WorldWideScience

Sample records for adherens junctions caused

  1. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    Science.gov (United States)

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  2. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Directory of Open Access Journals (Sweden)

    Kunihiko Hatanaka

    Full Text Available The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization.In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity.These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  3. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries.

    Science.gov (United States)

    Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A

    2017-08-01

    Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old

  4. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions

    NARCIS (Netherlands)

    Theard, Delphine; Steiner, Magdalena; Kalicharan, Dharamdajal; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    Using a mutant hepatocyte cell line in which E-cadherin and ss-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking.

  5. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang; Zhao, Fang [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China); Lv, Zhong-ming; Shi, Wei-qin [Jiangsu Provincial Center for Disease Control and Prevention, Nanjing (China); Zhang, Lu-yong, E-mail: lyzhang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing (China); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Yan, Ming, E-mail: brookming@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China)

    2016-11-01

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit the expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.

  6. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    International Nuclear Information System (INIS)

    Wang, Xiang; Zhao, Fang; Lv, Zhong-ming; Shi, Wei-qin; Zhang, Lu-yong; Yan, Ming

    2016-01-01

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit the expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.

  7. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  8. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions.

    Science.gov (United States)

    Backert, Steffen; Schmidt, Thomas P; Harrer, Aileen; Wessler, Silja

    2017-01-01

    Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.

  9. DHT deficiency perturbs the integrity of the rat seminiferous epithelium by disrupting tight and adherens junctions.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Wenda-Różewicka, Lidia; Wiszniewska, Barbara

    2011-01-01

    In rats with a DHT deficiency induced by finasteride, morphological changes in the seminiferous epithelium were observed. The structural alterations were manifested by the premature germ cells sloughing into the lumen of seminiferous tubules. The etiology of this disorder could be connected with intercellular junctions disintegration. We showed in the immunohistochemical study the changes in expression of some proteins building tight and adherens junctions. The depression of N-cadherin, β-catenin and occludin immunoexpressions could be the reason for the release of immature germ cells from the seminiferous epithelium. However, the observed increase of the immunohistochemical reaction intensity of vinculin, one of the cadherin/catenin complex regulators, could be insufficient to maintain the proper function of adherens junctions. The hormonal imbalance appears to influence the pattern of expression of junctional proteins in the seminiferous epithelium. It could lead to untimely germ cells sloughing, and ultimately could impair fertility.

  10. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bajenova, Olga, E-mail: o.bazhenova@spbu.ru [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Chaika, Nina [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Tolkunova, Elena; Davydov-Sinitsyn, Alexander [Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064 (Russian Federation); Gapon, Svetlana [Boston Children' s Hospital, Boston, MA 02115 (United States); Thomas, Peter [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); O’Brien, Stephen [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  11. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    International Nuclear Information System (INIS)

    Bajenova, Olga; Chaika, Nina; Tolkunova, Elena; Davydov-Sinitsyn, Alexander; Gapon, Svetlana; Thomas, Peter; O’Brien, Stephen

    2014-01-01

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein

  12. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  13. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    Science.gov (United States)

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  14. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Science.gov (United States)

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  15. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiromi Sato

    2017-07-01

    Full Text Available Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1 extracellular matrix, 2 intercellular adhesion molecules and cell surface receptors, 3 intracellular proteins, 4 cell-cell junction proteins, and 5 a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or

  16. Ultrastructural analysis of the structure and distribution of the adherens junctions in the rats’ ventricular myocardium during postnatal stages of ontogeny after the infl uence of chronic prenatal hypoxia

    Directory of Open Access Journals (Sweden)

    N. S. Petruk

    2013-12-01

    Full Text Available Background. Antenatal and prenatal hypoxia causes changes in all the organs of fetuses and newborns and in the heart, particularly. Hypoxic damage of the cardiovascular system occurs in 40-70% of newborns. Currently we observe the increase of meaning of the morphological studies for the prenatal diagnosis of human’s heart diseases. It’s known that in adaptive remodeling of cardiomyocytes in the postnatal cardiogenesis of rat redistribution of diffusely located intercellular junctions from the periphery to the terminal areas of the cell occurs. The formation of a definitive pattern of intercellular junctions is completed at the puberty. But how chronic prenatal hypoxia influences the specialized adherens junctions in the rats’ ventricular myocardium is completely unknown and this requires further study. Objective. To provide complex qualitative and quantitative comparative ultrastructural analysis of the intercellular connection changes in rat ventricular myocardium on the stages of postnatal ontogenesis in the norm and under the chronic fetal hypoxia. Materials and methods. We have conducted ultrastructural analysis and distribution of the adherens junctions in the rats’ ventricles on the 1st, 3rd, 7th, 14th, 30th days during postnatal ontogeny and among mature animals in the normal development and under the chronic fetal hypoxia. Experimental chronic hypoxia was modeled by intraperitoneal injection of 1% aqueous solution of the NaNO2 in a daily dose of 50 mg/kg of body weight in the term from 10th to 21st days of pregnancy. Transmission electron microscopy, morphometric and statistical methods were applied. Pairwise comparisons between means of different groups were performed using a Student t-test where, for each couple of normally distributed populations, the null hypothesis that the means are equal was verified. Results. Pronounced increase (80,6%; p <0,05 of the content of desmosomes in the intercalated disk in the period from 7th

  17. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    Science.gov (United States)

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM

  18. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  19. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation.

    Science.gov (United States)

    Revenu, Céline; Streichan, Sebastian; Donà, Erika; Lecaudey, Virginie; Hufnagel, Lars; Gilmour, Darren

    2014-03-01

    The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a 'tissue-scale' polarity, whereby 'leader' cells at the edge of the tissue guide trailing 'followers' that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.

  20. Adherens junction distribution mechanisms during cell-cell contact elongation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Gabrielle Goldenberg

    Full Text Available During Drosophila gastrulation, amnioserosa (AS cells flatten and spread as an epithelial sheet. We used AS morphogenesis as a model to investigate how adherens junctions (AJs distribute along elongating cell-cell contacts in vivo. As the contacts elongated, total AJ protein levels increased along their length. However, genetically blocking this AJ addition indicated that it was not essential for maintaining AJ continuity. Implicating other remodeling mechanisms, AJ photobleaching revealed non-directional lateral mobility of AJs along the elongating contacts, as well as local AJ removal from the membranes. Actin stabilization with jasplakinolide reduced AJ redistribution, and live imaging of myosin II along elongating contacts revealed fragmented, expanding and contracting actomyosin networks, suggesting a mechanism for lateral AJ mobility. Actin stabilization also increased total AJ levels, suggesting an inhibition of AJ removal. Implicating AJ removal by endocytosis, clathrin endocytic machinery accumulated at AJs. However, dynamin disruption had no apparent effect on AJs, suggesting the involvement of redundant or dynamin-independent mechanisms. Overall, we propose that new synthesis, lateral diffusion, and endocytosis play overlapping roles to populate elongating cell-cell contacts with evenly distributed AJs in this in vivo system.

  1. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    Directory of Open Access Journals (Sweden)

    Hideaki Yamamoto

    Full Text Available Adherens junctions (AJs play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  2. Iterative Tensor Voting for Perceptual Grouping of Ill-Defined Curvilinear Structures: Application to Adherens Junctions

    Science.gov (United States)

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2012-01-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is applied to delineation of adherens junctions imaged through fluorescence microscopy. This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates. PMID:21421432

  3. Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells

    Directory of Open Access Journals (Sweden)

    Giehl Klaudia

    2009-09-01

    Full Text Available Abstract Background Monomeric GTPases of the Rho family control a variety of cellular functions including actin cytoskeleton organisation, cell migration and cell adhesion. Defects in these regulatory processes are involved in tumour progression and metastasis. The development of metastatic carcinoma is accompanied by deregulation of adherens junctions, which are composed of E-cadherin/β- and α-catenin complexes. Results Here, we show that the activity of the monomeric GTPase Rac1 contributes to inhibition of E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells. Stable expression of constitutively active Rac1(V12 reduced the amount of E-cadherin on protein level in PANC-1 pancreatic carcinoma cells, whereas expression of dominant negative Rac1(N17 resulted in an increased amount of E-cadherin. Extraction of proteins associated with the actin cytoskeleton as well as coimmunoprecipitation analyses demonstrated markedly decreased amounts of E-cadherin/catenin complexes in Rac1(V12-expressing cells, but increased amounts of functional E-cadherin/catenin complexes in cells expressing Rac1(N17. Cell aggregation and migration assays revealed, that cells containing less E-cadherin due to expression of Rac1(V12, exhibited reduced cell-cell adhesion and increased cell motility. The Rac/Cdc42 effector protein IQGAP1 has been implicated in regulating cell-cell adhesion. Coimmunoprecipitation studies showed a decrease in the association between IQGAP1 and β-catenin in Rac1(V12-expressing PANC-1 cells and an association of IQGAP1 with Rac1(V12. Elevated association of IQGAP1 with the E-cadherin adhesion complex via β-catenin correlated with increased intercellular adhesion of PANC-1 cells. Conclusion These results indicate that active Rac1 destabilises E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells by interacting with IQGAP1 which is associated with a disassembly of E-cadherin-mediated adherens junctions. Inhibition

  4. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    Science.gov (United States)

    Budnar, Srikanth; Yap, Alpha S.

    2017-01-01

    Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. PMID:28273072

  5. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions.

    Directory of Open Access Journals (Sweden)

    Rashmi Priya

    2017-03-01

    Full Text Available Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.

  6. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

    Directory of Open Access Journals (Sweden)

    Andrzej W Vorbrodt

    2004-07-01

    Full Text Available Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB. Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane proteins--occludin, junctional adhesion molecule (JAM-1, and claudin-5--as well as peripheral zonula occludens protein (ZO-1 were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin was considered questionable because solitary immunosignals (gold particles appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.

  7. 'Special K' and a Loss of Cell-To-Cell Adhesion in Proximal Tubule-Derived Epithelial Cells: Modulation of the Adherens Junction Complex by Ketamine

    Science.gov (United States)

    Hills, Claire E.; Jin, Tianrong; Siamantouras, Eleftherios; Liu, Issac K-K; Jefferson, Kieran P.; Squires, Paul E.

    2013-01-01

    Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention. PMID:24009666

  8. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  9. HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Thanh Thi Kim Vuong-Brender

    Full Text Available Adherens junctions (AJs are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions.

  10. γ-Catenin at Adherens Junctions: Mechanism and Biologic Implications in Hepatocellular Cancer after β-Catenin Knockdown

    Directory of Open Access Journals (Sweden)

    Emily Diane Wickline

    2013-04-01

    Full Text Available β-Catenin is important in liver homeostasis as a part of Wnt signaling and adherens junctions (AJs, while its aberrant activation is observed in hepatocellular carcinoma (HCC. We have reported hepatocyte-specific β-catenin knockout (KO mice to lack adhesive defects as γ-catenin compensated at AJ. Because γ-catenin is a desmosomal protein, we asked if its increase in KO might deregulate desmosomes. No changes in desmosomal proteins or ultrastructure other than increased plakophilin-3 were observed. To further elucidate the role and regulation of γ-catenin, we contemplate an in vitro model and show γ-catenin increase in HCC cells upon β-catenin knockdown (KD. Here, γ-catenin is unable to rescue β-catenin/T cell factor (TCF reporter activity; however, it sufficiently compensates at AJs as assessed by scratch wound assay, centrifugal assay for cell adhesion (CAFCA, and hanging drop assays. γ-Catenin increase is observed only after β-catenin protein decrease and not after blockade of its transactivation. γ-Catenin increase is associated with enhanced serine/threonine phosphorylation and abrogated by protein kinase A (PKA inhibition. In fact, several PKA-binding sites were detected in γ-catenin by in silico analysis. Intriguingly γ-catenin KD led to increased β-catenin levels and transactivation. Thus, γ-catenin compensates for β-catenin loss at AJ without affecting desmosomes but is unable to fulfill functions in Wnt signaling. γ-Catenin stabilization after β-catenin loss is brought about by PKA. Catenin-sensing mechanism may depend on absolute β-catenin levels and not its activity. Anti-β-catenin therapies for HCC affecting total β-catenin may target aberrant Wnt signaling without negatively impacting intercellular adhesion, provided mechanisms leading to γ-catenin stabilization are spared.

  11. Scattering of MCF7 cells by heregulin ß-1 depends on the MEK and p38 MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Rintaro Okoshi

    Full Text Available Heregulin (HRG β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell-cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell-cell adhesion.

  12. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    International Nuclear Information System (INIS)

    Inagaki-Ohara, Kyoko; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-01-01

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), β-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. γδ IEL showed higher level of these expressions than αβ IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC

  13. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression.

    Science.gov (United States)

    Wise, Sarah K; Laury, Adrienne M; Katz, Elizabeth H; Den Beste, Kyle A; Parkos, Charles A; Nusrat, Asma

    2014-05-01

    Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a "leaky" epithelial barrier phenotype. We hypothesize that T helper 2 (Th2) cytokines interleukin (IL)-4 and IL-13 modulate epithelial junction proteins, thereby contributing to the leaky epithelial barrier. Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n = 6) and 68.6% (n = 8) of baseline, respectively. Tight junction protein junctional adhesion molecule-A (JAM-A) expression decreased 42.2% with IL-4 exposure (n = 9) and 37.5% with IL-13 exposure (n = 9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n = 9) and 32.9% with IL-13 exposure (n = 9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or zonula occludens-1 (ZO-1) with IL-4 or IL-13 exposure. Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. © 2014 ARS-AAOA, LLC.

  14. IL-4 and IL-13 Compromise the Sinonasal Epithelial Barrier and Perturb Intercellular Junction Protein Expression

    Science.gov (United States)

    Wise, Sarah K.; Laury, Adrienne M.; Katz, Elizabeth H.; Den Beste, Kyle A.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    Introduction Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a “leaky” epithelial barrier phenotype. We hypothesize that Th2 cytokines IL-4 and IL-13 modulate epithelial junction proteins thereby contributing to the leaky epithelial barrier. Methods Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. Results IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n=6) and 68.6% (n=8) of baseline, respectively. Tight junction protein JAM-A expression decreased 42.2% with IL-4 exposure (n=9) and 37.5% with IL-13 exposure (n=9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n=9) and 32.9% with IL-13 exposure (n=9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or ZO-1 with IL-4 or IL-13 exposure. Conclusion Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. PMID:24510479

  15. Role of the Adherens Junction Protein Fascin in the Regulation of Tight Junction Permeability in the Mouse Mammary Gland

    National Research Council Canada - National Science Library

    Beeman, Neal

    2001-01-01

    .... Transduced cells are morphologically normal and produce milk. This gene delivery system was used to express an N-terminally truncated mutant of the tight junction protein occluding in the mammary gland and in cultured cells...

  16. Disruption of adherens junction and alterations in YAP-related proliferation behavior as part of the underlying cell transformation process of alcohol-induced oral carcinogenesis.

    Science.gov (United States)

    Husari, Ayman; Hülter-Hassler, Diana; Steinberg, Thorsten; Schulz, Simon Daniel; Tomakidi, Pascal

    2018-01-01

    Accumulating evidences indicate that alcohol might play a causative in oral cancer. Unfortunately, in vitro cell systems, uncovering the molecular background of the underlying cell transformation process, are rare. Therefore, this study was conducted, to identify molecular changes and characterize their putative cell behavioral consequences in epitheloid (EPI) and fibroblastoid (FIB) oral keratinocyte phenotypes, arising from chronical alcohol treatment. Concerning adherens junctions (AJs), both EPI and FIB showed membrane-bound β-catenin, but exhibited differences for E-cadherin and zyxin. While EPI revealed E-cadherin/β-catenin membrane co-localization, which in parts also applied for zyxin, FIB membranes were devoid of E-cadherin and exhibited marginal zyxin expression. Fetal calf serum (FCS) administration in starved cells promoted proliferation in both keratinocyte phenotypes, whereat EPI and FIB yielded a strikingly modified FCS sensitivity on the temporal scale. Impedance measurement-based cell index detection yielded proliferation stimulation occurring much earlier in FIB (45h). Nuclear preference of the proliferation-associated YAP co-transcription factor in FIB was FCS independent, while it required FCS in EPI. Taken together, the lack of membrane-inherent E-cadherin/β-catenin co-localization together with low zyxin - reveals perturbation of AJ integrity in FIB. Regarding cell behavior, perturbed AJs in FIB correlate with temporal proliferation sensitivity towards FCS. CYF of 5.6 strongly suggests involvement of chromatin-bound YAP in FIB's proliferation temperosensitivity. These molecular differences detected for EPI and FIB are part of the underlying cell transformation process of alcohol-induced oral carcinogenesis, and indicate FIB being in a more advanced transformation stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  18. fps/fes knockout mice display a lactation defect and the fps/fes tyrosine kinase is a component of E-cadherin-based adherens junctions in breast epithelial cells during lactation.

    Science.gov (United States)

    Truesdell, Peter F; Zirngibl, Ralph A; Francis, Sarah; Sangrar, Waheed; Greer, Peter A

    2009-10-15

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with beta-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of beta-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion.

  19. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction.

    Science.gov (United States)

    Sluysmans, Sophie; Vasileva, Ekaterina; Spadaro, Domenica; Shah, Jimit; Rouaud, Florian; Citi, Sandra

    2017-04-01

    Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  20. Testicular cell junction: a novel target for male contraception.

    Science.gov (United States)

    Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan

    2009-01-01

    Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.

  1. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  2. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  3. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... experiment showed a lower dye diffusion distance of Cx46 V44M cells, ... Studies of connexins show that channel gating and permeability .... have found that connexin assembled into gap junction plaques is not soluble in 1% ..... high glucose reduces gap junction activity in microvascular endothelial cells.

  4. Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells.

    Science.gov (United States)

    Linford, Andrea; Yoshimura, Shin-ichiro; Nunes Bastos, Ricardo; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J; Barr, Francis A

    2012-05-15

    Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    LIJUAN CHEN

    2017-12-20

    Dec 20, 2017 ... showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular ... permeability could be affected by alterations of charged residues of .... bled into gap junction plaques is not soluble in 1% Triton ..... regulation of connexin 43 expression by high glucose reduces.

  6. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gendronneau

    Full Text Available The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo.We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury.The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis.These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.

  7. Desmosomal Molecules In and Out of Adhering Junctions: Normal and Diseased States of Epidermal, Cardiac and Mesenchymally Derived Cells

    Directory of Open Access Journals (Sweden)

    Sebastian Pieperhoff

    2010-01-01

    Full Text Available Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes, anchoring intermediate-sized filaments (IFs, and the actin microfilament-anchoring adherens junctions (AJs, including both punctate (puncta adhaerentia and elongate (fasciae adhaerentes structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.

  8. Epidural varix at the cervicothoracic junction: unusual cause of quadriplegia: a case report.

    Science.gov (United States)

    Bapat, Mihir; Metkar, Umesh

    2006-02-01

    A case report describing an unusual incident of quadriplegia in a young adult male caused by an epidural varix at the cervicothoracic junction. To report an unusual case of quadriplegia caused by an epidural varix at the cervicothoracic junction. Epidural varices are dilated tortuous elongated veins inside the central canal. In degenerative spinal stenosis, these varices are a result of venous stagnation and contribute to the pathogenesis of radicular pain. In the absence of stenosis, primary varicosities develop as a result of dynamic obstruction to venous outflow during spinal movements. A primary epidural varix can produce neurologic deficit similar to a space occupying lesion within the spinal canal. The myeloradiculopathy is of a slow progressive nature. A young man presented with an acute onset flaccid quadriplegia in the absence of significant trauma. Magnetic resonance imaging revealed an extradural space occupying lesion at the cervicothoracic junction that was diagnosed as an isolated epidural varix during surgery. No neurologic recovery occurred. Postoperative magnetic resonance imaging revealed a syrinx in the cervicothoracic cord. In the absence of other precipitating factors, the cord injury was attributed to the epidural varix. A temporary impedance to the venous outflow with the increase in the venous pressure has been hypothesized as the mechanism of cord injury.

  9. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  10. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    Science.gov (United States)

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  11. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  12. Evidence for differential changes of junctional complex proteins in murine neurocysticercosis dependent upon CNS vasculature.

    Science.gov (United States)

    Alvarez, Jorge I; Teale, Judy M

    2007-09-12

    The delicate balance required to maintain homeostasis of the central nervous system (CNS) is controlled by the blood-brain barrier (BBB). Upon injury, the BBB is disrupted compromising the CNS. BBB disruption has been represented as a uniform event. However, our group has shown in a murine model of neurocysticercosis (NCC) that BBB disruption varies depending upon the anatomical site/vascular bed analyzed. In this study further understanding of the mechanisms of BBB disruption was explored in blood vessels located in leptomeninges (pial vessels) and brain parenchyma (parenchymal vessels) by examining the expression of junctional complex proteins in murine brain infected with Mesocestoides corti. Both pial and parenchymal vessels from mock infected animals showed significant colocalization of junctional proteins and displayed an organized architecture. Upon infection, the patterned organization was disrupted and in some cases, particular tight junction and adherens junction proteins were undetectable or appeared to be undergoing proteolysis. The extent and timing of these changes differed between both types of vessels (pial vessel disruption within days versus weeks for parenchymal vessels). To approach potential mechanisms, the expression and activity of matrix metalloproteinase-9 (MMP-9) were evaluated by in situ zymography. The results indicated an increase in MMP-9 activity at sites of BBB disruption exhibiting leukocyte infiltration. Moreover, the timing of MMP activity in pial and parenchymal vessels correlated with the timing of permeability disruption. Thus, breakdown of the BBB is a mutable process despite the similar structure of the junctional complex between pial and parenchymal vessels and involvement of MMP activity.

  13. Revealing the Functions of Tenascin-C in 3-D Breast Cancer Models Using Cell Biological and In Silico Approaches

    National Research Council Canada - National Science Library

    Taraseviciute, Agne; Jones, Peter L

    2007-01-01

    ...) organotypic cultures of human mammary epithelial cells by focusing on cell-cell junctions, adherens junctions in particular, as well as activation of receptor tyrosine kinases, namely EGFR and c-met...

  14. Effect of cAMP derivates on assembly and maintenance of tight junctions in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Beese Michaela

    2010-09-01

    Full Text Available Abstract Background Endothelial tight and adherens junctions control a variety of physiological processes like adhesion, paracellular transport of solutes or trafficking of activated leukocytes. Formation and maintenance of endothelial junctions largely depend on the microenvironment of the specific vascular bed and on interactions of the endothelium with adjacent cell types. Consequently, primary cultures of endothelial cells often lose their specific junctional pattern and fail to establish tight monolayer in vitro. This is also true for endothelial cells isolated from the vein of human umbilical cords (HUVEC which are widely used as model for endothelial cell-related studies. Results We here compared the effect of cyclic 3'-5'-adenosine monophosphate (cAMP and its derivates on formation and stabilization of tight junctions and on alterations in paracellular permeability in HUVEC. We demonstrated by light and confocal laser microscopy that for shorter time periods the sodium salt of 8-bromoadenosine-cAMP (8-Br-cAMP/Na and for longer incubation periods 8-(4-chlorophenylthio-cAMP (pCPT-cAMP exerted the greatest effects of all compounds tested here on formation of continuous tight junction strands in HUVEC. We further demonstrated that although all compounds induced protein kinase A-dependent expression of the tight junction proteins claudin-5 and occludin only pCPT-cAMP slightly enhanced paracellular barrier functions. Moreover, we showed that pCPT-cAMP and 8-Br-cAMP/Na induced expression and membrane translocation of tricellulin. Conclusions pCPT-cAMP and, to a lesser extend, 8-Br-cAMP/Na improved formation of continuous tight junction strands and decreased paracellular permeability in primary HUVEC. We concluded that under these conditions HUVEC represent a feasible in vitro model to study formation and disassembly of endothelial tight junctions and to characterize tight junction-associated proteins

  15. Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2016-10-01

    Full Text Available Connexin (Cx hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+, heterozygous (Cx43+/- and knockout (Cx43-/- littermates showed that Cx43-positive cells (Cx43+/+ exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-. Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH. Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status.

