WorldWideScience

Sample records for adenylyl cyclase isoforms

  1. Bicarbonate-Regulated Soluble Adenylyl Cyclase

    Wuttke MS

    2001-07-01

    Full Text Available Soluble adenylyl cyclase (sAC represents a novel form of mammalian adenylyl cyclase structurally, molecularly, and biochemically distinct from the G protein-regulated, transmembrane adenylyl cyclases (tmACs. sAC possesses no transmembrane domains and is insensitive to classic modulators of tmACs, such as heterotrimeric G proteins and P site ligands. Thus, sAC defines an independently regulated cAMP signaling system within mammalian cells. sAC is directly stimulated by bicarbonate ion both in vivo in heterologously expressing cells and in vitro using purified protein. sAC appears to be the predominant form of adenylyl cyclase (AC in mammalian sperm, and its direct activation by bicarbonate provides a mechanism for generating the cAMP required to complete the bicarbonate-induced processes necessary for fertilization, including hyperactivated motility, capacitation, and the acrosome reaction. Immunolocalization studies reveal sAC is also abundantly expressed in other tissues which respond to bicarbonate or carbon dioxide levels suggesting it may function as a general bicarbonate/CO(2 sensor throughout the body.

  2. Renal Phosphate Wasting in the Absence of Adenylyl Cyclase 6

    Fenton, Robert A; Murray, Fiona; Dominguez Rieg, Jessica A.; Tang, Tong; Levi, Moshe; Rieg, Timo

    2014-01-01

    Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) enhance phosphate excretion by the proximal tubule of the kidney by retrieval of the sodium-dependent phosphate transporters (Npt2a and Npt2c) from the apical plasma membrane. PTH activates adenylyl cyclase (AC) through PTH 1 receptors and stimulates the cAMP/PKA signaling pathway. However, the precise role and isoform(s) of AC in phosphate homeostasis are not known. We report here that mice lacking AC6 (AC6−/−) have increased...

  3. Functional non-nucleoside adenylyl cyclase inhibitors.

    Lelle, Marco; Hameed, Abdul; Ackermann, Lisa-Maria; Kaloyanova, Stefka; Wagner, Manfred; Berisha, Filip; Nikolaev, Viacheslav O; Peneva, Kalina

    2015-05-01

    In this study, we describe the synthesis of novel functional non-nucleoside adenylyl cyclase inhibitors, which can be easily modified with thiol containing biomolecules such as tumour targeting structures. The linkage between inhibitor and biomolecule contains cleavable bonds to enable efficient intracellular delivery in the reductive milieu of the cytosol as well as in the acidic environment within endosomes and lysosomes. The suitability of this synthetic approach was shown by the successful bioconjugation of a poor cell-permeable inhibitor with a cell-penetrating peptide. Additionally, we have demonstrated the excellent inhibitory effect of the compounds presented here in a live-cell Förster resonance energy transfer-based assay in human embryonic kidney cells. PMID:25319071

  4. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

    Robichon Alain

    2004-06-01

    Full Text Available Abstract Background We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABAB], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon. Results We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s, beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals. Conclusions Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

  5. Molecular analysis of adenylyl cyclase: Bacillus anthracis edema factor exotoxin

    Mohammed, Hesham Hamada Taha

    2010-01-01

    Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor EF), a highly active calmodulin-dependent adenylyl cyclase (AC). However, conventional antibiotic treatment is ineffective against either toxemia or antibiotic- resistant strains. Thus, more effective drugs for anthrax treatment are needed. We successfully purified the recombinant full-length EF and EF3(F586A) from E. coli with...

  6. Requirements for the adenylyl cyclases in the development of Dictyostelium.

    Anjard, C; Söderbom, F; Loomis, W F

    2001-09-01

    It has been suggested that all intracellular signaling by cAMP during development of Dictyostelium is mediated by the cAMP-dependent protein kinase, PKA, since cells carrying null mutations in the acaA gene that encodes adenylyl cyclase can develop so as to form fruiting bodies under some conditions if PKA is made constitutive by overexpressing the catalytic subunit. However, a second adenylyl cyclase encoded by acrA has recently been found that functions in a cell autonomous fashion during late development. We have found that expression of a modified acaA gene rescues acrA- mutant cells indicating that the only role played by ACR is to produce cAMP. To determine whether cells lacking both adenylyl cyclase genes can develop when PKA is constitutive we disrupted acrA in a acaA- PKA-C(over) strain. When developed at high cell densities, acrA- acaA- PKA-C(over) cells form mounds, express cell type-specific genes at reduced levels and secrete cellulose coats but do not form fruiting bodies or significant numbers of viable spores. Thus, it appears that synthesis of cAMP is required for spore differentiation in Dictyostelium even if PKA activity is high. PMID:11566867

  7. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

  8. Crystallization of the class IV adenylyl cyclase from Yersinia pestis

    The class IV adenylyl cyclase from Y. pestis has been crystallized in an orthorhombic form suitable for structure determination. The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 Å, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 Å, α = 88.7, β = 82.5, γ = 65.5°. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P212121. These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 Å, diffract to 3 Å and probably have two dimers per asymmetric unit and VM = 3.0 Å3 Da−1. Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination

  9. Adenylyl Cyclase Signaling in the Developing Chick Heart: The Deranging Effect of Antiarrhythmic Drugs

    Lucie Hejnova

    2014-01-01

    Full Text Available The adenylyl cyclase (AC signaling system plays a crucial role in the regulation of cardiac contractility. Here we analyzed the key components of myocardial AC signaling in the developing chick embryo and assessed the impact of selected β-blocking agents on this system. Application of metoprolol and carvedilol, two commonly used β-blockers, at embryonic day (ED 8 significantly downregulated (by about 40% expression levels of AC5, the dominant cardiac AC isoform, and the amount of Gsα protein at ED9. Activity of AC stimulated by forskolin was also significantly reduced under these conditions. Interestingly, when administered at ED4, these drugs did not produce such profound changes in the myocardial AC signaling system, except for markedly increased expression of Giα protein. These data indicate that β-blocking agents can strongly derange AC signaling during the first half of embryonic heart development.

  10. Expression of soluble adenylyl cyclase in acral melanomas.

    Li, H; Kim, S M; Savkovic, V; Jin, S A; Choi, Y D; Yun, S J

    2016-06-01

    Soluble adenylyl cyclase (sAC) regulates melanocytic cells, and is a diagnostic marker for pigmented skin lesions. Because only a few studies on sAC expression in acral melanomas have been performed, we investigated the histopathological significance of sAC expression in 33 cases of acral melanoma, and assessed its diagnostic value in distinguishing melanoma in situ (MIS, n = 17) from acral invasive melanomas (n = 16) and melanocytic naevi (n = 11). Acral melanomas exhibited more marked nuclear immunopositivity compared with acral melanocytic naevi. sAC expression significantly correlated with the nuclear morphology of melanocytes and melanoma cells, namely, hyperchromatic nuclei and prominent nucleoli within vesicular nuclei. sAC expression was predominantly observed in the hyperchromatic nuclei of MIS and the prominent nucleoli invasive melanomas, respectively. In vitro culture models of melanocytes and melanoma cell lines exhibited sAC staining patterns similar to those of acral melanomas. Differentiation induction showed that nuclear and nucleolar expression varied depending on cell morphology. sAC immunostaining may be useful for the differential diagnosis of acral melanocytic lesions, and sAC expressed in the nucleus and nucleolus might be related to cytological and nuclear changes associated with invasion and progression of acral melanomas. PMID:26290224

  11. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee.

    Wachten, Sebastian; Schlenstedt, Jana; Gauss, Renate; Baumann, Arnd

    2006-03-01

    Cyclic AMP (cAMP) serves as an important messenger in virtually all organisms. In the honeybee (Apis mellifera), cAMP-dependent signal transduction has been implicated in behavioural processes as well as in learning and memory. Key components of cAMP-signalling cascades are adenylyl cyclases. However, the molecular identities and biochemical properties of adenylyl cyclases are completely unknown in the honeybee. We have cloned a cDNA (Amac3) from honeybee brain that encodes a membrane-bound adenylyl cyclase. The Amac3 gene is an orthologue of the Drosophila ac39E gene. The corresponding proteins share an overall amino acid similarity of approximately 62%. Phylogenetically, AmAC3 belongs to group 1 adenylyl cyclases. Heterologously expressed AmAC3 displays basal enzymatic activity and efficient coupling to endogenous G protein signalling pathways. Stimulation of beta-adrenergic receptors induces AmAC3 activity with an EC(50) of about 3.1 microm. Enzymatic activity is also increased by forskolin (EC(50) approximately 15 microm), a specific agonist of membrane-bound adenylyl cyclases. Similar to certain biogenic amine receptor genes of the honeybee, Amac3 transcripts are expressed in many somata of the brain, especially in mushroom body neurones. These results suggest that the enzyme serves in biogenic amine signal transduction cascades and in higher brain functions that contribute to learning and memory of the bee. PMID:16464235

  12. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  13. Adenylyl cyclase types I and VI but not II and V are selectively inhibited by nitric oxide

    J. Goldstein

    2002-02-01

    Full Text Available Adenylyl cyclase (AC isoforms catalyze the synthesis of 3',5'-cyclic AMP from ATP. These isoforms are critically involved in the regulation of gene transcription, metabolism, and ion channel activity among others. Nitric oxide (NO is a gaseous product whose synthesis from L-arginine is catalyzed by the enzyme NO synthase. It has been well established that NO activates the enzyme guanylyl cyclase, but little has been reported on the effects of NO on other important second messengers, such as AC. In the present study, the effects of sodium nitroprusside (SNP, a nitric oxide-releasing compound, on COS-7 cells transfected with plasmids containing AC types I, II, V and VI were evaluated. Total inhibition (~98.5% of cAMP production was observed in COS-7 cells transfected with the AC I isoform and previously treated with SNP (10 mM for 30 min, when stimulated with ionomycin. A high inhibition (~76% of cAMP production was also observed in COS-7 cells transfected with the AC VI isoform and previously treated with SNP (10 mM for 30 min, when stimulated with forskolin. No effect on cAMP production was observed in cells transfected with AC isoforms II and V.

  14. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca2+ to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca2+ and this interaction may be important for its invasion into animal cells

  15. Adenylyl Cyclase Signaling in the Developing Chick Heart: The Deranging Effect of Antiarrhythmic Drugs

    Hejnová, L.; Hahnová, K.; Kočková, Radka; Svatůňková, Jarmila; Sedmera, David; Novotný, J.

    2014-01-01

    Roč. 2014, č. 2014 (2014), s. 463123. ISSN 2314-6133 R&D Projects: GA ČR(CZ) GAP302/11/1308 Institutional support: RVO:67985823 Keywords : embryonic heart * embryotoxicity * adenylyl cyclase * G protein * beta-blocking agents Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.579, year: 2014

  16. An adenylyl cyclase signalling cascade in rat liver after prenatal gamma-irradiation (6,5 Gy)

    The adenylyl cyclase signalling cascade was tested in the rat liver of males subjected to the following 0.5 Gy prenatal gamma-irradiation: chronic irradiation during the whole time of embryonic development, single dose irradiation at the 9. day, and at the 15. day of embryogenesis. It was found that the prenatal irradiation resulted in the increase of basal and GTP-simulated adenylyl cyclase activity in all three groups of rats. In contrast, the adenylyl cyclase response to glucagon was essentially reduced. These effects were more pronounced in the chronic irradiated animals. From dose-response curves obtained for adenylyl cyclase activators. Mg==, and ATP we concluded that observed changes in glucagon signalling after single dose and chronic irradiation can be caused by alterations in the Gs protein regulatory cycle. (authors)

  17. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method.

    J Field; Nikawa, J; Broek, D; MacDonald, B.; Rodgers, L; Wilson, I A; Lerner, R A; Wigler, M

    1988-01-01

    We developed a method for immunoaffinity purification of Saccharomyces cerevisiae adenylyl cyclase based on creating a fusion with a small peptide epitope. Using oligonucleotide technology to encode the peptide epitope we constructed a plasmid that expressed the fusion protein from the S. cerevisiae alcohol dehydrogenase promoter ADH1. A monoclonal antibody previously raised against the peptide was used to purify adenylyl cyclase by affinity chromatography. The purified enzyme appeared to be ...

  18. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo

    Kristen L Lee; Hoey, David A.; Spasic, Milos; Tang, Tong; Hammond, H. Kirk; Jacobs, Christopher R.

    2014-01-01

    Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study...

  19. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats

    Klevstig, M.; Manakov, D.; Kašparová, D.; Brabcová, I.; Papoušek, František; Žurmanová, J.; Zídek, Václav; Šilhavý, Jan; Neckář, Jan; Pravenec, Michal; Kolář, František; Nováková, O.; Novotný, J.

    2013-01-01

    Roč. 465, č. 10 (2013), s. 1477-1486. ISSN 0031-6768 R&D Projects: GA MŠk(CZ) LL1204; GA AV ČR(CZ) IAAX01110901; GA ČR(CZ) GAP303/10/0505 Institutional support: RVO:67985823 Keywords : SHR rats * Cd36 * heart * beta-Adrenergic receptors * Adenylyl cyclase * Protein kinase A Subject RIV: ED - Physiology Impact factor: 3.073, year: 2013

  20. Antiarrhythmic effect of prolonged morphine exposure is accompanied by altered myocardial adenylyl cyclase signaling in rats

    Škrabalová, J.; Neckář, Jan; Hejnová, L.; Bartoňová, I.; Kolář, František; Novotný, J.

    2012-01-01

    Roč. 64, č. 2 (2012), s. 351-359. ISSN 1734-1140 R&D Projects: GA AV ČR(CZ) IAA501110901 Grant ostatní: Univerzita Karlova(CZ) 429511 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat myocardium * morphine * adenylyl cyclase * G-proteins * arrhythmias Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.965, year: 2012

  1. Conservation of functional domain structure in bicarbonate-regulated “soluble” adenylyl cyclases in bacteria and eukaryotes

    Kobayashi, Mime; Buck, Jochen; Levin, Lonny R.

    2004-01-01

    Soluble adenylyl cyclase (sAC) is an evolutionarily conserved bicarbonate sensor. In mammals, it is responsible for bicarbonate-induced, cAMP-dependent processes in sperm required for fertilization and postulated to be involved in other bicarbonate- and carbon dioxide-dependent functions throughout the body. Among eukaryotes, sAC-like cyclases have been detected in mammals and in the fungi Dictyostelium; these enzymes display extensive similarity extending through two cyclase catalytic domain...

  2. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    Tresguerres, M.; Barott, KL; Barron, ME; Roa, JN

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3 -, and sAC has been confirmed to be a HCO3 - sensor in a variety of mammalian cell types. In addition, sA...

  3. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    2008-01-01

    CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type

  4. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus.

    Hurwitz, N; Segal, M; Marbach, I; Levitzki, A

    1995-11-21

    Although both Ras1 and Ras2 activate adenylyl cyclase in yeast, a number of differences can be observed regarding their function in the cAMP pathway. To explore the relative contribution of conserved and variable domains in determining these differences, chimeric RAS1-RAS2 or RAS2-RAS1 genes were constructed by swapping the sequences encoding the variable C-terminal domains. These constructs were expressed in a cdc25ts ras1 ras2 strain. Biochemical data show that the difference in efficacy of adenylyl cyclase activation between the two Ras proteins resides in the highly conserved N-terminal domain. This finding is supported by the observation that Ras2 delta, in which the C-terminal domain of Ras2 has been deleted, is a more potent activator of the yeast adenylyl cyclase than Ras1 delta, in which the C-terminal domain of Ras1 has been deleted. These observations suggest that amino acid residues other than the highly conserved residues of the effector domain within the N terminus may determine the efficiency of functional interaction with adenylyl cyclase. Similar levels of intracellular cAMP were found in Ras1, Ras1-Ras2, Ras1 delta, Ras2, and Ras2-Ras1 strains throughout the growth curve. This was found to result from the higher expression of Ras1 and Ras1-Ras2, which compensate for their lower efficacy in activating adenylyl cyclase. These results suggest that the difference between the Ras1 and the Ras2 phenotype is not due to their different efficacy in activating the cAMP pathway and that the divergent C-terminal domains are responsible for these differences, through interaction with other regulatory elements. PMID:7479926

  5. The glucagon signal transduction through the liver adenylyl cyclase of adult rats irradiated by single dose gamma-irradiation in utero

    It was found that the one-fold (0,5 Gy) prenatal gamma-irradiation on the 9 and the 15 day of embryogenesis (at the beginning and the end of organogenesis, respectively) resulted in the different alterations of glucagon signalling through the receptor/G s-protein/adenylyl cyclase in adult rat liver. The prenatal irradiation on the 9 day enhanced the effect of GTP (the activator of Gs-protein) on the adenylyl cyclase activity. While the gamma-irradiation on the 15 day of embryo development increased the basal, GTP- and glucagon-stimulated adenylyl cyclase activity. The results suggest that the receptor/Gs-protein/ adenylyl cyclase coupling is more sensitive to low doses of gamma-irradiation performed at the end of the organogenesis

  6. Constitutive inhibitory action of muscarinic receptors on adenylyl cyclase in cardiac membranes and its stereospecific suppression by hyoscyamine

    Říčný, Jan; Gualtieri, F.; Tuček, Stanislav

    2002-01-01

    Roč. 51, č. 2 (2002), s. 131-137. ISSN 0862-8408 R&D Projects: GA AV ČR IAA7011910; GA ČR GA309/99/0214 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * adenylyl cyclase * constitutive activity of receptors Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 0.984, year: 2002

  7. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role

    Barott, K.L.; Helman, Y.; Haramaty, L.; Barron, M. E.; Hess, K.C.; Buck, J.; Levin, L. R.; Tresguerres, M.

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in ...

  8. The Diurnal Oscillation of MAP Kinase and Adenylyl Cyclase Activities in the Hippocampus Depends on the SCN

    Phan, Trongha; Chan, Guy; Sindreu, Carlos; Eckel-Mahan, Kristin; Storm, Daniel R.

    2011-01-01

    Consolidation of hippocampus dependent memory is dependent on activation of the cAMP/ Erk/MAPK signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadi...

  9. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction.

    Cai, Wenqian; Fujita, Takayuki; Hidaka, Yuko; Jin, Huiling; Suita, Kenji; Prajapati, Rajesh; Liang, Chen; Umemura, Masanari; Yokoyama, Utako; Sato, Motohiko; Okumura, Satoshi; Ishikawa, Yoshihiro

    2016-06-17

    Type 5 adenylyl cyclase (AC5) plays an important role in the development of chronic catecholamine stress-induced heart failure and arrhythmia in mice. Epac (exchange protein activated by cAMP), which is directly activated by cAMP independent of protein kinase A, has been recently identified as a novel mediator of cAMP signaling in the heart. However, the role of Epac in AC5-mediated cardiac dysfunction and arrhythmias remains poorly understood. We therefore generated AC5 transgenic mice (AC5TG) with selective disruption of the Epac1 gene (AC5TG-Epac1KO), and compared their phenotypes with those of AC5TG after chronic isoproterenol (ISO) infusion. Decreased cardiac function as well as increased susceptibility to pacing-induced atrial fibrillation (AF) in response to ISO were significantly attenuated in AC5TG-Epac1KO mice, compared to AC5TG mice. Increased cardiac apoptosis and cardiac fibrosis were also concomitantly attenuated in AC5TG-Epac1KO mice compared to AC5TG mice. These findings indicate that Epac1 plays an important role in AC5-mediated cardiac dysfunction and AF susceptibility. PMID:27117748

  10. The Functional State of Hormone-Sensitive Adenylyl Cyclase Signaling System in Diabetes Mellitus

    Alexander O. Shpakov

    2013-01-01

    Full Text Available Diabetes mellitus (DM induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.

  11. Molecular Cloning, and Characterization of an Adenylyl Cyclase-Associated Protein from Gossypium arboreum L.

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2009-01-01

    The aim of this study was to clone CAP (adenylyl cyclase-associated protein) gene from Gossypium arboreum L. and develop a platform for expressing and purifying CAP protein, which is a base for the construction and function researches of CAP. In this work, a CAP homolog from cotton (DPL971) ovule was identified and cloned. And the cDNA sequence consisted of an open reading frame of 1416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa. To gain insight on the CAP role in cotton fiber development, the cloned CAP cDNA was expressed. A significant higher yield pure protein was obtained with the chromatographic method. Further experiments showed that the purified protein can bind with the actin in vitro indicating that the recombinant cotton CAP is functional. The procedure described here produced high yield pure protein through one chromatographic step, suitable for further structure-function studies.

  12. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo.

    Lee, Kristen L; Hoey, David A; Spasic, Milos; Tang, Tong; Hammond, H Kirk; Jacobs, Christopher R

    2014-03-01

    Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study, we determined whether AC6 deletion impairs loading-induced bone formation in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal bone morphology and responded to osteogenic chemical stimuli similar to wild-type mice. Following ulnar loading over 3 consecutive days, bone formation parameters were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly less bone than control animals (41% lower bone formation rate). Furthermore, there was an attenuated flow-induced increase in COX-2 mRNA expression levels in primary bone cells isolated from AC6 knockout mice compared to controls (1.3±0.1- vs. 2.6±0.2-fold increase). Collectively, these data indicate that AC6 plays a role in loading-induced bone adaptation, and these findings are consistent with our previous studies implicating primary cilia and AC6 in a novel mechanism of osteocyte mechanotransduction. PMID:24277577

  13. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    Kabir Hassan Biswas

    2015-04-01

    Full Text Available GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain. In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

  14. Adenylyl cyclase regulation in heart failure due to myocardial infarction in rats.

    Bräunig, Jörg H; Albrecht-Küpper, Barbara; Seifert, Roland

    2014-04-01

    Cardiac adenylyl cyclase (AC) activity was described to be differentially regulated in left and right ventricles (LVs and RVs) of rats with heart failure (HF) due to LV myocardial infarction (MI) (Sethi et al. Am J Physiol 272:H884-H893, 1997). AC activities in LVs and RVs were increased and decreased respectively in rats 8 and 16 weeks post MI under basal and stimulatory conditions including AC activation via β-adrenergic receptors (β-ARs), stimulatory G protein (Gs), and direct AC activation with forskolin (FS). The current study aimed to detect alterations in rat heart AC activities in a comparable model of HF 9 weeks post LV MI. Therefore, cardiac AC activities were measured under basal and β-AR-, Gs-, or FS-stimulated conditions as well as under inhibition with various MANT [2'(3')-O-(N-methylanthraniloyl)]-nucleotide AC inhibitors and the P-site AC inhibitors NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] and vidarabine (9-β-D-arabinosyladenine, AraAde). Basal and stimulated AC activities along with AC inhibition experiments did not reveal evidence for changes in AC activity in LVs and RVs from MI group animals despite the presence of congestive HF. However, our study is indeterminate. Further studies are required to identify the factors responsible for previously described changes in cardiac AC activity in MI induced HF and to elucidate the role of altered AC regulation in the pathophysiology of HF. In order to detect small changes in AC regulation, larger group sizes than the ones used in our present study are required. PMID:24276219

  15. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  16. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2008-01-01

    @@ CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type cotton Gossypium arboreum L.(DPL971) and its natural fuzzless mutant (DPL972).The gene consisted of an open reading frame of 1,416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa.

  17. Temporal and Regional Regulation of Gene Expression by Calcium-Stimulated Adenylyl Cyclase Activity during Fear Memory

    Wieczorek, Lindsay; Maas, James W.; Muglia, Lisa M.; Vogt, Sherri K.; Muglia, Louis J.

    2010-01-01

    Background The Ca2+-stimulated adenylyl cyclases (ACs), AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1−/−Adcy8−/−; DKO) display impaired fear memory processing; the mechanism of this impairment is largely unknown. Methodology/Principal Findings We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gene expr...

  18. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  19. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role.

    Barott, K L; Helman, Y; Haramaty, L; Barron, M E; Hess, K C; Buck, J; Levin, L R; Tresguerres, M

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels. PMID:23459251

  20. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    Elena Elizabeth Bagley

    2014-06-01

    Full Text Available Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1 currents in periaqueductal gray (PAG neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1

  1. Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness: decreased numbers of high affinity beta-adrenoceptors.

    Emala, C. W.; Aryana, A.; Hirshman, C. A.

    1996-01-01

    1. To evaluate mechanisms involved in the impaired beta-adrenoceptor stimulation of adenylyl cyclase in tissues from the Basenji-greyhound (BG) dog model of airway hyperresponsiveness, we compared agonist and antagonist binding affinity of beta-adrenoceptors, beta-adrenoceptor subtypes, percentage of beta-adrenoceptors sequestered, and coupling of the beta-adrenoceptor to Gs alpha in lung membranes from BG and control mongrel dogs. We found that lung membranes from the BG dog had higher total...

  2. Association of adenylyl cyclase 6 rs3730070 polymorphism and hemolytic level in patients with sickle cell anemia.

    Cita, Kizzy-Clara; Ferdinand, Séverine; Connes, Philippe; Brudey, Laura; Tressières, Benoit; Etienne-Julan, Maryse; Lemonne, Nathalie; Tarer, Vanessa; Elion, Jacques; Romana, Marc

    2016-05-01

    A recent study suggested that adenosine signaling pathway could promote hemolysis in patients with sickle cell anemia (SCA). This signaling pathway involves several gene coding enzymes for which variants have been described. In this study, we analyzed the genotype-phenotype relationships between functional polymorphisms or polymorphisms associated with altered expression of adenosine pathway genes, namely adenosine deaminase (ada; rs73598374), adenosine A2b receptor (adora2b; rs7208480), adenylyl cyclase6 (adcy6; rs3730071, rs3730070, rs7300155), and hemolytic rate in SCA patients. One hundred and fifty SCA patients were genotyped for adcy6, ada, and adora2b variants as well as alpha-globin gene, a genetic factor known to modulate hemolytic rate. Hematological and biochemical data were obtained at steady-state. Lactate dehydrogenase, aspartate aminotransferase, reticulocytes and total bilirubin were used to calculate a hemolytic index. Genotype-phenotype relationships were investigated using parametric tests and multivariate analysis. SCA patients carrying at least one allele of adcy6 rs3730070-G exhibited lower hemolytic rate than non-carriers in univariate analysis (p=0.006). The presence of adcy6 rs3730070-G variant was associated with a decreased hemolytic rate in adjusted model for age and alpha-thalassemia (p=0.032). Our results support a protective effect of adcy6 rs3730070-G variant on hemolysis in SCA patients. PMID:27067484

  3. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  4. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose.

    Challis, Rosemary C; Tian, Huikai; Yin, Wenbin; Ma, Minghong

    2016-01-01

    We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology. PMID:26942602

  5. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis

  6. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  7. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells.

    Prather, P L; Song, L; Piros, E T; Law, P Y; Hales, T G

    2000-11-01

    Opioid receptors often couple to multiple effectors within the same cell. To examine potential mechanisms that contribute to the specificity by which delta-receptors couple to distinct intracellular effectors, we stably transfected rat pituitary GH(3) cells with cDNAs encoding for delta-opioid receptors. In cells transfected with a relatively low delta-receptor density of 0.55 pmol/mg of protein (GH(3)DOR), activation of delta-receptors produced inhibition of adenylyl cyclase activity but was unable to alter L-type Ca(2+) current. In contrast, activation of delta-receptors in a clone that contained a higher density of delta-receptors (2.45 pmol/mg of protein) and was also coexpressed with mu-opioid receptors (GH(3)MORDOR), resulted in not only the expected inhibition of adenylyl cyclase activity but also produced inhibition of L-type Ca(2+) current. The purpose of the present study was to determine whether these observations resulted from differences in delta-opioid receptor density between clones or interaction between delta- and mu-opioid receptors to allow the activation of different G proteins and signaling to Ca(2+) channels. Using the delta-opioid receptor alkylating agent SUPERFIT, reduction of available delta-opioid receptors in GH(3)MORDOR cells to a density similar to that of delta-opioid receptors in the GH(3)DOR clone resulted in abolishment of coupling to Ca(2+) channels, but not to adenylyl cyclase. Furthermore, although significantly greater amounts of all G proteins were activated by delta-opioid receptors in GH(3)MORDOR cells, delta-opioid receptor activation in GH(3)DOR cells resulted in coupling to the identical pattern of G proteins seen in GH(3)MORDOR cells. These findings suggest that different threshold densities of delta-opioid receptors are required to activate critical amounts of G proteins needed to produce coupling to specific effectors and that delta-opioid receptors couple more efficiently to adenylyl cyclase than to L-type Ca(2

  8. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Hedgehog (HH) signaling is critical for the expansion of granule neuron precursors (GNPs) within the external granular layer (EGL) during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB) - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA) antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1) are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO) agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Primary tumorspheres derived from ptch1+/-/p53+/- mice exhibit constitutive HH pathway activity. PACAP

  9. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  10. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor.

    Kerstin Y Beste

    Full Text Available Guanylyl cyclases (GCs regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs and a nitric oxide-activated soluble GC (sGC. Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF from Bacillus anthracis possess nucleotidyl cyclase (NC activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.

  11. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Jie Luo

    Full Text Available The type 3 adenylyl cyclase (AC3 is localized to olfactory cilia in the main olfactory epithelium (MOE and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN targeting, its role in granule cells (GCs, the most abundant interneurons in the main olfactory bulb (MOB, remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ, however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  12. Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia

    Lee, Yong-Seok; Choi, Sun-Lim; Lee, Seung-Hee; Kim, Hyoung; Park, Hyungju; Lee, Nuribalhae; Lee, Sue-Hyun; Chae, Yeon-Su; Jang, Deok-Jin; Kandel, Eric R.; Kaang, Bong-Kiun

    2009-01-01

    Serotonin (5-HT) plays a critical role in modulating synaptic plasticity in the marine mollusc Aplysia and in the mammalian nervous system. In Aplysia sensory neurons, 5-HT can activate several signal cascades, including PKA and PKC, presumably via distinct types of G protein-coupled receptors. However, the molecular identities of these receptors have not yet been identified. We here report the cloning and functional characterization of a 5-HT receptor that is positively coupled to adenylyl c...

  13. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  14. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production.

    Blum, Ailisa; Benfield, Aurélie H; Stiller, Jiri; Kazan, Kemal; Batley, Jacqueline; Gardiner, Donald M

    2016-05-01

    Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes. PMID:26932301

  15. Computational identification of candidate nucleotide cyclases in higher plants

    Wong, Aloysius Tze

    2013-09-03

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants. © Springer Science+Business Media New York 2013.

  16. A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family in Mycobacterium tuberculosis

    Sandhya S. Visweswariah

    2004-01-01

    Full Text Available Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis and Corynebacterium, and industrial organisms from the genus Streptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such as M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase from M. avium has been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues in M. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms.

  17. Bacterial terpene cyclases.

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  18. Diurnal variation of the adenylyl cyclase type 1 in the rat pineal gland.

    Tzavara, E T; Pouille, Y; Defer, N; Hanoune, J

    1996-01-01

    Nocturnal melatonin production in the pineal gland is under the control of norepinephrine released from superior cervical ganglia afferents in a rhythmic manner, and of cyclic AMP. Cyclic AMP increases the expression of serotonin N-acetyltransferase and of inducible cAMP early repressor that undergo circadian oscillations crucial for the maintenance and regulation of the biological clock. In the present study, we demonstrate a circadian pattern of expression of the calcium/calmodulin activate...

  19. Receptor guanylyl cyclases in Inka cells targeted by eclosion hormone.

    Chang, Jer-Cherng; Yang, Ruey-Bing; Adams, Michael E; Lu, Kuang-Hui

    2009-08-11

    A signature of eclosion hormone (EH) action in insect ecdysis is elevation of cGMP in Inka cells, leading to massive release of ecdysis triggering hormone (ETH) and ecdysis initiation. Although this aspect of EH-induced signal transduction is well known, the receptor mediating this process has not been identified. Here, we describe a receptor guanylyl cyclase BdmGC-1 and its isoform BdmGC-1B in the Oriental fruit fly Bactrocera dorsalis that are activated by EH. The B form exhibits the conserved domains and putative N-glycosylation sites found in BdmGC-1, but possesses an additional 46-amino acid insertion in the extracellular domain and lacks the C-terminal tail of BdmGC-1. Combined immunolabeling and in situ hybridization reveal that BdmGC-1 is expressed in Inka cells. Heterologous expression of BdmGC-1 in HEK cells leads to robust increases in cGMP following exposure to low picomolar concentrations of EH. The B-isoform responds only to higher EH concentrations, suggesting different physiological roles of these cyclases. We propose that BdmGC-1 and BdmGC-1B are high- and low-affinity EH receptors, respectively. PMID:19666575

  20. Capacitative Ca2+ Entry via Orai1 and Stromal Interacting Molecule 1 (STIM1) Regulates Adenylyl Cyclase Type 8

    Martin, Agnes C. L.; Willoughby, Debbie; Ciruela, Antonio; Ayling, Laura-Jo; Pagano, Mario; Wachten, Sebastian; Tengholm, Anders; Cooper, Dermot M.F.

    2009-01-01

    Capacitative Ca2+ entry (CCE), which occurs through the plasma membrane as a result of Ca2+ store depletion, is mediated by stromal interacting molecule 1 (STIM1), a sensor of intracellular Ca2+ store content, and the pore-forming component Orai1. However, additional factors, such as C-type transient receptor potential (TRPC) channels, may also participate in the CCE apparatus. To explore whether the store-dependent Ca2+ entry reconstituted by coexpression of Orai1 ...

  1. Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1

    Mogensen, Estelle Gewiss; Janbon, Guilhem; Chaloupka, James; Steegborn, Clemens; Fu, Man Shun; Moyrand, Frédérique; Klengel, Torsten; Pearson, David S.; Geeves, Michael A.; Buck, Jochen; Levin, Lonny R.; Mühlschlegel, Fritz A.

    2006-01-01

    Cryptococcus neoformans, a fungal pathogen of humans, causes fatal meningitis in immunocompromised patients. Its virulence is mainly determined by the elaboration of a polysaccharide capsule surrounding its cell wall. During its life, C. neoformans is confronted with and responds to dramatic variations in CO2 concentrations; one important morphological change triggered by the shift from its natural habitat (0.033% CO2) to infected hosts (5% CO2) is the induction of capsule biosynthesis. In ce...

