WorldWideScience

Sample records for adhesion kinase-mediated regulation

  1. Kinase-Mediated Regulation of P4-ATPases

    Frøsig, Merethe Mørch

    Abstract Kinase-Mediated Regulation of P4-ATPases Understanding kinase-mediated regulation and designing novel tools to study regulatory proteins of P4-ATPases P4-ATPases play a critical role in the biogenesis of transport vesicles in the secretory and endocytic pathways, and P4-ATPase activity...

  2. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts

    Douglas W. Hamilton

    2011-05-01

    Full Text Available Changes of titanium surface roughness and surface free energy may influence protein absorption that increases cell differentiation through activation of focal adhesion kinase related pathways. However, the influence of titanium surface roughness and hydrophilicity on fibroblast behavior is not well understood. The aim of this study was to investigate the influence of topography and hydrophilicity on fibroblast attachment, spreading, morphology, intracellular signaling, proliferation, and collagen I mRNA levels. Using a cellular FAK knockout (FAK−/− model and wild-type (WT controls, we also investigated the contribution of adhesion in fibroblasts cultured on smooth (PT, sand-blasted, large grit, acid-etched (SLA and hydrophilic SLA topographies. Loss of FAK did not significantly affect fibroblast attachment to any surface, but SLA and hydrophilic SLA surface attenuated spreading of WT cells significantly more than FAK−/− fibroblasts. Both FAK−/− and WT cells formed numerous focal adhesions on PT surfaces, but significantly less on SLA and hydrophilic SLA surfaces. In WT cells, phosphorylation levels of FAK were lower on SLA and hydrophilic SLA in comparison with PT 24 h post seeding. Labeling of cells with antibodies to cortactin showed that FAK−/−cells contained significantly more cortactin-rich focal adhesion in comparison with WT cells on PT surfaces, but not on SLA or hydrophilic SLA. ERK 1/2 phosphorylation was highest in WT cells on all surfaces which correlated with collagen I expression levels. We conclude that fibroblasts are sensitive to changes in surface roughness and hydrophilicity, with adhesive interactions mediated through FAK, an important modulator of fibroblast response.

  3. A PI3-kinase-mediated negative feedback regulates neuronal excitability.

    Eric Howlett

    2008-11-01

    Full Text Available Use-dependent downregulation of neuronal activity (negative feedback can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.

  4. Up-regulation of bradykinin receptors in rat bronchi via I kappa B kinase-mediated inflammatory signaling pathway

    Lei, Ying; Zhang, Yaping; Cao, Yongxiao; Edvinsson, Lars; Xu, Cang-Bao

    IkappaB kinase (IKK)-mediated intracellular signaling mechanisms may be involved in airway hyperresponsiveness through up-regulation of bradykinin receptors. This study was designed to examine if organ culture of rat bronchial segments induces airway hyperresponsiveness to bradykinin and if inhib...

  5. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  6. Glycogen synthase kinase 3β sustains invasion of glioblastoma via the focal adhesion kinase, Rac1, and c-Jun N-terminal kinase-mediated pathway.

    Chikano, Yuri; Domoto, Takahiro; Furuta, Takuya; Sabit, Hemragul; Kitano-Tamura, Ayako; Pyko, Ilya V; Takino, Takahisa; Sai, Yoshimichi; Hayashi, Yutaka; Sato, Hiroshi; Miyamoto, Ken-ichi; Nakada, Mitsutoshi; Minamoto, Toshinari

    2015-02-01

    The failure of current treatment options for glioblastoma stems from their inability to control tumor cell proliferation and invasion. Biologically targeted therapies offer great hope and one promising target is glycogen synthase kinase-3β (GSK3β), implicated in various diseases, including cancer. We previously reported that inhibition of GSK3β compromises the survival and proliferation of glioblastoma cells, induces their apoptosis, and sensitizes them to temozolomide and radiation. Here, we explore whether GSK3β also contributes to the highly invasive nature of glioblastoma. The effects of GSK3β inhibition on migration and invasion of glioblastoma cells were examined by wound-healing and Transwell assays, as well as in a mouse model of glioblastoma. We also investigated changes in cellular microarchitectures, cytoskeletal components, and proteins responsible for cell motility and invasion. Inhibition of GSK3β attenuated the migration and invasion of glioblastoma cells in vitro and that of tumor cells in a mouse model of glioblastoma. These effects were associated with suppression of the molecular axis involving focal adhesion kinase, guanine nucleotide exchange factors/Rac1 and c-Jun N-terminal kinase. Changes in cellular phenotypes responsible for cell motility and invasion were also observed, including decreased formation of lamellipodia and invadopodium-like microstructures and alterations in the subcellular localization, and activity of Rac1 and F-actin. These changes coincided with decreased expression of matrix metalloproteinases. Our results confirm the potential of GSK3β as an attractive therapeutic target against glioblastoma invasion, thus highlighting a second role in this tumor type in addition to its involvement in chemo- and radioresistance. PMID:25504636

  7. Interferon-β-induced activation of c-Jun NH2-terminal kinase mediates apoptosis through up-regulation of CD95 in CH31 B lymphoma cells

    Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-β induced apoptosis and the loss of mitochondrial membrane potential (ΔΨm) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-β-induced loss of ΔΨm, suggesting that the interaction of IFN-β-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-β induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-β-induced apoptosis and loss of ΔΨm were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-β-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-β but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-β-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein

  8. Human p38δ MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  9. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish.

    Klausen, Christian; Booth, Morgan; Habibi, Hamid R; Chang, John P

    2008-08-01

    The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish. PMID:18558406

  10. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment. PMID:26603095

  11. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; Van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions....

  12. Regulation of cell–cell adhesion by the cadherin–catenin complex

    Nelson, W. James

    2008-01-01

    Ca2+-dependent cell–cell adhesion is regulated by the cadherin family of cell adhesion proteins. Cadherins form trans-interactions on opposing cell surfaces which result in weak cell–cell adhesion. Stronger cell–cell adhesion occurs by clustering of cadherins and through changes in the organization of the actin cytoskeleton. Although cadherins were thought to bind directly to the actin cytoskeleton through cytoplasmic proteins, termed α- and β-catenin, recent studies with purified proteins in...

  13. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  14. Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly

    Altemeier, William A.; Schlesinger, Saundra Y.; Buell, Catherine A.; Parks, William C.; Chen, Peter

    2012-01-01

    After injury, residual epithelial cells coordinate contextual clues from cell–cell and cell–matrix interactions to polarize and migrate over the wound bed. Protrusion formation, cell body translocation and rear retraction is a repetitive process that allows the cell to move across the substratum. Fundamental to this process is the assembly and disassembly of focal adhesions that facilitate cell adhesion and protrusion formation. Here, we identified syndecan-1 as a regulator of focal adhesion ...

  15. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  16. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  17. PI3Kγ activation by CXCL12 regulates tumor cell adhesion and invasion

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3Kγ regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  18. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  19. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation.

    Tomas Garzon-Muvdi

    Full Text Available Glioblastoma (GB is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+-K(+-Cl(- cotransporter 1 (NKCC1 can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF, which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1 through the regulation of focal adhesion dynamics and cell contractility and (2 through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.

  20. Adhesion in the stem cell niche: biological roles and regulation

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhe...

  1. Cell adhesion in regulation of asymmetric stem cell division

    Yamashita, Yukiko M

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the...

  2. Quorum Sensing Regulation of Adhesion in Serratia Marcescens MG1 is surface dependent

    Labbate, M.; Zhu, H.; Thung, L.;

    2007-01-01

    Serratia marcescens is an opportunistic pathogen and a major cause of ocular infections. In previous studies of S. marcescens MG1, we showed that biofilm maturation and sloughing were regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). Because of the importance of adhesion in ...... and the outer membrane protein OmpX. We concluded that S. marcescens MG1 utilizes different regulatory systems and adhesins in attachment to biotic and abiotic surfaces and that QS is a main regulatory pathway in adhesion to an abiotic surface but not in adhesion to a biotic surface....

  3. Endogenous thrombospondin-1 and proteases in the regulation of lymphocyte adhesion and motility

    Forslöw, Anna

    2008-01-01

    The human immune system, which protects the body from invading pathogens, largely depends on the proper function of lymphocytes, which are highly motile and constantly recirculate the blood and lymph. Adhesive and motile capability is often amplified or uncontrolled during chronic inflammatory conditions such as autoimmune diseases. This thesis comprises four studies of T lymphocyte motility and adhesion aiming to elucidate the regulative role of endogenous secretion of enzy...

  4. c-Jun N-terminal kinase mediates constitutive human eosinophil apoptosis

    Hasala, Hannele; Zhang, Xianzhi; Saarelainen, Seppo; Moilanen, Eeva; Kankaanranta, Hannu

    2007-01-01

    c-Jun N-terminal kinase mediates constitutive human eosinophil apoptosis correspondence: Corresponding author. Tel.: +358335517318; fax: +358335518082. (Kankaanranta, Hannu) (Kankaanranta, Hannu) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere--> , Tampere--> - FINLAND (Hasala, Hannele) The Immunopharmacology Research Group--> , Medical School--...

  5. NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression

    The prognosis of most hepatocellular carcinoma (HCC) patients is poor due to the high metastatic rate of the disease. Understanding the molecular mechanisms underlying HCC metastasis is extremely urgent. The role of CD24 and NDRG2 (N-myc downstream-regulated gene 2), a candidate tumor suppressor gene, has not yet been explored in HCC. The mRNA and protein expression of CD24 and NDRG2 was analyzed in MHCC97H, Huh7 and L-02 cells. Changes in cell adhesion, migration and invasion were detected by up- or down-regulating NDRG2 by adenovirus or siRNA. The expression pattern of NDRG2 and CD24 in HCC tissues and the relationship between NDRG2 and HCC clinical features was analyzed by immunohistochemical and western blotting analysis. NDRG2 expression was negatively correlated with malignancy in HCC. NDRG2 exerted anti-tumor activity by regulating CD24, a molecule that mediates cell-cell interaction, tumor proliferation and adhesion. NDRG2 up-regulation decreased CD24 expression and cell adhesion, migration and invasion. By contrast, NDRG2 down-regulation enhanced CD24 expression and cell adhesion, migration and invasion. Immunohistochemical analysis of 50 human HCC clinical specimens showed a strong correlation between NDRG2 down-regulation and CD24 overexpression (P = 0.04). In addition, increased frequency of NDRG2 down-regulation was observed in patients with elevated AFP serum level (P = 0.006), late TNM stage (P = 0.009), poor differentiation grade (P = 0.002), tumor invasion (P = 0.004) and recurrence (P = 0.024). Our findings indicate that NDRG2 and CD24 regulate HCC adhesion, migration and invasion. The expression level of NDRG2 is closely related to the clinical features of HCC. Thus, NDRG2 plays an important physiological role in HCC metastasis

  6. NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression

    Tao Yurong

    2011-06-01

    Full Text Available Abstract Background The prognosis of most hepatocellular carcinoma (HCC patients is poor due to the high metastatic rate of the disease. Understanding the molecular mechanisms underlying HCC metastasis is extremely urgent. The role of CD24 and NDRG2 (N-myc downstream-regulated gene 2, a candidate tumor suppressor gene, has not yet been explored in HCC. Methods The mRNA and protein expression of CD24 and NDRG2 was analyzed in MHCC97H, Huh7 and L-02 cells. Changes in cell adhesion, migration and invasion were detected by up- or down-regulating NDRG2 by adenovirus or siRNA. The expression pattern of NDRG2 and CD24 in HCC tissues and the relationship between NDRG2 and HCC clinical features was analyzed by immunohistochemical and western blotting analysis. Results NDRG2 expression was negatively correlated with malignancy in HCC. NDRG2 exerted anti-tumor activity by regulating CD24, a molecule that mediates cell-cell interaction, tumor proliferation and adhesion. NDRG2 up-regulation decreased CD24 expression and cell adhesion, migration and invasion. By contrast, NDRG2 down-regulation enhanced CD24 expression and cell adhesion, migration and invasion. Immunohistochemical analysis of 50 human HCC clinical specimens showed a strong correlation between NDRG2 down-regulation and CD24 overexpression (P = 0.04. In addition, increased frequency of NDRG2 down-regulation was observed in patients with elevated AFP serum level (P = 0.006, late TNM stage (P = 0.009, poor differentiation grade (P = 0.002, tumor invasion (P = 0.004 and recurrence (P = 0.024. Conclusions Our findings indicate that NDRG2 and CD24 regulate HCC adhesion, migration and invasion. The expression level of NDRG2 is closely related to the clinical features of HCC. Thus, NDRG2 plays an important physiological role in HCC metastasis.

  7. REGULATION OF CONCEPTUS ADHESION BY ENDOMETRIAL CXC CHEMOKINES DURING THE IMPLANTATION PERIOD IN SHEEP

    To gain a better understanding of biochemical mechanisms of conceptus adhesion to the maternal endometrium in ruminant ungulates, the present study was performed to clarify roles of chemokines and extracellular matrix (ECM) components in the regulation of ovine blastocyst attachment to the endometri...

  8. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  9. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  10. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  11. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion

    Mondal, Subhanjan; Subramanian, Kulandayan K.; Sakai, Jiro; Bajrami, Besnik; Luo, Hongbo R.

    2012-01-01

    The second messenger phosphatidylinositol(3,4,5)P3 (PtdIns(3,4,5)P3) is formed by stimulation of various receptors, including G protein–coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P3 during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P3 compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P3 production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1−/− neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemo­taxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P3 production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P3 polarity to facilitate proper cell attachment and detachment during chemotaxis. PMID:22323291

  12. Pyk2 Controls Integrin-Dependent CTL Migration through Regulation of De-Adhesion.

    Cheung, Samuel M S; Ostergaard, Hanne L

    2016-09-01

    Protein tyrosine kinase 2 (Pyk2) is required for T cell adhesion to ICAM-1; however, the mechanism by which it regulates adhesion remains unexplored. Pyk2 function in murine CTL clones and activated ex vivo CD8(+) T cells was disrupted by pharmacological inhibition, knockdown of expression with small interfering RNA, or expression of the dominant-negative C-terminal domain. We found that Pyk2 is not absolutely required for adhesion of CTL to ICAM-1, but rather delays the initial adhesion. Disruption of Pyk2 function caused cells to display an unusual elongated appearance after 1 h on ICAM-1, consistent with abnormally strong adhesion. Furthermore, the random mobility of CTL on ICAM-1 was severely compromised using all three methods of disrupting Pyk2 function. Live-cell imaging studies revealed that the decreased migration is the result of a defect in the detachment from ICAM-1 at the trailing edge when Pyk2 function is inhibited. Examination of Pyk2 tyrosine phosphorylation in normal polarized cells demonstrated that Pyk2 phosphorylated at Y579 and Y580 preferentially localizes to the leading edge, whereas Y881-phosphorylated Pyk2 is enriched at the trailing edge, suggesting that the tyrosine phosphorylation of Pyk2 is spatially regulated in migrating CTL. Additionally, inhibition of Pyk2 caused cells to form multiple LFA-1-rich tails at the trailing edge, most likely resulting from a defect in LFA-1 release required for forward movement. Our results show that Pyk2 contributes to CTL migration by regulating detachment of CTL at the trailing edge, which could explain why Pyk2 is important for chemotactic and migratory responses. PMID:27456486

  13. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression.

    Cheung, Wing-Yee; Simmons, Craig A; You, Lidan

    2012-01-01

    Osteocyte apoptosis precedes osteoclast resorption, and may act as a critical signal to trigger bone remodeling. While osteoclast precursors are known to travel via the circulation, the specific mechanisms by which they accumulate at remodeling sites are unclear. We hypothesized that osteocyte apoptosis mediates osteoclast precursor adhesion to vascular endothelium by regulating osteocytic secretion of IL-6 and soluble IL-6 receptor (sIL-6R) to promote endothelial ICAM-1 expression. We found that conditioned media from TNF-α-induced apoptotic MLO-Y4 osteocytes promoted RAW264.7 osteoclast precursor adhesion onto D4T endothelial cells (P<0.05). Blocking osteocyte apoptosis with a pan-caspase inhibitor (ZVAD-FMK) reduced osteoclast precursor adhesion to baseline levels (P<0.001). Endothelial cells treated with apoptotic osteocyte conditioned media had elevated surface expression of ICAM-1 (P<0.05), and blocking ICAM-1 abolished apoptosis-induced osteoclast precursor adhesion. Apoptotic osteocyte conditioned media contained more IL-6 (P<0.05) and sIL-6R (P<0.05) than non-apoptotic osteocyte conditioned media. When added exogenously, both IL-6 and sIL-6R were required for endothelial activation, and blocking IL-6 reduced apoptosis-induced osteoclast precursor adhesion to baseline levels (P<0.05). Therefore, we conclude that osteocyte apoptosis can promote osteoclast precursor adhesion to endothelial cells via ICAM-1; this is likely through increased osteocytic IL-6 and sIL-6R secretion, both of which are indispensible to endothelial activation. PMID:21986000

  14. Caveolin-1 Up-regulation during Epithelial to Mesenchymal Transition Is Mediated by Focal Adhesion Kinase*

    Bailey, Kelly M.; Liu, Jun

    2008-01-01

    Emerging evidence has shown that caveolin-1 is up-regulated in a number of metastatic cancers and can influence various aspects of cell migration. However, in general, the role of caveolin-1 in cancer progression is poorly understood. In the present study, we examined alterations in caveolin-1 expression during epithelial-to-mesenchymal transition (EMT) and the ability of caveolin-1 to alter cancer cell adhesion, an aspect of cell motility. We employed two EMT cell models, the human embryonic...

  15. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly.

    Nader, Guilherme P F; Ezratty, Ellen J; Gundersen, Gregg G

    2016-05-01

    Integrin endocytic recycling is critical for cell migration, yet how recycled integrins assemble into new adhesions is unclear. By synchronizing endocytic disassembly of focal adhesions (FAs), we find that recycled integrins reassemble FAs coincident with their return to the cell surface and dependent on Rab5 and Rab11. Unexpectedly, endocytosed integrins remained in an active but unliganded state in endosomes. FAK and Src kinases co-localized with endocytosed integrin and were critical for FA reassembly by regulating integrin activation and recycling, respectively. FAK sustained the active integrin conformation by maintaining talin association with Rab11 endosomes in a type I phosphatidylinositol phosphate kinase (PIPKIγ)-dependent manner. In migrating cells, endocytosed integrins reassembled FAs polarized towards the leading edge, and this polarization required FAK. These studies identify unanticipated roles for FA proteins in maintaining endocytosed integrin in an active conformation. We propose that the conformational memory of endocytosed integrin enhances polarized reassembly of FAs to enable directional cell migration. PMID:27043085

  16. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  17. Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics.

    Saisai Wei

    Full Text Available Angiogenin (ANG acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.

  18. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  19. Focal adhesion kinase regulation in stem cell alignment and spreading on nanofibers.

    Andalib, Mohammad Nahid; Lee, Jeong Soon; Ha, Ligyeom; Dzenis, Yuris; Lim, Jung Yul

    2016-05-13

    While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced uniaxially aligned and randomly distributed nanofibers from poly(l-lactic acid) to have the same diameters (about 130 nm) and evaluated MSC behavior on these nanofibers comparing with that on flat PLLA control. C3H10T1/2 murine MSCs exhibited upregulations in FAK expression and phosphorylation (pY397) on nanofibrous cultures as assessed by immunoblotting, and this trend was even greater on aligned nanofibers. MSCs showed significantly elongated and well-spread morphologies on aligned and random nanofibers, respectively. In the presence of FAK silencing via small hairpin RNA (shRNA), cell elongation length in the aligned nanofiber direction (cell major axis length) was significantly decreased, while cells still showed preferred orientation along the aligned nanofibers. On random nanofibers, MSCs with FAK-shRNA showed impaired cell spreading resulting in smaller cell area and higher circularity. Our study provides new data on how MSCs shape their morphologies on aligned and random nanofibrous cultures potentially via FAK-mediated mechanism. PMID:27040763

  20. Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin

    An, Xiuli; Gauthier, Emilie; Zhang, Xihui; Guo, Xinhua; Anstee, David; Mohandas, Narla; Anne Chasis, Joel

    2008-03-18

    The Lutheran (Lu) and Lu(v13) blood group glycoproteins function as receptors for extracellular matrix laminins. Lu and Lu(v13) are linked to the erythrocyte cytoskeleton through a direct interaction with spectrin. However, neither the molecular basis of the interaction nor its functional consequences have previously been delineated. In the present study, we defined the binding motifs of Lu and Lu(v13) on spectrin and identified a functional role for this interaction. We found that the cytoplasmic domains of both Lu and Lu(v13) bound to repeat 4 of the spectrin chain. The interaction of full-length spectrin dimer to Lu and Lu(v13) was inhibited by repeat 4 of {alpha}-spectrin. Further, resealing of this repeat peptide into erythrocytes led to weakened Lu-cytoskeleton interaction as demonstrated by increased detergent extractability of Lu. Importantly, disruption of the Lu-spectrin linkage was accompanied by enhanced cell adhesion to laminin. We conclude that the interaction of the Lu cytoplasmic tail with the cytoskeleton regulates its adhesive receptor function.

  1. Non-viral gene delivery regulated by stiffness of cell adhesion substrates

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J.

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  2. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  3. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  4. Hepatocyte adhesion to carbohydrate-derivatized surfaces. II. Regulation of cytoskeletal organization and cell morphology

    1991-01-01

    Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37 degrees C and 4 degrees C, is not responsible for adhesio...

  5. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  6. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells.

    Nassif, X; Lowy, J; Stenberg, P; O'Gaora, P; Ganji, A; So, M

    1993-05-01

    Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low- and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence. PMID:8332064

  7. The emerin-binding transcription factor Lmo7 is regulated by association with p130Cas at focal adhesions

    Michele A. Wozniak

    2013-08-01

    Full Text Available Loss of function mutations in the nuclear inner membrane protein, emerin, cause X-linked Emery-Dreifuss muscular dystrophy (X-EDMD. X-EDMD is characterized by contractures of major tendons, skeletal muscle weakening and wasting, and cardiac conduction system defects. The transcription factor Lmo7 regulates muscle- and heart-relevant genes and is inhibited by binding to emerin, suggesting Lmo7 misregulation contributes to EDMD disease. Lmo7 associates with cell adhesions and shuttles between the plasma membrane and nucleus, but the regulation and biological consequences of this dual localization were unknown. We report endogenous Lmo7 also associates with focal adhesions in cells, and both co-localizes and co-immunoprecipitates with p130Cas, a key signaling component of focal adhesions. Lmo7 nuclear localization and transcriptional activity increased significantly in p130Cas-null MEFs, suggesting Lmo7 is negatively regulated by p130Cas-dependent association with focal adhesions. These results support EDMD models in which Lmo7 is a downstream mediator of integrin-dependent signaling that allows tendon cells and muscles to adapt to and withstand mechanical stress.

  8. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  9. Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM.

    Matthias Hachmeister

    Full Text Available Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is highly and frequently expressed in carcinomas and (cancer-stem cells, and which plays an important role in the regulation of stem cell pluripotency. We show here that murine EpCAM (mEpCAM is subject to regulated intramembrane proteolysis in various cells including embryonic stem cells and teratocarcinomas. As shown with ectopically expressed EpCAM variants, cleavages occur at α-, β-, γ-, and ε-sites to generate soluble ectodomains, soluble Aβ-like-, and intracellular fragments termed mEpEX, mEp-β, and mEpICD, respectively. Proteolytic sites in the extracellular part of mEpCAM were mapped using mass spectrometry and represent cleavages at the α- and β-sites by metalloproteases and the b-secretase BACE1, respectively. Resulting C-terminal fragments (CTF are further processed to soluble Aβ-like fragments mEp-β and cytoplasmic mEpICD variants by the g-secretase complex. Noteworthy, cytoplasmic mEpICD fragments were subject to efficient degradation in a proteasome-dependent manner. In addition the γ-secretase complex dependent cleavage of EpCAM CTF liberates different EpICDs with different stabilities towards proteasomal degradation. Generation of CTF and EpICD fragments and the degradation of hEpICD via the proteasome were similarly demonstrated for the human EpCAM ortholog. Additional EpCAM orthologs have been unequivocally identified in silico in 52 species. Sequence comparisons across species disclosed highest homology of BACE1 cleavage sites and in presenilin-dependent γ-cleavage sites, whereas strongest heterogeneity was observed in metalloprotease cleavage sites. In summary, EpCAM is a highly conserved protein present in fishes, amphibians, reptiles, birds, marsupials, and placental mammals, and is subject to shedding, γ-secretase-dependent regulated intramembrane proteolysis, and proteasome-mediated degradation.

  10. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading.

    Greg M Harris

    Full Text Available Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol hydrogels using Dip Pen Nanolithography (DPN, we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.

  11. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Bernadette Sosa-García

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  12. Supporting data for characterization of non-coding RNAs associated with the Neuronal growth regulator 1 (NEGR1) adhesion protein.

    Kaur, Prameet; Tan, Jun Rong; Karolina, Dwi Setyowati; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Peter Wong, Tsun-Hon; Jeyaseelan, Kandiah

    2016-06-01

    Long non-coding RNAs and microRNAs control gene expression to determine central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that plays an important role in neurite outgrowth during neuronal development and its precise expression is crucial for correct brain development. The data described here is related to the research article titled "A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of Neuronal growth regulator 1 (NEGR1) adhesion protein" [1]. This data article contains detailed bioinformatics analysis of genetic signatures at the Negr1 gene locus retrieved from the UCSC genome browser. This approach could be adopted to identify putative regulatory non-coding RNAs in other tissues and diseases. PMID:26977442

  13. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover

    Frank, Scott R.; Adelstein, Molly R; Hansen, Steen H.

    2006-01-01

    G protein-coupled receptor kinase interactors (GITs) regulate focal adhesion (FA) turnover, cell spreading, and motility through direct interaction with paxillin and the Rac-exchange factor Pak-interacting exchange factor β (βPIX). However, it is not clear whether GITs function to activate or repress motility or if the predominant GIT forms, GIT1 and GIT2, serve distinct or redundant roles. Here we demonstrate an obligatory role for endogenous GIT2 in repression of lamellipodial extension and...

  14. Drosophila Follicle Stem Cells are regulated by proliferation and niche adhesion as well as mitochondria and ROS

    Wang, Zhu A.; Huang, Jianhua; Kalderon, Daniel

    2012-01-01

    The mechanisms underlying adult stem cell behavior are likely to be diverse and have not yet been investigated systematically. Here we conducted an unbiased genetic screen using Drosophila ovarian follicle stem cells (FSCs) to probe essential functions regulating self-renewal of epithelial stem cells. Surprisingly, we find that niche adhesion emerge as the most commonly affected essential stem cell property, and that proliferation is critical for stem cell maintenance. We also find that PI3K ...

  15. Protein kinase C, focal adhesions and the regulation of cell migration

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and...

