylation, while one is consistent with an acetylation. Surprisingly, these modified peptides predominantly mapped to proteins involved in sulfate respiration. Other highly expressed proteins in D. vulgaris, such as enzymes involved in electron transport and other central metabolic processes, did not contain this modification. Decoy database searches were used to control for random spectrum/sequence matches. Additional validation for these modifications was provided by alternate workflows, for example, two-dimensional gel electrophoresis followed by mass spectrometry analysis of the dissimilatory sulfite reductase gamma-subunit(DsrC) protein. MS data for DsrC in this alternate workflow also contained the +42 Da modification at the same loci. Furthermore, the DsrC homologue in another sulfate reducing bacterium

  4. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model

    McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

    2004-07-01

    Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or

  5. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins

    Matlock, Matthew K.; Holehouse, Alex S.; Kristen M Naegle

    2014-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, incl...

  6. Constrained Selected Reaction Monitoring: Quantification of selected post-translational modifications and protein isoforms

    Liu, Xiaoqian; Jin, Zhicheng; O’Brien, Richard; Bathon, Joan; Dietz, Harry C.; Grote, Eric; Van Eyk, Jennifer E.

    2013-01-01

    Selected reaction monitoring (SRM) is a mass spectrometry method that can target signature peptides to provide for the detection and quantitation of specific proteins in complex biological samples. When quantifying a protein, peptides are generated using a specific protease such as trypsin, allowing the choice of signature peptides with robust signals. In contrast, signature peptide selection can be constrained when the goal is to monitor a specific post-translational modification (PTM) or pr...

  7. Impact of anesthesia and storage on posttranslational modifications of cardiac myofilament proteins

    Utter, Megan S.; Warren, Chad M.; Solaro, R. John

    2015-01-01

    Although high fidelity measurements of posttranslational modifications (PTMs) of cardiac myofilament proteins exist, important issues remain regarding basic techniques of sample acquisition and storage. We investigated the effects of anesthetic regimen and sample storage conditions on PTMs of major ventricular sarcomeric proteins. Mice were anesthetized with pentobarbital (Nembutal), ketamine/xylazine mixture (Ket/Xyl), or tribromoethanol (Avertin), and the ventricular tissue was prepared and...

  8. Aptamers as a Sensitive Tool to Detect Subtle Modifications in Therapeutic Proteins

    Zichel, Ran; Chearwae, Wanida; Pandey, Gouri Shankar; Golding, Basil; Sauna, Zuben E.

    2012-01-01

    Therapeutic proteins are derived from complex expression/production systems, which can result in minor conformational changes due to preferential codon usage in different organisms, post-translational modifications, etc. Subtle conformational differences are often undetectable by bioanalytical methods but can sometimes profoundly impact the safety, efficacy and stability of products. Numerous bioanalytical methods exist to characterize the primary structure of proteins, post translational mod...

  9. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Atsushi Kurotani; Tetsuya Sakurai

    2015-01-01

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reporte...

  10. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle.

    Peternelj, Tina Tinkara; Marsh, Susan A; Strobel, Natalie A; Matsumoto, Aya; Briskey, David; Dalbo, Vincent J; Tucker, Patrick S; Coombes, Jeff S

    2015-02-01

    Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P exercise. PMID:25416863

  11. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation.

    Wenjun Deng

    2015-12-01

    Full Text Available Post-transcriptional modifications of transfer RNAs (tRNAs have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5 and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2 modifications catalyzed by tRNA methyltransferase 9 (Trm9 in tRNAArg(UCU and tRNAGlu(UUC and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell.

  12. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  13. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  14. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Mikšovský, Jan; Voss, A.; Kozarova, R.; Kocourek, Tomáš; Písařík, Petr; Ceccone, G.; Kulisch, W.; Jelínek, Miroslav; Apostolova, M.D.; Reithmaier, J.P.; Popov, C.