  2. Altered myocardial Gs protein and adenylyl cyclase signaling in rats exposed to chronic hypoxia and normoxic recovery

    Hrbasová, M.; Novotný, Jiří; Hejnová, Lucie; Kolář, František; Neckář, Jan; Svoboda, Petr

    2003-01-01

    Roč. 94, č. 6 (2003), s. 2423-2432. ISSN 8750-7587 R&D Projects: GA ČR GA305/00/1660; GA ČR GA305/01/0279; GA MŠk LN00A026; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : rat myocardium * beta-adrenoceptor * G protein Subject RIV: CE - Biochemistry Impact factor: 3.027, year: 2003

  3. Exposure to intermittent high altitude induces different changes in adenylyl cyclase activity in hearts of young and adult Wistar rats

    Hynie, S.; Šída, P.; Klenerová, V.; Asemu, Girma; Ošťádal, Bohuslav

    2003-01-01

    Roč. 23, č. 1 (2003), s. 53-67. ISSN 1079-9893 R&D Projects: GA MŠk LN00A069; GA MZd NF6627 Institutional research plan: CEZ:AV0Z5011922 Keywords : heart * high altitude * adenylylcyclase Subject RIV: ED - Physiology Impact factor: 1.093, year: 2003

  4. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells

    Kwon, Ronald Y.; Temiyasathit, Sara; Tummala, Padmaja; Quah, Clarence C.; Jacobs, Christopher R.

    2010-01-01

    Primary cilia are chemosensing and mechanosensing organelles that regulate remarkably diverse processes in a variety of cells. We previously showed that primary cilia play a role in mediating mechanosensing in bone cells through an unknown mechanism that does not involve extracellular Ca2+-dependent intracellular Ca2+ release, which has been implicated in all other cells that transduce mechanical signals via the cilium. Here, we identify a molecular mechanism linking primary cilia and bone ce...

  5. Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain

    Graphical abstract: The photoactivated adenylyl cyclase (nPAC) from Naegleria gruberi was expressed heterologously in Escherichia coli and its photo-cycling dynamics was studied by optical absorption and fluorescence spectroscopy. Highlights: → Photo-activated adenylyl cyclase (nPAC) from Naegleria gruberi NEG-M was expressed. → Photodynamics of BLUF domain in BLUF sensor - cyclase actuator protein was studied. → Photo-excitation caused BLUF photo-cycling and permanent protein re-conformation. → Re-conformed protein enabled photo-induced flavin reduction by proton transfer. → Fluorescence of flavin in dark- and light-adapted state of nPAC was characterized. - Abstract: The amoeboflagellate Naegleria gruberi NEG-M comprises a BLUF (blue light sensor using flavin) regulated adenylate cyclase (nPAC). The nPAC gene was expressed heterologously in Escherichia coli and the photo-dynamics of the nPAC protein was studied by optical absorption and fluorescence spectroscopy. Blue-light exposure of nPAC caused a typical BLUF-type photo-cycle behavior (spectral absorption red-shift, fluorescence quenching, absorption and fluorescence recovery in the dark). Additionally, time-delayed reversible photo-induced one-electron reduction of fully oxidized flavin (Flox) to semi-reduced flavin (FlH·) occurred. Furthermore, photo-excitation of FlH· caused irreversible electron transfer to fully reduced anionic flavin (FlH-). A photo-induced electron transfer from Tyr or Trp to flavin (Tyr·+-Fl·- or Trp·+-Fl·- radical ion-pair formation) is thought to cause H-bond restructuring responsible for BLUF-type photo-cycling and permanent protein re-conformation enabling photo-induced flavin reduction by proton transfer. Some photo-degradation of Flox to lumichrome was observed. A model of the photo-dynamics of nPAC is developed.

  6. Expression of nitric oxide synthase and guanylate cyclase in the human ciliary body and trabecular meshwork

    WU Ren-yi; MA Ning

    2012-01-01

    Background The role played by the nitric oxide (NO) signaling pathway in the aqueous humor dynamics is still unclear.This study was designed to investigate the expression and distribution of NO synthase (NOS) isoforms and guanylate cyclase (GC) in human ciliary body,trabecular meshwork and the Schlemm's canal.Methods Twelve eyes after corneal transplantation were used.Expression of three NOS isoforms (i.e.neuronal NOS (nNOS),inducible NOS (iNOS) and endothelial NOS (eNOS)) and GC were assessed in 10 eyes by immunohistochemical staining using monoclonal or polyclonal antibody of NOS and GC.Ciliary bodies were dissected free and the total proteins were extracted.Western blotting was performed to confirm the protein expression of 3 NOS isoforms and GC.Results Expression of 3 NOS isoforms and GC were observed in the ciliary epithelium,ciliary muscle,trabecular meshwork and the endothelium of the Schlemm's canal.Immunoreactivity of nNOS was detected mainly along the apical cytoplasmic junction of the non-pigmented epithelium (NPE) and pigmented epithelial (PE) cells.Protein expressions of 3 NOS isoforms and GC were confirmed in isolated human ciliary body by Western blotting.Conclusions The expression of NOS isoforms and GC in human ciliary body suggest the possible involvement of NO and cyclic guanosine monophosphate (cyclic GMP,cGMP) signaling pathway in the ciliary body,and may play a role in both processes of aqueous humor formation and drainage.

  7. Regulation of brain adenylate cyclase by calmodulin

    This thesis examined the interaction between the Ca2+-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[125I]-CaM-diazopyruvamide (125I-CAM-DAP) behaved like native CaM with respect to Ca2+-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca2+-dependent stimulation of adenylate cyclase. 125I-CaM-DAP cross-linked to CaM-binding proteins in a Ca2+-dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  8. Molecular cloning and amplification of the adenylate cyclase gene.

    Wang, J Y; Clegg, D O; Koshland, D E

    1981-01-01

    A segment of DNA containing cya, the gene for adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1], has been isolated from Salmonella typhimurium. The phage lambda gt4 was used as a cloning vector and adenylate cyclase-positive hybrid phages were isolated that complemented adenylate cyclase-negative bacteria. The cloned DNA fragment encodes a polypeptide of molecular weight 81,000 that gives rise to adenylate cyclase activity. This protein represents a functional mutant of the ...

  9. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    Graphical abstract: Protein color center emissions were observed in the wavelength range from 340 nm to 900 nm from nano-clusters of the photo-activated adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi. Highlights: ► Adenylyl cyclase nPAC in aqueous pH 7.5 buffer dissolved only to nano-clusters. ► Nano-cluster size was determined by light attenuation (scattering) measurements. ► The size of the nano-clusters was growing by coalescing during observation period. ► In nPAC nano-clusters color centers were present in emission range of 360–900 nm. ► The nPAC color center emission is compared with fluorescent protein emission. - Abstract: The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360–900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  10. DNA signals at isoform promoters.

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  11. Pituitary adenylate cyclase activating polypeptide and migraine

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients with...... moderate or severe migraine headache had elevated PACAP in the external jugular vein during headache (n = 15), that was reduced 1 h after treatment with sumatriptan 6 mg (n = 11), and further reduced interictally (n = 9). The data suggest PACAP, or its receptors, are a promising target for migraine...

  12. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A.

    Tetzner, Anja; Gebolys, Kinga; Meinert, Christian; Klein, Sabine; Uhlich, Anja; Trebicka, Jonel; Villacañas, Óscar; Walther, Thomas

    2016-07-01

    Angiotensin (Ang)-(1-7) has cardiovascular protective effects and is the opponent of the often detrimental Ang II within the renin-angiotensin system. Although it is well accepted that the G-protein-coupled receptor Mas is a receptor for the heptapeptide, the lack in knowing initial signaling molecules stimulated by Ang-(1-7) prevented definitive characterization of ligand/receptor pharmacology as well as identification of further hypothesized receptors for the heptapeptide. The study aimed to identify a second messenger stimulated by Ang-(1-7) allowing confirmation as well as discovery of the heptapeptide's receptors. Ang-(1-7) elevates cAMP concentration in primary cells, such as endothelial or mesangial cells. Using cAMP as readout in receptor-transfected human embryonic kidney (HEK293) cells, we provided pharmacological proof that Mas is a functional receptor for Ang-(1-7). Moreover, we identified the G-protein-coupled receptor MrgD as a second receptor for Ang-(1-7). Consequently, the heptapeptide failed to increase cAMP concentration in primary mesangial cells with genetic deficiency in both Mas and MrgD Mice deficient in MrgD showed an impaired hemodynamic response after Ang-(1-7) administration. Furthermore, we excluded the Ang II type 2 receptor as a receptor for the heptapeptide but discovered that the Ang II type 2 blocker PD123319 can also block Mas and MrgD receptors. Our results lead to an expansion and partial revision of the renin-angiotensin system, by identifying a second receptor for Ang-(1-7), by excluding Ang II type 2 as a receptor for the heptapeptide, and by enforcing the revisit of such publications which concluded Ang II type 2 function by only using PD123319. PMID:27217404

  13. GH4ZD10 cells expressing rat 5-HT1A receptors coupled to adenylyl cyclase are a model for the postsynaptic receptors in the rat hippocampus.

    Fowler, C J; Ahlgren, P. C.; Brännström, G

    1992-01-01

    1. Vasoactive intestinal polypeptide (VIP) stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) production by cultured GH4ZD10 cells with an EC50 value of about 7 nM. The extracellularly recovered cyclic AMP predominated, and was reduced by co-incubation with 8-hydroxy-2-(di-n-propyl-amino) tetralin (8-OH-DPAT) and 5-hydroxytryptamine (5-HT), whereas dopamine (0.1-30 microM) did not reduce VIP-stimulated cyclic AMP production. 2. The responses to 5-HT and 8-OH-DPAT were blocked by (-)...

  14. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices

    Kim, Hannah; Kim, Tae-Kyung; KIM, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-01-01

    Background Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food...

  15. Cannabinoid CB1 receptors fail to cause relaxation, but couple via Gi/Go to the inhibition of adenylyl cyclase in carotid artery smooth muscle

    Holland, Michael; Challiss, R. A. John; Standen, Nicholas B.; Boyle, John P

    1999-01-01

    The aim of the current study was to characterize which cannabinoid receptors, if any, are present on rat carotid artery smooth muscle. Additionally, the effects of cannabinoids on carotid artery tone, on cyclic AMP accumulation and on forskolin-induced relaxation were examined in the same tissue.Stimulation of carotid arteries with forskolin (10 μM) significantly increased cyclic AMP accumulation, an effect that was inhibited in a concentration-dependent manner by the cannabinoid receptor ago...

  16. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    Holubová, Jana; Kamanová, Jana; Jelínek, J.; Tomala, Jakub; Mašín, Jiří; Kosová, Martina; Staněk, Ondřej; Bumba, Ladislav; Michálek, J.; Kovář, Marek; Šebo, Peter

    2012-01-01

    Roč. 80, č. 3 (2012), s. 1181-1192. ISSN 0019-9567 R&D Projects: GA AV ČR IAA500200914; GA ČR(CZ) GAP207/11/0717; GA ČR GAP301/11/0325; GA MŠk 1M0506; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : MHC CLASS-I * ESCHERICHIA-COLI * PRESENTATION PATHWAY Subject RIV: EE - Microbiology, Virology Impact factor: 4.074, year: 2012

  17. Inhibition of the adenylylation of liver plasma membrane-bound proteins by plant and mammalian lectins

    San José, Esteban; Villalobo, Eduarde; Gabius, Hans-J.; Villalobo, Antonio

    1993-01-01

    Liver plasma membrane contains four major (130-kDa, 120-kDa, 110-kDa and 100-kDa) sialic acid-containing glycopolypeptides that are able to undergo adenylylation, as well as phosphorylation (San José et al. (1990) J. Biol. Chem. 265; 20653-20661). To gain insight into the regulation of these processes, lectins are employed to probe the extent of influence of their interaction with membrane fractions for these reactions. We demonstrate that the beta-galactoside-specific lectins from bovine hea...

  18. Differential roles of PML isoforms

    MouniraKChelbi-Alix

    2013-05-01

    Full Text Available The tumor suppressor promyelocytic leukemia protein (PML is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL. Treatment of APL patients with arsenic trioxide (As2O3 reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/TRIM motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed.

  19. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  20. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field. PMID:27030537

  1. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Rashna Bhandari; Roy Mathew; K Vijayachandra; Sandhya S Visweswariah

    2000-12-01

    Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.

  2. Suppression of Platelet Aggregation by Bordetella pertussis Adenylate Cyclase Toxin

    Iwaki, Masaaki; Kamachi, Kazunari; Heveker, Nikolaus; Konda, Toshifumi

    1999-01-01

    The effect of Bordetella pertussis adenylate cyclase toxin (ACT) on platelet aggregation was investigated. This cell-invasive adenylate cyclase completely suppressed ADP (10 μM)-induced aggregation of rabbit platelets at 3 μg/ml and strongly suppressed thrombin (0.2 U/ml)-induced aggregation at 10 μg/ml. The suppression was accompanied by marked increase in platelet intracellular cyclic AMP (cAMP) content and was diminished by the anti-ACT monoclonal antibody B7E11. A catalytically inactive p...

  3. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    Markus Otto

    2016-01-01

    Full Text Available Jasmonates (JAs are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC. Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4 have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles.

  4. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members.

    Otto, Markus; Naumann, Christin; Brandt, Wolfgang; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles. PMID:27135223

  5. Inhibitors of glutaminyl cyclases against Alzheimer´s disease

    Kolenko, Petr; Koch, B.; Schilling, S.; Rahfeld, J.-U.; Demuth, H.-U.; Stubbs, M. T.

    2013-01-01

    Roč. 20, č. 1 (2013), s. 16. ISSN 1211-5894. [Discussions in Structural Molecular Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] R&D Projects: GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : glutaminyl cyclases * Alzheimer ´s disease Subject RIV: CE - Biochemistry

  6. Bordetella adenylate cyclase toxin: a swift saboteur of host defense

    Vojtová, Jana; Kamanová, Jana; Šebo, Peter

    2006-01-01

    Roč. 9, - (2006), s. 1-7. ISSN 1369-5274 R&D Projects: GA AV ČR IAA5020406; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50200510 Keywords : cyaa * scanning electron microscopy * cyclase toxin Subject RIV: EE - Microbiology, Virology Impact factor: 7.445, year: 2006

  7. Inference of Isoforms from Short Sequence Reads

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  8. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. (Univ. of Miami School of Medicine, FL (USA))

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  9. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking [125I]PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by [125I]PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that [a] no other AC-regulatory proteins are known to be of this size, [b] the catalytic unit of bovine brain enzyme is in the same range and [c] this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase

  10. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase

    Marletta Michael A

    2008-10-01

    Full Text Available Abstract Background Soluble guanylate cyclases generate cyclic GMP when bound to nitric oxide, thereby linking nitric oxide levels to the control of processes such as vascular homeostasis and neurotransmission. The guanylate cyclase catalytic module, for which no structure has been determined at present, is a class III nucleotide cyclase domain that is also found in mammalian membrane-bound guanylate and adenylate cyclases. Results We have determined the crystal structure of the catalytic domain of a soluble guanylate cyclase from the green algae Chlamydomonas reinhardtii at 2.55 Å resolution, and show that it is a dimeric molecule. Conclusion Comparison of the structure of the guanylate cyclase domain with the known structures of adenylate cyclases confirms the close similarity in architecture between these two enzymes, as expected from their sequence similarity. The comparison also suggests that the crystallized guanylate cyclase is in an inactive conformation, and the structure provides indications as to how activation might occur. We demonstrate that the two active sites in the dimer exhibit positive cooperativity, with a Hill coefficient of ~1.5. Positive cooperativity has also been observed in the homodimeric mammalian membrane-bound guanylate cyclases. The structure described here provides a reliable model for functional analysis of mammalian guanylate cyclases, which are closely related in sequence.

  11. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

    Šebo, Peter; Osička, Radim; Mašín, Jiří

    2014-01-01

    Roč. 13, č. 10 (2014), s. 1215-1227. ISSN 1476-0584 R&D Projects: GA ČR GA13-14547S; GA ČR(CZ) GAP302/11/0580; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * antigen delivery * Bordetella pertussis Subject RIV: EE - Microbiology, Virology Impact factor: 4.210, year: 2014

  12. Effects of cadmium on canine renal cortical adenylate cyclase

    The present studies examine the effects of cadmium (Cd2+) on adenylate cyclase activity in basolateral renal cortical membranes from normal dogs. Cd2+, in the dose range of 1 to 200 μM caused a dose-dependent inhibition of adenylate cyclase activity due to competitive inhibition with respect to the allosteric activator Mg2+. In addition, increasing Cd2+ concentrations from 0 to 25 μM resulted in a purely competitive inhibition with respect to ATP. In the absence of other divalent cations Cd2+ was a potent stimulator of basal adenylate cyclase activity, far more potent than the physiological activator of the system Mg2+. It is concluded that Cd2+ behaves as a partial agonist in this system, due to its ability to form a new enzymatic substrate complex: Cd-ATP, which competes with the physiological substrate Mg-ATP at the catalytic site of the enzyme. In addition, Cd2+ in the absence of other divalent cation stimulates basal enzyme activity, presumably through interaction at an additional site, closely related to the allosteric metal regulatory site of this enzyme system

  13. Mice lacking the ADP ribosyl cyclase CD38 exhibit attenuated renal vasoconstriction to angiotensin II, endothelin-1, and norepinephrine

    Thai, Tiffany L.; Arendshorst, William J.

    2009-01-01

    ADP ribosyl (ADPR) cyclases comprise a family of ectoenzymes recently shown to influence cytosolic Ca2+ concentration in a variety of cell types. At least two ADPR cyclase family members have been identified in mammals: CD38 and CD157. We recently found reduced renal vascular reactivity to angiotensin II (ANG II), endothelin-1 (ET-1), and norepinephrine (NE) in the presence of the broad ADPR cyclase inhibitor nicotinamide. We hypothesized that CD38 mediates effects attributed to ADPR cyclase....

  14. Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation

    Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: (1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and (2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment

  15. FSH isoform pattern in classic galactosemia

    Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela

    2010-01-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...

  16. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  17. PKC Isoform Expression in Modeled Microgravity

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  18. Absolute Quantification of Endogenous Ras Isoform Abundance.

    Craig J Mageean

    Full Text Available Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.

  19. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  20. Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria.

    Tao, L; Picataggio, S; Rouvière, P E; Cheng, Q

    2004-03-01

    Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene beta-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene beta-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic gamma-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene beta-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene beta-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene beta-cyclases and plant lycopene beta- and epsilon-cyclases. These lycopene beta-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids. PMID:14740205

  1. Ikaros isoforms:The saga continues

    Laura; A; Perez-Casellas; Aleksandar; Savic; Sinisa; Dovat

    2011-01-01

    Through alternate splicing,the Ikaros gene produces multiple proteins.Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity.Ikaros isoforms interact to form dimers and potentially multimeric complexes.Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions.Small dominantnegative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros.Here,we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H.Although IK-1 is described as full-length Ikaros,IK-H is the longest Ikaros isoform.IK-H,which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4),is abundant in human but not murine hematopoietic cells.Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1.Moreover,IK-H can potentiate or inhibit the ability of IK-1 to bind DNA.IK-H binds to the regulatory regions of genes that are upregulated by Ikaros,but not genes that are repressed by Ikaros.Although IK-1 localizes to pericentromeric heterochromatin,IK-H can be found in both pericentromeric and non-pericentromeric locations.Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H,but not other Ikaros isoforms.The unique features of IK-H,its influence on Ikaros activity,and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.

  2. Inferring biological functions of guanylyl cyclases with computational methods

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  3. p53 isoforms change p53 paradigm

    Bourdon, JC

    2014-01-01

    Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.

  4. New isoforms of rat Aquaporin-4

    Moe, Svein Erik; Sorbo, Jan Gunnar; Søgaard, Rikke;

    2008-01-01

    Aquaporin-4 (AQP4) is a brain aquaporin implicated in the pathophysiology of numerous clinical conditions including brain edema. Here we show that rat AQP4 has six cDNA isoforms, formed by alternative splicing. These are named AQP4a-f, where AQP4a and AQP4c correspond to the two classical M1 and M...

  5. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  6. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration.

    Khan, Kainat; Pal, Subhashis; Yadav, Manisha; Maurya, Rakesh; Trivedi, Arun Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-12-01

    Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30. PMID:26345541

  7. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin. PMID:22642150

  8. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  9. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.

    Gao, Yuansheng

    2016-05-01

    Soluble guanylyl cyclase (sGC) is the principal enzyme in mediating the biological actions of nitric oxide. On activation, sGC converts guanosine triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP), which mediates diverse physiological processes including vasodilation, platelet aggregation, and myocardial functions predominantly by acting on cGMP-dependent protein kinases. Cyclic GMP has long been considered as the sole second messenger for sGC action. However, emerging evidence suggests that, in addition to cGMP, other nucleoside 3',5'-cyclic monophosphates (cNMPs) are synthesized by sGC in response to nitric oxide stimulation, and some of these nucleoside 3',5'-cyclic monophosphates are involved in various physiological activities. For example, inosine 3',5'-cyclic monophosphate synthesized by sGC may play a critical role in hypoxic augmentation of vasoconstriction. The involvement of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic monophosphate in certain cardiovascular activities is also implicated. PMID:26452163

  10. Differential water permeability and regulation of three aquaporin 4 isoforms

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina;

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  11. Lipoprotein lipase isoelectric point isoforms in humans

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.;

    2014-01-01

    characterization of these forms was carried out by 2DE combined with Western blotting and mass spectrometry (MALDI-TOF/MS and LC-MS/MS). Further studies are needed to discover their molecular origin, the pattern of pI isoforms in human tissues, their possible physiological functions and possible modifications of......-heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation and...

  12. EASI—enrichment of alternatively spliced isoforms

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  13. Functional studies of sodium pump isoforms

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... synthesized cohorts of pumps from the Golgi apparatus to the plasma membrane....

  14. Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching.

    Segura-Puimedon, Maria; Mergia, Evanthia; Al-Hasani, Jaafar; Aherrahrou, Redouane; Stoelting, Stephanie; Kremer, Felix; Freyer, Jennifer; Koesling, Doris; Erdmann, Jeanette; Schunkert, Heribert; de Wit, Cor; Aherrahrou, Zouhair

    2016-08-01

    Soluble guanylate cyclase (sGC), a key enzyme of the nitric oxide signaling pathway, is formed as a heterodimer by various isoforms of its α and β subunit. GUCY1A3, encoding the α1 subunit, was identified as a risk gene for coronary artery disease and myocardial infarction, but its specific contribution to atherosclerosis remains unclear. This study sought to decipher the role of Gucy1a3 in atherosclerosis in mice. At age 32 weeks and after 20 weeks of standard or high-fat diet, Gucy1a3(-/-)/Ldlr(-/-) mice exhibited a significant reduction of the atherosclerotic plaque size at the aortic root and the aorta for high-fat diet animals as compared with Ldlr(-/-) control mice. Collagen content in plaques in the aortic root was reduced, suggesting an alteration of smooth muscle cell function. Proliferation and migration were reduced in Gucy1a3(-/-) primary aortic smooth muscle cells (AoSMCs), and proliferation was also reduced in human AoSMCs after inhibition of sGC by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one. Gucy1a3 deficiency in AoSMCs prevents their phenotypic switching, as indicated by the differential expression of marker proteins. The inherited Gucy1a3(-/-) loss exerts an atheroprotective effect. We suggest that sGC activity promotes the phenotypic switching of smooth muscle cells from a contractile to a synthetic state, fostering the formation of atherosclerosis. Preventing this switch by sGC inhibition may provide a novel target in atherosclerotic disease. PMID:27315776

  15. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  16. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.

    Severina, I S

    1998-07-01

    In this review the molecular mechanisms underlying the antihypertensive and antiaggregatory actions of nitric oxide (NO) are discussed. It has been shown that these effects are directly connected with the activation of soluble guanylate cyclase and the accumulation of cyclic 3;,5;-guanosine monophosphate (cGMP). The mechanism of guanylate cyclase activation by NO is analyzed, especially the role and biological significance of the nitrosyl--heme complex formed as a result of interaction of guanylate cyclase heme with NO and the role of sulfhydryl groups of the enzyme in this process. Using new approaches for studying the antihypertensive and antiaggregatory actions of nitric oxide in combination with the newly obtained data on the regulatory role of guanylate cyclase in the platelet aggregation process, the most important results were obtained regarding the molecular bases providing for a directed search for and creation of new effective antihypertensive and antiaggregatory preparations. In studying the molecular mechanism for directed activation of soluble guanylate cyclase by new NO donors, a series of hitherto unknown enzyme activators generating NO and involved in the regulation of hemostasis and vascular tone were revealed. PMID:9721331

  17. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-01-01

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores. PMID:20610397

  18. Adenylate cyclase regulates elongation of mammalian primary cilia

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J. [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Rattner, Jerome B. [Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada); Hoorn, Frans A. van der, E-mail: fvdhoorn@ucalgary.ca [Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1 (Canada)

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  19. Adenylate cyclase regulates elongation of mammalian primary cilia

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  20. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [125I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [125I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  1. Localization and functional characterization of the human NKCC2 isoforms

    Carota, I; Theilig, F; Oppermann, M;

    2010-01-01

    inhibited by bumetanide than by furosemide. A sequence analysis of the amino acids encoded by exon 4 variants revealed high similarities between human and rodent NKCC2 isoforms, suggesting that differences in ion transport characteristics between species may be related to sequence variations outside the...... isoforms have specific localizations and transport characteristics, as assessed for rabbit, rat and mouse. In the present study, we aimed to address the localization and transport characteristics of the human NKCC2 isoforms. METHODS: RT-PCR, in situ hybridization and uptake studies in Xenopus oocytes were...... performed to characterize human NKCC2 isoforms. RESULTS: All three classical NKCC2 isoforms were detected in the human kidney; in addition, we found splice variants with tandem duplicates of the variable exon 4. Contrary to rodents, in which NKCC2F is the most abundant NKCC2 isoform, NKCC2A was the dominant...

  2. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  3. Glucose Repression of Fbp1 Transcription in Schizosaccharomyces Pombe Is Partially Regulated by Adenylate Cyclase Activation by a G Protein α Subunit Encoded by Gpa2 (Git8)

    Nocero, M.; Isshiki, T.; Yamamoto, M.; Hoffman, C. S.

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, a...

  4. A novel functional rabbit IL- 7 isoform

    Siewe, Basile T.; Kalis, Susan L.; Esteves, Pedro J; Zhou, Tong; Knight, Katherine L.

    2010-01-01

    IL-7 is required for B cell development in mouse and is a key regulator of T cell development and peripheral T cell homeostasis in mouse and human. Recently, we found that IL-7 is expressed in rabbit bone marrow and in vitro, is required for differentiation of lymphoid progenitors to B and T lineage cells. Herein, we report the identification of a novel rabbit IL-7 isoform, IL-7II. Recombinant IL-7II (rIL-7II) binds lymphocytes via the IL-7R and induces phosphorylation of STAT5. Further, rIL-...

  5. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  6. Androgen receptor isoforms in human and rat prostate

    Shu-JieXIA; Gang-YaoHAO; Xiao-DaTANG

    2000-01-01

    Aim: To investigate the androgen receptor (AR) isoforms and its variability of expression in human and rat prostatic tissues. Methods: Human benign prostatic hyperplasia (BPH) and prostatic cancer tissues were obtained from patients undergoing prostatectomy, and rat ventral prostate was incised 3 days after castration. Forty-one AR-positive BPH specimens, 3 prostatic cancer specimens, and 6 rat prostates were used. After processing at 4℃, the tissues were examined by means of high resolution isoelectric focusing (IEF) technique to determine their AR isoforms. Results:From the prostatic specimens, 3 types of AR isoforms were detected with pI values at 6.5, 6.0, and 5.3. In human BPH tissues, 15/41 (36.6%) specimens showed all the three types of isoforms, while 19/41 (46.3%) showed 2 isoforms at various combinations and 7/41(17.1%), 1 isoform. For the 3 prostatic cancer specimens, one showed 3 isoforms, one, 2 isoforms, and the other failed to show any isoform. All rat prostatic tissues showed 2 isoforms at different combinations. Binding of 3H-dihydrotestosterone (DHT) to the isoforms was inhibited by the addition of 100-fold excess of DHT or testosterone, but not progesterone, oestradiol or diethylstilboestrol. Conclusion: AR isoforms are different in different patients. Although their genesis is not clear, the therapeutic implication of the present observation appears to be interesting, that may help clarifying the individual differences in the response to hormonal therapy.(Asian J Androl 2000 Dec;2:307-310)

  7. Role of Guanylate Cyclase Activating Proteins in photoreceptor cells of the retina in health and disease

    López del Hoyo, Natalia

    2014-01-01

    In the last two decades, it has been done a thoroughly research about the role of Guanylate Cyclase Activating Proteins (GCAPs) in photoreceptor cells of the retina as activity regulators of Retinal Guanylate Cyclase (RetGC), which allow to restore cGMP levels to darkness ones when intracellular Ca2+ falls. However, little is known about: a) ¿What determines GCAPs distribution within the cell?, b) ¿Which other functions GCAP proteins, GCAP1 and GCAP2, carry out at other cellular compartm...

  8. Multiple lineage specific expansions within the guanylyl cyclase gene family

    O'Halloran Damien M

    2006-03-01

    Full Text Available Abstract Background Guanylyl cyclases (GCs are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs which are found ubiquitously in cell cytoplasm, and receptor (rGC forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions

  9. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation.

    Colnaghi, R; Rudnick, P; He, L; Green, A; Yan, D; Larson, E; Kennedy, C

    2001-05-01

    GlnD is a pivotal protein in sensing intracellular levels of fixed nitrogen and has been best studied in enteric bacteria, where it reversibly uridylylates two related proteins, PII and GlnK. The uridylylation state of these proteins determines the activities of glutamine synthetase (GS) and NtrC. Results presented here demonstrate that glnD is an essential gene in Azotobacter vinelandii. Null glnD mutations were introduced into the A. vinelandii genome, but none could be stably maintained unless a second mutation was present that resulted in unregulated activity of GS. One mutation, gln-71, occurred spontaneously to give strain MV71, which failed to uridylylate the GlnK protein. The second, created by design, was glnAY407F (MV75), altering the adenylylation site of GS. The gln-71 mutation is probably located in glnE, encoding adenylyltransferase, because introducing the Escherichia coli glnE gene into MV72, a glnD(+) derivative of MV71, restored the regulation of GS activity. GlnK-UMP is therefore apparently required for GS to be sufficiently deadenylylated in A. vinelandii for growth to occur. The DeltaglnD GS(c) isolates were Nif(-), which could be corrected by introducing a nifL mutation, confirming a role for GlnD in mediating nif gene regulation via some aspect of the NifL/NifA interaction. MV71 was unexpectedly NtrC(+), suggesting that A. vinelandii NtrC activity might be regulated differently than in enteric organisms. PMID:11320130

  10. Identification of a novel TDRD7 isoforms

    Filonenko V. V.

    2011-12-01

    Full Text Available The aim of our study was to investigate the tudor domain-containing protein 7 (TDRD7 subcellular localization, which could be linked to diverse functions of this protein within the cell. Methods. In this study we employed cell imaging technique for detecting TDRD7 subcellular localization, Western blot analysis of HEK293 cell fractions with anti-TDRD7 monoclonal antibodies and bioinformatical search of possible TDRD7 isoforms in Uniprot, Ensemble, UCSC databases. Results. We have observed specific TDRD7-containing structures in cytoplasm as well as in the nucleus in HEK293 cells. The Western blot analysis of subcellular fractions (cytoplasm, mitochondria, nucleus allowed us to detect three lower immunoreactive bands, with the aproximate molecular weight of 130, 110 and 60 kDa (we termed them as TDRD7, TDRD7 and TDRD7 and specific subcellular localization. The bioinformatical analysis of TDRD7 primary structure allowed us to determine two alternative transcripts from TDRD7 gene coding for proteins with calculated molecular weight of 130 and 60 kDa. Conclusion. The presented data demonstrate the existence at protein level of potential TDRD7 isoforms: TDRD7, TDRD7 and TDRD7. The expression profile of these splice variants and their role in cells remains to be elucidated.

  11. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme

    Mašín, Jiří; Osička, Radim; Bumba, Ladislav; Šebo, Peter

    2015-01-01

    Roč. 73, č. 8 (2015). ISSN 2049-632X R&D Projects: GA ČR GAP302/12/0460; GA ČR GA15-09157S; GA ČR(CZ) GA15-11851S Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * membrane penetration * pore-formation Subject RIV: EE - Microbiology, Virology Impact factor: 2.403, year: 2014

  12. Dependence of the hormonal stimulation of adenylate cyclase on the fraction of the plasma membrane accessible for lateral displacement of proteins of the adenylate cyclase complex

    Hormonal activation of the adenylate cyclase complex is associated with lateral displacement in the membrane of the proteins that constitute this complex. In this work an experimental investigation was made of the changes in the interaction of the proteins of the adenylate cyclase complex with the changing fraction of fluid lipids in the cell membrane. A decrease in the fraction of fluid lipids of rat reticulocyte membranes led to a decrease (all the way down to a total suppression) of the interaction of the β-adrenoreceptors with the regulatory N-proteins. The interaction of the N-proteins with the catalytic proteins was also suppressed. On the other hand, an increase in the fraction of fluid lipids led to more effective interaction. It was shown that in this case the functional intactness of the interacting proteins is unimpaired. An analysis of the results obtained, performed on the basis of the percolation theory, suggests the conclusion that the hormonal stimulation of adenylate cyclase depends on the fraction of fluid lipids in the membrane, and the proteins are displaced during interaction over distances comparable with the size of the membrane itself. It was also shown that characteristic activity of the β-agonist 1-isoproterenol varies from 1.0 to 0, depending on the fraction of fluid lipids in the membrane. The data obtained suggest that in the absence of guanylic nucleotides in the membrane in vitro there are no preexisting complexes with a high affinity for the agonist

  13. Unusual guanylyl cyclases and cGMP signaling in Dictyostelium discoideum

    Veltman, D.M.; Bosgraaf, L.; van Haastert, P. J. M.