  16. Terminal regions of β-catenin are critical for regulating its adhesion and transcription functions.

    Dar, Mohd Saleem; Singh, Paramjeet; Singh, Gurjinder; Jamwal, Gayatri; Hussain, Syed Sajad; Rana, Aarti; Akhter, Yusuf; Monga, Satdarshan P; Dar, Mohd Jamal

    2016-09-01

    β-Catenin, the central molecule of canonical Wnt signaling pathway, has multiple binding partners and performs many roles in the cell. Apart from being a transcriptional activator, β-catenin acts as a crucial effector component of cadherin/catenin complex to physically interact with actin cytoskeleton along with α-catenin and E-cadherin for regulating cell-cell adhesion. Here, we have generated a library of β-catenin point and deletion mutants to delineate regions within β-catenin that are important for α-catenin-β-catenin interaction, nuclear localization, and transcriptional activity of β-catenin. We observed a unique mechanism for nuclear localization of β-catenin and its mutants and show that N-terminal exon-3 region and C-terminal domain of β-catenin are critical for this activity of β-catenin. Furthermore, we show HepG2 cells have high β-catenin mediated transcriptional activity due to the presence of an interstitial deletion at the N-terminal region of β-catenin. Due to this deletion mutant (hereupon called TM), GSK3β and HDAC inhibitors failed to show any impact whereas curcumin significantly inhibited β-catenin mediated transcriptional activity reiterating that TM is primarily responsible for the high transcriptional activity of HepG2 cells. Moreover, we show the recombinant TM does not physically interact with α-catenin, localizes predominantly in the nucleus, and has nearly two-fold higher transcriptional activity than the wildtype β-catenin. PMID:27368802

  17. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  18. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end ...

  19. Expression pattern and regulation of genes differ between fibroblasts of adhesion and normal human peritoneum

    Saed Ghassan M; Rout Ujjwal K; Diamond Michael P

    2005-01-01

    Abstract Background Injury to the peritoneum during surgery is followed by a healing process that frequently results in the attachment of adjacent organs by a fibrous mass, referred commonly as adhesions. Because injuries to the peritoneum during surgery are inevitable, it is imperative that we understand the mechanisms of adhesion formation to prevent its occurrence. This requires thorough understanding of the molecular sequence that results in the attachment of injured peritoneum and the de...

  20. Maspin Regulates Endothelial Cell Adhesion and Migration through an Integrin Signaling Pathway*

    Qin, Li; Zhang, Ming

    2010-01-01

    Maspin has been identified as a potent angiogenesis inhibitor. However, the molecular mechanism responsible for its anti-angiogenic property is unclear. In this study, we examined the effect of maspin on endothelial cell (EC) adhesion and migration in a cell culture system. We found that maspin was expressed in blood vessels ECs and human umbilical vein endothelial cells (HUVECs). Maspin significantly enhanced HUVEC cell adhesion to various matrix proteins. This effect was dependent on the ac...

  1. Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot.

    Tanaka-Matakatsu, M; Uemura, T; Oda, H; Takeichi, M; Hayashi, S

    1996-12-01

    Coordination of cell motility and adhesion is essential for concerted movement of tissues during animal morphogenesis. The Drosophila tracheal network is formed by branching, migration and fusion of tubular ectodermal epithelia. Tracheal tip cells, located at the end of each branch that is going to fuse, extend filopodia to search for targets and later change their cell shape to a seamless ring to allow passage of lumen. The cell adhesion molecule DE-cadherin accumulates at the site of contact to form a ring that marks the site of lumen entry and is essential for the fusion. DE-cadherin expression in tip cells of a subset of branches is dependent on escargot, a zinc finger gene expressed in all tip cells. Such escargot mutant tip cells failed to adhere to each other and continued to search for alternative targets by extending long filopodia. We present evidence indicating escargot positively regulates transcription of the DE-cadherin gene, shotgun. Overexpression of DE-cadherin rescued the defect in one of the fusion points in escargot mutants, demonstrating an essential role of DE-cadherin in target recognition and identifying escargot as a key regulator of cell adhesion and motility in tracheal morphogenesis. PMID:9012491

  2. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  3. Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae

    Klemm, P; Christiansen, Gunna

    1987-01-01

    Three novel fim genes of Escherichia coli, fimF, fimG and fimH, were characterized. These genes were not necessary for the production of fimbriae but were shown to be involved in the adhesive property and longitudinal regulation of these structures. Complementation experiments indicated that both...... the major fimbrial subunit gene, fimA, and the fimH gene in combination with either the fimF or the fimG gene were required for mannose-specific adhesion. The fimF, fimG and fimH gene products were likewise shown to play a major role in the fimbrial morphology as longitudinal modulators. The amount of...

  4. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and Filamin A

    Tu, Chia-Ling; Chang, Wenhan; Bikle, Daniel D.

    2011-01-01

    Extracellular Ca2+ (Ca2+o) acting through the calcium-sensing receptor (CaR) induces E-cadherin mediated cell-cell adhesion and cellular signals mediating cell differentiation in epidermal keratinocytes. Previous studies indicate that the CaR regulates cell-cell adhesion through the Fyn/Src tyrosine kinases. Here we investigate whether Rho GTPase is a part of the CaR-mediated signaling cascade regulating cell adhesion and differentiation. Suppressing endogenous Rho A expression by small inter...

  5. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1...

  6. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.

    Wangpu, Xiongzhi; Lu, Jiaoyang; Xi, Ruxing; Yue, Fei; Sahni, Sumit; Park, Kyung Chan; Menezes, Sharleen; Huang, Michael L H; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2016-05-01

    Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway. PMID:26895766

  7. How solid-liquid adhesive property regulates liquid slippage on solid surfaces?

    Xue, Yahui; Wu, Yang; Pei, Xiaowei; Duan, Huiling; Xue, Qunji; Zhou, Feng

    2015-01-13

    The influence of solid-liquid adhesive property on liquid slippage at solid surfaces has been investigated using experiment approach on well-defined model surfaces as well as theoretical analysis. Based on a classical molecular-kinetic description for molecular and hydrodynamic slip, we propose a simple theoretical model that directly relates the liquid slip length to the liquid adhesive force on solid surfaces, which yields an exponential decay function. Well-defined smooth surfaces with varied surface wettability/adhesion are fabricated by forming self-assembled monolayers on gold with different mole ratios of hydrophobic and hydrophilic thiols. The adhesive force of a water droplet and the molecular slippage on these surfaces are probed by surface force apparatus and quartz crystal microbalance measurements, respectively. The experiment results are well consistent with our theoretical prediction. Our finding benefits the understanding of the underlying mechanism of liquid slippage on solid surfaces at molecular level and the rational design of microfluidics with an aim to be frictionless or highly controllable. PMID:25511171

  8. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research. (papers)

  9. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    Horzum, Utku; Ozdil, Berrin; Pesen-Okvur, Devrim

    2014-04-01

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research.

  10. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  11. Tyrosine Phosphorylation of CD13 Regulates Inflammatory Cell-Cell Adhesion and Monocyte Trafficking

    Subramani, Jaganathan; Ghosh, Mallika; Rahman, M. Mamunur; Caromile, Leslie A.; Gerber, Claire; Rezaul, Karim; David K. Han; Shapiro, Linda H.

    2013-01-01

    CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells important for homing to and resolving the damaged tissue at sites of injury. We have previously shown that crosslinking of human monocytic CD13 with activating antibodies induces strong adhesion to endothelial cells in a tyrosine kinase- and microtubule-dependent manner. In the current study we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cro...

  12. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase

    McSherry, Elaine A

    2011-03-23

    Abstract Introduction The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. Methods MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. Results JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF-6

  13. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    McSherry, Elaine A

    2011-03-23

    ABSTRACT: INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF

  14. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    McSherry, Elaine A

    2012-02-01

    INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and beta1-integrin, we examined activation of the beta1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and beta1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the beta1-integrin substrate fibronectin. This was accompanied by reduced protein expression of beta1-integrin and its binding partners alphaV- and alpha5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and beta1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between

  15. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation

  16. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  17. Spatial distribution of cell–cell and cell–ECM adhesions regulates force balance while main­taining E-cadherin molecular tension in cell pairs

    Sim, Joo Yong; Moeller, Jens; Hart, Kevin C.; Ramallo, Diego; Vogel, Viola; Dunn, Alex R.; Nelson, W. James; Pruitt, Beth L.

    2015-01-01

    Mechanical linkage between cell–cell and cell–extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell–cell and cell–ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask...

  18. The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons.

    Lanoue, V; Usardi, A; Sigoillot, S M; Talleur, M; Iyer, K; Mariani, J; Isope, P; Vodjdani, G; Heintz, N; Selimi, F

    2013-08-01

    Adhesion-G protein-coupled receptors (GPCRs) are a poorly studied subgroup of the GPCRs, which have diverse biological roles and are major targets for therapeutic intervention. Among them, the Brain Angiogenesis Inhibitor (BAI) family has been linked to several psychiatric disorders, but despite their very high neuronal expression, the function of these receptors in the central nervous system has barely been analyzed. Our results, obtained using expression knockdown and overexpression experiments, reveal that the BAI3 receptor controls dendritic arborization growth and branching in cultured neurons. This role is confirmed in Purkinje cells in vivo using specific expression of a deficient BAI3 protein in transgenic mice, as well as lentivirus driven knockdown of BAI3 expression. Regulation of dendrite morphogenesis by BAI3 involves activation of the RhoGTPase Rac1 and the binding to a functional ELMO1, a critical Rac1 regulator. Thus, activation of the BAI3 signaling pathway could lead to direct reorganization of the actin cytoskeleton through RhoGTPase signaling in neurons. Given the direct link between RhoGTPase/actin signaling pathways, neuronal morphogenesis and psychiatric disorders, our mechanistic data show the importance of further studying the role of the BAI adhesion-GPCRs to understand the pathophysiology of such brain diseases. PMID:23628982

  19. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-05-22

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates. PMID:24836002

  20. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    Siham Yennek

    2014-05-01

    Full Text Available Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates.

  1. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye

    Fetting, Jennifer L.; Spencer, Susan A; Wolff, Tanya

    2009-01-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90° rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echi...

  2. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation. PMID:19429369

  3. Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Regulated on Activation Normal T Cell Expressed and Secreted Are Expressed by Human Breast Carcinoma Cells and Support Eosinophil Adhesion and Activation

    Ali, Shahina; Kaur, Jaswinder; Patel, Kamala D.

    2000-01-01

    Eosinophils are usually associated with parasitic and allergic diseases; however, eosinophilia is also observed in several types of human tumors, including breast carcinomas. In this study we examined several human breast carcinoma cell lines for adhesion molecule expression and the ability to bind and activate eosinophils. MDA-MB-435S and MDA-MB-468 cells constitutively expressed both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and this expressio...

  4. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2003-02-18

    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  5. Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen.

    Machacek, Christian; Supper, Verena; Leksa, Vladimir; Mitulovic, Goran; Spittler, Andreas; Drbal, Karel; Suchanek, Miloslav; Ohradanova-Repic, Anna; Stockinger, Hannes

    2016-09-15

    Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) β, a GPI-anchored protein belonging to the folate receptor family. As FRβ shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRβ, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRβ in the plasma membrane of human FRβ(+) macrophages and FRβ-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRβ: that is, we report functional interactions of FRβ with receptors mediating cellular adhesion, in particular the CD11b/CD18 β2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRβ(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRβ(-) counterparts. We further show that FRβ is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRβ as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen. PMID:27534550

  6. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase

    Lun Suo; Huinan Lu; Guoxin Ying; Mario R. Capecchi; Qiang Wu

    2012-01-01

    Dendritic patterning and spine morphogenesis are crucial for the assembly of neuronal circuitry to ensure normal brain development and synaptic connectivity as well as for understanding underlying mechanisms of neuropsychiatric diseases and cognitive impairments.The Rho GTPase family is essential for neuronal morphogenesis and synaptic plasticity by modulating and reorganizing the cytoskeleton.Here,we report that protocadherin (Pcdh) clusters and cell adhesion kinases (CAKs) play important roles in dendritic development and spine elaboration.The knockout of the entire Pcdhα cluster results in the dendritic simplification and spine loss in CA1 pyramidal neurons in vivo and in cultured primary hippocampal neurons in vitro.The knockdown of the whole Pcdhγ cluster or in combination with the Pcdhα knockout results in similar dendritic and spine defects in vitro.The overexpression of proline-rich tyrosine kinase 2 (Pyk2,also known as CAKβ,RAFTK,FAK2,and CADTK) recapitulates these defects and its knockdown rescues the phenotype.Moreover,the genetic deletion of the Pcdhα cluster results in phosphorylation and activation of Pyk2 and focal adhesion kinase (Fak) and the inhibition of Rho GTPases in vivo.Finally,the overexpression of PyK2 leads to inactivation of Rac1 and,conversely,the constitutive active Rac1 rescues the dendritic and spine morphogenesis defects caused by the knockout of the Pcdhα cluster and the knockdown of the Pcdhγ cluster.Thus,the involvement of the Pcdh-CAK-Rho GTPase pathway in the dendritic development and spine morphogenesis has interesting implications for proper assembly of neuronal connections in the brain.

  7. CXC chemokine ligand 12/Stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1

    Tung Shui-Yi; Chang Shun-Fu; Chou Ming-Hui; Huang Wen-Shih; Hsieh Yung-Yu; Shen Chien-Heng; Kuo Hsing-Chun; Chen Cheng-Nan

    2012-01-01

    Abstract Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion m...

  8. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  9. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart; Mellody, Kieran; Freeman, Lyle; Younger, Kerri; Shuttleworth, C Adrian; Humphries, Martin J; Couchman, John R; Kielty, Cay M

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated a...

  10. Prevalence of Adhesion and Regulation of Biofilm-Related Genes in Different Clones of Staphylococcus aureus

    Salman Sahab Atshan

    2012-01-01

    Full Text Available Clinical information about genotypically different clones of biofilm-producing Staphylococcus aureus is largely unknown. We examined whether different clones of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA differ with respect to staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMMs in biofilm formation. The study used 60 different types of spa and determined the phenotypes, the prevalence of the 13 MSCRAMM, and biofilm genes for each clone. The current investigation was carried out using a modified Congo red agar (MCRA, a microtiter plate assay (MPA, polymerase chain reaction (PCR, and reverse transcriptase polymerase chain reaction (RT-PCR. Clones belonging to the same spa type were found to have similar properties in adheringto thepolystyrene microtiter plate surface. However, their ability to produce slime on MCRA medium was different. PCR experiments showed that 60 clones of MSSA and MRSA were positive for 5 genes (out of 9 MSCRAMM genes. icaADBC genes were found to be present in all the 60 clones tested indicating a high prevalence, and these genes were equally distributed among the clones associated with MSSA and those with MRSA. The prevalence of other MSCRAMM genes among MSSA and MRSA clones was found to be variable. MRSA and MSSA gene expression (MSCRAMM and icaADBC was confirmed by RT-PCR.

  11. Death-associated Protein Kinase Mediated Cell Death Modulated by Interaction with DANGER

    Kang, Bingnan N.; Ahmad, Abdullah S.; Saleem, Sofiyan; Patterson, Randen L.; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H.

    2010-01-01

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21-domain containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after ...

  12. Co-regulation of pituitary tumor cell adhesion and prolactin gene expression by glucocorticoid.

    Spangler, P R; Delidow, B C

    1998-01-01

    Rat 235-1 pituitary tumor cells are lactotrophs producing high levels of prolactin (PRL). Dexamethasone (Dex, 100 nM) inhibits PRL gene expression in 235-1 cells by 50%, while simultaneously decreasing cell replication and cell-cell aggregation. To determine the time course of Dex action, we used a quantitative assay for cell-cell interaction, based on the number of single cells present before and after re-aggregation of dispersed cells. 235-1 cells were cultured in growth medium or medium plus 100 nM Dex for 1-4 days before assay. Control cells had 90% re-aggregation on all days of assay. Aggregation of Dex-treated cells decreased to 55% by day 4. Dex treatment also reduced cell numbers by 40%, but this decrease did not contribute to reduced aggregation. To determine the mechanism of Dex-inhibited cell-cell adhesion, we examined the expression of cadherins and catenins. Cadherin-related mRNAs (P- and N-cadherin probes) were detectable in 235-1 cells, but their levels were unchanged by Dex. A pancadherin antibody was unable to detect classical cadherins in these cells. Both alpha- and beta-catenins were detected by Western blotting and their levels were decreased by Dex. Unlike control aggregates, aggregates of Dex-treated cells were able to inhibit expression of PRL mRNA when added to monolayers of 235-1 cells. These data suggest that Dex influences cadherin function by inhibiting catenin expression and that this has the functional consequence of altering 235-1 cell-cell interactions. Overall the data show that Dex affects important aspects of lactotroph function other than PRL gene expression. These changes may include physical alterations in pituitary cell contacts that further support a change in functional state. PMID:9397162

  13. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation.

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K; Ahmed, Salahuddin

    2015-09-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1-5μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p<0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p<0.05; n=4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p<0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. PMID:26134265

  14. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling.

    Korshunov, Vyacheslav A; Mohan, Amy M; Georger, Mary A; Berk, Bradford C

    2006-06-01

    Intima-media thickening (IMT) in response to hemodynamic stress is a physiological process that requires coordinated signaling among endothelial, inflammatory, and vascular smooth muscle cells (VSMC). Axl, a receptor tyrosine kinase, whose ligand is Gas6, is highly induced in VSMC after carotid injury. Because Axl regulates cell migration, phagocytosis and apoptosis, we hypothesized that Axl would play a role in IMT. Vascular remodeling in mice deficient in Axl (Axl(-/-)) and wild-type littermates (Axl(+/+)) was induced by ligation of the left carotid artery (LCA) branches maintaining flow via the left occipital artery. Both genotypes had similar baseline hemodynamic parameters and carotid artery structure. Partial ligation altered blood flow equally in both genotypes: increased by 60% in the right carotid artery (RCA) and decreased by 80% in the LCA. There were no significant differences in RCA remodeling between genotypes. However, in the LCA Axl(-/-) developed significantly smaller intima+media compared with Axl(+/+) (31+/-4 versus 42+/-6x10(-6) microm3, respectively). Quantitative immunohistochemistry of Axl(-/-) LCA showed increased apoptosis compared with Axl(+/+) (5-fold). As expected, p-Akt was decreased in Axl(-/-), whereas there was no difference in Gas6 expression. Cell composition also changed significantly, with increases in CD45+ cells and decreases in VSMC, macrophages, and neutrophils in Axl(-/-) compared with Axl(+/+). These data demonstrate an important role for Axl in flow-dependent remodeling by regulating vascular apoptosis and vascular inflammation. PMID:16627783

  15. Intracellular kinases mediate increased translation and secretion of netrin-1 from renal tubular epithelial cells.

    Calpurnia Jayakumar

    Full Text Available BACKGROUND: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS to determine the signaling pathways that regulate netrin-1 production in response to injury. METHODS AND PRINCIPAL FINDINGS: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. CONCLUSION: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.

  16. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  17. Warfarin and coumarin-like Murraya paniculata extract down-regulate EpCAM-mediated cell adhesion: individual components versus mixture for studying botanical metastatic chemopreventives.

    Shao, Jingwei; Zhou, Suxia; Jiang, Zhou; Chi, Ting; Ma, Ji; Kuo, Minliang; Lee, Alan Yueh-Luen; Jia, Lee

    2016-01-01

    We recently defined cancer metastatic chemoprevention as utilizing safe and effective molecules to comprehensively prevent the spark of activation-adhesion-extravasation-proliferation metastatic cascade caused by circulating tumor cells (CTCs). The strategy focuses on preventing the most important starting point of the cascade. We identified an extract from a well-known medical plant Murraya paniculata, which inhibited both embryonic implantation to human endometrium as traditionally-used for abortion and CTC adhesion to human endothelium. Here, we separated and characterized five coumarin-containing components (Z1-Z5) from the botanic extract. Flow cytometry revealed that within 1-100 μg/mL, Z3 and Z5 down-regulated EpCAM expression in human colon HCT116, whereas, Z1 and Z2 did oppositely. Warfarin and Z1-Z5 component mixture (CM) also down-regulated EpCAM expression. The down-regulation of EpCAM by Z3, Z5, CM and warfarin was confirmed by western blotting, and caused inhibition on adhesion of cancer cells to human endothelial cells. Rat coagulation study showed that warfarin prolonged prothrombin time, whereas, Z3 did not. The present studies revealed that, for the first time, warfarin and coumarin-like components Z3, Z5 and CM from Murraya paniculata could directly inhibit EpCAM-mediated cell-cell adhesion. PMID:27480614

  18. Phosphoinositide Lipid Posphatase SHIP1 and PTEN Coordinate to Regulate Cell Migration and Adhesion

    Mondal, Subhanjan; Subramanian, Kulandayan K.; Sakai, Jiro; Bajrami, Besnik; Luo, Hongbo

    2012-01-01

    The second messenger phosphatidylinositol\\((3,4,5)P_3 (PtdIns(3,4,5)P_3)\\) is formed by stimulation of various receptors, including G protein–coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns\\((3,4,5)P_3\\) during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatas...

  19. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  20. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion.

    Kraft-Sheleg, Ortal; Zaffryar-Eilot, Shelly; Genin, Olga; Yaseen, Wesal; Soueid-Baumgarten, Sharon; Kessler, Ofra; Smolkin, Tatyana; Akiri, Gal; Neufeld, Gera; Cinnamon, Yuval; Hasson, Peleg

    2016-03-01

    For muscles to function, myofibers have to stretch and anchor at the myotendinous junction (MTJ), a region rich in extracellular matrix (ECM). Integrin signaling is required for MTJ formation, and mutations affecting the cascade lead to muscular dystrophies in mice and humans. Underlying mechanisms for integrin activation at the MTJ and ECM modifications regulating its signaling are unclear. We show that lysyl oxidase-like 3 (LoxL3) is a key regulator of integrin signaling that ensures localized control of the cascade. In LoxL3 mutants, myofibers anchor prematurely or overshoot to adjacent somites, and are loose and lack tension. We find that LoxL3 complexes with and directly oxidizes Fibronectin (FN), an ECM scaffold protein and integrin ligand enriched at the MTJ. We identify a mechanism whereby localized LoxL3 secretion from myofiber termini oxidizes FN, enabling enhanced integrin activation at the tips of myofibers and ensuring correct positioning and anchoring of myofibers along the MTJ. PMID:26954549

  1. Abdominal Adhesions

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  2. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K.; Ahmed, Salahuddin, E-mail: salah.ahmed@wsu.edu

    2015-09-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1–5 μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p < 0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p < 0.05; n = 4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p < 0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. - Highlights: • Evolving evidence suggests that ASK1 plays a central role in rheumatic arthritis (RA). • TNF-α activates ASK1, which regulate downstream signaling through JNK/p38 activation in RA-FLS. • ASK1 may be used as a potential therapeutic target in RA. • Thymoquinone was able to selectively inhibit TNF-α-induced phosphorylation of ASK1 in RA-FLS. • Thymoquinone might serve as a potential small

  3. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1–5 μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p < 0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p < 0.05; n = 4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p < 0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. - Highlights: • Evolving evidence suggests that ASK1 plays a central role in rheumatic arthritis (RA). • TNF-α activates ASK1, which regulate downstream signaling through JNK/p38 activation in RA-FLS. • ASK1 may be used as a potential therapeutic target in RA. • Thymoquinone was able to selectively inhibit TNF-α-induced phosphorylation of ASK1 in RA-FLS. • Thymoquinone might serve as a potential small

  4. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM-1 expression via differential regulation of endoplasmic reticulum stress.

    Ying I Wang

    Full Text Available Circulating triglyceride-rich lipoproteins (TGRL from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC, defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER stress and the unfolded protein response (UPR pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL's atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK and inositol requiring protein 1α (IRE1α, and downstream effectors including eukaryotic initiation factor-2α (eIF2α, spliced X-box-binding protein 1 (sXBP1 and C/EBP homologous protein (CHOP, directly correlated with the atherogenic activity of an individual's TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1, a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and

  5. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions.

    Xiaoli Yuan

    Full Text Available Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possible interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.

  6. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  7. AND-34, a novel p130Cas-binding thymic stromal cell protein regulated by adhesion and inflammatory cytokines.

    Cai, D; Clayton, L K; Smolyar, A; Lerner, A

    1999-08-15

    We have characterized a novel cDNA whose steady state mRNA levels rise in the thymus 2 to 6 h following the induction of CD4+CD8+ thymocyte apoptosis by in vivo cross-linking of CD3 epsilon. This cDNA, AND-34-1, contains an open reading frame (ORF) encoding a protein with an amino-terminal Src homology 2 (SH2) domain and a carboxyl-terminal domain homologous to GDP-exchange factors (GEFs). Northern analysis demonstrates widespread expression of the AND-34 gene. Anti-CD3 epsilon treatment induces up-regulation of the AND-34 mRNA levels in total thymic RNA but not in RNA from purified thymocytes, suggesting that this transcript is derived from a thymic stromal cell population. IL-1 and TNF increase AND-34 transcript levels in thymic cortical reticular, thymic nurse, and fibroblast cell lines. In the thymic cortical reticular cell line, IL-1 and TNF induce a protein of the predicted 93-kDa size reactive with anti-AND-34 peptide antisera. Fifteen minutes of serum stimulation of vanadate-pretreated AND-34-1-transfected NIH3T3 fibroblasts induces tyrosine phosphorylation of AND-34 as well as coprecipitating 95-, 125-, and 130-kDa proteins. One of these tyrosine phosphorylated proteins is identified as p130Cas (Crk-associated substrate), a signaling molecule previously known to bind to a GDP-exchange factor (C3G) and inducibly associate with the focal adhesion complex. Consistent with such an association, AND-34 tyrosine phosphorylation is induced following adherence of trypsinized fibroblasts to fibronectin or poly-L -lysine-coated surfaces. PMID:10438950

  8. Integrin Activation by Regulated Dimerization and Oligomerization of Platelet Endothelial Cell Adhesion Molecule (Pecam)-1 from within the Cell

    Zhao, Tieming; Newman, Peter J.

    2001-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 is a 130-kD transmembrane glycoprotein having six Ig homology domains within its extracellular domain and an immunoreceptor tyrosine–based inhibitory motif within its cytoplasmic domain. Previous studies have shown that addition of bivalent anti–PECAM-1 mAbs to the surface of T cells, natural killer cells, neutrophils, or platelets result in increased cell adhesion to immobilized integrin ligands. However, the mechanism by which this occur...

  9. Tauopathy Differentially Affects Cell Adhesion Molecules in Mouse Brain: Early Down-Regulation of Nectin-3 in Stratum Lacunosum Moleculare

    Hervé Maurin; Claire Marie Seymour; Benoit Lechat; Peter Borghgraef; Herman Devijver; Tomasz Jaworski; Schmidt, Mathias V.; Sebastian Kuegler; Fred Van Leuven

    2013-01-01

    Cell adhesion molecules are important structural substrates, required for synaptic plasticity and synaptogenesis. CAMs differ widely in their expression throughout different brain regions and their specific structural and functional roles in the brain remain to be elucidated. Here, we investigated selected cell adhesion molecules for alterations in expression levels and neuronal localization in validated mouse models for Alzheimer's disease that mimic the age-related progression of amyloid ac...