    2014-01-01

    Roč. 297, APR (2014), s. 95-102. ISSN 0169-4332 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : ultrananocrystalline diamond films * diamond-like carbon films * surface modification * direct contact cell tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169433214001251

  15. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  16. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-02-01

    Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O2), nitrogen (N2) and sulfur hexafluoride (SF6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O2 plasma treatments produced new functional groups, sbnd Osbnd Csbnd O/Cdbnd O and Osbnd Cdbnd O while N2 plasma treatments produced additionally new functional groups, Csbnd N and Odbnd Csbnd NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher ink adhesion and wider color gamut after the O2 plasma treatment comparing with those after N2 plasma treatment.

  17. Applications of post-translational modifications of FoxO family proteins in biological functions

    Ying Zhao; Yachen Wang; Wei-Guo Zhu

    2011-01-01

    The functions of the FoxO family proteins, in particular their transcriptional activities, are modulated by post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, methylation and glycosylation. These PTMs occur in response to different cellular stresses, which in turn regulate the subcellular localization of FoxO family proteins, as well as their half-life, DNA binding, transcriptional activity and ability to interact with other cellular proteins. In this review, we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.%The functions of the FoxO family proteins,in particular their transcriptional activities,are modulated by post-translational modifications (PTMs),including phosphorylation,acetylation,ubiquitination,methylation and glycosylation.These PTMs occur in response to different cellular stresses,which in turn regulate the subceilular localization of FoxO family proteins,as well as their half-life,DNA binding,transcriptional activity and ability to interact with other cellular proteins.In this review,we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.

  18. Circulating renalase, catecholamines, and vascular adhesion protein 1 in hypertensive patients.

    Maciorkowska, Dominika; Zbroch, Edyta; Malyszko, Jolanta

    2015-11-01

    The aim of the study was to estimate and correlate circulating levels of renalase, vascular adhesion protein-1 (VAP-1), catecholamines in patients with primary hypertension. The renalase, VAP-1, and catecholamines concentration was estimated in 121 hypertensive patients. The correlation between renalase, VAP-1 levels and catecholamine concentration in blood, blood pressure control, pharmacological therapy, and medical history were taken in to consideration. The median office blood pressure was 145.5/86 mm Hg and was significantly higher than the median home blood pressure measurement value, which was 135/80 mm Hg, P hypertension comparing to healthy individuals (3.83 μg/mL and 248.37 ng/mL, P blood was observed (r = 0.549; P Hypertensive patients with diabetes mellitus had almost statistically significant higher VAP-1 concentration compared with hypertensive patients without diabetes mellitus (Me = 403.22 ng/mL vs. Me = 326,68 ng/mL, P = .064). In multiple regression analysis, renalase was predicted by plasma dopamine and norepinephrine as also diastolic office blood pressure and left ventricle ejection fraction. Circulating renalase and VAP-1 levels are elevated in patients with poor blood pressure control. Its correlation with noradrenalin concentration need further studies to find out the role of renalase as also VAP-1 in pathogenesis and treatment of hypertension. PMID:26403854

  19. Plasmodium vivax thrombospondin related adhesion protein: immunogenicity and protective efficacy in rodents and Aotus monkeys

    Angélica Castellanos

    2007-06-01

    Full Text Available The thrombospondin related adhesion protein (TRAP is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.

  20. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption.

    Kang, Chan-Koo; Lee, Yoon-Sik

    2007-07-01

    Protein adsorption on a biomaterial surface is of great importance as it usually induces unfavorable biological cascades, with the result that much surface modification research has had to be performed in an effort to prevent this. In this study, we developed surface modification methods for stainless steel, which is a representative metal for biomedical device. The stainless steels were first smoothened to different extents by electropolishing, in order to obtain a rough or smooth surface. On these two kinds of substrates, we introduced epoxide groups to the metal surface by silanization with 3-glycidoxypropyltrimethoxysilane (GPTS). Then, various polymers such as poly(ethylene glycol) (PEG), poly(tetrahydrofuran glycol) (PTG), poly(propylene glycol) (PPG) and poly(dimethylsiloxane) (PDMS) were grafted on the silanized stainless steels. Each surface modification step was confirmed by various analytical methods. Contact angle measurement revealed that the surface hydrophilicity was controllable by polymer grafting. Root-mean-square (RMS) data of atomic force microscopy showed that surface roughness was dramatically changed by electropolishing. Based on these results, the correlation between surface properties and protein adsorption was investigated. In the protein adsorption study, we observed that all of the polymer-grafted stainless steels exhibited lower protein adsorption, when compared with bare stainless steel. Moreover, a hydrophilic and smooth surface was found to be the best of choice for decreasing the protein adsorption. PMID:17277988