  16. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts

    International Nuclear Information System (INIS)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian

    2014-01-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation

  17. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Directory of Open Access Journals (Sweden)

    Bernadette Sosa-García

    2010-11-01

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  18. Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation of Yap, a Hippo signaling-related protein

    International Nuclear Information System (INIS)

    Li, Changzhao; Srivastava, Ritesh K.; Elmets, Craig A.; Afaq, Farrukh; Athar, Mohammad

    2013-01-01

    Highlights: •Arsenic activates canonical Hippo signaling pathway and up-regulates αCatenin in the skin. •Arsenic activates transcriptional activity of Yap by its nuclear translocation. •Yap is involved in the disruption of tight/adherens junctions in arsenic-exposed animals. -- Abstract: Arsenic exposure in humans causes a number of toxic manifestations in the skin including cutaneous neoplasm. However, the mechanism of these alterations remains elusive. Here, we provide novel observations that arsenic induced Hippo signaling pathway in the murine skin. This pathway plays crucial roles in determining organ size during the embryonic development and if aberrantly activated in adults, contributes to the pathogenesis of epithelial neoplasm. Arsenic treatment enhanced phosphorylation-dependent activation of LATS1 kinase and other Hippo signaling regulatory proteins Sav1 and MOB1. Phospho-LATS kinase is known to catalyze the inactivation of a transcriptional co-activator, Yap. However, in arsenic-treated epidermis, we did not observed its inactivation. Thus, as expected, unphosphorylated-Yap was translocated to the nucleus in arsenic-treated epidermis. Yap by binding to the transcription factors TEADs induces transcription of its target genes. Consistently, an up-regulation of Yap-dependent target genes Cyr61, Gli2, Ankrd1 and Ctgf was observed in the skin of arsenic-treated mice. Phosphorylated Yap is important in regulating tight and adherens junctions through its binding to αCatenin. We found disruption of these junctions in the arsenic-treated mouse skin despite an increase in αCatenin. These data provide evidence that arsenic-induced canonical Hippo signaling pathway and Yap-mediated disruption of tight and adherens junctions are independently regulated. These effects together may contribute to the carcinogenic effects of arsenic in the skin

  19. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    Directory of Open Access Journals (Sweden)

    Cinzia Ambrosi

    Full Text Available Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26 that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P. Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels

  20. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sticky business

    DEFF Research Database (Denmark)

    Perez-Moreno, Mirna; Jamora, Colin; Fuchs, Elaine

    2003-01-01

    Cohesive sheets of epithelial cells are a fundamental feature of multicellular organisms and are largely a product of the varied functions of adherens junctions. These junctions and their cytoskeletal associations contribute heavily to the distinct shapes, polarity, spatially oriented mitotic spi...

  2. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation

    International Nuclear Information System (INIS)

    Sheth, Bhavwanti; Nowak, Rachael L.; Anderson, Rebecca; Kwong, Wing Yee; Papenbrock, Thomas; Fleming, Tom P.

    2008-01-01

    Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis

  3. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch

    OpenAIRE

    Bechtle, Sabine

    2010-01-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mecha...

  4. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  5. Coordination of Septate Junctions Assembly and Completion of Cytokinesis in Proliferative Epithelial Tissues.

    Science.gov (United States)

    Daniel, Emeline; Daudé, Marion; Kolotuev, Irina; Charish, Kristi; Auld, Vanessa; Le Borgne, Roland

    2018-05-07

    How permeability barrier function is maintained when epithelial cells divide is largely unknown. Here, we have investigated how the bicellular septate junctions (BSJs) and tricellular septate junctions (TSJs) are remodeled throughout completion of cytokinesis in Drosophila epithelia. We report that, following cytokinetic ring constriction, the midbody assembles, matures within SJs, and is displaced basally in two phases. In a first slow phase, the neighboring cells remain connected to the dividing cells by means of SJ-containing membrane protrusions pointing to the maturing midbody. Fluorescence recovery after photobleaching (FRAP) experiments revealed that SJs within the membrane protrusions correspond to the old SJs that were present prior to cytokinesis. In contrast, new SJs are assembled below the adherens junctions and spread basally to build a new belt of SJs in a manner analogous to a conveyor belt. Loss of function of a core BSJ component, the Na+/K+-ATPase pump Nervana 2 subunit, revealed that the apical-to-basal spread of BSJs drives the basal displacement of the midbody. In contrast, loss of the TSJ protein Bark beetle indicated that remodeling of TSJs is rate limiting and slowed down midbody migration. In the second phase, once the belt of SJs is assembled, the basal displacement of the midbody is accelerated and ultimately leads to abscission. This last step is temporally uncoupled from the remodeling of SJs. We propose that cytokinesis in epithelia involves the coordinated polarized assembly and remodeling of SJs both in the dividing cell and its neighbors to ensure the maintenance of permeability barrier integrity in proliferative epithelia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    Directory of Open Access Journals (Sweden)

    Mayu Inaba

    2010-08-01

    Full Text Available Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs are attached to niche component cells (i.e., the hub via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  7. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS.

    LENUS (Irish Health Repository)

    Wilcz-Villega, E

    2013-11-29

    Increased intestinal permeability and altered expression of tight junction (TJ) proteins may be implicated in the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the expression of adherens junction (AJ) protein E-cadherin and TJ proteins zonula occludens (ZO)-1 and claudin (CLD)-1 and associations with IBS symptoms.

  8. Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 in a dog

    Directory of Open Access Journals (Sweden)

    Harumichi Itoh

    2017-03-01

    Full Text Available Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 were diagnosed in a 6-month-old female Pomeranian with tetraplegia as a clinical sign. Lateral survey radiography of the neck with flexion revealed atlantoaxial subluxation with ventral subluxation of C2. Computed tomography revealed absence of dens and atlanto-occipital overlapping. Magnetic resonance imaging showed compression of the spinal cord and indentation of caudal cerebellum. The diagnosis was Chiari-like malformation, atlantoaxial subluxation with ventral displacement of C2, atlanto-occipital overlapping, and syringomyelia. The dog underwent foramen magnum decompression, dorsal laminectomy of C1, and ventral fixation of the atlantoaxial joint. Soon after the operation, voluntary movements of the legs were recovered. Finally, the dog could stand and walk without assistance. The dog had complicated malformations at the craniocervical junction but foramen magnum decompression and dorsal laminectomy for Chiari-like malformation, and ventral fixation for atlantoaxial subluxation resulted in an excellent clinical outcome.

  9. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions

    International Nuclear Information System (INIS)

    Imamura, Masafumi; Kojima, Takashi; Lan, Mengdong; Son, Seiichi; Murata, Masaki; Osanai, Makoto; Chiba, Hideki; Hirata, Koichi; Sawada, Norimasa

    2007-01-01

    In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi

  10. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases.

    Directory of Open Access Journals (Sweden)

    Catriona Paul

    Full Text Available With increasing age comes many changes in the testis, including germ cell loss. Cell junctions in the testis tether both seminiferous epithelial and germ cells together and assist in the formation of the blood-testis barrier (BTB, which limits transport of biomolecules, ions and electrolytes from the basal to the adluminal compartment and protects post-meiotic germ cells. We hypothesize that as male rats age the proteins involved in forming the junctions decrease and that this alters the ability of the BTB to protect the germ cells. Pachytene spermatocytes were isolated from Brown Norway rat testes at 4 (young and 18 (aged months of age using STA-PUT velocity sedimentation technique. RNA was extracted and gene expression was assessed using Affymetrix rat 230 2.0 whole rat genome microarrays. Microarray data were confirmed by q-RT-PCR and protein expression by Western blotting. Of the genes that were significantly decreased by at least 1.5 fold, 70 were involved in cell adhesion; of these, at least 20 are known to be specifically involved in junction dynamics within the seminiferous epithelium. The mRNA and protein levels of Jam2, Ocln, cdh2 (N-cadherin, ctnna (α-catenin, and cldn11 (involved in adherens junctions, among others, were decreased by approximately 50% in aged spermatocytes. In addition, the GTPases Rac1 and cdc42, involved in the recruitment of cadherins to the adherens junctions, were similarly decreased. It is therefore not surprising that with lower expression of these proteins that the BTB becomes diminished with age. We saw, using a FITC tracer, a gradual collapse of the BTB between 18 and 24 months. This provides the opportunity for harmful substances and immune cells to cross the BTB and cause the disruption of spermatogenesis that is observed with increasing age.

  11. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture ...

    Indian Academy of Sciences (India)

    Prakash

    2009-12-09

    Dec 9, 2009 ... in co-cultures of human colon carcinoma cell spheroids obtained from different grades of ...... of adherens junction in prostate epithelial cells; Exp. Cell. Res. ... tumour-associated antigens is related to estrogen receptor status;.

  12. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  13. Destruction of the hepatocyte junction by intercellular invasion of Leptospira causes jaundice in a hamster model of Weil's disease.

    Science.gov (United States)

    Miyahara, Satoshi; Saito, Mitsumasa; Kanemaru, Takaaki; Villanueva, Sharon Y A M; Gloriani, Nina G; Yoshida, Shin-ichi

    2014-08-01

    Weil's disease, the most severe form of leptospirosis, is characterized by jaundice, haemorrhage and renal failure. The mechanisms of jaundice caused by pathogenic Leptospira remain unclear. We therefore aimed to elucidate the mechanisms by integrating histopathological changes with serum biochemical abnormalities during the development of jaundice in a hamster model of Weil's disease. In this work, we obtained three-dimensional images of infected hamster livers using scanning electron microscope together with freeze-cracking and cross-cutting methods for sample preparation. The images displayed the corkscrew-shaped bacteria, which infiltrated the Disse's space, migrated between hepatocytes, detached the intercellular junctions and disrupted the bile canaliculi. Destruction of bile canaliculi coincided with the elevation of conjugated bilirubin, aspartate transaminase and alkaline phosphatase levels in serum, whereas serum alanine transaminase and γ-glutamyl transpeptidase levels increased slightly, but not significantly. We also found in ex vivo experiments that pathogenic, but not non-pathogenic leptospires, tend to adhere to the perijunctional region of hepatocyte couplets isolated from hamsters and initiate invasion of the intercellular junction within 1 h after co-incubation. Our results suggest that pathogenic leptospires invade the intercellular junctions of host hepatocytes, and this invasion contributes in the disruption of the junction. Subsequently, bile leaks from bile canaliculi and jaundice occurs immediately. Our findings revealed not only a novel pathogenicity of leptospires, but also a novel mechanism of jaundice induced by bacterial infection. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  14. Gangrene of the oesophago-gastric junction caused by strangulated hiatal hernia: operative challenge or surgical dead end.

    Science.gov (United States)

    Schweigert, M; Dubecz, A; Ofner, D; Stein, H J

    2014-06-01

    Gangrene of the oesophago-gastric junction due to incarcerated hiatal hernia is an extremely uncommon emergency situation which was first recognized in the late nineteenth century. Early symptoms are mainly unspecific and so diagnosis is often considerably delayed. Aim of the study is to share experience in dealing with this devastating condition. We encountered three male patients with gangrene of the oesophago-gastric junction caused by strangulated hiatal hernia within the last years. Clinical symptoms, surgical procedures and outcomes were retrospectively analyzed. Furthermore, we provide a history outline on the evolving surgical management from the preliminary reports of the nineteenth century up to modern times. Early symptoms were massive vomiting accompanied by retrosternal and epigastric pain. Hiatal hernia was already known in all patients. Nevertheless, clinical presentation was initially misdiagnosed as cardiovascular disorders. Upon emergency laparotomy gangrene of the oesophago-gastric junction was obvious while in one case even necrosis of the whole stomach occurred after considerable delayed diagnosis. Transmediastinal esophagectomy with resection of the proximal stomach and gastric pull up with cervical anastomosis was performed in two cases. Oesophago-gastrectomy with delayed reconstruction by retrosternal colonic interposition was mandatory in the case of complete gastric gangrene. Finally all sufferers recuperated well. Strangulation of hiatal hernia with subsequent gangrene of the oesophago-gastric junction is a life-threatening condition. Straight diagnosis is mandatory to avoid further necrosis of the proximal gastrointestinal tract as well as severe septic disease. Surgical strategies have considerably varied throughout the last 100 years. In our opinion transmediastinal oesophagectomy with interposition of a gastric tube and cervical anastomosis should be the procedure of choice if the distal stomach is still viable. Otherwise oesophago

  15. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Science.gov (United States)

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  16. Ochratoxim A alters cell adhesion and gap junction intercellular communication in MDCK cells

    International Nuclear Information System (INIS)

    Mally, Angela; Decker, Martina; Bekteshi, Michaela; Dekant, Wolfgang

    2006-01-01

    Ochratoxin A (OTA) is one of the most potent renal carcinogens studied to date, but the mechanism of tumor formation by ochratoxin A remains largely unknown. Cell adhesion and cell-cell communication participate in the regulation of signaling pathways involved in cell proliferation and growth control and it is therefore not surprising that modulation of cell-cell signaling has been implicated in cancer development. Several nephrotoxicants and renal carcinogens have been shown to alter cell-cell signaling by interference with gap junction intercell communication (GJIC) and/or cell adhesion, and the aim of this study was to determine if disruption of cell-cell interactions occurs in kidney epithelial cells in response to OTA treatment. MDCK cells were treated with OTA (0-50 μM) for up to 24 h and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, expression and intracellular localization of Cx43, E-cadherin and β-catenin were determined by immunoblot and immunofluorescence analysis. A clear decrease in the distance of dye transfer was evident following treatment with OTA at concentrations/incubation times which did not affect cell viability. Consistent with the functional inhibition of GJIC, treatment with OTA resulted in a dose-dependent decrease in Cx43 expression. In contrast to Cx43, OTA did not alter total amount of the adherens junction proteins E-cadherin and β-catenin. Moreover, Western blot analysis of Triton X-100 soluble and insoluble protein fractions did not indicate translocation of cell adhesion molecules from the membrane to the cytoplasm. However, a ∼78 kDa fragment of β-catenin was detected in the detergent soluble fraction, indicating proteolytic cleavage of β-catenin. Immunofluorescence analysis also revealed changes in the pattern of both β-catenin and E-cadherin labeling, suggesting that OTA may alter cell-adhesion. Taken together, these data support the hypothesis that disruption of cell

  17. Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ

    NARCIS (Netherlands)

    de Leeuw, W. J.; Berx, G.; Vos, C. B.; Peterse, J. L.; van de Vijver, M. J.; Litvinov, S.; van Roy, F.; Cornelisse, C. J.; Cleton-Jansen, A. M.

    1997-01-01

    Loss of expression of the intercellular adhesion molecule E-cadherin frequently occurs in invasive lobular breast carcinomas as a result of mutational inactivation. Expression patterns of E-cadherin and the molecules comprising the cytoplasmic complex of adherens junctions, alpha-, beta- and

  18. On simulation of local fluxes in molecular junctions

    Science.gov (United States)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  19. Dissecting the roles of ROCK isoforms in stress-induced cell detachment.

    Science.gov (United States)

    Shi, Jianjian; Surma, Michelle; Zhang, Lumin; Wei, Lei

    2013-05-15

    The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1(-/-) and ROCK2(-/-) mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1(-/-) MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2(-/-) MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1(-/-) MEFs, but not ROCK2(-/-) MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.

  20. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Klocke, Arndt; Schneider, Gerold A

    2010-05-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region. Calculated stress intensities around crack tips were found to be highly influenced by the elastic modulus mismatch between enamel and dentin and hence, the phenomenon of crack arrest at the DEJ could be explained accordingly via this elastic modulus mismatch. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  2. A βPIX-PAK2 complex confers protection against Scrib-dependent and cadherin-mediated apoptosis

    DEFF Research Database (Denmark)

    Frank, Scott R; Bell, Jennifer H; Frödin, Morten

    2012-01-01

    During epithelial morphogenesis, a complex comprising the βPIX (PAK-interacting exchange factor β) and class I PAKs (p21-activated kinases) is recruited to adherens junctions. Scrib, the mammalian ortholog of the Drosophila polarity determinant and tumor suppressor Scribble, binds βPIX directly. ...

  3. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    Science.gov (United States)

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen

  4. Internal resonances in periodically modulated long Josephson junctions

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonant...... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  5. Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)

    2009-07-01

    So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.

  6. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  7. Changes of junctions of endothelial cells in coronary sclerosis: A review

    Directory of Open Access Journals (Sweden)

    Li-Zi Zhang

    2016-03-01

    Full Text Available Atherosclerosis, the major cause of cardiovascular diseases, has been a leading contributor to morbidity and mortality in the United States and it has been on the rise globally. Endothelial cell–cell junctions are critical for vascular integrity and maintenance of vascular function. Endothelial cell junctions dysfunction is the onset step of future coronary events and coronary artery disease. Keywords: Coronary atherosclerosis, Junctions, Endothelial cells

  8. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  9. Image segmentation algorithm based on T-junctions cues

    Science.gov (United States)

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  10. Spin-flip effects on the supercurrent through mesoscopic superconducting junctions

    International Nuclear Information System (INIS)

    Pan Hui; Lin Tsunghan

    2005-01-01

    We investigate the spin-flip effects on the Andreev bound states and the supercurrent in a superconductor/quantum-dot/superconductor system, theoretically. The spin-flip scattering in the quantum dot can reverse the supercurrent flowing through the system, which results in a π-junction transition. By controlling the energy level of the quantum dot, the π-junction transition can be caused to occur again. The two mechanisms of the π-junction transitions are interpreted within the picture of Andreev bound states

  11. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    Science.gov (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  12. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

    Science.gov (United States)

    Takahashi, Chika; Miyatake, Koichi; Kusakabe, Morioh; Nishida, Eisuke

    2018-06-01

    Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Ileocolic junction resection in dogs and cats: 18 cases.

    Science.gov (United States)

    Fernandez, Yordan; Seth, Mayank; Murgia, Daniela; Puig, Jordi

    2017-12-01

    There is limited veterinary literature about dogs or cats with ileocolic junction resection and its long-term follow-up. To evaluate the long-term outcome in a cohort of dogs and cats that underwent resection of the ileocolic junction without extensive (≥50%) small or large bowel resection. Medical records of dogs and cats that had the ileocolic junction resected were reviewed. Follow-up information was obtained either by telephone interview or e-mail correspondence with the referring veterinary surgeons. Nine dogs and nine cats were included. The most common cause of ileocolic junction resection was intussusception in dogs (5/9) and neoplasia in cats (6/9). Two dogs with ileocolic junction lymphoma died postoperatively. Only 2 of 15 animals, for which long-term follow-up information was available, had soft stools. However, three dogs with suspected chronic enteropathy required long-term treatment with hypoallergenic diets alone or in combination with medical treatment to avoid the development of diarrhoea. Four of 6 cats with ileocolic junction neoplasia were euthanised as a consequence of progressive disease. Dogs and cats undergoing ileocolic junction resection and surviving the perioperative period may have a good long-term outcome with mild or absent clinical signs but long-term medical management may be required.

  14. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation.

    Science.gov (United States)

    Eibach, Sebastian; Moes, Greg; Hou, Yong Jin; Zovickian, John; Pang, Dachling

    2017-10-01

    Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.

  15. Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures.

    Science.gov (United States)

    Loss, Leandro A; Bebis, George; Parvin, Bahram

    2011-08-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is validated on delineating adherens junctions that are imaged through fluorescence microscopy. However, the method is also applicable for screening other organisms based on characteristics of their cell wall structures. Adherens junctions maintain tissue structural integrity and cell-cell interactions. Visually, they exhibit fibrous patterns that may be diffused, heterogeneous in fluorescence intensity, or punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates.

  16. Microwave oscillator using arrays of long Josephson junctions

    International Nuclear Information System (INIS)

    Pagano, S.; Monaco, R.; Costabile, G.

    1989-01-01

    The authors report on measurements performed on integrated superconducting devices based on arrays of long Josephson tunnel junctions operating in the resonant fluxon oscillation regime (i.e. biased on the Zero Field Steps). The electromagnetic coupling among the junction causes a mutual phase-locking of the fluxon oscillations with a corresponding increase of the emitted power and a decrease of the signal linewidth. This phase-locked state can be controlled by means of an external dc bias current and magnetic field. The effect of the generated microwave signal has been observed on a small Josephson tunnel junction coupled to the array via a microstrip transmission line. The feasibility of the reported devices as local oscillators in an integrated microwave Josephson receiver is discussed

  17. Gap junction diseases of the skin.

    NARCIS (Netherlands)

    Steensel, M.A.M. van

    2004-01-01

    Gap junctions are intercellular channels that allow the passage of water, ions, and small molecules. They are involved in quick, short-range messaging between cells and are found in skin, nervous tissue, heart, and muscle. An increasing number of hereditary skin disorders appear to be caused by

  18. Involvement of YAP, TAZ and HSP90 in contact guidance and intercellular junction formation in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vijay Krishna Raghunathan

    Full Text Available The extracellular environment possesses a rich milieu of biophysical and biochemical signaling cues that are simultaneously integrated by cells and influence cellular phenotype. Yes-associated protein (YAP and transcriptional co-activator with PDZ-binding motif (WWTR1; TAZ, two important signaling molecules of the Hippo pathway, have been recently implicated as nuclear relays of cytoskeletal changes mediated by substratum rigidity and topography. These proteins intersect with other important intracellular signaling pathways (e.g. Wnt and TGFβ. In the cornea, epithelial cells adhere to the stroma through a 3-dimensional topography-rich basement membrane, with features in the nano-submicron size-scale that are capable of profoundly modulating a wide range of fundamental cell behaviors. The influences of substratum-topography, YAP/TAZ knockdown, and HSP90 inhibition on cell morphology, YAP/TAZ localization, and the expression of TGFβ2 and CTGF, were investigated. The results demonstrate (a that knockdown of TAZ enhances contact guidance in a YAP dependent manner, (b that CTGF is predominantly regulated by YAP and not TAZ, and (c that TGFβ2 is regulated by both YAP and TAZ in these cells. Additionally, inhibition of HSP90 resulted in nuclear localization and subsequent transcriptional-activation of YAP, formation of cell-cell junctions and co-localization of E-cadherin and β-catenin at adherens junctions. Results presented in this study reflect the complexities underlying the molecular relationships between the cytoskeleton, growth factors, heat shock proteins, and co-activators of transcription that impact mechanotransduction. The data reveal the importance of YAP/TAZ on the cell behaviors, and gene and protein expression.

  19. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  20. Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions

    International Nuclear Information System (INIS)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.

    1990-01-01

    The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined

  1. A case report of craniovertebral junction intradural extramedullary neurenteric cyst

    Directory of Open Access Journals (Sweden)

    Rajeshwari S Vhora

    2014-01-01

    Full Text Available A neurenteric cyst of the craniocervical (CV junction, as a cause of bulbomedullary compression, is very rare. An abnormal communication between the endoderm and neuroectoderm during the third week of embryogenesis may be responsible for its formation. It is a rare spinal condition. The most frequent location is at the lower cervical and higher thoracic spine. Neurenteric cysts of the craniocervical junction are even rarer. We report the case of a CV junction intradural neurenteric cyst. Magnetic Resonance Imaging (MRI of our patient demonstrated an intradural extramedullary process of the craniocervical junction. A surgical posterior approach allowed gross total resection of the lesion. The histopathology of the surgical specimen showed that the cyst wall was made up of fibrocollagen walls lined with a partially ciliated columnar epithelium.