  10. Analysis of TNF-α-induced Leukocyte Adhesion to Vascular Endothelial Cells Regulated by Fluid Shear Stress Using Microfluidic Chip-based Technology

    LI Yuan; YANG De-yu; LIAO Juan; GONG Fang; HE Ping; LIU Bei-zhong

    2015-01-01

    This paper aims to the research of the impact of fluid shear stress on the adhesion between vascular endothelial cells and leukocyte induced by tumor necrosis factor-α(TNF-α) by microfliudic chip technology. Microfluidic chip was fabricated by soft lithograph;Endothelial microfluidic chip was constructed by optimizing types of the extracellular matrix proteins modified in the microchannel and cell incubation time;human umbilical vein endothelial cells EA.Hy926 lined in the microchannel were exposed to fluid shear stress of 1.68 dynes/cm2 and 8.4 dynes/cm2 respectively. Meanwhile, adhesion between EA.Hy926 cells and leukocyte was induced by TNF-αunder a flow condition. EA. Hy926 cell cultured in the static condition was used as control group. The numbers of fluorescently-labeled leukocyte in microchannel were counted to quantize the adhesion level between EA. Hy926 cells and leukocyte; cell immunofluorescence technique was used to detect the intercellular adhesion molecule (ICAM-1) expression. The constructed endothelial microfluidic chip can afford to the fluid shear stress and respond to exogenous stimulus of TNF-α;compared with the adhesion numbers of leukocyte in control group, adhesion between EA. Hy926 cells exposed to low fluid shear stress and leukocyte was reduced under the stimulus of TNF-α at a concentration of 10 ng/ml(P<0.05);leukocyte adhesion with EA. Hy926 cells exposed to high fluid shear stress was reduced significantly than EA. Hy926 cells in control group and EA.1Hy926 cells exposed to low fluid shear stress ( P<0.01); the regulation mechanism of fluid shear stress to the adhesion between EA. Hy926 cells and leukocyte induced by TNF-αwas through the way of ICAM-1. The endothelial microfluidic chip fabricated in this paper could be used to study the functions of endothelial cell in vitro and provide a new technical platform for exploring the pathophysiology of the related cardiovascular system diseases under a flow environment.

  11. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  12. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  13. Regulatory peptides modulate adhesion of polymorphonuclear leukocytes to bronchial epithelial cells through regulation of interleukins, ICAM-1 and NF-kappaB/IkappaB.

    Zhang, Jian-Song; Tan, Yu-Rong; Xiang, Yang; Luo, Zi-Qiang; Qin, Xiao-Qun

    2006-02-01

    A complex network of regulatory neuropeptides controls airway inflammation reaction, in which airway epithelial cells adhering to and activating leukocytes is a critical step. To study the effect of intrapulmonary regulatory peptides on adhesion of polymorphonuclear leukocytes (PMNs) to bronchial epithelial cells (BECs) and its mechanism, several regulatory peptides including vasoactive intestinal peptide (VIP), epidermal growth factor (EGF), endothelin-1 (ET-1) and calcitonin gene-related peptide (CGRP), were investigated. The results demonstrated that VIP and EGF showed inhibitory effects both on the secretion of IL-1, IL-8 and the adhesion of PMNs to BECs, whereas ET-1 and CGRP had the opposite effect. Anti-intercellular adhesion molecule-1 (ICAM-1) antibody could block the adhesion of PMNs to ozone-stressed BECs. Using immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR), it was shown that VIP and EGF down-regulated the expression of ICAM-1 in BECs, while ET-1 and CGRP up-regulated ICAM-1 expression. NF-kappaB inhibitor MG132 blocked ICAM-1 expression induced by ET-1 and CGRP. Furthermore, in electric mobility shift assay (EMSA), VIP and EGF restrained the binding activity of NF-kappaB to the NF-kappaB binding site within the ICAM-1 promoter in ozone-stressed BECs, while CGRP and ET-1 promoted this binding activity. IkappaB degradation was consistent with NF-kappaB activation. These observations indicate that VIP and EGF inhibit inflammation, while ET-1 and CGRP enhance the inflammation reaction. PMID:16474903

  14. Adhesive Categories

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  15. Adhesive Categories

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  16. LFA-1-mediated leukocyte adhesion regulated by interaction of CD43 with LFA-1 and CD147

    Khunkaewla, P.; Schiller, H.B.; Paster, W.; Leksa, V.; Čermák, Lukáš; Anděra, Ladislav; Hořejší, Václav; Stockinger, H.

    2008-01-01

    Roč. 45, č. 6 (2008), s. 1703-1711. ISSN 0161-5890 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : leukocyte adhesion and aggregation * monoclonal antibodies * receptor signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.555, year: 2008

  17. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion.

    Lin, Yuan-Na; Bhuwania, Ridhirama; Gromova, Kira; Failla, Antonio Virgilio; Lange, Tobias; Riecken, Kristoffer; Linder, Stefan; Kneussel, Matthias; Izbicki, Jakob R; Windhorst, Sabine

    2015-07-30

    Drosophila homologue of Diaphanous 1 (DIAPH1) regulates actin polymerization and microtubule (MT) stabilization upon stimulation with lysophosphatidic acid (LPA). Recently, we showed strongly reduced lung metastasis of DIAPH1-depleted colon cancer cells but we found accumulations of DIAPH1-depleted cells in bone marrow. Here, we analyzed possible organ- or tissue-specific metastasis of DIAPH1-depleted HCT-116 cells. Our data confirmed that depletion of DIAPH1 strongly inhibited lung metastasis and revealed that, in contrast to control cells, DIAPH1-depleted cells did not form metastases in further organs. Detailed mechanistic analysis on cells that were not stimulated with LPA to activate the cytoskeleton-modulating activity of DIAPH1, revealed that even under basal conditions DIAPH1 was essential for cellular adhesion to collagen. In non-stimulated cells DIAPH1 did not control actin dynamics but, interestingly, was essential for stabilization of microtubules (MTs). Additionally, DIAPH1 controlled directed vesicle trafficking and with this, local clustering of the adhesion protein integrin-β1 at the plasma membrane. Therefore, we conclude that under non-stimulating conditions DIAPH1 controls cellular adhesion by stabilizing MTs required for local clustering of integrin-β1 at the plasma membrane. Thus, blockade of DIAPH1-tubulin interaction may be a promising approach to inhibit one of the earliest steps in the metastatic cascade of colon cancer. PMID:26124177

  18. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    Gustafsson, Karin [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden); Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Grawé, Jan [Department of Genetics and Pathology, Uppsala University, Uppsala 75185 (Sweden); McKinney-Freeman, Shannon L. [Department of Hematology, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States); Daley, George Q. [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Welsh, Michael, E-mail: michael.welsh@mcb.uu.se [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden)

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via

  19. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  20. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility.

    Senda, Yoshie; Murata-Kamiya, Naoko; Hatakeyama, Masanori

    2016-07-01

    Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis. PMID:27116701

  1. The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons

    Lanoue, V; Usardi, A; Sigoillot, S M; Talleur, M; Iyer, K.; Mariani, J; Isope, P; Vodjdani, G.; Heintz, N; Selimi, F.

    2013-01-01

    Adhesion-G protein-coupled receptors (GPCRs) are a poorly studied subgroup of the GPCRs, which have diverse biological roles and are major targets for therapeutic intervention. Among them, the Brain Angiogenesis Inhibitor (BAI) family has been linked to several psychiatric disorders, but despite their very high neuronal expression, the function of these receptors in the central nervous system has barely been analyzed. Our results, obtained using expression knockdown and overexpression experim...

  2. The Drosophila cell adhesion molecule Klingon is required for long-term memory formation and is regulated by Notch

    Matsuno, Motomi; Horiuchi, Junjiro; Tully, Tim; Saitoe, Minoru

    2008-01-01

    The ruslan (rus) mutant was previously identified in a behavioral screen for mutants defective in long-lasting memory, which consists of two consolidated memory types, anesthesia-resistant memory, and protein synthesis-dependent long-term memory (LTM). We demonstrate here that rus is a new allele of klingon (klg), which encodes a homophilic cell adhesion molecule. Klg is acutely required for LTM but not anesthesia-resistant memory formation, and Klg expression increases upon LTM induction. LT...

  3. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM–EGL-15/FGFR Receptor Complex

    Carlos A. Díaz-Balzac

    2015-06-01

    Full Text Available Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig domains of SAX-7/L1CAM and the FN(III domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system.

  4. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase

    Madaro, Luca; Marrocco, Valeria; Fiore, Piera; Aulino, Paola; Smeriglio, Piera; Adamo, Sergio; Molinaro, Mario; Bouché, Marina

    2011-01-01

    Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKCθ, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKCθ is strongly up-regulated following freeze injury–induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKCθ knockout and muscle-specific PKCθ dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKCθ mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKCθ mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKCθ in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKCθ-null myoblasts. We thus propose that PKC

  5. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii

    Koutsoudis, Maria D.; Tsaltas, Dimitrios; Minogue, Timothy D.; von Bodman, Susanne B.

    2006-01-01

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and develop...

  6. Inhibition of radiation-induced up-regulation of leukocyte adhesion to endothelial cells with the platelet-activating factor inhibitor, BN52021

    Purpose: The inflammatory process is likely involved in normal tissue damage after radiation exposure, yet few studies have directly evaluated the factors that might be involved in the regulation of inflammation after irradiation in vivo. We tested the hypothesis that platelet-activating factor, a neutrophil agonist synthesized by endothelial cells, is involved in the upregulation of radiation-induced leukocyte-endothelial cell interactions by using an inhibitor of its receptor, BN52021. Methods and Materials: Fischer-344 rats with dorsal skin-fold window chambers were randomized to three experimental groups: control (sham irradiation); 6 Gy radiation; and 6 Gy + BN52021. BN52021 (0.5 mg/kg) was administered 5 min prior to 6 Gy radiation. Leukocytes were stained in vivo with i.v. acridine orange for visualization with fluorescent microscopy. Venous vessel diameters were measured and numbers of rolling leukocytes were counted per 30-s period. The number of adhering leukocytes per unit surface area was also determined. Differences among the three experimental groups for rolling and adhering leukocytes were analyzed using a mixed-effects linear model with vessel shear rate used as a covariate. Results are reported as means ± standard errors. Results: Irradiation caused upregulation of leukocyte rolling, as compared with sham-treated controls (p = 0.04): the BN compound in addition to radiation did not downregulate this effect. Irradiation also upregulated leukocyte adhesion (p < 0.001), but the addition of BN52021 prior to irradiation blocked this effect. The drug did not affect heart rate or blood pressure. Conclusions: These results support the hypothesis that radiation-induced upregulation of leukocyte adhesion is mediated by platelet-activating factor. These results are consistent with prior reports that platelet-activating factor is not involved in leukocyte rolling, which involves separate families of adhesion molecules from those that regulate adhesion. BN

  7. Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells.

    Rosa Paolillo

    Full Text Available The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs and myelodysplastic syndromes, consistent with an oncogenic function of this gene.In this study, we first analyzed the expression and regulation of TM9SF4 in normal and leukemic cells and identified TM9SF4 as a gene highly expressed in human quiescent CD34+ hematopoietic progenitor cells (HPCs, regulated during monocytic and granulocytic differentiation of HPCs, both lineages giving rise to mature myeloid cells involved in adhesion, phagocytosis and immunity. Then, we found that TM9SF4 is markedly overexpressed in leukemic cells and in AMLs, particularly in M2, M3 and M4 AMLs (i.e., in AMLs characterized by the presence of a more or less differentiated granulocytic progeny, as compared to normal CD34+ HPCs. Proliferation and differentiation of HPCs occurs in hypoxia, a physiological condition in bone marrow, but also a crucial component of cancer microenvironment. Here, we investigated the impact of hypoxia on TM9SF4 expression in leukemic cells and identified TM9SF4 as a direct target of HIF-1α, downregulated in these cells by hypoxia. Then, we found that the hypoxia-mediated downregulation of TM9SF4 expression is associated with a decrease of cell adhesion of leukemic cells to fibronectin, thus demonstrating that human TM9SF4 is a new molecule involved in leukemic cell adhesion.Altogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs

  8. Surgical adhesives

    I. A. THOMAZINI-SANTOS

    2001-12-01

    Full Text Available The authors have performed a literature review of surgical adhesives, such as cyanoacrylate, collagen gelatin, and fibrin glue. They have included different types of commercial and non-commercial fibrin sealants and have reported on the different components in these adhesives, such as fibrinogen, cryoprecipitate, bovine thrombin, and thrombin-like fraction of snake venom.

  9. Involvement of Intercellular Adhesion Molecule-1 Up-Regulation in Bradykinin Promotes Cell Motility in Human Prostate Cancers

    Chih-Hsin Tang

    2013-06-01

    Full Text Available Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to distant organs. Bradykinin (BK is an inflammatory mediator and has recently been shown to mediate tumor growth and metastasis. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1 plays a critical role during tumor metastasis. The aim of this study was to examine whether BK promotes prostate cancer cell migration via ICAM-1 expression. The motility of cancer cells was increased following BK treatment. Stimulation of prostate cancer cells with BK induced mRNA and protein expression of ICAM-1. Transfection of cells with ICAM-1 small interfering RNA reduced BK-increased cell migration. Pretreatment of prostate cancer cells with B2 receptor, phosphatidylinositol 3-kinase (PI3K, Akt, and activator protein 1 (AP-1 inhibitors or mutants abolished BK-promoted migration and ICAM-1 expression. In addition, treatment with a B2 receptor, PI3K, or Akt inhibitor also reduced BK-mediated AP-1 activation. Our results indicate that BK enhances the migration of prostate cancer cells by increasing ICAM-1 expression through a signal transduction pathway that involves the B2 receptor, PI3K, Akt, and AP-1. Thus, BK represents a promising new target for treating prostate cancer metastasis.

  10. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Roy Monica

    2012-01-01

    Full Text Available Abstract Background Granulocytes generally exert protective roles in the central nervous system (CNS, but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE, the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS or pertussis toxin (PTX, the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.

  11. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii.

    Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B

    2006-04-11

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control. PMID:16585516

  12. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    Edvardsen, K; Chen, W; Rucklidge, G;

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  13. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    Costello, Richard W

    2012-02-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  14. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    Costello, Richard W

    2011-05-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  15. Cell nanomechanics and focal adhesions are regulated by retinol and conjugated linoleic acid in a dose-dependent manner

    Retinol and conjugated linoleic acid (CLA) have previously been shown to have an important role in gene expression and various cellular processes, including differentiation, proliferation and cell death. In this study we have investigated the effect of retinol and CLA, both individually and in combination, on the intracellular cytoskeleton, focal adhesions (FAs) and the nanomechanical properties of 3T3 fibroblasts. We observed a dose-dependent decrease in the formation of FAs following treatment with either compound, which was directly correlated to an increase in cell height (>30%) and a decrease in the measured Young's modulus (∼28%). Furthermore, treatments with both compounds demonstrated an increased effect and led to a reduction of>70% in the average number of FAs per cell and a decrease of >50% in average cell stiffness. These data reveal that retinol and CLA disrupt FA formation, leading to an increase in cell height and a significant decrease in stiffness. These results may broaden our understanding of the interplay between cell nanomechanics and cellular contact with the external microenvironment, and help to shed light on the important role of retinoids and CLA in health and disease.

  16. Regulation of cellular adhesion molecule expression in murine oocytes,peri-implantation and post-implantation embryos

    DAVID; P; LU; LINA; TIAN; CHRIS; O'; NEILL; NICHOLAS; JC; KING

    2002-01-01

    Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, α chain),and CD11a (LFA-1, α chain) on mouse oocytes, and pre- and peri-implantation stage embryos was exam-ined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at theoocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM,also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On theother hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at thecompacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophecto-derm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remainedsignificantly expressed throughout and after blastocyst hatching was expressed on the polar trophecto-derm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression ofboth VCAM-1 and CD11a was undetectable throughout. The diametrical temporal expression pattern ofICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesionmolecules may be important for interaction of the embryo with the maternal cellular environment as wellas for continuing development and survival of the early embryo.

  17. Regulation by gut commensal bacteria of carcinoembryonic antigen-related cell adhesion molecule expression in the intestinal epithelium.

    Kitamura, Yasuaki; Murata, Yoji; Park, Jung-Ha; Kotani, Takenori; Imada, Shinya; Saito, Yasuyuki; Okazawa, Hideki; Azuma, Takeshi; Matozaki, Takashi

    2015-07-01

    Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1 and CEACAM20, immunoglobulin superfamily members, are predominantly expressed in intestinal epithelial cells (IECs) and co-localized at the apical surface of these cells. We here showed that the expression of mouse CEACAM1 and CEACAM20 at both mRNA and protein levels was markedly reduced in IECs of the small intestine by the treatment of mice with antibiotics against Gram-positive bacteria. The expression of both proteins was also decreased in IECs of the small intestine from germ-free mice, compared with that from control specific-pathogen-free mice. Exposure of intestinal organoids to IFN-γ markedly increased the expression of either CEACAM1 or CEACAM20, whereas the exposure to TNF-α increased the expression of the former protein, but not that of the latter. In contrast, the expression of CEACAM20, but not of CEACAM1, in intestinal organoids was markedly increased by exposure to butyrate, a short-chain fatty acid produced by bacterial fermentation in the intestine. Collectively, our results suggest that Gram-positive bacteria promote the mRNA expression of CEACAM1 or CEACAM20 in the small intestine. Inflammatory cytokines or butyrate likely participates in such effects of commensal bacteria. PMID:25908210

  18. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans.

    Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2013-01-01

    Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810

  19. Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro

    McCaskie Andrew W

    2010-05-01

    Full Text Available Abstract Background The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products and medicine (tissue engineering, prosthetic implants, cancer and developmental biology. We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface. Results A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation in vitro over 28 days (in the complete absence of other osteogenic supplements. In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis. Conclusion These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days and long term (weeks effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.

  20. RIP kinase-mediated ROS production triggers XAF1 expression through activation of TAp73 in casticin-treated bladder cancer cells.

    Chung, Yoon Hee; Kim, Daejin

    2016-08-01

    The p53 family protein p73 plays an important role in apoptosis induced by chemotherapeutic drugs. Transcriptionally active (TA) p73 (TAp73) substitutes for p53 in the response to stress. XIAP associated factor 1 (XAF1) is a novel predictive and prognostic factor in patients with bladder cancer, but the association between TAp73 and XAF1 expression in bladder cancer cells is poorly understood. Here, we investigated the status of TAp73 and XAF1 in T24 bladder cancer cells to identify molecular mechanisms in casticin‑exposed T24 cells. Casticin induced activation of JNK/p38 MAPK that preceded activation of the caspase cascade and disruption of the mitochondria membrane potential (∆ψm). Expression of XAF1 and TAp73 was also upregulated in casticin-treated T24 cells. Casticin treatment of T24 cells induced receptor-interacting protein (RIP) kinase expression and increased intracellular production of reactive oxygen species (ROS). Casticin-mediated ROS induced an increase in phosphorylated JNK/p38 MAPK, resulting in progressive upregulation of TAp73, which in turn led to XAF1 expression. Our data suggest that the apoptotic activity of casticin in T24 cells is mediated by activation of the TAp73-XAF1 signaling pathway through RIP kinase-mediated ROS production. PMID:27349281

  1. Regulation of integrin trafficking, cell adhesion and cell migration by WASH and the Arp2/3 Complex

    Duleh, Steve N.; Welch, Matthew D.

    2012-01-01

    WASH is a nucleation-promoting factor for the Arp2/3 complex that is implicated in multiple endocytic trafficking pathways including receptor recycling, cargo degradation, and retromer-mediated receptor retrieval. We sought to examine whether WASH plays an important role in trafficking of specialized cargo molecules such as integrins, for which trafficking is highly regulated during cell migration. We observed that subdomains of early/sorting endosomes associated with dynamic WASH and filamen...

  2. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    Siham Yennek; Mithila Burute; Manuel Théry; Shahragim Tajbakhsh

    2014-01-01

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-rand...

  3. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-01-01

    International audience Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole posi...

  4. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-01-01

    International audience Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole posi...

  5. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells

    Yennek, Siham; Burute, Mithila; Thery, Manuel

    2014-01-01

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-rand...

  6. Bacterial Adhesion & Blocking Bacterial Adhesion

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  7. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma

    Suzuki, Osamu; Abe, Masafumi; HASHIMOTO, YUKO

    2015-01-01

    The interaction between cell surface glycans and extracellular matrix (ECM) including galectins is known to be closely associated with tumor cell adhesion, invasion and metastasis. We analyzed the roles of cell surface sialylation or glycosylation in galectin or ECM-mediated cell adhesion and invasion of human malignant lymphoma cells. Neuraminidase from Arthrobacter ureafaciens (AU) treatment resulted in reduction of cell adhesion to galectin-8 in human anaplastic large cell lymphoma (H-ALCL...

  8. Host Selection of Microbiota via Differential Adhesion.

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  9. Intercellular Adhesion-Dependent Cell Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Formation of a Retinal Organoid.

    Lowe, Albert; Harris, Raven; Bhansali, Punita; Cvekl, Ales; Liu, Wei

    2016-05-10

    In this study we dissected retinal organoid morphogenesis in human embryonic stem cell (hESC)-derived cultures and established a convenient method for isolating large quantities of retinal organoids for modeling human retinal development and disease. Epithelialized cysts were generated via floating culture of clumps of Matrigel/hESCs. Upon spontaneous attachment and spreading of the cysts, patterned retinal monolayers with tight junctions formed. Dispase-mediated detachment of the monolayers and subsequent floating culture led to self-formation of retinal organoids comprising patterned neuroretina, ciliary margin, and retinal pigment epithelium. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces are required for the self-organization. Our data supports a hypothesis that newly specified neuroretina progenitors form characteristic structures in equilibrium through minimization of cell surface tension. In long-term culture, the retinal organoids autonomously generated stratified retinal tissues, including photoreceptors with ultrastructure of outer segments. Our system requires minimal manual manipulation, has been validated in two lines of human pluripotent stem cells, and provides insight into optic cup invagination in vivo. PMID:27132890

  10. Wood Composite Adhesives

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  11. Preparation of SiO2/TiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation

    Highlights: ► The parallel micro-stripes of SiO2/TiO2 and TiO2/TiO2 are successfully prepared. ► The SiO2/TiO2 patterns can reduce platelet adhesion and aggregation. ► The patterns can effectively regulate the adhesion, proliferation and shape of ECs. -- Abstract: TiO2 films were applied on blood contact biomaterials for its excellent biocompatibility. The topological structure of the biomaterial surfaces have a significant impact on cell adhesion, spreading and proliferation. Thus, it is anticipated that the combination of TiO2 film deposition and surface micro-patterning will provide a potential application for cardiovascular implants materials. In this work, TiO2/TiO2 and SiO2/TiO2 micro-groove/ridge stripes on Si (100) were prepared by photolithography, wet etching and unbalanced magnetron sputtering (UBMS). Their surface morphology, chemical composition and wettability were investigated. The crystal structure of TiO2 films was characterised by X-ray diffraction (XRD). Platelet adhesion on the SiO2/TiO2 and TiO2/TiO2 surfaces was tested, and the morphology and behaviour of endothelial cells cultured on the micropatterned surfaces were observed. It was proved that the SiO2/TiO2 pattern could reduce platelet adhesion and aggregation compared with TiO2/TiO2 pattern, endothelial cells grew along the micro-stripes and their behaviour could be effectively regulated by micropatterned surface. So, it is suggested that the micropatterned SiO2/TiO2 surface can contribute more bio-compatible function of regulating and coordinating the behaviour of endothelial cells and platelets

  12. Activation of AMP-Activated Protein Kinase and Extracelluar Signal-Regulated Kinase Mediates CB-PIC-Induced Apoptosis in Hypoxic SW620 Colorectal Cancer Cells

    Sung-Yun Cho; Hyo-Jeong Lee; Hyo-Jung Lee; Deok-Beom Jung; Hyunseok Kim; Eun Jung Sohn; Bonglee Kim; Ji Hoon Jung; Byoung-Mog Kwon; Sung-Hoon Kim

    2013-01-01

    Here, antitumor mechanism of cinnamaldehyde derivative CB-PIC was elucidated in human SW620 colon cancer cells. CB-PIC significantly exerted cytotoxicity, increased sub-G1 accumulation, and cleaved PARP with apoptotic features, while it enhanced the phosphorylation of AMPK alpha and ACC as well as activated the ERK in hypoxic SW620 cells. Furthermore, CB-PIC suppressed the expression of HIF1 alpha, Akt, and mTOR and activated the AMPK phosphorylation in hypoxic SW620 cells. Conversely, silenc...

  13. Involvement of Phosphatidylinositol 3-Kinase-Mediated Up-Regulation of IκBα in Anti-Inflammatory Effect of Gemfibrozil in Microglia1

    Jana, Malabendu; Jana, Arundhati; Liu, Xiaojuan; Ghosh, Sankar; Pahan, Kalipada

    2007-01-01

    The present study underlines the importance of PI3K in mediating the anti-inflammatory effect of gemfibrozil, a prescribed lipid-lowering drug for humans, in mouse microglia. Gemfibrozil inhibited LPS-induced expression of inducible NO synthase (iNOS) and proinflammatory cytokines in mouse BV-2 microglial cells and primary microglia. By overexpressing wild-type and dominant-negative constructs of peroxisome proliferator-activated receptor-α (PPAR-α) in microglial cells and isolating primary m...

  14. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  15. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  16. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase

    Madaro, Luca; Marrocco, Valeria; Fiore, Piera; Aulino, Paola; Smeriglio, Piera; Adamo, Sergio; Molinaro, Mario; Bouché, Marina

    2011-01-01

    Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKCθ, the...

  17. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  18. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  19. Adhesion and Cohesion

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  20. Molecular targeting of prostate cancer cells by a triple drug combination down-regulates integrin driven adhesion processes, delays cell cycle progression and interferes with the cdk-cyclin axis

    Single drug use has not achieved satisfactory results in the treatment of prostate cancer, despite application of increasingly widespread targeted therapeutics. In the present study, the combined impact of the mammalian target of rapamycin (mTOR)-inhibitor RAD001, the dual EGFr and VGEFr tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer growth and adhesion in vitro was investigated. PC-3, DU-145 and LNCaP cells were treated with RAD001, AEE788 or VPA or with a RAD-AEE-VPA combination. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by MTT-assay, flow cytometry and western blotting, respectively. Furthermore, tumor cell adhesion to vascular endothelium or to immobilized extracellular matrix proteins as well as migratory properties of the cells was evaluated, and integrin α and β subtypes were analyzed. Finally, effects of drug treatment on cell signaling pathways were determined. All drugs, separately applied, reduced tumor cell adhesion, migration and growth. A much stronger anti-cancer effect was evoked by the triple drug combination. Particularly, cdk1, 2 and 4 and cyclin B were reduced, whereas p27 was elevated. In addition, simultaneous application of RAD001, AEE788 and VPA altered the membranous, cytoplasmic and gene expression pattern of various integrin α and β subtypes, reduced integrin-linked kinase (ILK) and deactivated focal adhesion kinase (FAK). Signaling analysis revealed that EGFr and the downstream target Akt, as well as p70S6k was distinctly modified in the presence of the drug combination. Simultaneous targeting of several key proteins in prostate cancer cells provides an advantage over targeting a single pathway. Since strong anti-tumor properties became evident with respect to cell growth and adhesion dynamics, the triple drug combination might provide progress in the treatment of advanced prostate cancer

  1. Advanced adhesives in electronics

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  2. Preparation of SiO{sub 2}/TiO{sub 2} and TiO{sub 2}/TiO{sub 2} micropattern and their effects on platelet adhesion and endothelial cell regulation

    Li, Jing-an [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Kun; Ren, Hui-lan; Huang, Nan [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2013-07-15

    Highlights: ► The parallel micro-stripes of SiO{sub 2}/TiO{sub 2} and TiO{sub 2}/TiO{sub 2} are successfully prepared. ► The SiO{sub 2}/TiO{sub 2} patterns can reduce platelet adhesion and aggregation. ► The patterns can effectively regulate the adhesion, proliferation and shape of ECs. -- Abstract: TiO{sub 2} films were applied on blood contact biomaterials for its excellent biocompatibility. The topological structure of the biomaterial surfaces have a significant impact on cell adhesion, spreading and proliferation. Thus, it is anticipated that the combination of TiO{sub 2} film deposition and surface micro-patterning will provide a potential application for cardiovascular implants materials. In this work, TiO{sub 2}/TiO{sub 2} and SiO{sub 2}/TiO{sub 2} micro-groove/ridge stripes on Si (100) were prepared by photolithography, wet etching and unbalanced magnetron sputtering (UBMS). Their surface morphology, chemical composition and wettability were investigated. The crystal structure of TiO{sub 2} films was characterised by X-ray diffraction (XRD). Platelet adhesion on the SiO{sub 2}/TiO{sub 2} and TiO{sub 2}/TiO{sub 2} surfaces was tested, and the morphology and behaviour of endothelial cells cultured on the micropatterned surfaces were observed. It was proved that the SiO{sub 2}/TiO{sub 2} pattern could reduce platelet adhesion and aggregation compared with TiO{sub 2}/TiO{sub 2} pattern, endothelial cells grew along the micro-stripes and their behaviour could be effectively regulated by micropatterned surface. So, it is suggested that the micropatterned SiO{sub 2}/TiO{sub 2} surface can contribute more bio-compatible function of regulating and coordinating the behaviour of endothelial cells and platelets.

