WorldWideScience

Sample records for adenylate kinase activity

  1. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    Trung Thanh Thach

    2014-01-01

    Full Text Available Streptococcus pneumoniae (pneumococcus infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S. pneumoniae (SpAdK serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A. Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.

  2. Long-Term Exposure to High Corticosterone Levels Inducing a Decrease of Adenylate Kinase 1 Activity

    ZHAO Yu'nan; SHEN Jia; SU Hui; HUANG Yufang; XING Dongming; DU Lijun

    2009-01-01

    Corticosterone, a principal glucocorticoid synthesized in the rodent adrenal cortex, can be cumula-tively toxic to hippocampal neurons, the cause of which is not known. The present study determined whether the cytosol adenylate kinase (AK) system was involved in the neuronal damage induced by long-term exposure to high corticosterone levels. We investigated the effects of long-term exposure to high corticosterone levels on AK1 activity, AK1 mRNA expression, and energy levels in cultured hippocampal neurons. The results show that long-term exposure to high corticosterone levels induces a reduction of the cultured hippocampal neuron viability, significantly reduces energy levels, and causes a time-dependant re-duction of the AK1 activity. These findings indicate that changes in the AK system might be the mechanism underlying neuronal damage induced by long-term exposure to high corticosterone levels.

  3. Structural studies of Schistosoma mansoni adenylate kinases

    Marques, I.A. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Pereira, H.M.; Garrat, R.C. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil)

    2012-07-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  4. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy; (IIT); (Penn)

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  5. A Continuous Kinetic Assay for Adenylation Enzyme Activity and Inhibition

    Daniel J. Wilson; Aldrich, Courtney C.

    2010-01-01

    Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PPi). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hy...

  6. Correlated inter-domain motions in adenylate kinase.

    Santiago Esteban-Martín

    2014-07-01

    Full Text Available Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK, using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs measured under steric alignment by nuclear magnetic resonance (NMR. We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.

  7. Decreased expression of plastidial adenylate kinase in potato tubers results in an enhanced rate of respiration and a stimulation of starch synthesis that is attributable to post-translational redox-activation of ADP-glucose pyrophosphorylase

    Oliver, S.; Tiessen, A.; Fernie, A.; Geigenberger, P.

    2008-01-01

    Adenine nucleotides are of general importance for many aspects of cell function, but their role in the regulation of biosynthetic processes is still unclear. It was previously reported that decreased expression of plastidial adenylate kinase, catalysing the interconversion of ATP and AMP to ADP, leads to increased adenylate pools and starch content in transgenic potato tubers. However, the underlying mechanisms were not elucidated. Here, it is shown that decreased expression of plastidial ade...

  8. Pituitary adenylate cyclase activating polypeptide and migraine

    Zagami, Alessandro S; Edvinsson, Lars; Goadsby, Peter J

    2014-01-01

    Pituitary adenylate cyclase activating peptide (PACAP) is found in human trigeminocervical complex and can trigger migraine. PACAP levels were measured using a sensitive radioimmunoassay. Stimulation of the superior sagittal sinus (SSS) in cat elevated PACAP levels in cranial blood. Patients with...... moderate or severe migraine headache had elevated PACAP in the external jugular vein during headache (n = 15), that was reduced 1 h after treatment with sumatriptan 6 mg (n = 11), and further reduced interictally (n = 9). The data suggest PACAP, or its receptors, are a promising target for migraine...

  9. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases.

    Michael D Daily

    2011-07-01

    Full Text Available Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK, for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō simulation of mesophilic AK from E. coli (AKmeso to simulations of thermophilic AK from Aquifex aeolicus (AKthermo. In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A "heated" simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the "corresponding states" hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways.

  10. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  11. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances.