  2. Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials

    International Nuclear Information System (INIS)

    Gutkin, M Yu; Ovid'ko, I A; Skiba, N V

    2005-01-01

    A theoretical model is suggested that describes emission of partial Shockley dislocations from triple junctions of grain boundaries (GBs) in deformed nanocrystalline materials. In the framework of the model, triple junctions accumulate dislocations due to GB sliding along adjacent GBs. The dislocation accumulation at triple junctions causes partial Shockley dislocations to be emitted from the dislocated triple junctions and thus accommodates GB sliding. Ranges of parameters (applied stress, grain size, etc) are calculated in which the emission events are energetically favourable in nanocrystalline Al, Cu and Ni. The model accounts for the corresponding experimental data reported in the literature

  3. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  4. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea

    Directory of Open Access Journals (Sweden)

    Zheng Guiliang

    2012-06-01

    Full Text Available Abstract Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear

  5. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  6. The status of intercellular junctions in established lens epithelial cell lines.

    Science.gov (United States)

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that

  7. Double Trouble: A Rare Case of Bilateral Upper Pole Ureteropelvic Junction Obstruction

    Directory of Open Access Journals (Sweden)

    Craig A. Peters

    2014-09-01

    Full Text Available A 16-year-old girl presented with bilateral back pain caused by bilateral upper pole ureteropelvic junction obstructions; an extremely rare phenomenon. Bilateral robotically assisted upper pole pyeloplasties were preformed at the same setting with an excellent clinical response. Although rare, upper pole ureteropelvic junction obstruction is a defined entity that urologists should be aware of.

  8. Targeting Signaling to YAP for the Therapy of NF2

    Science.gov (United States)

    2016-12-01

    confocal microscopy for beta- arrestin-green fluorescent protein translocation G protein-coupled receptor assays using the Evotec Opera. Methods...Facility of MSKCC along the lines described in Accomplishments below. Notably, this Facility is equipped for High Throughput Confocal Imaging and...interacts through its coiled-coil segment with the central coiled-coil segment of AMOT proteins, which localize to Adherens Junctions (AJs) and

  9. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    International Nuclear Information System (INIS)

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C.

    2006-01-01

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels

  10. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  12. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  13. Equivalent Josephson junctions

    International Nuclear Information System (INIS)

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  14. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  15. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  16. Cell membrane and cell junctions in differentiation of preimplanted mouse embryos.

    Science.gov (United States)

    Izquierdo, L; Fernández, S; López, T

    1976-12-01

    Cell membrane and cell junctions in differentiation of preimplanted mouse embryos, (membrana celular y uniones celulares en la diferenciación del embrión de ratón antes de la implantación). Arch. Biol. Med. Exper. 10: 130-134, 1976. The development of cell junctions that seal the peripheral blastomeres could be a decisive step in the differentiation of morulae into blastocysts. The appearance of these junctions is studied by electron microscopy of late morulae and initial blastocysts. Zonulae occludentes as well as impermeability to lanthanum emulsion precedes the appearance of the blastocel and hence might be considered as one of its necessary causes.

  17. PI3K/Akt signaling is involved in the disruption of gap junctional communication caused by v-Src and TNF-α.

    Science.gov (United States)

    Ito, Satoko; Hyodo, Toshinori; Hasegawa, Hitoki; Yuan, Hong; Hamaguchi, Michinari; Senga, Takeshi

    2010-09-17

    Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  19. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling.

    Science.gov (United States)

    Kourtidis, Antonis; Necela, Brian; Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W; Asmann, Yan W; Thompson, E Aubrey; Anastasiadis, Panos Z

    2017-10-02

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. © 2017 Kourtidis et al.

  20. Force transmission in epithelial tissues.

    Science.gov (United States)

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  1. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  2. Charge transport in junctions between d-wave superconductors

    International Nuclear Information System (INIS)

    Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.

    1995-01-01

    We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds

  3. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  4. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  5. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  6. Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-01-08

    The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.

  7. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.

    Science.gov (United States)

    Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B

    2017-11-01

    , which is commonly exerted by cell junctions, including tight junctions, adherens junctions, and desmosomes. Numerous previous studies were focused on tight junctions and adherens junctions. However, this study provided a new perspective on how the intestinal barrier function is regulated by KLF5 through DSG2, a component of desmosome complexes. Copyright © 2017 the American Physiological Society.

  8. Self-limited plasmonic welding of silver nanowire junctions

    KAUST Repository

    Garnett, Erik C.; Cai, Wenshan; Cha, Judy J.; Mahmood, Fakhruddin; Connor, Stephen T.; Greyson Christoforo, M.; Cui, Yi; McGehee, Michael D.; Brongersma, Mark L.

    2012-01-01

    of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer

  9. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  10. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Directory of Open Access Journals (Sweden)

    Hanqian Mao

    2016-09-01

    Full Text Available The exon junction complex (EJC is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.

  11. Scale resolved simulations of the OECD/NEA–Vattenfall T-junction benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: t.hoehne@hzdr.de

    2014-04-01

    Mixing of fluids in T-junction geometries is of significant interest for nuclear safety research. The most prominent example is the thermal striping phenomena in piping T-junctions, where hot and cold streams join and turbulently mix, however not completely or not immediately at the T-junction. This result in significant temperature fluctuations near the piping wall, either at the side of the secondary pipe branch or at the opposite side of the main branch pipe. The wall temperature fluctuation can cause cyclical thermal stresses and subsequently fatigue cracking of the wall. Thermal mixing in a T-junction has been studied for validation of CFD-calculations. A T-junction thermal mixing test was carried out at the Älvkarleby Laboratory of Vattenfall Research and Development (VRD) in Sweden. Data from this test have been reserved specifically for a OECD CFD benchmark exercise. The computational results show that RANS fail to predict a realistic mixing between the fluids. The results were significantly better with scale-resolving methods such as LES, showing fairly good predictions of the velocity field and mean temperatures. The calculation predicts also similar fluctuations and frequencies observed in the model test.

  12. Tight junctions and human diseases.

    Science.gov (United States)

    Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki

    2003-09-01

    Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.

  13. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    International Nuclear Information System (INIS)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans

  14. Bar dynamics and channel junctions in scale-experiments of estuaries

    Science.gov (United States)

    Leuven, J.; Braat, L.; van Dijk, W. M.; Haas, T. D.; Kleinhans, M. G.

    2017-12-01

    The evolution of channels and bars in estuaries has high socio-economic relevance, with strong implications for navigation, dredging and ecology. However, the spatial and temporal evolution of channels and bars in estuaries is poorly understood. Here, we study feedbacks of bar morphodynamics on widening and narrowing of estuaries. Therefore, we conducted an experiment in a 20 m long and 3 m wide tilting flume (the 'Metronome'), in which we monitored the evolution of a self-formed estuary that developed from an intial straight channel into an irregular planform with multiple channels, braided bars and a meandering ebb channel. At locations where the estuary width is confined, major channel junctions occur, while the zones between the junctions are characterised by high braiding indices, periodically migrating channels and a relatively large estuary width. The junction locations were forced by the in- and outflow locations on the sides of the ebb-tidal delta and at the location where the channel pattern transitions from multiple channels into a single channel. In the middle of the estuary, self-confinement occurred by sedimentation on the sides of the estuary, which caused another major junction. The channel orientation at the junctions steers the morphodynamics of channels and bars immediately landward and seaward, because the orientation of inflow from the ebb-tidal delta and landward river perpetually varies. In natural systems major junction locations are mostly forced by inherited geology or human engineering. However, this study concludes that even without external forcing, the estuary planform will not converge to an ideal shape but will self-confine at major junctions and widens in the adjacent zones, resulting in an irregular planform shape.

  15. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  16. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin

    2007-01-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes....... In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  17. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  18. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  19. dc properties of series-parallel arrays of Josephson junctions in an external magnetic field

    International Nuclear Information System (INIS)

    Lewandowski, S.J.

    1991-01-01

    A detailed dc theory of superconducting multijunction interferometers has previously been developed by several authors for the case of parallel junction arrays. The theory is now extended to cover the case of a loop containing several junctions connected in series. The problem is closely associated with high-T c superconductors and their clusters of intrinsic Josephson junctions. These materials exhibit spontaneous interferometric effects, and there is no reason to assume that the intrinsic junctions form only parallel arrays. A simple formalism of phase states is developed in order to express the superconducting phase differences across the junctions forming a series array as functions of the phase difference across the weakest junction of the system, and to relate the differences in critical currents of the junctions to gaps in the allowed ranges of their phase functions. This formalism is used to investigate the energy states of the array, which in the case of different junctions are split and separated by energy barriers of height depending on the phase gaps. Modifications of the washboard model of a single junction are shown. Next a superconducting inductive loop containing a series array of two junctions is considered, and this model is used to demonstrate the transitions between phase states and the associated instabilities. Finally, the critical current of a parallel connection of two series arrays is analyzed and shown to be a multivalued function of the externally applied magnetic flux. The instabilities caused by the presence of intrinsic serial junctions in granular high-T c materials are pointed out as a potential source of additional noise

  20. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  1. Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions

    International Nuclear Information System (INIS)

    Tavares, J M; Teixeira, P I C

    2012-01-01

    We use Wertheim’s first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f B patches of type B). A patch of type α = {A,B} can bond to a patch of type β = {A,B} in a volume v αβ , thereby decreasing the internal energy by ε αβ . We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (ε AB AA /2) but entropically favoured (v AB ≫ v αα ), and BB bonds, or X-junctions, are energetically favoured (ε BB > 0). We show that, for low values of ε BB /ε AA , the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X- and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of ε BB /ε AA . The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures. (paper)

  2. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4

    DEFF Research Database (Denmark)

    Pakideeri Karat, Sandeep Gopal; Multhaupt, Hinke A B; Pocock, Roger

    2017-01-01

    Cell-extracellular matrix (ECM) and cell-cell junctions that employ microfilaments are sites of tension. They are important for tissue repair, morphogenetic movements and can be emblematic of matrix contraction in fibrotic disease and the stroma of solid tumors. One cell surface receptor, syndecan...... calcium. While it is known that cell-ECM and cell-cell junctions may be linked, possible roles for syndecans in this process are not understood. Here we show that wild type primary fibroblasts and those lacking syndecan-4 utilize different cadherins in their adherens junctions and that tension is a major...... factor in this differential response. This corresponds to the reduced ability of fibroblasts lacking syndecan-4 to exert tension on the ECM and we now show that this may extend to reduced tension in cell-cell adhesion....

  3. Junctional epidermolysis bullosa(non-herlitz type)

    International Nuclear Information System (INIS)

    Bhinder, M. A.; Arshad, M. W.; Shabbir, M. I.; Zahoor, M. Y.; Shehzad, W.; Tariq, M.

    2017-01-01

    Junctional epidermolysis bullosa (JEB) is a recessively inherited skin blistering disease and is caused due to abnormalities in proteins that hold layers of the skin. Herlitz JEB is the severe form and non-Herlitz JEB is the milder form. This report describes a case of congenitally affected male child aged 5 years, with skin blistering. He has mitten-like hands and soft skin blistering on hands, legs and knees. Symptoms almost disappeared at the age of 3 years but reappeared with increased severity after 6 months. Histopathological examination showed epidermal detachment with intact basal cell layer and sparse infiltrate of lymphocytes with few eosinophils in the dermis. There was no blistering on the moist lining of the mouth and digestive tract. Localized symptoms with less lethality and histopathological examination indicated the presence of non-Herlitz type of JEB. This is the first report which confirms the presence of non-Herlitz junctional epidermolysis bullosa in Pakistan. (author)

  4. Junctional Epidermolysis Bullosa (Non-Herlitz Type).

    Science.gov (United States)

    Bhinder, Munir Ahmad; Arshad, Muhammad Waqar; Zahoor, Muhammad Yasir; Shehzad, Wasim; Tariq, Muhammad; Shabbir, Muhammad Imran

    2017-05-01

    Junctional epidermolysis bullosa (JEB) is a recessively inherited skin blistering disease and is caused due to abnormalities in proteins that hold layers of the skin. Herlitz JEB is the severe form and non-Herlitz JEB is the milder form. This report describes a case of congenitally affected male child aged 5 years, with skin blistering. He has mitten-like hands and soft skin blistering on hands, legs and knees. Symptoms almost disappeared at the age of 3 years but reappeared with increased severity after 6 months. Histopathological examination showed epidermal detachment with intact basal cell layer and sparse infiltrate of lymphocytes with few eosinophils in the dermis. There was no blistering on the moist lining of the mouth and digestive tract. Localized symptoms with less lethality and histopathological examination indicated the presence of non-Herlitz type of JEB. This is the first report which confirms the presence of non-Herlitz junctional epidermolysis bullosa in Pakistan.

  5. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    International Nuclear Information System (INIS)

    Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.

    2007-01-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one

  6. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  7. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  8. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  9. Microfluidic mixing in a Y-junction open channel

    Directory of Open Access Journals (Sweden)

    Jue Nee Tan

    2012-09-01

    Full Text Available In the laminar regimes typical of microfluidic systems’, mixing is governed by molecular diffusion; however this process is slow in nature. Consequently, passive or active methods are usually sought for effective mixing. In this work, open fluidic channels will be investigated; these channels are bounded on all but one face by an air/fluid interface. Firstly, it will be shown that flow in open channels can merge at a Y-junction in a stable manner; hence two fluids can be brought into contact with each other. Secondly, the mixing of these two fluids will be studied. At high flow rates (>300 μl/min mixing occurs at the junction without need for additional intervention, this mixing is far swifter than can be expected from molecular diffusion. At lower flow rates, intervention is required. A major motivation for open fluidic channels is the ability to interact with the surrounding air environment; this feature is used to effect the desired mixing. It is shown that by blowing an air jet across the junction, shear stresses at the air/fluid interface causes a flow profile within the fluid inductive to rapid mixing of the fluids.

  10. Spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor junctions

    International Nuclear Information System (INIS)

    Li Hong; Yang Wei; Yang Xinjian; Qin Minghui; Xu Yihong

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator (FI), the spin-filtering effect and proximity effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions are studied based on an extended Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the sub-energy gap conductance peaks and the spin polarization in the ferromagnetic insulator causes an imbalance of the peak heights. Different from the ferromagnet the spin-filtering effect of the FI cannot cause the reversion of the normalized conductance in NM/FI/NM/SC junctions

  11. Solar energy converters based on multi-junction photoemission solar cells.

    Science.gov (United States)

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  12. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Hideyuki eTakeuchi

    2014-09-01

    Full Text Available Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS. Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g. minocycline have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases.

  13. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  14. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  15. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  16. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  17. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    Science.gov (United States)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  18. Vang-like protein 2 and rac1 interact to regulate adherens junctions

    Czech Academy of Sciences Publication Activity Database

    Lindqvist, M.; Horn, Z.; Bryja, Vítězslav; Schulte, G.; Papachristou, P.; Ajima, R.; Dyberg, C.; Arenas, E.; Yamaguchi, T.P.; Lagercrantz, H.; Ringstedt, T.

    2010-01-01

    Roč. 123, č. 3 (2010), s. 472-483 ISSN 0021-9533 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cell adhesion * neurulation * PCP Subject RIV: BO - Biophysics Impact factor: 6.290, year: 2010

  19. A mutation in the LAMC2 gene causes the Herlitz junctional epidermolysis bullosa (H-JEB in two French draft horse breeds

    Directory of Open Access Journals (Sweden)

    Guérin Gérard

    2003-03-01

    Full Text Available Abstract Epidermolysis bullosa (EB is a heterogeneous group of inherited diseases characterised by skin blistering and fragility. In humans, one of the most severe forms of EB known as Herlitz-junctional EB (H-JEB, is caused by mutations in the laminin 5 genes. EB has been described in several species, like cattle, sheep, dogs, cats and horses where the mutation, a cytosine insertion in exon 10 of the LAMC2 gene, was very recently identified in Belgian horses as the mutation responsible for JEB. In this study, the same mutation was found to be totally associated with the JEB phenotype in two French draft horse breeds, Trait Breton and Trait Comtois. This result provides breeders a molecular test to better manage their breeding strategies by genetic counselling.

  20. Atomic-scaled characterization of graphene PN junctions

    Science.gov (United States)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  1. Coincidence of features of emitted THz electromagnetic wave power form a single Josephson junction and different current components

    Science.gov (United States)

    Hamdipour, Mohammad

    2017-12-01

    By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.

  2. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  3. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  4. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  5. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  6. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  7. Electron optics with ballistic graphene junctions

    Science.gov (United States)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  8. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  9. Study on collapse mechanism of junction between greatly deeper shaft and horizontal drifts (Contract research)

    International Nuclear Information System (INIS)

    Kurosaki, Yukio; Yamachi, Hiroshi; Katsunuma, Yoshio; Nakata, Masao; Kuwahara, Hideki; Yamada, Fumitaka; Matsushita, Kiyoshi; Sato, Toshinori

    2008-03-01

    The Mizunami underground research laboratory is planned to consist of greatly deeper shaft and horizontal drifts. A junction space between a greatly deeper shaft and horizontal drifts forms which would take a complicated mechanical behavior during a junction excavation. However, a quantitative design method of supporting measures for a deep junction has not yet been established. This is because a conventional shaft design has been conducted based on past experience. Detail records have not been left either in what kind of collapses and deformed phenomena occurring in shaft constructions in a past. In order to examine a collapse mechanism of greatly deeper shaft junction, we have conducted literature surveys and interview studies concerned with deep shaft construction works in a past, and investigated what collapses or difficulties had been occurred in deep shaft junctions. Considering the results of investigations with reviews of intellectuals, a collapse mechanism of a super deep shaft junction depends on both a construction procedure of shaft junction and a geological condition at great depth. During a construction of a shaft junction, stress state of rock masses near junction wall would take a complicated stress path. Especially, it should be necessary to take a most careful consideration on that tangential stress acted around a shaft wall may reduce during horizontal drift excavation. On the other hand, where greatly deeper junction intersects faults and/or fractures with a large angle, a collapse called 'Take-nuke' may occur or extraordinary earth pressure acts on a concrete wall. This is the most typical difficulties during shaft construction. In order to recognize a mechanism of these phenomena and to find out a cause of collapse generation, numerical studies that can simulate a practical rock mass behavior around a shaft junction should be carry out. We demonstrate the finite difference method is most adequate for these simulations with intellectual review

  10. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current depe...

  11. Geodynamical simulation of the RRF triple junction

    Science.gov (United States)

    Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.

    2017-12-01

    Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.

  12. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  13. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  14. Theoretical and experimental investigations on synchronization in many-junction arrays of HTSC Josephson junctions. Final report

    International Nuclear Information System (INIS)

    Seidel, P.; Heinz, E.; Pfuch, A.; Machalett, F.; Krech, W.; Basler, M.

    1996-06-01

    Different many-junction arrays of Josephson junctions were studied theoretically to analyse the mechanisms of synchronization, the influence of internal and external parameters and the maximal allowed spread of parameters for the single junctions. Concepts to realize arrays using standard high-T c superconductor technology were created, e.g. the new arrangement of multijunction superconducting loops (MSL). First experimental results show the relevance of this concept. Intrinsic one-dimensional arrays in thin film technology were prepared as mesas out of Bi or Tl 2212 films. to characterize HTSC Josephson junctions methods based on the analysis of microwave-induced steps were developed. (orig.) [de

  15. Single P-N junction tandem photovoltaic device

    Science.gov (United States)

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  16. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    International Nuclear Information System (INIS)

    Piprek, Joachim

    2014-01-01

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  17. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization.

    Science.gov (United States)

    Bou-Flores, C; Berger, A J

    2001-04-01

    Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neonatal mouse medullary slice and en bloc brain stem-spinal cord preparations where rhythmic inspiratory motor activity can readily be recorded from both hypoglossal and phrenic nerve roots. The rhythmic inspiratory activity observed had two temporal characteristics: the basic respiratory frequency occurring on a long time scale and the synchronous neuronal discharge within the inspiratory burst occurring on a short time scale. In both preparations, we observed that bath application of gap-junction blockers, including 18 alpha-glycyrrhetinic acid, 18 beta-glycyrrhetinic acid, and carbenoxolone, all caused a reduction in respiratory frequency. In contrast, peak integrated phrenic and hypoglossal inspiratory activity was not significantly changed by gap-junction blockade. On a short-time-scale, gap-junction blockade increased the degree of synchronization within an inspiratory burst observed in both nerves. In contrast, opposite results were observed with blockade of GABA(A) and glycine receptors. We found that respiratory frequency increased with receptor blockade, and simultaneous blockade of both receptors consistently resulted in a reduction in short-time-scale synchronized activity observed in phrenic and hypoglossal inspiratory bursts. These results support the concept that the central respiratory system has two components: a rhythm generator responsible for the production of respiratory cycle timing and an inspiratory pattern generator that is involved in short-time-scale synchronization. In the neonatal rodent, properties of both components can be regulated by interneuronal

  18. The anatomical locus of T-junction processing.

    Science.gov (United States)

    Schirillo, James A

    2009-07-01

    Inhomogeneous surrounds can produce either asymmetrical or symmetrical increment/decrement induction by orienting T-junctions to selectively group a test patch with surrounding regions [Melfi, T., & Schirillo, J. (2000). T-junctions in inhomogeneous surrounds. Vision Research, 40, 3735-3741]. The current experiments aimed to determine where T-junctions are processed by presenting each eye with a different image so that T-junctions exist only in the fused percept. Only minor differences were found between retinal and cortical versus cortical-only conditions, indicating that T-junctions are processed cortically.

  19. The force-sensing device region of α-catenin is an intrinsically disordered segment in the absence of intramolecular stabilization of the autoinhibitory form.

    Science.gov (United States)

    Hirano, Yoshinori; Amano, Yu; Yonemura, Shigenobu; Hakoshima, Toshio

    2018-05-01

    Mechanotransduction by α-catenin facilitates the force-dependent development of adherens junctions (AJs) by recruiting vinculin to reinforce actin anchoring of AJs. The α-catenin mechanotransducing action is facilitated by its force-sensing device region that autoinhibits the vinculin-binding site 1 (VBS1). Here, we report the high-resolution structure of the force-sensing device region of α-catenin, which shows the autoinhibited form comprised of helix bundles E, F and G. The cryptic VBS1 is embedded into helix bundle E stabilized by direct interactions with the autoinhibitory region forming helix bundles F and G. Our molecular dissection study showed that helix bundles F and G are stable in solution in each isolated form, whereas helix bundle E that contains VBS1 is unstable and intrinsically disordered in solution in the isolated form. We successfully identified key residues mediating the autoinhibition and produced mutated α-catenins that display variable force sensitivity and autoinhibition. Using these mutants, we demonstrate both in vitro and in vivo that, in the absence of this stabilization, the helix bundle containing VBS1 would adopt an unfolded form, thus exposing VBS for vinculin binding. We provide evidence for importance of mechanotransduction with the intrinsic force sensitivity for vinculin recruitment to adherens junctions of epithelial cell sheets with mutated α-catenins. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  1. Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation

    KAUST Repository

    Yu, Xuechao; Shen, Youde; Liu, Tao; Wu, Tao; Jie Wang, Qi

    2015-01-01

    Graphene has been considered as an attractive material for optoelectronic applications such as photodetectors owing to its extraordinary properties, e.g. broadband absorption and ultrahigh mobility. However, challenges still remain in fundamental and practical aspects of the conventional graphene photodetectors which normally rely on the photoconductive mode of operation which has the drawback of e.g. high dark current. Here, we demonstrated the photovoltaic mode operation in graphene p-n junctions fabricated by a simple but effective electron irradiation method that induces n-type doping in intrinsic p-type graphene. The physical mechanism of the junction formation is owing to the substrate gating effect caused by electron irradiation. Photoresponse was obtained for this type of photodetector because the photoexcited electron-hole pairs can be separated in the graphene p-n junction by the built-in potential. The fabricated graphene p-n junction photodetectors exhibit a high detectivity up to ~3 × 1010 Jones (cm Hz1/2 W−1) at room temperature, which is on a par with that of the traditional III–V photodetectors. The demonstrated novel and simple scheme for obtaining graphene p-n junctions can be used for other optoelectronic devices such as solar cells and be applied to other two dimensional materials based devices.