    2004-01-01

    cGMP is used as a second messenger in many eukaryotes. cGMP signaling requires at least three components: Guanylyl cyclases synthesize cGMP from GTP. Specific cGMP-binding proteins propagate the signal, usually by phosphorylation of their target Finally, phosphodiesterases terminate the cGMP signal

  14. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  15. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee;

    2015-01-01

    The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One intri...

  16. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [125I]iodocyanopindolol. Binding sites had the characteristics of mixed β1- and β2-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β1-adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  17. Overexpression of functional human oxidosqualene cyclase in Escherichia coli

    Kürten, Charlotte; Uhlén, Mathias; Syrén, Per-Olof

    2015-01-01

    tetracyclic steroidal backbone, a key step in cholesterol biosynthesis. Protein expression of hOSC and other eukaryotic oxidosqualene cyclases has traditionally been performed in yeast and insect cells, which has resulted in protein yields of 2.7mg protein/g cells (hOSC in Pichia pastoris) after 48h of...

  18. Structure of glutaminyl cyclase from Drosophila melanogaster in space group I4

    Kolenko, Petr; Koch, B.; Rahfeld, J.-U.; Schilling, S.; Demuth, H.-U.; Stubbs, M. T.

    2013-01-01

    Roč. 69, č. 4 (2013), s. 358-361. ISSN 1744-3091 R&D Projects: GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : glutaminyl cyclases * Drosophila melanogaster * soaking Subject RIV: CE - Biochemistry Impact factor: 0.568, year: 2013

  19. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. (Veterans Administration Medical Center, Los Angeles, CA (USA) Univ. of California, Los Angeles (USA))

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  20. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    Baysdorfer, C.; Bassham, J.A.

    1984-02-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  1. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach; Christensen, Hans Erik Mølager

    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed......, purified and the kinetic properties have been studied and are compared. Substrate inhibition by tryptophan is observed for isoform 1 but not for isoform 2. Large differences are observed in the K m,tetrahydrobiopterin values for the two isoforms, being >10 times larger for isoform 1 compared to isoform 2....

  2. p53 Family: Role of Protein Isoforms in Human Cancer

    Jinxiong Wei

    2012-01-01

    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  3. Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe

    Susan M. Byrne; Hoffman, Charles S.

    1993-01-01

    An important eukaryotic signal transduction pathway involves the regulation of the effector enzyme adenylate cyclase, which produces the second messenger, cAMP. Previous genetic analyses demonstrated that glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene requires the function of adenylate cyclase, encoded by the git2 gene. As mutations in git2 and in six additional git genes are suppressed by exogenous cAMP, these ‘upstream’ git genes were proposed to act to produ...

  4. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis.

    Glaser, P; Elmaoglou-Lazaridou, A; Krin, E.; Ladant, D.; Bârzu, O; Danchin, A

    1989-01-01

    In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture sup...

  5. Action of radioprotectors - venoms of Central Asian snakes and radiation on the adenylate cyclase system

    Action of venoms of Central Asian snakes (Maja oxiana and Vipera labertina turahica) as radioprotectors on 3'-5'-AMP content and activity of adenylate cyclase and phosphodiesterase in homogenates of liver and spleen of rats 1 and 24 hours after irradiation (800 R) has been studied. c-AMP content and adenylate cyclase activity have been shown to decrease drastically in the organs under study after the action of ionizing radiation. Preventive administration of venoms of cobra (150 μ g/kg) and (700 μ g/kg) one hour before irradiation restores the activity of the enzyme and c - AMP content of the spleen up to 53% and of the liver, to 30%. Phosphodiesterase activity increased markedly after irradiation being practically unaffected by the protector

  6. Specific regulation of NRG1 isoform expression by neuronal activity

    Liu, Xihui; Bates, Ryan; Wang, Fay; Su, Nan; Kirov, Sergei A.; Luo, Yuling; Wang, Jian-Zhi; Xiong, Wen-Cheng; Mei, Lin

    2011-01-01

    Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, re...

  7. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    Markus Otto; Christin Naumann; Wolfgang Brandt; Claus Wasternack; Bettina Hause

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enz...

  8. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin

    Wald, Tomáš; Petry-Podgorska, Inga; Fišer, Radovan; Matoušek, Tomáš; Dědina, Jiří; Osička, Radim; Šebo, Peter; Mašín, Jiří

    2014-01-01

    Roč. 450, APR 2014 (2014), s. 57-62. ISSN 0003-2697 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR GA13-14547S; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 ; RVO:68081715 Keywords : Potassium * Adenylate cyclase toxin * RTX Subject RIV: CE - Biochemistry Impact factor: 2.219, year: 2014

  9. An improved technique for the rapid chemical characterisation of bacterial terpene cyclases.

    Dickschat, Jeroen S; Pahirulzaman, Khomaizon A K; Rabe, Patrick; Klapschinski, Tim A

    2014-04-14

    A derivative of the pET28c(+) expression vector was constructed. It contains a yeast replication system (2μ origin of replication) and a yeast selectable marker (URA3), and can be used for gene cloning in yeast by efficient homologous recombination, and for heterologous expression in E. coli. The vector was used for the expression and chemical characterisation of three bacterial terpene cyclases. PMID:24573945

  10. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    Koichi Tanda; Norihito Shintani; Akemichi Baba; Hitoshi Hashimoto; Tsuyoshi Miyakawa

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosse...

  11. A Comparative Analysis of the Sugar Phosphate Cyclase Superfamily Involved in Primary and Secondary Metabolism

    Wu, Xiumei; Flatt, Patricia M.; Schlörke, Oliver; Zeeck, Axel; Dairi, Tohru; Mahmud, Taifo

    2007-01-01

    Sugar Phosphate Cyclases (SPCs) catalyze the cyclization of sugar phosphates to produce a variety of cyclitol intermediates that serve as the building blocks of many primary metabolites, e.g., aromatic amino acids, and clinically relevant secondary metabolites, e.g., aminocyclitol/aminoglycoside and ansamycin antibiotics. Feeding experiments with isotopically-labeled cyclitols revealed that cetoniacytone A, a unique C7N-aminocyclitol antibiotic isolated from an insect endophytic Actinomyces s...

  12. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue

    Hoffmann, Linda S.; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W.C.; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimu...

  13. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding

    Hasan, Shakir; Osičková, Adriana; Bumba, Ladislav; Novák, Petr; Šebo, Peter; Osička, Radim

    2015-01-01

    Roč. 589, č. 3 (2015), s. 374-379. ISSN 0014-5793 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GA15-09157S; GA ČR(CZ) GA15-11851S Institutional support: RVO:61388971 Keywords : Adenylate cyclase toxin * CD11b/CD18 * Complement receptor type 3 Subject RIV: CE - Biochemistry Impact factor: 3.169, year: 2014

  14. Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases.

    Giorio, Giovanni; Yildirim, Arzu; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2013-11-01

    Lutein is becoming increasingly important in preventive medicine due to its possible role in maintaining good vision and in preventing age-related maculopathy. Average daily lutein intake in developed countries is often below suggested daily consumption levels, and lutein supplementation could be beneficial. Lutein is also valuable in the food and feed industries and is emerging in nutraceutical and pharmaceutical markets. Currently, lutein is obtained at high cost from marigold petals, and synthesis alternatives are thus desirable. Tomato constitutes a promising starting system for production as it naturally accumulates high levels of lycopene. To develop tomato for lutein synthesis, the tomato Red Setter cultivar was transformed with the tomato lycopene ε-cyclase-encoding gene under the control of a constitutive promoter, and the HighDelta (HD) line, characterised by elevated lutein and δ-carotene content in ripe fruits, was selected. HD was crossed to the transgenic HC line and to RS(B) with the aim of converting all residual fruit δ-carotene to lutein. Fruits of both crosses were enriched in lutein and presented unusual carotenoid profiles. The unique genetic background of the crosses used in this study permitted an unprecedented analysis of the role and regulation of the lycopene cyclase enzymes in tomato. A new defined biochemical index, the relative cyclase activity ratio, was used to discern post-transcriptional regulation of cyclases, and will help in the study of carotenoid biosynthesis in photosynthetic plant species and particularly in those, like tomato, that have been domesticated for the production of food, feed or useful by-products. PMID:24141052

  15. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

    Osička, Radim; Osičková, Adriana; Hasan, Shakir; Bumba, Ladislav; Černý, Jiří; Šebo, Peter

    2015-01-01

    Roč. 4, DEC 9 (2015). ISSN 2050-084X R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GA15-11851S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 ; RVO:86652036 Keywords : E. coli * adenylate cyclase toxin * biochemistry Subject RIV: CE - Biochemistry Impact factor: 9.322, year: 2014

  16. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Devoisselle, Jean-Marie; Ladant, Daniel; Chopineau, Joel

    2013-01-01

    Many bacterial toxins can cross biological membranes to reach the cytosol of mammalian cells, although how they pass through a lipid bilayer remains largely unknown. Bordetella pertussis adenylate cyclase (CyaA) toxin delivers its catalytic domain directly across the cell membrane. To characterize this unique translocation process, we designed an in vitro assay based on a tethered lipid bilayer assembled over a biosensor surface derivatized with calmodulin, a natural activator of the toxin. C...

  17. Identifying functional domains within terpene cyclases using a domain-swapping strategy.

    Back, K; Chappell, J.

    1996-01-01

    Cyclic terpenes and terpenoids are found throughout nature. They comprise an especially important class of compounds from plants that mediate plant- environment interactions, and they serve as pharmaceutical agents with antimicrobial and anti-tumor activities. Molecular comparisons of several terpene cyclases, the key enzymes responsible for the multistep cyclization of C10, C15, and C20 allylic diphosphate substrates, have revealed a striking level of sequence similarity and conservation of ...

  18. A Network of Splice Isoforms for the Mouse.

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  19. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å

  20. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    Azarkan, Mohamed [Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium); Clantin, Bernard; Bompard, Coralie [CNRS-UMR 8525, Institut de Biologie de Lille, BP 477, 1 Rue du Professeur Calmette, F-59021 Lille (France); Belrhali, Hassan [EMBL Grenoble Outstation, 6 Rue Jules Horowitz, BP 181, F-38042 Grenoble CEDEX 9 (France); Baeyens-Volant, Danielle [Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium); Looze, Yvan [Laboratoire de Chimie Générale, Institut de Pharmacie-ULB CP206/04, Boulevard du Triomphe, B-1050 Brussels (Belgium); Villeret, Vincent, E-mail: vincent.villeret@ibl.fr [CNRS-UMR 8525, Institut de Biologie de Lille, BP 477, 1 Rue du Professeur Calmette, F-59021 Lille (France); Wintjens, René, E-mail: vincent.villeret@ibl.fr [Laboratoire de Chimie Générale, Institut de Pharmacie-ULB CP206/04, Boulevard du Triomphe, B-1050 Brussels (Belgium); Laboratoire de Chimie Générale I, Faculté de Médecine-ULB CP609, 808 Route de Lennik, B-1070 Brussels (Belgium)

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  1. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  2. Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli.

    Uno, I.; Mitsuzawa, H.; Matsumoto, K.; Tanaka, K; Oshima, T.; Ishikawa, T

    1985-01-01

    Plasmids carrying the CYR1 gene of yeast Saccharomyces cerevisiae, which encodes adenylate cyclase, were introduced into the cya mutant strain of Escherichia coli. The transformants had a GTP-independent adenylate cyclase activity but did not produce cAMP. The E. coli transformant carrying the yeast RAS2 or RAS2val19 gene had no adenylate cyclase activity. Transformant cells carrying both CYR1 and RAS2 produced GTP-dependent adenylate cyclase and cAMP, and those carrying CYR1 and RAS2val19 pr...

  3. Differential regulation of renal phospholipase C isoforms by catecholamines.

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  4. SURVIV for survival analysis of mRNA isoform variation.

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  5. Vitamin E Isoforms as Modulators of Lung Inflammation

    Hiam Abdala-Valencia

    2013-10-01

    Full Text Available Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.

  6. Isoforms of murine and human serum amyloid P component

    Nybo, Mads; Hackler, R; Kold, B;

    1998-01-01

    affect their number. When the acute-phase response was analysed in three mouse strains, CBA/J and C3H/HeN initially showed seven SAP isoforms in serum and C57BL/6 J three or four. The responses in all three strains peaked at day 2 and were normalized within 14 days. On days 2 and 4, CBA/J and C3H......Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did not...

  7. Oxygenation properties and isoform diversity of snake hemoglobins

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki;

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking for...... snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying - and -type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the...... oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis...

  8. Laminin isoforms in endothelial and perivascular basement membranes

    Yousif, Lema F.; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis. PMID:23263631

  9. Identification and characterization of novel NuMA isoforms

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  10. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing.

    Bachmeier, Corbin; Shackleton, Ben; Ojo, Joseph; Paris, Daniel; Mullan, Michael; Crawford, Fiona

    2014-12-01

    Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood–brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4 > apoE3 > apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain. PMID:25015123

  11. Molecular regulation of skeletal muscle myosin heavy chain isoforms

    Brown, David M.

    2015-01-01

    Research investigating the regulation of muscle fibre type has traditionally been conducted in vivo, analyzing global changes at a whole muscle level. Broadly, this thesis aimed to explore more “molecular” approaches, utilizing molecular and cell biology to understand the expression and regulation of myosin heavy chain (MyHC) isoforms as an indicator of muscle fibre composition. The mRNA expression profile of six MyHC isoform genes during C2C12 myogenesis was elucidated to reveal that the...

  12. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Senthil kumar M; Manisenthil Kumar KT; Shyam Sunder A; Thirumoorthy N; Ganesh GNK; Chatterjee Malay

    2011-01-01

    Abstract The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological s...

  13. Structure of RNA 3′-phosphate cyclase bound to substrate RNA

    Desai, Kevin K.; Bingman, Craig A.; Cheng, Chin L.; Phillips, George N.; Raines, Ronald T.

    2014-01-01

    RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes s...

  14. Membrane Guanylyl Cyclase Complexes Shape the Photoresponses of Retinal Rods and Cones

    Xiao-Hong eWen; Dizhoor, Alexander M.; Makino, Clint L.

    2014-01-01

    In vertebrate rods and cones, photon capture by rhodopsin leads to the destruction of cyclic GMP (cGMP) and the subsequent closure of cyclic nucleotide gated (CNG) ion channels in the outer segment plasma membrane. Replenishment of cGMP and reopening of the channels limit the growth of the photon response and are requisite for its recovery. In different vertebrate retinas, there may be as many as four types of membrane guanylyl cyclases (GCs) for cGMP synthesis. Ten neuronal Ca2+ sensor prote...

  15. Inhibition of glutaminyl cyclases for Alzheimer´s disease treatment

    Kolenko, Petr

    Praha: Katedra inženýrství pevných látek, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze, 2014. s. 17. [Student Scientific Conference on Solid State Physics /4./. 23.06.2014-27.06.2014, Nové Hrady] R&D Projects: GA MŠk(CZ) EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : glutaminyl cyclase * structure * inhibition Subject RIV: CE - Biochemistry

  16. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation

    Sultana, Azmiri; Kallio, Pauli; Jansson, Anna; Wang, Ji-Shu; Niemi, Jarmo; Mäntsälä, Pekka; Schneider, Gunter

    2004-01-01

    SnoaL belongs to a family of small polyketide cyclases, which catalyse ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. Several of these antibiotics are among the most used anti-cancer drugs currently in use. The crystal structure of SnoaL, involved in nogalamycin biosynthesis, with a bound product, has been determined to 1.35 Å resolution. The fold of the subunit can be described as a distorted α+β barrel, and the ligand is bound in the hydrophobic i...

  17. Structure of a Diguanylate Cyclase from Thermotoga maritima: Insights into Activation, Feedback Inhibition and Thermostability

    Deepthi, Angeline; Liew, Chong Wai; Liang, Zhao-Xun; Swaminathan, Kunchithapadam; Lescar, Julien

    2014-01-01

    Large-scale production of bis-3′-5′-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from ...

  18. Comparison of the in vivo and in vitro activities of adenylate cyclase from Mycobacterium tuberculosis H37Ra(NCTC 7417)

    The incorporation of [14C] adenine into the adenosine 3', 5'-monophosphate (cyclic AMP) fraction by whole cells of Mycobacterium tuberculosis was taken as a measure of the in vivo activity of adenylate cyclase. The in vivo activity of adenylate cyclase was significantly inhibited by glucose, thus suggesting that the low level of cyclic AMP in the presence of glucose is due to the inhibited synthesis of cyclic AMP. In vitro activity of adenylate cyclase had optimum pH of 8.5 and Km of 1.33 mM for ATP. Glucose and other sugars did not show significant inhibition of in vitro activity. The results suggest that the adenylate cyclase activity becomes less sensitive to glucose when the bacterial cells are disrupted, an analogy with eukaryotic adenylate cyclase which loses sensitivity to hormones when the cells are disrupted. (auth.)

  19. Mechanism of activation of particulate guanylate cyclase by atrial natriuretic peptide as deduced from radiation inactivation analysis

    The interaction between the receptor (Rc) for atrial natriuretic peptide (ANP) and the effector enzyme particulate guanylate cyclase (GC) has been studied by radiation inactivation. Irradiation of bovine lung membranes produced an increase in GC activity at low radiation doses followed by a dose-dependent reduction at higher doses. This deviation from linearity in the inactivation curve disappeared when lung membranes were pretreated with ANP. Essentially identical results were also obtained with adrenal membranes. Based on these radiation inactivation data, the following dissociative mechanism of activation of particulate guanylate cyclase by ANP has been proposed: Rc.GC(inactive) + ANP----Rc.ANP + GC(active)

  20. Role of p53 isoforms and aggregations in cancer.

    Kim, SeJin; An, Seong Soo A

    2016-06-01

    p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers.Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways.Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects.As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  1. APPRIS: annotation of principal and alternative splice isoforms.

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  2. Antagonistic functions of LMNA isoforms in energy expenditure and lifespan.

    Lopez-Mejia, Isabel C; de Toledo, Marion; Chavey, Carine; Lapasset, Laure; Cavelier, Patricia; Lopez-Herrera, Celia; Chebli, Karim; Fort, Philippe; Beranger, Guillaume; Fajas, Lluis; Amri, Ez Z; Casas, Francois; Tazi, Jamal

    2014-05-01

    Alternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin-expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS-like mice, whereas lamin C-only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C-only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals. PMID:24639560

  3. Comparison of liver oncogenic potential among human RAS isoforms

    Chung, Sook In; Moon, Hyuk; Ju, Hye-Lim; Kim, Dae Yeong; Cho, Kyung Joo; Ribback, Silvia; Dombrowski, Frank; Calvisi, Diego F.; Ro, Simon Weonsang

    2016-01-01

    Mutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis. Whether activated RAS isoforms possess different oncogenic potentials remains an unresolved question. Here, we compared oncogenic properties among RAS isoforms using liver-specific transgenesis in mice. Hydrodynamic transfection was performed using transposons expressing short hairpin RNA downregulating p53 and an activated RAS isoform, and livers were harvested at 23 days after gene delivery. No differences were found in the hepatocarcinogenic potential among RAS isoforms, as determined by both gross examination of livers and liver weight per body weight ratio (LW/BW) of mice expressing HRASQ61L, KRAS4BG12V and NRASQ61K. However, the tumorigenic potential differed significantly between KRAS splicing variants. The LW/BW ratio in KRAS4AG12V mice was significantly lower than in KRAS4BG12V mice (p mice lived significantly longer than KRRAS4BG12V mice (p mice displayed higher expression of the p16INK4A tumor suppressor when compared with KRAS4BG12V tumors. Forced overexpression of p16INK4A significantly reduced tumor growth in KRAS4BG12V mice, suggesting that upregulation of p16INK4A by KRAS4AG12V presumably delays tumor development driven by the latter oncogene. PMID:26799184

  4. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities. PMID:27091317

  5. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing;

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  6. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  7. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.

    Avelar, Gabriela M; Schumacher, Robert I; Zaini, Paulo A; Leonard, Guy; Richards, Thomas A; Gomes, Suely L

    2014-06-01

    Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  8. Neofunctionalization of Chromoplast Specific Lycopene Beta Cyclase Gene (CYC-B) in Tomato Clade

    Mohan, Vijee; Pandey, Arun; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    The ancestor of tomato underwent whole genome triplication ca. 71 Myr ago followed by widespread gene loss. However, few of the triplicated genes are retained in modern day tomato including lycopene beta cyclase that mediates conversion of lycopene to β-carotene. The fruit specific β-carotene formation is mediated by a chromoplast-specific paralog of lycopene beta cyclase (CYC-B) gene. Presently limited information is available about how the variations in CYC-B gene contributed to its neofunctionalization. CYC-B gene in tomato clade contained several SNPs and In-Dels in the coding sequence (33 haplotypes) and promoter region (44 haplotypes). The CYC-B gene coding sequence in tomato appeared to undergo purifying selection. The transit peptide sequence of CYC-B protein was predicted to have a stronger plastid targeting signal than its chloroplast specific paralog indicating a possible neofunctionalization. In promoter of two Bog (Beta old gold) mutants, a NUPT (nuclear plastid) DNA fragment of 256 bp, likely derived from a S. chilense accession, was present. In transient expression assay, this promoter was more efficient than the “Beta type” promoter. CARGATCONSENSUS box sequences are required for the binding of the MADS-box regulatory protein RIPENING INHIBITOR (RIN). The loss of CARGATCONSENSUS box sequence from CYC-B promoter in tomato may be related to attenuation of its efficiency to promote higher accumulation of β-carotene than lycopene during fruit ripening. PMID:27070417

  9. Adenyl cyclases and cAMP in plant signaling - Past and present

    Gehring, Christoph A

    2010-06-25

    In lower eukaryotes and animals 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins. 2010 Gehring; licensee BioMed Central Ltd.

  10. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC. PMID:26625288

  11. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site

    Misquitta Stephanie A

    2004-02-01

    Full Text Available Abstract Background Glutaminyl cyclase (QC forms the pyroglutamyl residue at the amino terminus of numerous secretory peptides and proteins. We previously proposed the mammalian QC has some features in common with zinc aminopeptidases. We now have generated a structural model for human QC based on the aminopeptidase fold (pdb code 1AMP and mutated the apparent active site residues to assess their role in QC catalysis. Results The structural model proposed here for human QC, deposited in the protein databank as 1MOI, is supported by a variety of fold prediction programs, by the circular dichroism spectrum, and by the presence of the disulfide. Mutagenesis of the six active site residues present in both 1AMP and QC reveal essential roles for the two histidines (140 and 330, QC numbering and the two glutamates (201 and 202, while the two aspartates (159 and 248 appear to play no catalytic role. ICP-MS analysis shows less than stoichiometric zinc (0.3:1 in the purified enzyme. Conclusions We conclude that human pituitary glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site residues. In contrast to the aminopeptidase, however, QC does not appear to require zinc for enzymatic activity.

  12. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    Khan, N.; Jeffers, M.; Kumar, S.;

    2008-01-01

    ) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rh...

  13. A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism.

    Dedic, Emil; Alsarraf, Husam; Welner, Ditte Hededam; Østergaard, Ole; Klychnikov, Oleg I; Hensbergen, Paul J; Corver, Jeroen; van Leeuwen, Hans C; Jørgensen, René

    2016-06-17

    Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix. PMID:27076635

  14. BIOTIC STRESS IMPACT ON ACTIVITY OF VARIOUS FORMS OF ADENYLATE CYCLASE IN ORGANELLES OF POTATO PLANT CELLS

    Lomovatskaya L.A.

    2006-12-01

    Full Text Available Notwithstanding significant interest towards study of adenylate cyclase plant signal system, there is still no complete picture of functioning and regulation mechanisms of this signal system in plants under biotic stress. With this in view, our study was aimed at identification of various forms of adenylate cyclase (transmembrane and “soluble” in the nucleus and chloroplasts of potato cells and modulation of their activity under the impact of exopolysaсcharides ofpotato ring rot pathogen. The investigations conducted allowed to conclude that two forms of adenylate cyclase function in nuclei and chloroplasts of potato plants: transmembrane and “soluble”. Activity of these forms of the enzyme extracted from plant cells of the two potato varieties contrasted by resistance to potato ring rot pathogen Clavibacter michiganensis subsp. sepedonicus, changed in the reverse manner with the mediated impact of exopolysaсcharides secreted by virulent and mucinous strain of bacterial pathogen: in the plants of resistant сultivar it increased, in the plants of sensitive сultivar it was oppressed. It was concluded that activity of both forms of adenylate cyclase directly depended on the degree of resistance of a particular potato variety to given pathogen.

  15. Brain histamine H1- and H2-receptors and histamine-sensitive adenylate cyclase: effects of antipsychotics and antidepressants

    Several classes of psychoactive compounds have been investigated for their effects on histamine-sensitive adenylate cyclase in cell-free preparations from the guinea-pig cerebral cortex. Their inhibitory actions on this enzyme system have been compared with their abilities to displace [3H]pyrilamine and [3H]cimetidine from histamine H1- and H2-receptor sites, respectively. The results of these studies show that compounds which inhibited the histamine-sensitive cyclase were also displacers of either [3H]pyrilamine or [3H]cimetidine or both 3H-ligands from their binding sites. In spite of the lack of a correlation between binding and cyclase antagonism it was observed that compounds that displace both ligands showed greater inhibition of the cyclase than those that have affinities for sites labeled by one or the other ligand. It was concluded that antihistamines, the antipsychotics and the antidepressants share a common property through their antagonism of H1-receptors and that may be responsible for their sedative side effect. (Auth.)

  16. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  17. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Patrycja M Dubielecka

    Full Text Available BACKGROUND: Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown. PRINCIPAL FINDINGS: Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably. CONCLUSION: Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  18. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  19. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Angélique Guillaudeau

    Full Text Available The EGFR (epidermal growth factor receptor is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a, normal and tumor cells produce soluble EGFR isoforms (sEGFR that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2, 3 (v3 and 4 (v4 mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab and intracellular domain targeted antibody (ICD-Ab. EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade, histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS. PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  20. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  1. The roles of cysteines in the heme domain of human soluble guanylate cyclase

    Fang Fang Zhong; Xiao Xiao Liu; Jie Pan; Zhong Xian Huang; Xiang Shi Tan

    2012-01-01

    Soluble guanylate cyclase (sGC) is a critical heme-containing enzyme involved in NO signaling.The dimerization of sGC subunits is necessary for its bioactivity and its mechanism is a striiking and an indistinct issue.The roles of heme domain cysteines of the sGC on the dimerization and heme binding were investigated herein.The site-directed mutations of three conserved cysteines (C78A,C 122A and C 174S) were studied systematically and the three mutants were characterized by gel filtration analysis,UV-vis spectroscopy and heime transfer examination.Cys78 was involved in heme binding but not referred to the dimerization,while Cys174 was demonstrated to be involved in the homodimerization.These results provide new insights into the cysteine-related dimerization regulation of sGC.

  2. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue.

    Hoffmann, Linda S; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W C; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  3. Characterization and expression of soluble guanylate cyclase in skins and melanocytes of sheep.

    Yang, Shanshan; Zhang, Junzhen; Ji, Kaiyuan; Jiao, Dingxing; Fan, Ruiwen; Dong, Changsheng

    2016-04-01

    The study reported the characterization of soluble guanylate cyclase (sGC) with the size of CDS of 1860bp, encoding a protein of 620 amino acids and containing several conserved functional domains including HNOB, HNOBA, and CHD. Quantitative real time PCR analysis of sGC showed that the expression of sGC mRNA is higher (∼5 fold) in white sheep skin relative to black sheep skin with significant difference (Ptyrosinase (TYR), tyrosinase related protein 1(TYRTP1), and tyrosinase related protein 2(TYRP2) both at mRNA and protein level. Moreover, the melanocytes was capable of producing cGMP and cAMP. The observed differential expression and localization of sGC in sheep skins and melanocytes and the capability of producing cGMP and cAMP, which suggested a potential role for this gene in hair color regulation. PMID:26805580

  4. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  5. An approach to mimicking the sesquiterpene cyclase phase by nickel-promoted diene/alkyne cooligomerization.

    Holte, Dane; Götz, Daniel C G; Baran, Phil S

    2012-01-20

    Artificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist's toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes. Starting from isoprene, the goal of this work was to mimic Nature's approach for rapidly building molecular complexity. In principle, the controlled oligomerization of isoprene would drastically simplify the synthesis of terpenes used in the medicine, perfumery, flavor, and materials industries. This article delineates our extensive efforts to cooligomerize isoprene or butadiene with alkynes in a controlled fashion by zerovalent nickel catalysis building off the classic studies by Wilke and co-workers. PMID:22229741

  6. Differential regulation of renal phospholipase C isoforms by catecholamines.

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam ...

  7. GABAB(1) receptor subunit isoforms differentially regulate stress resilience

    O’Leary, Olivia F.; Felice, Daniela; Galimberti, Stefano; Savignac, Hélène M.; Bravo, Javier A.; Crowley, Tadhg; El Yacoubi, Malika; Vaugeois, Jean-Marie; Gassmann, Martin; Bettler, Bernhard; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mic...

  8. Membrane Guanylyl Cyclase Complexes Shape the Photoresponses of Retinal Rods and Cones

    Xiao-Hong eWen

    2014-06-01

    Full Text Available In vertebrate rods and cones, photon capture by rhodopsin leads to the destruction of cyclic GMP (cGMP and the subsequent closure of cyclic nucleotide gated (CNG ion channels in the outer segment plasma membrane. Replenishment of cGMP and reopening of the channels limit the growth of the photon response and are requisite for its recovery. In different vertebrate retinas, there may be as many as four types of membrane guanylyl cyclases (GCs for cGMP synthesis. Ten neuronal Ca2+ sensor proteins could potentially modulate their activities. The mouse is proving to be an effective model for characterizing the roles of individual components because its relative simplicity can be reduced further by genetic engineering. There are two types of guanylyl cyclase activating proteins (GCAPs and two types of GCs in mouse rods, whereas cones express one type of GCAP and one type of GC. Mutant mouse rods and cones bereft of both GCAPs have large, long lasting photon responses. Thus, GCAPs normally mediate negative feedback tied to the light-induced decline in intracellular Ca2+ that accelerates GC activity to curtail the growth and duration of the photon response. Rods from other mutant mice that express a single GCAP type reveal how the two GCAPs normally work together as a team. Because of its lower Ca2+ affinity, GCAP1 is the first responder that senses the initial decrease in Ca2+ following photon absorption and acts to limit response amplitude. GCAP2, with a higher Ca2+ affinity, is recruited later during the course of the photon response as Ca2+ levels continue to decline further. The main role of GCAP2 is to provide for a timely response recovery and it is particularly important after exposure to very bright light. The multiplicity of GC isozymes and GCAP homologs in the retinas of other vertebrates confers greater flexibility in shaping the photon responses in order to tune visual sensitivity, dynamic range and frequency response.

  9. Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization.

    Schilling, Stephan; Lindner, Christiane; Koch, Birgit; Wermann, Michael; Rahfeld, Jens-Ulrich; von Bohlen, Alex; Rudolph, Thomas; Reuter, Gunter; Demuth, Hans-Ulrich

    2007-09-25

    Glutaminyl cyclases (QCs) present in plants and vertebrates catalyze the formation of pyroglutamic acid (pGlu) from N-terminal glutamine. Pyroglutamyl hormones also identified in invertebrates imply the involvement of QC activity during their posttranslational maturation. Database mining led to the identification of two genes in Drosophila, which putatively encode QCs, CG32412 (DromeQC) and CG5976 (isoDromeQC). Analysis of their primary structure suggests different subcellular localizations. While DromeQC appeared to be secreted due to an N-terminal signal peptide, isoDromeQC contains either an N-terminal mitochondrial targeting or a secretion signal due to generation of different transcripts from gene CG5976. According to the prediction, homologous expression of the corresponding cDNAs in S2 cells revealed either secreted protein in the medium or intracellular QC activity. Subcellular fractionation and immunochemistry support export of isoDromeQC into the mitochondrion. For enzymatic characterization, DromeQC and isoDromeQC were expressed heterologously in Pichia pastoris and Escherichia coli, respectively. Compared to mammalian QCs, the specificity constants were about 1 order of magnitude lower for most of the analyzed substrates. The pH dependence of the specificity constant was similar for both enzymes, indicating the necessity of an unprotonated substrate amino group and two protonated groups of the enzyme, resulting in an asymmetric bell-shaped characteristic. The determination of the metal content of DromeQC revealed equimolar protein-bound zinc. These results prove conserved enzymatic mechanisms between QCs from invertebrates and mammals. Drosophila is the first organism for which isoenzymes of glutaminyl cyclase have been isolated. The identification of a mitochondrial QC points toward yet undiscovered physiological functions of these enzymes. PMID:17722885

  10. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of [125]Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10-5 M) suggesting predominate beta2-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-2-type BAR coupled to adenylate cyclase in rat brown fat

  11. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-03-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of (/sup 125/)Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10/sup -5/ M) suggesting predominate beta/sub 2/-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-/sub 2/-type BAR coupled to adenylate cyclase in rat brown fat.

  12. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse

    Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C.; Bailey, Mark E. S.; Cobb, Stuart R.

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders. PMID:27315173

  13. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  14. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes.

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  15. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803.

    Hollingshead, Sarah; Kopecná, Jana; Jackson, Philip J; Canniffe, Daniel P; Davison, Paul A; Dickman, Mark J; Sobotka, Roman; Hunter, C Neil

    2012-08-10

    The cyclase step in chlorophyll (Chl) biosynthesis has not been characterized biochemically, although there are some plausible candidates for cyclase subunits. Two of these, Sll1214 and Sll1874 from the cyanobacterium Synechocystis 6803, were FLAG-tagged in vivo and used as bait in separate pulldown experiments. Mass spectrometry identified Ycf54 as an interaction partner in each case, and this interaction was confirmed by a reciprocal pulldown using FLAG-tagged Ycf54 as bait. Inactivation of the ycf54 gene (slr1780) in Synechocystis 6803 resulted in a strain that exhibited significantly reduced Chl levels. A detailed analysis of Chl precursors in the ycf54 mutant revealed accumulation of very high levels of Mg-protoporphyrin IX methyl ester and only traces of protochlorophyllide, the product of the cyclase, were detected. Western blotting demonstrated that levels of the cyclase component Sll1214 and the Chl biosynthesis enzymes Mg-protoporphyrin IX methyltransferase and protochlorophyllide reductase are significantly impaired in the ycf54 mutant. Ycf54 is, therefore, essential for the activity and stability of the oxidative cyclase. We discuss a possible role of Ycf54 as an auxiliary factor essential for the assembly of a cyclase complex or even a large multienzyme catalytic center. PMID:22711541

  16. Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor, soluble guanylate cyclase.