  1. Impact of Enzymatic and Microbial Bioprocessing on Protein Modification and Nutritional Properties of Wheat Bran.

    Arte, Elisa; Rizzello, Carlo G; Verni, Michela; Nordlund, Emilia; Katina, Kati; Coda, Rossana

    2015-10-01

    Besides providing dietary fiber, wheat bran is a recognized source of protein and is considered a very valuable substitute for other protein-rich sources in the food and feed industry. Nonetheless, several factors affect protein bioavailability, including bran's layered structure. This study showed the influence on the release and protein modification of wheat bran of different bioprocessing methods involving the activation of endogenous enzymes of bran, the addition of an enzyme mixture having carbohydrase activity, and microbial fermentation. Bioprocessing in acidic conditions significantly enhanced the solubilization of protein from wheat bran, reaching the highest value in the treatment where the sole endogenous protease activity was activated. Bioprocessing through controlled fermentation allowed a more intense proteolysis and strongly impacted the in vitro digestibility of proteins. The combined use of starter cultures and cell-wall-degrading enzymes was characterized by the highest increase of phytase activity and total phenols. PMID:26365885

  2. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications

    Halim, Adnan; Carlsson, Michael C; Mathiesen, Caroline Benedicte K;

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post......-translational modifications (PTMs) is still limited. Here, we present a detailed PTM(1) characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM...

  3. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson-Kendall-Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region 'collapsed' into a smooth SiOx layer (final surface roughness <2 nm). PDMS containing heterogeneously distributed, aggregated filler particles (Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the 'collapse' of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ∼140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments

  4. EXPERIMENTAL STUDY ON THE MODIFICATIONS PRODUCED AT THE INTERFACE BETWEEN THE PERIODONTAL ADHESIVE SPLINTS AND THE DENTAL SURFACE

    Bogdan VÂSCU

    2016-03-01

    Full Text Available As the market offer for bioadhesive materials is constantly increasing, while the dental surfaces on which they are applied show specific features, different from those commonly resulting from the preparation of carious processes, knowledge on their behavioral characteristics is absolutely necessary for their utilization under optimum conditions, through methods assuming prolongued clinical performances, assured by dimensional and colouristic stability and by a reduced cure contraction, for diminishing as much as possible the space of marginal percolation and fracture of the free enamel-free margins, as well as for delamination of immobilization from the afferent dental structure. Selection of the type of material for periodonthic teeth immobilization and of the technique to be applied is decided on the basis of a systematic, clinical and radiological analysis meant at establishing: the number of affected teeth, the type of occlusion and the possible parafunctions, oral hygiene, the aesthetic requirements of the patient, his/her age and motivation for a periodical monitorization. Numerous modern materials employed in the immobilization of periodonthic teeth are closely related not only to their physical properties and long-term stability, but also to the oral environment in which they are functioning. Modern adhesive materials are well-suited for dental recovery of the remaining healthy structures, due to their capacity of chemically and micromechanically adhering onto them.

  5. Improved protein sequence coverage by on resin deglycosylation and cysteine modification for biomarker discovery.

    Kamada, Haruhiko; Fugmann, Tim; Neri, Dario; Roesli, Christoph

    2009-02-01

    Membrane proteins and secreted factors (soluble proteins or extracellular matrix components) are the targets of most monoclonal antibodies, which are currently in clinical development. These proteins are frequently post-translationally modified, e.g. by the formation of disulfide bonds or by glycosylation, which complicates their identification using proteomics technologies. Here, we describe a novel methodology for the on resin deglycosylation and cysteine modification of proteins after in vitro, in vivo or ex vivo biotinylation. Biotinylated proteins are captured on streptavidin resin and all subsequent modifications, as well as the proteolytic digestion, which yields peptides for MS analysis, are performed on resin. Using biotinylated bovine fetuin-A as a test protein, an improvement in sequence coverage from 7.9 to 58.7% could be shown, including the identification of all three glycosylation sites. Furthermore, a complex mixture derived from the ex vivo biotinylation of vascular structures in human kidney with cancer obtained by perfusion after surgical resection revealed almost a doubling of sequence coverage for all checked proteins when analyzed by LC-MALDI TOF/TOF. PMID:19137555