  2. Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation

    KAUST Repository

    Yu, Xuechao

    2015-07-08

    Graphene has been considered as an attractive material for optoelectronic applications such as photodetectors owing to its extraordinary properties, e.g. broadband absorption and ultrahigh mobility. However, challenges still remain in fundamental and practical aspects of the conventional graphene photodetectors which normally rely on the photoconductive mode of operation which has the drawback of e.g. high dark current. Here, we demonstrated the photovoltaic mode operation in graphene p-n junctions fabricated by a simple but effective electron irradiation method that induces n-type doping in intrinsic p-type graphene. The physical mechanism of the junction formation is owing to the substrate gating effect caused by electron irradiation. Photoresponse was obtained for this type of photodetector because the photoexcited electron-hole pairs can be separated in the graphene p-n junction by the built-in potential. The fabricated graphene p-n junction photodetectors exhibit a high detectivity up to ~3 × 1010 Jones (cm Hz1/2 W−1) at room temperature, which is on a par with that of the traditional III–V photodetectors. The demonstrated novel and simple scheme for obtaining graphene p-n junctions can be used for other optoelectronic devices such as solar cells and be applied to other two dimensional materials based devices.

  3. Effect of junction configurations on microdroplet formation in a T-junction microchannel

    Science.gov (United States)

    Lih, F. L.; Miao, J. M.

    2015-03-01

    This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10-3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

  4. Long-term follow-up of patients with Herlitz-type junctional epidermolysis bullosa

    NARCIS (Netherlands)

    Yuen, W. Y.; Duipmans, J. C.; Molenbuur, B.; Herpertz, I.; Mandema, J. M.; Jonkman, M. F.

    Background Junctional epidermolysis bullosa, type Herlitz (JEB-H) is a rare, autosomal recessive disease caused by absence of the epidermal basement membrane adhesion protein laminin-332. It is characterized by extensive and devastating blistering of the skin and mucous membranes, leading to death

  5. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    Science.gov (United States)

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  6. Impurity scattering effect on charge transport in high-Tc cuprate junctions

    International Nuclear Information System (INIS)

    Tanaka, Y.; Asano, Y.; Kashiwaya, S.

    2004-01-01

    It is known that the zero-bias conductance peak (ZBCP) is expected in tunneling spectra of normal-metal/high-Tc cuprate junctions because of the formation of the midgap Andreev resonant states (MARS) at junction interfaces. In the present review, we report the recent theoretical study of impurity scattering effects on the tunneling spectroscopy. In the former part of the present paper, we discuss impurity effects in normal metal. We calculate tunneling conductance for diffusive normal metal (DN)/high Tc cuprate junctions based on the Keldysh Green's function technique. Besides the ZBCP due to the MARS, we can expect ZBCP caused by the different origin, i.e., the coherent Andreev reflection (CAR) assisted by the proximity effect in DN. Their relative importance depends on the angle a between the interface normal and the crystal axis of high-Tc superconductors. At α = 0, we find the ZBCP by the CAR for low transparent junctions with small Thouless energies in DN; this is similar to the case of diffusive normal metal/insulator/s-wave superconductor junctions. Under increase of α from zero to π/4, the contribution of MARS to ZBCP becomes more prominent and the effect of the CAR is gradually suppressed. Such complex spectral features would be observable in conductance spectra of high-Tc junctions at very low temperatures. In the latter part of our paper, we study impurity effects in superconductors. We consider impurities near the junction interface on the superconductor side. The conductance is calculated from the Andreev and the normal reflection coefficients which are estimated by using the single-site approximation in an analytic calculation and by the recursive Green function method in a numerical simulation. We find splitting of the ZBCP in the presence of the time reversal symmetry. Thus the zero-field splitting of ZBCP in the experiment does not perfectly prove an existence of broken time reversal symmetry state

  7. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  8. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  9. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  10. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  11. Catenins

    DEFF Research Database (Denmark)

    Perez-Moreno, Mirna; Fuchs, Elaine

    2006-01-01

    intercellular communication between different cell types within a tissue. These findings reveal novel aspects of AJ function in normal tissues and offer insights into how changes in AJs and their associated proteins and cytoskeletal dynamics impact wound-repair and cancer......., conventional views have similarly been shaken about the other two major AJ catenins, alpha-catenin and p120-catenin. Catenins have emerged as molecular sensors that integrate cell-cell junctions and cytoskeletal dynamics with signaling pathways that govern morphogenesis, tissue homeostasis, and even......Adherens junctions have been traditionally viewed as building blocks of tissue architecture. The foundations for this view began to change with the discovery that a central component of AJs, beta-catenin, can also function as a transcriptional cofactor in Wnt signaling. In recent years...

  12. NbN tunnel junctions

    International Nuclear Information System (INIS)

    Villegier, J.C.; Vieux-Rochaz, L.; Goniche, M.; Renard, P.; Vabre, M.

    1984-09-01

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250 0 C

  13. Hysteresis development in superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Refai, T.F.; Shehata, L.N.

    1988-09-01

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  14. Preparation of large-area molecular junctions with metallic conducting Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Kengo [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan); Ohnuki, Hitoshi, E-mail: ohnuki@kaiyodai.ac.jp [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan); Shimizu, Daisuke [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan); Imakubo, Tatsuro [Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Tsuya, Daiju [National Institute for Materials Science,1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Izumi, Mitsuru [Division of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima Koto-ku, Tokyo 135-8533 (Japan)

    2014-03-03

    Metallic conducting Langmuir–Blodgett (LB) films were used as soft electrodes to fabricate molecular junctions with self-assembled monolayers (SAMs) of alkanethiols (CH{sub 3}(CH{sub 2}){sub n−1}SH) on an Au surface. Alkanethiols can form highly ordered, stable dielectric SAMs on metal surfaces over large areas. However, it is difficult to establish electrical contacts on such SAMs, which has limited their application. In this work, we used metallic conducting LB films composed of bis(ethylenedioxy)tetrathiafulvalene and stearic acid as a soft electrode onto alkanethiol SAMs (C{sub n}-SAM, n = 12, 14, 16, 18) to prepare Au/SAM/metal junctions of relatively large size (∼ 15.6 × 10{sup 3} μm{sup 2}). The current density–voltage (J–V) characteristics across the junctions exhibited rectifying behavior with a ratio R of ∼ 5 (R = |J(V)|/|J(− V)| at ± 1 V). The lower transfer rate corresponding to the electron transport from Au to the LB films exhibited nonlinear J–V characteristics, while the higher transfer rate of electrons from the LB film to Au showed linear J–V characteristics. Kelvin probe force microscopy revealed that the work function of the metallic LB films was smaller than that of Au. The observed rectification behavior is probably caused by different electron transport mechanisms between the two current directions. - Highlights: • Metallic Langmuir–Blodgett (LB) films were used as soft electrodes. • Molecular junctions of metal–alkanethiol–LB films were fabricated. • The current–voltage curve across the junctions exhibited rectifying behavior. • This is the first observation for alkanethiol monolayer junctions. • The work function difference between the electrodes induces the rectification.

  15. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  16. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  17. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  18. CT-findings in pain syndromes originated from thoraco-lumbar junction

    International Nuclear Information System (INIS)

    Dimitrov, I.; Karadjova, M.; Malchanova, V.

    2007-01-01

    The thoraco-lumbar junction syndrome imitates, as far as clinical symptoms are concerned, low back pain, caused by disc protrusion in the lower lumbar vertebral segments. It is manifested by referred pain in the area, innervated by posterior and anterior primary rami (dorsal and ventral rami), belonging to thoraco-lumbar junction vertebral segments (Th11-L2). Eighty one patients with clinically diagnosed thoraco-lumbar junction syndrome underwent CT-investigations, that aimed establishing pathological processes, leading to this clinical symptomatology. 148 vertebral levels were examined. In 67 patients we scanned two consecutive levels to find the type of change of the zygapophyseal joints. We found facet tropism (asymmetry) in 72 patients (88.8%) or in 117 levels (79.6%), degenerated faced joints in 63 patients (77.8%), pathology of the intervertebral disc - in 33 patients (43.1%) including 5 patients (6.2%) with disc prolapse. When investigating on two subsequent segments (Th11-Th12 and Th12-L1) sudden anatomical change in orientation of facets occurred in 55 patients (82%). Our findings support the hypothesis of the facet-joint origin of this ailment. (authors)

  19. A role for recombination junctions in the segregation of mitochondrial DNA in yeast.

    Science.gov (United States)

    Lockshon, D; Zweifel, S G; Freeman-Cook, L L; Lorimer, H E; Brewer, B J; Fangman, W L

    1995-06-16

    In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.

  20. Expression of Tight Junction Protein Claudin-1 in Human Crescentic Glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Ryo Koda

    2014-01-01

    Full Text Available The origin of crescent forming cells in human glomerulonephritis (GN remains unknown. Some animal studies demonstrated that parietal epithelial cells of Bowman’s capsule (PECs were the main component of proliferating cells and PEC-specific tight junction protein claudin-1 was expressed in crescentic lesions. We investigated the expression of claudin-1 in human GN. Immunohistochemistry for claudin-1 was performed on 17 kidney biopsy samples with crescent formation. Colocalization of claudin-1 with intracellular tight junction protein ZO-1 was also evaluated by immunofluorescence double staining. Claudin-1 is expressed mainly at the cell to cell contact site of proliferating cells in cellular crescentic lesions in patients with these forms of human GN. Small numbers of crescent forming cells showed extrajunctional localization of claudin-1. Colocalization of claudin-1 with ZO-1 was found at cell to cell contact sites of adjacent proliferating cells. In control samples, staining of claudin-1 was positive in PECs, but not in podocytes. Our findings suggest that claudin-1 contributes to crescent formation as a component of the tight junction protein complex that includes ZO-1. Co-localization of claudin-1 with ZO-1 implies the formation of functional tight junction complexes in crescentic lesions to prevent the interstitial damage caused by penetration of filtered molecules from Bowman’s space.

  1. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  2. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  3. Fluctuations of the peak current of tunnel diodes in multi-junction solar cells

    International Nuclear Information System (INIS)

    Jandieri, K; Baranovskii, S D; Stolz, W; Gebhard, F; Guter, W; Hermle, M; Bett, A W

    2009-01-01

    Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.

  4. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  5. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  6. Primary Tunnel Junction Thermometry

    International Nuclear Information System (INIS)

    Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias

    2008-01-01

    We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future

  7. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  8. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

    Science.gov (United States)

    Thomson, J B; Lilley, D M

    1999-01-01

    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  9. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  10. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    Science.gov (United States)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  11. Craniocervical Junction Meningiomas without Hydrocephalus Presenting Solely with Syncope: Report of 2 Cases.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Bojanowski, Michel W

    2018-06-01

    To our knowledge, there have not been any reported cases of a meningioma of the craniocervical region presenting solely with syncope as its initial symptom. Only 1 case of meningioma presenting with syncope has been published, but it was associated with hydrocephalus. We report 2 cases of syncope caused by a craniocervical junction meningioma, with syncope being the sole presenting symptom and without hydrocephalus. We discuss the possible pathophysiology, as well as the clinical relevance of this type of presentation. We reviewed the charts, operative details, and imagery of 2 cases of meningioma in the region of the craniocervical junction, with syncope as their sole presenting feature. We also reviewed the literature. In 1 case the syncope occurred spontaneously. In the other, it occurred during a Valsalva maneuver. Both meningiomas were surgically removed via a retromastoid approach. There was no recurrence of syncope following surgery. Following a literature review, we found 1 case of posterior fossa meningioma presenting with syncope, but hydrocephalus was also present. Syncope can be the sole manifestation of a meningioma of the craniocervical junction. Such syncopes are a consequence of transient dysfunction of the autonomous pathways in the medulla and/or of the medulla's output. In the absence of other causes of syncope, a meningioma in this region, even in the absence of hydrocephalus, should not be considered as fortuitous, but rather as the actual cause of syncope. Recognizing this possibility offers the potential for proper diagnosis and appropriate treatment of the syncope. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  13. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats

    Science.gov (United States)

    Hou, Baoke; Fu, Yan; Weng, Chuanhuang; Liu, Weiping; Zhao, Congjian; Yin, Zheng Qin

    2017-01-01

    Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods. PMID:28473754

  14. Celiac Disease: Role of the Epithelial BarrierSummary

    Directory of Open Access Journals (Sweden)

    Michael Schumann

    2017-03-01

    Full Text Available In celiac disease (CD a T-cell–mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed. Keywords: Celiac Sprue, Gluten-Sensitive Enteropathy, Tight Junction, Epithelial Polarity, Partitioning-Defective Proteins, α-Gliadin 33mer

  15. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    Science.gov (United States)

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-08

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells.

  16. Valley detection using a graphene gradual pn junction with spin–orbit coupling: An analytical conductance calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou, E-mail: yang.mou@hotmail.com [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Wang, Rui-Qiang [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-09-04

    Graphene pn junction is the brick to build up variety of graphene nano-structures. The analytical formula of the conductance of graphene gradual pn junctions in the whole bipolar region has been absent up to now. In this paper, we analytically calculated that pn conductance with the spin–orbit coupling and stagger potential taken into account. Our analytical expression indicates that the energy gap causes the conductance to drop a constant value with respect to that without gap in a certain parameter region, and manifests that the curve of the conductance versus the stagger potential consists of two Gaussian peaks – one valley contributes one peak. The latter feature allows one to detect the valley polarization without using double-interface resonant devices. - Highlights: • Analytical conductance formula of the gradual graphene pn junction with spin–orbit coupling in the whole bipolar region. • Exploring the valley-dependent transport of gradual graphene pn junctions analytically. • Conductance peak without resonance.

  17. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  18. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    Science.gov (United States)

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  19. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  20. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  1. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  2. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  3. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  4. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    Science.gov (United States)

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  5. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  6. Comparative Investigation of Postoperative Complications in Patients With Gastroesophageal Junction Cancer Treated With Preoperative Chemotherapy or Surgery Alone

    DEFF Research Database (Denmark)

    Achiam, M P; Jensen, L.B.; Larsson, H.

    2016-01-01

    complications of patients with cancer at the gastroesophageal junction treated with either neoadjuvant chemotherapy or surgery alone in patients from "The Danish Clinical Registry of Carcinomas of the Esophagus, the Gastro-Esophageal Junction and the Stomach." MATERIALS AND METHODS: A historical follow-up study......BACKGROUND AND AIM: Gastroesophageal junction cancer is one of the leading causes to cancer-related death and the prognosis is poor. However, progress has been made over the last couple of decades with the introduction of multimodality treatment and optimized surgery. Three-year survival rates have...... of Carcinomas of the Esophagus, the Gastro-Esophageal Junction and the Stomach. No difference was found in demographics between the two groups, except for alcohol consumption and a lower T and N stage in the surgery-only group, and no difference in complication rates was found. Furthermore, no variable...

  7. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    Science.gov (United States)

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the

  8. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-01-01

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J P ) and valley current (J V ) densities should be greater than the short-circuit current density (J sc ) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J P ) and valley current density (J V ) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios

  9. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Impact of Anchoring Groups on Ballistic Transport: Single Molecule vs Monolayer Junctions

    Science.gov (United States)

    2015-01-01

    Tuning the transport properties of molecular junctions by chemically modifying the molecular structure is one of the key challenges for advancing the field of molecular electronics. In the present contribution, we investigate current–voltage characteristics of differently linked metal–molecule–metal systems that comprise either a single molecule or a molecular assembly. This is achieved by employing density functional theory in conjunction with a Green’s function approach. We show that the conductance of a molecular system with a specific anchoring group is fundamentally different depending on whether a single molecule or a continuous monolayer forms the junction. This is a consequence of collective electrostatic effects that arise from dipolar elements contained in the monolayer and from interfacial charge rearrangements. As a consequence of these collective effects, the “ideal” choice for an anchoring group is clearly different for monolayer and single molecule devices. A particularly striking effect is observed for pyridine-docked systems. These are subject to Fermi-level pinning at high molecular packing densities, causing an abrupt increase of the junction current already at small voltages. PMID:26401191

  11. Self-limited plasmonic welding of silver nanowire junctions

    KAUST Repository

    Garnett, Erik C.

    2012-02-05

    Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the nanoscale. © 2012 Macmillan Publishers Limited. All rights reserved.

  12. Intraoperative inspection of the ureteropelvic junction during pyeloplasty is not sufficient to distinguish between extrinsic and intrinsic causes of obstruction: Correlation with histological analysis.

    Science.gov (United States)

    Mut, Tuna; Acar, Ömer; Oktar, Tayfun; Kılıçaslan, Işın; Esen, Tarık; Ander, Haluk; Ziylan, Orhan

    2016-08-01

    Based on current knowledge, it is possible to have an initial diagnosis of intrinsic or extrinsic ureteropelvic junction obstruction (UPJO) based solely on clinical and imaging findings. However, it may not be possible to strictly discriminate an intrinsic case with an additional extrinsic component from a primarily intrinsic stenosis because of lower pole aberrant vessels. These two disorders may coexist or trigger each other. Herein, we aimed to compare the histological changes observed in intrinsic and extrinsic types of UPJO. Our hypothesis is that inspecting the UPJ during pyeloplasty may not be a sufficient way to delineate the underlying cause of obstruction in every individual. We retrospectively reviewed the data of 56 patients who had dismembered pyeloplasty. The intrinsic and extrinsic groups consisted of 38 and 18 patients, respectively. Masson's trichrome stain, CD117, and connexin 43 (Cx43) antibody were used in histopathology and immunochemistry. Statistical calculations were done with chi-square and Mann-Whitney U tests. Connexin 43 staining pattern, CD117 positive cell count, and the extent of fibrosis did not differ significantly between extrinsic and intrinsic cases. However, the difference with regard to the degree of muscular hypertrophy was close to statistical significance. The exact pathophysiological mechanism underlying UPJO has yet to be elucidated. A study directly comparing both groups histologically is indeed rare. Our study showed that there are no significant differences between the intrinsic and extrinsic groups in terms of the pacemaker activity, gap junctional communication, and extent of fibrosis. Muscular hypertrophy, which was marginally higher in our extrinsic group, may persist despite successful relocation of the obstructing vessel. The main drawbacks of our study are; the absence of a control group and the retrospective study design with its inherent selection biases. Immunohistochemical profiles of intrinsic and extrinsic

  13. Glycoprotein 90K Promotes E-Cadherin Degradation in a Cell Density-Dependent Manner via Dissociation of E-Cadherin–p120-Catenin Complex

    Directory of Open Access Journals (Sweden)

    So-Yeon Park

    2017-12-01

    Full Text Available Glycoprotein 90K (also known as LGALS3BP or Mac-2BP is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin–p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with β-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin–p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.

  14. Curved Josephson junction

    International Nuclear Information System (INIS)

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  15. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  16. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  17. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte-Huxel, Henning [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienaecker, Michael [Institute for Solar Energy Research Hamelin (ISFH); Merkle, Agnes [Institute for Solar Energy Research Hamelin (ISFH); Kajari-Schroeder, S. [Institute for Solar Energy Research Hamelin (ISFH); Niepelt, Raphael [Institute for Solar Energy Research Hamelin (ISFH); Schmidt, Jan [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Brendel, Rolf [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Peibst, Robby [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover

    2017-10-02

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  18. Investigations on mixing phenomena in single-phase flow in a T-junction geometry

    International Nuclear Information System (INIS)

    Walker, C.; Simiano, M.; Zboray, R.; Prasser, H.-M.

    2009-01-01

    The paper deals with T-junction mixing experiments carried out with wire-mesh sensors. The mixing of coolant streams of different temperature in pipe junctions leads to temperature fluctuations that may cause thermal fatigue in the pipe wall. This is practical background for an increased interest in measuring and predicting the transient flow field and the turbulent mixing pattern downstream of a T-junction. Experiments were carried out at a perpendicular connection of two pipes of 51 mm inner diameter. The straight and the side branches were supplied by water of different electrical conductivity, which replaced the temperature in the thermal mixing process. A set of three wire-mesh sensors with a grid of 16 x 16 measuring points each was used to record conductivity distributions downstream of the T-junction. Besides the measurement of profiles of the time averaged mixing scalar over extended measuring domains, the high resolution in time and space of the mesh sensors allow a statistic characterization of the stochastic fluctuations of the mixing scalar in a wide range of frequencies. Information on the scale of turbulent mixing patterns is obtained by cross-correlating the signal fluctuations recorded at different locations within the measuring plane of a sensor

  19. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating

    International Nuclear Information System (INIS)

    Pajęcka, Kamilla; Nielsen, Malik Nygaard; Hansen, Troels Krarup; Williams, Julie M.

    2017-01-01

    Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.

  20. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating

    Energy Technology Data Exchange (ETDEWEB)

    Pajęcka, Kamilla, E-mail: kpaj@novonordisk.com [Global Research, Novo Nordisk A/S, Måløv (Denmark); Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus (Denmark); Nielsen, Malik Nygaard [Global Research, Novo Nordisk A/S, Måløv (Denmark); Hansen, Troels Krarup [Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus (Denmark); Williams, Julie M. [Global Research, Novo Nordisk A/S, Måløv (Denmark)

    2017-04-01

    Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.

  1. Electromagnetic waves in single- and multi-Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  2. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  3. Scattering theory of superconductive tunneling in quantum junctions

    International Nuclear Information System (INIS)

    Shumeiko, V.S.; Bratus', E.N.

    1997-01-01

    A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure

  4. Pelvi-ureteric junction obstruction related to crossing vessels: vascular anatomic variations and implication for surgical approaches.

    Science.gov (United States)

    Panthier, Frédéric; Lareyre, Fabien; Audouin, Marie; Raffort, Juliette

    2018-03-01

    Pelvi-ureteric junction obstruction corresponds to an impairment of urinary transport that can lead to renal dysfunction if not treated. Several mechanisms can cause the obstruction of the ureter including intrinsic factors or extrinsic factors such as the presence of crossing vessels. The treatment of the disease relies on surgical approaches, pyeloplasty being the standard reference. The technique consists in removing the pathologic ureteric segment and renal pelvis and transposing associated crossing vessels if present. The vascular anatomy of the pelvi-ureteric junction is complex and varies among individuals, and this can impact on the disease development and its surgical treatment. In this review, we summarize current knowledge on vascular anatomic variations in the pelvi-ureteric junction. Based on anatomic characteristics, we discuss implications for surgical approaches during pyeloplasty and vessel transposition.

  5. Contribution of MR to depicting of cranio-cervical junction of patients with chronic poly-arthritis

    International Nuclear Information System (INIS)

    Trattnig, S.; Dobrocky, I.

    1995-01-01

    Involvement of the cranio-cervical junction is a dangerous and not a rare complication in chronic poly-arthritis. Atlantoaxial subluxation is a common presentation and this can be assessed by plain X-ray of the cervical spine. MR enables to depict the atlantoaxial subluxation as well as compressive myelopathy and its cause. By comparing the signal intensity before and after contrast medium injection we are able to differentiate acute succulent and chronic pannus, effusion and bone. Patients with unstable atlantoaxial subluxation and patients with progressive myelopathy are candidates for surgery. Posterior element fusion C0-C2 is a method of choice, and the wires in this area do not cause a significant problem in assessing the volume reduction of the periodontoid pannus. MR is also useful method for monitoring the local finding in the cranio-cervical junction during conservative treatment. (authors)

  6. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  7. Some chaotic features of intrinsically coupled Josephson junctions

    International Nuclear Information System (INIS)

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  8. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  9. Post-annealing effects on shallow-junction characteristics caused by 20 keV BGe molecular ion implantation

    International Nuclear Information System (INIS)

    Liang, J.H.; Sang, Y.J.; Wang, C.-H.; Wang, T.W.; Hsu, J.Y.; Niu, H.; Tseng, M.S.