  3. Targeted DNA Methylation by a DNA Methyltransferase Coupled to a Triple Helix Forming Oligonucleotide To Down-Regulate the Epithelial Cell Adhesion Molecule

    van der Gun, Bernardina T. F.; Maluszynska-Hoffman, Maria; Kiss, Antal; Arendzen, Alice J.; Ruiters, Marcel H. J.; McLaughlin, Pamela M. J.; Weinhold, Elmar; Rots, Marianne G.

    2010-01-01

    The epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that has been identified as a marker of cancer-initiating cells. EpCAM is highly expressed on most carcinomas, and transient silencing of EpCAM expression leads to reduced oncogenic potential. To silence (he EpCAM gene in a per

  4. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    Fenxi Zhang

    2013-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (bmMSCs are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression.

  5. RACK1 Targets the Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway To Link Integrin Engagement with Focal Adhesion Disassembly and Cell Motility

    Vomastek, Tomáš; Iwanicki, M. P.; Schaeffer, J.; J.; Tarcsafalvi, A.; Parsons, J. T.; Weber, M. J.

    2007-01-01

    Roč. 27, č. 23 (2007), s. 8296-8305. ISSN 0270-7306 R&D Projects: GA AV ČR IAA500200716 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * adhesion * cell Subject RIV: EE - Microbiology, Virology Impact factor: 6.420, year: 2007

  6. Adhesion in microelectronics

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  7. MicroRNA-155 Modulates the Pathogen Binding Ability of Dendritic Cells (DCs) by Down-regulation of DC-specific Intercellular Adhesion Molecule-3 Grabbing Non-integrin (DC-SIGN)*

    Martinez-Nunez, Rocio T.; Louafi, Fethi; Friedmann, Peter S.; Sanchez-Elsner, Tilman

    2009-01-01

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We esta...

  8. Thermal Characterization of Adhesive

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  9. Understanding Marine Mussel Adhesion

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  10. Understanding marine mussel adhesion.

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  11. Targeted DNA Methylation by a DNA Methyltransferase Coupled to a Triple Helix Forming Oligonucleotide To Down-Regulate the Epithelial Cell Adhesion Molecule

    van der Gun, Bernardina T. F.; Maluszynska-Hoffman, Maria; Kiss, Antal; Arendzen, Alice J.; Ruiters, Marcel H.J.; McLaughlin, Pamela M. J.; Weinhold, Elmar; Rots, Marianne G.

    2010-01-01

    The epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that has been identified as a marker of cancer-initiating cells. EpCAM is highly expressed on most carcinomas, and transient silencing of EpCAM expression leads to reduced oncogenic potential. To silence the EpCAM gene in a persistent manner via targeted DNA methylation, a low activity mutant (C141S) of the CpG-specific DNA methyltransferase M.SssI was coupled to a triple-helix-forming oligonucleotide (TFO−C141S) specifi...

  12. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    Perez, J.R.; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R.

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. C...

  13. PH dependent adhesive peptides

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  14. Particle adhesion and removal

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  15. Phosphoproteomic analysis of adhesion receptor signalling

    Robertson, Joseph

    2014-01-01

    The binding of integrin adhesion receptors to their extracellular matrix (ECM) ligands activates intracellular signalling pathways that control diverse and fundamental aspects of cell behaviour. While it is clear that protein kinases and phosphatases play an integral role in such adhesion-mediated signalling, current knowledge of the phosphorylation events regulated downstream of integrin ligation is limited and prohibits a systems-level understanding of the molecular mechanisms through which...

  16. Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg

    Finne Jukka

    2006-02-01

    Full Text Available Abstract Background Flow cytometry based adherence assay is a potentially powerful but little used method in the study of bacterial binding to host structures. We have previously characterized a glycoprotein-binding activity in Streptococcus pyogenes called 'strepadhesin' binding to thyroglobulin, submaxillar mucin, fetuin and asialofetuin. We have identified surface-associated pullulanase (PulA and cysteine protease (SpeB as carriers of strepadhesin activity. In the present paper, we investigated the use of flow cytometry as a method to study the binding of Rgg, SpeB and PulA knock-out strains to cultured human epithelial cells. Results Streptococcal mutants were readily labelled with CFDA-SE and their binding to epithelial cells could be effectively studied by flow cytometry. A strain deficient in Rgg expression showed increased binding to the analyzed epithelial cell lines of various origin. Inactivation of SpeB had no effect on the adhesion, while PulA knock-out strains displayed decreased binding to the cell lines. Conclusion These results suggest that the flow cytometric assay is a valuable tool in the analysis of S. pyogenes adherence to host cells. It appears to be an efficient and sensitive tool for the characterization of interactions between the bacteria and the host at the molecular level. The results also suggest a role for Rgg regulated surface molecules, like PulA, in the adhesion of S. pyogenes to host cells.

  17. Protein kinases mediate increment of the phosphorylation of cyclic AMP -responsive element binding protein in spinal cord of rats following capsaicin injection

    Li Junfa

    2005-09-01

    Full Text Available Abstract Background Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB is a well-characterized stimulus-induced transcription factor whose activation requires phosphorylation of the Serine-133 residue. Phospho-CREB can further induce gene transcription and strengthen synaptic transmission by the activation of the protein kinase cascades. However, little is known about the mechanisms by which CREB phosphorylation is regulated by protein kinases during nociception. This study was designed to use Western blot analysis to investigate the role of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK 1/2, PKA and PKC in regulating the phosphorylation of CREB in the spinal cord of rats following intraplantar capsaicin injection. Results We found that capsaicin injection significantly increased the phosphorylation level of CREB in the ipsilateral side of the spinal cord. Pharmacological manipulation of MEK 1/2, PKA and PKC with their inhibitors (U0126, H89 and NPC 15473, respectively significantly blocked this increment of CREB phosphorylation. However, the expression of CREB itself showed no change in any group. Conclusion These findings suggest that the activation of intracellular MAP kinase, PKA and PKC cascades may contribute to the regulation of phospho-CREB in central nociceptive neurons following peripheral painful stimuli.

  18. Radiation-curable adhesives

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  19. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  20. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  1. Prevention of bacterial adhesion

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  2. Micropatterning cell adhesion on polyacrylamide hydrogels.

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  3. Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines

    Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients

  4. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation.

    Álvarez-Santos, Mayra; Carbajal, Verónica; Tellez-Jiménez, Olivia; Martínez-Cordero, Erasmo; Ruiz, Victor; Hernández-Pando, Rogelio; Lascurain, Ricardo; Santibañez-Salgado, Alfredo; Bazan-Perkins, Blanca

    2016-10-01

    The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc. PMID:26969873

  5. Nuclear Localization of the ERK MAP Kinase Mediated by Drosophila αPS2βPS Integrin and Importin-7

    James, Brian P.; Bunch, Thomas A.; Krishnamoorthy, Srinivasan; Perkins, Lizabeth A.; Brower, Danny L.

    2007-01-01

    The control of gene expression by the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) requires its translocation into the nucleus. In Drosophila S2 cells nuclear accumulation of diphospho-ERK (dpERK) is greatly reduced by interfering double-stranded RNA against Drosophila importin-7 (DIM-7) or by the expression of integrin mutants, either during active cell spreading or after stimulation by insulin. In both cases, total ERK phosphorylation (on Westerns) is n...

  6. Novel Function of Serine Protease HTRA1 in Inhibiting Adipogenic Differentiation of Human Mesenchymal Stem Cells via MAP Kinase-Mediated MMP Upregulation.

    Tiaden, André N; Bahrenberg, Gregor; Mirsaidi, Ali; Glanz, Stephan; Blüher, Matthias; Richards, Peter J

    2016-06-01

    Adipogenesis is the process by which mesenchymal stem cells (MSCs) develop into lipid-laden adipocytes. Being the dominant cell type within adipose tissue, adipocytes play a central role in regulating circulating fatty acid levels, which is considered to be of critical importance in maintaining insulin sensitivity. High temperature requirement protease A1 (HTRA1) is a newly recognized regulator of MSC differentiation, although its role as a mediator of adipogenesis has not yet been defined. The aim of this work was therefore to evaluate HTRA1's influence on human MSC (hMSC) adipogenesis and to establish a potential mode of action. We report that the addition of exogenous HTRA1 to hMSCs undergoing adipogenesis suppressed their ability to develop into lipid laden adipocytes. These effects were demonstrated as being reliant on both its protease and PDZ domain, and were mediated through the actions of c-Jun N-terminal kinase and matrix metalloproteinases (MMPs). The relevance of such findings with regards to HTRA1's potential influence on adipocyte function in vivo is made evident by the fact that HTRA1 and MMP-13 were readily identifiable within crown-like structures present in visceral adipose tissue samples from insulin resistant obese human subjects. These data therefore implicate HTRA1 as a negative regulator of MSC adipogenesis and are suggestive of its potential involvement in adipose tissue remodeling under pathological conditions. Stem Cells 2016;34:1601-1614. PMID:26864869

  7. Characterization of adhesive interactions between human endothelial cells and megakaryocytes.

    Avraham, H; Cowley, S; Chi, S. Y.; Jiang, S.; Groopman, J E

    1993-01-01

    Cell-cell adhesion is essential for many immunological functions and is believed to be important in the regulation of hematopoiesis. Adhesive interactions between human endothelial cells and megakaryocytes were characterized in vitro using the CMK megakaryocytic cell line as well as marrow megakaryocytes. Although there was no adhesion between unactivated human umbilical vein endothelial cells (HUVEC) and megakaryocytes, treatment of HUVEC with inflammatory cytokines such as IL-1 beta, tumor ...

  8. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).

    Martinez-Nunez, Rocio T; Louafi, Fethi; Friedmann, Peter S; Sanchez-Elsner, Tilman

    2009-06-12

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We establish that human PU.1 is a direct target for miR-155 and localize the target sequence for miR-155 in the 3'-untranslated region of PU.1. Also, overexpression of miR-155 in the THP1 monocytic cell line decreases PU.1 protein levels and DC-SIGN at both the mRNA and protein levels. We prove a link between the down-regulation of PU.1 and reduced transcriptional activity of the DC-SIGN promoter, which is likely to be the basis for its reduced mRNA expression, after miR-155 overexpression. Finally, we show that, by reducing DC-SIGN in the cellular membrane, miR-155 is involved in regulating pathogen binding as dendritic cells exhibited the lower binding capacity for fungi and HIV protein gp-120 when the levels of miR-155 were higher. Thus, our results suggest a mechanism by which miR-155 regulates proteins involved in the cellular immune response against pathogens that could have clinical implications in the way pathogens enter the human organism. PMID:19386588

  9. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity

    Harada, Hisashi; Quearry, Bonnie; Ruiz-Vela, Antonio; Korsmeyer, Stanley J.

    2004-01-01

    The “BH3-only” proapoptotic BCL-2 family members initiate the intrinsic apoptotic pathway. A small interfering RNA knockdown of BIM confirms this BH3-only member is important for the cytokine-mediated homeostasis of hematopoietic cells. We show here that the phosphorylation status of BIM controls its proapoptotic activity. IL-3, a hematopoietic survival factor, induces extracellular signal-regulated kinase/mitogen-activated protein kinase-mediated phosphorylation of BIM on three serine sites ...

  10. Tissue adhesives in otorhinolaryngology

    Schneider, Gerlind

    2009-01-01

    Full Text Available The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones. But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use.

  11. Handbook of adhesion

    Packham, D E

    2006-01-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require.This second edition includ

  12. Lactobacillus Adhesion to Mucus

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  13. Adhesion of Lunar Dust

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  14. Leukocyte Adhesion Deficiency (LAD)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  15. Management of adhesive capsulitis

    Neviaser, Andrew

    2015-01-01

    Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive cri...

  16. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering.

    Stephanie J Ellis

    2014-11-01

    Full Text Available Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.

  17. The influence of tobacco smoking on adhesion molecule profiles

    Palmer RM

    2002-01-01

    Full Text Available Abstract Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein.

  18. Electrically Conductive Epoxy Adhesives

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  19. EspO1-2 regulates EspM2-mediated RhoA activity to stabilize formation of focal adhesions in enterohemorrhagic Escherichia coli-infected host cells.

    Tomoko Morita-Ishihara

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC Sakai strain encodes two homologous type III effectors, EspO1-1 and EspO1-2. These EspO1s have amino acid sequence homology with Shigella OspE, which targets integrin-linked kinase to stabilize formation of focal adhesions (FAs. Like OspE, EspO1-1 was localized to FAs in EHEC-infected cells, but EspO1-2 was localized in the cytoplasm. An EHEC ΔespO1-1ΔespO1-2 double mutant induced cell rounding and FA loss in most of infected cells, but neither the ΔespO1-1 nor ΔespO1-2 single mutant did. These results suggested that EspO1-2 functioned in the cytoplasm by a different mechanism from EspO1-1 and OspE. Since several type III effectors modulate Rho GTPase, which contributes to FA formation, we investigated whether EspO1-2 modulates the function of these type III effectors. We identified a direct interaction between EspO1-2 and EspM2, which acts as a RhoA guanine nucleotide exchange factor. Upon ectopic co-expression, EspO1-2 co-localized with EspM2 in the cytoplasm and suppressed EspM2-mediated stress fiber formation. Consistent with these findings, an ΔespO1-1ΔespO1-2ΔespM2 triple mutant did not induce cell rounding in epithelial cells. These results indicated that EspO1-2 interacted with EspM2 to regulate EspM2-mediated RhoA activity and stabilize FA formation during EHEC infection.

  20. Scientific Opinion on the substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract pursuant to Article 14 of Regulation (EC No 1924/2006

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2014-05-01

    Full Text Available Following an application from Jemo-pharm A/S, submitted pursuant to Article 14 of Regulation (EC No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract. The food that is the subject of the claim is CranMax®. The Panel considers that the food, CranMax®, which is the subject of the claim is sufficiently characterised in relation to the claimed effect. The Panel considers that reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract is a beneficial physiological effect. One human study from which conclusions could be drawn for the scientific substantiation of the claim did not show an effect of CranMax® on reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract. The Panel concludes that a cause and effect relationship has not been established between the consumption of CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract.

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  2. Coating Reduces Ice Adhesion

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  3. Pathogenesis of postoperative adhesion formation

    Hellebrekers, B.W.J.; Kooistra, T.

    2011-01-01

    Background: Current views on the pathogenesis of adhesion formation are based on the "classical concept of adhesion formation", namely that a reduction in peritoneal fibrinolytic activity following peritoneal trauma is of key importance in adhesion development. Methods: A non-systematic literature s

  4. 78 FR 41840 - Indirect Food Additives: Adhesives and Components of Coatings

    2013-07-12

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 Indirect Food Additives: Adhesives and... promulgation of such regulations.'' Our regulations specific to administrative actions for food additives....gov . List of Subjects in 21 CFR Part 175 Adhesives, Food additives, Food packaging. Therefore,...

  5. Cell adhesion molecules in the central nervous system

    Togashi, Hideru; Sakisaka, Toshiaki; Takai, Yoshimi

    2009-01-01

    Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those ...

  6. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    Cai, J.-P.; Harris, K.; Chin, Y.H. [Miami Univ., FL (United States). School of Medicine; Falanga, V.; Taylor, J.R. [Miami Univ., FL (United States). School of Medicine]|[Miami Veteran Affairs Medical Center, Miami, FL (United States)

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author).

  7. Management of adhesive capsulitis

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  8. Syndecans and cell adhesion

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  9. Ceramic microstructure and adhesion

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  10. Mechanosensitive components of integrin adhesions: Role of vinculin.

    Atherton, Paul; Stutchbury, Ben; Jethwa, Devina; Ballestrem, Christoph

    2016-04-10

    External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell-matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli. PMID:26607713

  11. Signaling transduction pathways involved in basophil adhesion and histamine release

    2006-01-01

    Background Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles of β1 andβ2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK)1/2 in basophil adhesion and histamine release (HR). Methods Basophils (purity of 10%-50%) were preincubated with anti-CD29 or anti-CD18 blocking antibodies before used for adhesion study. Basophils were preincubated with the pharmacological inhibitors wortmannin, PP1, PD98059 before used for adhesion and HR study. Cell adherence to bovine serum albumin (BSA) or fibronectin (Fn) was monitored using cell associated histamine as a basophil marker and the histamine was measured by the glass fiber assay.Results Basophil spontaneous adhesion to Fn was inhibited by anti-CD29. Interleukin (IL)-3, granulocyte/macrophage colony stimulating factor (GM-CSF) induced adhesion to BSA was inhibited by anti-CD18. Wortmannin at 1 μmol/L and PP1 at 20 μmol/L strongly interfered with, whereas PD98059 at 50 μmol/L weakly inhibited basophil spontaneous adhesion to Fn. One μmol/L wortmannin strongly inhibited IL-3, IL-5, GM-CSF and anti-IgE induced adhesion to BSA. PP1 at 20 μmol/L partly inhibited anti-IgE induced adhesion. Fifty μmol/L PD98059 marginally inhibited IL-5, weakly inhibited anti-IgE, partly inhibited GM-CSF induced adhesion. Wortmannin, PP1 and PD98059 inhibited anti-IgE (1:100 or 1:1000) induced basophil HR in a dose dependent manner. They inhibited calcium ionophore A23187 (10 μmol/L, 5 μmol/L) induced basophil HR in a dose dependent manner, but to different extend with PP1 being the most efficient.Conclusions Basophil spontaneous adhesion to Fn is mediated by β1-integrins whereas cytokine induced adhesion

  12. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  13. Characterization of adhesively bonded joints using bulk adhesive properties

    Kon, Haruhiko

    1991-01-01

    Though using bulk adhesive properties to predict adhesively bonded joint response has yet to be proven infallible, based upon the success of previous works, this effort attempts to shed some light on the stresses present in a typical automotive bonded joint. Adhesive material properties obtained in previous works were used in a finite element analysis of a simulated automotive joint to predict the stresses in that joint. The automotive joint analyzed was a simplified repr...

  14. Scientific Opinion on the substantiation of a health claim related to proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells pursuant to Article 13(5 of Regulation (EC No 1924/2006

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-07-01

    Full Text Available Following an application from Pharmatoka, submitted pursuant to Article 13.5 of Regulation (EC No 1924/2006 via the Competent Authority of France, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to a Urell® product containing cranberry (Vaccinium macrocarpon juice powder standardised for proanthocyanidins (PAC content and bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells. The food that is the subject of the health claim is PAC in Urell®. The Panel considers that the food constituent, PAC in Urell®, which is the subject of the claim, is sufficiently characterised. The Panel considers that reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells is a beneficial physiological effect. No human studies from which conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between the consumption of proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells.

  15. Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2013-01-01

    Following an application from Zambon B.V., submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial ...

  16. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    Tetens, Inge

    2013-01-01

    Following an application from Zambon B.V., submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial ...

  17. Scientific Opinion on the substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract pursuant to Article 14 of Regulation (EC) No 1924/2006

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2014-01-01

    Following an application from Jemo-pharm A/S, submitted pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract. The food that is the subject of the claim is CranMax®. The ...

  18. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract pursuant to Article 14 of Regulation (EC) No 1924/2006

    Tetens, Inge

    2014-01-01

    Following an application from Jemo-pharm A/S, submitted pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract. The food that is the subject of the claim is CranMax®. The ...

  19. Adhesive tape exfoliation

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful. In...... particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive...

  20. Polyurethane adhesive ingestion.

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  1. Syndecan proteoglycans and cell adhesion

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  2. Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5 of Regulation (EC No 1924/2006

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-02-01

    Full Text Available Following an application from Zambon B.V., submitted for authorisation of a health claim pursuant to Article 13(5 of Regulation (EC No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells. The food that is the subject of the health claim, Monurelle®, which is a combination of 120 mg cranberry (Vaccinium macrocarpon extract (including 36 mg proanthocyanidins and 60 mg of ascorbic acid, is sufficiently characterised. The claimed effect proposed by the applicant is reduction of E.coli adhesion to uroepithelial cells. The Panel considers that reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells is a beneficial physiological effect. Several health claim applications on cranberry products standardised by their proanthocyanidin content have already been evaluated by EFSA with an unfavourable outcome. The Panel notes that no studies from which conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between the consumption of Monurelle® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells.

  3. The neural cell adhesion molecule

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  4. Low toxicity aromatic diamine curing agents for adhesives

    Dorsey, G.F.

    1993-08-24

    Increasing severity of regulations for handling of hazardous materials has led to formulation of adhesives with considerably lowered toxicities for use at the Oak Ridge Y-12 Plant. Fundamental was the development of Asilamine aromatic diamines, a family of liquid aromatic diamines useful as substitutes for methylenedianiline (MDA), a widely used adhesives curing agent. The use of Asilamine has allowed us to continue operations without dealing with expensive measures for regulation of MDA as a carcinogen promulgated by the Occupational Safety and Health Administration (OSHA).

  5. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  6. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  7. Effect of adhesive thickness on adhesively bonded T-joint

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  8. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  9. Syndecans, signaling, and cell adhesion

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  10. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  11. Hyaluronan-mediated cellular adhesion

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  12. [Retention of adhesive bridges].

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  13. Effect of fibril shape on adhesive properties

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  14. Impact of oils and coatings on adhesion of structural adhesives

    Hagström, Marcus

    2015-01-01

    This is a master thesis project conducted for Scania CV AB in collaboration with Swerea Kimab. The purpose is to examine how oils and coatings on the surface affect the adhesion of adhesives. Earlier work done by Scania indicate that the amount of oil applied may have an impact on the adhesion. Substrates tested are hot dipped galvanised steel, electro galvanised. AlSi and ZnMg. Oils used are Anticorit RP 3802 that is an anti-corrosive oil and Renoform 3802 that is a drawing oil. The two adhes...

  15. Cell Adhesion, the Backbone of the Synapse: “Vertebrate” and “Invertebrate” Perspectives

    Giagtzoglou, Nikolaos; Ly, Cindy V.; Bellen, Hugo J.

    2009-01-01

    Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neu...

  16. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Neil J Shirtcliffe

    Full Text Available Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted, texture (smooth, rough or granular or wetting property (hydrophilic or hydrophobic via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  17. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  18. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling

    Ungureanu, Daniela; Wu, Jinhua; Pekkala, Tuija; Niranjan, Yashavanthi; Young, Clifford; Jensen, Ole N; Xu, Chong-Feng; Neubert, Thomas A; Skoda, Radek C; Hubbard, Stevan R; Silvennoinen, Olli

    2011-01-01

    Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased...... JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling...... mechanism to control basal activity and signaling of JAK2....

  19. Marine Bioinspired Underwater Contact Adhesion.

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  20. Adhesion and multi-materials

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  1. The design of underwater superoleophobic Ni/NiO microstructures with tunable oil adhesion

    Zhang, Enshuang; Cheng, Zhongjun; Lv, Tong; Li, Li; Liu, Yuyan

    2015-11-01

    Controlling oil adhesion in water is a fundamental issue in many practical applications for surfaces. Currently, almost all studies on underwater oil adhesion control are concentrated on regulating surface chemistry on polymer surfaces, and structure-dependent underwater oil adhesion is still rare, especially on inorganic materials. Herein, we report a series of underwater superoleophobic Ni/NiO surfaces with controlled oil adhesions by combining electro-deposition and heating techniques. The adhesive forces between an oil droplet and the surfaces can be adjusted from an extremely low (less than 1 μN) to a very high value (about 60 μN), and the tunable effect can be attributed to different wetting states that result from different microstructures on the surfaces. Moreover, the oil-adhesion controllability for different types of oils was also analyzed and the applications of the surface including oil droplet transportation and self-cleaning were discussed. The results reported herein provide a new feasible method for fabrication of underwater superoleophobic surfaces with controlled adhesion, and improve the understanding of the relationship between surface microstructures, adhesion, and the fabrication principle of tunable oil adhesive surfaces.Controlling oil adhesion in water is a fundamental issue in many practical applications for surfaces. Currently, almost all studies on underwater oil adhesion control are concentrated on regulating surface chemistry on polymer surfaces, and structure-dependent underwater oil adhesion is still rare, especially on inorganic materials. Herein, we report a series of underwater superoleophobic Ni/NiO surfaces with controlled oil adhesions by combining electro-deposition and heating techniques. The adhesive forces between an oil droplet and the surfaces can be adjusted from an extremely low (less than 1 μN) to a very high value (about 60 μN), and the tunable effect can be attributed to different wetting states that result from

  2. Focal Adhesion Kinases in Adhesion Structures and Disease

    Pierre P. Eleniste

    2012-01-01

    Full Text Available Cell adhesion to the extracellular matrix (ECM is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.

  3. Focal adhesion kinases in adhesion structures and disease.

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  4. Photovoltaic module with adhesion promoter

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  5. Adhesives from modified soy protein

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  6. Focal Adhesion Kinases in Adhesion Structures and Disease

    Pierre P. Eleniste; Angela Bruzzaniti

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organiza...

  7. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  8. Denture Adhesives - A Literature Review

    Sudhanshu Shekhar

    2016-06-01

    Full Text Available Successful complete denture treatment combines exemplary technique, effective patient rapport and education and familiarity with all possible management options to provide the highest degree of patient satisfaction. Dentists need to know about denture adhesives to be able to identify those patients who actually need them and to be able to educate them about the advantages, disadvantages and correct use of these products. Denture adhesives are commercially available nontoxic, soluble materials that when applied to the tissue surface of dentures enhance their retention, stability and performance. They were introduced in dentistry in the late 18th century. The first patent related to adhesives was issued in 1913, followed in the 1920’s and 1930’s. The purpose of the use of denture adhesives can be described as to subjectively benefit denture-wearers with improved stability, retention and comfort of their dentures, and with improved incisal force, masticatory ability, and confidence.

  9. Laser surface modification and adhesion

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  10. Notch-Mediated Cell Adhesion

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  11. Adhesive capsulitis: a case report

    Kazemi, Mohsen

    2000-01-01

    Adhesive capsulitis or frozen shoulder is an uncommon entity in athletes. However, it is a common cause of shoulder pain and disability in the general population. Although it is a self limiting ailment, its rather long, restrictive and painful course forces the affected person to seek treatment. Conservative management remains the mainstay treatment of adhesive capsulitis. This includes chiropractic manipulation of the shoulder, therapeutic modalities, mobilization, exercise, soft tissue ther...