    Howell, Stanley C; Richards, David H; Mitch, William A; Wilson, Corey J

    2015-10-16

    Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study, we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary structure, protein hydrodynamics, and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance, namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites. PMID:26266833

  12. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies

    Drakou, Christina E.; Malekkou, Anna; Hayes, Joseph M.; Carsten W Lederer; Leonidas, Demetres D.; Oikonomakos, Nikos G.; Lamond, Angus I.; Santama, Niovi; Zographos, Spyros E.

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. D...

  13. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  14. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 μM isoproterenol and 50 μM GTP-γ-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 μM GTP-γ-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of β-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes

  15. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  16. Fluorescence and NMR investigations in the ligand binding properties of adenylate kinases

    A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand α,ω-di[(3' or 2')-O-(N-methyl-anthraniloyl)adenosine-5'] pentaphosphate (MAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 x 10-9 to 5 x 10-2 M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors is proposed and applied to these data. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. Together with the results obtained by Tian et al on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity

  17. Mechanism of adenylate kinase: Site-directed mutagenesis versus x-ray and NMR

    Controversy is an integral part of scientific research and is often a precursor to the truth. However, this lesson has been learned in a very hard way in the case of the structure-function relationship of adenylate kinase (AK), which catalyzes the interconversion between MgATP+AMP and MgADP+ADP. While this small kinase has been considered a model kinase and the enzyme-substrate interaction of AK was among the first investigated by X-ray crystallography and NMR the substrate binding sites deduced from the early studies by these two powerful techniques (termed the X-ray model and the NMR model, respectively) were dramatically different. Ironically, both models have had substantial impact on researchers in related fields. The problems have finally been dealt with since 1987 by the interplay between site-directed mutagenesis, X-ray, and NMR. The purpose of this review is not only to summarize the current knowledge in the structure-function relationship of adenylate kinase but also to accurately document and critically analyze historical developments in the hope that history will not be repeated

  18. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, ...

  19. Path ensembles for conformational transitions in adenylate kinase using weighted--ensemble path sampling

    Bhatt, Divesh

    2009-01-01

    We perform first path sampling simulations of conformational transitions of semi--atomistic protein models. We generate an ensemble of pathways for conformational transitions between open and closed forms of adenylate kinase using weighted ensemble path sampling method. Such an ensemble of pathways is critical in determining the important regions of configuration space sampled during a transition. To different semi--atomistic models are used: one is a pure Go model, whereas the other includes level of residue specificity via use of Miyajawa--Jernigan type interactions and hydrogen bonding. For both the models, we find that the open form of adenylate kinase is more flexible and the the transition from open to close is significantly faster than the reverse transition. We find that the transition occurs via the AMP binding domain snapping shut at a fairly fast time scale. On the other hand, the flexible lid domain fluctuates significantly and the shutting of the AMP binding domain does not depend upon the positi...

  20. Phylogenetic relationships of 18 passerines based on Adenylate Kinase Intron 5 sequences

    GUO Hui-yan; YU Hui-xin; BAI Su-ying; MA Yu-kun

    2008-01-01

    The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some disputations are always present in their classification systems. In this experiment, phylogenetic relationships of 18 species of passerines were studied using Adenylate Kinase Intron 5 (AK5) sequences and DNA techniques. Through sequences analysis in comparison with each other, phylogenetic tree figures of 18 species of passerines were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods . The results showed that sylviids should be listed as an independent family, while robins and flycatchers should be listed into Muscicapidae. Since the phylogenetic relationships between long-tailed tits and old world warblers are closer than that between long-tailed tits and parids, the long-tailed tits should be independent of paridae and be categorized into aegithalidae. Muscicapidae and Paridae are known to be two monophylitic families, but Sylviidae is not a monophyletic group. AK5 sequences had better efficacy in resolving close relationships of interspecies among intrageneric groups.