  6. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

    Alcaide, M.; Papaioannou, S.; Taylor, Andrew; Fekete, Ladislav; Gurevich, L.; Zachar, V.; Pennisi, C.P.

    2016-01-01

    Roč. 27, č. 5 (2016), s. 90. ISSN 0957-4530 Grant ostatní: FUNBIO(XE) CZ.2.16/3.1.00/21568; FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : protein adsorption * fibroblasts adhesion * nanocrystalline diamond * boron doping * topography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.587, year: 2014

  7. The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar

    Goode, K. R.; Bowen, J.; Akhtar, N; Robbins, P. T.; Fryer, P. J.

    2013-01-01

    The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements ...

  8. Role of Streptococcus gordonii Amylase-Binding Protein A in Adhesion to Hydroxyapatite, Starch Metabolism, and Biofilm Formation

    Rogers, Jeffrey D.; Palmer, Robert J.; Kolenbrander, Paul E; Scannapieco, Frank A.

    2001-01-01

    Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. α-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (Ab...

  9. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    Giugliano Loreny; Lima Renato de; Willer Emerson

    2004-01-01

    Abstract Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the eff...

  10. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  11. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis

    Roepstorff, P; Larsen, Martin Røssel

    2001-01-01

    more than 425.000 protein sequences. However, the cellular functions are determined by the set of proteins expressed in the cell--the proteome. Two-dimensional gel electrophoresis, mass spectrometry and bioinformatics have become important tools in correlating the proteome with the genome. The current...... dominant strategies for identification of proteins from gels based on peptide mass spectrometric fingerprinting and partial sequencing by mass spectrometry are described. After identification of the proteins the next challenge in proteome analysis is characterization of their post-translational...... modifications. The general problems associated with characterization of these directly from gel separated proteins are described and the current state of art for the determination of phosphorylation, glycosylation and proteolytic processing is illustrated....

  12. Adhesion and degranulation promoting adapter protein (ADAP is a central hub for phosphotyrosine-mediated interactions in T cells.

    Marc Sylvester

    Full Text Available TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486-783. Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC we identified SLP-76, PLCgamma, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.

  13. Effects of ovarian cancer G protein coupled receptor 1 on the proliferation, migration, and adhesion of human ovarian cancer cells

    REN Juan; ZHANG Long

    2011-01-01

    Background OGR1 was found as a G-protein coupled receptor (GPCR) and proton sensor. Our previous studies have found that OGR1 has inhibitory effect on the metastasis of prostate cancer. In order to investigate the roles of OGR1 gene in the biological activities of ovarian cancer, we studied the OGR1 effects on ovarian cancer cells, HEY cells.Methods OGR1 gene was transfected into HEY cell, in which endogenous expression is low. OGR1-overxepressed cells and vector-transfected cells were compared in different assays. Western blotting was employed to confirm the high expression level of OGR1. Cell proliferation was determined by MTT assay and cell doubling time assay. Cell migration assay (transwell assay) and cell adhesion assay were performed to determine the migration and adhesion potential of cells. Student's t test was employed for statistical analysis.Results Proliferation of OGR1-overexpressed cells was significantly reduced (P <0.01); cell migration was significantly inhibited in the OGR1-transfected cells (P <0.01); cell adhesion to extracellular matrix including fibronectin, vitronectin,collagen Ⅰ/Ⅳ was significantly increased (P <0.01).Conclusions OGR1 expression in human ovarian cancer cells significantly inhibited the cell proliferation and migration,but significantly enhanced cell adhesion to the extracellular matrix. It indicated that OGR1 may be a tumor suppressor gene for ovarian cancer.