    Selwood, D L; Brummell, D G; Budworth, J; Burtin, G E; Campbell, R O; Chana, S S; Charles, I G; Fernandez, P A; Glen, R C; Goggin, M C; Hobbs, A J; Kling, M R; Liu, Q; Madge, D J; Meillerais, S; Powell, K L; Reynolds, K; Spacey, G D; Stables, J N; Tatlock, M A; Wheeler, K A; Wishart, G; Woo, C K

    2001-01-01

    Database searching and compound screening identified 1-benzyl-3-(3-dimethylaminopropyloxy)indazole (benzydamine, 3) as a potent activator of the nitric oxide receptor, soluble guanylate cyclase. A comprehensive structure-activity relationship study surrounding 3 clearly showed that the indazole C-3 dimethylaminopropyloxy substituent was critical for enzyme activity. However replacement of the indazole ring of 3 by appropriately substituted pyrazoles maintained enzyme activity. Compounds were evaluated for inhibition of platelet aggregation and showed a general lipophilicity requirement. Aryl-substituted pyrazoles 32, 34, and 43 demonstrated potent activation of soluble guanylate cyclase and potent inhibition of platelet aggregation. Pharmacokinetic studies in rats showed that compound 32 exhibits modest oral bioavailability (12%). Furthermore 32 has an excellent selectivity profile notably showing no significant inhibition of phosphodiesterases or nitric oxide synthases. PMID:11141091

  17. Altered Alpha-Synuclein, Parkin, and Synphilin Isoform Levels in Multiple System Atrophy Brains

    Brudek, Tomasz; Winge, Kristian; Bredo Rasmussen, Nadja;

    2016-01-01

    -1 isoforms. In MSA brains, alpha-synuclein140 and alpha-synuclein112 isoform levels were significantly increased,whereas levels of the alpha-synuclein126 isoform were decreased in the substantia nigra, striatum, cerebellar cortex, and nucleus dentatus vs. CONTROLS: Moreover, in MSA cases, we showed...... increased levels of parkin isoforms lacking the N-terminal ubiquitin-like domain and an aggregation-prone synphiln-1A isoform that causes neuronal toxicity in MSA. In PD brains, Parkin transcript variant 3, 7 and 11 were significantly and specifically overexpressed in the striatum and cerebellar cortex......, together with synphilin-1A and 1C. The changes of isoform expression profiles in neurodegenerative diseases suggest alterations in the regulation of transcription and/or splicing events, leading to regional/cellular events that may be important for the highly increased aggregation of alpha-synuclein in the...

  18. Isolation and functional characterization of Lycopene β-cyclase (CYC-B promoter from Solanum habrochaites

    Chinnusamy Viswanathan

    2010-04-01

    Full Text Available Abstract Background Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B promoter from a green fruited S. habrochaites genotype EC520061. Results A 908 bp region upstream to the initiation codon of the Lycopene β-cyclase gene was cloned and identified as full-length promoter. To identify promoter region necessary for regulating developmental expression of the ShCYC-B gene, the full-length promoter and its three different 5' truncated fragments were cloned upstream to the initiation codon of GUS reporter cDNA in binary vectors. These four plant transformation vectors were separately transformed in to Agrobacterium. Agrobacterium-mediated transient and stable expression systems were used to study the GUS expression driven by the full-length promoter and its 5' deletion fragments in tomato. The full-length promoter showed a basal level activity in leaves, and its expression was upregulated > 5-fold in flowers and fruits in transgenic tomato plants. Deletion of -908 to -577 bp 5' to ATG decreases the ShCYC-B promoter strength, while deletion of -908

  19. PKC isoforms interact with and phosphorylate DNMT1

    Pradhan Sriharsa

    2011-05-01

    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  20. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death

    Vaudry, David; Rousselle, Cécile; Basille, Magali; Falluel-Morel, Anthony; Pamantung, Tommy F.; Fontaine, Marc; Fournier, Alain; Vaudry, Hubert; Gonzalez, Bruno J

    2002-01-01

    Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors. Exposure of cultured cerebellar granule cells to ethanol inhibited neurite outgrowth and provoke...

  1. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+

    Teresa eDuda

    2014-03-01

    Full Text Available Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase, ONE-GC. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, atrial natriuretic factor (ANF and B-type natriuretic peptide (BNP. After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation and anti-proliferation. Very recently another modus operandi for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin  mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

  2. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis

    Šmídková, Markéta; Dvořáková, Alexandra; Tloušťová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Roč. 58, č. 2 (2014), s. 664-671. ISSN 0066-4804 R&D Projects: GA MV VG20102015046 Grant ostatní: OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : Bordetella pertussis * adenylate cyclase toxin * ACT * inhibitors * PMEA * amidate prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 4.476, year: 2014

  3. Heterosubtypic protection against influenza A induced by adenylate cyclase toxoids delivering conserved HA2 subunit of hemagglutinin

    Staneková, Z.; Adkins, Irena; Kosová, Martina; Janulíková, J.; Šebo, Peter; Varečková, E.

    2013-01-01

    Roč. 97, č. 1 (2013), s. 24-35. ISSN 0166-3542 R&D Projects: GA ČR GA310/08/0447; GA ČR GP310/09/P582 Institutional support: RVO:61388971 Keywords : Bordetella adenylate cyclase toxoid * Influenza A infection * Cross-protection Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.434, year: 2013

  4. Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium.

    Feucht, B U; Saier, M H

    1980-01-01

    Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cel...

  5. The Receptor Guanylyl Cyclase Type D (GC-D) Ligand Uroguanylin Promotes the Acquisition of Food Preferences in Mice

    Arakawa, Hiroyuki; Kelliher, Kevin R.; Zufall, Frank; Munger, Steven D.

    2013-01-01

    Rodents rely on olfactory stimuli to communicate information between conspecifics that is critical for health and survival. For example, rodents that detect a food odor simultaneously with the social odor carbon disulfide (CS2) will acquire a preference for that food. Disruption of the chemosensory transduction cascade in CS2-sensitive olfactory sensory neurons (OSNs) that express the receptor guanylyl cyclase type D (GC-D; GC-D+ OSNs) will prevent mice from acquiring these preferences. GC-D+...

  6. Functional differences between L- and T-plastin isoforms

    1994-01-01

    Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin...

  7. The FU gene and its possible protein isoforms

    Nöthen Markus M

    2004-07-01

    Full Text Available Abstract Background FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci. Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. Results The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1 maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. Conclusions The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing

  8. GSK-3β phosphorylation of functionally distinct tau isoforms has differential, but mild effects

    Gamblin T Chris

    2009-05-01

    Full Text Available Abstract Background Tau protein exists as six different isoforms that differ by the inclusion or exclusion of exons 2, 3 and 10. Exon 10 encodes a microtubule binding repeat, thereby resulting in three isoforms with three microtubule binding repeats (3R and three isoforms that have four microtubule binding repeats (4R. In normal adult brain, the relative amounts of 3R tau and 4R tau are approximately equal. These relative protein levels are preserved in Alzheimer's disease, although in other neurodegenerative tauopathies such as progressive supranuclear palsy, corticobasal degeneration and Pick's disease, the ratio of 3R:4R is frequently altered. Because tau isoforms are not equally involved in these diseases, it is possible that they either have inherently unique characteristics owing to their primary structures or that post-translational modification, such as phosphorylation, differentially affects their properties. Results We have determined the effects of phosphorylation by a kinase widely believed to be involved in neurodegenerative processes, glycogen synthase kinase-3β (GSK-3β, on the microtubule binding and inducer-initiated polymerization of these isoforms in vitro. We have found that each isoform has a unique microtubule binding and polymerization profile that is altered by GSK-3β. GSK-3β phosphorylation had differential effects on the isoforms although there were similarities between isoforms and the effects were generally mild. Conclusion These results indicate that tau phosphorylation by a single kinase can have isoform specific outcomes. The mild nature of these changes, however, makes it unlikely that differential effects of GSK-3β phosphorylation on the isoforms are causative in neurodegenerative disease. Instead, the inherent differences in the isoform interactions themselves and local conditions in the diseased cells are likely the major determinant of isoform involvement in various neurodegenerative disorders.

  9. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes

    Wu, I; Shin, S. C.; Cao, Y; Bender, I K; N Jafari; Feng, G.; Lin, S.; Cidlowski, J. A.; Schleimer, R. P.; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expres...

  10. MetaDiff: differential isoform expression analysis using random-effects meta-regression

    Jia, Cheng; Guan, Weihua; Yang, Amy; Xiao, Rui; Tang, W. H. Wilson; Moravec, Christine S.; Margulies, Kenneth B.; Cappola, Thomas P.; Li, Mingyao; Li, Chun

    2015-01-01

    Background RNA sequencing (RNA-Seq) allows an unbiased survey of the entire transcriptome in a high-throughput manner. A major application of RNA-Seq is to detect differential isoform expression across experimental conditions, which is of great biological interest due to its direct relevance to protein function and disease pathogenesis. Detection of differential isoform expression is challenging because of uncertainty in isoform expression estimation owing to ambiguous reads and variability i...

  11. Induction of Chemokine Expression by Adiponectin In Vitro is Isoform-Dependent

    Song, Huijuan; Chan, James; Rovin, Brad H.

    2009-01-01

    Adiponectin is reported to have both pro- and anti-inflammatory effects. Because adiponectin circulates in isoforms of various sizes, and some responses to adiponectin are isoform-dependent, it was postulated that the pro-inflammatory effects of adiponectin may isoform-specific. To test this, peripheral blood mononuclear cells (PBMC), microvascular endothelial cells (MVEC), and human glomerular mesangial cells (HMC) were treated with high or low molecular weight (HMW, LMW) recombinant human a...

  12. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [3H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [3H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  13. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  14. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [3H]serotonin, [3H]lysergic acid diethylamide or [3H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  15. IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data

    Gupta Ravi

    2011-07-01

    Full Text Available Abstract Background mRNA-Seq technology has revolutionized the field of transcriptomics for identification and quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons. Results We propose a novel algorithm (IsoformEx that employs weighted non-negative least squares estimation method to estimate the expression levels of transcript isoforms. Validations based on in silico simulation of mRNA-Seq and qRT-PCR experiments with real mRNA-Seq data showed that IsoformEx could accurately estimate transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and higher agreement with qRT-PCR measurements of specific transcripts for real mRNA-Seq data. Conclusions IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene expression levels, which takes into account short exons and alternative exons with a weighting scheme. The software is available at http://bioinformatics.wistar.upenn.edu/isoformex.

  16. Proteomic Analysis of Cytokeratin Isoforms Uncovers Association with Survival in Lung Adenocarcinoma

    Tarek G. Gharib

    2002-01-01

    Full Text Available Cytokeratins. (CK are intermediate filaments whose expression is often altered in epithelial cancer. Systematic identification of lung adenocarcinoma proteins using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry has uncovered numerous CK isoforms. In this study, 93 lung adenocarcinomas. (64 stage I and 29 stage III and 10 uninvolved lung samples were quantitatively examined for protein expression. Fourteen of 21 isoforms of CK 7, 8, 18, 19 occurred at significantly higher levels. (P<.05 in tumors compared to uninvolved adjacent tissue. Specific isoforms of the four types of CK identified correlated with either clinical outcome or individual clinical-pathological parameters. All five of the CK7 isoforms associated with patient survival represented cleavage products. Two of five CK7 isoforms. (nos. 2165 and 2091, one of eight CK8 isoforms. (no. 439, one of three CK19 isoforms. (no. 1955 were associated with survival and significantly correlated to their mRNA levels, suggesting that transcription underlies overexpression of these CK isoforms. Our data indicate substantial heterogeneity among CK in lung adenocarcinomas resulting from posttranslational modifications, some of which correlated with patient survival and other clinical parameters. Therefore, specific isoforms of individual CK may have utility as diagnostic or predictive markers in lung adenocarcinomas.

  17. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  18. Entropy-based model for miRNA isoform analysis.

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  19. A New View of Ras Isoforms in Cancers.

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  20. Role of cysteines in mammalian VDAC isoforms' function.

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26947058

  1. The molecular mechanism of heme loss from oxidized soluble guanylate cyclase induced by conformational change.

    Pan, Jie; Zhang, Xiaoxue; Yuan, Hong; Xu, Qiming; Zhang, Huijuan; Zhou, Yajun; Huang, Zhong-Xian; Tan, Xiangshi

    2016-05-01

    Heme oxidation and loss of soluble guanylate cyclase (sGC) is thought to be an important contributor to the development of cardiovascular diseases. Nevertheless, it remains unknown why the heme loses readily in oxidized sGC. In the current study, the conformational change of sGC upon heme oxidation by ODQ was studied based on the fluorescence resonance energy transfer (FRET) between the heme and a fluorophore fluorescein arsenical helix binder (FlAsH-EDT2) labeled at different domains of sGC β1. This study provides an opportunity to monitor the domain movement of sGC relative to the heme. The results indicated that heme oxidation by ODQ in truncated sCC induced the heme-associated αF helix moving away from the heme, the Per/Arnt/Sim domain (PAS) domain moving closer to the heme, but led the helical domain going further from the heme. We proposed that the synergistic effect of these conformational changes of the discrete region upon heme oxidation forces the heme pocket open, and subsequent heme loss readily. Furthermore, the kinetic studies suggested that the heme oxidation was a fast process and the conformational change was a relatively slow process. The kinetics of heme loss from oxidized sGC was monitored by a new method based on the heme group de-quenching the fluorescence of FlAsH-EDT2. PMID:26876536

  2. Soluble Guanylate Cyclase Stimulators: a Novel Treatment Option for Heart Failure Associated with Cardiorenal Syndromes?

    Dubin, Ruth F; Shah, Sanjiv J

    2016-06-01

    Heart failure in the setting of chronic kidney disease (CKD) is an increasingly common scenario and carries a poor prognosis. Clinicians lack tools for primary or secondary heart failure prevention in patients with cardiorenal syndromes. In patients without CKD, angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin receptor blockers (ARB) and statins mitigate cardiovascular risk in large part due to salutary effects on the endothelium. In the setting of CKD, use of these therapies is limited by adverse effects of hyperkalemia in pre-dialysis CKD (ACE-I/ARB), or potential increased risk of stroke in end-stage renal disease (statins). The soluble guanylate cyclase (sGC) stimulators are a novel class of medications that promote endothelial and myocardial function with no known risk of hyperkalemia or stroke. In this review, we discuss the evidence emerging from recent clinical trials of sGC stimulators in pulmonary hypertension and heart failure, the diseased pathways involved in cardiorenal syndromes likely to be restored by sGC stimulators, and several strategies for designing future clinical trials of cardiorenal syndromes that might shorten the timeline for discovery and approval of effective cardiovascular therapies in these high-risk patients. PMID:27118234

  3. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit

    Ampomah-Dwamena, Charles; McGhie, Tony; Wibisono, Reginald; Montefiori, Mirco; Hellens, Roger P.; Allan, Andrew C.

    2009-01-01

    The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-β) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-β), and epsilon carotene hydroxylase (CRH-ϵ) showed some variation in gene expression. The LCY-β gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-β gene. PMID:19574250

  4. Modulation of soluble guanylate cyclase for the treatment of erectile dysfunction.

    Lasker, George F; Pankey, Edward A; Kadowitz, Philip J

    2013-07-01

    Nitric oxide (NO) is the principal mediator of penile erection, and PDE-5 inhibitors are the first-line agents used to treat erectile dysfunction (ED). When NO formation or bioavailability is decreased by oxidative stress and PDE-5 inhibitors are no longer effective, a new class of agents called soluble guanylate cyclase (sGC) stimulators like BAY 41-8543 will induce erection. sGC stimulators bind to the normally reduced, NO-sensitive form of sGC to increase cGMP formation and promote erection. The sGC stimulators produce normal erectile responses when NO formation is inhibited and the nerves innervating the corpora cavernosa are damaged. However, with severe oxidative stress, the heme iron on sGC can be oxidized, rendering the enzyme unresponsive to NO or sGC stimulators. In this pathophysiological situation, another newly developed class of agents called sGC activators can increase the catalytic activity of the oxidized enzyme, increase cGMP formation, and promote erection. The use of newer agents that stimulate or activate sGC to promote erection and treat ED is discussed in this brief review article. PMID:23817801

  5. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine

  6. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  7. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  8. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit.

    Ampomah-Dwamena, Charles; McGhie, Tony; Wibisono, Reginald; Montefiori, Mirco; Hellens, Roger P; Allan, Andrew C

    2009-01-01

    The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-beta) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-beta), and epsilon carotene hydroxylase (CRH-epsilon) showed some variation in gene expression. The LCY-beta gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-beta gene. PMID:19574250

  9. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice.

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  10. Guanylyl cyclase / atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation.

    Pandey, Kailash N

    2011-08-01

    Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field. PMID:21815745

  11. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  12. Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy

    H. A. Ghofrani

    2009-03-01

    Full Text Available The prognosis for patients with pulmonary hypertension remains poor despite recent treatment advances, and there is a need for therapies with new modes of action. Nitric oxide (NO is an endogenous vasodilator, the levels of which are regulated throughout the lung to ensure preferential perfusion of well-ventilated regions. Drugs that act in synergy with endogenous NO would therefore promote pulmonary vasodilation while maintaining optimal gas exchange. Riociguat is an oral stimulator of the NO receptor soluble guanylate cyclase. It synergises with NO and has demonstrated vasodilatory and antiremodelling properties in preclinical studies. Riociguat has been shown to have a favourable safety profile in healthy volunteers and in patients with pulmonary hypertension. Pharmacokinetic analyses have revealed substantial interindividual variation, suggesting that individual dose titration will be required. In a proof-of-concept study of patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension, riociguat improved cardiopulmonary haemodynamics from baseline. It also caused systemic vasodilation, which was well tolerated but should be monitored in future studies. Dose titration of riociguat should promote pulmonary vasodilation while maintaining control of systemic effects, and has been investigated in a phase-II study of patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Preliminary results indicate that phase-III trials are warranted.

  13. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  14. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  15. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  16. Activation of antithrombin III isoforms by heparan sulphate glycosaminoglycans and other sulphated polysaccharides.

    Carlson, T H; Kolman, M R; Piepkorn, M

    1995-07-01

    Antithrombin III occurs naturally as two functionally distinct molecular species that differ in glycosylation at Asn135. Whereas the predominant, glycosylated isoform has high affinity for heparin, a quantitatively minor isoform lacking glycosylation at that site displays relatively higher affinity for both heparins and heparinoids. We characterized the ability of various sulphated polysaccharides to potentiate the rates of thrombin inhibition by the isoforms. High-molecular-weight dextran sulphate was the most effective of those studied, increasing thrombin inhibition by the higher-affinity antithrombin III isoform up to five-fold more efficiently than did heparin fractions with low-affinity for antithrombin III. In addition, dextran sulphate activated the higher-affinity isoform as much as twelve times more effectively than it did the lower-affinity isoform. Pentosan polysulphate was up to three-fold, and some heparan sulphate fractions up to two-fold, more effective with the higher, compared with the lower affinity, isoform. Heparan sulphate preparations less effectively increased the rate of thrombin inhibition than did the other low-affinity polysaccharides. Structure-function studies indicated positive correlations between activity and both polymer length and anionic group density of low-affinity sulphated polysaccharides. The observed effects of the heparan sulphates on this anticoagulant pathway, although of low potency, are consistent with the hypotheses that these substances naturally regulate blood homeostasis in vascular tissues and that much of this function may be mediated by the higher-affinity antithrombin III isoform. PMID:8589216

  17. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  18. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T; Clausen, Henrik; Linstedt, Adam D

    2014-01-01

    Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms...

  19. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  20. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  1. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    Wellendorph, Petrine; Goodman, M W; Burstein, E S;

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinc...

  2. Roles of the troponin isoforms during indirect flight muscle development in Drosophila

    Salam Herojeet Singh; Prabodh Kumar; Nallur B. Ramachandra; Upendra Nongthomba

    2014-08-01

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

  3. Translational control of C/EBPalpha and C/EBPbeta isoform expression

    Calkhoven, C F; Müller, C; Leutz, A

    2000-01-01

    Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPbeta genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPbeta and C/EBPalpha mRNAs by differential initiation of translation. These isoforms re

  4. Exo70 Isoform Switching upon Epithelial-Mesenchymal Transition Mediates Cancer Cell Invasion

    Lu, Hezhe; Liu, Jianglan; Liu, Shujing; Zeng, Jingwen; Ding, Deqiang; Carstens, Russ P.; Cong, Yusheng; Xu, Xiaowei; Guo, Wei

    2014-01-01

    Summary Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2, and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoforms expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal but not the epithelial isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion. PMID:24331928

  5. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  6. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    Matthew D. Blunt

    2015-01-01

    Full Text Available PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL. However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms.

  7. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 μM isoproterenol and 50 μM GTP-γ-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 μM GTP-γ-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of β-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes

  8. Isoform-specific phosphorylation-dependent regulation of connexin hemichannels

    Alstrøm, Jette Skov; Hansen, Daniel Bloch; Nielsen, Morten Schak;

    2015-01-01

    Connexins form gap junction channels made up of two connexons (hemichannels) from adjacent cells. Unopposed hemichannels may open toward the extracellular space upon stimulation by, e.g., removal of divalent cations from the extracellular solution and allow isoform-specific transmembrane flux of...... fluorescent dyes and physiologically relevant molecules, such as ATP and ions. Connexin (Cx)43 and Cx30 are the major astrocytic connexins. Protein kinase C (PKC) regulates Cx43 in its cell-cell gap junction configuration and may also act to keep Cx43 hemichannels closed. In contrast, the regulation of Cx30...... hemichannels by PKC is unexplored. To determine phosphorylation-dependent regulation of Cx30 and Cx43 hemichannels, these were heterologously expressed in Xenopus laevis oocytes and opened with divalent cation-free solution. Inhibition of PKC activity did not affect hemichannel opening of either connexin. PKC...

  9. Troponin T isoform expression is modulated during Atlantic Halibut metamorphosis

    Llewellyn Lynda

    2007-06-01

    Full Text Available Abstract Background Flatfish metamorphosis is a thyroid hormone (TH driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT, a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. Results In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. Conclusion Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.

  10. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  11. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  12. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR) are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76%) of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72%) and 27% had only low levels of expression. Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in treatment of this disease by providing new reagents to study

  13. Corruption of homeostatic mechanisms in the guanylyl cyclase C signaling pathway underlying colorectal tumorigenesis

    Waldman, Scott A

    2010-01-01

    Colon cancer, the second leading cause of cancer-related mortality worldwide, originates from the malignant transformation of intestinal epithelial cells. The intestinal epithelium undergoes a highly organized process of rapid regeneration along the crypt-villus axis, characterized by proliferation, migration, differentiation and apoptosis, whose coordination is essential to maintaining the mucosal barrier. Disruption of these homeostatic processes predisposes cells to mutations in tumor suppressors or oncogenes, whose dysfunction provides transformed cells an evolutionary growth advantage. While sequences of genetic mutations at different stages along the neoplastic continuum have been established, little is known of the events initiating tumorigenesis prior to adenomatous polyposis coli (APC) mutations. Here, we examine a role for the corruption of homeostasis induced by silencing novel tumor suppressors, including the intestine-specific transcription factor CDX2 and its gene target guanylyl cyclase C (GCC), as early events predisposing cells to mutations in APC and other sequential genes that initiate colorectal cancer. CDX2 and GCC maintain homeostatic regeneration in the intestine by restricting cell proliferation, promoting cell maturation and adhesion, regulating cell migration and defending the intestinal barrier and genomic integrity. Elimination of CDX2 or GCC promotes intestinal tumor initiation and growth in aged mice, mice carrying APC mutations or mice exposed to carcinogens. The roles of CDX2 and GCC in suppressing intestinal tumorigenesis, universal disruption in their signaling through silencing of hormones driving GCC, and the uniform overexpression of GCC by tumors underscore the potential value of oral replacement with GCC ligands as targeted prevention and therapy for colorectal cancer. PMID:20592492

  14. A human skeletal overgrowth mutation increases maximal velocity and blocks desensitization of guanylyl cyclase-B☆

    Robinson, Jerid W.; Dickey, Deborah M.; Miura, Kohji; Michigami, Toshimi; Ozono, Keiichi; Potter, Lincoln R.

    2015-01-01

    C-type natriuretic peptide (CNP) increases long bone growth by stimulating guanylyl cyclase (GC)-B/NPR-B/NPR2. Recently, a Val to Met missense mutation at position 883 in the catalytic domain of GC-B was identified in humans with increased blood cGMP levels that cause abnormally long bones. Here, we determined how this mutation activates GC-B. In the absence of CNP, cGMP levels in cells expressing V883M-GC-B were increased more than 20 fold compared to cells expressing wild-type (WT)-GC-B, and the addition of CNP only further increased cGMP levels 2-fold. In the absence of CNP, maximal enzymatic activity (Vmax) of V883M-GC-B was increased 15-fold compared to WT-GC-B but the affinity of the enzymes for substrate as revealed by the Michaelis constant (Km) was unaffected. Surprisingly, CNP decreased the Km of V883M-GC-B 10-fold in a concentration dependent manner without increasing Vmax. Unlike the WT enzyme the Km reduction of V883M-GC-B did not require ATP. Unexpectedly, V883M-GC-B, but not WT-GC-B, failed to inactivate with time. Phosphorylation elevated but was not required for the activity increase associated with the mutation because the Val to Met substitution also activated a GC-B mutant lacking all known phosphorylation sites. We conclude that the V883M mutation increases maximal velocity in the absence of CNP, eliminates the requirement for ATP in the CNP-dependent Km reduction, and disrupts the normal inactivation process. PMID:23827346

  15. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  16. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling.

    Turek, Ilona; Gehring, Chris

    2016-06-01

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3',5'-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. PMID:26945740

  17. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu.

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  18. Diversity of squalene-hopene cyclases in a tropical carbonate-rich environment

    Leavitt, W. D.; Pearson, A.

    2007-12-01

    Hopanoids are isoprenoid lipids which derive primarily from bacteria and are ubiquitous in contemporary Earth surface environments. In the geologic record, hopanes found in sedimentary rocks are used as proxies to help decipher ancient biological communities. However, in contrast to the ubiquity of these lipid products, biosynthesis of hopanoids appears to be a relatively rare physiological trait among bacteria in complex environmental communities. We have recently estimated that fewer than one in ten bacterial cells in soils and fewer than one in twenty bacterial cells in the ocean contains the gene squalene-hopene cyclase (sqhC) [1]. Biosynthesis of hopanoids is rarer in natural communities than it is among species that have been propagated in pure culture [2]. Here we continue our previous work to survey the phylogeny and diversity of hopanoid producers using culture-independent methods. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analyzed previously [1]. One possible explanation is that hopanoid-producing strains of cyanobacteria are regionally localized. It has been suggested that throughout the long-term sedimentary record there is a correlation between 2-methylhopanoid index (a putative indicator of cyanobacterial biomass) and the global prevalence of shallow carbonate platform environments [3], and in previous work we did not analyze any such environments. To address this question we surveyed a land-sea gradient across the Bahamian island of San Salvador. Samples were taken from upland soil, a hypersaline lake, a tidal creek, and the shallow open ocean. The data are remarkably similar to our previous results: environmental sqhCs average Gen. Microbiol. 130, 1137-1150. [3] Summons, RE (personal communication).

  19. Characterization and phylogenetic epitope mapping of CD38 ADPR cyclase in the cynomolgus macaque

    Titti Fausto

    2004-09-01

    Full Text Available Abstract Background The CD38 transmembrane glycoprotein is an ADP-ribosyl cyclase that moonlights as a receptor in cells of the immune system. Both functions are independently implicated in numerous areas related to human health. This study originated from an inherent interest in studying CD38 in the cynomolgus monkey (Macaca fascicularis, a species closely related to humans that also represents a cogent animal model for the biomedical analysis of CD38. Results A cDNA was isolated from cynomolgus macaque peripheral blood leukocytes and is predicted to encode a type II membrane protein of 301 amino acids with 92% identity to human CD38. Both RT-PCR-mediated cDNA cloning and genomic DNA PCR surveying were possible with heterologous human CD38 primers, demonstrating the striking conservation of CD38 in these primates. Transfection of the cDNA coincided with: (i surface expression of cynomolgus macaque CD38 by immunofluorescence; (ii detection of ~42 and 84 kDa proteins by Western blot and (iii the appearance of ecto-enzymatic activity. Monoclonal antibodies were raised against the cynomolgus CD38 ectodomain and were either species-specific or cross-reactive with human CD38, in which case they were directed against a common disulfide-requiring conformational epitope that was mapped to the C-terminal disulfide loop. Conclusion This multi-faceted characterization of CD38 from cynomolgus macaque demonstrates its high genetic and biochemical similarities with human CD38 while the immunological comparison adds new insights into the dominant epitopes of the primate CD38 ectodomain. These results open new prospects for the biomedical and pharmacological investigations of this receptor-enzyme.

  20. A peptide against soluble guanylyl cyclase α1: a new approach to treating prostate cancer.

    Shuai Gao

    Full Text Available Among the many identified androgen-regulated genes, sGCα1 (soluble guanylyl cyclase α1 appears to play a pivotal role in mediating the pro-cancer effects of androgens and androgen receptor. The classical role for sGCα1 is to heterodimerize with the sGCβ1 subunit, forming sGC, the enzyme that mediates nitric oxide signaling by catalyzing the synthesis of cyclic guanosine monophosphate. Our published data show that sGCα1 can drive prostate cancer cell proliferation independent of hormone and provide cancer cells a pro-survival function, via a novel mechanism for p53 inhibition, both of which are independent of sGCβ1, NO, and cGMP. All of these properties make sGCα1 an important novel target for prostate cancer therapy. Thus, peptides were designed targeting sGCα1 with the aim of disrupting this protein's pro-cancer activities. One peptide (A-8R was determined to be strongly cytotoxic to prostate cancer cells, rapidly inducing apoptosis. Cytotoxicity was observed in both hormone-dependent and, significantly, hormone-refractory prostate cancer cells, opening the possibility that this peptide can be used to treat the usually lethal castration-resistant prostate cancer. In mouse xenograft studies, Peptide A-8R was able to stop tumor growth of not only hormone-dependent cells, but most importantly from hormone-independent cells. In addition, the mechanism of Peptide A cytotoxicity is generation of reactive oxygen species, which recently have been recognized as a major mode of action of important cancer drugs. Thus, this paper provides strong evidence that targeting an important AR-regulated gene is a new paradigm for effective prostate cancer therapy.

  1. Nitroxyl (HNO stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation.

    Eliane Q Lin

    Full Text Available BACKGROUND: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NO• attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP however has not been investigated. METHODS: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II in the presence and absence of the HNO donor Angeli's salt (sodium trioxodinitrate or B-type natriuretic peptide, BNP (all 1 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. RESULTS: We now demonstrate that Angeli's salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and β-myosin heavy chain expression. Angeli's salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation, as well as p38 mitogen-activated protein kinase (p38MAPK. The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli's salt were mimicked by BNP. We also demonstrate that the effects of Angeli's salt are specifically mediated by HNO (with no role for NO• or nitrite, with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP. CONCLUSIONS: Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.

  2. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating.

    Hurley, Matthew M; Maunze, Brian; Block, Megan E; Frenkel, Mogen M; Reilly, Michael J; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  3. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  4. Natriuretic peptide receptor-B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta.

    Drewett, J G; Fendly, B M; Garbers, D L; Lowe, D G

    1995-03-01

    The most potent known agonist for the natriuretic peptide receptor-B (NPR-B)/guanylyl cyclase-B is C-type natriuretic peptide (CNP). A homologous ligand-receptor system consists of atrial natriuretic peptide (ANP) and NPR-A/guanylyl cyclase-A. A third member of this family is NPR-C, a non-guanylyl cyclase receptor. Monoclonal antibodies were raised against NPR-B by immunizing mice with a purified receptor-IgG fusion protein consisting of the extracellular domain of NPR-B and the Fc portion of human IgG-gamma 1. One monoclonal antibody, 3G12, did not recognize NPR-A or NPR-C and bound to human and rat NPR-B. CNP binding to NPR-B and stimulation of cGMP synthesis were inhibited by 3G12. With cells isolated from either the media or adventitia layers of rat thoracic aorta, 3G12 did not interfere with ANP-stimulated cGMP synthesis, but it inhibited CNP-stimulated cGMP levels in cells from both layers. CNP (IC50 = 10 nM) and ANP (IC50 = 1 nM) caused relaxation of phenylephrine-contracted rat aortic rings. 3G12 caused a marked increase in the IC50 for CNP, from 10 nM to 140 nM, but failed to affect ANP-mediated relaxation. Therefore, our results for the first time demonstrate that CNP relaxes vascular smooth muscle by virtue of its binding to NPR-B. PMID:7876238

  5. The fission yeast git5 gene encodes a Gbeta subunit required for glucose-triggered adenylate cyclase activation.

    Landry, S; Pettit, M T; Apolinario, E; Hoffman, C. S.

    2000-01-01

    Fission yeast adenylate cyclase is activated by the gpa2 Galpha subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gbeta subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Galpha involved in the pheromone response pathway. While 43% identical to mammalian Gbeta's, the git5 protein lacks the amino-terminal coiled-coil found in other Gbeta subunits, yet...

  6. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  7. Tyrosine Phosphatase TpbA Controls Rugose Colony Formation in Pseudomonas aeruginosa by Dephosphorylating Diguanylate Cyclase TpbB

    Pu, Mingming; Wood, Thomas K.