  12. A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis

    Chen, Xuejun; Koh, Eunjin; Yoder, Michael; Gumbiner, Barry M.

    2009-01-01

    Background Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFβ signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. Principal Findings We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, ...

  13. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  14. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons

    Vladimir eSytnyk

    2016-02-01

    Full Text Available Cell adhesion molecules of the immunoglobulin superfamily (IgSF including the neural cell adhesion molecule (NCAM and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  15. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  16. Innovative Electrostatic Adhesion Technologies

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  17. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development

    Woo, Jooyeon; Kwon, Seok-Kyu; Nam, Jungyong; Choi, Seungwon; Takahashi, Hideto; Krueger, Dilja; Park, Joohyun; Lee, Yeunkum; Bae, Jin Young; Lee, Dongmin; Ko, Jaewon; Kim, Hyun; Kim, Myoung-Hwan; Bae, Yong Chul; Chang, Sunghoe

    2013-01-01

    Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons an...

  18. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  19. Characterization of neutrophil adhesion to different titanium surfaces

    V Campos; R C N Melo; L P Silva; E N Aquino; M S Castro; W Fontes

    2014-02-01

    Although titanium (Ti) is known to elicit a foreign body response when implanted into humans, Ti implant healing resembles normal wound healing in terms of inflammatory cell recruitment and inflammation persistence. Rough implant surfaces may present better conditions for protein adsorption and for the adhesion of platelets and inflammatory cells such as neutrophils. Implanted biomedical devices initially interact with coagulating blood; however, direct contact between the oxide layer of the implant and neutrophils has not been completely described. The aim of the present study is to compare the behaviours of neutrophils in direct contact with different Ti surfaces. Isolated human neutrophils were placed into contact with Ti discs, which had been rendered as `smooth' or `rough', following different surface treatments. Scanning electron microscopy and flow cytometry were used to measure cell adhesion to the surfaces and exposure of membrane proteins such as CD62L and CD11b. Topographic roughness was demonstrated as higher for SLA treated surfaces, measured by atomic force microscopy and elemental analysis was performed by energy dispersive X-ray, showing a similar composition for both surfaces. The adhesion of neutrophils to the `rough' Ti surface was initially stronger than adhesion to the `smooth' surface. The cell morphology and adhesion marker results revealed clear signs of neutrophil activation by either surface, with different neutrophil morphological characteristics being observed between the two surface types. Understanding the cellular mechanisms regulating cell–implant interactions should help researchers to improve the surface topography of biomedical implant devices.

  20. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  1. Lignin-Furfural Based Adhesives

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  2. MIGRESIVES: A RESEARCH PROJECT ON MIGRATION FROM ADHESIVES IN FOOD PACKAGING MATERIALS IN SUPPORT OF EUROPEAN LEGISLATION AND STANDARDISATION

    STOERMER Angela; Franz, Roland

    2009-01-01

    Abstract Most food packages and food contact materials are manufactured using adhesives. The EU regulates all food contact materials, as their constituents may not contaminate food and endanger consumer?s health. In contrary to plastics which are regulated by positive lists of authorised ingredients, adhesives have not yet a specific regulation. The MIGRESIVES project wants to elaborate a scientific global risk assessment approach to meet current general EU regulatory requirements ...

  3. Computational Chemistry of Adhesive Bonds

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  4. Adhesion of biocompatible and biodegradable micropatterned surfaces

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  5. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  6. Film adhesion in amorphous silicon solar cells

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  7. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  8. Cytotoxic-T-Lymphocyte Antigen 4 Receptor Signaling for Lymphocyte Adhesion Is Mediated by C3G and Rap1

    Kloog, Yoel; Mor, Adam

    2014-01-01

    T-lymphocyte adhesion plays a critical role in both inflammatory and autoimmune responses. The small GTPase Rap1 is the key coordinator mediating T-cell adhesion to endothelial cells, antigen-presenting cells, and virus-infected cells. We describe a signaling pathway, downstream of the cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor, leading to Rap1-mediated adhesion. We identified a role for the Rap1 guanine nucleotide exchange factor C3G in the regulation of T-cell adhesion and showed th...

  9. Mechanical strength of adhesive-bonding

    In order to meet the prospective application of a GFRP dewar for energy storage system using a large superconducting magnet, the dewar with a complex structure together with a large size are desired to be made. It is difficult to manufacture such a type of the dewars in one united body. These dewars can be manufactured by the adhesive-bonding method. In the present study, the mechanical strength of adhesive-bonding is studied from this point of view. The mechanical strength of the adhesive-bonding has been investigated by the static tensile method and the impact loading method using small test samples. From the static tensile tests, the following results have been obtained. For the sample adhesive-bonded with insertion structure, the mechanical strength of the adhesive-bonding is found to depend on the adhesives used and on the difference of the thermal contraction between the materials which are adhesive-bonded each other. Using a soft adhesive as Araldite 106, the mechanical strength of the adhesive-bonding is small at room temperature, but it remarkably increases at cryogenic temperatures. For a hard adhesive as Araldite 103 and Stycast 2850 FT, it is large at room temperature, and it further increases at cryogenic temperatures. The dewar has to be strong enough not only at cryogenic temperatures but also at room temperature. A soft adhesive is not suitable for constructing the dewar. For the sample adhesive-bonded with screwing structure, the mechanical strength of the adhesive-bonding depends on the shear strength of GFRP itself. The mechanical strength of the adhesive-bonded part increases with the decreasing temperature. Therefore, this screwing method is advantageous for the construction of the dewar. According to the impact loading tests, it is found that the adhesive-bonding of screwing structure is not brittle at cryogenic temperature. This is due to inherent property of GFRP. (J.P.N.)

  10. Homophilic interaction of the L1 family of cell adhesion molecules

    Wei, Chun Hua; Ryu, Seong Eon

    2012-01-01

    Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and...

  11. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase

    Jun Feng; Blake Mertz

    2015-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through confor...

  12. Gecko adhesion pad: a smart surface?

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  13. Gecko adhesion pad: a smart surface?

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  14. Gecko adhesion pad: a smart surface?

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  15. Adhesive mechanisms in cephalopods: a review.

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  16. Bacterial adhesion and biofilms on surfaces

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  17. Electrochemical Corrosion of Adhesive Joints

    Vondrák, Jiří

    Vol. 2. Brno: Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 10.1-10.2 ISBN 80-214-1615-7. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] Institutional research plan: CEZ:AV0Z4032918 Keywords : adhesive * joints * corrosion Subject RIV: CG - Electrochemistry

  18. Underwater adhesion: The barnacle way

    Khandeparker, L.; Anil, A.C.

    surrounded by calcium carbonate (calcite). It has been suggested that the anionic groups on the matric proteins may serve as sites for nucleation during calcification [47]. The disruption in such interactions can thus bring about hindrance during... of bones, nerves and blood vessels in an aqueous environment and dental filling without the need for drilling [83]. It has been suggested that with the advances in biomimetics, future dentin adhesive monomers may contain domains derived from...

  19. Culinary Medicine-Jalebi Adhesions.

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  20. [Adhesion to the antiretroviral treatment].

    Carballo, M

    2004-12-01

    The objective of the therapy antiretroviral is to improve the quality of life and the survival of the persons affected by the VIH through the suppression of the viral replication. Nevertheless one of the present problems is the resistant apparition of stumps to the new medicines caused by an incorrect management of the therapeutic plan; by an incorrect adhesion of the personal processing. Since the therapeutic success will depend, among others factors, and of important form of the degree of implication and commitment of the person affected, is a matter of identifying prematurely the possible situations concomitants (personal factors and of addiction, psycho-social, related to the processing and its possible secondary effects, associated factors to the own illness or even to the relation professional-patient) that can interfere in a correct adhesion. For it is necessary of the interaction multidisciplinary of the welfare team, and fundamental the work of nursing at the moment of to detect the possible determinant factors and the intervention definition of strategies arrived at by consensus with the own person, that they promote it or it improve. The quantification of the degree of adhesion (measure in %) values through various direct and indirect methods and should keep in mind in it takes of therapeutic decisions being able to come to be advised the suspension of the processing until obtaining to conscience to the person affected of the importance of a correct therapeutic compliance. PMID:15672996

  1. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances. PMID:27362920

  2. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    Shirtcliffe, Neil; McHale, Glen; Newton, Michael

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and th...

  3. Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives.

    Marvi, Hamidreza; Song, Sukho; Sitti, Metin

    2015-09-22

    Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them. PMID:26322396

  4. The Rheological Property of Potato Starch Adhesives

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  5. Lignin-Furfural Based Adhesives

    Prajakta Dongre; Mark Driscoll; Thomas Amidon; Biljana Bujanovic

    2015-01-01

    Lignin recovered from the hot-water extract of sugar maple (Acer saccharum) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of a...

  6. Lignin-Furfural Based Adhesives

    Prajakta Dongre; Mark Driscoll; Thomas Amidon; Biljana Bujanovic

    2015-01-01

    Lignin recovered from the hot-water extract of sugar maple ( Acer saccharum ) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of...

  7. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  8. Syndecan-4 and focal adhesion function

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  9. Tuning the kinetics of cadherin adhesion

    Sivasankar, Sanjeevi

    2013-01-01

    Cadherins are Ca2+ dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particu...

  10. Factors influencing bacterial adhesion to contact lenses

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  11. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the di...

  12. Nucleation and growth of cadherin adhesions

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  13. A role for cell adhesion in beryllium-mediated lung disease

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  14. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  15. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration

    Toshiyuki Murai

    2012-01-01

    Full Text Available Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.

  16. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. PMID:26952425

  17. The evaluation of p,p′-DDT exposure on cell adhesion of hepatocellular carcinoma

    Graphical abstract: - Highlights: • Low doses p,p′-DDT exposure disrupts cell–cell adhesion and cell–matrix adhesion in HepG2 cells. • Both oxidative stress and JAK/STAT3 pathway are activated in p,p′-DDT-treated HepG2 cells. • The stimulation of JAK/STAT3 pathway is mediated by oxidative stress. • p,p′-DDT regulates adhesion molecules via the JAK/STAT3 pathway. • p,p′-DDT stimulates JAK/STAT3 signal pathway and disrupts the expressions of cell adhesion molecules in nude mice models. - Abstract: Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p′-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p′-DDT, exposing HepG2 cells for 6 days, decreased cell–cell adhesion and elevated cell–matrix adhesion. Strikingly, p,p′-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p′-DDT-induced effects. p,p′-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p′-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p′-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p′-DDT profoundly promotes the adhesion process by decreasing cell–cell adhesion and inducing cell

  18. Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells

    Zhu Minmin

    2013-01-01

    Full Text Available Abstract Background Hyperglycemia could induce oxidative stress, activate transcription factor nuclear factor kappa B (NF-κB, up-regulate expression of endothelial adhesion molecules, and lead to endothelial injury. Studies have indicated that propofol could attenuate oxidative stress and suppress NF-κB activation in some situations. In the present study, we examined whether and how propofol improved high glucose-induced up-regulation of endothelial adhesion molecules in human umbilical vein endothelial cells (HUVECs. Methods Protein expression of endothelial adhesion molecules, NF-κB, inhibitory subunit of NF-κBα (IκBα, protein kinase Cβ2 (PKCβ2, and phosphorylation of PKCβ2 (Ser660 were measured by Western blot. NF-κB activity was measured by electrophoretic mobility shift assay. PKC activity was measured with SignaTECT PKC assay system. Superoxide anion (O2.- accumulation was measured with the reduction of ferricytochrome c assay. Human peripheral mononuclear cells were prepared with Histopaque-1077 solution. Results High glucose induced the expression of endothelial selectin (E-selectin, intercellular adhesion molecule 1 (ICAM-1, vascular cell adhesion molecule 1 (VCAM-1, and increased mononuclear-endothelial adhesion. High glucose induced O2.- accumulation, PKCβ2 phosphorylation and PKC activation. Further, high glucose decreased IκBα expression in cytoplasm, increased the translocation of NF-κB from cytoplasm to nuclear, and induced NF-κB activation. Importantly, we found these high glucose-mediated effects were attenuated by propofol pretreatment. Moreover, CGP53353, a selective PKCβ2 inhibitor, decreased high glucose-induced NF-κB activation, adhesion molecules expression, and mononuclear-endothelial adhesion. Conclusion Propofol, via decreasing O2.- accumulation, down-regulating PKCβ2 Ser660 phosphorylation and PKC as well as NF-κB activity, attenuated high glucose-induced endothelial adhesion molecules expression

  19. The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFκB and is involved in cell adhesion and migration

    Cornelia Peeters, Miriam; Fokkelman, Michiel; Boogaard, Bob;

    2015-01-01

    Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which origin...... the adhesion GPCR ADGRG2 is critically involved in the adhesion and migration of certain breast cancer cells through mechanisms including a non-canonical NFkB pathway and that ADGRG2 could be a target for treatment of certain types of cancer.......Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which...... activity through the adhesion- and migration-related transcription factors serum response element (SRE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) presumably via coupling to Gα12/13 and Gαq. However, activation of these two pathways appears to occur through distinct molecular...

  20. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  1. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  2. P70 S6 kinase mediates tau phosphorylation and synthesis

    Pei, Jin-Jing; An, Wen-Lin; Zhou, Xin-Wen;

    2006-01-01

    total S6 and tau but not global proteins in SH-SY5Y cells. The requirement of p70S6K activation was confirmed in the SH-SY5Y cells that overexpress wild-type htau40. Level of p-p70S6K (T421/S424) was only significantly correlated with p-tau at S262, S214, and T212, but not T212/S214, in Alzheimer......Currently, we found that the 70-kDa p70 S6 kinase (p70S6K) directly phosphorylates tau at S262, S214, and T212 sites in vitro. By immunoprecipitation, p-p70S6K (T421/S424) showed a close association with p-tau (S262 and S396/404). Zinc-induced p70S6K activation could only upregulate translation of......'s disease (AD) brains. These suggested that p70S6K might contribute to tau related pathologies in AD brains....

  3. Regulating Rho GTPases and their regulators.

    Hodge, Richard G; Ridley, Anne J

    2016-08-01

    Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases. PMID:27301673

  4. Tenascins and the importance of adhesion modulation.

    Chiquet-Ehrismann, Ruth; Tucker, Richard P

    2011-05-01

    Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors. PMID:21441591

  5. Tenascins and the Importance of Adhesion Modulation

    Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2011-01-01

    Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors. PMID:21441591

  6. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Xuejun Chen

    Full Text Available BACKGROUND: Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS: We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain. CONCLUSIONS/SIGNIFICANCE: PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  7. Focal adhesions and cell-matrix interactions

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of...

  8. Synthesis of melamine-glucose resin adhesive

    CHEN; Shuanhu; ZHANG; Lei

    2005-01-01

    The synthesis of a novel melamine-glucose adhesive that is similar to urea-formaldehyde adhesive is reported in this paper. The conditions of synthesis, such as the initial pH, the quantity of catalyst, the temperature of reaction, the percentage of each reactant and the time of reaction, were optimized by using the orthogonal experimental method.

  9. Adhesion force studies of nanofibers and nanoparticles.

    Xing, Malcolm; Zhong, Wen; Xu, Xiuling; Thomson, Douglas

    2010-07-20

    Surface adhesion between nanofibers and nanoparticles has attracted attention for potential biomedical applications, but the measurement has not been reported. Adhesion forces were measured using a polystyrene (PS) nanoparticle attached to an atomic force microscopy (AFM) tip/probe. Electrospun PS nanofibers of different diameters were tapped with the probe to study the effect of fiber diameters on adhesion force. Both AFM experiments and numerical models suggest that the adhesion force increases with increased fiber diameters. Numerical models further demonstrated that local deformation of the fiber surface, including the flattening of surface asperities and the nanofiber wrapping around the particle during contact, may have a significant impact on the adhesion force. The adhesion forces are in the order of 100 nN, much smaller than the adhesion forces of the gecko foot hair, but much larger than that of the receptor-ligand pair, antibody-antigen pair, and single-stranded DNA from a substrate. Adhesion forces of nanofibers with roughness were predicted by numerical analysis. This study is expected to provide approaches and information useful in the design of nanomedicine and scaffold based on nanofibers for tissue engineering and regenerative medicine. PMID:20552953

  10. Adhesion Between Poly(dimethylsiloxane) Layers

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel...

  11. Mechanisms of temporary adhesion in benthic animals

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  12. Evaluation of progestogens for postoperative adhesion prevention.

    Beauchamp, P J; Quigley, M M; Held, B

    1984-10-01

    Progesterone (P) has been shown to have potent antiinflammatory and immunosuppressive properties. Previous reports have suggested that the use of P decreases postoperative adhesion formation. To further evaluate the role of pharmacologic doses of progestogens in adhesion prevention, 42 mature New Zealand White rabbits underwent standardized injuries to the uterine horns, fimbriae, and pelvic peritoneum and received one of six treatments. Group S had intraperitoneal placement of normal saline (0.9%); group H received intraperitoneal placement of 32% dextran 70; group IM-P received intramuscular P-in-oil 10 days before and after laparotomy in addition to intraperitoneal saline; group IP-P had intraperitoneal placement of an aqueous P suspension; group DP received medroxyprogesterone acetate intraperitoneally; and group C received no intramuscular or intraperitoneal adhesion-prevention agents. The animals were sacrificed 6 weeks after laparotomy, and the adhesions were scored. Intraperitoneal saline (group S) significantly reduced the amount of adhesions when compared with the control group (C) (P less than 0.05). No significant difference was observed when group S was compared with group H. Intramuscular P added to saline (group IM-P) did not cause further reduction in adhesions when compared with group S. Both group IP-P and group DP had more adhesions than did group S (P less than 0.01). These data fail to support previous claims regarding adhesion prevention by the use of locally or parenterally administered progestogens. PMID:6237937

  13. Recurrent spinal adhesive arachnoiditis: a case report

    James Pitágoras de Mattos

    1988-03-01

    Full Text Available Spinal adhesive arachnoiditis is not an uncommon disease, usually having a monophasic course. We studied an atypical patient with recurrent spinal adhesive arachnoiditis nine years after intrathecal anesthesia and the first attack of the disease. Also noteworthy was the favorable evolution after surgery.

  14. Syndecans: synergistic activators of cell adhesion

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  15. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  16. Vacuum nanogap formation in multilayer structures by an adhesion-controlled process

    Taliashvili, Z. [Tbilisi State University, Chavchavadze Ave. 13, 0179 Tbilisi, Georgia (United States); Tavkhelidze, A., E-mail: avtotav@gmail.com [Ilia State University, Cholokashvili Ave. 3/5, 0162 Tbilisi, Georgia (United States); Jangidze, L. [Tbilisi State University, Chavchavadze Ave. 13, 0179 Tbilisi, Georgia (United States); Blagidze, Y. [Institute of Cybernetics, S. Euli St. 5, 0186 Tbilisi, Georgia (United States)

    2013-09-02

    In this study, we regulate adhesion between thin metal films to produce a large-area vacuum nanogap for electron tunneling. Multilayer structures comprising thin metal films with adjustable adhesion were fabricated. The Cu/Ag/Ti/Si structures were grown on Si substrates and include thin Ti and Ag films and a thick Cu layer. The Ag and Ti films were deposited on the Si substrate under vacuum, and a thick Cu layer was subsequently electroplated onto the Ag surface. Later, the sandwich was separated and a vacuum nanogap was opened to produce two Ag/Cu and Ti/Si conformal electrodes. The adhesion strength between the Ti and Ag films was precisely adjusted by exposing the structures to dry O{sub 2} after Ti growth but before Ag growth. The resulting adhesion needed to be sufficiently high to allow electroplating of Cu and sufficiently low to allow subsequent separation. Either heating or cooling was used to separate the sandwiches. The structures separated as a result of the different thermal expansion parameters of the Si and Cu electrodes and the low adhesion between the Ti and Ag layers. After separation, the Ag and Ti surfaces were analyzed optically using a Michelson interferometer. Adhesion regulation and optimization of the electroplating regime allowed fabrication of two conformal electrodes with a nanogap smaller than 5 nm and an area larger than 7 mm{sup 2}. Such electrodes can be used for efficient energy conversion and cooling in the mixed thermionic and thermotunneling regime. - Highlights: • Cu/Ag/Ti/Si sandwiches were grown to obtain vacuum nanogap tunnel junctions. • Adhesion between Ag and Ti films was regulated with high precision by O{sub 2} flow. • Sandwiches were separated along the Ag/Ti interface. • Electroplating regimes for a Cu electrode were established. • A large-area vacuum nanogap tunnel junction was obtained.

  17. Amplification of P. falciparum Cytoadherence through induction of a pro-adhesive state in host endothelium.

    Yang Wu

    Full Text Available This study examined the ability of P.falciparum-infected erythrocytes (IE to induce a pro-adhesive environment in the host endothelium during malaria infection, prior to the systemic cytokine activation seen in the later phase of disease. Previous work had shown increases in receptor levels but had not measured to actual impact on IE binding. Using a co-culture system with a range of endothelial cells (EC and IE with different cytoadherent properties, we have characterised the specific expression of adhesion receptors and subsequent IE binding by FACS and adhesion assays. We have also examined the specific signalling pathways induced during co-culture that are potentially involved in the induction of receptor expression. The results confirmed that ICAM-1 is up-regulated, albeit at much lower levels than seen with TNF activation, in response to co-culture with infected erythrocytes in all three tissue endothelial cell types tested but that up-regulation of VCAM-1 is tissue-dependent. This small increase in the levels of EC receptors correlated with large changes in IE adhesion ability. Co-culture with either RBC or IE increased the potential of subsequent adhesion indicating priming/modulation effects on EC which make them more susceptible to adhesion and thereby the recruitment of IE. Trypsin surface digestion of IE and the use of a Pfsbp1-knockout (ko parasite line abrogated the up-regulation of ICAM-1 and reduced IE binding to EC suggesting that PfEMP-1 and other molecules exported to the IE surface via the PfSBP1 pathway are major mediators of this phenotype. This was also supported by the higher induction of EC adhesion receptors by adherent IE compared to isogenic, non-adherent lines.

  18. Critical length scale controls adhesive wear mechanisms

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  19. Coating to enhance metal-polymer adhesion

    Parthasarathi, A.; Mahulikar, D. [Olin Metals Research Laboratories, New Haven, CT (United States)

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  20. Dynamic analysis of two adhesively bonded rods

    Kenneth L. Kuttler

    2009-07-01

    Full Text Available This work presents two models for the dynamic analysis of two rods that are adhesively bonded. The first model assumes that the adhesive is an elasto-plastic material and that complete debonding occurs when the stress reaches the yield limit. In the second model the degradation of the adhesive is described by the introduction of material damage. Failure occurs when the material is completely damaged, or the damage reaches a critical floor value. Both models are analyzed and the existence of a weak solution is established for the model with damage. In the quasistatic case, a new condition for adhesion is found as the limit of the adhesive thickness tends to zero.

  1. Adhesives for orthodontic bracket bonding

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  2. Multibody simulation of adhesion pili

    Zakrisson, Johan; Servin, Martin; Axner, Ove; Lacoursiere, Claude; Andersson, Magnus

    2014-01-01

    We present a coarse grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymers force-extension response. With building blocks representing individual subunits the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include both the effects of unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and the results in this work give enhanced understanding of how a pilus unwinds under action of external forces and provide new perspective of th...

  3. Surface tension driven shaping of adhesive microfluidic channel walls

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy...

  4. Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes.

    Shin, Hyunjun; Lee, Mi Nam; Choung, Jin Seung; Kim, Sanghee; Choi, Byung Hyune; Noh, Minsoo; Shin, Jennifer H

    2016-08-01

    The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661891

  5. High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor

    Lathia, Justin D; Li, Meizhang; Sinyuk, Maksim;

    2014-01-01

    Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC) adhesion, we performed a flow...

  6. Interplay between shear stress and adhesion on neutrophil locomotion.

    Smith, Lee A; Aranda-Espinoza, Helim; Haun, Jered B; Hammer, Daniel A

    2007-01-15

    Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation. PMID:17071667

  7. Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions.

    Natale, Carlo F; Ventre, Maurizio; Netti, Paolo A

    2014-03-01

    Material features proved to exert a potent influence on cell behaviour in terms of adhesion, migration and differentiation. In particular, biophysical and biochemical signals on material surfaces are able to affect focal adhesion distribution and cytoskeletal assemblies, which are known to regulate signalling pathways that ultimately influence cell fate and functions. However, a general, unifying model that correlates cytoskeletal-generated forces with genetic events has yet to be developed. Therefore, it is crucial to gain a better insight into the material-cytoskeleton crosstalk in order to design and fabricate biomaterials able to govern cell fate more accurately. In this work, we demonstrate that confining focal adhesion distribution and growth dramatically alters the cytoskeleton's structures and dynamics, which in turn dictate cellular and nuclear shape and polarization. MC3T3 preosteoblasts were cultivated on nanograted polydimethylsiloxane substrates and a thorough quantification - in static and dynamic modes - of the morphological and structural features of focal adhesions and cytoskeleton was performed. Nanoengineered surfaces provided well-defined zones for focal adhesions to form and grow. Unique cytoskeletal structures spontaneously assembled when focal adhesions were confined and, in fact, they proved to be very effective in deforming the nuclei. The results here presented provide elements to engineer surfaces apt to guide and control cell behaviour through the material-cytoskeleton-nucleus axis. PMID:24388800

  8. Adhesion in ceramics and magnetic media

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  9. Dangling chain elastomers as repeatable fibrillar adhesives.

    Sitti, Metin; Cusick, Brian; Aksak, Burak; Nese, Alper; Lee, Hyung-il; Dong, Hongchen; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2009-10-01

    This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs. PMID:20355863

  10. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  11. Adhesion of Dental Materials to Tooth Structure

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  12. Adhesion of actinomyces isolates to experimental pellicles.

    Steinberg, D; Kopec, L K; Bowen, W H

    1993-06-01

    The ability of oral bacteria to adhere to surfaces is associated with their pathogenicity. Actinomyces can adhere to pellicle and cells through extracellular fimbriae. Research on adhesion of actinomyces has been conducted with use of hydroxyapatite (HA) coated with mammalian-derived salivary constituents, whereas the bacterial-derived components of the acquired pellicle have been largely ignored. The influence of the cell-free bacterial enzyme, glucosyltransferase (GTF), on adhesion of human and rodent isolates of Actinomyces viscosus was examined. Cell-free GTF was adsorbed onto parotid saliva-coated hydroxyapatite (sHA). Next, A. viscosus was exposed to the pellicle following the synthesis of glucan formed in situ by GTF. Glucans formed on the pellicle served as binding sites for adhesion of a rodent strain of A. viscosus. Conversely, the presence of in situ glucans on sHA reduced the adhesion of human isolates of A. viscosus compared with their adhesion to sHA. Adhesion of the rodent strains may be facilitated through a dextran-binding protein, since the rodent strains aggregated in the presence of dextrans and mutan. The human isolates were not aggregated by dextran or mutan. Pellicle harboring A. viscosus rodent strains interfered with the subsequent adhesion of Streptococcus mutans to the bacterial-coated pellicle. In contrast, the adhesion of S. mutans to pellicle was not decreased when the pellicle was pre-exposed to a human isolate of A. viscosus. The experimental data suggest that human and the rodent isolates of A. viscosus have distinct glucan adhesion properties.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8496474

  13. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive.

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-04-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  14. Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche.