  1. Down-regulation of adenylate kinase 5 in temporal lobe epilepsy patients and rat model.

    Lai, Yujie; Hu, Xiaotong; Chen, Guojun; Wang, Xuefeng; Zhu, Binglin

    2016-07-15

    Adenylate kinase 5 (AK5) is one member of the AK family and plays a critical role in maintaining cellular homeostasis. Different from the other AKs, AK5 is almost exclusively expressed in the brain. However, its exact biological functions remain unclear. The aim of the present study is to explore the expression pattern of AK5 in patients with refractory epilepsy and in a chronic pilocarpine-induced epileptic rat model. Using Western blot, immunofluorescence and immunoprecipitation analysis, we found that AK5 protein was mainly expressed in neurons, demonstrated by colocalization with the dendritic marker, MAP2, which were similar to the corresponding controls. However, the expression of AK5 decreased remarkably in epileptic patients and experimental rats. Furthermore, immunoprecipitation analysis showed that the interaction of AK5 with copine VI (CPNE6, a brain specific protein) increased in epileptic patients and rat models. Our results are the first to indicate that the expression of AK5 in epileptic brain tissue may play important roles in epilepsy, especially refractory epilepsy. PMID:27288770

  2. Oligo-2',5'-adenylate synthetase activity in peripheral blood mononuclear leukocytes in various diseases.

    Fujii, N; Kotake, S.; Hirose, S; Ohno, S; Yasuda, I.; Sagawa, A; Ishikawa, K.; Minagawa, T

    1984-01-01

    Interferon induces oligo-2',5'-adenylate synthetase in cells. In various diseases, interferon was detectable in the circulation or was produced spontaneously from peripheral blood mononuclear leukocytes. The oligo-2',5'-adenylate synthetase activity in peripheral blood mononuclear leukocytes was examined in various diseases, including systemic lupus erythematosus, sarcoidosis, Vogt-Koyanagi-Harada disease, and Behcet's disease. The activity of this enzyme was significantly increased in system...

  3. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells.

    Schulze, D.U.; Dufer, M.; Wieringa, B.; Krippeit-Drews, P.; Drews, G.

    2007-01-01

    AIMS/HYPOTHESIS: In a previous study, we demonstrated that a creatine kinase (CK) modulates K(ATP) channel activity in pancreatic beta cells. To explore phosphotransfer signalling pathways in more detail, we examined whether K(ATP) channel regulation in beta cells is determined by a metabolic intera

  4. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies.

    Drakou, Christina E; Malekkou, Anna; Hayes, Joseph M; Lederer, Carsten W; Leonidas, Demetres D; Oikonomakos, Nikos G; Lamond, Angus I; Santama, Niovi; Zographos, Spyros E

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  5. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [125I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [125I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  6. A Mitochondrial RNAi Screen Defines Cellular Bioenergetic Determinants and Identifies an Adenylate Kinase as a Key Regulator of ATP Levels

    Nathan J. Lanning

    2014-05-01

    Full Text Available Altered cellular bioenergetics and mitochondrial function are major features of several diseases, including cancer, diabetes, and neurodegenerative disorders. Given this important link to human health, we sought to define proteins within mitochondria that are critical for maintaining homeostatic ATP levels. We screened an RNAi library targeting >1,000 nuclear-encoded genes whose protein products localize to the mitochondria in multiple metabolic conditions in order to examine their effects on cellular ATP levels. We identified a mechanism by which electron transport chain (ETC perturbation under glycolytic conditions increased ATP production through enhanced glycolytic flux, thereby highlighting the cellular potential for metabolic plasticity. Additionally, we identified a mitochondrial adenylate kinase (AK4 that regulates cellular ATP levels and AMPK signaling and whose expression significantly correlates with glioma patient survival. This study maps the bioenergetic landscape of >1,000 mitochondrial proteins in the context of varied metabolic substrates and begins to link key metabolic genes with clinical outcome.

  7. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. (Veterans Administration Medical Center, Los Angeles, CA (USA) Univ. of California, Los Angeles (USA))

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  8. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [125I]iodocyanopindolol. Binding sites had the characteristics of mixed β1- and β2-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β1-adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  9. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  10. Glucose Repression of Fbp1 Transcription in Schizosaccharomyces Pombe Is Partially Regulated by Adenylate Cyclase Activation by a G Protein α Subunit Encoded by Gpa2 (Git8)

    Nocero, M.; Isshiki, T.; Yamamoto, M.; Hoffman, C. S.