    2005-01-01

    This study examines the post-annealing-dependent behaviors of the shallow junction produced by implanting 10 15 cm -2 20 keV BGe ions into n-type silicon specimens. Post-annealing treatments consisted of one- and two-step annealing including both furnace annealing (FA) and rapid thermal annealing (RTA). Comparison of the one-step FA at 550 deg. C and the one-step RTA at 1050 deg. C revealed that boron depth profiles were slightly diffused in the former but exhibited considerable transient-enhanced diffusion (TED) in the latter. However, both the one-step FA- and RTA-annealed germanium depth profiles barely diffused, while the latter diffusing slightly deeper than the former. The optimum value of junction depth (x j ) times sheet resistance (R s ) was obtained with one-step FA at 550 deg. C for 1 h. The two-step annealing (FA at 550 deg. C and RTA at 1050 deg. C) results showed that the RTA-induced TED in the boron depth profiles could be effectively retarded only when FA took place for more than 3 h. Again, germanium depth profiles are also barely diffused while the corresponding TEDs were larger than those in one-step FA but smaller than those in one-step RTA. Furthermore, the two-step annealing of FA at 550 deg. C for 3 h followed by RTA at 1050 deg. C for 30 s is suggested when attempting to obtain an optimum value of x j R s

  10. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  11. In vitro early changes in intercellular junctions by treatment with a chemical carcinogen.

    Science.gov (United States)

    Tachikawa, T; Kohno, Y; Matsui, Y; Yoshiki, S

    1986-06-01

    To examine early intercellular junction changes caused by treatment with 9,10-dimethyl-1,2-benzanthracene (DMBA), rat lingual epithelium was cultivated in isolation and observed by electrophysiological, freeze-fracture and whole-mount electron microscopy. Electrophysiological measurements showed a transient decrease in membrane potential of -10.2 mV 6 h after the treatment. It returned to almost the same level as that of the control group 1 day later. Six hours after treatment, input resistance decreased rapidly to 5.3 M omega but increased to 18.0 M omega 12 h after treatment. Transient reduction of input resistance and membrane potential occurred prior to the decrease in the coupling ratio 6 h after treatment with DMBA. In freeze-fracture replicas, the number of gap junctions decreased by approximately 45% of the control value 6 h after treatment with DMBA. At 12 h and thereafter, the number and area of gap junctions subsequently decreased by 60-80% of the control value. Alterations in the number and area of desmosomes were similar to those of the gap junctions. The formation of epithelial cytoskeletons, partially devoid of the 2-4 and 5-8 nm filaments was also observed. A decrease in the density of filament networks beneath the plasma membranes was especially apparent. Treatment with a carcinogen brought about morphological cellular changes as early as 6 h after treatment, and such early changes might trigger metabolic cellular abnormalities. Affected cells appear to move away from normal cells in a process of repeated destruction and revision of intercellular junctions, and cytoskeletons.

  12. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  13. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  14. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  15. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...

  16. The critical current of point symmetric Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  17. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  18. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  19. Constructing carbon nanotube junctions by Ar ion beam irradiation

    International Nuclear Information System (INIS)

    Ishaq, Ahmad; Ni Zhichun; Yan Long; Gong Jinlong; Zhu Dezhang

    2010-01-01

    Carbon nanotubes (CNTs) irradiated by Ar ion beams at elevated temperature were studied. The irradiation-induced defects in CNTs are greatly reduced by elevated temperature. Moreover, the two types of CNT junctions, the crossing junction and the parallel junction, were formed. And the CNT networks may be fabricated by the two types of CNT junctions. The formation process and the corresponding mechanism of CNT networks are discussed.

  20. Field modulation of the critical current in magnetic Josephson junctions

    International Nuclear Information System (INIS)

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  1. Shunted-Josephson-junction model. II. The nonautonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance....... The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....

  2. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  3. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  4. Phenomenological approach to bistable behavior of Josephson junctions

    International Nuclear Information System (INIS)

    Nishi, K.; Nara, S.; Hamanaka, K.

    1985-01-01

    The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity

  5. Impact of pH on the structure and function of neural cadherin.

    Science.gov (United States)

    Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan

    2014-12-02

    Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.

  6. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  7. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  8. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  9. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors

    International Nuclear Information System (INIS)

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-01-01

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation

  10. Experimental analysis of the strength of silver-alumina junction elaborated at solid state bonding

    International Nuclear Information System (INIS)

    Serier, B.; Bachir Bouiadjra, B.; Belhouari, M.; Treheux, D.

    2011-01-01

    Highlights: → The adhesion strength is closely related to the plastic deformation of the metal joint. → It is possible to transform a system with weak energy of adhesion into a system with strong energy. → The adhesion strength depends on Silver diffusion in the ceramic grains boundaries. -- Abstract: The mechanisms of ceramics-metal assemblies, particularly silver and alumina, can be better understood by studying the strength of their adhesion. These two materials are a priori non-reactive, their thermodynamic work of adhesion is low and the difference between their thermal coefficients of expansion in very considerable. In this study, the strength of silver-alumina junctions elaborated at solid state by thermo-compression is tested by an indirect tensile test and shearing one. The effects of several parameters such as: the pressure of bonding, the time of bonding, the temperature, and the oxygen dissolve in metal solid solution on the strength of the junction are analyzed. The obtained results show that the resistance of the junction is affected by all this parameters and it is essential to optimize these different parameters in order to increase the durability of the junction. It was also shown that the diffusion of the silver in alumina could be the cause of the damage of alumina near the interface.

  11. Dioscorin protects tight junction protein expression in A549 human airway epithelium cells from dust mite damage.

    Science.gov (United States)

    Fu, Lin Shien; Ko, Ying Hsien; Lin, Kuo Wei; Hsu, Jeng Yuan; Chu, Jao Jia; Chi, Chin Shiang

    2009-12-01

    In addition to being an allergen, the trypsin activity of dust mite extract also destroys the tight junctions of bronchial epithelium. Such damage can lead to airway leakage, which increases airway exposure to allergens, irritants, and other pathogens. Dioscorin, the storage protein of yam, demonstrates anti-trypsin activity, as well as other potential anti-inflammatory effects. This study investigated the protective role of dioscorin for tight junctions. The immunofluorescence stains of zonula occludens (ZO-1), E-cadherin (EC) and desmoplakin (DP) proteins were compared. A cultured A549 cell line was used as a control and A549 cells were incubated with mite extract 100 mg/mL for 16 h, with or without dioscorin 100 mg/mL pretreatment for 8 h and with dioscorin 100 mg/mL alone for 16 h. Western blot was performed to detect changes in ZO-1, EC, and DP in the treated A549 cell lines. Loss of tight junction protein expression (ZO-1, EC, DP) was demonstrated after 16-h mite extract incubation. The defect could be restored if cells were pretreated with dioscorin for 8 h. In addition, dioscorin did not cause damage to the A549 cell lines in terms of cell survival or morphology. Western blot showed no change in the amount of tight junction protein under various conditions. Dioscorin is a potential protector of airway damage caused by mite extract.

  12. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-05-01

    Full Text Available Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs.

  13. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  14. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  15. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  16. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  17. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  18. Transport properties of molecular junctions

    CERN Document Server

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  19. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  20. Vortex trapping in Pb-alloy Josephson junctions induced by strong sputtering of the base electrode

    International Nuclear Information System (INIS)

    Wada, M.; Nakano, J.; Yanagawa, F.

    1985-01-01

    It is observed that strong rf sputtering of the Pb-alloy base electrodes causes the junctions to trap magnetic vortices and thus induces Josephson current (I/sub J/) suppression. Trapping begins to occur when the rf sputtering that removes the native thermal oxide on the base electrode is carried out prior to rf plasma oxidation. Observed large I/sub J/ suppression is presumably induced by the concentration of vortices into the sputtered area upon cooling the sample below the transition temperature. This suggests a new method of the circumvention of the vortex trapping by strongly rf sputtering the areas of the electrode other than the junction areas

  1. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo

    2011-01-01

    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanting...

  2. A case of junctional neural tube defect associated with a lipoma of the filum terminale: a new subtype of junctional neural tube defect?

    Science.gov (United States)

    Florea, Simona Mihaela; Faure, Alice; Brunel, Hervé; Girard, Nadine; Scavarda, Didier

    2018-06-01

    The embryological development of the central nervous system takes place during the neurulation process, which includes primary and secondary neurulation. A new form of dysraphism, named junctional neural tube defect (JNTD), was recently reported, with only 4 cases described in the literature. The authors report a fifth case of JNTD. This 5-year-old boy, who had been operated on during his 1st month of life for a uretero-rectal fistula, was referred for evaluation of possible spinal dysraphism. He had urinary incontinence, clubfeet, and a history of delayed walking ability. MRI showed a spinal cord divided in two, with an upper segment ending at the T-11 level and a lower segment at the L5-S1 level, with a thickened filum terminale. The JNTDs represent a recently classified dysraphism caused by an error during junctional neurulation. The authors suggest that their patient should be included in this category as the fifth case reported in the literature and note that this would be the first reported case of JNTD in association with a lipomatous filum terminale.

  3. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    Science.gov (United States)

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  4. Shunted-Josephson-junction model. I. The autonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....

  5. Joint diseases: from connexins to gap junctions.

    Science.gov (United States)

    Donahue, Henry J; Qu, Roy W; Genetos, Damian C

    2017-12-19

    Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

  6. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction.

    Science.gov (United States)

    McCabe, M J; Tarulli, G A; Laven-Law, G; Matthiesson, K L; Meachem, S J; McLachlan, R I; Dinger, M E; Stanton, P G

    2016-04-01

    Are Sertoli cell tight junctions (TJs) disrupted in men undergoing hormonal contraception? Localization of the key Sertoli cell TJ protein, claudin-11, was markedly disrupted by 8 weeks of gonadotropin suppression, the degree of which was related to the extent of adluminal germ cell suppression. Sertoli cell TJs are vital components of the blood-testis barrier (BTB) that sequester developing adluminal meiotic germ cells and spermatids from the vascular compartment. Claudin-11 knockout mice are infertile; additionally claudin-11 is spatially disrupted in chronically gonadotropin-suppressed rats coincident with a loss of BTB function, and claudin-11 is disorganized in various human testicular disorders. These data support the Sertoli cell TJ as a potential site of hormonal contraceptive action. BTB proteins were assessed by immunohistochemistry (n = 16 samples) and mRNA (n = 18 samples) expression levels in available archived testis tissue from a previous study of 22 men who had undergone 8 weeks of gonadotropin suppression and for whom meiotic and post-meiotic germ cell numbers were available. The gonadotropin suppression regimens were (i) testosterone enanthate (TE) plus the GnRH antagonist, acyline (A); (ii) TE + the progestin, levonorgestrel, (LNG); (iii) TE + LNG + A or (iv) TE + LNG + the 5α-reductase inhibitor, dutasteride (D). A control group consisted of seven additional men, with three archived samples available for this study. Immunohistochemical localization of claudin-11 (TJ) and other junctional type markers [ZO-1 (cytoplasmic plaque), β-catenin (adherens junction), connexin-43 (gap junction), vinculin (ectoplasmic specialization) and β-actin (cytoskeleton)] and quantitative PCR was conducted using matched frozen testis tissue. Claudin-11 formed a continuous staining pattern at the BTB in control men. Regardless of gonadotropin suppression treatment, claudin-11 localization was markedly disrupted and was broadly associated with the extent of meiotic

  7. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions

    International Nuclear Information System (INIS)

    Zheng, Jue-Ting; Yan, Run-Wen; Tian, Jing-Hua; Liu, Jun-Yang; Pei, Lin-Qi; Wu, De-Yin; Dai, Ke; Yang, Yang; Jin, Shan

    2016-01-01

    Highlights: • I-V characteristics of a series of oligo(phenylene ethynylene)s molecular junctions were measured. • Conductance values were found to be dependent on molecular length and substituent group. • The measured low conductance values were explained by theoretical calculations. • EC-MCBJ is feasible to fabricate and characterize molecular junctions. - Abstract: We demonstrate an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach for current-voltage characteristic (I-V curve) measurements of metal/molecule/metal junctions. A series of oligo(phenylene ethynylene)s compounds (OPEs), including those involving electron withdrawing substituent group and different backbone lengths, had been successfully designed, synthesized, and placed onto the fabricated nanogap to form molecular junctions. The observed evolution in the measured conductances of OPEs indicates that there is a dependence of conductance on molecular length and substituent group. Compared with those extracted from conductance histogram construction, the conductances of OPEs measured from I-V curves are considerably lower. Based on the transmission spectra of OPEs that calculated by density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) method, this difference was attributed to our distinct experimental operation, which may give rise to a stacking configuration of two OPE molecules.

  8. ALTERNATIVE MATERIALS FOR RAMP-EDGE SNS JUNCTIONS

    International Nuclear Information System (INIS)

    Jia, Q.; Fan, Y.; Gim, Y.

    1999-01-01

    We report on the processing optimization and fabrication of ramp-edge high-temperature superconducting junctions by using alternative materials for both superconductor electrodes and normal-metal barrier. By using Ag-doped YBa 2 Cu 3 O 7-x (Ag:YBCO) as electrodes and a cation-modified compound of (Pr y Gd 0.6-y )Ca 0.4 Ba 1.6 La 0.4 Cu 3 O 7 (y = 0.4, 0.5, and 0.6) as a normal-metal barrier, high-temperature superconducting Josephson junctions have been fabricated in a ramp-edge superconductor/normal-metal/superconductor (SNS) configuration. By using Ag:YBCO as electrodes, we have found that the processing controllability /reproducibility and the stability of the SNS junctions are improved substantially. The junctions fabricated with these alternative materials show well-defined RSJ-like current vs voltage characteristics at liquid nitrogen temperature

  9. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  10. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

    2014-01-01

    Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts

  11. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider

    2012-06-01

    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  12. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  13. Morphological variation of the kidney secondary to junctional parenchyma on ultrasound

    International Nuclear Information System (INIS)

    Lee, Ji Yoon; Park, Byeong Ho; Nam, Kyeong Jin; Choi, Jong Cheol; Koo, Bong Sig; Kim, Jou Yeoun; Ahn, Seung Eon; Lee, Yung Il

    1996-01-01

    To evaluate the prevalance of morphological variation of the kidney secondary to junctional parenchyma, as well as to analyze the ultrasonographic features of junctional parenchyma. Two hundred and eighty two kidneys of 141 patient without clinical or radiologic evidence of renal disease were prospectively analysed using ultrasound. In all patients, ultrasonograms were obtained in sagittal, coronal and transaxial planes. The kidney was considered to have morphological variation if the ultrasonogram demonstrated junctional parenchymal defect of line ; those showing such variation were classified as one of three types : continuous, discontinuous, or junctional parenchymal line or defect without junctional parenchyma. The prevalance and ultrasonographic features of the kidneys were evaluated. Morphological variation was noted in 71 cases(25%). the continuous type accounted for 54% of these, the discontinuous type for 38%, and junctional parenchymal defect or line without junctional parenchyma for 8%. In all cases, junctional parenchyma was located approximately at the junction of the upper and middle third of the kidney, and had the same echogenecity as the renal cortex. An understanding of the morphological variation of the kidney resulting from junctional renal parenchyma would be helpful in differentiating pseudotumor from true renal neoplasm

  14. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  15. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    Science.gov (United States)

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  16. Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells

    International Nuclear Information System (INIS)

    Bhargava, U.; Bar-Lev, M.; Bellows, C.G.; Aubin, J.E.

    1988-01-01

    When cells enzymatically digested from 21 d fetal rat calvaria are grown in ascorbic acid and Na beta-glycerophosphate, they form discrete three-dimensional nodular structures with the histological and immunohistochemical appearance of woven bone. The present investigation was undertaken to verify that bone-like features were identifiable at the ultrastructural level. The nodules formed on top of a fibroblast-like multilayer of cells. The upper surface of the nodules was lined by a continuous layer of cuboidal osteoblastic cells often seen to be joined by adherens junctions. Numerous microvilli, membrane protrusions, and coated pits could be seen on the upper surface of these cells, their cytoplasm contained prominent RER and Golgi membranes, and processes extended from their lower surfaces into a dense, highly organized collagenous matrix. Some osteocyte-like cells were completely embedded within this matrix; they also displayed RER and prominent processes which extended through the matrix and often made both adherens and gap junctional contacts with the processes of other cells. The fibroblastic cells not participating in nodule formation were surrounded by a less dense collagenous matrix and, in contrast to the matrix of the nodules, it did not mineralize. An unmineralized osteoid-like layer was seen directly below the cuboidal top layer of cells. A mineralization front was detectable below this in which small, discrete structures resembling matrix vesicles and feathery mineral crystals were evident and frequently associated with the collagen fibrils. More heavily mineralized areas were seen further into the nodule. Electron microprobe and electron and X-ray diffraction analysis confirmed the mineral to be hydroxyapatite

  17. Spin, Vibrations and Radiation in Superconducting Junctions

    NARCIS (Netherlands)

    Padurariu, C.

    2013-01-01

    This thesis presents the theoretical study of superconducting transport in several devices based on superconducting junctions. The important feature of these devices is that the transport properties of the junction are modified by the interaction with another physical system integrated in the

  18. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  19. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Megias, Diego; Epifano, Carolina

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the ...

  20. Spin-dependent quasiparticle tunneling in junction superconductor-isolator-ferromagnetic

    International Nuclear Information System (INIS)

    Shlapak, Yu.V.; Shaternik, V.E.; Rudenko, E.M.

    2001-01-01

    The influence of Andreev reflection of quasiparticles in transparent tunnel junctions of superconductor-isolator-ferromagnetic on electric-current transport is studied within the framework of the Blonder-Tinkham-Klapwijk (BTK) model. It's obtained that current and signal-to-noise ratio can be increased for the memory cell by using in it the double-barrier tunnel junction ferromagnetic-isolator-superconductor-isolator-ferromagnetic instead off the usual tunnel junction ferromagnetic-isolator-ferromagnetic. The evolution of non-linear (tunnel-type) current-voltage characteristics with increasing of the junction transparency is described. (orig.)

  1. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  2. Holographic s-wave and p-wave Josephson junction with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Qiang; Liu, Shuai [Institute of Theoretical Physics, Lanzhou University,Lanzhou 730000, People’s Republic of (China)

    2016-11-22

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  3. Functional anatomy of the human ureterovesical junction

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Verbeek, F. J.; Lamers, W. H.

    1996-01-01

    BACKGROUND: The valve function of the ureterovesical-junction (UVJ) is responsible for protection of the low pressure upper urinary tract from the refluxing of urine from the bladder. Controversy about the microanatomy of the human ureterovesical-junction persists. METHODS: Ten (3 male and 7 female)

  4. Double-well potential in annular Josephson junction

    International Nuclear Information System (INIS)

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  5. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  6. Experimental observations of thermal mixing characteristics in T-junction piping

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue, E-mail: chenms@mx.nthu.edu.tw; Hsieh, Huai-En; Ferng, Yuh-Ming; Pei, Bau-Shi

    2014-09-15

    Highlights: • The effects of flow velocity ratio on thermal mixing phenomenon are the major parameters. • The flow velocity ratio (V{sub b}/V{sub m}) is greater than 13.6, reverse flow occurs. • The flow velocity ratio is greater than 13.7, a “good” mixing quality is achieved. - Abstract: The T-junction piping is frequently used in many industrial applications, including the nuclear plants. For a pressurized water reactor (PWR), the emergency core cooling systems (ECCS) inject cold water into the primary loops if a loss-of-coolant accident (LOCA) happens. Inappropriate mixing of the two streams with significant temperature different at a junction may cause strong thermal stresses to the downstream structures in the reactor vessel. The downstream structures may be damaged. This study is an experimental investigation into the thermal mixing effect occurring at a T-junction. A small-scale test facility was established to observe the mixing effect of flows with different temperature. Thermal mixing effect with different flow rates in the main and branch pipes are investigated by measuring the temperature distribution along the main pipe. In test condition I, we found that lower main pipe flow rate leads to better mixing effect with constant branch pipe flow rate. And in conditions II and III, higher injection flow velocity would enhance the turbulence effect which results in better thermal mixing. The results will be useful for applications with mixing fluids with different temperature.

  7. Fractional Solitons in Excitonic Josephson Junctions

    Science.gov (United States)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  8. Unconventional transport characteristics of p-wave superconducting junctions in Sr2RuO4-Ru eutectic system

    International Nuclear Information System (INIS)

    Kambara, H.; Kashiwaya, S.; Yaguchi, H.; Asano, Y.; Tanaka, Y.; Maeno, Y.

    2010-01-01

    We report on novel local transport characteristics of naturally formed p-wave superconducting junctions of Sr 2 RuO 4 -Ru eutectic system by using microfabrication technique. We observed quite anomalous voltage-current (differential resistance-current) characteristics for both I//ab and I//c directions, which are not seen in conventional Josephson junctions. The anomalous features suggest the internal degrees of freedom of the superconducting state, possibly due to chiral p-wave domain. The dc current acts as a driving force to move chiral p-wave domain walls and form larger critical current path to cause the anomalous hysteresis.

  9. Gravitation at the Josephson Junction

    Directory of Open Access Journals (Sweden)

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  10. Connexin Communication Compartments and Wound Repair in Epithelial Tissue.

    Science.gov (United States)

    Chanson, Marc; Watanabe, Masakatsu; O'Shaughnessy, Erin M; Zoso, Alice; Martin, Patricia E

    2018-05-03

    Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  11. The cranial-spinal junction in medulloblastoma: does it matter?

    International Nuclear Information System (INIS)

    Narayana, Ashwatha; Jeswani, Sam; Paulino, Arnold C.

    1999-01-01

    Purpose: Late effects of treatment in children and young adults with medulloblastoma can be influenced by the technique employed in radiating the craniospinal axis. The purpose of this study is to determine whether the placement of the cranial-spinal junction has an impact on dose to the cervical spinal cord and surrounding organs. Methods and Materials: Five patients underwent computed tomography (CT) simulation in the prone position for craniospinal irradiation. A dose of 36 Gy was prescribed to the entire neuraxis. The doses to the cervical spinal cord and surrounding organs were calculated using a cranial-spinal junction at the C1-C2 vertebral interspace (high junction) or at the lowest point in the neck, with exclusion of the shoulders in the lateral cranial fields (low junction).The volume of critical organs at risk, as well as dose to these structures using the cranial and spinal field(s) were outlined and calculated using the CMS FOCUS 3-dimensional treatment planning system. Results: The average dose to the cervical spinal cord was 11.9% higher than the prescribed dose with the low junction, and 6.7% higher with the high junction. However, doses to the thyroid gland, mandible, pharynx, and larynx were increased by an average of 29.6%, 75.8%, 70.6%, and 227.7%, respectively, by the use of the high junction compared to the low junction. Conclusion: A higher dose to the cervical spinal cord can be minimized by using a high junction. However, this would be at the cost of substantially increased doses to surrounding organs such as the thyroid gland, mandible, pharynx, and larynx. This can be critical in children and young adults, where hypothyroidism, mandibular hypoplasia, and development of second malignancies may be a late sequela of radiation therapy

  12. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function

    DEFF Research Database (Denmark)

    Gimond, C; van Der Flier, A; van Delft, S

    1999-01-01

    different beta1-null cell lines, epithelial GE11 and fibroblast-like GD25 cells. Expression of beta1A or the cytoplasmic splice variant beta1D, induced the disruption of intercellular adherens junctions and cell scattering in both GE11 and GD25 cells. In GE11 cells, the morphological change correlated...... for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-beta1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM-cell contacts...

  13. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  14. Junction depth dependence of breakdown in silicon detector diodes

    International Nuclear Information System (INIS)

    Beck, G.A.; Carter, A.A.; Carter, J.R.; Greenwood, N.M.; Lucas, A.D.; Munday, D.J.; Pritchard, T.W.; Robinson, D.; Wilburn, C.D.; Wyllie, K.

    1996-01-01

    The high voltage capability of detector diodes fabricated in the planar process is limited by the high field generated at the edge of the junction.We have fabricated diodes with increased junction depth with respect to our standard process and find a significantly higher breakdown voltage,in reasonable agreement with previous studies of junction breakdown. (orig.)