    Anselmo, A; Lauranzano, E; Soldani, C; Ploia, C; Angioni, R; D'amico, G; Sarukhan, A; Mazzon, C; Viola, A

    2016-08-01

    Establishment of cell-cell adhesion is crucial in embryonic development as well as within the stem cell niches of an adult. Adhesion between macrophages and erythroblasts is required for the formation of erythroblastic islands, specialized niches where erythroblasts proliferate and differentiate to produce red blood cells throughout life. The Eph family is the largest known family of receptor tyrosine kinases (RTKs) and controls cell adhesion, migration, invasion and morphology by modulating integrin and adhesion molecule activity and by modifying the actin cytoskeleton. Here, we identify the proteoglycan agrin as a novel regulator of Eph receptor signaling and characterize a novel mechanism controlling cell-cell adhesion and red cell development within the erythroid niche. We demonstrate that agrin induces clustering and activation of EphB1 receptors on developing erythroblasts, leading to the activation of α5β1 integrins. In agreement, agrin knockout mice display severe anemia owing to defective adhesion to macrophages and impaired maturation of erythroid cells. These results position agrin-EphB1 as a novel key signaling couple regulating cell adhesion and erythropoiesis. PMID:26990660

  15. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells.

    Gu, Yu-Chen; Kortesmaa, Jarkko; Tryggvason, Karl; Persson, Jenny; Ekblom, Peter; Jacobsen, Sten-Eirik; Ekblom, Marja

    2003-02-01

    Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis. PMID:12393739

  16. 78 FR 52429 - Indirect Food Additives: Adhesives and Components of Coatings

    2013-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 175 Indirect Food Additives: Adhesives and Components of Coatings CFR Correction In Title 21 of the Code of Federal Regulations, Parts 170 to...

  17. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells.

    Sackmann, Erich

    2015-11-01

    Cell-tissue-tissue interaction is determined by specific short range forces between cell adhesion molecules (CAMs) and ligands of the tissue, long range repulsion forces mediated by cell surface grafted macromolecules and adhesion-induced elastic stresses in the cell envelope. This interplay of forces triggers the rapid random clustering of tightly coupled linkers. By coupling of actin gel patches to the intracellular domains of the CAMs, these clusters can grow in a secondary process resulting in the formation of functional adhesion microdomains (ADs). The ADs can act as biochemical steering centers by recruiting and activating functional proteins, such as GTPases and associated regulating proteins, through electrostatic-hydrophobic forces with cationic lipid domains that act as attractive centers. First, I summarize physical concepts of cell adhesion revealed by studies of biomimetic systems. Then I describe the role of the adhesion domains as biochemical signaling platforms and force transmission centers promoting cellular protrusions, in terms of a shell string model of cells. Protrusion forces are generated by actin gelation triggered by molecular machines (focal adhesion kinase (FAK), Src-kinases and associated adaptors) which assemble around newly formed integrin clusters. They recruit and activate the GTPases Rac-1 and actin gelation promoters to charged membrane domains via electrostatic-hydrophobic forces. The cell front is pushed forward in a cyclic and stepwise manner and the step-width is determined by the dynamics antagonistic interplay between Rac-1 and RhoA. The global cell polarization in the direction of motion is mediated by the actin-microtubule (MT) crosstalk at adhesion domains. Supramolecular actin-MT assemblies at the front help to promote actin polymerization. At the rear they regulate the dismantling of the ADs through the Ca(++)-mediated activation of the protease calpain and trigger their disruption by RhoA mediated contraction via

  18. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Frank Stenner

    Full Text Available RP1 (synonym: MAPRE2, EB2 is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  19. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  20. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells.

    Peter Schierack

    Full Text Available BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.

  1. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Su Yeon eChoi; Kihoon eHan; Tyler eCutforth; Woosuk eChung; Haram ePark; Dongsoo eLee; Ryunhee eKim; Myeong-Heui eKim; Yeeun eChoi; Kang eShen; Eunjoon eKim

    2015-01-01

    Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2-/- mice) display moderate hyperactivity in a familiar, but not novel, environment and defective novel obj...

  2. The Protrusive Phase and Full Development of Integrin-Dependent Adhesions in Colon Epithelial Cells Require FAK- and ERKMediated Actin Spike Formation: Deregulation in Cancer Cells

    Valerie G. Brunton

    2001-01-01

    Full Text Available Integrins play an important role in tumour progression by influencing cellular responses and matrix-dependent adhesion. However, the regulation of matrix-dependent adhesion assembly in epithelial cells is poorly understood. We have investigated the integrin and signalling requirements of cell-matrix adhesion assembly in colon carcinoma cells after plating on fibronectin. Adhesion assembly in these, and in the adenoma cells from which they were derived, was largely dependent on αvβ6 integrin and required phosphorylation of FAK on tyrosine-397. The rate of fibronectin-induced adhesion assembly and the expression of both αvβ6 integrin and FAK were increased during the adenoma-to-carcinoma transition. The matrix-dependent adhesion assembly process, particularly the final stages of complex protrusion that is required for optimal cell spreading, required the activity of extracellular signal-regulated kinase (ERK. Furthermore, phosphorylated ERK was targeted to newly forming cell-matrix adhesions in the carcinoma cells but not the adenoma cells, and inhibition of FAK-tyrosine-397 phosphorylation or MEK suppressed the appearance of phosphorylated ERK at peripheral sites. In addition, inhibition of MEK-ERK activation blocked the formation of peripheral actin microspikes that were necessary for the protrusive phase of cell-matrix adhesion assembly. Thus, MEK-ERK-dependent peripheral actin re-organization is required for the full development of integrin-induced adhesions and this pathway is stimulated in an in vitro model of colon cancer progression.

  3. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  4. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns

    ZHANG XiangJun; LIU Yuan; LIU YongHe; AHMED S.I.-U.

    2009-01-01

    Some insects and animals, such as bugs, grasshoppers and tree frogs, realize their efficient adhesion mechanism to glass surface, wall and ceiling by injecting a wetting liquid thin film into the pad-substrate contact area. Their ability to control adhesion (attaching or detaching from a surface) is in many cases connected to the contact geometry and surface patterns of their attachment pads. This paper focuses on the dependence of the capillary adhesion (wet adhesion) on the micro patterns of the bio-adhesive pads. The objective is to reveal the possible mechanism for a bio-adhesive pad to control capillary force through adjusting its micro-scale surface pattern and topography. A capillary adhesion force model is built up taking account of the combined role of micro-dimple geometry as well as the wetting behavior of the confined liquid thin film. Calculated results of the apparent contact angle on the regularly micro-dimpled surfaces are compared with and in good agreement with the experimental measurements. Simulation of the capillary adhesion force reveals that it is controllable in a large mag-nitude by adjusting a dimensionless surface pattern parameter k defined as a/(a+b), where a is the dia-meter of micro dimple, and (a+b) is the side length of one pattern cell. When adjusting the parameter k more than 0.75, the capillary adhesion force could be switchable from attractive to repulsive. This effect of micro patterns on the interfacial capillary force is proved to be dominant when the pad-substrate clearance decreases to the nano/micrometer scale. These results indicate that a controllable and switchable capillary adhesive mechanism might be utilized by a living insect or animal to realize its stable adhesion and quick releasing movement through adjusting the micro-pattern topography of its bio-adhesive pad.

  5. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    Nadia Aman; Farhan Raza Khan; Aisha Salim; Huma Farid

    2015-01-01

    Context: There are limited studies on comparison of Total etch (TE) and Self etch (SE) adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation) adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods:...

  6. Embedded adhesive connection for laminated glass plates

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.; Stang, Henrik; Olesen, John Forbes

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum is...... ensured using a structural adhesive. At first, the elastic and viscoelastic material properties of the adhesive are identified where the influence of load-rate and failure properties are also examined. Through an inverse analysis using the finite element method, the experimental observations are...... replicated to identify a material model of the adhesive. The material model consists of an elastic and linear viscoelastic formulation suitable for a numerical implementation of the material. Based on two relevant load cases, out-of-plane bending and in-plane shear, the connection performance is investigated...

  7. ENHANCING ADHESION OF TETRAHEDRAL AMORPHOUS CARBON FILMS

    Zhao Yuqing; Lin Yi; Wang Xiaoyan; Wang Yanwu; Wei Xinyu

    2005-01-01

    Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.

  8. Recent advances in nanostructured biomimetic dry adhesives

    CarloMenon

    2013-12-01

    Full Text Available The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques.

  9. Cell adhesion-dependent inactivation of a soluble protein kinase during fertilization in Chlamydomonas.

    Zhang, Y.; Luo, Y.; Emmett, K; Snell, W J

    1996-01-01

    Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar...

  10. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    Adhesion between two surfaces may be strongly improved by chemical crosslinking of the interfaces. Polydimethylsiloxane (PDMS) is a widely used polymer that has received considerable attention due to its unique properties, such as relatively low price, biocompatibility, flexibility, high thermal...... investigated by rheology and microscopy. The objective of this work was to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films....

  11. Hierarchical Nanopatterns for Cell Adhesion Studies

    Schwieder, Marco

    2008-01-01

    Hierarchical nanopatterned interfaces are an intriguing tool to study clustering processes of proteins like for example integrins that mediate cell adhesion. The aim of this work is the development of innovative methods for the fabrication of hierarchical micro-nanopatterned surfaces and the use of such systems as platforms to study cell adhesion. In the first part of this work different approaches are presented which are suitable for preparing micro-nanopatterned interfaces at a large scale ...

  12. Effectiveness of cyanoacrylate adhesive in rabbit aortorrhaphy

    Marcus Vinicius Henriques de Carvalho; Evaldo Marchi; Mario Pantaroto

    2015-01-01

    BACKGROUND: Even when properly performed, arterial sutures are not always absolutely hemostatic. Tissue sealants and adhesives have become available that can be used to complete sutures, preventing hemorrhage problems.OBJECTIVES: To evaluate the effectiveness of cyanoacrylate adhesive for sealing aortotomies in rabbits in a coagulopathic state, by analyzing survival of the animals and the time taken to achieve hemostasis.METHODS: Ten-mm long aortotomies were performed on the infrarenal aortas...

  13. Relationships between water wettability and ice adhesion.

    Meuler, Adam J; Smith, J David; Varanasi, Kripa K; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2010-11-01

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (∼200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials). PMID:20949900

  14. The adhesive revolution of restorative dentistry

    Barnes, IE; Newsome, PRH

    1996-01-01

    In many countries, the incidence of dental decay in the young is decreasing, and Hong Kong is no exception. However, there remains in the region, a number of restorative dental problems of some significance. These are tooth discolouration, fracture, and root surface decay. This article discusses these problems and the way in which their treatment is increasingly being undertaken by means of minimalԸ?intervention adhesive techniques. The formulation of dental adhesive systems that are effectiv...

  15. Particle diameter influences adhesion under flow.

    Shinde Patil, V R; Campbell, C. J.; Yun, Y.H.; Slack, S M; Goetz, D J

    2001-01-01

    The diameter of circulating cells that may adhere to the vascular endothelium spans an order of magnitude from approximately 2 microm (e.g., platelets) to approximately 20 microm (e.g., a metastatic cell). Although mathematical models indicate that the adhesion exhibited by a cell will be a function of cell diameter, there have been few experimental investigations into the role of cell diameter in adhesion. Thus, in this study, we coated 5-, 10-, 15-, and 20-microm-diameter microspheres with ...

  16. Shear adhesion strength of aligned electrospun nanofibers.

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  17. Synthesis and Characterization of Mussel Adhesive Peptides

    Deshmukh Manjeet Vinayakrao

    2005-01-01

    Mussels, marine organisms, attach to underwater surfaces by making a byssus, which is an extra-corporeal bundle of tiny tendons attached distally to a foreign surface and proximally by insertion of the root into the byssal retractor muscles. The interaction exterior of byssus and marine surface is an adhesive plaque that contains different proportion of five mytilus edulis adhesive proteins (mefp-1 to 5). Relatively high contains ...

  18. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  19. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  20. 21 CFR 878.3750 - External prosthesis adhesive.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External prosthesis adhesive. 878.3750 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3750 External prosthesis adhesive. (a) Identification. An external prosthesis adhesive is a silicone-type adhesive intended to...

  1. Controlled Adhesion of Silicone Elastomer Surfaces

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  2. Preparation and Properties of Cornstarch Adhesives

    Li Yang

    2013-08-01

    Full Text Available The main goal of this study was to use cornstarch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cornstarch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cornstarch adhesives increased and then decreased with the increasing of temperature and the maximum value was obtained at 10oC; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared wither cornstarch adhesives which was pseudo-plastic fluids. Cornstarch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  3. FINITE ELEMENT ANALYSIS OF WOOD ADHESIVE JOINTS

    Thomas GEREKE

    2016-03-01

    Full Text Available Engineered wood products such as glulam or cross-laminated timber are widely established in the construction industry. Their structural behaviour and reliability clearly bases on the adhesive bonding. In order to understand and improve the performance of glued wood members a finite element modelling of standard single lap shear samples was carried out. A three-dimensional model of a longitudinal tensile-shear specimen with quasi-centric load application was developed. The main influences of wood and adhesive parameters on structural performance were identified. Therefore, variations of the elasticity, the annual ring angle, fibre angle, and the interface zone and their effect on the occurring stresses in the adhesive bond line were investigated numerically. The adhesive bond line is most significantly sensitive to the Young´s modulus of the adhesive itself. A variation of the fibre angle of the glued members in the standard test is an essential criterion and to be considered when preparing lap shear specimens. A model with representation of early- and latewood gives a more detailed insight into wooden adhesive joints.

  4. Cell adhesion molecule control of planar spindle orientation.

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  5. Enhanced adhesion of diamond coatings

    Zheng, Zhido

    potential layers identified: TiN and TiC. Crystalline diamond coatings are subsequently deposited on these layers by hot filament CVD. A large grained TiC coating with a relatively rough surface was found to provide the best adhesion to the diamond layer. As judged qualitatively by the extent of spallation adjacent to hardness indentation, this intermediate layer performs better than similar TiC layers reported in the literature. The residual stresses in the diamond coatings are analysed using Raman microprobe spectroscopy, and compared with the predictions of the analytical model. The adhesion of the diamond coatings on various substrates with and without an intermediate layer of TiC is quantitatively evaluated by measuring the length of the delamination crack surrounding through-thickness holes in the coating and comparing with the relationship derived between crack length and strain energy release rate. The measured adherence on WC-Co substrates, as characterised by the critical strain energy release rate for growth of the delamination crack, was found to be significantly higher in the presence of the TiC intermediate layer developed during the course of this work.

  6. Advances in modeling and design of adhesively bonded systems

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  7. Application of the Blister Test in Study of Epoxy Adhesive

    Fei Xiong; Ingegerd Annergren

    2000-01-01

    Shaft-loaded blister test technique is used as an effective quantitative tool to measure adhesion strength. Investigation on conductive adhesive was done by modified blister test. It is found that shaftloaded blister test can be a good solution for the debonding of thin film adhesion. The intrinsic stable interface debonding process has been proved an attractive alternative to the conventional adhesion measurement techniques. In our study, epoxy matrix adhesive was studied using blister test technique in comparison with the traditional test-lap shear test. Adhesion strength was studied as a function of surface treatment and the metallization of substrate. It was found that surface conditions of substrate have significant impact on adhesion behaviour. The oxidation of surface is responsible for the poor adhesion. Activating chemical treatment and Plasma cleaning on substrate surface has been found to be a way of dreamatically improving adhesion strength of electronic conductive adhesive.

  8. Pressure-sensitive adhesives for transdermal drug delivery systems.

    Tan; Pfister

    1999-02-01

    Adhesives are a critical component in transdermal drug delivery (TDD) devices. In addition to the usual requirements of functional adhesive properties, adhesives for TDD applications must have good biocompatibility with the skin, chemical compatibility with the drug, various components of the formulation, and provide consistent, effective delivery of the drug. This review discusses the three most commonly used adhesives (polyisobutylenes, polyacrylates and silicones) in TDD devices, and provides an update on recently introduced TDD products and recent developments of new adhesives. PMID:10234208

  9. Characteristics of the adhesive determinants of Lactobacillus fermentum 104.

    Henriksson, A; Szewzyk, R; Conway, P L

    1991-01-01

    The adhesion of Lactobacillus fermentum 104-R and the variant strain 104-S to porcine gastric squamous epithelium was investigated. An epithelium-specific adhesion was detected for strain 104-S; however, strain 104-R expressed enhanced adhesion capacity to the control surfaces of polystyrene and bovine serum albumin. To characterize the adhesive determinants, the bacterial cells were exposed to various treatments. The adhesion pattern of bacterial cells in buffers of pH values ranging from 2 ...

  10. Improved stress prediction in adhesive bonded optical components

    Vreugd, J. de; Voert, M.J.A. te; Nijenhuis, J.R.; Pijnenburg, J.A.C.M.; Tabak, E.

    2012-01-01

    Adhesives are widely used in optomechanical structures for bonding optical components to their mounts. The main advantage of using adhesives is the excellent strength to weight ratio. Adhesive bonding is seen as a desirable joining technique as it allows for greater flexibility in design. A disadvantage of adhesives however is the limited dimensional stability and loadability. To design stable optical mounts, accurate prediction of stresses and deformation is therefore needed. Adhesives show ...

  11. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R; Woods, Anne

    2003-01-01

    Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC......, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase....

  12. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    Tetens, Inge

    cranberry (Vaccinium macrocarpon) extract (including 36 mg proanthocyanidins) and 60 mg of ascorbic acid, is sufficiently characterised. The claimed effect proposed by the applicant is reduction of E.coli adhesion to uroepithelial cells. The Panel considers that reduction of bacterial colonisation of the...

  13. Enhanced human bone marrow stromal cell affinity for modified poly(L-lactide) surfaces by the upregulation of adhesion molecular genes.

    Mao, Xueli; Peng, Hui; Ling, Junqi; Friis, Thor; Whittaker, Andrew K; Crawford, Ross; Xiao, Yin

    2009-12-01

    To enhance and regulate cell affinity for poly (L-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (L-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (L-lactide)-block-poly (L-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces. PMID:19796804

  14. Surface Modifications in Adhesion and Wetting

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous healing between a rubber surface and a glass cover slip. Study of the diffusion controlled healing of a blister can be made by

  15. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points.

    Lüdecke, Claudia; Roth, Martin; Yu, Wenqi; Horn, Uwe; Bossert, Jörg; Jandt, Klaus D

    2016-09-01

    Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials' surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p≤0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6nm and the lowest surface peak density compared to 2nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material's surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion. PMID:27288816

  16. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    Wen-Shih Huang

    2015-12-01

    Full Text Available A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC. Hence, resistin may play a role in CRC development. Fulvic acid (FA, a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative and SW-48 (p53-positive CRC cells and human umbilical vein endothelial cells (HUVECs were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin.

  17. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  18. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  19. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  20. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  1. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  2. Control of tissue morphology by Fasciclin III-mediated intercellular adhesion.

    Wells, Richard E; Barry, Joseph D; Warrington, Samantha J; Cuhlmann, Simon; Evans, Paul; Huber, Wolfgang; Strutt, David; Zeidler, Martin P

    2013-09-01

    Morphogenesis is dependent on the orchestration of multiple developmental processes to generate mature functional organs. However, the signalling pathways that coordinate morphogenesis and the mechanisms that translate these signals into tissue shape changes are not well understood. Here, we demonstrate that changes in intercellular adhesion mediated by the transmembrane protein Fasciclin III (FasIII) represent a key mediator of morphogenesis. Using the embryonic Drosophila hindgut as an in vivo model for organogenesis, we show that the tightening of hindgut curvature that normally occurs between embryonic stage 12 and 15 to generate the characteristic shepherd's crook shape is dependent on localised JAK/STAT pathway activation. This localised pathway activity drives the expression of FasIII leading to its subcellular lateralisation at a stage before formation of septate junctions. Additionally, we show that JAK/STAT- and FasIII-dependent morphogenesis also regulates folds within the third instar wing imaginal disc. We show that FasIII forms homophilic intercellular interactions that promote intercellular adhesion in vivo and in cultured cells. To explore these findings, we have developed a mathematical model of the developing hindgut, based on the differential interfacial tension hypothesis (DITH) linking intercellular adhesion and localised surface tension. Our model suggests that increased intercellular adhesion provided by FasIII can be sufficient to drive the tightening of tube curvature observed. Taken together, these results identify a conserved molecular mechanism that directly links JAK/STAT pathway signalling to intercellular adhesion and that sculpts both tubular and planar epithelial shape. PMID:23946443

  3. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed. PMID:25832889

  4. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.

    Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang

    2016-10-01

    Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. PMID:27451366

  5. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  6. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815

  7. Apparatus for Removing Remaining Adhesives of Filter

    A Large amount of ventilation filter was used at radiation areas not only in nuclear power plants but also in nuclear facilities. These spent ventilation filters are generated as radioactive waste and composed of a steel frame, glass fiber media and aluminum separator. When treated, the spent filter is separated into filter media for air purification and frame. After separation, while the filter media is collected using steel drum for reducing internal exposure, the filter frame is treated further to remove adhesives for recycling the frame as many as possible in order to reduce waste and cost and improve working conditions. Usually, the adhesives are separated from the filter frame manually. As a result, a lot of time and labor is required. So, the objective of this study is to develop a motor-driven apparatus for removing adhesives efficiently

  8. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  9. Laparoscopic Management of Adhesive Small Bowel Obstruction

    Konjic, Ferid; Idrizovic, Enes; Hasukic, Ismar; Jahic, Alen

    2016-01-01

    Introduction: Adhesions are the reason for bowel obstruction in 80% of the cases. In well selected patients the adhesive ileus laparoscopic treatment has multiple advantages which include the shorter hospitalization period, earlier food taking, and less postoperative morbidity rate. Case report: Here we have a patient in the age of 35 hospitalized at the clinic due to occlusive symptoms. Two years before an opened appendectomy had been performed on him. He underwent the treatment of exploration laparoscopy and laparoscopic adhesiolysis. Dilated small bowel loops connected with the anterior abdominal wall in the ileocecal region by adhesions were found intraoperatively and then resected harmonically with scalpel. One strangulation around which a small bowel loop was wrapped around was found and dissected. Postoperative course was normal. PMID:27041815

  10. Alpha9beta1 integrin in melanoma cells can signal different adhesion states for migration and anchorage

    Lydolph, Magnus C; Morgan-Fisher, Marie; Høye, Anette M;

    2009-01-01

    Cell surface integrins are the primary receptors for cell migration on extracellular matrix, and exist in several activation states regulated in part by ectodomain conformation. The alpha9 integrin subunit, which pairs only with beta1, has specific roles in the immune system and may regulate cell......beta1 integrin- and Rho kinase-dependent focal adhesion and stress fibre formation, suggesting that the activation status of alpha9beta1 integrin was altered. The effect of manganese ions in promoting focal adhesion formation was reproduced by beta1 integrin activating antibody. The alpha9beta1...

  11. High-Temperature Adhesive Strain Gage Developed

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  12. Mechanical Behaviour of Adhesive Joints in Cartonboard for Packaging

    Korin, Christer

    2009-01-01

    A cartonboard package is often sealed and closed with an adhesive – either a hot-melt adhesive (adhesives that are applied in a molten state on the cartonboard) or a dispersion adhesive (adhesives that are applied as water-based dispersions). This thesis focuses on the process of hot-melt gluing, and how material properties and process conditions affect the performance of the adhesive joint. Requirements vary depending on how the package is to be used. A package that is only supposed to prote...

  13. Anandamide inhibits adhesion and migration of breast cancer cells

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  14. Direct observation of catch bonds involving cell-adhesion molecules

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  15. Surgical Adhesives in Facial Plastic Surgery.

    Toriumi, Dean M; Chung, Victor K; Cappelle, Quintin M

    2016-06-01

    In facial plastic surgery, attaining hemostasis may require adjuncts to traditional surgical techniques. Fibrin tissue adhesives have broad applications in surgery and are particularly useful when addressing the soft tissue encountered in facial plastic surgery. Beyond hemostasis, tissue adhesion and enhanced wound healing are reported benefits associated with a decrease in operating time, necessity for drains and pressure dressings, and incidence of wound healing complications. These products are clinically accessible to most physicians who perform facial plastic surgery, including skin grafts, flaps, rhytidectomy, and endoscopic forehead lift. PMID:27267012

  16. EFFECTIVENESS OF ADHESIVES IN SOYBEAN SEED INOCULATION

    Zlata Milaković

    2012-06-01

    Full Text Available Effectiveness of soybean seed inoculation can be improved by application of substances increasing adhesion of inoculant to the seed. Higher initial inoculum in the soil is ensured in this way, which increases formation of higher number and mass of nodules and consequently produces higher yield. In this research effects of different adhesives on nodulation capacity and components of soybean yield has been investigated. The best result of the investigated parameters was obtained by sugar and honey application, while carboximethyl cellulose did not show similar influence

  17. Coatings against corrosion and microbial adhesion

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Adhesion of PBO Fiber in Epoxy Composites

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  19. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    Li, Jian, E-mail: jianli83@126.com; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang, E-mail: leizq@nwnu.edu.cn

    2014-01-15

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  20. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  1. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    Nadia Aman

    2015-01-01

    Full Text Available Context: There are limited studies on comparison of Total etch (TE and Self etch (SE adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods: The study included 37 patients, 101 teeth were included in both study groups. The intervention arm was treated with SE Adhesive (Adper Easy One, 3M ESPE, US. Control arm received TE adhesive (Adper Single Bond 2, 3M ESPE, US before sealant application. The patients were followed after 6 months for assessment of sealant retention. Statistical analysis used: Interexaminer agreement for outcome assessment was assessed by Kappa Statistics and outcome in intervention group was assessed by McNemar′s test. Results: Ninety-one pairs of molar (90% were reevaluated for sealant retention. Complete retention was 56% in TE arm and 28% in SE arm with an odds ratio (OR of 3.7. Conclusions: Sealants applied with TE adhesives show higher rate of complete sealant retention than SE adhesive.

  2. 血清E选择素、sVCM-1在糖调节受损患者中的水平分析%Analysis Serum Levels of E-selection and Soluble Vascular Cell Adhesion Molecule-1 in Patients with Impaired Glucose Regulation

    王绪山; 徐桂玲; 王敏; 宋凤英

    2014-01-01

    目的:探讨 E 选择素(E‐selectin)、可溶性血管细胞黏附分子‐1(sVCM‐1)在糖调节受损(IGR)患者血清中的水平。方法:根据空腹血糖(FPG)及2h 血糖(2hPG )水平,分为正常糖耐量组(NGT 组,35例),空腹血糖受损组(IFG组,25例)、糖耐量减低组(IGT 组,23例)、空腹血糖受损合并糖耐量减低组(IFG + IGT 组,26例)和2型糖尿病组(DM 组,18例)。均为体检中新发现者。结果:血清中 E‐selectin 水平在各组中比较显示,除 IFG 组与 IGT 组两组水平无明显差异外(P >0.05),其他各组血清中 E‐selectin 水平比较差异均具有统计学意义(P <0.01);而血清中sVCM‐1水平在各组中比较差异均具有统计学意义(P<0.01)。结论:动态观察血清中 E‐selectin 、sVCM‐1的水平,可以早期采取相应的干预措施,防止和延缓血管内皮的损伤和 DM 的发生发展,预防心血管事件的发生。%Objective :To investigate the serum levels of E‐selection and soluble vascular cell adhesion molecule‐1 in pa‐tients with impaired glucose regulation .Methods :According to the Fasting serum glucose(FPG) and 2‐hour serum glu‐cose(2hPG ) levels ,divided into the normal glucose tolerance group (NGT group ,35 cases) ,impaired fasting glucose group(IFG group ,25 cases) ,impaired glucose tolerance group(IGT group ,23 cases) ,impaired fasting glucose with im‐paired glucose tolerance group(IFG + IGT group ,26 cases)and Diabetes mellitus Type‐2 group(DM group ,18 cases) , were found in physical examination above all .Results :The level of E‐selectin in serum compared in each group ,but no significant difference in IFG group and IGT group two group level (P > 0 .05) ,the level of E‐selectin in serum com‐pared with other group differences were statistically significant (P < 0 .01) ;while the sVCM‐1 level in serum in each group compared the

  3. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  4. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  5. Adhesive thickness effects of a ductile adhesive by optical measurement techniques

    Campilho, Raul; Moura, D.C.; Banea, Mariana D.; Silva, L. F. M. da

    2015-01-01

    Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, mechanical fastening or riveting. However, there are many factors that have to be accounted for during joint design to accurately predict the joint strength. One of these is the adhesive layer thickness (tA). Most of the results are for epoxy structural adhesives, tailored to perform best with small values of tA, and these show that the lap joint strength decreases with increase of tA (the optimum ...