    2010-01-01

    Tyrosine phosphatase TpbA in Pseudomonas aeruginosa PA14 is a negative regulator of the diguanylate cyclase TpbB. Inactivation of TpbA caused rugose colony morphology which is related to cell persistence in clinical infections. We show here that TpbA is a dual specific tyrosine phosphatase, that TpbB is phosphorylated, and that TpbA controls phosphorylation of TpbB at both Tyr and Ser/Thr residues in vivo as detected by Western blot analysis. In addition, TpbB is demonstrated to be a substrat...

  8. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.

    Rocha-Singh, K J; Honbo, N Y; Karliner, J S

    1991-01-01

    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by...

  9. Effect of cardiopulmonary bypass on beta adrenergic receptor-adenylate cyclase system on surfaces of peripheral lymphocytes.

    Luo, A; Tian, Y; Jin, S

    2000-01-01

    The experimental results showed that the level of CAMP, the ratio of cAPM to cGMP, IL-2R expression and IL-2 production in vitro in lymphocytes immediate and 2 weeks after cardiopulmonary bypass (CPB) were significantly lower than those before anesthetics in the patients undergoing cardiac surgery with CPB. These findings suggested that CPB could cause serious damage to adrenergic beta receptor-adenylate cyclase system on circulating lymphocytes surfaces, which might be one of the mechanisms resulting in immunosuppression after open heart surgery with CPB. PMID:12845765

  10. Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase.

    Tippetts, M T; Robertson, D L

    1988-01-01

    The Bacillus anthracis exotoxin is composed of a lethal factor, a protective antigen, and an edema factor (EF). EF is a calmodulin-dependent adenylate cyclase which elevates cyclic AMP levels within cells. The entire EF gene (cya) has been cloned in Escherichia coli, but EF gene expression by its own B. anthracis promoter could not be detected in E. coli. However, when the EF gene was placed downstream from the lac or the T7 promoter, enzymatically active EF was produced. The EF gene, like th...

  11. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  12. Androgen receptor isoforms in human prostatic cancer tissue and LNCaP cell line

    Shu-Jie XIA; Xiao-Da TANG; Qing-Zheng MA

    2001-01-01

    Aim: To investigate the androgen receptor (AR) isoform expressions in human prostatic cancer tissue and LNCaP cell line. Methods: With high resolution isoelectric focusing (IEF) method we demonstrated the different expressions of AR isoforms in human prostatic cancer tissues and LNCaP cell line. Results: Data were obtained from three prostatic cancer specimens and the LNCaP cell line. Three types of AR isoforms were detected with pI values at 6.5,6.0, and 5.3. For the 3 prostatic cancer specimens, 1 sample showed all the three types of AR isoforms, the second specimen expressed at 6.5 and 6.0, and the third failed to show any type of isoforms. The LNCaP cell line expressed all the three AR isoforms. Binding of 3H-dihydrotestosterone (3H-DHT) to these three isoforms was inhibited by the addition ofl00-fold excess of DHT or testosterone, while not by progesterone, oestradiol and diethylstilboestrol. Conclusion: The expression of AR isofonns is different in different prostate cancer tissues, which may be related to the difference in the effect of anti-androgen therapy in different patients.

  13. Dysregulation of miRNA isoform level at 5' end in Alzheimer's disease.

    Wang, Shengqin; Xu, Yuming; Li, Musheng; Tu, Jing; Lu, Zuhong

    2016-06-15

    Alzheimer's disease (AD) is the most common form of dementia, whose mechanism is still not yet fully understood. A miRNA-based signature method, commonly according to the changes of expression levels, is widely used for AD analysis in previous studies. Recently, miRNA isoforms called as isomiR variants, which is considered to play important biological roles, have been demonstrated as the applications of high throughput sequencing platforms. Here, we presented an entropy-based model to detect the miRNA isoform level at the 5' end, and found many miRNAs with significant changes of isoform levels between the early stage and the late stage of AD by the application of this model to the public data. The statistical significance of the overlap between isoform-level changed miRNAs and AD related miRNAs extracted from HMDD2 supports that these miRNA isoforms are not degradation products. Based on the most common isomiR seed analysis of isoform-level changed AD related miRNAs, the predicted targets are also found to be enriched for genes involved in transcriptional regulation and the nervous system. After comparing with the expression level based method, we detected that changes of 5' isoform levels are more stable than those of expression levels for AD related miRNA detecting. PMID:26899870

  14. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL isoforms.

    Christian Krintel

    Full Text Available BACKGROUND: Hormone-sensitive lipase (HSL is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa expressed in a tissue-dependent manner, where the predominant 84 kDa form in adipocytes is the most extensively studied. METHODOLOGY/PRINCIPAL FINDINGS: In this study we employed negative stain electron microscopy (EM to analyze the quarternary structure of the different HSL isoforms. The results show that all three isoforms adopt a head-to-head homodimeric organization, where each monomer contains two structural domains. We also used enzymatic assays to show that despite the variation in the size of the N-terminal domain all three isoforms exhibit similar enzymological properties with regard to psychrotolerance and protein kinase A (PKA-mediated phosphorylation and activation. CONCLUSIONS/SIGNIFICANCE: We present the first data on the quaternary structure and domain organization of the three HSL isoforms. We conclude that despite large differences in the size of the N-terminal, non-catalytic domain all three HSL isoforms exhibit the same three-dimensional architecture. Furthermore, the three HSL isoforms are very similar with regard to two unique enzymological characteristics of HSL, i.e., cold adaptation and PKA-mediated activation.

  15. The isolation of parvalbumin isoforms from the tail muscle of the American alligator (Alligator mississipiensis).

    Laney, E L; Shabanowitz, J; King, G; Hunt, D F; Nelson, D J

    1997-04-01

    Multiple parvalbumin isoforms have been detected in the tail (skeletal) muscle of the American alligator (Alligator mississipiensis). One of these isoforms (APV-1) has been highly purified and partially characterized. Protein purification involved mainly gel filtration and anion exchange chromatography, and characterization included gel electrophoresis, amino acid composition analysis, metal ion analysis, MALDI-TOF and ESI mass spectrometry, ultraviolet and fluorescence spectroscopy, and one- and two-dimensional 500 MHz proton NMR spectroscopy. The alligator isoforms are rich in phenylalanine and deficient in the other aromatic residues as is typical for parvalbumins. In fact, the one highly purified isoform that forms the basis of this study has only phenyl-alanine as an aromatic residue. Ion exchange chromatography further indicates that this isoform has a relatively high isoelectric point (pl approximately 5.0), indicating that it is an alpha-lineage parvalbumin. This alligator parvalbumin isoform is unusual in that it has an atypically high Ca2+ content (almost 3.0 mole of Ca2+ per mole of protein) following purification, a fact supported by terbium fluorescence titration experiments. Preliminary comparative analysis of the highly purified alligator parvalbumin isoform (in the Ca2-loaded state) by two-dimensional 1H-NMR (2D 1H TOCSY and 2D 1H NOESY) indicates that there is considerable similarity in structure between the alligator protein and a homologous protein obtained from the silver hake (a saltwater fish species). PMID:9076974

  16. Isoform-specific upregulation of palladin in human and murine pancreas tumors.

    Silvia M Goicoechea

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is a lethal disease with a characteristic pattern of early metastasis, which is driving a search for biomarkers that can be used to detect the cancer at an early stage. Recently, the actin-associated protein palladin was identified as a candidate biomarker when it was shown that palladin is mutated in a rare inherited form of PDA, and overexpressed in many sporadic pancreas tumors and premalignant precursors. In this study, we analyzed the expression of palladin isoforms in murine and human PDA and explored palladin's potential use in diagnosing PDA. We performed immunohistochemistry and immunoblot analyses on patient samples and tumor-derived cells using an isoform-selective monoclonal antibody and a pan-palladin polyclonal antibody. Immunoblot and real-time quantitative reverse transcription-PCR were used to quantify palladin mRNA levels in human samples. We show that there are two major palladin isoforms expressed in pancreas: 65 and 85-90 kDa. The 65 kDa isoform is expressed in both normal and neoplastic ductal epithelial cells. The 85-90 kDa palladin isoform is highly overexpressed in tumor-associated fibroblasts (TAFs in both primary and metastatic tumors compared to normal pancreas, in samples obtained from either human patients or genetically engineered mice. In tumor-derived cultured cells, expression of palladin isoforms follows cell-type specific patterns, with the 85-90 kDa isoform in TAFs, and the 65 kDa isoform predominating in normal and neoplastic epithelial cells. These results suggest that upregulation of 85-90 kDa palladin isoform may play a role in the establishment of the TAF phenotype, and thus in the formation of a desmoplastic tumor microenvironment. Thus, palladin may have a potential use in the early diagnosis of PDA and may have much broader significance in understanding metastatic behavior.

  17. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  18. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. PMID:23152195

  19. PML isoforms in response to arsenic: high-resolution analysis of PML body structure and degradation.

    Hands, Katherine J; Cuchet-Lourenco, Delphine; Everett, Roger D; Hay, Ronald T

    2014-01-15

    Arsenic is a clinically effective treatment for acute promyelocytic leukaemia (APL) in which the promyelocytic leukaemia (PML) protein is fused to retinoic receptor alpha (RARα). PML-RARα is degraded by the proteasome by a SUMO-dependent, ubiquitin-mediated pathway in response to arsenic treatment, curing the disease. Six major PML isoforms are expressed as a result of alternative splicing, each of which encodes a unique C-terminal region. Using a system in which only a single EYFP-linked PML isoform is expressed, we demonstrate that PMLI, PMLII and PMLVI accumulate in the cytoplasm following arsenic treatment, whereas PMLIII, PMLIV and PMLV do not. 3D structured illumination was used to obtain super-resolution images of PML bodies, revealing spherical shells of PML along with associated SUMO. Arsenic treatment results in dramatic isoform-specific changes to PML body ultrastructure. After extended arsenic treatment most PML isoforms are degraded, leaving SUMO at the core of the nuclear bodies. A high-content imaging assay identifies PMLV as the isoform most readily degraded following arsenic treatment, and PMLIV as relatively resistant to degradation. Immunoprecipitation analysis demonstrates that all PML isoforms are modified by SUMO and ubiquitin after arsenic treatment, and by using siRNA, we demonstrate that arsenic-induced degradation of all PML isoforms is dependent on the ubiquitin E3 ligase RNF4. Intriguingly, depletion of RNF4 results in marked accumulation of PMLV, suggesting that this isoform is an optimal substrate for RNF4. Thus the variable C-terminal domain influences the rate and location of degradation of PML isoforms following arsenic treatment. PMID:24190887

  20. Molecular Cloning and Characterization of an Allene Oxide Cyclase Gene Associated with Fiber Strength in Cotton

    WANG Li-man; ZHU You-min; TONG Xiang-chao; HU Wen-jing; CAI Cai-ping; GUO Wang-zhen

    2014-01-01

    Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion of allene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST;GenBank accession no. ES792958) was investigated that exhibited signiifcant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during ifber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identiifed ORFs were conifrmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC;GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identiifed in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii. qRT-PCR showed that the GhAOC transcript was abundant in cotton ifber tissues from 8 to 23 days post anthesis (DPA), and the expression proifles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-speciifc single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a ifber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with ifber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton ifber development, especially in secondary cell wall thickening.

  1. The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers

    Wong, Aloysius Tze

    2013-07-08

    Background: Second messengers link external cues to complex physiological responses. One such messenger, 3\\',5\\'-cyclic guanosine monophosphate (cGMP), has been shown to play a key role in many physiological responses in plants. However, in higher plants, guanylyl cyclases (GCs), enzymes that generate cGMP from guanosine-5\\'-triphosphate (GTP) have remained elusive until recently. GC search motifs constructed from the alignment of known GCs catalytic centers form vertebrates and lower eukaryotes have led to the identification of a number of plant GCs that have been characterized in vitro and in vivo.Presentation of the hypothesis.Recently characterized GCs in Arabidopsis thaliana contributed to the development of search parameters that can identify novel candidate GCs in plants. We hypothesize that there are still a substantial number (> 40) of multi-domain molecules with potentially functional GC catalytic centers in plants that remain to be discovered and characterized. Testing the hypothesis. The hypothesis can be tested, firstly, by computational methods constructing 3D models of selected GC candidates using available crystal structures as templates. Homology modeling must include substrate docking that can provide support for the structural feasibility of the GC catalytic centers in those candidates. Secondly, recombinant peptides containing the GC domain need to be tested in in vitro GC assays such as the enzyme-linked immune-sorbent assay (ELISA) and/or in mass spectrometry based cGMP assays. In addition, quantification of in vivo cGMP transients with fluorescent cGMP-reporter assays in wild-type or selected mutants will help to elucidate the biological role of novel GCs.Implications of the hypothesis.If it turns out that plants do harbor a large number of functional GC domains as part of multi-domain enzymes, then major new insights will be gained into the complex signal transduction pathways that link cGMP to fundamental processes such as ion transport

  2. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    Adrenalectomy caused a large increase in the number of β-adrenergic binding sites on liver plasma membranes as measured by 125I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for 3H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in β-adrenergic mediated action was much less than what may be expected as a result of the increase in the β-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 μM) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory α2-adrenergic receptors in adrenalectomy is responsible for the muted β-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 μM), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The α-adrenergic antagonists had no significant effect on the β-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the β-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of α-adrenergic receptors

  3. Guanylate cyclase C deficiency causes severe inflammation in a murine model of spontaneous colitis.

    Eleana Harmel-Laws

    Full Text Available BACKGROUND: Guanylate Cyclase C (GC-C; Gucy2c is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses. METHODS: We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C(+/+ and GC-C(-/- mice were bred with interleukin (IL-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10(-/-, GC-C(+/+IL-10(-/- and GC-C(-/-IL-10(-/- mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line. RESULTS: Relative to GC-C(+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C(-/- mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C(-/-IL-10(-/- animals was significantly more severe relative to GC-C(+/+IL-10(-/- mice. Unlike GC-C(+/+IL-10(-/- controls, colon pathology in GC-C(-/-IL-10(-/- animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C(-/-IL-10(-/- mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells. CONCLUSIONS: The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by

  4. Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae

    Cruz Diana P

    2012-07-01

    Full Text Available Abstract Background Klebsiella pneumoniae can be found in environmental habitats as well as in hospital settings where it is commonly associated with nosocomial infections. One of the factors that contribute to virulence is its capacity to form biofilms on diverse biotic and abiotic surfaces. The second messenger Bis-(3’-5’-cyclic dimeric GMP (c-di-GMP is a ubiquitous signal in bacteria that controls biofilm formation as well as several other cellular processes. The cellular levels of this messenger are controlled by c-di-GMP synthesis and degradation catalyzed by diguanylate cyclase (DGC and phophodiesterase (PDE enzymes, respectively. Many bacteria contain multiple copies of these proteins with diverse organizational structure that highlight the complex regulatory mechanisms of this signaling network. This work was undertaken to identify DGCs and PDEs and analyze the domain structure of these proteins in K. pneumoniae. Results A search for conserved GGDEF and EAL domains in three sequenced K. pneumoniae genomes showed that there were multiple copies of GGDEF and EAL containing proteins. Both single domain and hybrid GGDEF proteins were identified: 21 in K. pneumoniae Kp342, 18 in K. pneumoniae MGH 78578 and 17 in K. pneumoniae NTUH-K2044. The majority had only the GGDEF domain, most with the GGEEF motif, and hybrid proteins containing both GGDEF and EAL domains were also found. The I site for allosteric control was identified only in single GGDEF domain proteins and not in hybrid proteins. EAL-only proteins, containing either intact or degenerate domains, were also identified: 15 in Kp342, 15 in MGH 78578 and 10 in NTUH-K2044. Several input sensory domains and transmembrane segments were identified, which together indicate complex regulatory circuits that in many cases can be membrane associated. Conclusions The comparative analysis of proteins containing GGDEF/EAL domains in K. pneumoniae showed that most copies were shared among the

  5. Membrane Guanylate Cyclase, A Multimodal Transduction Machine: History, Present and Future Directions

    Rameshwar K Sharma

    2014-07-01

    Full Text Available A sequel to these authors’ earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC from its origin to the year 2010, this article contains 13 parts. The first is HISTORICAL and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its BIOCHEMICAL IDENTITY. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its EXPANSION. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of PHOTOTRANSDUCTION. Parts 4 to 7 cover its BIOCHEMISTRY and PHYSIOLOGY. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Part 8 demonstrates how this knowledge begins to be TRANSLATED into the diagnosis and providing the molecular definition of retinal dystrophies. Part 9 discusses a striking property of ROS-GC where it becomes a [Ca2+]i bimodal switch and transcends its signaling role in other neural transduction processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cycles activator, the S100B protein, is made. It extends the role of ROS-GC transduction system beyond the photoreceptor cells to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in Part 10, discovery of ANOTHER CD-GCAP, NC, is made and its linkage with signaling of the inner plexiform layer neurons is established. Part 11 discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the

  6. Elevation of soluble guanylate cyclase suppresses proliferation and survival of human breast cancer cells.

    Hui-Chin Wen

    Full Text Available Nitric oxide (NO is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC, composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells.

  7. Cloning and Functional Analysis of Lycopeneε-Cyclase (IbLCYe) Gene from Sweetpotato, Ipomoea batatas (L.) Lam

    YU Ling; ZHAI Hong; CHEN Wei; HE Shao-zhen; LIU Qing-chang

    2013-01-01

    This paper reported firstly successful cloning of lycopeneε-cyclase (IbLCYe) gene from sweetpotato, Ipomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), IbLCYe gene was cloned from sweetpotato cv. Nongdafu 14 with high carotenoid content. The 1 805 bp cDNA sequence of IbLCYe gene contained a 1 236 bp open reading frame (ORF) encoding a 411 amino acids polypeptide with a molecular weight of 47 kDa and an isoelectric point (pI) of 6.95. IbLCYe protein contained one potential lycopeneε-cyclase domain and one potential FAD (flavinadenine dinucleotide)/NAD(P) (nicotinamide adenine dinucleotide phosphate)-binding domain, indicating that this protein shares the typical characteristics of LCYe proteins. The gDNA of IbLCYe gene was 4 029 bp and deduced to contain 5 introns and 6 exons. Real-time quantitative PCR analysis revealed that the expression level of IbLCYe gene was significantly higher in the storage roots of Nongdafu 14 than those in the leaves and stems. Transgenic tobacco (cv. Wisconsin 38) expressing IbLCYe gene accumulated significantly moreβ-carotene compared to the untransformed control plants. These results showed that IbLCYe gene has an important function for the accumulation of carotenoids of sweetpotato.

  8. A Synaptotagmin Isoform Switch during the Development of an Identified CNS Synapse.

    Kochubey, Olexiy; Babai, Norbert; Schneggenburger, Ralf

    2016-06-01

    Various Synaptotagmin (Syt) isoform genes are found in mammals, but it is unknown whether Syts can function redundantly in a given nerve terminal, or whether isoforms can be switched during the development of a nerve terminal. Here, we investigated the possibility of a developmental Syt isoform switch using the calyx of Held as a model synapse. At mature calyx synapses, fast Ca(2+)-driven transmitter release depended entirely on Syt2, but the release phenotype of Syt2 knockout (KO) mice was weaker at immature calyces, and absent at pre-calyceal synapses early postnatally. Instead, conditional genetic inactivation shows that Syt1 mediates fast release at pre-calyceal synapses, as well as a fast release component resistant to Syt2 deletion in immature calyces. This demonstrates a developmental Syt1-Syt2 isoform switch at an identified synapse, a mechanism that could fine-tune the speed, reliability, and plasticity of transmitter release at fast releasing CNS synapses. PMID:27210552

  9. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B;

    2015-01-01

    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely...... understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each...... determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with...

  10. Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis.

    Zhang, Wei; Chang, Jae-Woong; Lin, Lilong; Minn, Kay; Wu, Baolin; Chien, Jeremy; Yong, Jeongsik; Zheng, Hui; Kuang, Rui

    2015-12-01

    High-throughput mRNA sequencing (RNA-Seq) is widely used for transcript quantification of gene isoforms. Since RNA-Seq data alone is often not sufficient to accurately identify the read origins from the isoforms for quantification, we propose to explore protein domain-domain interactions as prior knowledge for integrative analysis with RNA-Seq data. We introduce a Network-based method for RNA-Seq-based Transcript Quantification (Net-RSTQ) to integrate protein domain-domain interaction network with short read alignments for transcript abundance estimation. Based on our observation that the abundances of the neighboring isoforms by domain-domain interactions in the network are positively correlated, Net-RSTQ models the expression of the neighboring transcripts as Dirichlet priors on the likelihood of the observed read alignments against the transcripts in one gene. The transcript abundances of all the genes are then jointly estimated with alternating optimization of multiple EM problems. In simulation Net-RSTQ effectively improved isoform transcript quantifications when isoform co-expressions correlate with their interactions. qRT-PCR results on 25 multi-isoform genes in a stem cell line, an ovarian cancer cell line, and a breast cancer cell line also showed that Net-RSTQ estimated more consistent isoform proportions with RNA-Seq data. In the experiments on the RNA-Seq data in The Cancer Genome Atlas (TCGA), the transcript abundances estimated by Net-RSTQ are more informative for patient sample classification of ovarian cancer, breast cancer and lung cancer. All experimental results collectively support that Net-RSTQ is a promising approach for isoform quantification. Net-RSTQ toolbox is available at http://compbio.cs.umn.edu/Net-RSTQ/. PMID:26699225

  11. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2007-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 n...

  12. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches

    Velten, Brandy P.; Welch, Kenneth C.

    2014-01-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25–60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to...

  13. Sodium pump isoform specificity for the digitalis-like factor isolated from human peritoneal dialysate.

    Tao, Q F; Hollenberg, N K; Price, D A; Graves, S W

    1997-03-01

    We have isolated a labile, specific sodium pump inhibitor or digitalis-like factor from the peritoneal dialysate of volume-expanded renal failure patients whose levels correlated closely with volume status and blood pressure. This study characterizes the inhibitory profile of this agent compared with that of ouabain against the three alpha-isoforms of the sodium pump. We prepared microsomal Na,K-ATPase from rat tissues representing the highest proportion of one of the alpha-isoforms. Both Northern and Western blot analyses confirmed that kidney had predominantly the alpha1-isoform, skeletal muscle the alpha2-isoform, and fetal brain the alpha3-isoform. Ouabain (5 x 10(-6) mol/L) produced little inhibition of kidney Na,K-ATPase (3.4+/-2.0%) but significant inhibition of skeletal muscle (37.2+/-3.7%, P<.001) and fetal brain (38.8+/-3.5%, P<.001) activity. In contrast, the labile digitalis-like factor, causing comparable inhibition of fetal brain Na,K-ATPase activity (33.3+/-4.7%), produced markedly greater inhibition of kidney (42.5+/-5.6%, P<.001) and moderately greater inhibition of skeletal muscle pump activity (57.7+/-6.3%, P<.05). In addition, the labile digitalis-like factor produced a marked concentration-dependent inhibition of the alpha2- and alpha3-isoforms (r=.79, P=.00005). Experiments combining the labile digitalis-like factor and ouabain confirmed that digitalis-like factor, unlike ouabain, was an effective inhibitor of all three isoforms in rat, in particular alpha2. The different pattern of isoform sensitivity displayed by the labile digitalis-like factor and ouabain further differentiates the two agents and raises some interesting possibilities about the functional implications of the endogenous factor. PMID:9052901

  14. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice

    Ishimoto, Takuji; Lanaspa, Miguel A.; MyPhuong T Le; Garcia, Gabriela E.; Diggle, Christine P; MacLean, Paul S.; Jackman, Matthew R.; Asipu, Aruna; Roncal-Jimenez, Carlos A.; Kosugi, Tomoki; Rivard, Christopher J.; Maruyama, Shoichi; Rodriguez-Iturbe, Bernardo; Sánchez-Lozada, Laura G.; Bonthron, David T.

    2012-01-01

    Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Fructose intake also causes features of metabolic syndrome in laboratory animals and humans. The first enzyme in fructose metabolism is fructokinase, which exists as two isoforms, A and C. Here we show that fructose-induced metabolic syndrome is prevented in mice lacking both isoforms but is exacerbated in mice lacking fructokinase A. Fructokinase C is expr...

  15. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  16. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    Niels Jacob Aachmann-Andersen

    Full Text Available The membrane-assisted isoform immunoassay (MAIIA quantitates erythropoietin (EPO isoforms as percentages of migrated isoforms (PMI. We evaluated the effect of recombinant human EPO (rhEPO on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13; high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13; or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3 % (mean (SD. High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2% (p<0.00001 and 45.2 (7.3% (p<0.00001. Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8% (p<0.00001 and 46.1 (10.4% (p<0.00001. In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4% (p=0.029; low-dose Epoetin beta: 73.1 (17.8% (p=0.039. In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  17. Expression of mdr isoforms in mice during estrous cycle and under hormone stimulation

    Marion Schiengold; Lavínia Schwantes; Ribeiro, Maria F; Nívia Lothhammer; Gonzalez, Tatiana P.; Jose Artur Bogo Chies; Nardi, Nance B

    2006-01-01

    The multidrug resistance (MDR) phenotype is associated with the expression of P-glycoprotein (Pgp), coded by the multigenic mdr family. Mice present the isoforms mdr1 and mdr3, which are responsible for multidrug resistance, and mdr2, that is involved in the transport of phospholipids. mdr1 expression has more recently been associated also with the secretion of steroid hormones. This work presents an RT-PCR analysis of the expression of mdr isoforms, in several organs of mice during different...

  18. HIF1α isoforms in benign and malignant prostate tissue and their correlation to neuroendocrine differentiation

    Neuroendocrine (NE) differentiation in prostate cancer has been correlated with a poor prognosis and hormone refractory disease. In a previous report, we demonstrated the presence of immunoreactive cytoplasmic hypoxia inducible factor 1α (HIF1α), in both benign and malignant NE prostate cells. HIF1α and HIF1β are two subunits of HIF1, a transcription factor important for angiogenesis. The aim of this study was to elucidate whether the cytoplasmic stabilization of HIF1α in androgen independent NE differentiated prostate cancer is due to the presence of certain HIF1α isoforms. We studied the HIF1α isoforms present in 8 cases of benign prostate hyperplasia (BPH) and 43 cases of prostate cancer with and without NE differentiation using RT-PCR, sequencing analysis, immunohistochemistry and in situ hybridization. We identified multiple isoforms in both benign and malignant prostate tissues. One of these isoforms, HIF1α1.2, which was previously reported to be testis specific, was found in 86% of NE-differentiated prostate tumors, 92% of HIF1α immunoreactive prostate tumors and 100% of cases of benign prostate hyperplasia. Immunohistochemistry and in situ hybridization results showed that this isoform corresponds to the cytoplasmic HIF1α present in androgen-independent NE cells of benign and malignant prostate tissue and co-localizes with immunoreactive cytoplasmic HIF1β. Our results indicate that the cytoplasmic stabilization of HIF1α in NE-differentiated cells in benign and malignant prostate tissue is due to presence of an HIF1α isoform, HIF1α1.2. Co-localization of this isoform with HIF1β indicates that the HIF1α1.2 isoform might sequester HIF1β in the cytoplasm

  19. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    Shaon Naskar; Kaberi Datta; Arkadeep Mitra; Kanchan Pathak; Ritwik Datta; Trisha Bansal; Sagartirtha Sarkar

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week ...

  20. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma

    Guil-Luna, Silvia; Stenvang, Jan; Brünner, Nils; De Andrés, Francisco Javier; Rollón, Eva; Domingo, Víctor; Sánchez-Céspedes, Raquel; Millán, Yolanda; Mulas, Juana Martín de las

    2014-01-01

    Background Progesterone receptors play a key role in the development of canine mammary tumours, and recent research has focussed on their possible value as therapeutic targets using antiprogestins. Cloning and sequencing of the progesterone receptor gene has shown that the receptor has two isoforms, A and B, transcribed from a single gene. Experimental studies in human breast cancer suggest that the differential expression of progesterone receptor isoforms has implications for hormone therapy...

  1. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Zubov, Eugene O.; Nikolaeva, Olga P.; Kurganov, Boris I.; Dmitrii I. Levitsky; Markov, Denis I.

    2010-01-01

    We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calor...

  2. Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics

    Ching-Wei Chang; Sanjay Kumar

    2015-01-01

    While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual ...

  3. Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis

    Arnoštová, P.; Jedelsky, P. L.; Soukup, Tomáš; Žurmanová, J.

    2011-01-01

    Roč. 2011, - (2011), e634253. ISSN 1110-7243 R&D Projects: GA AV ČR IAAX01110901; GA ČR(CZ) GA304/08/0256 Institutional research plan: CEZ:AV0Z50110509 Keywords : cardiac MyHC isoforms * MyHC isoform mobility * effect of thyroid hormones * mass spectrometry * SDS-PAGE and western blot Subject RIV: ED - Physiology Impact factor: 2.436, year: 2011

  4. Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk

    Jacobsen, Stine; Niewold, T.A.; Kornalijnslijper, E.;

    2005-01-01

    The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis.......The aim of the present study was to characterise the serum amyloid A (SAA) response to intramammary inoculation of Escherichia coli and to examine the distribution of hepatically and extrahepatically pruduced SAA isoforms in plasma and milk fra cows with mastitis....

  5. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids

    Park, Woo Jung; Kothapalli, Kumar S. D.; Reardon, Holly T; Lawrence, Peter; Qian, Shu-Bing; Brenna, J. Thomas

    2012-01-01

    The fatty acid desaturase (FADS) genes code for the rate-limiting enzymes required for the biosynthesis of long-chain polyunsaturated fatty acids (LCPUFA). Here we report discovery and function of a novel FADS1 splice variant. FADS1 alternative transcript 1 (FADS1AT1) enhances desaturation of FADS2, leading to increased production of eicosanoid precursors, the first case of an isoform modulating the enzymatic activity encoded by another gene. Multiple protein isoforms were detected in primate...

  6. Synthesis of acyclic nucleoside phosphonates bearing (N-methyl)anthraniloyl substituent as potential inhibitors of adenylate cyclase toxin from Bordetella Pertussis

    Břehová, Petra; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Janeba, Zlatko

    Praha: Czech Chemical Society, 2015. s. 61. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * adenylate cyclase toxin * prodrugs Subject RIV: CC - Organic Chemistry

  7. Peculiarities of functional state of myocardium adenylate cyclase system in euthyroid and hyperthyroid rats after staying in the region of radioactive contamination

    The purpose of the investigation was the analysis of effects of low dose irradiation in conditions of radioactive contamination on the activity of adenylate cyclase system of cardio myocytes of normal and hyperthyroid rats. 4-5 months age female rats staying for 1 month on the territory of water-meadow of Pripyat' river (exposed dose rate 1,0 mR/hour) received absorbed radiation dose 1,1 mSv. Hyperthyroid state was achieved by injection of 0,15 mg of thyroxine per kg of body weight with food. Decrease of stimulatory effects of catecholamines and fluorine ions on adenylate cyclase of animals from radio contaminated region was found. This indicates the inhibition of receptor- and G-protein-mediated enzyme activation. Hyperthyroidism was the reason of increasing of catecholamine-dependent and decreasing of fluorine ions-dependent stimulation of adenylate cyclase. Only the changes of adenylate cyclase activity regulated by G-protein in hyperthyroid rats from radio contaminated regions were observed

  8. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis

    Česnek, Michal; Jansa, Petr; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Brust, T. F.; Pávek, P.; Trejtnar, F.; Watts, V. J.; Janeba, Zlatko

    2015-01-01

    Roč. 10, č. 8 (2015), s. 1351-1364. ISSN 1860-7179 R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : adenylate cyclase toxin * bisamidates * Bordetella pertussis * nucleosides * phosphonates Subject RIV: CC - Organic Chemistry Impact factor: 2.968, year: 2014

  9. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms.

    Sundarapandian Thangapandian

    Full Text Available Histone deacetylases (HDACs have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E in HDAC10 and leucine (L in HDAC 11 based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.

  10. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian;

    2014-01-01

    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross......-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N......-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on...

  11. Distribution of tropomyosin isoforms in different types of single fibers isolated from bovine skeletal muscles.

    Oe, M; Ojima, K; Nakajima, I; Chikuni, K; Shibata, M; Muroya, S

    2016-08-01

    To clarify the relationship between myosin heavy chain (MyHC) isoforms and tropomyosin (TPM) isoforms in single fibers, 64 single fibers were isolated from each of bovine three muscles (masseter, semispinalis and semitendinosus). mRNA expressions of MyHC and TPM isoforms were analyzed by real-time PCR. All single fibers from the masseter expressed MyHC-slow. The fibers from the semispinalis expressed both MyHC-slow and 2a. The fibers from the semitendinosus expressed MyHC-slow, 2a and 2x. TPM-1 and TPM-2 were co-expressed in 2a and 2x type fibers, and TPM-2 and TPM-3 were co-expressed in slow type fibers. The expression pattern of TPM isoforms in each fiber type was similar between fibers isolated from different muscles. These results suggest that TPM-1 and TPM-3 isoforms correspond to the function of 2a or 2x type fibers and slow type fibers, respectively, with TPM-2 in common. Furthermore, the patterns of MyHC and TPM isoform combinations did not vary among single fibers isolated from the individual muscles examined. PMID:27105153

  12. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  13. Expression of mdr isoforms in mice during estrous cycle and under hormone stimulation

    Marion Schiengold

    2006-01-01

    Full Text Available The multidrug resistance (MDR phenotype is associated with the expression of P-glycoprotein (Pgp, coded by the multigenic mdr family. Mice present the isoforms mdr1 and mdr3, which are responsible for multidrug resistance, and mdr2, that is involved in the transport of phospholipids. mdr1 expression has more recently been associated also with the secretion of steroid hormones. This work presents an RT-PCR analysis of the expression of mdr isoforms, in several organs of mice during different phases of the estrous cycle. Additionally, females were ovariectomized, submitted to different hormone treatments, and their uterus was analyzed for the expression of mdr isoforms. The results show that in the adrenal gland and ovaries mdr1 is the main isoform during proestrus, and that progesterone or a combination of progesterone and estrogen induce the expression of all mdr isoforms in the uterus of ovariectomized females. We suggest that the functions of mdr1 and mdr3 are overlapping, that mdr3 may be the more efficient isoform in the detoxification function, and that mdr1 may be more closely related to the secretion of steroid hormones.