  15. The fallopian tube-peritoneal junction: a potential site of carcinogenesis.

    Science.gov (United States)

    Seidman, Jeffrey D; Yemelyanova, Anna; Zaino, Richard J; Kurman, Robert J

    2011-01-01

    Junctions between different types of epithelia are hot spots for carcinogenesis, but the junction of the peritoneal mesothelium with the fallopian tubal epithelium, the tubal-peritoneal junction, has not been characterized earlier. A total of 613 junctional foci in 228 fallopian tube specimens from 182 patients who underwent surgery for a variety of indications, including 27 risk-reducing salpingo-oophorectomy specimens, were studied. Edema, congestion, and dilated lymphatic channels were commonly present. Transitional metaplasia was found at the junction in 20% of patients and mesothelial hyperplasia in 17%. Inflammation at the junction was seen predominantly in patients with salpingitis, torsion, or tubal pregnancy. Ovarian-type stroma was found at the junction in 5% of patients, and was found elsewhere in the tubal lamina propria in an additional 27% of patients. Findings in risk-reducing salpingo-oophorectomy specimens in women with BRCA mutations, a personal history of breast cancer, and/or a family history of breast/ovarian cancer were similar to those in controls. Transitional metaplasia specifically localizes to this junction, and is the probable source of Walthard cell nests. The recently highlighted significance of fimbrial tubal epithelium in the origin of serous ovarian carcinomas and a study suggesting that mucinous and Brenner tumors may arise from transitional-type epithelium in this location suggest that the tubal-peritoneal junction may play a role in the development of these tumors. This is the first comprehensive description of a hitherto unrecognized transitional zone in the adnexa.

  16. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  17. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  18. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  19. ‘Gap Junctions and Cancer: Communicating for 50 Years’

    Science.gov (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  20. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    International Nuclear Information System (INIS)

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  1. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  2. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...... of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane....

  4. The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis

    International Nuclear Information System (INIS)

    Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N.E.; Rissel, M.; Dimanche-Boitrel, M.-T.; Baffet, G.; Holme, J.A.; Lagadic-Gossmann, D.

    2010-01-01

    Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules < 1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis. Here, we have investigated benzo[a]pyrene (B[a]P) effects on GJIC and on the subcellular localization of the major protein of gap junction: connexin-43 (Cx43). Our results showed that B[a]P increased GJIC between mouse hepatoma Hepa1c1c7 cells via translocation of Cx43 from Golgi apparatus and lipid rafts into gap junction plaques. Interestingly, inhibition of GJIC by chlordane or small interference RNA directed against Cx43 enhanced B[a]P-induced apoptosis in Hepa1c1c7 cells. The increased apoptosis caused by inhibition of GJIC appeared to be mediated by ERK/MAPK pathway. It is suggested that B[a]P could induce transfer of cell survival signal or dilute cell death signal via regulation of ERK/MAPK through GJIC.

  5. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction

    Directory of Open Access Journals (Sweden)

    Fabio Di Napoli

    2017-02-01

    Full Text Available Residual lifetime estimation has gained a key point among the techniques that improve the reliability and the efficiency of power converters. The main cause of failures are the junction temperature cycles exhibited by switching devices during their normal operation; therefore, reliable power converter lifetime estimation requires the knowledge of the junction temperature time profile. Since on-line dynamic temperature measurements are extremely difficult, in this work an innovative real-time monitoring strategy is proposed, which is capable of estimating the junction temperature profile from the measurement of the dissipated powers through an accurate and compact thermal model of the whole power module. The equations of this model can be easily implemented inside a FPGA, exploiting the control architecture already present in modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method.

  6. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  7. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  8. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  9. An investigation of wall temperature characteristics to evaluate thermal fatigue at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi; Takenaka, Nobuyuki

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids mix. In this study, wall temperature characteristics at a T-junction pipe were investigated to improve the evaluation method for thermal fatigue. The stainless steel test section consisted of a horizontal main pipe (diameter, 150 mm) and a T-junction connected to a vertical branch pipe (diameter, 50 mm). The inlet flow velocities in the main and branch pipes were set to 0.99 m/s and 0.66 m/s respectively to produce a wall jet pattern in which the jet from the branch pipe was bent by the main pipe flow and made to flow along the pipe wall. The temperature difference was 34.1 K. A total of 148 thermocouples were installed to measure the wall temperature on the pipe inner surface in the downstream region. The maximum of temperature fluctuation intensity on the pipe inner surface was measured as 5% of the fluid temperature difference at the inlets. The dominant frequency of the large temperature fluctuations in the region downstream from z = 0.5D m was equal to 0.2 of the Strouhal number, which was equal to the frequency caused by the vortex streets generated around the jet flow. The large temperature fluctuation was also observed with the period of about 10 s. The fluctuation was caused by spreading of the heated region in the circumferential direction. (author)

  10. Effect of asymmetric interface on charge and spin transport across two dimensional electron gas with Dresselhaus spin-orbit coupling/ferromagnet junction

    Science.gov (United States)

    Srisongmuang, B.; Pasanai, K.

    2018-04-01

    We theoretically studied the effect of interfacial scattering on the transport of charge and spin across the junction of a two-dimensional electron gas with Dresselhaus spin-orbit coupling and ferromagnetic material junction, via the conductance (G) and the spin-polarization of the conductance spectra (P) using the scattering method. At the interface, not only were the effects of spin-conserving (Z0) and spin-flip scattering (Zf) considered, but also the interfacial Rashba spin-orbit coupling scattering (ZRSOC) , which was caused by the asymmetry of the interface, was taken into account, and all of them were modeled by the delta potential. It was found that G was suppressed with increasing Z0 , as expected. Interestingly, a particular value of Zf can cause G and P to reach a maximum value. In particular, ZRSOC plays a crucial role to reduce G and P in the metallic limit, but its influence on the tunneling limit was quite weak. On the other hand, the effect of ZRSOC was diminished in the tunneling limit of the magnetic junction.

  11. Spatially resolved detection of mutually locked Josephson junctions in arrays

    International Nuclear Information System (INIS)

    Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.

    1997-01-01

    Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics

  12. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    International Nuclear Information System (INIS)

    Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J

    2012-01-01

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  13. Probing electrical transport in individual carbon nanotubes and junctions

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Wendelken, John F; Li Anping; Du Gaohui; Li Wenzhi

    2008-01-01

    The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ∼20 deg. to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.

  14. Fast temporal fluctuations in single-molecule junctions.

    Science.gov (United States)

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  15. Axial p-n-junctions in nanowires.

    Science.gov (United States)

    Fernandes, C; Shik, A; Byrne, K; Lynall, D; Blumin, M; Saveliev, I; Ruda, H E

    2015-02-27

    The charge distribution and potential profile of p-n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah-Noice-Shockley theory, the junction current-voltage characteristic was described by an alternative theory suitable for fast generation-recombination and slow diffusion-drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1 < η < 2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work.

  16. Macroscopic Refrigeration Using Superconducting Tunnel Junctions

    Science.gov (United States)

    Lowell, Peter; O'Neil, Galen; Underwood, Jason; Zhang, Xiaohang; Ullom, Joel

    2014-03-01

    Sub-kelvin temperatures are often a prerequisite for modern scientific experiments, such as quantum information processing, astrophysical missions looking for dark energy signatures and tabletop time resolved x-ray spectroscopy. Existing methods of reaching these temperatures, such as dilution refrigerators, are bulky and costly. In order to increase the accessibility of sub-Kelvin temperatures, we have developed a new method of refrigeration using normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS junctions cool the electrons in the normal metal since the hottest electrons selectively tunnel from the normal metal into the superconductor. By extending the normal metal onto a thermally isolated membrane, the cold electrons can cool the phonons through the electron-phonon coupling. When these junctions are combined with a pumped 3He system, they provide a potentially inexpensive method of reaching these temperatures. Using only three devices, each with a junction area of approximately 3,500 μm2, we have cooled a 2 cm3 Cu plate from 290 mK to 256 mK. We will present these experimental results along with recent modeling predictions that strongly suggest that further refinements will allow cooling from 300 mK to 120 mK. This work is supported by the NASA APRA program.

  17. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  18. Spectrum of resonant plasma oscillations in long Josephson junctions

    International Nuclear Information System (INIS)

    Holst, T.

    1996-01-01

    An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society

  19. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  20. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  1. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  2. Electrical analog of a Josephson junction

    International Nuclear Information System (INIS)

    Goldman, A.M.

    1979-01-01

    It is noted that a mathematical description of the phase-coupling of two oscillators synchronized by a phase-lock-loop under the influence of thermal white noise is analogous to that of the phase coupling of two superconductors in a Josephson junction also under the influence of noise. This analogy may be useful in studying threshold instabilities of the Josephson junction in regimes not restricted to the case of large damping. This is of interest because the behavior of the mean voltage near the threshold current can be characterized by critical exponents which resemble those exhibited by an order parameter of a continuous phase transition. As it is possible to couple a collection of oscillators together in a chain, the oscillator analogy may also be useful in exploring the dynamics and statistical mechanics of coupled junctions

  3. Large eddy simulation on thermal fluid mixing in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, R.; Laurien, E. [Stuttgart Univ. (Germany). Inst fuer Kernenergie und Energiesysteme (IKE)

    2014-11-15

    High cycle thermal fatigue damage caused in piping systems is an important problem encountered in the context of nuclear safety and lifetime management of a Nuclear Power Plant (NPP). The T-junction piping system present in the Residual Heat Removal System (RHRS) is more vulnerable to thermal fatigue cracking. In this numerical study, thermal mixing of fluids at temperature difference (?T) of 117 K between the mixing fluids is analyzed. Large Eddy Simulation (LES) is performed with conjugate heat transfer between the fluid and structure. LES is performed based on the Fluid-Structure Interaction (FSI) test facility at University of Stuttgart. The results show an intense turbulent mixing of fluids downstream of T-junction. Amplitude of temperature fluctuations near the wall region and its corresponding frequency distribution is analyzed. LES is performed using commercial CFD software ANSYS CFX 14.0.

  4. Several alternative approaches to the manufacturing of HTS Josephson junctions

    OpenAIRE

    Villegier , J.; Boucher , H.; Ghis , A.; Levis , M.; Méchin , Laurence; Moriceau , H.; Pourtier , F.; Vabre , M.; Nicoletti , S.; Correra , L.

    1994-01-01

    In this work we describe comparatively the fabrication and the characterization of various types of HTS Josephson junctions manufactured using different processes : grain boundary junctions have been studied both by the way of junctions on bicrystal substrates and of bi-epitaxial junctions. Ramp-edge types have been elaborated and characterized using mainly N-YBaCuO thin film as a barrier while the trilayer approach has been investigated through a-axis structures. YBaCuO or GdBaCuO supercondu...

  5. The role of Rap1 in cell-cell junction formation

    NARCIS (Netherlands)

    Kooistra, M.R.H.

    2008-01-01

    Both epithelial and endothelial cells form cell-cell junctions at the cell-cell contacts to maintain tissue integrity. Proper regulation of cell-cell junctions is required for the organisation of the tissue and to prevent leakage of blood vessels. In endothelial cells, the cell-cell junctions are

  6. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  7. An ion-beam-assisted process for high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Huang, M.Q.; Chen, L.; Zhao, Z.X.; Yang, T.; Nie, J.C.; Wu, P.J.; Xiong, X.M.

    1997-01-01

    We have developed a non-ion-etching ion-beam-assisted-deposition (IBAD) process for fabricating high critical-temperature (T c ) grain boundary Josephson junctions through a photoresist liftoff mask. The YBa 2 Cu 3 O 7 (YBCO) junctions fabricated through this process exhibited the resistively-shunted-junction (RSJ)-like I - V characteristics. The well-defined Shapiro steps have been seen on the I - V curves under microwave radiation. The magnetic modulation of critical current of a 4 μm width YBCO junction tallied with the prior simulated Fraunhofer diffraction pattern of a Josephson junction with a spatially homogeneous critical current density. The maximum peak-to-peak modulation voltage across the dc superconducting quantum interference device (SQUID) fabricated by using these junctions reached up to 32 μV at 77 K. The magnetic modulation of the SQUID exhibited periodic behavior with the observed modulation period of 5.0x10 -4 G. copyright 1997 American Institute of Physics

  8. Au nanowire junction breakup through surface atom diffusion

    Science.gov (United States)

    Vigonski, Simon; Jansson, Ville; Vlassov, Sergei; Polyakov, Boris; Baibuz, Ekaterina; Oras, Sven; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2018-01-01

    Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.

  9. Flicker (1/f) noise in tunnel junction DC SQUIDS

    International Nuclear Information System (INIS)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.

    1983-01-01

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10 4 μm 2 , but significantly overestimates the noise for junctions with areas of about 6 μm 2 . DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10 -10 /f)phi 2 0 Hz -1 . It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies

  10. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    Science.gov (United States)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  11. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  12. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  13. Magnetic properties of slablike Josephson-junction arrays

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Hernando, A.

    1994-01-01

    Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA's) consisting of 2N+1 rows of grains are calculated for the dc Josephson effect with gauge-invariant phase differences. When N is large, the intergranular magnetization curve, M J (H), of the JJA's in low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of the JJA's, but in a larger field interval, its amplitude is dually modulated with periods determined by the junction and void areas. M J (H) curves for small N are more complicated. The concept of Josephson vortices and the application of the results to high-T c superconductors are discussed

  14. Methylmercury inhibits gap junctional intercellular communication in primary cultures of rat proximal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Minoru; Sumi, Yawara [Department of Chemistry, St. Marianna University School of Medicine, Kawasagi (Japan); Kujiraoka, Toru [Department of Physiology, St. Marianna University School of Medicine, Kawasagi (Japan); Hara, Masayuki [Department of Anatomy, St. Marianna University School of Medicine, Kawasagi (Japan); Nakazawa, Hirokazu [Department of Chemistry, Faculty of Sciences, Meisei University (Japan)

    1998-03-01

    Methylmercury (MeHg) causes renal injury in addition to central and peripheral neuropathy. To clarify the mechanism of nephrotoxicity by MeHg, we investigated the effect of this compound on intercellular communication through gap junction channels in primary cultures of rat renal proximal tubular cells. Twenty minutes after exposure to 30 {mu}M MeHg, gap junctional intercellular communication (GJIC), which was assessed by dye coupling, was markedly inhibited before appearance of cytotoxicity. When the medium containing MeHg was exchanged with MeHg-free medium, dye coupling recovered abruptly. However, the dye-coupling was abolished again 30 min after replacement with control medium, and the cells were damaged. Intracellular calcium concentration, [Ca{sup 2+}]{sub i}, which modulates the function of gap junctions, significantly increased following exposure of the cells to 30 {mu}M MeHg and returned to control level following replacement with MeHg-free medium. These results suggest that the inhibiting effect of MeHg on GJIC is related to the change in [Ca{sup 2+}]{sub i}, and may be involved in the pathogenesis of renal dysfunction. (orig.) With 5 figs., 23 refs.

  15. Capacitance measurement of Josephson tunnel junctions with microwave-induced dc quasiparticle tunneling currents

    International Nuclear Information System (INIS)

    Hamasaki, K.; Yoshida, K.; Irie, F.; Enpuku, K.

    1982-01-01

    The microwave response of the dc quasiparticle tunneling current in Josephson tunnel junctions, where the Josephson current is suppressed by an external magnetic field, has been studied quantitatively in order to clarify its characteristics as a probe for the measurement of the junction capacitance. Extensive experiments for both small and long junctions are carried out for distinguishing between microwave behaviors of lumped and distributed constant junctions. It is shown that the observed voltage dependence of the dc quasiparticle tunneling current modified by an applied rf field is in good agreement with a theoretical result which takes into account the influence of the microwave circuit connected to the junction. The comparison between theory and experiment gives the magnitude of the internal rf field in the junction. Together with the applied rf field, this internal rf field leads to the junction rf impedance which is dominated by the junction capacitance in our experimental condition. In the case of lumped junctions, this experimental rf impedance is in reasonable agreement with the theoretical one with the junction capacitance estimated from the Fiske step of the distributed junction fabricated on the same substrate; the obtained ratio of the experimental impedance to the theoretical one is approximately 0.6--1.7. In the case of distributed junctions, however, experimental values of their characteristic impedances are approximately 0.2--0.3 of theoretical values calculated by assuming the one-dimensional junction model and taking account of the standing-wave effect in the junction

  16. Efficacy of dexmedetomidine for the control of junctional ectopic tachycardia after repair of tetralogy of Fallot

    Directory of Open Access Journals (Sweden)

    Randhir S Rajput

    2014-01-01

    Full Text Available Background: Junctional ectopic tachycardia occurs frequently after congenital cardiac surgery and can be a cause of increased morbidity and mortality. Dexmedetomidine (DEX is an a2 adrenoreceptor agonist, has properties of controlling tachyarrhythmia by regulating the sympatho-adrenal system. Objective: To evaluate the efficacy of DEX for control of junctional ectopic tachycardia after repair of Tetralogy of Fallot (TOF. Materials and Methods: Two hundred and twenty pediatric cardiac patients with TOFs were enrolled in a prospective randomized control study. Patients underwent correction surgery. They were divided into two groups, i.e., Group 1 (DEX and Group 2 (control. Heart rate, rhythm, mean arterial pressure (MAP were recorded after the anesthetic induction (T1, after termination of bypass (T2, after 04 hours (T3, and 08 hours after transferring the patient to intensive care unit (ICU; T4. Results: Heart rate was comparable between two groups before starting the drug but statistically significant after bypass until 08 hours after transferring the patient to ICU. Junctional ectopic tachycardia occurred more in Group-2 (20% as compared to Group-1 (9.09%; P = 0.022. Junctional ectopic tachycardia occurs early in Group-2 (0.14 ± 0.527 hours as compared to Group 1 (0.31 ± 1.29 hours; P = 0.042. The duration of junctional ectopic tachycardia was more prolonged in Group-2 (1.63 ± 3.64 hours as compared to Group-1 (0.382 ± 1.60 hours; P = 0.012. The time to withdraw from mechanical ventilation and ICU stay of Group 1 patient was less than of Group 2 patients (P = <0.001. Conclusion: DEX had a therapeutic role in the prevention of junctional ectopic tachycardia in patients undergoing repair for TOF.

  17. Manufacturing P-N junctions in germanium bodies

    International Nuclear Information System (INIS)

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  18. Self-positioned thin Pb-alloy base electrode Josephson junction

    International Nuclear Information System (INIS)

    Kuroda, K.; Sato, K.

    1986-01-01

    A self-positioned thin (SPOT) Pb-alloy base electrode Josephson junction is developed. In this junction, a 50-nm thick Pb-alloy base electrode is restricted within the junction region on an Nb underlayer using a self-alignment technique. The grain size reduction and the base electrode area restriction greatly improve thermal cycling stability, where the thermal cycling tests of 4000 proposed junctions (5 x 5 μm 2 ) showed no failures after 4000 cycles. In addition, the elimination of insulator layer stress on the Pb-alloy base electrode rectifies the problem of size effect on current density. The Nb underlayers also serve to isolate the Pb-alloy base electrodes from the resistors

  19. High-efficiency thermal switch based on topological Josephson junctions

    Science.gov (United States)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  20. Phonon spectroscopy with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Grimshaw, J.M.

    1984-02-01

    Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given [fr

  1. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.

    Science.gov (United States)

    Avaritt, Brittany R; Swaan, Peter W

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation. Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [(14)C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability. Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers. The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.

  2. Breaking into the epithelial apical-junctional complex--news from pathogen hackers.

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2004-02-01

    The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.

  3. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Jinmi Koo

    2015-09-01

    Full Text Available BackgroundIn mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN. Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions.MethodsWe examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2 gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC knock-in mice using a real-time bioluminescence measurement system.ResultsAdministration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms.ConclusionThese findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.

  4. Dilute Nitrides For 4-And 6- Junction Space Solar Cells

    Science.gov (United States)

    Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.

    2011-10-01

    According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.

  5. Josephson junctions in high-T/sub c/ superconductors

    Science.gov (United States)

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  6. Detachment of Chain-Forming Neuroblasts by Fyn-Mediated Control of cell-cell Adhesion in the Postnatal Brain.

    Science.gov (United States)

    Fujikake, Kazuma; Sawada, Masato; Hikita, Takao; Seto, Yayoi; Kaneko, Naoko; Herranz-Pérez, Vicente; Dohi, Natsuki; Homma, Natsumi; Osaga, Satoshi; Yanagawa, Yuchio; Akaike, Toshihiro; García-Verdugo, Jose Manuel; Hattori, Mitsuharu; Sobue, Kazuya; Sawamoto, Kazunobu

    2018-05-09

    In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB. SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts

  7. Modeling Bloch oscillations in ultra-small Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose

    In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.

  8. Majorana splitting from critical currents in Josephson junctions

    Science.gov (United States)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  9. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  10. Critical current fluctuation in a microwave-driven Josephson junction

    International Nuclear Information System (INIS)

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  11. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  12. Magnetic field behavior of current steps in long Josephson junctions

    International Nuclear Information System (INIS)

    Costabile, G.; Cucolo, A.M.; Pace, S.; Parmentier, R.D.; Savo, B.; Vaglio, R.

    1980-01-01

    The zero-field steps, or dc current singularities, in the current-voltage characteristics of long Josephson tunnel junctions, first reported by Chen et al., continue to attract research interest both because their study can provide fundamental information on the dynamics of fluxons in such junctions and because they are accompanied by the emission of microwave radiation from the junction, which may be exploitable in practical oscillator applications. The purpose of this paper is to report some experimental observations of the magnetic field behavior of the steps in junctions fabricated in our Laboratory and to offer a qualitative explanation for this behavior. Measurements have been made both for very long (L >> lambdasub(J)) and for slightly long (L approx. >= lambdasub(J)) junctions with a view toward comparing our results with those of other workers. (orig./WRI)

  13. Cardiac Autoantibodies from Patients Affected by a New Variant of Endemic Pemphigus Foliaceus in Colombia, South America

    Science.gov (United States)

    Howard, Michael S.; Jiao, Zhe; Gao, Weiqing; Yi, Hong; Grossniklaus, Hans E.; Duque-Ramírez, Mauricio; Dudley, Samuel C.

    2012-01-01

    Several patients affected by a new variant of endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF) have experienced a sudden death syndrome, including persons below the age of 50. El Bagre-EPF patients share several autoantigens with paraneoplastic pemphigus patients, such as reactivity to plakins. Further, paraneoplastic pemphigus patients have autoantibodies to the heart. Therefore, we tested 15 El Bagre-EPF patients and 15 controls from the endemic area for autoreactivity to heart tissue using direct and indirect immunofluorescence, confocal microscopy, immunohistochemistry, immunoblotting, and immunoelectron microscopy utilizing heart extracts as antigens. We found that 7 of 15 El Bagre patients exhibited a polyclonal immune response to several cell junctions of the heart, often colocalizing with known markers. These colocalizing markers included those for the area composita of the heart, such as anti-desmoplakins I and II; markers for gap junctions, such as connexin 43; markers for tight junctions, such as ezrin and junctional adhesion molecule A; and adherens junctions, such pan-cadherin. We also detected colocalization of the patient antibodies within blood vessels, Purkinje fibers, and cardiac sarcomeres. We conclude that El Bagre-EPF patients display autoreactivity to multiple cardiac epitopes, that this disease may resemble what is found in patients with rheumatic carditis, and further, that the cardiac pathophysiology of this disorder warrants further evaluation. PMID:21796504

  14. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  15. Environmental Audit of the Grand Junction Projects Office

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

  16. Environmental Audit of the Grand Junction Projects Office

    International Nuclear Information System (INIS)

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs

  17. Absolute migration and the evolution of the Rodriguez triple junction ...

    African Journals Online (AJOL)

    The Rodriguez Triple Junction (RTJ) is a junction connecting three mid-ocean ridges in the Indian Ocean: the Southwest Indian Ridge (SWIR), the Central Indian Ridge (CIR) and the Southeast Indian Ridge (SEIR). The evolution of the RTJ has been studied extensively for the past 10 Ma and the triple junction is believed to ...