  14. Emulsifying and Foaming Properties of Soy Protein Isolates with Covalent Modification by (--Epigallocatechin-3-Gallate

    M. Zheng

    2014-02-01

    Full Text Available Soy Protein Isolates (SPI with covalent modification by (--Epigallocatechin-3-Gallate (EGCG were prepared under the alkaline condition. The effects of covalent modification on the emulsifying and foaming properties of SPI were evaluated. The Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE profiles of the modified SPI revealed that EGCG treatment caused cross-linking of subunits. Emulsifying activity of modified SPI significantly increased when compared with that of control (p<0.05 at the concentration of 35 mg/mL. Modification of SPI by EGCG caused a decrease in the foam volume initially. In the range of 15 to 35 mg/mL, the foaming activities of modified SPI were found to be less than those of the control (p<0.05. The foaming stabilities of modified SPI were significantly higher when compared to those of control (p<0.05. The results obtained in this study indicated the modification by EGCG resulted in the enhancement of emulsifying activity and foaming stability of SPI. This modification may serve as a promising approach for improving functional properties of SPI.

  15. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells

    Grebeňová, D.; Roeselová, M.; Pluskalová, M.; Halada, Petr; Roesel, D.; Suttnar, J.; Brodská, B.; Otevřelová, P.; Kuželová, K.

    2012-01-01

    Roč. 77, DEC 2012 (2012), s. 406-422. ISSN 1874-3919 Institutional support: RVO:61388971 Keywords : SAHA * Adhesion * Cofilin Subject RIV: EE - Microbiology, Virology Impact factor: 4.088, year: 2012

  16. Protein kinase C, focal adhesions and the regulation of cell migration

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and...

  17. Prediction of protein post-translational modifications: main trends and methods

    The review summarizes main trends in the development of methods for the prediction of protein post-translational modifications (PTMs) by considering the three most common types of PTMs — phosphorylation, acetylation and glycosylation. Considerable attention is given to general characteristics of regulatory interactions associated with PTMs. Different approaches to the prediction of PTMs are analyzed. Most of the methods are based only on the analysis of the neighbouring environment of modification sites. The related software is characterized by relatively low accuracy of PTM predictions, which may be due both to the incompleteness of training data and the features of PTM regulation. Advantages and limitations of the phylogenetic approach are considered. The prediction of PTMs using data on regulatory interactions, including the modular organization of interacting proteins, is a promising field, provided that a more carefully selected training data will be used. The bibliography includes 145 references

  18. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  19. Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins.

    Bin Xia

    Full Text Available We have previously shown that a subset of mDpy-30, an accessory subunit of the nuclear histone H3 lysine 4 methyltransferase (H3K4MT complex, also localizes at the trans-Golgi network (TGN, where its recruitment is mediated by the TGN-localized ARF guanine nucleotide exchange factor (ArfGEF BIG1. Depletion of mDpy-30 inhibits the endosome-to-TGN transport of internalized CIMPR receptors and concurrently promotes their accumulation at the cell protrusion. These observations suggest mDpy-30 may play a novel role at the crossroads of endosomal trafficking, nuclear transcription and adhesion/migration. Here we provide novel mechanistic and functional insight into this association. First, we demonstrate a direct interaction between mDpy-30 and BIG1 and locate the binding region in the N-terminus of BIG1. Second, we provide evidence that the depletion or overexpression of mDpy-30 enhances or inhibits cellular adhesion/migration of glioma cells in vitro, respectively. A similar increase in cell adhesion/migration is observed in cells with reduced levels of BIG1 or other H3K4MT subunits. Third, knockdown of mDpy-30, BIG1, or the RbBP5 H3K4MT subunit increases the targeting of beta1 integrin to cell protrusions, and suppression of H3K4MT activity by depleting mDpy-30 or RbBP5 leads to increased protein and mRNA levels of beta1 integrin. Moreover, stimulation of cell adhesion/migration via mDpy-30 knockdown is abolished after treating cells with a function-blocking antibody to beta1 integrin. Taken together, these data indicate that mDpy-30 and its interacting proteins function as a novel class of cellular adhesion/migration modulators partially by affecting the subcellular distribution of endosomal compartments as well as the expression of key adhesion/migration proteins such as beta1 integrin.