  6. Curing of natural rubber and epoxy adhesive

    Low molecular weight epoxy resin based on diglycidyl ether of bisphenol A was synthesized and mixed at constant percentages with natural rubber. The rubber epoxy system was cured with various types of curing agents such as ethylene diamine, maleic anhydride as well as the prepared resole phenol formaldehyde. A study of the photo-induced crosslinking of the prepared elastic adhesives and film samples was carried out by exposure to ultraviolet lamp (300 w) for 2 weeks at 20 deg. C. Samples containing ethylene diamine were cured at 25 + - 1 deg. C. for 24 h while samples containing maleic anhydride or resole phenol formaldehyde resins were thermally cured at 150-170 deg. C. for 10 min. Cured adhesive compositions were tested mechanically and physically and evaluated as wood adhesives. While hardness, chemical resistance as well as heat stability of the prepared cured film sample were investigated. The obtained data indicate that the highest epoxy resin content and the presence of resole phenol formaldehyde resin in composition improve the tensile strength and adhesion properties on wood. While their cured film sample have the best hardness properties, chemical resistance and heat stability. (author)

  7. Anti-adhesive properties of fish tropomyosins

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone;

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...

  8. Epoxy adhesive plays crucial role at CERN

    2006-01-01

    "Epoxy adhesives are set to play a vital role in Europe's biggest-ever scientific experiment at the European Centre for Nuclear Research (CERN) in Geneva, Switzerland, thereby helping scientists gain a better understanding of the origins of the universe." (1 page)

  9. Tile adhesive production by Inorganic materials

    Fasil Alemayehu Hayilu

    2013-07-01

    Full Text Available In modern construction, ceramic tile and mosaic which are used for finishing and decoration are attached to the surface by using tile adhesives. It was a long way for tiling technology to arrive at the current cement based modified adhesive. The development in additives and modifier are the paramount factor to improve workability, higher flexibility, and better adhesion. In this document tile adhesive has been produced for economical and high performance formulation. These products have been produced by considering the effect of aggregate. These two products with different size of aggregate have been compared and tested. The test made was slip, bending, and compression test. Economical formulation consists of components like cement, quartz sand, cellulose ether and tartaric acid. But high performance consists of limestone and cellulose fiber in addition to these components. The modifier added has enhanced the final product resistance to sliding, bending and compression strength. In terms of compression strength test about 17.27% high performance is stronger than economical formulation. And in addition high performance is stronger than economical formulation by about 16.89% in terms of bending strength. The other thing is the effect of grain size, the component that has low grain size have shown great strength and resistant to slide.

  10. Interface Fracture in Adhesively Bonded Shell Structures

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  11. Adhesion Strength of Biomass Ash Deposits

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao;

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...

  12. 21 CFR 878.4380 - Drape adhesive.

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  13. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  14. Epoxy adhesive plays crucial role at CERN

    2007-01-01

    "Epoxy adhesives are set to play a vital role in Europe's biggest-ever scientific experiment at the European Centrefor Nuclear Research (CERN) in Geneva, Switzerland, thereby helping scientists gain a better understanding of the origins of the universe." (1/2 page)

  15. The evolution of adhesiveness as a social adaptation.

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. PMID:26613415

  16. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  17. Sliding Adhesion Dynamics of Isolated Gecko Setal Arrays

    Sponberg, Simon; Autumn, Kellar

    2003-03-01

    The tokay gecko (Gekko gecko) can adhere to nearly any surface through van der Waals interactions of the specialized setae (b-keratin "hairs") of its toe pads. Our recent research has suggested that a gecko is substantially overbuilt for static adhesion requiring as little as 0.03of its theoretical adhesive capacity. We performed the first sliding adhesion experiments on this novel biological adhesive to determine its response to dynamic loading. We isolated arrays of setae and constructed a precision controlled Robo-toe to study sliding effects. Our results indicate that, unlike many typical adhesives, gecko setal arrays exhibit an increased frictional force upon sliding (mk > ms) which further increases with velocity, suggesting that perturbation rejection may be an evolutionary design principle underlying the evolution of the gecko adhesive. We compare these dynamic properties with those of other adhesives and explore the impacts of these results on the design of artificial adhesives.

  18. Adhesive small bowel adhesions obstruction: Evolutions in diagnosis, management and prevention

    Catena, Fausto; Di Saverio, Salomone; Coccolini, Federico; Ansaloni, Luca; De Simone, Belinda; Sartelli, Massimo; Van Goor, Harry

    2016-01-01

    Intra-abdominal adhesions following abdominal surgery represent a major unsolved problem. They are the first cause of small bowel obstruction. Diagnosis is based on clinical evaluation, water-soluble contrast follow-through and computed tomography scan. For patients presenting no signs of strangulation, peritonitis or severe intestinal impairment there is good evidence to support non-operative management. Open surgery is the preferred method for the surgical treatment of adhesive small bowel obstruction, in case of suspected strangulation or after failed conservative management, but laparoscopy is gaining widespread acceptance especially in selected group of patients. "Good" surgical technique and anti-adhesive barriers are the main current concepts of adhesion prevention. We discuss current knowledge in modern diagnosis and evolving strategies for management and prevention that are leading to stratified care for patients. PMID:27022449

  19. Adhesion of synthetic organic polymer on soft tissue. I. A fast setting polyurethane adhesive.

    Llewellyn-Thomas, E; Wang, P Y; Cannon, J S

    1974-01-01

    Conventional polyurethane prepolymers have been shown to adhere to living biological tissues. However, their setting is not sufficiently expedient to permit convenient applications in vivo. A prepolymer prepared from the highly reactive 6-chloro-2,4,5-trifluoro-1,3-phenylene diisocyanate, castor oil, and a trace of pyridine has afforded an adhesive which sets in about 2 min in vivo. The fast setting has resulted in poor adhesion on biological tissue. The bonding has been improved by the inclusion of tolylene diisocyanate in the composition without affecting the fast curing rate of the prepolymer. The dispersion of the adhesive and its cohesion after solidification have been adjusted by other minor additives. Preliminary evaluation on animals indicates that this adhesive is most useful as a hemostatic coating in hepatic lacerations. PMID:4819871

  20. Fundamentals of adhesion of thermal spray coatings: Adhesion of single splats

    Indentation experiments were performed inside a scanning electron microscope to measure adhesive strength of individual alumina splats on a steel substrate. The in situ nature of experimental evaluations made characterization of interfacial crack propagation possible by direct observation. The increase in the strain energy of brittle alumina splats originating from indentation deformation was correlated to the strain energy release rate through the characterization of interfacial crack propagation. An analytical model previously reported and evaluated in studies of the adhesive strength of thin films was employed. An average calculated strain energy release rate of 80 J m-2 was found for single splats. This high value suggests that splat adhesion can make a significant contribution to the adhesion of thermal sprayed coatings.

  1. Surface pretreatments for medical application of adhesion

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  2. Adhesive capsulitis of the shoulder: MR arthrography

    Adhesive capsulitis is a clinical syndrome involving pain and decreased joint motion caused by thickening and contraction of the joint capsule. The purpose of this study is to describe the MR arthrographic findings of this syndrome. Twenty-nine sets of MR arthrographic images were included in the study. Fourteen patients had adhesive capsulitis diagnosed by physical examination and arthrography, and their MR arthrographic findings were compared with those of 15 subjects in the control group. The images were retrospectively reviewed with specific attention to the thickness of the joint capsule, volume of the axillary pouch (length, width, height(depth)), thinkness of the coracohumeral ligament, presence of extra-articular contrast extravasation, and contrst filling of the subcoracoid bursa. Mean capsular thickness measured at the inferior portion of the axillary pouch was 4.1 mm in patients with adhesive capsulitis and 1.5 mm in the control group. The mean width of the axillary pouch was 2.5 mm in patients and 9.5 mm in controls. In patients, the capsule was significantly thicker and the axillary pouch significantly narrower than in controls (p<0.05). Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch (sensitivity 93%, specificity 80%) and a pouch narrower than 3.5 mm (sensitivity 93%, specificity 100%) were useful criteria for the diagnosis of adhesive capsulitis. In patients with this condition, extra-articular contrast extravasation was noted in six patients (43%) and contrast filling of the subcoracoid bursa in three (21%). The MR arthrographic findings of adhesive capsulitis are capsular thickening, a low-volume axillary pouch, extra-articular contrast extravasation, and contrast filling of the subcoracoid bursa. Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch and a pouch width of less than 3.5 mm are useful diagnostic imaging characteristics

  3. Adhesion between high-strength concrete, epoxy resin and CFRP

    Aguiar, J. L. Barroso de; Krzywon, Rafal; Camões, Aires; Gorski, M.; Dawczynski, Szymon

    2008-01-01

    This paper presents a study on the adhesion between high-strength concrete, epoxy resin and CFRP. The adhesion of the high-strength concrete was compared with the same property measured in conventional concrete. Shear tests were made to test adhesion from concretes to epoxy resin. Flexural tests were used to evaluate the adhesion between concretes, epoxy and CFRP. The effect of temperature was also evaluated. For ordinary temperatures (20 ºC) the results showed a better flexural performance o...

  4. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    Rita Salánki; Csaba Hős; Norbert Orgovan; Beatrix Péter; Noémi Sándor; Zsuzsa Bajtay; Anna Erdei; Robert Horvath; Bálint Szabó

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduc...

  5. Orientation angle and the adhesion of single gecko setae

    Hill, Ginel C.; Soto, Daniel R.; Peattie, Anne M.; Full, Robert J.; Kenny, T. W.

    2011-01-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly co...

  6. Adhesion, growth, and matrix production by fibroblasts on laminin substrates

    Couchman, J R; Höök, M; Rees, D A; Timpl, R

    1983-01-01

    laminin-coated substrates with the development of microfilament bundles and focal adhesions. Antibodies to laminin, but not fibronectin, will prevent or reverse fibroblast adhesion to laminin, whereas antibodies to fibronectin but not laminin will give similar results on fibronectin-coated substrates....... These and other results indicate that fibroblasts possess distinct receptors for laminin and fibronectin which on contact with suitable substrates promote adhesion through interaction with common intermediates. This type of adhesion is compatible with subsequent growth and extracellular matrix...

  7. Properties of Nano SiO2 Modified PVF Adhesive

    CHEN He-sheng; SUN Zhen-ya; XUE Li-hui

    2004-01-01

    Some properties of nano SiO2 modified PVF adhesive were studied. The experimental results show that nano SiO2 can improve the properties of PVF adhesive very well. Meanwhile the modification mechanism of nano SiO2 to PVF adhesive and the applications of this adhesive in paper-plastic composite, concrete and fireproof paint were discussed by using IR and XRD determination.

  8. Cell adhesion molecules: detection with univalent second antibody

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against c...

  9. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing.

    Labonte, David; Clemente, Christofer J; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J; Irschick, Duncan J; Federle, Walter

    2016-02-01

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives. PMID:26787862

  10. Adhesion of Aeromonas sp. to cell lines used as models for intestinal adhesion.

    Kirov, S M; Hayward, L. J.; Nerrie, M. A.

    1995-01-01

    Adhesion to HEp-2 cells has been shown to correlate with enteropathogenicity for Aeromonas species. Such adhesion is thought to reflect the ability of strains to adhere to human intestinal enterocytes, although HEp-2 cells are not of intestinal origin. In this study strains of Aeromonas veronii biotype sobria isolated from various sources were investigated in parallel assays for their ability to adhere to HEp-2 cells and to an intestinal cell line (Caco-2). Quantitative assays showed identica...

  11. Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

    Lars Heepe

    2014-06-01

    Full Text Available In this work we report on experiments aimed at testing the cavitation hypothesis [Varenberg, M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383–385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs. For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting conditions and simultaneously video recording the detachment behavior at very high temporal resolution (54,000–100,000 fps. Although microcavitation was observed during the detachment of individual MSAMSs, which was a consequence of water inclusions present at the glass–MSAMS contact interface subjected to negative pressure (tension, the pull-off forces were consistently lower, around 50%, of those measured under ambient conditions. This result supports the assumption that the recently observed strong underwater adhesion of MSAMS is due to an air layer between individual MSAMSs [Kizilkan, E.; Heepe, L.; Gorb, S. N. Underwater adhesion of mushroom-shaped adhesive microstructure: An air-entrapment effect. In Biological and biomimetic adhesives: Challenges and opportunities; Santos, R.; Aldred, N.; Gorb, S. N.; Flammang, P., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2013; pp 65–71] rather than by cavitation. These results obtained due to the high-speed visualisation of the contact behavior at nanoscale-confined interfaces allow for a microscopic understanding of the underwater adhesion of MSAMSs and may aid in further development of artificial adhesive microstructures for applications in predominantly liquid environments.

  12. Treatment of EVA with corona discharge to improve its adhesion to polychloroprene adhesive

    Martínez García, Asunción; Sánchez Reche, Ana; Gisbert Soler, Santiago; Cepeda Jiménez, Carmen María; Torregrosa Maciá, Rosa; Martín-Martínez, José Miguel

    2002-01-01

    Ethylene vinyl acetate (EVA) material containing 20 wt% vinyl acetate (EVA20) was treated with corona discharge to improve its adhesion to polychloroprene adhesive. Several experimental variables in the corona discharge treatment of EVA20 were considered: corona energy, type of electrode, and number of consecutive treatments. Advancing contact angle measurements (water, 25±C) showed an increase in the wettability of EVA20 after treatment with corona discharge, which corresponds to an in...

  13. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits.

    Um, Min Young; Hwang, Kwang Hyun; Choi, Won Hee; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2014-10-01

    Curcumin, the yellow substance found in turmeric, possesses antioxidant, anti-inflammation, anticancer, and lipid-lowering properties. Because we hypothesized that curcumin could ameliorate the development of atherosclerosis, the present study focused on the effects and potential mechanisms of curcumin consumption on high-cholesterol diet-induced atherosclerosis in rabbits. During our study, New Zealand white rabbits were fed 1 of 3 experimental diets: a normal diet, a normal diet enriched with 1% cholesterol (HCD), or an HCD supplemented with 0.2% curcumin. At the end of 8 weeks, blood samples were collected to determine the levels of serum lipids, cytokines, and soluble adhesion molecule levels. Gene expression of adhesion molecules and matrix metalloproteinases (MMPs) in aortas were measured by quantitative real-time polymerase chain reaction and Western blot. Compared with the HCD group, rabbits fed an HCD supplemented with 0.2% curcumin had significantly less aortic lesion areas and neointima thickening. Curcumin reduced the levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, and oxidized low-density lipoprotein cholesterol in serum by 30.7%, 41.3%, 30.4%, and 66.9% (all P curcumin attenuated HCD-induced CD36 expression, circulating inflammatory cytokines, and soluble adhesive molecule levels. Curcumin reduced the mRNA and protein expression of intracellular adhesion molecule-1, vascular cell adhesion molecule-1, P-selectin, and monocyte chemotactic protein-1, and it inhibited HCD-induced up-regulation of MMP-1, MMP-2, and MMP-9. Our results demonstrate that curcumin exerts an antiatherosclerotic effect, which is mediated by multiple mechanisms that include lowering serum lipids and oxidized low-density lipoprotein, thus modulating the proinflammatory cytokine levels and altering adhesion molecules and MMP gene expression. PMID:25282128

  14. The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels[OPEN

    Chen, Jieyu; Wang, Yifeng; Wang, Fei; Yang, Jian; Gao, Mingxing; Li, Changying; Liu, Yingyao; Liu, Yu; Yamaji, Naoki; Ma, Jian Feng; Paz-Ares, Javier; Nussaume, Laurent; Zhang, Shuqun; Yi, Keke; Wu, Zhongchang; Wu, Ping

    2015-01-01

    Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2β3, which interacts with PT2 and PT8 in a yeast two-hybrid screen. Also, the CK2α3/β3 holoenzyme phosphorylates PT8 under phosphate-sufficient conditions. This phosphorylation inhibited the interaction of PT8 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1, a key cofactor regulating the exit of PTs from the ER to the plasma membrane. Additionally, phosphorus starvation promoted CK2β3 degradation, relieving the negative regulation of PT phosphorus-insufficient conditions. In accordance, transgenic expression of a nonphosphorylatable version of OsPT8 resulted in elevated levels of that protein at the plasma membrane and enhanced phosphorus accumulation and plant growth under various phosphorus regimes. Taken together, these results indicate that CK2α3/β3 negatively regulates PTs and phosphorus status regulates CK2α3/β3. PMID:25724641

  15. Soluble adhesion molecules in human cancers: sources and fates.

    Kilsdonk, J.W.J. van; Kempen, L.C.L.T. van; Muijen, G.N.P. van; Ruiter, D.J.; Swart, G.W.

    2010-01-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Be

  16. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    Kwak, Moon Kyu

    2011-06-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. PMID:22285098

  18. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive.

    Gustafsson, Emil; Pelton, Robert; Wågberg, Lars

    2016-09-14

    The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values. PMID:27552256

  19. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  20. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet

    Rogers, Gareth J.; Hodgkin, Matthew N.; Squires, Paul E.

    2007-01-01

    Background/Aims: The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. Methods: The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and...

  1. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C...

  2. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis

    Shelef, Miriam A; Bennin, David A.; Yasmin, Nihad; Warner, Thomas F; Ludwig, Thomas; Beggs, Hilary E.; Huttenlocher, Anna

    2014-01-01

    Introduction Synovial fibroblasts invade cartilage and bone, leading to joint destruction in rheumatoid arthritis. However, the mechanisms that regulate synovial fibroblast invasion are not well understood. Focal adhesion kinase (FAK) has been implicated in cellular invasion in several cell types, and FAK inhibitors are in clinical trials for cancer treatment. Little is known about the role of FAK in inflammatory arthritis, but, given its expression in synovial tissue, its known role in invas...

  3. Inhibition of Rac and ROCK Signalling Influence Osteoblast Adhesion, Differentiation and Mineralization on Titanium Topographies

    Paul D H Prowse; Elliott, Christopher G.; Jeff Hutter; Hamilton, Douglas W.

    2013-01-01

    Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced...

  4. Effect of beta2-adrenergic agonists on eosinophil adhesion, superoxide anion generation, and degranulation

    Toru Noguchi; Kazuyuki Nakagome; Takehito Kobayashi; Yutaka Ueda; Tomoyuki Soma; Hidetomo Nakamoto; Makoto Nagata

    2015-01-01

    Background: Eosinophils play important roles in the development of asthma exacerbation. Viral infection is a major cause of asthma exacerbation, and the expression of IFN-γ-inducible protein of 10 kDa (IP-10) and cysteinyl leukotrienes (cysLTs) is up-regulated in virus-induced asthma. As β2-adrenergic agonists, such as formoterol or salbutamol, are used to treat asthma exacerbation, we examined whether formoterol or salbutamol could modify eosinophil functions such as adhesiveness, particular...

  5. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels

    Duan, Bin; Hockaday, Laura A.; Kapetanovic, Edi; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three dimensional (3D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative templates for tissue engineering. However, the role of stiffness and adhesivity of hydrogels in VIC behavior remains poorly understood. This study reports synthesis of oxidized and methacrylated hyalu...

  6. Adhesion Molecules, Altered Vasoreactivity, and Brain Atrophy in Type 2 Diabetes

    Novak, Vera; ZHAO, PENG; Manor, Brad; Sejdić, Ervin; Alsop, David; Abduljalil, Amir; Roberson, Paula K.; Munshi, Medha; Novak, Peter

    2011-01-01

    OBJECTIVE To investigate the effects of inflammation on perfusion regulation and brain volumes in type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 147 subjects (71 diabetic and 76 nondiabetic, aged 65.2 ± 8 years) were studied using 3T anatomical and continuous arterial spin labeling magnetic resonance imaging. Analysis focused on the relationship between serum soluble vascular and intercellular adhesion molecules (sVCAM and sICAM, respectively, both markers of endothelial integrity), ...

  7. Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation

    Velez, Monica Perea; Petrova, Mariya I; Lebeer, Sarah; Verhoeven, Tine L. A.; Claes, Ingmar; LAMBRICHTS, Ivo; Tynkkynen, Soile; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.

    2010-01-01

    The probiotic Lactobacillus rhamnosus GG, first isolated from healthy human gut microbiota, has been reported to adhere very well to components of the intestinal mucosa, thereby enabling transient colonization of the gastrointestinal tract (GIT). In a search for the genes responsible for the good adherence capacity of this strain, a genomic region encoding a protein with homology to putative adhesion proteins (LGG_01865) and its putative regulator (LGG_01866) was identified. The sequence of t...

  8. Prospective controlled randomized trial on prevention of postoperative abdominal adhesions by Icodextrin 4% solution after laparotomic operation for small bowel obstruction caused by adherences [POPA study: Prevention of Postoperative Adhesions on behalf of the World Society of Emergency Surgery

    D'Alessandro Luigi

    2008-12-01

    Full Text Available Abstract Background Adhesive small intestine occlusion [ASIO] is an important cause of hospital admission placing a substantial burden on healthcare systems worldwide. Often times, ASIO is associated with significant morbidity and mortality. Icodextrin 4% solution [Adept, Shire Pharmaceuticals, UK] is a high-molecular-weight a-1,4 glucose polymer that is approved in Europe for use as an intra-operative lavage and a post-operative instillate to reduce the occurrence of post-surgery intra-abdominal adhesions. There are no randomized trials on the use of this solution to prevent adhesions after ASIO operation in current medical literature. The current clinical study evaluates the safety and effectiveness of Icodextrin 4% for decreasing the incidence, extent, and severity of adhesions in patients after abdominal surgery for ASIO. Design The study project is a prospective, randomized controlled investigation performed in the Department of Transplant, General and Emergency Surgery of St. Orsola-Malpighi University Hospital [Bologna, Italy]. The study is designed and conducted in compliance with the principles of Good Clinical Practice regulations. The study compares the results of Icodextrin 4% against a control group who does not receive anti-adhesion treatment. This randomized study uses a double-blind procedure to evaluate efficacy end points. In other words, designated third party individuals who are unaware of the treatment assigned to the patients to assess adhesion formation. Trial Registration Number ISRCTN22061989 Prospective controlled randomized trial on Prevention of Postoperative Abdominal Adhesions by Icodextrin 4% solution after laparotomic operation for small bowel obstruction caused by adherences [POPA study: Prevention of Postoperative Adhesions

  9. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  10. In situ electrochemical Scanning Kelvin Probe Blister-Test studies of the de-adhesion kinetics at polymer/zinc oxide/zinc interfaces

    Fundamental investigations of the polymer/zinc oxide/zinc interface corrosion stability were performed in situ by means of the electrochemical Height Regulated Scanning Kelvin Probe Blister-Test (HR-SKP-BT) under controlled atmospheric conditions. A hole under an adhesive layer film served as electrolyte reservoir to initiate cathodic de-adhesion processes. Then a combinatorial approach was undertaken to simultaneously study the influence of electrolyte pressure at constant defect polarisation and of relative atmospheric humidity on the de-adhesion rate. The time resolved blister growth and the propagation of the three phase boundary polymer/oxide covered zinc/interfacial electrolyte layer could be detected. It could be proven that the oxygen reduction induced electrochemical damage of the interface precedes the subsequent mechanical de-adhesion process. By variation of the relative atmospheric humidity the water concentration within the bulk adhesive and its interphase adjacent to the metal substrate could be adjusted. These processes were further analysed by peel-tests and in situ Attenuated-Total-Reflection Infrared Spectroscopy (ATR-IR) studies of water diffusion. A decrease of the interphasial water concentration led to a deceleration of the de-adhesion kinetics for constant defect conditions and to smaller interfacial ion transport rates. This could be assigned to an inhibition of the electron transfer reactions at the front of de-adhesion and an increased adhesion force between polymer film and oxide covered metal preventing the formation of an extended interfacial electrolyte layer.

  11. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1

    Desmecht D

    2005-08-01

    Full Text Available Abstract Background The effects of proanthocyanidins (PACs, isolated from blackcurrant (Ribes nigrum L. leaves, on neutrophil accumulation during inflammatory processes were investigated in vivo and in vitro. Methods In vivo studies were performed using carrageenin-induced pleurisy in rats pre-treated with PACs. Exudate volume and PMNs accumulation were measured. Leukocyte cell adhesion molecules (LFA-1, Mac-1 and VLA-4 mobilization in circulating granulocytes were analysed by flow cytometry and endothelial cell adhesion molecules (ICAM-1 and VCAM-1 were detected by immunohistochemistry on lung sections. In vitro studies were conducted on endothelial LT2 cells, stimulated with TNF-α, to evaluate ICAM-1, IL-8 and VEGF mRNA expression upon PACs treatment. Data sets were examined by one-way analysis of variance (ANOVA followed by a Scheffe post-hoc test. Results Pretreatment of the animals with PACs (10, 30 and 60 mg/kg inhibited dose-dependently carrageenin-induced pleurisy in rats by reducing pleural exudate formation and PMNs infliltration. Leukocyte cell adhesion molecules mobilization was not down-regulated on granulocytes by PACs. Immunohistochemistry on lung sections showed a decreased production of endothelial cell adhesion molecules. In vitro experiments demonstrated that PACs were able to significantly inhibit ICAM-1 but not IL-8 and VEGF165 mRNA expression. Moreover, VEGF121 mRNA expression was dose-dependently enhanced. Conclusion This study provides evidence to support the anti-inflammatory activity of proanthocyanidins is related to an inhibition of leukocyte infiltration which can be explained at least in part by a down-regulation of endothelial adhesion molecules, ICAM-1 and VCAM-1 and that these compounds are capable of modulating TNF-α-induced VEGF transcription.

  12. Metastable states and activated dynamics in thin-film adhesion to patterned surfaces

    Lindström, Stefan B.; Johansson, Lars; Karlsson, Nils R.

    2014-01-01

    We consider adhesion due to London–van der Waals attraction between a thin film and a patterned surface with nanometer asperities. Depending on the surface topography and the stiffness of the film, three regimes of adhesion are identified: complete contact adhesion, partial contact adhesion, and glassy adhesion. For complete contact adhesion, the film conforms to the undulations of the surface, whereas for partial contact and glassy adhesion, the adhesive interface breaks down into microscopi...

  13. Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity.