  14. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate

    To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10-2H3,1-3H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed

  15. Molecular characterization of human thyroid hormone receptor β isoform 4.

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus. PMID:26513165

  16. Hyphenated techniques for the characterization and quantification of metallothionein isoforms

    Prange, Andreas; Schaumloeffel, Dirk [GKSS Research Center, Institute for Coastal Research/Physical and Chemical Analysis, Max-Planck-Strasse, 21502 Geesthacht (Germany)

    2002-07-01

    Recent developments in the coupling of highly selective separation techniques such as capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) to element-specific and molecule-specific detectors, such as inductively-coupled plasma mass spectrometry (ICP-MS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) for the characterization and quantification of metallothioneins (MTs) are critically reviewed and discussed. This review gives an update based on the literature over the last five years. The coupling of CE to ICP-MS is especially highlighted. As a result of progress in new interface technologies for CE-ICP-MS, research topics presented in the literature are changing from ''the characterization of interfaces by metallothioneins'' to the ''characterization of metallothioneins by CE-ICP-MS''. New applications of CE-ICP-MS to the analysis of MTs in real samples are summarized. The potential of the on-line isotope dilution technique for the quantification of MTs and for the determination of the stoichiometric composition of metalloprotein complexes is discussed. Furthermore, a selection of relevant papers dealing with HPLC-ICP-MS for MT analysis are summarized and compared to those dealing with CE-ICP-MS. In particular, the use of size-exclusion (SE)-HPLC as a preliminary separation step for metallothioneins in real samples prior to further chromatographic or electrophoretic separations is considered. Additionally, the application of electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) for the identification of metallothionein isoforms following electrophoretic or chromatographic separation is discussed. (orig.)

  17. Mycobacterium tuberculosis Rv3586 (DacA is a diadenylate cyclase that converts ATP or ADP into c-di-AMP.

    Yinlan Bai

    Full Text Available Cyclic diguanosine monophosphate (c-di-GMP and cyclic diadenosine monophosphate (c-di-AMP are recently identified signaling molecules. c-di-GMP has been shown to play important roles in bacterial pathogenesis, whereas information about c-di-AMP remains very limited. Mycobacterium tuberculosis Rv3586 (DacA, which is an ortholog of Bacillus subtilis DisA, is a putative diadenylate cyclase. In this study, we determined the enzymatic activity of DacA in vitro using high-performance liquid chromatography (HPLC, mass spectrometry (MS and thin layer chromatography (TLC. Our results showed that DacA was mainly a diadenylate cyclase, which resembles DisA. In addition, DacA also exhibited residual ATPase and ADPase in vitro. Among the potential substrates tested, DacA was able to utilize both ATP and ADP, but not AMP, pApA, c-di-AMP or GTP. By using gel filtration and analytical ultracentrifugation, we further demonstrated that DacA existed as an octamer, with the N-terminal domain contributing to tetramerization and the C-terminal domain providing additional dimerization. Both the N-terminal and the C-terminal domains were essential for the DacA's enzymatically active conformation. The diadenylate cyclase activity of DacA was dependent on divalent metal ions such as Mg(2+, Mn(2+ or Co(2+. DacA was more active at a basic pH rather than at an acidic pH. The conserved RHR motif in DacA was essential for interacting with ATP, and mutation of this motif to AAA completely abolished DacA's diadenylate cyclase activity. These results provide the molecular basis for designating DacA as a diadenylate cyclase. Our future studies will explore the biological function of this enzyme in M. tuberculosis.

  18. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity. PMID:22383530

  19. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  20. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

    Scheib, Ulrike; Stehfest, Katja; Gee, Christine E; Körschen, Heinz G; Fudim, Roman; Oertner, Thomas G; Hegemann, Peter

    2015-08-11

    Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences. PMID:26268609

  1. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro

    Mulaudzi, Takalani

    2011-09-01

    While there is evidence of nitric oxide (NO)-dependent signalling via the second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) in plants, guanylate cyclases (GCs), enzymes that catalyse the formation of cGMP from guanosine 5′-triphosphate (GTP) have until recently remained elusive and none of the candidates identified to-date are NO-dependent. Using both a GC and heme-binding domain specific (H-NOX) search motif, we have identified an Arabidopsis flavin monooxygenase (At1g62580) and shown electrochemically that it binds NO, has a higher affinity for NO than for O 2 and that this molecule can generate cGMP from GTP in vitro in an NO-dependent manner. © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum

    Liu Shuyang

    2012-08-01

    Full Text Available Abstract Background The efficacy of entomopathogenic fungi in pest control is mainly affected by various adverse environmental factors, such as heat shock and UV-B radiation, and by responses of the host insect, such as oxidative stress, osmotic stress and fever. In this study, an adenylate cyclase gene (MaAC was cloned from the locust-specific entomopathogenic fungus, Metarhizium acridum, which is homologous to various fungal adenylate cyclase genes. RNA silencing was adapted to analyze the role of MaAC in virulence and tolerance to adverse environmental and host insect factors. Results Compared with the wild type, the vegetative growth of the RNAi mutant was decreased in PD (potato dextrose medium, Czapek-dox and PDA plates, respectively, demonstrating that MaAC affected vegetative growth. The cAMP levels were also reduced in PD liquid culture, and exogenous cAMP restored the growth of RNAi mutants. These findings suggested that MaAC is involved in cAMP synthesis. The knockdown of MaAC by RNAi led to a reduction in virulence after injection or topical inoculation. Furthermore, the RNAi mutant grew much slower than the wild type in the haemolymph of locust in vitro and in vivo, thus demonstrating that MaAC affects the virulence of M. acridum via fungal growth inside the host locust. A plate assay indicated that the tolerances of the MaAC RNAi mutant under oxidative stress, osmotic stress, heat shock and UV-B radiation was decreased compared with the wild type. Conclusion MaAC is required for virulence and tolerance to oxidative stress, osmotic stress, heat shock and UV-B radiation. MaAC affects fungal virulence via vegetative growth inside the insect and tolerance against oxidative stress, osmotic stress and locust fever.

  3. Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana.

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Li, Zhaodi; Wu, Jiang; Josine, Tchouopou Lontchi; Wang, Yurong

    2016-01-15

    Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase gene (Lcε-LYC) from Lycium chinense (L. chinense), a deciduous woody perennial halophyte growing in various environmental conditions. The Lcε-LYC gene has an ORF of 1569bp encoding a protein of 522 aa. The deduced amino acid sequence of Lcε-LYC gene has higher homology with LycEs in other plants, such as Nicotiana tabacum and Solanum tuberosum. When L. chinense was exposed to chilling stress, relative expression of Lcε-LYC increased. To study the protective role of Lcε-LYC against chilling stress, we overexpressed the Lcε-LYC gene in Arabidopsis thaliana. Lcε-LYC overexpression led to an increase of lutein accumulation in transgenic A. thaliana, and the content of lutein decreased when transgenics were under cold conditions. In addition, the transgenic plants under chilling stress displayed higher activities of superoxide dismutase (SOD) and peroxidase (POD) and less H2O2 and malondialdehyde (MDA) than the control. Moreover, the photosynthesis rate, photosystem II activity (Fv/fm), and Non-photochemical quenching (NPQ) also increased in the transgenetic plants. On the whole, overexpression of Lcε-LYC ameliorates photoinhibition and photooxidation, and decreases the sensitivity of photosynthesis to chilling stress in transgenic plants. PMID:26526130

  4. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

    Radovan Fiser

    Full Text Available Bordetella adenylate cyclase toxin-hemolysin (CyaA penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P toxoid, unable to conduct Ca²⁺ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²⁺ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²⁺ influx promoted by molecules locked in a Ca²⁺-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.

  5. Transferrin and Its Isoforms from Normal Human Serum Revealed by Several Analytical Techniques

    2008-01-01

    Transferrin(TF) and its isoforms have been widely reported via various analytical techniques, including a noticeable increased number of isoforms with low content of sialic acid(asialo-, monosialo-, and disialo-transferrin) and asialo-TF as well as disialo-TF, with one or several oligosaccharides released in human serum transferrin(hTf). Here,hTf has been purified by native gradient polyacrylamide gel electrophoresis(PAGENG) before use. The hTf extracted with the electron-transfer approach showed a single subunit band(77.1 Da) in the SDS-PAGE gel, but it exhibited two bands in the native and denatured isoelectric focusing(IEF) gels, namely, hTf-2Fe3+ and apo-hTf, without finding any other transferrin isoforms. A reversed phase HPLC(RP-HPLC) equipped with a C18 column effectively separated hTf and its polymers and combined off-line techniques, including peptide mass fingerprinting(PMF), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS) and database search, and identified the high homology among hTf, apo-hTf, and their isoforms. Moreover, the elution solution consisting of acetonitrile and formic acid could easily denature both hTf and apo-hTf to form various isoforms during separation with HPLC, indicating that chemical factors lead to the formation of various isoforms in transferrin, artificially, during extraction and separation.The authors claimed that only two transferrin isoforms existed in the NHS, namely, hTf-2Fe3+ and apo-hTf, which could be employed in biomarkers, to distinguish the healthy population from many disease sufferers, such as,carbohydrate-deficient transferrin(CDT).

  6. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  7. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities.

    Luis J Cocka

    2012-09-01

    Full Text Available Tetherin (BST-2/CD317/HM1.24 is an IFN induced transmembrane protein that restricts release of a broad range of enveloped viruses. Important features required for Tetherin activity and regulation reside within the cytoplasmic domain. Here we demonstrate that two isoforms, derived by alternative translation initiation from highly conserved methionine residues in the cytoplasmic domain, are produced in both cultured human cell lines and primary cells. These two isoforms have distinct biological properties. The short isoform (s-Tetherin, which lacks 12 residues present in the long isoform (l-Tetherin, is significantly more resistant to HIV-1 Vpu-mediated downregulation and consequently more effectively restricts HIV-1 viral budding in the presence of Vpu. s-Tetherin Vpu resistance can be accounted for by the loss of serine-threonine and tyrosine motifs present in the long isoform. By contrast, the l-Tetherin isoform was found to be an activator of nuclear factor-kappa B (NF-κB signaling whereas s-Tetherin does not activate NF-κB. Activation of NF-κB requires a tyrosine-based motif found within the cytoplasmic tail of the longer species and may entail formation of l-Tetherin homodimers since co-expression of s-Tetherin impairs the ability of the longer isoform to activate NF-κB. These results demonstrate a novel mechanism for control of Tetherin antiviral and signaling function and provide insight into Tetherin function both in the presence and absence of infection.

  8. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies.

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-10-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  9. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    GilLevkowitz

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  10. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains

    Dalton, Justin E.; Fear, Justin M.; Knott, Simon; Baker, Bruce S.; McIntyre, Lauren M.; Arbeitman, Michelle N.

    2013-01-01

    Background Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. Results By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcri...

  11. Functional Analysis of the Short Isoform of Orf Virus Protein OV20.0

    Tseng, Yeu-Yang; Lin, Fong-Yuan; Cheng, Sun-Fang; Chulakasian, Songkhla; Chou, Chia-Chi; Liu, Ya-Fen; Chang, Wei-Shan; Wong, Min-Liang

    2015-01-01

    ABSTRACT Orf virus (ORFV) OV20.0L is an ortholog of vaccinia virus (VACV) gene E3L. The function of VACV E3 protein as a virulence factor is well studied, but OV20.0 has received less attention. Here we show that like VACV E3L, OV20.0L encodes two proteins, a full-length protein and a shorter form (sh20). The shorter sh20 is an N-terminally truncated OV20.0 isoform generated when a downstream AUG codon is used for initiating translation. These isoforms differed in cellular localization, with full-length OV20.0 and sh20 found throughout the cell and predominantly in the cytoplasm, respectively. Nonetheless, both OV20.0 isoforms were able to bind double-stranded RNA (dsRNA)-activated protein kinase (PKR) and dsRNA. Moreover, both isoforms strongly inhibited PKR activation as shown by decreased phosphorylation of the translation initiation factor eIF2α subunit and protection of Sindbis virus infection against the activity of interferon (IFN). In spite of this apparent conservation of function in vitro, a recombinant ORFV that was able to express only the sh20 isoform was attenuated in a mouse model. IMPORTANCE The OV20.0 protein of orf virus (ORFV) has two isoforms and contributes to virulence, but the roles of the two forms are not known. This study shows that the shorter isoform (sh20) arises due to use of a downstream initiation codon and is amino-terminally truncated. The sh20 form also differs in expression kinetics and cellular localization from full-length OV20.0. Similar to the full-length isoform, sh20 is able to bind dsRNA and PKR, inactivate PKR, and thus act as an antagonist of the interferon response in vitro. In vivo, however, wild-type OV20.0 could not be replaced with sh20 alone without a loss of virulence, suggesting that the functions of the isoforms are not simply redundant. PMID:25694596

  12. Regulation of three isoforms of SOD gene by environmental stresses in citrus red mite, Panonychus citri.

    Feng, Ying-Cai; Liao, Chong-Yu; Xia, Wen-Kai; Jiang, Xuan-Zhao; Shang, Feng; Yuan, Guo-Rui; Wang, Jin-Jun

    2015-09-01

    Superoxide dismutase (SOD) is a family of enzymes with multiple isoforms that possess antioxidative abilities in response to environmental stresses. Panonychus citri is one of the most important pest mites and has a global distribution. In this study, three distinct isoforms of SOD were cloned from P. citri and identified as cytoplasmic Cu-ZnSOD (PcSOD1), extracellular Cu-ZnSOD (PcSOD2), and mitochondrial MnSOD (PcSOD3). mRNA expression level analysis showed that all three isoforms were up-regulated significantly after exposure to the acaricide abamectin and to UV-B ultraviolet irradiation. In particular, PcSOD3 was up-regulated under almost all environmental stresses tested. The fold change of PcSOD3 expression was significantly higher than those of the two Cu-ZnSOD isoforms. Taken together, the results indicate that abamectin and UV-B can induce transcripts of all three SOD isoforms in P. citri. Furthermore, PcSOD3 seems to play a more important role in P. citri tolerance to oxidative stress. PMID:26063404

  13. [Preparation and properties of isocitrate lyase isoforms from the cotyledons of Glycine max L].

    Eprintsev, A T; Diachenko, E V; Lykova, T V; Kuen, C T H; Popov, V N

    2010-01-01

    A four-stage purification procedure including ammonium sulfate precipitation and ion exchange chromatography on DEAE cellulose has been elaborated for isolation of isocitrate lyase (EC 4.1.3.1) isoforms from the cotyledons of soybean Glycine max L. Electrophoretically homogeneous preparations of two forms of the enzyme with specific activity of 5.28 and 5.81 U/mg protein have been obtained. Comparison of physicochemical, kinetic, and regulation characteristics of the isoforms obtained revealed fundamental differences between them. Thus, the isoform that migrated quickly in PAAG had a much lower affinity to isocitrate (K(M) - 50 microM) than the slowly migrating form (K(M) - 16 microM). It has been shown that the conservation of activity of the isoforms obtained depends on the presence of divalent cations (Mn2+ and Mg2+) in the medium. It is suggested to use the isoforms of isocitrate lyase isolated from soybeans for the development of biosensors for biochemical and kinetic assays. PMID:20198926

  14. Insulin receptor isoforms: an integrated view focused on gestational diabetes mellitus.

    Westermeier, F; Sáez, T; Arroyo, P; Toledo, F; Gutiérrez, J; Sanhueza, C; Pardo, F; Leiva, A; Sobrevia, L

    2016-05-01

    The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms related to their cellular functions in several tissues are only partially understood. In this review, we summarize the current knowledge in this field regarding the alternative splicing of IR isoform, tissue-specific distribution and signalling both in physiology and disease, with an emphasis on the human placenta in gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical relevance of IR isoforms highlighted by findings that show altered insulin signalling due to differential IR-A and IR-B expression in human placental endothelium in GDM pregnancies. Future research and clinical studies focused on the role of IR isoform signalling might provide novel therapeutic targets for treating GDM to improve the adverse maternal and neonatal outcomes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26431063

  15. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    Lam, Le Thanh [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG (United Kingdom); Boehm, Sabrina V.; Roberts, Roland G. [Department of Medical and Molecular Genetics, King' s College London, London SE1 9RT (United Kingdom); Morris, Glenn E., E-mail: glennmanc@hotmail.com [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG (United Kingdom); Institute of Science and Technology in Medicine, Keele University, Keele ST5 5BG (United Kingdom)

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  16. Most highly expressed protein-coding genes have a single dominant isoform.

    Ezkurdia, Iakes; Rodriguez, Jose Manuel; Carrillo-de Santa Pau, Enrique; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L

    2015-04-01

    Although eukaryotic cells express a wide range of alternatively spliced transcripts, it is not clear whether genes tend to express a range of transcripts simultaneously across cells, or produce dominant isoforms in a manner that is either tissue-specific or regardless of tissue. To date, large-scale investigations into the pattern of transcript expression across distinct tissues have produced contradictory results. Here, we attempt to determine whether genes express a dominant splice variant at the protein level. We interrogate peptides from eight large-scale human proteomics experiments and databases and find that there is a single dominant protein isoform, irrespective of tissue or cell type, for the vast majority of the protein-coding genes in these experiments, in partial agreement with the conclusions from the most recent large-scale RNAseq study. Remarkably, the dominant isoforms from the experimental proteomics analyses coincided overwhelmingly with the reference isoforms selected by two completely orthogonal sources, the consensus coding sequence variants, which are agreed upon by separate manual genome curation teams, and the principal isoforms from the APPRIS database, predicted automatically from the conservation of protein sequence, structure, and function. PMID:25732134

  17. Computational Estimates of Binding Affinities for Estrogen Receptor Isoforms in Rainbow Trout

    Shyu, Conrad

    2009-01-01

    Molecular dynamics simulations are performed to determine the binding affinities between the hormone 17 beta-estradiol (E2) and different estrogen receptor (ER) isoforms in the rainbow trout (Oncorhynchus mykiss). Previous studies have demonstrated that a recent, unique gene duplication of the ER alpha subtype created two isoforms ER alpha 1 and ER alpha 2, and an early secondary split of ER beta produced two distinct isoforms of ER beta 1 and ER beta 2 based on the phylogenetic analysis. The objective of our computational studies is to provide insight into the underlying evolutionary selection pressure on the ER isoforms. Our results show that E2 binds preferentially to ER alpha 1. This finding corresponds to the experimental results as the ERs evolved from gene duplication events are frequently free from selective pressure and should exhibit no deleterious effects. The E2, however, only binds slightly better to ER beta 2. Both isoforms remain competitive. This finding reflects the fact that since ER beta 2 ...

  18. Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis

    Petra Arnostova

    2011-01-01

    Full Text Available The expression of two cardiac myosin heavy chain (MyHC isoforms in response to the thyroid status was studied in left ventricles (LVs of Lewis rats. Major MyHC isoform in euthyroid and hyperthyroid LVs had a higher mobility on SDS-PAGE, whereas hypothyroid LVs predominantly contained a MyHC isoform with a lower mobility corresponding to that of the control soleus muscle. By comparing the MyHC profiles obtained under altered thyroid states together with the control soleus, we concluded that MyHCα was represented by the lower band with higher mobility and MyHCβ by the upper band. The identity of these two bands in SDS-PAGE gels was confirmed by western blot and mass spectrometry. Thus, in contrast to the literature data, we found that the MyHCα possessed a higher mobility rate than the MyHCβ isoform. Our data highlighted the importance of the careful identification of the MyHCα and MyHCβ isoforms analyzed by the SDS-PAGE.

  19. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    Highlights: → A novel epsilon isoform of nesprin-2 has been discovered. → This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. → It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. → Like other nesprins, it is located at the nuclear envelope. → We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  20. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

    Sophie A O Armitage

    Full Text Available The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1 gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.

  1. Two isoforms of aquaporin 2 responsive to hypertonic stress in the bottlenose dolphin.

    Suzuki, Miwa; Wakui, Hitomi; Itou, Takuya; Segawa, Takao; Inoshima, Yasuo; Maeda, Ken; Kikuchi, Kiyoshi

    2016-04-15

    This study investigated the expression of aquaporin 2 (AQP2) and its newly found alternatively spliced isoform (alternative AQP2) and the functions of these AQP2 isoforms in the cellular hyperosmotic tolerance in the bottlenose dolphin, ITALIC! Tursiops truncatus mRNA sequencing revealed that alternative AQP2 lacks the fourth exon and instead has a longer third exon that includes a part of the original third intron. The portion of the third intron, now part of the coding region of alternative AQP2, is highly conserved among many species of the order Cetacea but not among terrestrial mammals. Semi-quantitative PCR revealed that AQP2 was expressed only in the kidney, similar to terrestrial mammals. In contrast, alternative AQP2 was expressed in all organs examined, with strong expression in the kidney. In cultured renal cells, expression of both AQP2 isoforms was upregulated by the addition to the medium of NaCl but not by the addition of mannitol, indicating that the expression of both isoforms is induced by hypersalinity. Treatment with small interfering RNA for both isoforms resulted in a decrease in cell viability in hypertonic medium (500 mOsm kg(-1)) when compared with controls. These findings indicate that the expression of alternatively spliced AQP2 is ubiquitous in cetacean species, and it may be one of the molecules important for cellular osmotic tolerance throughout the body. PMID:26944501

  2. The relationship between gene isoform multiplicity, number of exons and protein divergence.

    Jordi Morata

    Full Text Available At present we know that phenotypic differences between organisms arise from a variety of sources, like protein sequence divergence, regulatory sequence divergence, alternative splicing, etc. However, we do not have yet a complete view of how these sources are related. Here we address this problem, studying the relationship between protein divergence and the ability of genes to express multiple isoforms. We used three genome-wide datasets of human-mouse orthologs to study the relationship between isoform multiplicity co-occurrence between orthologs (the fact that two orthologs have more than one isoform and protein divergence. In all cases our results showed that there was a monotonic dependence between these two properties. We could explain this relationship in terms of a more fundamental one, between exon number of the largest isoform and protein divergence. We found that this last relationship was present, although with variations, in other species (chimpanzee, cow, rat, chicken, zebrafish and fruit fly. In summary, we have identified a relationship between protein divergence and isoform multiplicity co-occurrence and explained its origin in terms of a simple gene-level property. Finally, we discuss the biological implications of these findings for our understanding of inter-species phenotypic differences.

  3. iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data.

    Mezlini, Aziz M; Smith, Eric J M; Fiume, Marc; Buske, Orion; Savich, Gleb L; Shah, Sohrab; Aparicio, Sam; Chiang, Derek Y; Goldenberg, Anna; Brudno, Michael

    2013-03-01

    High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is conditional on the development of effective computational methods for the identification and quantification of transcripts from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation of their abundances. Our probabilistic approach incorporates multiple biological and technical phenomena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and multimapped reads. iReckon utilizes regularized expectation-maximization to accurately estimate the abundances of known and novel isoforms. Our results on simulated and real data demonstrate a superior ability to discover novel isoforms with a significantly reduced number of false-positive predictions, and our abundance accuracy prediction outmatches that of other state-of-the-art tools. Furthermore, we have applied iReckon to two cancer transcriptome data sets, a triple-negative breast cancer patient sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in the MCF7 cell line confirmed all of iReckon's predictions and also showed strong agreement (r(2) = 0.94) with the predicted abundances. PMID:23204306

  4. Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs.

    Rahman, M Motiur; Matsuoka, Kazuhiko; Takeshita, Sunao; Ikeda, Kyoji

    2015-06-26

    In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis. PMID:25951977

  5. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Eugene O. Zubov

    2010-10-01

    Full Text Available We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1 containing different “essential” (or “alkali” light chains, A1 or A2. We applied differential scanning calorimetry (DSC to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in  the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl. Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain.

  6. Alterations of Lymphoid Enhancer Factor-1 Isoform Expression in Solid Tumors and Acute Leukemias

    Wenbing WANG; Carsten M(U)LLER-TIDOW; Ping JI; Bj(o)rn STEFFEN; Ralf METZGER; Paul M. SCHNEIDER; Hartmut HALFTER; Mark SCHRADER; Wolfgang E. BERDEL; Hubert SERVE

    2005-01-01

    Two major transcripts of lymphoid enhancer factor-1 (LEF-1) have been described. The long isoform with β-catenin binding domain functions as a transcriptional enhancer factor. The short isoform derives from an intronic promoter and exhibits dominant negative activity. Recently, alterations of LEF- 1isoforms distribution have been described in colon cancer. In the current study we employed a quantitative real-time reverse transcription PCR method (TaqMan) to analyze expression of LEF-1 isoforms in a large cohort of human tumor (n=304) and tumor-free control samples (n=56). The highest expression level of LEF-1 was found in carcinoma samples whereas brain cancer samples expressed little. Expression of LEF1 was different in distinct cancer types. For example, the mRNA level of LEF-1 was lower in testicular tumor samples compared with tumor-free control samples. Besides epithelial cancers, significant LEF-1expression was also found in hematopoietic cells. In hematological malignancies, overall LEF-1 level was higher in lymphocytic leukemias compared with myeloid leukemias and normal hematopoiesis. However,acute myeloid leukemia and acute lymphocytic leukemia showed a significantly increased fraction of the oncogenic LEF-1 compared with chronic lymphocytic leukemia and chronic myeloid leukemia. Taken together,these data suggest that LEF-1 is abundantly expressed in human tumors and the ratio of the oncogenic and the dominant negative short isoform altered not only in carcinomas but also in leukemia.

  7. Serum amyloid A isoforms in serum and synovial fluid from spontaneously diseased dogs with joint diseases or other conditions

    Kjelgaard-Hansen, Mads Jens; Christensen, Michelle B.; Lee, Marcel Huisung;

    2007-01-01

    in samples obtained from dogs (n = 16) suffering from different inflammatory or non-inflammatory conditions, which were either related or unrelated to joints. Expression of SAA isoforms was visualized by denaturing isoelectric focusing and Western blotting. Serum amyloid A was present in serum from all dogs...... with systemic inflammatory activity, and up to four major isoforms with apparent isoelectric points between 6.1 and 7.9 were identified. In synovial fluid from inflamed joints one or more highly alkaline SAA isoforms (with apparent isoelectric points above 9.3) were identified, with data suggesting local...... production of these isoforms in the canine inflamed joint....

  8. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans

    Cao, Yun; Bender, Ingrid K.; Konstantinidis, Athanasios K.; Shin, Soon Cheon; Jewell, Christine M.; Cidlowski, John A; Schleimer, Robert P.; Lu, Nick Z.

    2013-01-01

    Mature, but not immature, dendritic cells are sensitive to glucocorticoid-induced apoptosis.Mature, but not immature, dendritic cells express proapoptotic glucocorticoid receptor translational isoforms.

  9. Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice.

    Tchilian, Elma Z; Dawes, Ritu; Hyland, Lisa; Montoya, Maria; Le Bon, Agnes; Borrow, Persephone; Hou, Sam; Tough, David; Beverley, Peter C L

    2004-09-01

    Transgenic mice have been constructed expressing high (CD45RABC) and low (CD45R0) molecular weight CD45 isoforms on a CD45-/- background. Phenotypic analysis and in vivo challenge of these mice with influenza and lymphocytic choriomeningitis viruses shows that T cell differentiation and peripheral T cell function are related to the level of CD45 expression but not to which CD45 isoform is expressed. In contrast, B cell differentiation is not restored, irrespective of the level of expression of a single isoform. All CD45 trangenic mice have T cells with an activated phenotype and increased T cell turnover. These effects are more prominent in CD8 than CD4 cells. The transgenic mice share several properties with humans expressing variant CD45 alleles and provide a model to understand immune function in variant individuals. PMID:15302847

  10. Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein.

    Bogdanov, I V; Finkina, E I; Balandin, S V; Melnikova, D N; Stukacheva, E A; Ovchinnikova, T V

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major peach allergen Pru p 3. Both isoforms were shown to have immunological properties similar to those of other plant allergenic LTPs, but Lc-LTP3 displayed a less pronounced immunoreactivity. PMID:26483961

  11. Exposing the specific roles of the invariant chain isoforms in shaping the MHC class II peptidome

    Jean-Simon eFortin

    2013-12-01

    Full Text Available The peptide repertoire (peptidome associated with MHC class II molecules (MHCIIs is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.

  12. Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms.

    Sylvain Lecomte

    Full Text Available Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs. The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contribute to additional complexity in HSF transcriptional regulation, but remain poorly examined in the literature. In this work, we studied the transcriptional activity of HSF1 and HSF2 splicing isoforms transfected into immortalized Mouse Embryonic Fibroblasts (iMEFs deleted for both Hsf1 and Hsf2, under normal conditions and after proteasome inhibition. We found that HSF1α is significantly more active than the β isoform after exposure to the proteasome inhibitor MG132. Furthermore, we clearly established that, while HSF2 had no transcriptional activity by itself, short β isoform of HSF2 exerts a negative role on HSF1β-dependent transactivation. To further assess the impact of HSF2β inhibition on HSF1 activity, we developed a mathematical modelling approach which revealed that the balance between each HSF isoform in the cell regulated the strength of the transcriptional response. Moreover, we found that cellular stress such as proteasome inhibition could regulate the splicing of Hsf2 mRNA. All together, our results suggest that relative amounts of each HSF1 and HSF2 isoforms quantitatively determine the cellular level of the proteotoxic stress response.

  13. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  14. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L

    2012-09-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of "novel" and "putative" protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and

  15. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  16. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  17. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    Thomas Geoffrey C

    2011-05-01

    Full Text Available Abstract Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA comprises ~530 residues, the G isoform (MSG is ~730 residues, and this third isoform (MSH-halophilic is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C

  18. Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease.

    Boczonadi, Veronika; Giunta, Michele; Lane, Maria; Tulinius, Mar; Schara, Ulrike; Horvath, Rita

    2015-06-01

    Reversible infantile respiratory chain deficiency is characterised by spontaneous recovery of mitochondrial myopathy in infants. We studied whether a physiological isoform switch of nuclear cytochrome c oxidase subunits contributes to the age-dependent manifestation and spontaneous recovery in reversible mitochondrial disease. Some nuclear-encoded subunits of cytochrome c oxidase are present as tissue-specific isoforms. Isoforms of subunits COX6A and COX7A expressed in heart and skeletal muscle are different from isoforms expressed in the liver, kidney and brain. Furthermore, in skeletal muscle both the heart and liver isoforms of subunit COX7A have been demonstrated with variable levels, indicating that the tissue-specific expression of nuclear-encoded subunits could provide a basis for the fine-tuning of cytochrome c oxidase activity to the specific metabolic needs of the different tissues. We demonstrate a developmental isoform switch of COX6A and COX7A subunits in human and mouse skeletal muscle. While the liver type isoforms are more present soon after birth, the heart/muscle isoforms gradually increase around 3 months of age in infants, 4 weeks of age in mice, and these isoforms persist in muscle throughout life. Our data in follow-up biopsies of patients with reversible infantile respiratory chain deficiency indicate that the physiological isoform switch does not contribute to the clinical manifestation and to the spontaneous recovery of this disease. However, understanding developmental changes of the different cytochrome c oxidase isoforms may have implications for other mitochondrial diseases. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. PMID:25666558

  19. Characterization of PR-10 genes from eight Betula species and detection of Bet v 1 isoforms in birch pollen

    van't Westende Wendy PC

    2009-03-01

    Full Text Available Abstract Background Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome. Results All examined birch species contained several PR-10 genes. In total, 134 unique sequences were recovered. Sequences were attributed to different genes or pseudogenes that were, in turn, ordered into seven subfamilies. Five subfamilies were common to all birch species. Genes of two subfamilies were expressed in pollen, while each birch species expressed a mixture of isoforms with at least four different isoforms. Isoforms that were similar to isoforms with a high IgE-reactivity (Bet v 1a = PR-10.01A01 were abundant in all species except B. lenta, while the hypoallergenic isoform Bet v 1d (= PR-10.01B01 was only found in B. pendula and its closest relatives. Conclusion Q-TOF LC-MSE allows efficient screening of Bet v 1 isoforms by determining the presence and relative abundance of these isoforms in pollen. B. pendula contains a Bet v 1-mixture in which isoforms with a high and low IgE-reactivity are both abundant. With the possible exception of B. lenta, isoforms identical or very similar to those with a high IgE-reactivity were found in the pollen proteome of all examined birch species. Consequently, these species are also predicted to be allergenic with regard to Bet v 1 related allergies.

  20. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses

    Heo, Won Do; Lee, Sang Hyoung; Kim, Min Chul; Kim, Jong Cheol; Chung, Woo Sik; Chun, Hyun Jin; Lee, Kyoung Joo; Park, Chan Young; Park, Hyeong Cheol; Choi, Ji Young; Cho, Moo Je

    1999-01-01

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, wher...

  1. Changes in claudin isoform expression in the gill during salinity shifts and smoltification of Atlantic salmon

    Madsen, Steffen; Tipsmark, Christian Kølbæk

    2008-01-01

    expression was confirmed by RT-QPCR. We examined the expression profile during the parr-smolt transformation (PST) in freshwater and during acclimation to sea water (SW). During PST, claudin 10e expression peaked in May, coinciding with optimal SW tolerance. The other claudin isoforms were not influenced...... during PST. SW-transfer induced a 5-fold increase in expression of claudin 10e, reduced the expression of 27a and 30a and had no overall effect on 28a and 28b isoforms. The study demonstrates for the first time that SW acclimation involves differential regulation of claudin gene expression in the salmon...

  2. Expression of Tropomyosin 1 Gene Isoforms in Human Breast Cancer Cell Lines

    Syamalima Dube; Santhi Yalamanchili; Joseph Lachant; Lynn Abbott; Patricia Benz; Charles Mitschow; Dube, Dipak K; Poiesz, Bernard J.

    2015-01-01

    Nine malignant breast epithelial cell lines and 3 normal breast cell lines were examined for stress fiber formation and expression of TPM1 isoform-specific RNAs and proteins. Stress fiber formation was strong (++++) in the normal cell lines and varied among the malignant cell lines (negative to +++). Although TPM1γ and TPM1δ were the dominant transcripts of TPM1, there was no clear evidence for TPM1δ protein expression. Four novel human TPM1 gene RNA isoforms were discovered (λ, μ, ν, and ξ),...