  20. Dissection of the DNA Mimicry of the Bacteriophage T7 Ocr Protein using Chemical Modification

    Stephanou, Augoustinos S.; Roberts, Gareth A.; Cooper, Laurie P.; Clarke, David J.; Thomson, Andrew R.; Mackay, C. Logan; Nutley, Margaret; Cooper, Alan; Dryden, David T. F.

    2009-01-01

    The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modi...

  1. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells

    Noratel Elizabeth F

    2012-11-01

    Full Text Available Abstract Background AmpA is a secreted 24Kd protein that has pleiotropic effects on Dictyostelium development. Null mutants delay development at the mound stage with cells adhering too tightly to the substrate. Prestalk cells initially specify as prespore cells and are delayed in their migration to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is also necessary in a cell autonomous manner for anterior like cells (ALCs to migrate to the upper cup. The ALCs are only 10% of the developing cell population making it difficult to study the cell autonomous effect of AmpA on the migration of these cells. AmpA is also expressed in growing cells, but, while it contains a hydrophobic leader sequence that is cleaved, it is not secreted from growing cells. This makes growing cells an attractive system for studying the cell autonomous function of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration. Excess AmpA facilitates migration on soft, adhesive surfaces but hinders migration on less adhesive surfaces. AmpA also effects the level of actin polymerization. Knockout cells polymerize less actin while over expressing cells polymerize more actin than wild type. Overexpression of AmpA also causes an increase in endocytosis that is traced to repeated formation of multiple endocytic cups at the same site on the membrane. Immunofluorescence analysis shows that AmpA is found in the Golgi and colocalizes with calnexin and the slow endosomal recycling compartment marker, p25, in a perinuclear compartment. AmpA is found on the cell periphery and is endocytically recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell periphery where it is endocytosed and localizes to what has been defined as a slow endosomal recycling compartment. AmpA plays a role in actin polymerization and cell substrate adhesion. Additionally AmpA influences cell

  2. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro.

    Jensen, Hanne; Roos, Stefan; Jonsson, Hans; Rud, Ida; Grimmer, Stine; van Pijkeren, Jan-Peter; Britton, Robert A; Axelsson, Lars

    2014-04-01

    Lactobacillus reuteri, a symbiotic inhabitant of the gastrointestinal tract in humans and animals, is marketed as a probiotic. The ability to adhere to intestinal epithelial cells and mucus is an interesting property with regard to probiotic features such as colonization of the gastrointestinal tract and interaction with the host. Here, we present a study performed to elucidate the role of sortase (SrtA), four putative sortase-dependent proteins (SDPs), and one C-terminal membrane-anchored cell surface protein of Lactobacillus reuteri ATCC PTA 6475 in adhesion to Caco-2 cells and mucus in vitro. This included mutagenesis of the genes encoding these proteins and complementation of mutants. A null mutation in hmpref0536_10255 encoding srtA resulted in significantly reduced adhesion to Caco-2 cells and mucus, indicating involvement of SDPs in adhesion. Evaluation of the bacterial adhesion revealed that of the five putative surface protein mutants tested, only a null mutation in the hmpref0536_10633 gene, encoding a putative SDP with an LPxTG motif, resulted in a significant loss of adhesion to both Caco-2 cells and mucus. Complementation with the functional gene on a plasmid restored adhesion to Caco-2 cells. However, complete restoration of adhesion to mucus was not achieved. Overexpression of hmpref0536_10633 in strain ATCC PTA 6475 resulted in an increased adhesion to Caco-2 cells and mucus compared with the WT strain. We conclude from these results that, among the putative surface proteins tested, the protein encoded by hmpref0536_10633 plays a critical role in binding of Lactobacillus reuteri ATCC PTA 6475 to Caco-2 cells and mucus. Based on this, we propose that this LPxTG motif containing protein should be referred to as cell and mucus binding protein A (CmbA). PMID:24473252

  3. Comprehensive Analysis of Maillard Protein Modifications in Human Lenses: Effect of Age and Cataract

    Smuda, Mareen; Henning, Christian; Raghavan, Cibin T.; Johar, Kaid; Vasavada, Abhay R.; Nagaraj, Ram H.; Glomb, Marcus A.