  18. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Science.gov (United States)

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  19. Shapiro and parametric resonances in coupled Josephson junctions

    International Nuclear Information System (INIS)

    Gaafar, Ma A; Shukrinov, Yu M; Foda, A

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  20. Towards molecular electronics with large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, HB; Blom, PWM; de Leeuw, DM; de Boer, B

    2006-01-01

    Electronic transport through single molecules has been studied extensively by academic(1-8) and industrial(9,10) research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes(11,12), break junctions(13,14), metallic crossbars(6) and nanopores(8,15). For

  1. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  2. ACCIDENT PREDICTION MODELS FOR UNSIGNALISED URBAN JUNCTIONS IN GHANA

    OpenAIRE

    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE

    2004-01-01

    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  3. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  4. Enhanced Protein Production in Escherichia coli by Optimization of Cloning Scars at the Vector-Coding Sequence Junction

    DEFF Research Database (Denmark)

    Mirzadeh, Kiavash; Martinez, Virginia; Toddo, Stephen

    2015-01-01

    are poorly expressed even when they are codon-optimized and expressed from vectors with powerful genetic elements. In this study, we show that poor expression can be caused by certain nucleotide sequences (e.g., cloning scars) at the junction between the vector and the coding sequence. Since these sequences...

  5. Droplet Traffic Control at a simple T junction

    Science.gov (United States)

    Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand

    2006-03-01

    A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.

  6. CFD modeling of thermal mixing in a T-junction geometry using LES model

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz

  7. The string-junction picture of multiquark states: an update

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, G.C. [Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Sezione di Roma 2, Via della Ricerca Scientifica, 00133 Roma (Italy); Centro Fermi, Museo Storico della Fisica,Piazza del Viminale 1, 00184 Roma (Italy); Veneziano, G. [Collège de France,11 place M. Berthelot, 75005 Paris (France); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica, Università di Roma La Sapienza,Piazzale A. Moro 5, 00185 Roma (Italy)

    2016-06-07

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with “irreducible' gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction J̄. For the junction-free sector (ordinary q q̄ mesons and glueballs) the picture is supported by large-N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or J̄ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J−J̄ annihilation diagrams. Such a rule implies that hadrons with junctions are “mesophobic' and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  8. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2015-04-01

    Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  9. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  10. Vortex dynamics in Josephson ladders with II-junctions

    DEFF Research Database (Denmark)

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.

    2004-01-01

    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...

  11. NbN-AlN-NbN Josephson junctions on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  12. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  13. Marker of cemento-periodontal ligament junction associated with periodontal regeneration.

    Science.gov (United States)

    Hara, Ryohko; Wato, Masahiro; Tanaka, Akio

    2005-06-01

    The purpose of this study was to identify factors promoting formation of the cemento-periodontal ligament junction. Regeneration of the cemento-periodontal ligament junction is an important factor in recovery of the connective tissue attachment to the cementum and it is important to identify all specific substances that promote its formation. To clarify the substances involved in cemento-periodontal ligament junction formation, we produced a monoclonal antibody (mAb) to human cemento-periodontal ligament junction (designated as the anti-TAP mAb) and examined its immunostaining properties and reactive antigen. Hybridomas producing monoclonal antibody against human cemento-periodontal ligament junction antigens were established by fusing P3U1 mouse myeloma cells with spleen cells from BALB/c mice immunized with homogenized human cemento-periodontal ligament junction. The mAb, the anti-TAP mAb for cemento-periodontal ligament junction, was then isolated. The immunoglobulin class and light chain of the mAb were examined using an isotyping kit. Before immunostaining, antigen determination using an enzymatic method or heating was conducted. Human teeth, hard tissue-forming lesions, and animal tissues were immunostained by the anti-TAP mAb. The anti-TAP mAb was positive in human cemento-periodontal ligament junction and predentin but negative in all other human and animal tissues examined. In the cemento-osseous lesions, the anti-TAP mAb was positive in the peripheral area of the cementum and cementum-like hard tissues and not in the bone and bone-like tissues. The anti-TAP mAb showed IgM (kappa) and recognized phosphoprotein. The anti-TAP mAb is potentially useful for developing new agents promoting cementogenesis and periodontal regeneration.

  14. A numerical model of p-n junctions bordering on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Aberle, A.G.; Jianhua Zhao; Aihua Wang; Heiser, G. [University of New South Wales, Sydney (Australia). Centre for Photovolatic Engineering

    2002-10-01

    Many solar cell structures contain regions where the emitter p-n junction borders on the surface. If the surface is not well passivated, a large amount of recombination occurs in such regions. This type of recombination is influenced by the electrostatics of both the p-n junction and the surface, and hence it is different from the commonly described recombination phenomena occurring in the p-n junction within the bulk. We developed a two-dimensional model for the recombination mechanisms occurring in emitter p-n junctions bordering on surfaces. The model is validated by reproducing the experimental I-V curves of specially designed silicon solar cells. It is shown under which circumstances a poor surface passivation, near where the p-n junction borders on the surface, reduces the fill factor and the open-circuit voltage. The model can be applied to many other types of solar cells. (author)

  15. Preparation of CN /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    NICO

    intramolecular junctions composed of CNx with a bamboo-like structure and empty hollow carbon nanotubes were observed, ... and excellent thermal and mechanical properties.1,2 In recent .... tion of hexane, and the other segment with a curved compart- ... by an arrow lies at the interface of the junction between 'b' and.

  16. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  17. Proliferation of sharp kinks on cosmic (super)string loops with junctions

    International Nuclear Information System (INIS)

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2010-01-01

    Motivated by their effect on the gravitational wave signal emitted by cosmic strings, we study the dynamics of kinks on strings of different tensions meeting at junctions. The propagation of a kink through a Y junction leads to the formation of three 'daughter' kinks. Assuming a uniform distribution of the incoming wave vectors at the junction, we find there is a significant region of configuration space in which the sharpness of at least one of the daughter kinks is enhanced relative to the sharpness of the initial kink. For closed loops with junctions we show this leads to an exponential growth in time of very sharp kinks. Using numerical simulations of realistic, evolving cosmic string loops with junctions to calculate the distribution of kink amplitudes as a function of time, we show that loops of this kind typically develop several orders of magnitude of very sharp kinks before the two junctions collide. This collision, or other effects such as gravitational backreaction, may end the proliferation.

  18. Bile duct regeneration and immune response by passenger lymphocytes signals biliary recovery versus complications after liver transplantation.

    Science.gov (United States)

    Junger, Henrik H; Schlitt, Hans J; Geissler, Edward K; Fichtner-Feigl, Stefan; Brunner, Stefan M

    2017-11-01

    This study aimed to elucidate the impact of epithelial regenerative responses and immune cell infiltration on biliary complications after liver transplantation. Bile duct (BD) damage after cold storage was quantified by a BD damage score and correlated with patient outcome in 41 patients. Bacterial infiltration was determined by fluorescence in situ hybridization (FISH). BD samples were analyzed by immunohistochemistry for E-cadherin, cytokeratin, CD56, CD14, CD4, CD8, and double-immunofluorescence for cytokine production and by messenger RNA (mRNA) microarray. Increased mRNA levels of adherens junctions (P Liver Transplantation 23 1422-1432 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  19. Field-In-Field Technique With Intrafractionally Modulated Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Yom, Sue S.; Frija, Erik K. C.; Mahajan, Anita; Chang, Eric; Klein, Kelli C.; Shiu, Almon; Ohrt, Jared; Woo, Shiao

    2007-01-01

    Purpose: To plan craniospinal irradiation with 'field-in-field' (FIF) homogenization in combination with daily, intrafractional modulation of the field junctions, to minimize the possibility of spinal cord overdose. Methods and Materials: Lateral cranial fields and posterior spinal fields were planned using a forward-planned, step-and-shoot FIF technique. Field junctions were automatically modulated and custom-weighted for maximal homogeneity within each treatment fraction. Dose-volume histogram analyses and film dosimetry were used to assess results. Results: Plan inhomogeneity improved with FIF. Planning with daily modulated junction shifts provided consistent dose delivery during each fraction of treatment across the junctions. Modulation minimized the impact of a 5-mm setup error at the junction. Film dosimetry confirmed that no point in the junction exceeded the anticipated dose. Conclusions: Field-in-field planning and modulated junction shifts improve the homogeneity and consistency of daily dose delivery, simplify treatment, and reduce the impact of setup errors

  20. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-06-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. GaAs nanowire array solar cells with axial p-i-n junctions.

    Science.gov (United States)

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  2. [Clinical and histological study of 25 cases of hydronephrosis caused by primary stenosis of the pyeloureteral junction].

    Science.gov (United States)

    Bernheim, J; Aronheim, M; Griffel, B

    1983-01-01

    The authors report 25 cases of primary stenosis of the pyelo-ureteric junction (PUJ) in terms of their clinical and histological features. Based on a semi-quantitative study of the histological modifications, the authors attempt to determine whether these modifications are primary and therefore responsible for the stenosis of the PUJ or wether, on the contrary, these changes are secondary to the stenosis. After studying 25 children and adults, it appears that these histological signs are primary and responsible for the malformation: rarefaction of the muscle layers (24 cases out of 25), fibrosis of the sub-mucosa or intermuscular layer in every case, presence of valvular mucosal folds in every case but one.

  3. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  4. Diuretic urography in the assessment of obstruction of the pelvi-ureteric junction

    International Nuclear Information System (INIS)

    Nilson, A.E.; Aurell, M.; Bratt, C.G.; Nilsson, S.

    1980-01-01

    Twenty adult patients with urographic evidence of unilateral, moderately wide renal pelves were examined by routine and diuretic urography. Planimetry of the corresponding calyx system of the two examinations was performed. An increase in size by more than 20 per cent following osmotic diuresis indicated an obstruction of the pelvi-ureteric junction in kidneys with moderately wide renal pelves. Diuretic urography may be useful to diagnose obstruction as a cause of moderately wide renal pelves and to assess operative results. (Auth.)

  5. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  6. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L

    2016-01-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn...... suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed...... by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused...

  7. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    International Nuclear Information System (INIS)

    Wang, L.Z.; Duncan, R.V.

    1992-01-01

    The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step

  8. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  9. Large eddy simulation of a wing-body junction flow

    Science.gov (United States)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  10. Mechanical break junctions: enormous information in a nanoscale package.

    Science.gov (United States)

    Natelson, Douglas

    2012-04-24

    Mechanical break junctions, particularly those in which a metal tip is repeatedly moved in and out of contact with a metal film, have provided many insights into electronic conduction at the atomic and molecular scale, most often by averaging over many possible junction configurations. This averaging throws away a great deal of information, and Makk et al. in this issue of ACS Nano demonstrate that, with both simulated and real experimental data, more sophisticated two-dimensional analysis methods can reveal information otherwise obscured in simple histograms. As additional measured quantities come into play in break junction experiments, including thermopower, noise, and optical response, these more sophisticated analytic approaches are likely to become even more powerful. While break junctions are not directly practical for useful electronic devices, they are incredibly valuable tools for unraveling the electronic transport physics relevant for ultrascaled nanoelectronics.

  11. BPS dynamics of the triple (p,q) string junction

    International Nuclear Information System (INIS)

    Rey, S.-J.; Yee, J.-T.

    1998-01-01

    We study the dynamics of the triple junction of (p,q) strings in type IIB string theory. We probe the tension and mass density of (p,q) strings by studying harmonic fluctuations of the triple junction. We show that they agree perfectly with the BPS formula provided a suitable geometric interpretation of the junction is given. We provide a precise statement of the BPS limit and force-balance property. At weak coupling and sufficiently dense limit, we argue that a (p,q) string embedded in the string network is a 'wiggly string', whose low-energy dynamics can be described via a renormalization group evolved, smooth effective non-relativistic string. We also suggest the possibility that, upon type IIB strings being promoted to the M-theory membrane, there can exist 'evanescent' bound-states at the triple junction in the continuum. (orig.)

  12. Symmetry breaking in SNS junctions: edge transport and field asymmetries

    Science.gov (United States)

    Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles

    We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.

  13. Charge splitters and charge transport junctions based on guanine quadruplexes

    Science.gov (United States)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  14. E-cadherin junction formation involves an active kinetic nucleation process

    Science.gov (United States)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  15. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  16. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  17. Breaking gold nano-junctions simulation and analysis

    DEFF Research Database (Denmark)

    Lauritzen, Kasper Primdal

    , to predict the structure of a gold junction just as it breaks. This method is based on artificial neural networks and can be used on experimental data, even when it is trained purely on simulated data. The method is extended to other types of experimental traces, where it is trained without the use......Simulating the movements of individual atoms allows us to look at and investigate the physical processes that happen in an experiment. In this thesis I use simulations to support and improve experimental studies of breaking gold nano-junctions. By using molecular dynamics to study gold nanowires, I...... can investigate their breaking forces under varying conditions, like stretching rate or temperature. This resolves a confusion in the literature, where the breaking forces of two different breaking structures happen to coincide. The correlations between the rupture and reformation of a gold junction...

  18. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation.

    Science.gov (United States)

    Gardiner, D M; Grey, R D

    1983-04-01

    We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.

  19. Stretching of BDT-gold molecular junctions: Thiol or thiolate termination?

    KAUST Repository

    Souza, Amaury De Melo; Rungger, Ivan; Pontes, Renato Borges; Rocha, Alexandre Reily; Da Silva, Antô nio José Roque; Schwingenschlö gl, Udo; Sanvito, S.

    2014-01-01

    It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

  20. Steady-state properties of Josephson junctions with direct conductivity

    International Nuclear Information System (INIS)

    Zubkov, A.A.; Kupriyanov, M.Y.; Semenov, V.K.

    1981-01-01

    A new criterion for determining the kinetic inductance of Josephson junctions is introduced. The effects of temperature T, the critical temperatures of the superconducting electrodes T/sub c/1 and T/sub c/2, and the weak-link length on the kinetic inductance of ''dirty'' junctions with direct conductivity are analyzed within the framework of the Usadel equations. Numerical calculations show that both a large characteristic voltage and a nearly harmonic dependence of the current on the phase difference of the superconducting-electrode wave functions cannot be obtained by varying the junction parameters

  1. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  2. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  3. Neutron induced permanent damage in Josephson junctions

    International Nuclear Information System (INIS)

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  4. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  5. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...... of the maximum junction temperature estimation is also proposed. Finally, the validity and effectiveness of the proposed method is confirmed by experimental results.......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  6. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  7. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  8. NbCN Josephson junctions with AlN barriers

    International Nuclear Information System (INIS)

    Thomasson, S.L.; Murduck, J.M.; Chan, H.

    1991-01-01

    This paper reports on niobium carbonitride (NbCN) Josephson circuits which operate over a wider temperature range than either niobium or niobium nitride circuits. Higher operating temperature places NbCN technology more comfortably within the range of closed cycle refrigerators, a key factor in aerospace applications. We have fabricated tunnel junctions from NbCN films with transition temperatures up to 18 Kelvin. High quality NbCN tunnel junction fabrication generally requires low stress films with roughness less than the barrier thickness (∼20 Angstrom). We have developed scanning tunneling microscopy as a tool for measuring and optimizing film smoothness. Junctions formed in situ with AIN tunneling barriers show reproducible I-V characteristics

  9. Measurement of noise in YBCO bi-crystal junctions

    International Nuclear Information System (INIS)

    Kuznik, J.; Hao, L.; Macfarlane, J.C.; Pegrum, C.M.; Fischer, G.M.; Mygind, J.; Pedersen, N.F.; Beck, A.; Gross, R.

    1993-01-01

    This paper describes collaborative work between three institutions as part of an ESPRIT programme to fabricate and characterise grain-boundary junctions. Bi-crystal junctions were fabricated at Tuebingen on SrTiO 3 substrates with a 24 misorientation angle and a-b tilt. 200nm of c-axis YBCO was sputter-deposited using a hollow-cathode magnetron, and the films patterned with optical lithography and Ar ion beam etching (3). For test purposes junctions with a range of sizes were made, with widths between 4 and 20μm. These have been characterised for noise properties at 0.3 - 1kHz and 60kHz at Strathclyde, and at 70GHz at Lyngby. (orig.)

  10. Resistance switch employing a simple metal nanogap junction

    International Nuclear Information System (INIS)

    Naitoh, Yasuhisa; Horikawa, Masayo; Abe, Hidekazu; Shimizu, Tetsuo

    2006-01-01

    In recent years, several researchers have reported the occurrence of reversible resistance switching effects in simple metal nanogap junctions. A large negative resistance is observed in the I-V characteristics of such a junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, such a junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage

  11. Root cause analysis of SI line-seated thermal sleeve separation failures

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Hho Jung

    2004-01-01

    At conventional pressurized water reactors, a thermal sleeve (named simply 'sleeve' hereafter) is seated inside the nozzle part of each Safety Injection (SI) branch pipe to prevent and relieve potential excessive transient thermal stress in the nozzle wall when a cold water is injected during the safety injection mode Recently, mechanical failures that the sleeves are separated from the SI branch pipe and fall into the connected cold leg main pipe were occurred in sequence at Yonggwang units 5 and 6 and Ulchin unit 5. There were many activities and efforts to figure out the causes of those failures with experts' reasoning, but the proposed causes were derived from superficial views rather than physically concrete grounds or analysis results. The prerequisites to find out the root causes of failure mechanism will be to identify the flow situation in the pipe junction area connecting the cold leg with the SI pipe and to know the vibration characteristics of sleeves. This paper investigates the flow field in the pipe junction thru a numerical simulation and vibration characteristics of thermal sleeves thru a modal analysis, from which the root causes of sleeve separation mechanism are analyzed

  12. Large time-dependent coercivity and resistivity modification under sustained voltage application in a Pt/Co/AlOx/Pt junction.

    NARCIS (Netherlands)

    Brink, van den A.; van der Heijden, M.A.J.; Swagten, H.J.M.; Koopmans, B.

    2015-01-01

    The coercivity and resistivity of a Pt/Co/AlOx/Pt junction are measured under sustained voltage application. High bias voltages of either polarity are determined to cause a strongly enhanced, reversible coercivity modification compared to low voltages. Time-resolved measurements show a logarithmic

  13. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H.

    2012-01-01

    -performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising

  14. Activation of protein kinase C and disruption of endothelial monolayer integrity by sodium arsenite-Potential mechanism in the development of atherosclerosis

    International Nuclear Information System (INIS)

    Pereira, Flavia E.; Coffin, J. Douglas; Beall, Howard D.

    2007-01-01

    Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and β-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 μM sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and β-catenin staining at cell-cell junctions that were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of β-catenin and activation of protein kinase Cα (PKCα) were observed. Inhibition of PKCα restored VE-cadherin and β-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of β-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKCα, which leads to increased PY of β-catenin downstream of PKCα activation. Phosphorylation of β-catenin plausibly severs the association of VE-cadherin and β-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis

  15. Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics

    Directory of Open Access Journals (Sweden)

    Yuji Isshiki

    2018-02-01

    Full Text Available The relationship between the current through an electronic device and the voltage across its terminals is a current–voltage characteristic (I–V that determine basic device performance. Currently, I–V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I–Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and identification of the charged carriers (i.e., electrons or holes are presented. The analysis in the single-molecule I–Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

  16. Simulations of signal amplification and oscillations using a SNS junction

    International Nuclear Information System (INIS)

    Luiz, A.M.; Soares, V.; Nicolsky, R.

    1998-01-01

    A superconducting - normal metal - superconducting junction (SNS junction) may exhibit a low voltage negative differential resistance (LVNDR) effect over part of its current voltage characteristic (CVC). As the LVNDR effect is stable against a bias voltage at this CVC range, it should be possible to combine a SNS junction with conventional electronic circuits to obtain electronic devices such as mixers, amplifiers and oscillators. Making use of this remarkable effect, we show that an amplifier may be feasible by assembling a simple voltage divider made up of a SNS junction in series with a resistor. The amplifier circuit includes an adjustable DC voltage supply (the bias voltage) and an AC signal source with a given voltage. The SNS junction is connected in series with a resistor R. Choosing values of the load resistance R approximately equal to the module of the negative differential resistance (dV/dI), at the bias voltage, we may obtain large gains in this amplifier device. In order to get an oscillator, the SNS junction should be connected to a RLC tank circuit with a bias voltage adjusted in the range of the LVNDR region of its CVC. A power output of the order of one microwatt may be easily obtained. (orig.)

  17. Superconductor-Insulator transition in a single Josephson junction

    International Nuclear Information System (INIS)

    Sonin, E.B.; PenttilA, J.S.; Parts, O.; Hakonen, P.J.; Paalanen, M.A.

    1999-01-01

    For ultra small Josephson junctions, when quantum effects become important, dissipative phase transition (DPT) has been predicted. The physical origin of this transition is the suppression of macroscopic quantum tunneling of the phase by tile interaction with dissipative quantum-mechanical environment. Macroscopic quantum tunneling destroys superconductivity of a junction, whereas suppression of tunneling restores superconductivity. Hence, this transition is often called a superconductor-insulator transition (SIT). SIT was predicted for various systems, but its detection in a single Josephson junction is of principal importance since it is the simplest system where this transition is expected, without any risk of being masked by other physical processes, as is possible in more complicated systems like regular or' random Josephson junction arrays. In this Letter we present results of our measurements on R = dV/dI vs. I curves, for a variety of single small isolated Josephson junctions, shunted and un shunted, with different values of capacitance C and normal state tunneling resistance RT. We have detected a crossover. between two types of RI-curves with an essentially different behavior at small currents. On the basis of this crossover, we are able to map out the whole phase diagram for a Josephson junction. The position of the observed phase boundary did not agree with that expected from the original theory. However, the theory revised to take into account a finite accuracy of our voltage measurements (viz., the minimum voltage which we are able to detect), explains well the observed phase diagram. Our important conclusion is that the concept of dissipative phase transition (DPT) and superconductor-insulator transition (SIT) are not completely identical as assumed before. Both are accompanied by the sign change of the thermo resistance, which is traditionally considered as a signature of SIT. Thus any DPT is SIT, but not vice versa. We argue that the real signature

  18. Desmoglein 3: A Help or a Hindrance in Cancer Progression?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Louise [Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT (United Kingdom); Department of Cellular and Molecular Physiology, University of Liverpool, Institute of Translational Medicine, Liverpool L69 3BX (United Kingdom); Wan, Hong, E-mail: h.wan@qmul.ac.uk [Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT (United Kingdom)

    2015-01-26

    Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.

  19. Desmoglein 3: A Help or a Hindrance in Cancer Progression?

    International Nuclear Information System (INIS)

    Brown, Louise; Wan, Hong

    2015-01-01

    Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression

  20. Connexin Communication Compartments and Wound Repair in Epithelial Tissue

    Directory of Open Access Journals (Sweden)

    Marc Chanson

    2018-05-01

    Full Text Available Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  1. MoRe-based and NbN-based tunnel junctions and their characteristics

    International Nuclear Information System (INIS)

    Shaternik, V.E.; Noskov, V.L.; Chubatyy, V.V.; Larkin, S.Yu.; Sizontov, V.M.; Miroshnikov, A.M.; Karmazin, A.A.

    2007-01-01

    Full text: Perspective [1] Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide- normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (∼50-100 nm) MoRe superconducting films are deposited on Al 2 O 3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies [2,3]. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Results of computer simulation of quasiparticles I-V curves of NbN-based junctions are presented and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency , clear Shapiro steps in the measured I-V curves were observed and discussed. (authors)

  2. Reliability of twin-dependent triple junction distributions measured from a section plane

    International Nuclear Information System (INIS)

    Hardy, Graden B.; Field, David P.