  3. Properties of SEPT9 isoforms and the requirement for GTP binding.

    Robertson, Claire; Church, Stewart W; Nagar, Hans A; Price, John; Hall, Peter A; Russell, S E Hilary

    2004-05-01

    Members of the evolutionarily conserved septin family of genes are emerging as key components of several cellular processes including membrane trafficking, cytokinesis, and cell-cycle control events. SEPT9 has been shown to have a complex genomic architecture, such that up to 15 different isoforms are possible by the shuffling of five alternate amino termini and three alternate carboxy termini. Genomic and transcriptional alterations of SEPT9 have been associated with neoplasia. The present study has used a Sept9-specific antibody to determine the pattern of isoform expression in a range of tumour cell lines. Western blot analysis indicated considerable variation in the relative amounts and isoform content of Sept9. Immunofluorescence studies showed a range of patterns of cytoplasmic localization ranging from mainly particulate to mainly filamentous. Expression constructs were also generated for each amino terminal isoform to investigate the patterns of localization of individual isoforms and the effects on cells of ectopic expression. The present study shows that the epsilon isoform appears filamentous in this overexpression system while the remaining isoforms are particulate and cytoplasmic. Transient transfection of individual constructs into tumour cell lines results in cell-cycle perturbation with a G2/M arrest and dramatic growth suppression, which was greatest in cell lines with the lowest amounts of endogenous Sept9. Similar phenotypic observations were made with GTP-binding mutants of all five N-terminal variants of Sept9. However, dramatic differences were observed in the kinetics of accumulation of wild-type versus mutant septin protein in transfected cells. In conclusion, the present study shows that the expression patterns of Sept9 protein are very varied in a panel of tumour cell lines and the functional studies are consistent with a model of septin function as a component of a molecular scaffold that contributes to diverse cellular functions

  4. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    Howarth, Deanna L.; Hagey, Lee R.; Law, Sheran H.W.; Ai, Ni; Krasowski, Matthew D.; Ekins, Sean; Moore, John T.; Erin M Kollitz; Hinton, David E.; Kullman, Seth W.

    2010-01-01

    The nuclear receptor farnesoid X receptor alpha (FXRα, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxrα in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXRα (~70% in the ligand-binding domain). Fxrα1 and Fxrα2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process...

  5. Specific isoforms of translation initiation factor 4GI show differences in translational activity

    Coldwell, M. J.; Morley, S J

    2006-01-01

    The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) e...

  6. Alternative Splicing Regulates the Subcellular Localization of Divalent Metal Transporter 1 Isoforms

    Tabuchi, Mitsuaki; Tanaka, Naotaka; Nishida-Kitayama, Junko; Ohno, Hiroshi; Kishi, Fumio

    2002-01-01

    Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3′ exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element ...

  7. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    Naik, M U; Benedikz, Eirikur; Hernandez, I;

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of......, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct...

  8. Myosin Isoforms and Contractile Properties of Single Fibers of Human Latissimus Dorsi Muscle

    Antonio Paoli; Pacelli, Quirico F.; Pasqua Cancellara; Luana Toniolo; Tatiana Moro; Marta Canato; Danilo Miotti; Carlo Reggiani

    2013-01-01

    The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%...

  9. Phosphorylation of Titin Modulates Passive Stiffness of Cardiac Muscle in a Titin Isoform-dependent Manner

    Fukuda, Norio; Wu, Yiming; Nair, Preetha; Granzier, Henk L.

    2005-01-01

    We investigated the effect of protein kinase A (PKA) on passive force in skinned cardiac tissues that express different isoforms of titin, i.e., stiff (N2B) and more compliant (N2BA) titins, at different levels. We used rat ventricular (RV), bovine left ventricular (BLV), and bovine left atrial (BLA) muscles (passive force: RV > BLV > BLA, with the ratio of N2B to N2BA titin, ∼90:10, ∼40:60, and ∼10:90%, respectively) and found that N2B and N2BA isoforms can both be phosphorylated by PKA. Und...

  10. Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein

    Bogdanov, I. V.; Finkina, E. I.; Balandin, S. V.; Melnikova, D. N.; Stukacheva, E. A.; Ovchinnikova, T. V.

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major ...

  11. STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RECOMBINANT ISOFORMS OF THE LENTIL LIPID TRANSFER PROTEIN

    Bogdanov, I. V.; Finkina, E. I.; Balandin, S. V.; Melnikova, D. N.; Stukacheva, E. A.; Ovchinnikova, T. V.

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major ...

  12. Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes

    Kamstrup, Pia Rørbæk; Nordestgaard, Børge

    2013-01-01

    study to investigate whether large isoform size, low concentrations in plasma, or both, are causally associated with type 2 diabetes. METHODS: We assessed data for adults from the Danish general population enrolled in the Copenhagen City Heart Study and the Copenhagen General Population Study, with and......(a) concentrations alone seem not to be causally associated with type 2 diabetes, but a causal association for large lipoprotein(a) isoform size cannot be excluded. FUNDING: Danish Heart Foundation, Danish Council for Independent Research-Medical Sciences, IMK Almene Fund, and Johan and Lise Boserup's Fund....

  13. Lipoprotein(a) levels, isoform size, and risk of type 2 diabetes: A Mendelian randomisation study

    Kamstrup, Pia Rørbæk; Nordestgaard, Børge G.

    2013-01-01

    study to investigate whether large isoform size, low concentrations in plasma, or both, are causally associated with type 2 diabetes. Methods: We assessed data for adults from the Danish general population enrolled in the Copenhagen City Heart Study and the Copenhagen General Population Study, with and......(a) concentrations alone seem not to be causally associated with type 2 diabetes, but a causal association for large lipoprotein(a) isoform size cannot be excluded. Funding: Danish Heart Foundation, Danish Council for Independent Research-Medical Sciences, IMK Almene Fund, and Johan and Lise Boserup's Fund....

  14. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  15. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma

    Guil-Luna, Silvia; Stenvang, Jan; Brünner, Nils;

    2014-01-01

    and mRNA expression of progesterone receptor isoforms A and B in mammary carcinomas in dogs treated with 20 mg/Kg of aglepristone (n¿=¿22) or vehicle (n¿=¿5) twice before surgery.ResultsFormalin-fixed, paraffin-embedded tissue samples taken before and after treatment were used to analyse total......BackgroundProgesterone receptors play a key role in the development of canine mammary tumours, and recent research has focussed on their possible value as therapeutic targets using antiprogestins. Cloning and sequencing of the progesterone receptor gene has shown that the receptor has two isoforms...

  16. Each Individual Isoform of the Dopamine D2 Receptor Protects from Lactotroph Hyperplasia

    Radl, Daniela; De Mei, Claudia; Chen, Eric; Lee, Hyuna; Borrelli, Emiliana

    2013-01-01

    Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and thei...

  17. Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum

    Wendeler, Markus W; Paccaud, Jean-Pierre; Hauri, Hans-Peter

    2007-01-01

    Sec24 of the COPII (coat protein complex II) vesicle coat mediates the selective export of membrane proteins from the endoplasmic reticulum (ER) in yeast. Human cells express four Sec24 isoforms, but their role is unknown. Here, we report the differential effects of Sec24 isoform-specific silencing on the transport of the membrane reporter protein ERGIC-53 (ER–Golgi intermediate compartment-53) carrying the cytosolic ER export signals di-phenylalanine, di-tyrosine, di-leucine, di-isoleucine, ...

  18. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-09-01

    The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr-Tyr cross-linking (o,o‧-ditysosine formation) and partial flavin cofactor reduction.

  19. Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5' coding region of the adenylate cyclase gene

    Heat shock-resistant mutants, which were isolated by their ability to withstand lethal heat treatment, were characterized. Resistance was demonstrated to be a consequence of insertion of retrotransposon Ty into either the 5' coding or noncoding region, close to the putative initiation codon of the adenylate cyclase gene CYR1 (or CDC35). These heat shock-resistant mutants contained about threefold lower adenylate cyclase activity than wild-type strains. The mutants were also observed to be resistant to other stresses such as UV light and ethanol. These results demonstrate that multistress resistance, which may confer a survival advantage to yeast cells, can be generated by transposition of a Ty element into CYR1

  20. Cell adhesion-dependent inactivation of a soluble protein kinase during fertilization in Chlamydomonas.

    Zhang, Y.; Luo, Y.; Emmett, K; Snell, W J

    1996-01-01

    Within seconds after the flagella of mt+ and mt- Chlamydomonas gametes adhere during fertilization, their flagellar adenylyl cyclase is activated several fold and preparation for cell fusion is initiated. Our previous studies indicated that early events in this pathway, including control of adenylyl cyclase, are regulated by phosphorylation and dephosphorylation. Here, we describe a soluble, flagellar protein kinase activity that is regulated by flagellar adhesion. A 48-kDa, soluble flagellar...

  1. The influence of low-level radiation and gangliosides on adenylate cyclase activity in thymus and thyroid glands of chicks in ontogenesis

    Adenylate cyclase (AC) activity was studied in thymus and thyroid gland of intact chick embryos and those irradiated with a dose of 0.029 Gy prior to incubation, and newly hatched chocks in the presence of total ganglioside fractions extracted from the same organs. Gangliosides were shown to increase the enzyme activity of thymocytes and thyreocytes during the postnatal development. It is suggested that small radiation doses potentiate the stimulatory effect of ganglioside fractions on AC

  2. The Role of Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide in the Neural Pathways Controlling the Lower Urinary Tract

    Yoshiyama, Mitsuharu; de Groat, William C.

    2008-01-01

    Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are expressed in the neural pathways regulating the lower urinary tract. VIP-immunoreactivity (IR) is present in afferent and autonomic efferent neurons innervating the bladder and urethra, whereas PACAP-IR is present primarily in afferent neurons. Exogenously applied VIP relaxes bladder and urethral smooth muscle and excites parasympathetic neurons in bladder ganglia. PACAP relaxes bladder ...

  3. Molekulare Analyse der Biosynthese octadecanoid-abgeleiteter Signalmoleküle durch Allenoxid-Synthase und Allenoxid- Cyclase aus Arabidopsis thaliana (L.) HEYNH.

    Zerbe, Philipp

    2007-01-01

    Im Fokus dieser Dissertation stand die Untersuchung der Biosynthese des Phytohormons 12-oxo-Phytodiensäure durch die Allenoxid-Synthase (AOS) und die vier Allenoxid-Cyclase-Isoformen (AOC) aus Arabidopsis thaliana. Enzymatische Analysen der rekombinanten Proteine zeigten eine redundante Substratspezifität der AOC-Isoformen. Zudem belegen biochemische Interaktionsstudien, dass eine Komplexierung von AOS und AOC in vitro nicht essentiell ist. Gleichwohl lässt die erhöhte Stereoselek...

  4. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization*

    Stenzel, Irene; Otto, Markus; Delker, Carolin; Kirmse, Nils; Schmidt, Diana; Miersch, Otto; Hause, Bettina; Wasternack, Claus

    2012-01-01

    Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specifi...

  5. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana: ENZYMES CATALYZING UP TO 10 REARRANGEMENT STEPS YIELDING FRIEDELIN AND OTHER TRITERPENOIDS*

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-01-01

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that...

  6. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexi...

  7. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Tamás Juhász; Eszter Szentléleky; Csilla Szűcs Somogyi; Roland Takács; Nóra Dobrosi; Máté Engler; Andrea Tamás; Dóra Reglődi; Róza Zákány

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during cho...

  8. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice

    Rat, Dorothea; Schmitt, Ulrich; Tippmann, Frank; Dewachter, Ilse; Theunis, Clara; Wieczerzak, Ewa; Postina, Rolf; Van Leuven, Fred Van; Fahrenholz, Falk; Kojro, Elzbieta

    2011-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic properties and is a potent alpha-secretase activator. As PACAP peptides and their specific receptor PAC1 are localized in central nervous system areas affected by Alzheimer's disease (AD), this study aims to examine the role of the natural peptide PACAP as a valuable approach in AD therapy. We investigated the effect of PACAP in the brain of an AD transgenic mouse model. The long-term intranasal da...

  9. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient Mice

    Otto, Christiane; Kovalchuk, Yury; Wolfer, David Paul; Gass, Peter; Mart??n, Miguel; Zuschratter, Werner; Gr??ne, Hermann Josef; Kellendonk, Christoph; Tronche, Fran??ois; Maldonado, Rafael; Lipp, Hans-Peter; Konnerth, Arthur; Sch??tz, G??nter

    2001-01-01

    The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, har...

  10. Cloning of allene oxide cyclase gene from Leymus mollis and analysis of its expression in wheat–Leymus chromosome addition lines

    Eltayeb Habora, Mohamed Elsadig; Eltayeb, Amin Elsadig; Oka, Mariko; Tsujimoto, Hisashi; TANAKA, Kiyoshi

    2013-01-01

    Leymus mollis (Triticeae; Poaceae) is a useful genetic resource for wheat (Triticum aestivum L.) breeding via wide hybridization to introduce its chromosomes and integrate its useful traits into wheat. Leymus mollis is highly tolerant to abiotic stresses such as drought and salinity and resistant to various diseases, but the genetic mechanisms controlling its physiological tolerance remain largely unexplored. We identified and cloned an allene oxide cyclase (AOC) gene from L. mollis that was ...

  11. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  12. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans.

    Cao, Yun; Bender, Ingrid K; Konstantinidis, Athanasios K; Shin, Soon Cheon; Jewell, Christine M; Cidlowski, John A; Schleimer, Robert P; Lu, Nick Z

    2013-02-28

    Although glucocorticoids are a profoundly important class of anti-inflammatory and immunosuppressive agents, their actions in dendritic cells (DCs) are not well understood. We found that dexamethasone, a potent glucocorticoid, selectively induced apoptosis in mature, but not in immature, DCs in healthy mice, in mice with experimental airway inflammation, and in vitro in bone marrow–derived DCs. Distinct glucocorticoid receptor (GR) translational isoforms expressed in immature and mature DCs probably contribute to the DC maturational stage-specific glucocorticoid sensitivity. The GR-D isoforms were the predominant isoforms in immature DCs, whereas the proapoptotic GR-A isoform was the main isoform in mature DCs. Ectopic expression of the GR-A isoform in immature DCs increased glucocorticoid sensitivity and RU486, a selective GR antagonist, inhibited the glucocorticoid sensitivity of mature DCs. Furthermore, the distinct expression pattern of GR isoforms in immature and mature murine DCs was also observed in human monocyte–derived DCs. These studies suggest that glucocorticoids may spare immature DCs and suppress mature DCs and inflammation via differential expression of GR translational isoforms. PMID:23297131

  13. Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII.

    Barresi, Elisabetta; Salerno, Silvia; Marini, Anna Maria; Taliani, Sabrina; La Motta, Concettina; Simorini, Francesca; Da Settimo, Federico; Vullo, Daniela; Supuran, Claudiu T

    2016-02-15

    Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications. PMID:26796953

  14. Inter-isoform-dependent Regulation of the Drosophila Master Transcriptional Regulator SIN3.

    Chaubal, Ashlesha; Todi, Sokol V; Pile, Lori A

    2016-05-27

    SIN3 is a transcriptional corepressor that acts as a scaffold for a histone deacetylase (HDAC) complex. The SIN3 complex regulates various biological processes, including organ development, cell proliferation, and energy metabolism. Little is known, however, about the regulation of SIN3 itself. There are two major isoforms of Drosophila SIN3, 187 and 220, which are differentially expressed. Intrigued by the developmentally timed exchange of SIN3 isoforms, we examined whether SIN3 187 controls the fate of the 220 counterpart. Here, we show that in developing tissue, there is interplay between SIN3 isoforms: when SIN3 187 protein levels increase, SIN3 220 protein decreases concomitantly. SIN3 187 has a dual effect on SIN3 220. Expression of 187 leads to reduced 220 transcript, while also increasing the turnover of SIN3 220 protein by the proteasome. These data support the presence of a novel, inter-isoform-dependent mechanism that regulates the amount of SIN3 protein, and potentially the level of specific SIN3 complexes, during distinct developmental stages. PMID:27129248

  15. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...... the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR....

  16. The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress

    Doubnerová, V.; Jirásková, A.; Janošková, M.; Müller, Karel; Baťková, Petra; Synková, Helena; Čeřovská, Noemi; Ryšlavá, H.

    2007-01-01

    Roč. 26, č. 4 (2007), s. 281-289. ISSN 0231-5882 Institutional research plan: CEZ:AV0Z50380511 Keywords : NADP * malic enzyme isoforms * Nicotiana benthamiana Subject RIV: EF - Botanics Impact factor: 1.286, year: 2007 http://www.gpb.sav.sk/2007-4.htm

  17. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  18. Synthesis of Benzofuran Analogue of Go6976, an Isoform Selective Protein Kinase C Inhibitor

    MA, Da-Wei; ZHANG, Xin-Rong; WU, Shi-Hui; TAO, Feng-Gang

    2001-01-01

    Based on the structure of Go6976, a known isoform-selective protein kinase C inhibitor, a benzofuran analogue (1) was designed. This analogue was synthesized by coupling of benzofuran 3-acetic acid and 8-oxo-tryptamine and subsequent intramolecular Dieckmann condensation, alkylation, oxidative photocyclization and cyanation reaction of mesylate.

  19. Both Myosin-10 isoforms are required for radial neuronal migration in the developing cerebral cortex.

    Ju, Xing-Da; Guo, Ye; Wang, Nan-Nan; Huang, Ying; Lai, Ming-Ming; Zhai, Yan-Hua; Guo, Yu-Guang; Zhang, Jian-Hua; Cao, Rang-Juan; Yu, Hua-Li; Cui, Lei; Li, Yu-Ting; Wang, Xing-Zhi; Ding, Yu-Qiang; Zhu, Xiao-Juan

    2014-05-01

    During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration. PMID:23300110

  20. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends.

    Kern, David M; Nicholls, Peter K; Page, David C; Cheeseman, Iain M

    2016-05-01

    The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257

  1. Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform

    Laarakkers, C.M.; Wiegerinck, E.T.G.; Klaver, S.; Kolodziejczyk, M.; Gille, H.; Hohlbaum, A.M.; Tjalsma, H.; Swinkels, D.W.

    2013-01-01

    Mass spectrometry (MS)-based assays for the quantification of the iron regulatory hormone hepcidin are pivotal to discriminate between the bioactive 25-amino acid form that can effectively block the sole iron transporter ferroportin and other naturally occurring smaller isoforms without a known role

  2. Purification and catalytic properties of polygalacturonase isoforms from ripe avocado (Persea americana) fruit mesocarp.

    Wakabayashi, Kazuyuki; Huber, Donald J.

    2001-10-01

    Endo-polygalacturonase (PG; EC 3.2.1.15) was recovered from the cell walls of avocado mesocarp (Persea americana Mill cv. Lula) tissue and purified by sequential ion exchange and gel permeation chromatography. Two isoforms (S-I and S-II) were recovered, exhibiting molecular masses of about 41 kD on size exclusion media and about 48 (S-I) and 46 (S-II) kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both isoforms exhibited maximum activity at pH 6.0 against polygalacturonic acid (PGA) and hydrolyzed PGA of about 180 kDa to polymers of about 4 kDa. The catalytic activity of the 48-kDa isoform against PGA was slightly higher than that of the 46-kDa isoform. The purified PGs catalyzed significant molecular mass downshifts in the polyuronides of pre-ripe avocados; however, the capacity of the enzymes to solubilize polyuronides from cell walls of pre-ripe fruit was limited. PMID:12060298

  3. Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2

    Lee, Yun-Han; Seo, Daekwan; Choi, Kyung-Ju;

    2014-01-01

    Histone deacetylase 2 (HDAC2) is a chromatin modifier involved in epigenetic regulation of cell cycle, apoptosis and differentiation that is upregulated commonly in human hepatocellular carcinoma (HCC). In this study, we show that specific targeting of this HDAC isoform is sufficient to inhibit H...

  4. Branchial Expression Patterns of Claudin Isoforms in Atlantic Salmon During Seawater Acclimation and Smoltification

    Tipsmark, Christian K; Kiilerich, Pia; Nilsen, Tom O;

    2008-01-01

    epithelia. We identified Atlantic salmon genes belonging to the claudin family by screening expressed sequence tag libraries available at NCBI and classification was performed with aid of maximum likelihood and neighbour-joining analysis. In gill libraries, five isoforms (10e, 27a, 28a, 28b and 30) were...

  5. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy β and originally identified CoA synthase, CoASy α. The transcript specific for CoASy β was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy β. In contrast to CoASy α, which shows ubiquitous expression, CoASy β is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  6. Heparanase isoform expression and extracellular matrix remodeling in intervertebral disc degenerative disease

    Luciano Miller Reis Rodrigues

    2011-01-01

    Full Text Available OBJECTIVE: To determine the molecules involved in extracellular matrix remodeling and to identify and quantify heparanase isoforms present in herniated and degenerative discs. INTRODUCTION: Heparanase is an endo-beta-glucuronidase that specifically acts upon the heparan sulfate chains of proteoglycans. However, heparanase expression in degenerative intervertebral discs has not yet been evaluated. Notably, previous studies demonstrated a correlation between changes in the heparan sulfate proteoglycan pattern and the degenerative process associated with intervertebral discs. METHODS: Twenty-nine samples of intervertebral degenerative discs, 23 samples of herniated discs and 12 samples of non-degenerative discs were analyzed. The expression of both heparanase isoforms (heparanase-1 and heparanase-2 was evaluated using immunohistochemistry and real-time RT-PCR analysis. RESULTS: Heparanase-1 and heparanase-2 expression levels were significantly higher in the herniated and degenerative discs in comparison to the control tissues, suggesting a possible role of these proteins in the intervertebral degenerative process. CONCLUSION: The overexpression of heparanase isoforms in the degenerative intervertebral discs and the herniated discs suggests a potential role of both proteins in the mediation of inflammatory processes and in extracellular matrix remodeling. The heparanase-2 isoform may be involved in normal metabolic processes, as evidenced by its higher expression in the control intervertebral discs relative to the expression of heparanase-1.

  7. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.

    Nathalie Schmieg

    Full Text Available Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.

  8. The Invasion and Metastasis Promotion Role of CD97 Small Isoform in Gastric Carcinoma

    Liu, Daren; Trojanowicz, Bogusz; Ye, Longyun; Li, Chao; Zhang, Luqing; Li, Xiaowen; Li, Guogang; Zheng, Yixiong; Chen, Li

    2012-01-01

    metastatic regional lymph nodes on post-operative day 42 was distinctly decreased in the CD97/EGF1,2,5kd group as compared with the SGC-NS group, and was accompanied with the downregulation of CD44, VEGFR, CD31 and CD97. We concluded in this study that CD97 small isoform not only supported gastric cancer...

  9. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms

    Krintel, Christian; Klint, Cecilia; Lindvall, Håkan; Mörgelin, Matthias; Holm, Cecilia

    2010-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue...

  10. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl2, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  11. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia.

    Nousbeck, Janna; Burger, Bettina; Fuchs-Telem, Dana; Pavlovsky, Mor; Fenig, Shlomit; Sarig, Ofer; Itin, Peter; Sprecher, Eli

    2011-08-12

    Monogenic disorders offer unique opportunities for researchers to shed light upon fundamental physiological processes in humans. We investigated a large family affected with autosomal-dominant adermatoglyphia (absence of fingerprints) also known as the "immigration delay disease." Using linkage and haplotype analyses, we mapped the disease phenotype to 4q22. One of the genes located in this interval is SMARCAD1, a member of the SNF subfamily of the helicase protein superfamily. We demonstrated the existence of a short isoform of SMARCAD1 exclusively expressed in the skin. Sequencing of all SMARCAD1 coding and noncoding exons revealed a heterozygous transversion predicted to disrupt a conserved donor splice site adjacent to the 3' end of a noncoding exon uniquely present in the skin-specific short isoform of the gene. This mutation segregated with the disease phenotype throughout the entire family. Using a minigene system, we found that this mutation causes aberrant splicing, resulting in decreased stability of the short RNA isoform as predicted by computational analysis and shown by RT-PCR. Taken together, the present findings implicate a skin-specific isoform of SMARCAD1 in the regulation of dermatoglyph development. PMID:21820097

  12. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells.

    Ioannis Gavvovidis

    Full Text Available Biallelic mutations in MCPH1 cause primary microcephaly (MCPH with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL and a second transcript lacking the six 3' exons (MCPH1Δe9-14. Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

  13. The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis.

    Parisi, M; Lin, H

    1999-01-01

    The pumilio (pum) gene plays an essential role in embryonic patterning and germline stem cell (GSC) maintenance during oogenesis in Drosophila. Here we report on a phenotypic analysis using pum(ovarette) mutations, which reveals multiple functions of pum in primordial germ cell proliferation, larval ovary formation, GSC division, and subsequent oogenic processes, as well as in oviposition. Specifically, by inducing pum(-) GSC clones at the onset of oogenesis, we show that pum is directly involved in GSC division, a function that is distinct from its requirement in primordial germ cells. Furthermore, we show that pum encodes 156- and 130-kD proteins, both of which are functional isoforms. Among pum(ovarette) mutations, pum(1688) specifically eliminates the 156-kD isoform but not the 130-kD isoform, while pum(2003) and pum(4277) specifically affect the 130-kD isoform but not the 156-kD isoform. Normal doses of both isoforms are required for the zygotic function of pum, yet either isoform alone at a normal dose is sufficient for the maternal effect function of pum. A pum cDNA transgene that contains the known open reading frame encodes only the 156-kD isoform and rescues the phenotype of both pum(1688) and pum(2003) mutants. These observations suggest that the 156- and 130-kD isoforms can compensate for each other's function in a dosage-dependent manner. Finally, we present molecular evidence suggesting that the two PUM isoforms share some of their primary structures. PMID:10471709

  14. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  15. Conformational difference in human IgG2 disulfide isoforms revealed by hydrogen/deuterium exchange mass spectrometry.

    Zhang, Aming; Fang, Jing; Chou, Robert Y-T; Bondarenko, Pavel V; Zhang, Zhongqi

    2015-03-17

    Both recombinant and natural human IgG2 antibodies have several different disulfide bond isoforms, which possess different global structures, thermal stabilities, and biological activities. A detailed mapping of the structural difference among IgG2 disulfide isoforms, however, has not been established. In this work, we employed hydrogen/deuterium exchange mass spectrometry to study the conformation of three major IgG2 disulfide isoforms known as IgG2-B, IgG2-A1, and IgG2-A2 in two recombinant human IgG2 monoclonal antibodies. By comparing the protection factors between amino acid residues in isoforms B and A1 (the classical form), we successfully identified several local regions in which the IgG2-B isoform showed more solvent protection than the IgG2-A1 isoform. On the basis of three-dimensional structural models of IgG2, these identified regions were located on the Fab domains, close to the hinge, centered on the side where the two Fab arms faced each other in spatial proximity. We speculated that in the more solvent-protected B isoform, the two Fab arms were brought into contact by the nonclassical disulfide bonds, resulting in a more compact global structure. Loss of Fab domain flexibility in IgG2-B could limit its ability to access cell-surface epitopes, leading to reduced antigen binding potency. The A2 isoform was previously found to have disulfide linkages similar to those of the classical A1 isoform, but with different biophysical behaviors. Our data indicated that, compared to IgG2-A1, IgG2-A2 had less solvent protection in some heavy-chain Fab regions close the hinge, suggesting that the A2 isoform had more flexible Fab domains. PMID:25730439

  16. Two Distinct Isoforms of Matrix Metalloproteinase-2 Are Associated with Human Delayed Kidney Graft Function.

    Shaynah Wanga

    Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are

  17. Kalrn promoter usage and isoform expression respond to chronic cocaine exposure

    Ma Xin-Ming

    2011-02-01

    Full Text Available Abstract Background The long-term effects of cocaine on behavior are accompanied by structural changes in excitatory glutamatergic synapses onto the medium spiny neurons of the striatum. The Kalrn gene encodes several functionally distinct isoforms; these multidomain guanine nucleotide exchange factors (GEFs contain additional domains known to interact with phosphatidylinositides as well as with a number of different proteins. Through their activation of Rho proteins and their interactions with other proteins, the different Kalirin isoforms affect cytoskeletal organization. Chronic exposure of adult male rodents to cocaine increases levels of Kalirin 7 in the striatum. When exposed chronically to cocaine, mice lacking Kalirin 7, the major adult isoform, fail to show an increase in dendritic spine density in the nucleus accumbens, show diminished place preference for cocaine, and exhibit increased locomotor activity in response to cocaine. Results The use of alternate promoters and 3'-terminal exons of the mouse Kalrn gene were investigated using real-time quantitative polymerase chain reaction. While the two most distal full-length Kalrn promoters are used equally in the prefrontal cortex, the more proximal of these promoters accounts for most of the transcripts expressed in the nucleus accumbens. The 3'-terminal exon unique to the Kalirin 7 isoform accounts for a greater percentage of the Kalrn transcripts in prefrontal cortex than in nucleus accumbens. Western blot analyses confirmed these differences. Chronic cocaine treatment increases usage of the promoter encoding the Δ-Kalirin isoforms but does not alter full-length Kalirin promoter usage. Usage of the 3'-terminal exon unique to Kalirin 7 increases following chronic cocaine exposure. Conclusions Kalrn promoter and 3'-terminal exon utilization are region-specific. In the nucleus accumbens, cocaine-mediated alterations in promoter usage and 3'-terminal exon usage favor expression of

  18. Identification of residues in the heme domain of soluble guanylyl cyclase that are important for basal and stimulated catalytic activity.

    Padmamalini Baskaran

    Full Text Available Nitric oxide signals through activation of soluble guanylyl cyclase (sGC, a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain to the effector domain (catalytic domain, in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105 of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.

  19. The effects of isatin (indole-2, 3-dione on pituitary adenylate cyclase-activating polypeptide-induced hyperthermia in rats

    Tóth Gábor

    2002-02-01

    Full Text Available Abstract Background Previous studies have demonstrated that centrally administered natriuretic peptides and pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38 have hyperthermic properties. Isatin (indole-2, 3-dione is an endogenous indole that has previously been found to inhibit hyperthermic effects of natriuretic peptides. In this study the aim was to investigate the effects of isatin on thermoregulatory actions of PACAP-38, in rats. Results One μg intracerebroventricular (icv. injection of PACAP-38 had hyperthermic effect in male, Wistar rats, with an onset of the effect at 2 h and a decline by the 6th h after administration. Intraperitoneal (ip. injection of different doses of isatin (25-50 mg/kg significantly decreased the hyperthermic effect of 1 μg PACAP-38 (icv., whereas 12.5 mg/kg isatin (ip. had no inhibiting effect. Isatin alone did not modify the body temperature of the animals. Conclusion The mechanisms that participate in the mediation of the PACAP-38-induced hyperthermia may be modified by isatin. The capability of isatin to antagonize the hyperthermia induced by all members of the natriuretic peptide family and by PACAP-38 makes it unlikely to be acting directly on receptors for natriuretic peptides or on those for PACAP in these hyperthermic processes.

  20. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  1. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants

    Kwezi, Lusisizwe

    2011-04-19

    Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate Km of 7.5 μM and Vmax of 1800 nmol min-1 mg-1 of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg2+ or Mn2+. Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  3. Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5’ splice site within Col2a1 exon 2

    Hering, Thomas M.; Wirthlin, Louisa; Ravindran, Soumya; McAlinden, Audrey

    2014-01-01

    This study describes a new mechanism controlling the production of alternatively-spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively-spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codo...

  4. Survivin isoforms and clinicopathological characteristics in colorectal adenocarcinomas using real-time qPCR

    Pavlidou, Anastasia; Dalamaga, Maria; Kroupis, Christos; Konstantoudakis, George; Belimezi, Maria; Athanasas, George; Dimas, Kleanthi

    2011-01-01

    AIM: To investigate three isoforms of survivin in colorectal adenocarcinomas. METHODS: We used the LightCycler Technology (Roche), along with a common forward primer and reverse primers specific for the splice variants and two common hybridization probes labeled with fluorescein and LightCycler-Red fluorophore (LC-Red 640). Real time quantitative polymerase chain reaction (PCR) was performed on cDNAs from 52 tumor specimens from colorectal cancer patients and 10 unrelated normal colorectal tissues. In the patients group, carcinoembryonic antigen (CEA) and CA19-9 tumor markers were also measured immunochemically. RESULTS: Wild type survivin mRNA isoform was expressed in 48% of the 52 tumor samples, survivin-2b in 38% and survivin-ΔΕx3 in 29%, while no expression was found in normal tissues. The mRNA expression of wild type survivin presented a significant correlation with the expression of the ratio of survivin-2b, survivin-ΔΕx3, survivin-2b/wild type survivin and survivin-ΔΕx3/wild type survivin (P < 0.001). The mRNA expression of wild-survivin and survivin-ΔΕx3 was related with tumor size and invasion (P = 0.006 and P < 0.005, respectively). A significant difference was found between survivin-2b and morphologic cancer type. Also, the ratio of survivin-ΔEx3/wild-survivin was significantly associated with prognosis. No association was observed between the three isoforms and grade, metastasis, Dukes stage and gender. The three isoforms were not correlated with CEA and CA19-9. CONCLUSION: Survivin isoforms may play a role in cell apoptosis and their quantification could provide information about clinical management of patients suffering from colorectal cancer. PMID:21472129

  5. Survivin isoforms and clinicopathological characteristics in colorectal adenocarcinomas using real-time qPCR

    Anastasia Pavlidou; Maria Dalamaga; Christos Kroupis; George Konstantoudakis; Maria Belimezi; George Athanasas; Kleanthi Dimas

    2011-01-01

    AIM: To investigate three isoforms of survivin in colorectal adenocarcinomas. METHODS: We used the LightCycler Technology (Roche), along with a common forward primer and reverse primers specific for the splice variants and two common hybridization probes labeled with fluorescein and LightCycler- Red fluorophore (LC-Red 640). Real time quantitative polymerase chain reaction (PCR) was performed on cDNAs from 52 tumor specimens from colorectal cancer patients and 10 unrelated normal colorectal tissues. In the patients group, carcinoembryonic antigen (CEA) and CA19-9 tumor markers were also measured immunochemically. RESULTS: Wild type survivin mRNA isoform was expressed in 48% of the 52 tumor samples, survivin-2b in 38% and survivin-ΔΕx3 in 29%, while no expression was found in normal tissues. The mRNA expression of wild type survivin presented a significant correlation with the expression of the ratio of survivin-2b, survivin-ΔΕx3, survivin-2b/wild type survivin and survivin-ΔΕx3/wild type survivin (P < 0.001). The mRNA expression of wildsurvivin and survivin-ΔΕx3 was related with tumor size and invasion (P = 0.006 and P < 0.005, respectively). A significant difference was found between survivin-2b and morphologic cancer type. Also, the ratio of survivin-ΔEx3/ wild-survivin was significantly associated with prognosis. No association was observed between the three isoforms and grade, metastasis, Dukes stage and gender. The three isoforms were not correlated with CEA and CA19-9. CONCLUSION: Survivin isoforms may play a role in cell apoptosis and their quantification could provide information about clinical management of patients suffering from colorectal cancer.