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, a...

  11. A High Throughput Screening Assay for Anti-Mycobacterial Small Molecules Based on Adenylate Kinase Release as a Reporter of Cell Lysis.

    Lauren Forbes

    Full Text Available Mycobacterium tuberculosis (Mtb is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.

  12. Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance

    Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport

  13. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    Koichi Tanda; Norihito Shintani; Akemichi Baba; Hitoshi Hashimoto; Tsuyoshi Miyakawa

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosse...

  14. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements

  15. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy

    Hass, Mathias A. S.; Liu, Wei-Min [Leiden University, Leiden Institute of Chemistry (Netherlands); Agafonov, Roman V.; Otten, Renee; Phung, Lien A. [Brandeis University, Department of Biochemistry, Howard Hughes Medical Institute (United States); Schilder, Jesika T. [Leiden University, Leiden Institute of Chemistry (Netherlands); Kern, Dorothee [Brandeis University, Department of Biochemistry, Howard Hughes Medical Institute (United States); Ubbink, Marcellus, E-mail: m.ubbink@chem.leidenuniv.nl [Leiden University, Leiden Institute of Chemistry (Netherlands)

    2015-02-15

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.

  16. Mechanism of adenylate kinase. Is there a relationship between local substrate dynamics, local binding energy, and the catalytic mechanism?

    Adenylyl (β,γ-methylene)diphosphonic acid (AMPPCP) labeled with deuterium at the adenine ring ([8-2H]AMPPCP) and at the β,γ-methylene group (AMPPCD2P), as well as adenosine 5'-monophosphate labeled at the adenine ring ([8-2H]AMP), was synthesized and used for deuterium nuclear magnetic resonance (NMR) determination of effective correlation times (τc) of the free nucleotide and the complexes with adenylate kinase (AK). Extensive and rigorous control experiments and theoretical analysis were performed to justify the validity of the experimental approaches, particularly the fast exchange condition, and the reliability of the τc values obtained. For the free nucleotide, the results suggest that the phosphonate group of free AMPPCP possesses appreciable local mobility relative to the adenine ring and that complexation with Mg2+ greatly reduced such a local mobility. These results suggest that the adenine ring of substrates is rigidly bound in all cases, that the phosphonate chain of AMPPCP possesses considerable local mobility, and that Mg2+ reduces such local mobility but does not totally immobilize it. The results suggest that no general correlation exists between the local rigidity of portions of a bound substrate and the corresponding (ground state) local binding energy contributed by these portions. The authors have found that the Ki values for the mixture, the Δ isomer, and the Λ isomer of CrATP are 16, 11, and 20 μM, respectively, which suggest that ground-state binding by AK is stereochemically permissive. The results of both problems fully support the conclusion that the phosphonate chain of AK-MgAMPPCP possesses considerable local mobility and illuminate the relationship between the dynamics of bound substrates and the catalytic mechanism

  17. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  18. Pituitary adenylate cyclase activating peptide (PACAP participates in adipogenesis by activating ERK signaling pathway.

    Tatjana Arsenijevic

    Full Text Available Pituitary adenylate cyclase activating peptide (PACAP belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2, strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ.

  19. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  20. Fast collapse but slow formation of secondary structure elements in the refolding transition of E. coli adenylate kinase.