    2016-01-01

    Numerous studies indicate polycrystalline triple junctions are independent microstructural features with distinct properties from their constituent grain boundaries. Despite the influence of triple junctions on material properties, it is impractical to characterize triple junctions on a large scale using current three-dimensional methods. This work demonstrates the ability to characterize twin-dependent triple junction distributions from a section plane by adopting a grain boundary plane stereology. The technique is validated through simulated distributions and simulated electron back-scatter diffraction (EBSD) data. Measures of validation and convergence are adopted to demonstrate the quantitative reliability of the technique as well as the convergence behavior of twin-dependent triple junction distributions. This technique expands the characterization power of EBSD and prepares the way for characterizing general triple junction distributions from a section plane. - Graphical abstract: The distribution of planes forming a triple junction with a given twin boundary is shown partially in the stereographic projections below from a given projection. The plot on the left shows the ideal/measured distribution and the plot on the right shows the distribution obtained from the stereological method presented here.

  3. Nonlinearity in superconductivity and Josephson junctions

    International Nuclear Information System (INIS)

    Lazarides, N.

    1995-01-01

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  4. Breaking into the epithelial apical–junctional complex — news from pathogen hackers

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2012-01-01

    The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310

  5. Towards quantum signatures in a swept-bias Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Losert, Harald; Vogel, Karl; Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitaet Ulm, D-89069 Ulm (Germany)

    2016-07-01

    Josephson junctions are one of the best examples for the observation of macroscopic quantum tunneling. The phase difference in a current-biased Josephson junction behaves like the position of a particle in a tilted washboard potential. The escape of this phase-particle corresponds to the voltage switching of the associated junction. Quantum mechanically, the escape from the washboard potential can be explained as tunneling from the ground state, or an excited state. However, it has been shown, that in the case of periodic driving the experimental data for quantum mechanical key features, e.g. Rabi oscillations or energy level quantization, can be reproduced by a completely classical description. Motivated by this discussion, we investigate a swept-bias Josephson junction in the case of a large critical current. In particular, we contrast the switching current distributions resulting from a quantum mechanical and classical description of the time evolution.

  6. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  7. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  8. Craniovertebral junction stenosis in Lenz-Majewski syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mizuguchi, Koichi; Ishigro, Akira [National Center for Child Health and Development, Department of General Pediatrics and Interdisciplinary Medicine, Setagaya-ku, Tokyo (Japan); Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Tokyo (Japan)

    2015-09-15

    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome. (orig.)

  9. Electron transport and noise spectroscopy in organic magnetic tunnel junctions with PTCDA and Alq3 barriers

    Science.gov (United States)

    Martinez, Isidoro; Cascales, Juan Pedro; Hong, Jhen-Yong; Lin, Minn-Tsong; Prezioso, Mirko; Riminucci, Alberto; Dediu, Valentin A.; Aliev, Farkhad G.

    2016-10-01

    The possible influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present investigation of the electron transport and low frequency noise at temperatures down to 0.3K in magnetic tunnel junctions with an organic PTCDA barriers with thickness up to 5 nm in the tunneling regime and with 200 nm thick Alq3 barrier in the hopping regime. We observed high tunneling magneto-resistance at low temperatures (15-40%) and spin dependent super-poissonian shot noise in organic magnetic tunnel junctions (OMTJs) with PTCDA. The Fano factor exceeds 1.5-2 values which could be caused by interfacial states controlled by spin dependent bunching in the tunneling events through the molecules.1 The bias dependence of the low frequency noise in OMTJs with PTCDA barriers which includes both 1/f and random telegraph noise activated at specific biases will also be discussed. On the other hand, the organic junctions with ferromagnetic electrodes and thick Alq3 barriers present sub-poissonian shot noise which depends on the temperature, indicative of variable range hopping.

  10. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    Science.gov (United States)

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  11. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    International Nuclear Information System (INIS)

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  12. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Science.gov (United States)

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  13. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H

    2001-01-01

    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  14. Voltage-dependent conductance states of a single-molecule junction

    DEFF Research Database (Denmark)

    Wang, Y F; Néel, N; Kröger, J

    2012-01-01

    Ag–Sn-phthalocyanine–Ag junctions are shown to exhibit three conductance states. While the junctions are conductive at low bias, their impedance drastically increases above a critical bias. Two-level fluctuations occur at intermediate bias. These characteristics may be used to protect a nanoscale...

  15. Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions

    CERN Document Server

    Takayanagi, H; Toyoda, E

    1999-01-01

    The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.

  16. Building memristive and radiation hardness TiO{sub 2}-based junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: n.ghenzi@gmail.com [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Rubi, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Mangano, E.; Gimenez, G. [Instituto Nacional de Tecnología Industrial (INTI) (Argentina); Lell, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Zelcer, A. [Gerencia Química, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Stoliar, P. [ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); IMN, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes (France); and others

    2014-01-01

    We study micro-scale TiO{sub 2} junctions that are suitable to be used as resistive random-access memory nonvolatile devices with radiation hardness memristive properties. The fabrication and structural and electrical characterization of the junctions are presented. We obtained a retentivity of 10{sup 5} s, an endurance of 10{sup 4} cycles and reliable switching with short electrical pulses (time-width below 10 ns). Additionally, the devices were exposed to 25 MeV oxygen ions. Then, we performed electrical measurements comparing pristine and irradiated devices in order to check the feasibility of using these junctions as memory elements with memristive and radiation hardness properties. - Highlights: • We fabricated radiation hardness memristive metal insulator metal junctions. • We characterized the structural properties of the devices. • We showed the feasibility of the junctions as a non-volatile memory.

  17. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  18. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  19. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.

    Science.gov (United States)

    Lee, Woochul; Reddy, Pramod

    2011-12-02

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.

  20. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    Science.gov (United States)

    2010-12-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [DA 10-2236; MB Docket No. 10-108] Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction, Iowa, because the record in this...

  1. P-N semiconductor junctions used as X-ray detectors

    International Nuclear Information System (INIS)

    Pela, C.A.; Bruco, J.L.; Navas, E.A.; Paula, E. de; Guilardi Neto, T.

    1987-01-01

    The current response of some comercial P-N semiconductor junctions in function of X-ray incidency, in 40 to 140 KVp band used in diagnosis was characterized. Some junctions were also exposed to radiation of 80 to 250 KVp used in therapy. (C.G.C.) [pt

  2. Effect of quasi-particle injection on retrapping current of Josephson junction

    OpenAIRE

    Utsunomiya, K.; Yagi, Ryuta

    2006-01-01

    We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.

  3. Multicentre dosimetric comparison of photon-junctioning techniques in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Kron, T.

    2003-01-01

    Because many head and neck radiotherapy treatment techniques rely on a junction between X-ray fields, it was the aim of the present study to investigate the use of different junctioning techniques and the affect on the dose across the junction. Techniques in use at nine radiotherapy centres in Australia were investigated using thermoluminescence dosimetry (TLD). The techniques could broadly be divided into two groups: (i) use of the light field to match the fields after moving the patient; and (ii) use of asymmetric collimation to create a single isocentre located in the junction. The mean dose at the junction and its reproducibility was studied in five consecutive treatments in each centre using 25 TLD chips placed throughout the junction in an anthropomorphic phantom. There was a tendency for the mono-isocentric technique to deliver a lower, more accurate mean dose at the junction (Group I: 1.22 Gy (n = 8) vs Group II: 0.96 Gy (n = 5) for 1 Gy planned, some centres contributed to both technique) with greater reproducibility (Group I: 9.6%, Group II: 5.1 % of the mean dose). We conclude that a mono-isocentric treatment technique has the potential to deliver a more accurate and reproducible dose distribution at the field junction of photon beams in head and neck treatment. Copyright (2003) Blackwell Science Pty Ltd

  4. The string-junction picture of multiquark states: an update

    CERN Document Server

    Rossi, Giancarlo

    2016-06-07

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction $J$ or an anti-junction $\\bar{J}$. For the junction-free sector (ordinary $q\\, \\bar{q}$ mesons and glueballs) the picture is supported by large-$N$ (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with $J$ and/or $\\bar{J}$ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of $J-\\bar{J}$ a...

  5. The physical analysis on electrical junction of junctionless FET

    Directory of Open Access Journals (Sweden)

    Lun-Chun Chen

    2017-02-01

    Full Text Available We propose the concept of the electrical junction in a junctionless (JL field-effect-transistor (FET to illustrate the transfer characteristics of the JL FET. In this work, nanowire (NW junctionless poly-Si thin-film transistors are used to demonstrate this conception of the electrical junction. Though the dopant and the dosage of the source, of the drain, and of the channel are exactly the same in the JL FET, the transfer characteristics of the JL FET is similar to these of the conventional inversion-mode FET rather than these of a resistor, which is because of the electrical junction at the boundary of the gate and the drain in the JL FET. The electrical junction helps us to understand the JL FET, and also to explain the superior transfer characteristic of the JL FET with the gated raised S/D (Gout structure which reveals low drain-induced-barrier-lowering (DIBL and low breakdown voltage of ion impact ionization.

  6. Molecular electronics: some views on transport junctions and beyond.

    Science.gov (United States)

    Joachim, Christian; Ratner, Mark A

    2005-06-21

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.

  7. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  8. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  9. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2016-12-01

    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  11. Realization of φ Josephson junctions with a ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Sickinger, Hanna Sabine

    2014-01-01

    In this thesis, φ Josephson junctions based on 0-π junctions with a ferromagnetic interlayer are studied. Josephson junctions (JJs) with a ferromagnetic interlayer can have a phase drop of 0 or π in the ground state, depending on the thickness of the ferromagnet (0 JJs or π JJs). Also, 0-π JJs can be realized, where one segment of the junction (if taken separately) is in the 0 state, while the other segment is in the π state. One can use these π Josephson junctions as a device in superconducting circuits, where it provides a constant phase shift, i.e., it acts as a π phase battery. A generalization of a π JJ is a φ JJ, which has the phase ±φ in the ground state. The value of φ can be chosen by design and tuned in the interval 0<φ<π. The φ JJs used in this experiment were fabricated as 0-π JJs with asymmetric current densities in the 0 and π facets. This system can be described by an effective current-phase relation which is tunable by an externally applied magnetic field. The first experimental evidence of such a φ JJ is presented in this thesis. In particular it is demonstrated that (a) a φ JJ has two ground states +φ and -φ, (b) the unknown state can be detected (read out) by measuring the critical current I c (I c+ or I c- ), and (c) a particular state can be prepared by applying a magnetic field or a special bias sweep sequence. These properties of a φ JJ can be utilized, for example, as a memory cell (classical bit). Furthermore, a φ Josephson junction can be used as a deterministic ratchet. This is due to the tunable asymmetry of the potential that can be changed by the external magnetic field. Rectification curves are observed for the overdamped and the underdamped case. Moreover, experimental data of the retrapping process of the phase of a φ Josephson junction depending on the temperature is presented.

  12. Andreev reflexion studies on planar hybrid SNS-junctions based on 122-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Sebastian; Schmidt, Stefan; Schmidl, Frank; Tympel, Volker; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, Jena (Germany); Haindl, Silvia; Kurth, Fritz; Iida, Kazumasa; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, 01069 Dresden (Germany)

    2012-07-01

    To investigate the properties of iron-based superconductors, we prepared hybrid junctions in thin film technique. Therefore two geometries were prepared, a planar SNS-junction and an edge junction. The base electrode was made of Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2} thin films, a sputtered gold layer acts as normal barrier for the planar junction and for the counter electrode we used the conventional superconductor lead. We measured the electrical properties of each electrode, as well as the junctions itself. To obtain information about the order parameter symmetry, we show the differential conductance and compare with different variations of an extended BTK-model. We show differences and commonalities between the results of both junction geometries.

  13. The Control of Junction Flows

    National Research Council Canada - National Science Library

    Smith, Charles

    1997-01-01

    An experimental study of the effects of spatially-limited (i.e. localized) surface suction on unsteady laminar and turbulent junction flows was performed using hydrogen bubble flow visualization and Particle Image Velocimetry (PIV...

  14. Electron Transport through Porphyrin Molecular Junctions

    Science.gov (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  15. Gap junctions and epileptic seizures--two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Vladislav Volman

    Full Text Available Electrical synapses (gap junctions play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic, some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.

  16. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    Science.gov (United States)

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  17. Ligament augmentation for prevention of proximal junctional kyphosis and proximal junctional failure in adult spinal deformity.

    Science.gov (United States)

    Safaee, Michael M; Deviren, Vedat; Dalle Ore, Cecilia; Scheer, Justin K; Lau, Darryl; Osorio, Joseph A; Nicholls, Fred; Ames, Christopher P

    2018-05-01

    OBJECTIVE Proximal junctional kyphosis (PJK) is a well-recognized, yet incompletely defined, complication of adult spinal deformity surgery. There is no standardized definition for PJK, but most studies describe PJK as an increase in the proximal junctional angle (PJA) of greater than 10°-20°. Ligament augmentation is a novel strategy for PJK reduction that provides strength to the upper instrumented vertebra (UIV) and adjacent segments while also reducing junctional stress at those levels. METHODS In this study, ligament augmentation was used in a consecutive series of adult spinal deformity patients at a single institution. Patient demographics, including age; sex; indication for surgery; revision surgery; surgical approach; and use of 3-column osteotomies, vertebroplasty, or hook fixation at the UIV, were collected. The PJA was measured preoperatively and at last follow-up using 36-inch radiographs. Data on change in PJA and need for revision surgery were collected. Univariate and multivariate analyses were performed to identify factors associated with change in PJA and proximal junctional failure (PJF), defined as PJK requiring surgical correction. RESULTS A total of 200 consecutive patients were included: 100 patients before implementation of ligament augmentation and 100 patients after implementation of this technique. The mean age of the ligament augmentation cohort was 66 years, and 67% of patients were women. Over half of these cases (51%) were revision surgeries, with 38% involving a combined anterior or lateral and posterior approach. The mean change in PJA was 6° in the ligament augmentation group compared with 14° in the control group (p historical cohort, ligament augmentation is associated with a significant decrease in PJK and PJF. These data support the implementation of ligament augmentation in surgery for adult spinal deformity, particularly in patients with a high risk of developing PJK and PJF.

  18. Gas-liquid flow splitting in T-junction with inclined lateral arm

    Science.gov (United States)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  19. Thermopower in double planar tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wilczyński, M., E-mail: wilczyns@if.pw.edu.pl

    2017-01-01

    The Seebeck effect is investigated in double planar tunnel junctions consisting of nonmagnetic electrodes and the central layer separated by ferromagnetic barriers. Calculations are performed in the linear response theory using the free-electron model. The thermopower is analyzed as a function of the thickness of the central layer, temperature of the junctions and the relative orientation of magnetic moments of the barriers. It has been found that the thermopower can be significantly enhanced in the junction with special central layer thickness due to electron tunneling by resonant states. The thickness of the central layer for which the thermopower is enhanced depends not only on the temperature of the junction but also on the orientation of magnetic moments in the barriers. - Highlights: • Thermopower in the double planar junctions with magnetic barriers is analyzed. • Thermopower can be enhanced due to the resonant tunneling. • Thermopower depends on the magnetic configuration of the junction.

  20. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  1. A semiconductor nanowire Josephson junction microwave laser

    Science.gov (United States)

    Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo

    We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.

  2. Magnetometry with Low-Resistance Proximity Josephson Junction

    Science.gov (United States)

    Jabdaraghi, R. N.; Peltonen, J. T.; Golubev, D. S.; Pekola, J. P.

    2018-06-01

    We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) and its key constituent formed by a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb-Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about 55 nA/Φ_0 in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. Low-bias operation of the device with a relatively low probe junction resistance decreases the dissipation by up to two orders of magnitude compared to a conventional device based on an Al-Cu-Al SNS junction and an Al tunnel probe (Al-SQUIPT).

  3. Desmosomes: A light microscopic and ultrastructural analysis of desmosomes in odontogenic cysts.

    Science.gov (United States)

    Raju, Pratima; Wadhwan, Vijay; Chaudhary, Minal S

    2014-01-01

    Desmosomes together with adherens junctions represent the major adhesive cell-cell junctions of epithelial cells. Any damage to these junctions leads to loss of structural balance. The present study was designed to analyze the desmosomal junctions in different odontogenic cysts and compare them with their corresponding hematoxylin and eosin (H and E)   stained sections. Ten cases each of odontogenic keratocyst (OKC), dentigerous cysts (DCs), radicular cysts (RCs) and normal mucosa were stained with hematoxylin and eosin. Scanning electron microscopy (SEM) analysis of the sections was then carried out of all the sections. The area of interest on H and E stained section was marked and this marking was later superimposed onto the corresponding unstained sections and were subjected to SEM analysis. OKC at ×1000 magnification showed many prominent desmosomes. However, an increase in the intercellular space was also noted. SEM analysis demonstrated similar findings with the presence of many desmosomes, though they were seen to be damaged and fragile. H and E stained DC under oil immersion did not show any prominent desmosomes. SEM analysis of the same confirmed the observation and very minimal number were seen with a very condense arrangement of the epithelial cells. RC at ×1000 magnification revealed plenty of desmosomes, which were again confirmed by SEM. The number and quality of desmosomal junctions in all the cysts has a role in the clinical behavior of the cyst.

  4. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  5. Single-electron tunnel junction array

    International Nuclear Information System (INIS)

    Likharev, K.K.; Bakhvalov, N.S.; Kazacha, G.S.; Serdyukova, S.I.

    1989-01-01

    The authors have carried out an analysis of statics and dynamics of uniform one-dimensional arrays of ultrasmall tunnel junctions. The correlated single-electron tunneling in the junctions of the array results in its behavior qualitatively similar to that of the Josephson transmission line. In particular, external electric fields applied to the array edges can inject single-electron-charged solitons into the array interior. Shape of such soliton and character of its interactions with other solitons and the array edges are very similar to those of the Josephson vortices (sine-Gordon solitons) in the Josephson transmission line. Under certain conditions, a coherent motion of the soliton train along the array is possible, resulting in generation of narrowband SET oscillations with frequency f/sub s/ = /e where is the dc current flowing along the array

  6. Phase dynamics of a Josephson junction ladder driven by modulated currents

    International Nuclear Information System (INIS)

    Kawaguchi, T.

    2011-01-01

    Phase dynamics of disordered Josephson junction ladders (JJLs) driven by external currents which are spatially and temporally modulated is studied using a numerical simulation based on a random field XY model. This model is considered theoretically as an effective model of JJLs with structural disorder in a magnetic field. The spatiotemporal modulation of external currents causes peculiar dynamical effects of phases in the system under certain conditions, such as the directed motion of phases and the mode-locking in the absence of dc currents. We clarify the details of effects of the spatiotemporal modulation on the phase dynamics.

  7. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    Science.gov (United States)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  8. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope

    International Nuclear Information System (INIS)

    Lee, Woochul; Reddy, Pramod

    2011-01-01

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal–single molecule–metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy—at the single-molecule level—on Au–hexanedithiol–Au, Au–octanedithiol–Au and Au–decanedithiol–Au junctions.

  9. Superconductive junctions for x-ray spectroscopy

    International Nuclear Information System (INIS)

    Grand, J.B. le; Bruijn, M.P.; Frericks, M.; Korte, P.A.J. de; Houwman, E.P.; Flokstra, J.

    1992-01-01

    Biasing of SIS-junctions for the purpose of high energy resolution x-ray detection is complicated by the presence of a DC Josephson current and AC Josephson current resonances, so that a large magnetic field is normally used for the suppression of these Josephson features. A transimpedance amplifier is proposed for biasing and signal amplification at low magnetic field. X-ray spectroscopy detectors for astronomy require a high detection efficiency in the 0.5-10 keV energy band and a reasonable (∼1 cm 2 ) detector area. Calculations on absorber-junctions combinations which might meet these requirements are presented. (author) 9 refs.; 10 figs

  10. S and Te inter-diffusion in CdTe/CdS hetero junction

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, J. Pantoja [Cuerpo Academico-Energia y Sustentabilidad, Universidad Politecnica de Chiapas, Eduardo J. Selvas S/N, Col. Magisterial, Tuxtla Gutierrez 29010, Chiapas (Mexico); Gomez Barojas, E. [CIDS-ICUAP, Apdo. Postal 1651, 72000 Puebla (Mexico); Silva Gonzalez, R.; Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2007-09-22

    Effects of post formation thermal annealing of the CdTe-CdS device on the inter-diffusion of S and Te at the junction in a substrate configuration device have been studied by Auger electron spectroscopy. While the migration of S and Te atoms increases with annealing temperature, the extent of S diffusion is always higher than the diffusion of Te atoms. Inter-diffusion of S and Te causes the formation of CdTe{sub 1-x}S{sub x} ternary compound at the CdTe-CdS interface. (author)

  11. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Tang, Jiang; Kramer, Illan J.; Ning, Zhijun; Sargent, Edward H.

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum

  12. Optical photon detection in Al superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Brammertz, G.; Peacock, A.; Verhoeve, P.; Martin, D.; Venn, R.

    2004-01-01

    We report on the successful fabrication of low leakage aluminium superconducting tunnel junctions with very homogeneous and transparent insulating barriers. The junctions were tested in an adiabatic demagnetisation refrigerator with a base temperature of 35 mK. The normal resistance of the junctions is equal to ∼7 μΩ cm 2 with leakage currents in the bias voltage domain as low as 100 fA/μm 2 . Optical single photon counting experiments show a very high responsivity with charge amplification factors in excess of 100. The total resolving power λ/Δλ (including electronic noise) for 500 nm photons is equal to 13 compared to a theoretical tunnel limited value of 34. The current devices are found to be limited spectroscopically by spatial inhomogeneities in the detectors response

  13. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre

    2017-01-01

    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  14. Intercellular coupling mediated by potassium accumulation in peg-and-socket junctions

    DEFF Research Database (Denmark)

    Vigmond, Edward J.; Bardakjian, Berj L.; Thuneberg, Lars

    2000-01-01

    Physiology, peg-and-socket junctions, smooth muscle, boundary element method, coupling, morphology......Physiology, peg-and-socket junctions, smooth muscle, boundary element method, coupling, morphology...

  15. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  16. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    Science.gov (United States)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  17. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  18. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication

    Science.gov (United States)

    Li, Hanjun; Spagnol, Gaelle; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2014-01-01

    ABSTRACT Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health. PMID:24849651

  19. A cephalometric method to diagnosis the craniovertebral junction abnormalities in osteogenesis imperfecta patients

    Science.gov (United States)

    Ríos-Rodenas, Mercedes; Gutiérrez-Díez, María-Pilar; Feijóo, Gonzalo; Mourelle, Maria-Rosa; Garcilazo, Mario; Ortega-Aranegui, Ricardo

    2015-01-01

    Osteogenesis imperfecta (OI) is a hereditary bone fragility disorder that in most patients is caused by mutations affecting collagen type I. Their typical oral and craneofacial characteristics (Dentinogenesis imperfecta type I and class III malocclusion), involve the dentist in the multidisciplinary team that treat these patients. It is usual to perform lateral skull radiographs for the orthodontic diagnosis. In addition, this radiograph is useful to analyse the junctional area between skull base and spine, that could be damaged in OI. Pathology in the craneovertebral junction (CVJ) is a serious complication of OI with a prevalence ranging from rare to 37%. To diagnosis early skull base anomalies in these patients, previously the neurological symptoms have been appear, we make a simple cephalometric analysis of the CVJ. This method has four measurements and one angle. Once we calculate the values of the OI patient, we compare the result with the mean and the standard deviations of an age-appropriate average in healthy controls. If the patient has a result more than 2,5 SDs above the age-appropriate average in healthy controls, we should to refer the patient to his/her pediatrician or neurologist. These doctors have to consider acquiring another diagnostic images to be used to determine cranial base measurements with more reliability. Thereby, dentists who treat these patients, must be aware of the normal radiological anatomy of the cervical spine on the lateral cephalogram. Key words:Osteogenesis imperfecta, craniovertebral junction, cephalometric. PMID:25810828

  20. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source