    Duman, Joseph G; Tu, Yen-Kuei; Tolias, Kimberley F

    2016-01-01

    Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD), and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI) subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs) has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases. PMID:26881134

  14. Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity

    Joseph G. Duman

    2016-01-01

    Full Text Available Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD, and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.

  15. The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology.

    Winter, M.J.; Nagtegaal, I.D.; Krieken, J.H.J.M. van; Litvinov, S.V.

    2003-01-01

    Cell adhesion receptors (CAMs) are actively involved in regulating various cell processes, including growth, differentiation, and cell death. Therefore, CAMs represent a large group of morphoregulating molecules, mediating cross-talk between cells and of cells with their environment. From this persp

  16. Prediction and prevention of adhesion formation of the abdominal cavity

    Alisher, Zh; Zhandos, T.; Nurbolat, E.; Zarina, R.; Dinara, Shaki

    2015-01-01

    BACKGROUND The existence of adhesive disease was known in the middle of the XIX century, N.N. Blinov in the middle of the XX century in his monograph “Adhesive disease”, wrote that post-surgical adhesions in the abdominal cavity – is a defect of surgeon. At present time, it is known that adhesive disease is the adhesions of connective tissue between adjacent organs or the peritoneal surface resulting from damage of their walls (more often during a surgical intervention). As of today, there ar...

  17. Application of Bonded Joints for Quantitative Analysis of Adhesion

    Jarmila Trpčevská

    2016-01-01

    Full Text Available The performance of hot-dip coated steel sheets is associated with properties of the zinc coatings on steel substrate. For the characterization of the adhesion behaviour of zinc coating on steel various tests were employed. The study was focused on quantification assessment of galvanized coating adhesion to substrates. Methods for evaluation of the bonding strength of zinc coating by the shear strength and the T-peel tests applying four special types of adhesives were used. The experimental tests of bonded joints show that the adhesion of the zinc coating to the substrate was higher than that of the applied adhesive with the highest strength.

  18. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions

    Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.

    2013-01-01

    We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads th...

  19. On the mechanical properties of bovine serum albumin (BSA) adhesives.

    Berchane, N S; Andrews, M J; Kerr, S; Slater, N K H; Jebrail, F F

    2008-04-01

    Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples. PMID:18197367

  20. Adhesive intestinal obstruction following blunt abdominal trauma

    Advances in diagnosis and management of multiple trauma patients have lead to adopting a conservative approach for most patients with blunt abdominal trauma. Intestinal obstruction is a rare complication for this approach. Herein, we report a 37-year-old male, who did not have an abdominal operation, and who developed adhesive intestinal obstruction 7 weeks following blunt abdominal trauma. We detected no signs of peritonitis or intra-abdominal bleeding clinically or radiologically on admission. We initially treated the intestinal obstruction conservatively, but the obstruction did not resolve. Finally, we performed laparotomy, which showed that the small bowel was matted together by thick fibrous layers of adhesions. We performed adhesiolysis, and the patient was discharged home 3 weeks later. Histopathological findings of the fibrous layer were consistent with repair due to previous trauma and hemorrhage. We review the literature of this rare condition. (author)

  1. Nanostructured niobium oxide coatings influence osteoblast adhesion.

    Eisenbarth, E; Velten, D; Müller, M; Thull, R; Breme, J

    2006-10-01

    The interaction of osteoblasts was correlated to the roughness of nanosized surface structures of Nb(2)O(5) coatings on polished CP titanium grade 2. Nb(2)O(5) sol-gel coatings were selected as a model surface to study the interaction of osteoblasts with nanosized surface structures. The surface roughness was quantified by determination of the average surface finish (Ra number) by means of atomic force microscopy. Surface topographies with Ra = 7, 15, and 40 nm were adjusted by means of the annealing process parameters (time and temperature) within a sol-gel coating procedure. The observed osteoblast migration was fastest on smooth surfaces with Ra = 7 nm. The adhesion strength, spreading area, and collagen-I synthesis showed the best results on an intermediate roughness of Ra = 15 nm. The surface roughness of Ra = 40 nm was rather peaked and reduced the speed of cell reactions belonging to the adhesion process. PMID:16788971

  2. Adhesive joint and composites modeling in SIERRA.

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  3. Quantifying adhesion energy of mechanical coatings at atomistic scale

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  4. High-performance mussel-inspired adhesives of reduced complexity

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-10-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (~50 mJ m-2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  5. Orientation angle and the adhesion of single gecko setae.

    Hill, Ginel C; Soto, Daniel R; Peattie, Anne M; Full, Robert J; Kenny, T W

    2011-07-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  6. Tongue adhesion in the horned frog Ceratophrys sp.

    Kleinteich, Thomas; Gorb, Stanislav N.

    2014-06-01

    Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.

  7. Biomimetic Adhesive Materials Containing Cyanoacryl Group for Medical Application

    Sueng Hwan Jo

    2014-10-01

    Full Text Available For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOPA and a triblock copolymer (PEO-PPO-PEO for practical application to repair wet living tissues and bones, and in turn, to use the synthetic adhesives to test mechanistic hypotheses about the natural adhesive. The highest values in stress and modulus of the biomimetic adhesives prepared in wet state were 165 kPa and 33 MPa, respectively.

  8. Isolation and biochemical characterization of underwater adhesives from diatoms.

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules. PMID:24689803

  9. Preparation and characterization of UV-curable cationic composite adhesive

    UV-curable cationic composite adhesives containing TiO2 nanostructures were prepared by using 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate(CE) as monomer, triphenylsulfonium hexafluorophosphate salt (PI-432) as photoinitiator and titanium isopropoxide (TIP) as inorganic precursor. The morphology of the composite adhesives was characterized by atom force microscopy (AFM). The effect of TIP content on refractive index and transmittance of adhesives were studied. The results show that TiO2 nanostructures, the average diameter of which is 20 nm or so, can be uniformly dispersed in polymers of composite adhesives. The refractive index of adhesives can be adjusted from 1.501 9 to 1.544 9 with the change of TIP content. The transmittance of adhesives has a slight reduce with the increase of TIP content. When TIP content is up to 40%, the transmittance of composite adhesives remains around 90% or so. (authors)

  10. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing.

    Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G

    2016-05-20

    RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. PMID:26917381

  11. Rupture force of cell adhesion ligand tethers modulates biological activities of a cell-laden hydrogel.

    Lee, Min Kyung; Park, Jooyeon; Wang, Xuefeng; Roein-Peikar, Mehdi; Ko, Eunkyung; Qin, Ellen; Lee, Jonghwi; Ha, Taekjip; Kong, Hyunjoon

    2016-04-01

    Recent efforts to design a synthetic extracellular matrix for cell culture, engineering, and therapies greatly contributed to addressing biological roles of types and spatial organization of cell adhesion ligands. It is often suggested that ligand-matrix bond strength is another path to regulate cell adhesion and activities; however tools are lacking. To this end, this study demonstrates that a hydrogel coupled with integrin-binding deoxyribonucleic acid (DNA) tethers with pre-defined rupture forces can modulate cell adhesion, differentiation, and secretion activities due to the changes in the number and, likely, force of cells adhered to a gel. The rupture force of DNA tethers was tuned by altering the spatial arrangement of matrix-binding biotin groups. The DNA tethers were immobilized on a hydrogel of alginate grafted with biotin using avidin. Mesenchymal stem cells showed enhanced adhesion, neural differentiation, and paracrine secretion when cultured on the gel coupled with DNA tethers with higher rupture forces. Such innovative cell-matrix interface engineering would be broadly useful for a series of materials used for fundamental and applied studies on biological cells. PMID:26912186

  12. FAK dimerization controls its kinase-dependent functions at focal adhesions

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  13. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

    Taneja, Nilay; Fenix, Aidan M.; Rathbun, Lindsay; Millis, Bryan A.; Tyska, Matthew J.; Hehnly, Heidi; Burnette, Dylan T.

    2016-01-01

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis. PMID:27432211

  14. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives.

    Duan, Hongyun; Qiu, Teng; Guo, Longhai; Ye, Jun; Li, Xiaoyu

    2015-08-15

    The limitation and regulation of formaldehyde emissions (FE) now shows great importance in wood-based materials such as plywood and particle board manufactured for building and furnishing materials. The widely used formaldehyde-based adhesives are one of the main sources of FE from the wood products. In this work, a new kind of long-term effective formaldehyde scavenger in the microcapsule form was prepared by using an intra-liquid desiccation method. The characterizations of the capsule (UC) were performed including the morphologies, the yields, the loading efficiency as well as its sustained-release of urea in aqueous conditions. The prepared UC could be integrated in urea-formaldehyde resins by simply physical blending, and the mixtures were available to be applied as the adhesives for the manufacture of plywood. The bonding strength (BS) and the FE of the bonded plywood in both short (3h) and long (12 week) period were evaluated in detail. It was found that the FE profile of the plywood behaved following a duple exponential law within 12 week. The addition of UC in the adhesive can effectively depress the FE of the plywood not only in a short period after preparation but also in a long-term period during its practical application. The slow released urea would continuously suppress the emission of toxic formaldehyde in a sustained manner without obviously deteriorating on the BS of the adhesives. PMID:25855565

  15. Cement paste-epoxy adhesive interactions

    Djouani, Fatma; CONNAN, Carole; Delamar, Michel; CHEHIMI, Mohamed M; BENZARTI, Karim

    2011-01-01

    In the field of civil engineering, the durability of concrete assemblies using adhesives is widely conditioned by the properties of the interface between the resin and the mineral support (concrete). In this context we studied first the molecular interactions at the interface between an epoxy resin and cement pastes by several approaches based on XPS and IR spectroscopies, DSC, and inverse gas chromatography (IGC). XPS showed evidence of crosslinking of the polymer at the surface of hardened ...

  16. Radiation curable pressure sensitive adhesive composition

    Radiation curable pressure sensitive adhesive composition comprises: a polyoxyalkylene homo- or copolymer which is either a polyoxyethylene homopolymer or a poly (oxyethylene-oxypropylene) copolymer, or mixture thereof, having a molecular weight of from 1,700 to 90,000, in which at least 40 percent by weight of the oxyalkylene units are oxyethylene units; a liquid carbamyloxy alkyl acrylate; and, optionally, a photoinitiator

  17. Interfacial adhesion of graphene by multiscale models

    Huang, Rui

    2014-01-01

    This article presents a multiscale study on adhesive interactions between graphene and its substrates. First, van der Waals (vdW) interactions between graphene and a SiO2 substrate are studied by first-principle density functional theory (DFT) calculations with dispersion corrections. It is found that the interaction strength is strongly influenced by changes of the SiO2 surface structures due to surface reactions with water. To scale up the model, molecular dynamics (MD) simulations are perf...

  18. Integrating electrostatic adhesion to composite structures

    Heath, Callum; Bond, Ian; Potter, Kevin

    2015-01-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Usin...

  19. Adhesion of cells to polystyrene surfaces

    1983-01-01

    The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polyst...

  20. Dynamic strength of molecular adhesion bonds.

    Evans, E; Ritchie, K

    1997-01-01

    In biology, molecular linkages at, within, and beneath cell interfaces arise mainly from weak noncovalent interactions. These bonds will fail under any level of pulling force if held for sufficient time. Thus, when tested with ultrasensitive force probes, we expect cohesive material strength and strength of adhesion at interfaces to be time- and loading rate-dependent properties. To examine what can be learned from measurements of bond strength, we have extended Kramers' theory for reaction k...

  1. Rabbit cationic protein enhances leukocyte adhesiveness.

    Oseas, R S; Allen, J; Yang, H. H.; Baehner, R. L.; Boxer, L A

    1981-01-01

    Cationic protein purified from rabbit peritoneal polymorphonuclear leukocytes (PMN) was demonstrated to incite autoaggregation of the rabbit PMN and promote adhesiveness of human PMN to endothelial cells. PMN aggregation induced by supernatants derived from secretory PMN was blocked by a specific anticationic protein antibody. These studies reveal that a positively charged protein derived from the PMN can alter surface properties of the PMN itself and imply a role for this protein in PMN immo...

  2. Caspr2 : possible synaptogenic cell adhesion molecule

    Do, Trinh Thuy

    2011-01-01

    Synapses are crucial for communication among neurons in the central nervous system. Contactin-associated protein- like 2 (Caspr2) is a neuronal protein that is a member of the neurexin superfamily and is found in the juxtaparanodal regions of myelinated axons. Caspr2 has also been found in synapses and therefore is also thought to function as a cell adhesion molecule. As such, it should also induce synaptogenesis in vitro similar to the interaction between neurexins (located presynaptically) ...

  3. Cell adhesion and proliferation on modified polyethylene

    Kasálková, N.; Kolářová, K.; Bačáková, Lucie; Pařízek, Martin; Macková, Anna; Švorčík, V.

    ZURICH: TRANS TECH PUBLICATIONS LTD, 2008 - (Sandera, P.), s. 269-272. (MATERIALS SCIENCE FORUM. 567-568). ISSN 0255-5476. [5th International Conference on Materials Structure & Micromechanics of Fracture. Brno (CZ), 27.06.2007-29.06.2007] Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z50110509 Keywords : polyethylene * plasma modification * cell adhesion and proliferation Subject RIV: BO - Biophysics

  4. Nonlinear viscoelastic characterization of structural adhesives

    Rochefort, M. A.; Brinson, H. F.

    1983-01-01

    Measurements of the nonliner viscoelastic behavior of two adhesives, FM-73 and FM-300, are presented and discussed. Analytical methods to quantify the measurements are given and fitted into a framework of an accelerated testing and analysis procedure. The single integral model used is shown to function well and is analogous to a time-temperature stress-superposition procedure (TTSSP). Advantages and disadvantages of the creep power law method used in this study are given.

  5. Preparation and characterization of hierarchical patterned adhesives

    Bauer, Christina T.

    2015-01-01

    The remarkable adherence of geckos is attributed to the hierarchical structure on their feet pads. Although significant progress has been made, inspired by nature, in fabrication of dry adhesive materials on smooth surfaces, materials with similar adherence against rough surfaces are yet to be found. To better understand the effect of hierarchy on adherence we fabricated macroscopic models made of polydimethylsiloxane with different levels of hierarchy that were brought into contact with glas...

  6. Development of Screenable Pressure Sensitive Adhesives

    Steven J. Severtson

    2003-11-29

    An industrial research area of high activity in recent years has been the development of pressure sensitive adhesive (PSA) products that do not interfere with the processing of post-consumer waste. The problem of PSA contamination is arguably the most important technical challenge in expanding the use of recycled fiber. The presence of PSAs in recovered paper creates problems that reduce the efficiency of recycling and papermaking operations and diminish product quality. The widespread use of PSAs engineered to avoid these problems, often referred to as environmentally benign PSAs, could greatly increase the commercial viability of utilizing secondary fiber. Much of the research efforts in this area have focused on the development of PSAs that are designed for enhanced removal with cleaning equipment currently utilized by recycling plants. Most removal occurs at the pressure screens with the size and shape of residual contaminants in the process being the primary criteria for their separation. A viable approach for developing environmentally benign PSAs is their reformulation to inhibit fragmentation. The reduction of adhesives to small particles occurs almost exclusively during repulping; a process in which water and mechanical energy are used to swell and reduce paper products to their constituent fiber. Engineering PSA products to promote the formation of larger adhesive particles during repulping will greatly enhance their removal and reduce or eliminate their impact on the recycling process.

  7. BUCCAL DRUG DELIVERY USING ADHESIVE POLYMERIC PATCHES

    R. Venkatalakshmi

    2012-01-01

    Full Text Available The buccal mucosa has been investigated for local drug therapy and the systemic delivery of therapeutic peptides and other drugs that are subjected to first-pass metabolism or are unstable within the rest of the gastrointestinal tract. The mucosa of the oral cavity presents a formidable barrier to drug penetration, and one method of optimizing drug delivery is by the use of adhesive dosage forms and the mucosa has a rich blood supply and it is relatively permeable. The buccal mucosa is very suitable for a bioadhesion system because of a smooth and relatively immobile surface and accessibility. Therefore, drugs with a short biological half life, requiring a sustained released effect and exhibiting poor permeability, sensitivity to enzymatic degradation, or poor solubility may be good candidates to deliver via the oral cavity. To overcome the drawbacks of tablets flexible patches for use in the mouth have been developed. Erodible and non-erodible adhesive films have been used as bioadhesive films. These adhesive patches for oral mucosal delivery can be used to designed uni or bidirectional systems for buccal tissue absorption. The objective of this article is to review buccal drug delivery of patches (films by discussing buccal mucosa and pathways of drug absorption and their formulations.

  8. Therapeutic effect of JHPAD on intestinal adhesion

    Fu Chun Chen; Guo Fu Cher; Jue Ming Lin

    2000-01-01

    AIM To observe the clinical effect of self-made Jinhuang Pingan Decoction (JHPAD) in treating intestinaladhesion.METHODS Among 580 cases of intestinal adhesion, 492 cases were treated with oral JHPAD alone; 88cases with incomplete intestinal obstruction were treated by gastrointestinal decompression, then givingconcentrated JHPAD through the GI tube as well as fluid replacement and anti-inflammation therapy.RESULTS Among 580 cases, 302 cases were cured, 232 cases, improved and 46 cases had no change, thetotal effective rate was 92.1%. In 492 patients treated with JHPAD alone, 264 cases had obvious effect, 202cases were improved and 26 cases had no effect, the total effective rate was 94.7%, and the corresponingresults in 88 cases treated with JHPAD and gastrointestinal decompression were 39 cases, 29 cases, 20 casesand 77.3% respectively. In addition, there was close relationship between the therapeutic efficacy anddisease course, and had significant statistical difference in therapeutic efficacy with the disease course of lessthan 30 d or over 12 m (x2=87.32, P<0.0001).CONCLUSION JHPAD has the effect of clearing heat, detoxication, anti-inflammation, relieving edema,analgesia, hemostasis and anti-adhesion in the treatment of intestinal adhesion. It has a satisfactory efficacyand no toxic reaction, so it is worthy to popularize in clinical practice.

  9. Adhesion of Pseudomonas fluorescens onto nanophase materials

    Webster, Thomas J.; Tong, Zonghua; Liu, Jin; Banks, M. Katherine

    2005-07-01

    Nanobiotechnology is a growing area of research, primarily due to the potentially numerous applications of new synthetic nanomaterials in engineering/science. Although various definitions have been given for the word 'nanomaterials' by many different experts, the commonly accepted one refers to nanomaterials as those materials which possess grains, particles, fibres, or other constituent components that have one dimension specifically less than 100 nm. In biological applications, most of the research to date has focused on the interactions between mammalian cells and synthetic nanophase surfaces for the creation of better tissue engineering materials. Although mammalian cells have shown a definite positive response to nanophase materials, information on bacterial interactions with nanophase materials remains elusive. For this reason, this study was designed to assess the adhesion of Pseudomonas fluorescens on nanophase compared to conventional grain size alumina substrates. Results provide the first evidence of increased adhesion of Pseudomonas fluorescens on alumina with nanometre compared to conventional grain sizes. To understand more about the process, polymer (specifically, poly-lactic-co-glycolic acid or PLGA) casts were made of the conventional and nanostructured alumina surfaces. Results showed similar increased Pseudomonas fluorescens capture on PLGA casts of nanostructured compared to conventional alumina as on the alumina itself. For these reasons, a key material property shown to enhance bacterial adhesion was elucidated in this study for both polymers and ceramics: nanostructured surface features.

  10. Melanocyte Transformation Associated with Substrate Adhesion Impediment

    Sueli M. Oba-Shinjo

    2006-03-01

    Full Text Available Exclude experimental models of malignant transformation employ chemical and physical carcinogens or genetic manipulations to study tumor progression. In this work, different melanoma cell lines were established after submitting a nontumorigenic melanocyte lineage (melan-a to sequential cycles of forced anchorage impediment. The great majority of these cells underwent anoikis when maintained in suspension. After one deadhesion cycle, phenotypic alterations were noticeable in the few surviving cells, which became more numerous and showed progressive alterations after each adhesion impediment step. No significant differences in cell surface expression of integrins were detected, but a clear electrophoretic migration shift, compatible with an altered glycosylation pattern, was observed for β1 chain in transformed cell lines. In parallel, a progressive enrichment of tri- and tetra-antennary N-glycans was apparent, suggesting increased N-acetylglucosaminyl-transferase V activity. Alterations both in proteoglycan glycosylation pattern and core protein expression were detected during the transformation process. In conclusion, this model corroborates the role of adhesion state as a promoting agent in transformation process and demonstrates that cell adhesion disturbances may act as carcinogenic stimuli, at least for a nontumorigenic immortalized melanocyte lineage. These findings have intriguing implications for in vivo carcinogenesis, suggesting that anchorage independence may precede, and contribute to, neoplastic conversion.

  11. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  12. Adhesion and non-linear rheology of adhesives with supramolecular crosslinking points.

    Callies, X; Fonteneau, C; Pensec, S; Bouteiller, L; Ducouret, G; Creton, C

    2016-09-14

    Soft supramolecular materials are promising for the design of innovative and highly tunable adhesives. These materials are composed of polymer chains functionalized by strongly interacting moieties, sometimes called "stickers". In order to systematically investigate the effect of the presence of associative groups on the debonding properties of a supramolecular adhesive, a series of supramolecular model systems has been characterized by probe-tack tests. These model materials, composed of linear and low dispersity poly(butylacrylate) chains functionalized in the middle by a single tri-urea sticker, are able to self-associate by six hydrogen bonds and range in molecular weight (Mn) between 5 and 85 kg mol(-1). The linear rheology and the nanostructure of the same materials (called "PnBA3U") were the object of a previous study. At room temperature, the association of polymers via hydrogen bonds induces the formation of rod-like aggregates structured into bundles for Mn tools analysis developed by our group. The measure of the projected area covered by cavities growing in the adhesive layer during debonding can be used to estimate the true stress in the walls of the cavities and thus to characterize the in situ large strain deformation of the thin layer during the adhesion test itself. This analysis revealed in particular that the PnBA3U materials with Mn < 40 kg mol(-1) soften very markedly at large deformation like yield stress fluids, explaining the low adhesion energies measured for these viscoelastic gels. PMID:27498899

  13. Dynamic monitoring of changes in endothelial cell-substrate adhesiveness during leukocyte adhesion by microelectrical impedance assay

    Yakun Ge; Tongle Deng; Xiaoxiang Zheng

    2009-01-01

    Adhesion of leukocytes to endothelial cells in inflammation processes leads to changes of endothelial cell-substrate adhesiveness, and understanding of such changes will provide us with important information of inflammation processes. In this study, we used a non-invasive biosensor system referred to as real-time cell electronic sensor (RT-CES) system to monitor the changes in endothelial cell-substrate adhesiveness induced by human monoblastic cell line U937 cell adhesion in a dynamic and quantitative manner. This assay, which is based on cell-substrate impedance readout, is able to monitor transient changes in cell-substrate adhesiveness as a result of U937 cell adhesion. The U937 cell adhesion to endothelial cells was induced by lipopolysaccharide (LPS) in a dose-dependent manner. Although the number of adherent U937 cells to the endothelial cells was verified by a standard assay, the adhesiveness of endothelial cells after addition of U937 cells was monitored by the RT-CES system. Furthermore, focal adhesion kinase protein decrease and F-actin rearrangement in endothelial cells were observed after addition of U937 cells. Our results indicated that the adhesion of U937 cells to LPS-treated endothelial cells reduced the cell adhesiveness to the substrate, and such reduction might facilitate infiltration of leukocytes.

  14. Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion

    1992-01-01

    Regulated adhesion enables T cells to migrate through tissue and transiently interact with an endless succession of cells. Monoclonal antibody (mAb) engagement of the CD3/T cell receptor (TCR) complex results in a rapid and transient augmentation of the adhesion function of LFA-1 and VLA integrin molecules on human T cells. We show in this study that mAb crosslinking of the T cell-specific accessory molecules CD7 and CD28, or treatment with the Ca2+ ionophore A23187, results in the rapid indu...

  15. Higher-Order Architecture of Cell Adhesion Mediated by Polymorphic Synaptic Adhesion Molecules Neurexin and Neuroligin

    Hiroki Tanaka

    2012-07-01

    Full Text Available Polymorphic adhesion molecules neurexin and neuroligin (NL mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca2+, the ectodomain complex of neurexin-1 β isoform (Nrx1β and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.

  16. Structural Evaluation of the RSRM Nozzle Replacement Adhesive

    Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.

    1999-01-01

    This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.

  17. Dual-axis MEMS force sensors for gecko adhesion studies

    Hill, Ginel Corina

    Dual-axis piezoresistive microelectromechanical systems (MEMS) force sensors were used to investigate the effects of orientation angle on the adhesion of gecko hairs, called setae. These hairs are part of a fantastic, robust dry adhesive. Their adhesion is highly angle-dependent, with both the "pitch" and "roll" orientation angles playing a role. This anisotropy in adhesion properties is critical for locomotion, as it enables detachment of the gecko's foot with limited pull-off force. Many synthetic mimics of the gecko adhesive are isotropic. This work on the anisotropy of natural setae will inform future work on synthetic dry adhesives. A dual-axis microscale force sensor was needed to study single seta adhesive forces, which are stronger parallel to a substrate than perpendicular. Piezoresistive silicon cantilevers that separately detect lateral and normal forces applied at the tip were used. The fabrication process and rigorous characterization of new devices are reported. A novel calibration method was developed that uses resonant frequency measurements in concert with finite element models to correct for the expected variability of critical dimensions. These corrected models were used to predict the stiffnesses of each cantilever, and thus improve the accuracy of force measurements made with these sensors. This calibration technique was also validated by direct measurement of the dual-axis cantilever stiffnesses using a reference cantilever. The adhesion force of a single gecko seta is dramatically enhanced by proper orientation. The dual-axis cantilevers were used to measure two components of force between a substrate and a Gekko gecko seta. Lateral adhesion was highest with the stalk oriented parallel to the surface at 0° pitch. Adhesion decreased smoothly as the pitch angle of the stalk was increased, until detachment or no adhesion occurred at approximately 30°. To display enhanced adhesion, the splayed tuft at the end of the seta needed to be only

  18. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  19. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters.

    Eich, Christina; Manzo, Carlo; de Keijzer, Sandra; Bakker, Gert-Jan; Reinieren-Beeren, Inge; García-Parajo, Maria F; Cambi, Alessandra

    2016-01-01

    Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion. PMID:26869100

  20. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain

    Honnold Shelley P

    2011-04-01

    Full Text Available Abstract Background Neuroinvasion of Venezuelan equine encephalitis virus (VEEV and subsequent initiation of inflammation in the brain plays a crucial role in the outcome of VEEV infection in mice. Adhesion molecules expressed on microvascular endothelial cells in the brain have been implicated in the modulation of the blood brain barrier (BBB and inflammation in brain but their role in VEEV pathogenesis is not very well understood. In this study, we evaluated the expression of extracellular matrix and adhesion molecules genes in the brain of VEEV infected mice. Findings Several cell to cell adhesion molecules and extracellular matrix protein genes such as ICAM-1, VCAM-1, CD44, Cadherins, integrins, MMPs and Timp1 were differentially regulated post-VEEV infection. ICAM-1 knock-out (IKO mice infected with VEEV had markedly reduced inflammation in the brain and demonstrated a delay in the onset of clinical symptoms of disease. A differential regulation of inflammatory genes was observed in the IKO mice brain compared to their WT counterparts. Conclusions These results improve our present understanding of VEEV induced inflammation in mouse brain.