  6. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail: kawamots@mail.nih.gov

    2014-08-08

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  7. Identification of alternatively spliced Dab1 and Fyn isoforms in pig

    Yuan Jihong

    2011-02-01

    Full Text Available Abstract Background Disabled-1 (Dab1 is an adaptor protein that is essential for the intracellular transduction of Reelin signaling, which regulates the migration and differentiation of postmitotic neurons during brain development in vertebrates. Dab1 function depends on its tyrosine phosphorylation by Src family kinases, especially Fyn. Results We have isolated alternatively spliced forms of porcine Dab1 from brain (sDab1 and liver (sDab1-Li and Fyn from brain (sFyn-B and spleen (sFyn-T. Radiation hybrid mapping localized porcine Dab1 (sDab1 and Fyn (sFyn to chromosomes 6q31-35 and 1p13, respectively. Real-time quantitative RT-PCR (qRT-PCR demonstrated that different isoforms of Dab1 and Fyn have tissue-specific expression patterns, and sDab1 and sFyn-B display similar temporal expression characteristics in the developing porcine cerebral cortex and cerebellum. Both sDab1 isoforms function as nucleocytoplasmic shuttling proteins. It was further shown that sFyn phosphorylates sDab1 at tyrosyl residues (Tyr 185, 198/200 and 232, whereas sDab1-Li was phosphorylated at Tyr 185 and Tyr 197 (corresponding to Y232 in sDab1 in vitro. Conclusions Alternative splicing generates natural sDab1-Li that only carries Y185 and Y197 (corresponding to Y232 in sDab1 sites, which can be phosphorylated by Fyn in vitro. sDab1-Li is an isoform that is highly expressed in peripheral organs. Both isoforms are suggested to be nucleocytoplasmic shuttling proteins. Our results imply that the short splice form sDab1-Li might regulate cellular responses to different cell signals by acting as a dominant negative form against the full length sDab1 variant and that both isoforms might serve different signaling functions in different tissues.

  8. Multiple, but Concerted Cellular Activities of the Human Protein Hap46/BAG-1M and Isoforms

    Ulrich Gehring

    2009-03-01

    Full Text Available The closely related human and murine proteins Hap46/BAG-1M and BAG-1, respectively, were discovered more than a decade ago by molecular cloning techniques. These and the larger isoform Hap50/BAG-1L, as well as shorter isoforms, have the ability to interact with a seemingly unlimited array of proteins of completely unrelated structures. This problem was partially resolved when it was realized that molecular chaperones of the hsp70 heat shock protein family are major primary association partners, binding being mediated by the carboxy terminal BAG-domain and the ATP-binding domain of hsp70 chaperones. The latter, in turn, can associate with an almost unlimited variety of proteins through their substrate-binding domains, so that ternary complexes may result. The protein folding activity of hsp70 chaperones is affected by interactions with Hap46/BAG-1M or isoforms. However, there also exist several proteins which bind to Hap46/BAG-1M and isoforms independent of hsp70 mediation. Moreover, Hap46/BAG-1M and Hap50/BAG-1L, but not the shorter isoforms, can bind to DNA in a sequence-independent manner by making use of positively charged regions close to their amino terminal ends. This is the molecular basis for their effects on transcription which are of major physiological relevance, as discussed here in terms of a model. The related proteins Hap50/BAG-1L and Hap46/BAG-1M may thus serve as molecular links between such diverse bioactivities as regulation of gene expression and protein quality control. These activities are coordinated and synergize in helping cells to cope with conditions of external stress. Moreover, they recently became markers for the aggressiveness of several cancer types.

  9. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo

  10. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P41 with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units

  11. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    Fuentes-Silva, D. [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Mendoza-Hernández, G. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Stojanoff, V. [Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY (United States); Palomares, L. A. [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Zenteno, E. [Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Torres-Larios, A. [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico); Rodríguez-Romero, A., E-mail: adela@servidor.unam.mx [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cuidad Universitaria, Coyoacán, México, DF 04510 (Mexico)

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  12. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.

    2007-01-01

    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  13. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis

    Fridlyand, Leonid E.; Philipson, Louis H.

    2016-01-01

    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  14. Cloning of a soluble isoform of the SgIGSF adhesion molecule that binds the extracellular domain of the membrane-bound isoform.

    Koma, Yu-ichiro; Ito, Akihiko; Wakayama, Tomohiko; Watabe, Kenji; OKADA, Morihito; Tsubota, Noriaki; Iseki, Shoichi; Kitamura, Yukihiko

    2004-01-01

    SgIGSF (spermatogenic immunoglobulin superfamily) is a recently identified intercellular adhesion molecule of the immunoglobulin superfamily. In a mast-cell cDNA library, we found a clone that resulted from the retention of intron 7 within the mature SgIGSF message. This clone was predicted to encode a soluble isoform of SgIGSF (sSgIGSF) with 336 amino-acid residues because its open reading frame ended just before the transmembrane domain. We constructed a plasmid expressing sSgIGSF fused to ...

  15. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions. PMID:19403727

  16. Identification of novel chicken estrogen receptor-alpha messenger ribonucleic acid isoforms generated by alternative splicing and promoter usage.

    Griffin, C; Flouriot, G; Sonntag-Buck, V; Nestor, P; Gannon, F

    1998-11-01

    Using the rapid amplification of complementary DNA ends (RACE) methodology we have identified three new chicken estrogen receptor-alpha (cER alpha) messenger RNA (mRNA) variants in addition to the previously described form (isoform A). Whereas one of the new variants (isoform B) presents a 5'-extremity contiguous to the 5'-end of isoform A, the two other forms (isoforms C and D) are generated by alternative splicing of upstream exons (C and D) to a common site situated 70 nucleotides upstream of the translation start site in the previously assigned exon 1 (A). The 3'-end of exon 1C has been located at position -1334 upstream of the transcription start site of the A isoform (+1). Whereas the genomic location of exon 1D is unknown, 700 bp 5' to this exon were isolated by genomic walking, and their sequence was determined. The transcription start sites of the cER alpha mRNA isoforms were defined. In transfection experiments, the regions immediately upstream of the A-D cER alpha mRNA isoforms were shown to possess cell-specific promoter activities. Three of these promoters were down-regulated in the presence of estradiol and ER alpha protein. It is concluded, therefore, that the expression of the four different cER alpha mRNA isoforms is under the control of four different promoters. Finally, RT-PCR, S1 nuclease mapping, and primer extension analysis of these different cER alpha mRNA isoforms revealed a differential pattern of expression of the cER alpha gene in chicken tissues. Together, the results suggest that alternative 5'-splicing and promoter usage may be mechanisms used to modulate the levels of expression of the chicken ER alpha gene in a tissue-specific and/or developmental stage-specific manner. PMID:9794473

  17. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding. Finally, I

  18. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1.

    Shinobu Tsuzuki

    2007-05-01

    Full Text Available BACKGROUND: AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. METHODS AND FINDINGS: The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. CONCLUSIONS: These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in

  19. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    Fu, J.

    2002-03-01

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding

  20. Influenza A Viruses Control Expression of Proviral Human p53 Isoforms p53β and Δ133p53α

    Terrier, Olivier; Marcel, Virginie; Cartet, Gaëlle; Lane, David P; Lina, Bruno; Rosa-Calatrava, Manuel; Bourdon, Jean-Christophe

    2012-01-01

    Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infec...

  1. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  2. Identification of T-Cell Factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    Tsedensodnom, Orkhontuya; Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R.; Kim, Miran

    2011-01-01

    The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/β-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms fr...

  3. The expression of ELK transcription factors in adult DRG: novel isoforms, antisense transcripts and upregulation by nerve damage

    Kerr, Niall; Pintzas, Alexander; Holmes, Fiona; Hobson, Sally-Ann; Pope, Robert; Wallace, Mark; Wasylyk, Christine; Wasylyk, Bohdan; Wynick, David

    2010-01-01

    ELK transcription factors are expressed in brain, but it is unknown whether they are expressed in the peripheral nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fa...

  4. Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets.

    Hanff, Erik; Böhmer, Anke; Zinke, Maximilian; Gambaryan, Stepan; Schwarz, Alexandra; Supuran, Claudiu T; Tsikas, Dimitrios

    2016-07-01

    Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite. PMID:27129464

  5. Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect

    Ballou, David P.; Zhao, Yunde; Brandish, Philip E.; Marletta, Michael A.

    2002-01-01

    Soluble guanylate cyclase (sGC) is a ferrous iron hemoprotein receptor for nitric oxide (NO). NO binding to the heme activates the enzyme 300-fold. sGC as isolated is five-coordinate, ferrous with histidine as the axial ligand. The NO-activated enzyme is a five-coordinate nitrosyl complex where the axial histidine bond is broken. Past studies using rapid-reaction kinetics demonstrated that both the formation of a six-coordinate intermediate and the conversion of the intermediate to the activated five-coordinate nitrosyl complex depended on the concentration of NO. A model invoking a second NO molecule as a catalyst for the conversion of the six-coordinate intermediate to the five-coordinate sGC–NO complex was proposed to explain the observed kinetic data. A recent study [Bellamy, T. C., Wood, J. & Garthwaite, J. (2002) Proc. Natl. Acad. Sci. USA 99, 507–510] concluded that a simple two-step binding model explains the results. Here we show through further analysis and simulations of previous data that the simple two-step binding model cannot be used to describe our results. Instead we show that a slightly more complex two-step binding model, where NO is used as a ligand in the first step and a catalyst in the second step, can describe our results quite satisfactorily. These new simulations combined with the previous activation data lead to the conclusion that the intermediate six-coordinate sGC–NO complex has substantial activity. The model derived from our simulations also can account for the slow deactivation of sGC that has been observed in vitro. PMID:12209005

  6. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats.

    Linda S Hoffmann

    Full Text Available The nitric oxide (NO/soluble guanylate cyclase (sGC/cyclic guanosine monophasphate (cGMP-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC.

  7. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  8. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats.

    Sandra Geschka

    Full Text Available BACKGROUND: A direct pharmacological stimulation of soluble guanylate cyclase (sGC is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521, have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension. METHODS AND RESULTS: Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 and plasminogen activator inhibitor-1 (PAI-1 in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1. CONCLUSIONS: Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions.

  9. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. PMID:26851652

  10. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  11. Design and Synthesis of Simplified Largazole Analogues as Isoform-Selective Human Lysine Deacetylase Inhibitors.

    Reddy, Damodara N; Ballante, Flavio; Chuang, Timothy; Pirolli, Adele; Marrocco, Biagina; Marshall, Garland R

    2016-02-25

    Selective inhibition of KDAC isoforms while maintaining potency remains a challenge. Using the largazole macrocyclic depsipeptide structure as a starting point for developing new KDACIs with increased selectivity, a combination of four different simplified largazole analogue (SLA) scaffolds with diverse zinc-binding groups (for a total of 60 compounds) were designed, synthesized, and evaluated against class I KDACs 1, 3, and 8, and class II KDAC6. Experimental evidence as well as molecular docking poses converged to establish the cyclic tetrapeptides (CTPs) as the primary determinant of both potency and selectivity by influencing the correct alignment of the zinc-binding group in the KDAC active site, providing a further basis for developing new KDACIs of higher isoform selectivity and potency. PMID:26681404

  12. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts

    Yonatan Stelzer

    2015-04-01

    Full Text Available Parental imprinting results in monoallelic parent-of-origin-dependent gene expression. However, many imprinted genes identified by differential methylation do not exhibit complete monoallelic expression. Previous studies demonstrated complex tissue-dependent expression patterns for some imprinted genes. Still, the complete magnitude of this phenomenon remains largely unknown. By differentiating human parthenogenetic induced pluripotent stem cells into different cell types and combining DNA methylation with a 5′ RNA sequencing methodology, we were able to identify tissue- and isoform-dependent imprinted genes in a genome-wide manner. We demonstrate that nearly half of all imprinted genes express both biallelic and monoallelic isoforms that are controlled by tissue-specific alternative promoters. This study provides a global analysis of tissue-specific imprinting in humans and suggests that alternative promoters are central in the regulation of imprinted genes.

  13. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  14. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status.

    Auxenfans, Céline; Thépot, Amélie; Justin, Virginie; Hautefeuille, Agnès; Shahabeddin, Lili; Damour, Odile; Hainaut, Pierre

    2009-01-01

    Large-scale culture of primary keratinocytes allows the production of large epidermal sheet surfaces for the treatment of extensive skin burns. This method is dependent upon the capacity to establish cultures of proliferating keratinocytes in conditions compatible with their clonal expansion while maintaining their capacity to differentiate into the typical squamous pattern of human epidermis. Feeder layers are critical in this process because the fibroblasts that compose this layer serve as a source of adhesion, growth and differentiation factors. In this report, we have characterise the expression patterns of p63 isoforms in primary keratinocytes cultured on two different feeder layer systems, murine 3T3 and human fibroblasts. We show that with the latter, keratinocytes express a higher ratio of Delta N to TAp63 isoform, in relation with higher clonogenic potential. These results indicate that human fibroblasts represent an adequate feeder layer system to support the culture of primary human keratinocytes. PMID:20042803

  15. Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting.

    Carthew, James; Karakesisoglou, Iakowos

    2016-01-01

    Heavily utilized in cell and molecular biology, western blotting is considered a crucial technique for the detection and quantification of proteins within complex mixtures. In particular, the detection of members of the nesprin (nuclear envelope spectrin repeat protein) family has proven difficult to analyze due to their substantial isoform diversity, molecular weight variation, and the sheer size of both nesprin-1 and nesprin-2 giant protein variants (>800 kDa). Nesprin isoforms contain distinct domain signatures, perform differential cytoskeletal associations, occupy different subcellular compartments, and vary in their tissue expression profiles. This structural and functional variance highlights the need to distinguish between the full range of proteins within the nesprin protein family, allowing for greater understanding of their specific roles in cell biology and disease. Herein, we describe a western blotting protocol modified for the detection of low to high molecular weight (50-1000 kDa) nesprin proteins. PMID:27147045

  16. Catecholamine-induced desensitization of adenylate cyclase coupled. beta. -adrenergic receptors in turkey erythrocytes: evidence for a two-step mechanism

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-09-08

    Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the ..beta..-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the ..beta..-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the ..beta..-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with /sup 32/P or with the photoaffinity label /sup 125/I-(p-azidobenzyl)carazolol, can be resolved into a doublet (M/sub r/ similarly ordered 37,000 and M/sub r/ similarly ordered 41,000) as compared to a single M/sub r/ similarly ordered 37,000 ..beta..-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of /sup 32/P-labeled ..beta..-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (M/sub r/ similarly ordered 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (M/sub r/ similarly ordered 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled ..beta..-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism.

  17. Catecholamine-induced desensitization of adenylate cyclase coupled β-adrenergic receptors in turkey erythrocytes: evidence for a two-step mechanism

    Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the β-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the β-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the β-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32P or with the photoaffinity label 125I-(p-azidobenzyl)carazolol, can be resolved into a doublet (M/sub r/ similarly ordered 37,000 and M/sub r/ similarly ordered 41,000) as compared to a single M/sub r/ similarly ordered 37,000 β-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32P-labeled β-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (M/sub r/ similarly ordered 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (M/sub r/ similarly ordered 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled β-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism

  18. Two Lycopene β-Cyclases Genes from Sweet Orange (Citrus sinensis L. Osbeck) Encode Enzymes With Different Functional Efifciency During the Conversion of Lycopene-to-Provitamin A

    ZHANG Jian-cheng; ZHOU Wen-jing; XU Qiang; TAO Neng-guo; YE Jun-li; GUO Fei; XU Juan; DENG Xiu-xin

    2013-01-01

    Citrus fruits are rich in carotenoids. In the carotenoid biosynthetic pathway, lycopene β-cyclase (LCYb, EC:1.14.-.-) is a key regulatory enzyme in the catalysis of lycopene to β-carotene, an important dietary precursor of vitamin A for human nutrition. Two closely related lycopeneβ-cyclase cDNAs, designated CsLCYb1 and CsLCYb2, were isolated from the pulp of orange fruits (Citrus sinensis). The expression level of CsLCYb genes is lower in the lfavedo and juice sacs of a lycopene-accumulating genotype Cara Cara than that in common genotype Washington, and this might be correlated with lycopene accumulation in Cara Cara fruit. The CsLCYb1 efifciently converted lycopene into the bicyclicβ-carotene in an Escherichia coli expression system, but the CsLCYb2 exhibited a lower enzyme activity and converted lycopene into theβ-carotene and the monocyclic γ-carotene. In tomato transformation studies, expression of CsLCYb1 under the control of the caulilfower mosaic virus (CaMV) 35S constitutive promoter resulted in a virtually complete conversion of lycopene intoβ-carotene, and the ripe fruits displayed a bright orange colour. However, the CsLCYb2 transgenic tomato plants did not show an altered fruit colour during development and maturation. In fruits of the CsLCYb1 transgenic plants, most of the lycopene was converted intoβ-carotene with provitamin A levels reaching about 700 µg g-1 DW. Unexpectedly, most transgenic tomatoes showed a reduction in total carotenoid accumulation, and this is consistent with the decrease in expression of endogenous carotenogenic genes in transgenic fruits. Collectively, these results suggested that the cloned CsLCYb1 and CsLCYb2 genes encoded two functional lycopene β-cyclases with different catalytic efifciency, and they may have potential for metabolite engineering toward altering pigmentation and enhancing nutritional value of food crops.

  19. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45Ca2+ uptake into the cell monolayer, and (f) increased 86Rb+ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca2+-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca2+ gating

  20. Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain [v1; ref status: indexed, http://f1000r.es/1mg

    Lara Kaddoum

    2013-10-01

    Full Text Available Rett syndrome is a neurological disorder caused by mutations in the MECP2 gene.  MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2 that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for MeCP2_e1 is more abundant than for MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development.

  1. Prokaryotic expression and characterization of a pea actin isoform (PEAcl) fused to GFP

    ZHANG Shaobin; REN Dongtao; XU Xiaojing; LIU Guoqin

    2004-01-01

    Actins widely exist in eukaryotic cells and play important roles in many living activities. As there are many kinds of actin isoforms in plant cells, it is difficult to purify each actin isoform in sufficient quantities for analyzing its physicochemical properties. In the present study, a pea(Pisum Sativum L.) actin isoform (PEAc1) fused to His-tag at its amino terminus and GFP (green fluorescent protein) at its Carboxyl terminus were expressed in E. Coli in inclusion bodies. The fusion protein (PEAc1-GFP) was highly purified with the yield of above 2 mg/L culture by dissolving inclusions in 8 mol/L urea, renaturing by dialysis in a gradient of urea, and affinity binding to Ni-resin. The purified mono meric PEAc1-GFP could efficiently bind on Dnase Ⅰ and inhibit the latter's enzyme activity. PEAc1-GFP could polymerize into green fluorescent filamentous structures (F-PEAc1-GFP), which could be labeled by TRITC-phalloidin, a specific agent for observing microfilaments. The PEAc1-GFP polymerization curve was identical with that of chicken skeletal muscle actin. The critical concentration for PEAc1-GFP to polymerize into filaments is 0.24 μmol/L. The F-PEAc1-GFP could stimulate myosin Mg-ATPase activity in a protein concentration dependant manner (about 4 folds at1 mg/mL F-PEAc1-GFP). The results above show that the PEAcl fused to GFP retained the assembly characteristic of actin, indicating that gene fusion, prokaryotic expression,denaturation and renaturation, and affinity chromatography is a useful strategy for obtaining plant actin isoform proteins in a large amount.

  2. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  3. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    The nuclear receptor farnesoid X receptor alpha (FXRα, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxrα in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXRα (∼70% in the ligand-binding domain). Fxrα1 and Fxrα2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process results in Fxrα1 having an extended N-terminus compared to Fxrα2. A Gal4DBD-FxrαLBD fusion construct was activated by chenodeoxycholic, cholic, deoxycholic and lithocholic acids, and the synthetic agonist GW4064 in transient transactivation assays. Activation of the Gal4DBD-FxrαLBD fusion construct was enhanced by addition of PGC-1α, as demonstrated through titration assays. Surprisingly, when the full-length versions of the two Fxrα isoforms were compared in transient transfection assays, Fxrα2 was activated by C24 bile acids and GW4064, while Fxrα1 was not significantly activated by any of the compounds tested. Since the only significant difference between the full-length constructs was sequence in the AF1 domain, these experiments highlight a key functional region in the Fxrα AF1 domain. Furthermore, mammalian two-hybrid studies demonstrated the ability of Fxrα2, but not Fxrα1, to interact with PGC-1α and SRC-1, and supported our results from the transient transfection reporter gene activation assays. These data demonstrate that both mammalian and teleost FXR (Fxrα2 isoform) are activated by primary and secondary bile acids.

  4. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    Howarth, Deanna L. [Integrated Toxicology and Environmental Health Program and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708 (United States); Hagey, Lee R. [Department of Medicine, University of California at San Diego, La Jolla, CA 92093 (United States); Law, Sheran H.W. [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States); Ai, Ni [Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854 (United States); Krasowski, Matthew D. [Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Ekins, Sean [Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854 (United States); Collaboration in Chemistry, Jenkintown, PA 19046 (United States); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201 (United States); Moore, John T. [GlaxoSmithKline Discovery Research, Research Triangle Park, NC 27709 (United States); Kollitz, Erin M. [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States); Hinton, David E. [Integrated Toxicology and Environmental Health Program and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708 (United States); Kullman, Seth W., E-mail: swkullma@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-01

    The nuclear receptor farnesoid X receptor alpha (FXR{alpha}, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxr{alpha} in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXR{alpha} ({approx}70% in the ligand-binding domain). Fxr{alpha}1 and Fxr{alpha}2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process results in Fxr{alpha}1 having an extended N-terminus compared to Fxr{alpha}2. A Gal4DBD-Fxr{alpha}LBD fusion construct was activated by chenodeoxycholic, cholic, deoxycholic and lithocholic acids, and the synthetic agonist GW4064 in transient transactivation assays. Activation of the Gal4DBD-Fxr{alpha}LBD fusion construct was enhanced by addition of PGC-1{alpha}, as demonstrated through titration assays. Surprisingly, when the full-length versions of the two Fxr{alpha} isoforms were compared in transient transfection assays, Fxr{alpha}2 was activated by C{sub 24} bile acids and GW4064, while Fxr{alpha}1 was not significantly activated by any of the compounds tested. Since the only significant difference between the full-length constructs was sequence in the AF1 domain, these experiments highlight a key functional region in the Fxr{alpha} AF1 domain. Furthermore, mammalian two-hybrid studies demonstrated the ability of Fxr{alpha}2, but not Fxr{alpha}1, to interact with PGC-1{alpha} and SRC-1, and supported our results from the transient transfection reporter gene activation assays. These data demonstrate that both mammalian and teleost FXR (Fxr{alpha}2 isoform) are activated by primary and secondary bile acids.

  5. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Urszula Skalska; Ewa Kontny

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial ...

  6. Immunodetection of nmt55/p54nrb isoforms in human breast cancer

    We previously identified and characterized a novel 55 kDa nuclear protein, termed nmt55/p54nrb, whose expression was decreased in a subset of human breast tumors. The objective of this study was to determine if this reduced expression in human breast tumors was attributed to the regulation of mRNA transcription or the presence of altered forms of this protein. Northern blot analysis and ribonuclease protection assay indicated that nmt55/p54nrb mRNA is expressed at varying levels in estrogen receptor positive (ER+) and estrogen receptor negative (ER-) human breast tumors suggesting that reduced expression of nmt55/p54nrb protein in ER- tumors was not due to transcriptional regulation. To determine if multiple protein isoforms are expressed in breast cancer, we utilized Western blot and immunohistochemical analyses, which revealed the expression of an nmt55/p54nrb protein isoform in a subset of ER+ tumors. This subset of ER+ human breast tumors expressed an altered form of nmt55/p54nrb that was undetectable with an amino-terminal specific antibody suggesting that this isoform contains alterations or modifications within the amino terminal domain. Our study indicates that nmt55/p54nrb protein is post-transcriptionally regulated in human breast tumors leading to reduced expression in ER- tumors and the expression of an amino terminal altered isoform in a subset of ER+ tumors. The potential involvement of nmt55/p54nrb in RNA binding and pre-mRNA splicing may be important for normal cell growth and function; thus, loss or alteration of protein structure may contribute to tumor growth and progression

  7. Functional studies and expression regulation of two leptin isoforms in grass carp

    Chen, Ting; 陈廷

    2012-01-01

    Leptin, the protein product of obese gene, is a 16-kD adipokine with regulatory functions on food intake and energy metabolism. At present, limited information is available on leptin functions and regulation in lower vertebrates mainly due to the fact that the primary structure of leptin is highly diversified from fish to mammals. Leptin in teleost fish is even more complicated as leptin isoforms have been reported presumably as a result of whole-genome duplication that occurred during the ev...

  8. Contribution of human cytochrome P-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine

    Wójcikowski, Jacek; Pichard-Garcia, Lydiane; Maurel, Patrick; Daniel, Władysława A

    2003-01-01

    The aim of the present study was to identify human cytochrome P-450 isoforms (CYPs) involved in 5-sulphoxidation and N-demethylation of the simplest phenothiazine neuroleptic promazine in human liver.The experiments were performed in the following in vitro models: (A) a study of promazine metabolism in liver microsomes—(a) correlations between the rate of promazine metabolism and the level and activity of CYPs; (b) the effect of specific inhibitors on the rate of promazine metabolism (inhibit...

  9. Decreased Levels of the Gelsolin Plasma Isoform in Patients with Rheumatoid Arthritis

    Osborn, Teresia M.; Verdrengh, Margareta; Stossel, Thomas Peter; Tarkowski, Andrej; Bokarewa, Maria

    2008-01-01

    Introduction Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of \\(200 \\pm 50\\) mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsol...

  10. Most Highly Expressed Protein-Coding Genes Have a Single Dominant Isoform

    Ezkurdia, Iakes; Rodriguez, Jose Manuel; Pau, Enrique Carrillo-de Santa; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L

    2015-01-01

    Although eukaryotic cells express a wide range of alternatively spliced transcripts, it is not clear whether genes tend to express a range of transcripts simultaneously across cells, or produce dominant isoforms in a manner that is either tissue-specific or regardless of tissue. To date, large-scale investigations into the pattern of transcript expression across distinct tissues have produced contradictory results. Here, we attempt to determine whether genes express a dominant splice variant ...

  11. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  12. Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms

    Barchiesi, Julieta; Hedin, Nicolás; Gomez-Casati, Diego F.; Miguel A Ballicora; Busi, María V.

    2015-01-01

    Background Starch-binding domains are key modules present in several enzymes involved in polysaccharide metabolism. These non-catalytic modules have already been described as essential for starch-binding and the catalytic activity of starch synthase III from the higher plant Arabidopsis thaliana. In Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, there are three SSIII isoforms, known as Ostta SSIII-A, SSIII-B and SSIII-C. Results In this work, using in silico and in...

  13. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  14. Isoform composition, gene expression and sarcomeric protein phosphorylation in striated muscle of mice after space flight

    Vikhlyantsev, Ivan; Ulanova, Anna; Salmov, Nikolay; Gritsyna, Yulia; Bobylev, Alexandr; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    Using RT-PCR and SDS-PAGE, changes in isoform composition, gene expression, titin and nebulin phosphorylation, as well as changes in isoform composition of myosin heavy chains in striated muscles of mice were studied after 30-day-long space flight onboard the Russian spacecraft “BION-M” No. 1. The muscle fibre-type shift from slow-to-fast was observed in m. gastrocnemius and m. tibialis anterior of animals from “Flight” group. A decrease in the content of the NT and N2A titin isoforms and nebulin in the skeletal muscles of animals from “Flight” group was found. Meanwhile, significant differences in gene expression of these proteins in skeletal muscles of mice from “Flight” and “Control” groups were not observed. Using Pro-Q Diamond stain, an increase in titin phosphorylation in m. gastrocnemius of mice from “Flight” group was detected. The content of the NT, N2BA and N2B titin isoforms in cardiac muscle of mice from “Flight” and “Control” groups did not differ, nevertheless an increase in titin gene expression in the myocardium of the “Flight” group animals was found. The observed changes will be discussed in the context of theirs role in contractile activity of striated muscles of mice in conditions of weightlessness. This work was supported by the Russian Foundation for Basic Research (grants No. 14-04-32240, 14-04-00112). Acknowledgement. We express our gratitude to the teams of Institute of Biomedical Problems RAS and “PROGRESS” Corporation involved in the preparation of the “BION-M” mission.

  15. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas

    Wu, Yulong; Cheng, Mei; Shi, Zhen; Feng, Zhenqing; Guan, Xiaohong

    2014-01-01

    Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunof...

  16. Smoking specifically induces metallothionein-2 isoform in human placenta at term

    Recently, we reported the presence of higher levels of metallothionein (MT) in placentas of smokers compared to non-smokers. In the present study, we designed experiments to separate and evaluate two isoforms of MT (MT-1 and MT-2) in placentas of smokers and non-smokers. Metallothionein was extracted and separated by ion-exchange high performance liquid chromatography (HPLC), previous saturation with cadmium chloride. Two peaks eluting at 6 and 12.5 min, corresponding to MT-1 and MT-2, respectively, were obtained. Metallothionein present in both peaks was identified by Western blot analysis using a monoclonal antibody directed against MT-1 and MT-2. Each isoform concentration was calculated after measuring its cadmium content by atomic absorption spectrometry with inductively coupled-plasma. In placentas of smokers, MT-2 levels increased by seven-fold compared to non-smokers, whereas MT-1 was not changed. Total placental cadmium and zinc concentrations, determined by atomic absorption spectrometry and neutron activation analysis, respectively, were higher in smokers. Metallothioneins levels were clearly in excess to bind all cadmium ions present in placentas. However, most of placental zinc remains unbound to MTs, although as much as twice zinc ions could be bound to MT in smokers. In conclusion, MT-2 is the main isoform induced by smoking, suggesting that this isoform could be involved in placental cadmium and zinc retention. This fact, which could contribute to reduce the transference of zinc to the fetus, may be associated to detrimental effects on fetal growth and development

  17. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease

    Lin, Xiangmin; Cook, Travis J.; Zabetian, Cyrus P.; Leverenz, James B.; Peskind, Elaine R.; Hu, Shu-Ching; Cain, Kevin C.; Pan, Catherine; Edgar, John Scott; Goodlett, David R.; Racette, Brad A.; Checkoway, Harvey; Montine, Thomas J.; Shi, Min; Zhang, Jing

    2012-01-01

    DJ-1 is a multifunctional protein that plays an important role in oxidative stress, cell death, and synucleinopathies, including Parkinson disease. Previous studies have demonstrated that total DJ-1 levels decrease in the cerebrospinal fluid, but do not change significantly in human plasma from patients with Parkinson disease when compared with controls. In this study, we measured total DJ-1 and its isoforms in whole blood of patients with Parkinson disease at various stages, Alzheimer diseas...

  18. Differential susceptibility on myosin heavy chain isoform following eccentric-induced muscle damage

    Choi, Seung Jun

    2014-01-01

    Based on myosin heavy chain (MHC) isoform, human skeletal muscle fibers can be categorized into three fiber types, type I, IIa, IIx fibers, and each fiber type has different characteristics. Typical characteristics are difference in force production, shortening velocity, and fatigue resistance. When the muscle is contract and stretched by a force that is greater than the force generated by the muscle, contraction-induced muscle damage frequently occurs. Several experimental models involving b...

  19. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi;

    2011-01-01

    inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that...... insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression....

  20. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis

    Mac Gabhann Feilim

    2011-05-01

    Full Text Available Abstract Background The spatial distribution of vascular endothelial growth factor A (VEGF is an important mediator of vascular patterning. Previous experimental studies in the mouse hindbrain and retina have suggested that VEGF alternative splicing, which controls the ability of VEGF to bind to heparan sulfate proteoglycans (HSPGs in the extracellular matrix (ECM, plays a key role in controlling VEGF diffusion and gradients in tissues. Conversely, proteolysis notably by matrix metalloproteinases (MMPs, plays a critical role in pathological situations by releasing matrix-sequestered VEGF and modulating angiogenesis. However, computational models have predicted that HSPG binding alone does not affect VEGF localization or gradients at steady state. Results Using a 3D molecular-detailed reaction-diffusion model of VEGF ligand-receptor kinetics and transport, we test alternate models of VEGF transport in the extracellular environment surrounding an endothelial sprout. We show that differences in localization between VEGF isoforms, as observed experimentally in the mouse hindbrain, as well as the ability of proteases to redistribute VEGF in pathological situations, are consistent with a model where VEGF is endogenously cleared or degraded in an isoform-specific manner. We use our predictions of the VEGF distribution to quantify a tip cell's receptor binding and gradient sensing capacity. A novel prediction is that neuropilin-1, despite functioning as a coreceptor to VEGF165-VEGFR2 binding, reduces the ability of a cell to gauge the relative steepness of the VEGF distribution. Comparing our model to available in vivo vascular patterning data suggests that vascular phenotypes are most consistently predicted at short range by the soluble fraction of the VEGF distributions, or at longer range by matrix-bound VEGF detected in a filopodia-dependent manner. Conclusions Isoform-specific VEGF degradation provides a possible explanation for numerous examples