    2015-01-01

    In human lens proteins, advanced glycation endproducts (AGEs) originate from the reaction of glycating agents, e.g., vitamin C and glucose. AGEs have been considered to play a significant role in lens aging and cataract formation. Although several AGEs have been detected in the human lens, the contribution of individual glycating agents to their formation remains unclear. A highly sensitive liquid chromatography–tandem mass spectrometry multimethod was developed that allowed us to quantitate 21 protein modifications in normal and cataractous lenses, respectively. N6-Carboxymethyl lysine, N6-carboxyethyl lysine, N7-carboxyethyl arginine, methylglyoxal hydroimidazolone 1, and N6-lactoyl lysine were found to be the major Maillard protein modifications among these AGEs. The novel vitamin C specific amide AGEs, N6-xylonyl and N6-lyxonyl lysine, but also AGEs from glyoxal were detected, albeit in minor quantities. Among the 21 modifications, AGEs from the Amadori product (derived from the reaction of glucose and lysine) and methylglyoxal were dominant. PMID:25849437

  4. Modification effects of physical activity and protein intake on heritability of body size and composition

    Silventoinen, Karri; Hasselbalch, Ann Louise; Lallukka, Tea;

    2009-01-01

    Mx statistical package (Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA). RESULTS: High physical activity was associated with lower mean values, and a high proportion of protein in the diet was associated with higher mean BMI, waist...... circumference, and percentage body fat and a reduction in genetic and environmental variances. Genetic modification by physical activity was statistically significant for BMI (-0.18; 95% CI: -0.31, -0.05) and waist circumference (-0.14; 95% CI: -0.22, -0.05) in the merged data. A high proportion of protein in...

  5. Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells

    Although the effects of progesterone on cell cycle progression are well known, its role in spreading and adhesion of breast cancer cells has not attracted much attention until recently. Indeed, by controlling cell adhesion proteins, progesterone may play a direct role in breast cancer invasion and metastasis. Progesterone has also been shown to modulate epidermal growth factor (EGF) effects in neoplasia, although EGF effects on progesterone pathways and targets are less well understood. In the present study we identify an effect of EGF on a progesterone target, namely desmoplakin. Initially flow cytometry was used to establish the growing conditions and demonstrate that the T47D breast cancer cell line was responding to progesterone and EGF in a classical manner. Differential display RT-PCR was employed to identify differentially expressed genes affected by progesterone and EGF. Western and Northern blotting were used to verify interactions between EGF and progesterone in three breast cancer cell lines: T47D, MCF-7, and ZR-75. We found the cell adhesion protein desmoplakin to be upregulated by progesterone – a process that was suppressed by EGF. This appears to be a general but not universal effect in breast cancer cell lines. Our findings suggest that progesterone and EGF may play opposing roles in metastasis. They also suggest that desmoplakin may be a useful biomarker for mechanistic studies designed to analyze the crosstalk between EGF and progesterone dependent events. Our work may help to bridge the fields of metastasis and differentiation, and the mechanisms of steroid action

  6. Modification of an apparatus for tumor-suppressor protein crystal growth in the International Space Station

    de Morais Mendonca Teles, Antonio

    Some human diseases as tumors are being studied continuously for the development of vaccines against them. And a way of doing that is by means of proteins research. There are some kinds of proteins, like the p53 and p73 proteins, which are tumor suppressors. There are other diseases such as A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases which are protein-related. The determination of how proteins geometrically order themselves, during its biological functions is very necessary to understand how a protein's structure affects its function, to design vaccines that intercede in tumor-protein activities and in other proteins related to those other diseases. The protein crystal growth in microgravity environment produces purer crystallization than on the ground, and it is a powerful tool to produce better vaccines. Several data have already been acquired using ground-based research and in spaceflight experiments aboard the Spacelab and Space Shuttle missions, and in the MIR and in the International Space Station (ISS). Here in this paper, I propose to be performed in the ISS Biological Research Facility (which is being developed), multiple crystal growth of proteins related to cancer (as tumors suppressors and oncoproteins), A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases, for the future obtaining of possible vaccines against them. I also propose a simple and practical equipment, a modification of the crystallization plates (which use a vapor diffusion technique) inside each cylinder of the Protein Crystallization Apparatus in Microgravity (PCAM), with multiple chambers with different sizes. Instead of using some chambers with the same size it is better to use several chambers with different sizes. Why is that? The answer is: the energy associated with the surface tension of the liquid in the chamber is directly related to the circle area of it. So, to minimize the total energy of the surface tension of a proteins liquid -making it more stable

  7. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    Kolkova, K; Novitskaya, V; Pedersen, N;

    2000-01-01

    ), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently......The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma...... transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor...

  8. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification

    Lindorff-Larsen, Kresten; Lerche, Mathilde H.; Poulsen, Flemming Martin;

    2001-01-01

    In plants a group of proteins termed nonspecific lipid transfer proteins are found. These proteins bind and catalyze transfer of lipids in vitro, but their in vivo function is unknown. They have been suggested to be involved in different aspects of plant physiology and cell biology, including the...... formation of cutin and involvement in stress and pathogen responses, but there is yet no direct demonstration of an in vivo function. We have found and characterized a novel post-translational modification of the barley nonspecific lipid transfer protein, LTP1. The protein-modification bond is of a new type...... found to be lipid-like in nature. The modification does not resemble any standard lipid post-translational modification but is similar to a compound with known antimicrobial activity....

  9. Protein Modifications and Lipid Composition Changes in Rat Lenses in Postnatal Development

    Knyazev D.I.

    2012-12-01

    Full Text Available The aim of the investigation is to study age dynamics of posttranslational protein modification level and the changes of rat lens membranes, and the consideration of possible mechanisms of membrane effect on the composition and intensity of protein modifications in lens. Materials and Methods. The experiments were carried out on Wistar rats of three age groups: 1, 12 and 24 months. Protein level, sulfhydryl (SH group concentration, and protein carbonyl derivatives level were measured spectrophotometrically. The content of tryptophan, bityrosine and advanced glycation end-products (AGEs were assessed by fluorescence intensity. Phospholipids and neutral lipids were fractionated by thin-layer chromatography. Densitometric analysis and quantitative processing of chromatograms were performed using NIH Image J software. Results. Protein content in lens homogenate was found to increase with age, indicating the accumulation of slightly soluble protein aggregates. There was uniform decrease of SH-group concentration and protein carbonyl derivatives in homogenate. On the other hand, there was observed the accumulation of AGEs, bityrosine and tryptophan in water-soluble fraction. The main age changes of lens membrane lipid composition were the increasing ratio of sphingomyelin and neutral lipids. The changes could be caused by the growth of the proportion of mature fibers forming the nucleus of lens compared to poorly- and medium-moderately fibers and cells of epithelium. The principal component of neutral lipids was cholesterol and cholesterol esters. Conclusion. Lens membrane enrichment by lipids characterized by relatively high “ordering” inhibits the formation of protein carbonyl derivatives, but at the same time, can disbalance intercellular communication resulting in proteolysis (and tryptophan exposure and AGEs accumulation.

  10. Supporting data for characterization of non-coding RNAs associated with the Neuronal growth regulator 1 (NEGR1) adhesion protein.

    Kaur, Prameet; Tan, Jun Rong; Karolina, Dwi Setyowati; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Peter Wong, Tsun-Hon; Jeyaseelan, Kandiah

    2016-06-01

    Long non-coding RNAs and microRNAs control gene expression to determine central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that plays an important role in neurite outgrowth during neuronal development and its precise expression is crucial for correct brain development. The data described here is related to the research article titled "A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of Neuronal growth regulator 1 (NEGR1) adhesion protein" [1]. This data article contains detailed bioinformatics analysis of genetic signatures at the Negr1 gene locus retrieved from the UCSC genome browser. This approach could be adopted to identify putative regulatory non-coding RNAs in other tissues and diseases. PMID:26977442