    Ratner, V; Amir, D; Kahana, E; Haas, E

    2005-09-23

    The various models proposed for protein folding transition differ in their order of appearance of the basic steps during this process. In this study, steady state and time-resolved dynamic non-radiative excitation energy transfer (FRET and trFRET) combined with site specific labeling experiments were applied in order to characterize the initial transient ensemble of Escherichia coli adenylate kinase (AK) molecules upon shifting conditions from those favoring denaturation to refolding and from folding to denaturing. Three sets of labeled AK mutants were prepared, which were designed to probe the equilibrium and transient distributions of intramolecular segmental end-to-end distances. A 176 residue section (residues 28-203), which spans most of the 214 residue molecule, and two short secondary structure chain segments including an alpha-helix (residues 169-188) and a predominantly beta-strand region (residues 188-203), were labeled. Upon fast change of conditions from denaturing to folding, the end-to-end distance of the 176 residue chain section showed an immediate collapse to a mean value of 26 A. Under the same conditions, the two short secondary structure elements did not respond to this shift within the first ten milliseconds, and retained the characteristics of a fully unfolded state. Within the first 10 ms after changes of the solvent from folding to denaturing, only minor changes were observed at the local environments of residues 203 and 169. The response of these same local environments to the shift of conditions from denaturing to folding occurred within the dead time of the mixing device. Thus, the response of the CORE domain of AK to fast transfer from folding to unfolding conditions is slow at all three conformational levels that were probed, and for at least a few milliseconds the ensemble of folded molecules is maintained under unfolding conditions. A different order of the changes was observed upon initiation of refolding. The AK molecules undergo

  1. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn2+–AK, Co2+–AK and Fe2+–AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn2+–AK and Fe2+–AK crystallized in space group I222 with similar unit-cell parameters, whereas Co2+–AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn2+–AK and Fe2+–AK forms and a dimer was present for the Co2+–AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  2. Comparison of the in vivo and in vitro activities of adenylate cyclase from Mycobacterium tuberculosis H37Ra(NCTC 7417)

    The incorporation of [14C] adenine into the adenosine 3', 5'-monophosphate (cyclic AMP) fraction by whole cells of Mycobacterium tuberculosis was taken as a measure of the in vivo activity of adenylate cyclase. The in vivo activity of adenylate cyclase was significantly inhibited by glucose, thus suggesting that the low level of cyclic AMP in the presence of glucose is due to the inhibited synthesis of cyclic AMP. In vitro activity of adenylate cyclase had optimum pH of 8.5 and Km of 1.33 mM for ATP. Glucose and other sugars did not show significant inhibition of in vitro activity. The results suggest that the adenylate cyclase activity becomes less sensitive to glucose when the bacterial cells are disrupted, an analogy with eukaryotic adenylate cyclase which loses sensitivity to hormones when the cells are disrupted. (auth.)

  3. Activation of oocyte phosphatidylinositol kinase by polyamines

    Membrane bound phosphatidylinositol is phosphorylated by a specific membrane enzyme to form phosphatidylinositol 4 phosphate (PIP) which in turn is again phosphorylated to generate phosphatidylinositol 4,5 biphosphate (PIPP). The regulation of phosphatidylinositol phosphorylation and hydrolysis is relevant to the possible role of inositol phosphates as second messengers of hormone action. The membranes of Xenopus laevis oocytes contain a phosphatidylinositol kinase that can generate radioactive PIP after incubation with [32ATP]. The radioactive product is extracted with methanol-chloroform and isolated by thin layer chromatography. The oocyte enzyme has an app Km for ATP of 80 μM and cannot use GTP as a phosphate donor. The formation of PIP is greatly stimulated by the addition of synthetic peptides containing clusters of polylysine at concentrations 0.5 mM. A similar effect is observed with a lysine rich peptide that corresponds to the 14 amino acids of the carboxyl terminus of the Kirstein ras 2 protein and also by polyornithine. Polyarginine and histone H1 have much lower effects. Peptides containing polylysine clusters have also been found to affect the activity of other key membrane enzymes such as protein kinases and adenylate cyclase

  4. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of [125]Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10-5 M) suggesting predominate beta2-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-2-type BAR coupled to adenylate cyclase in rat brown fat

  5. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-03-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of (/sup 125/)Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10/sup -5/ M) suggesting predominate beta/sub 2/-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta-/sub 2/-type BAR coupled to adenylate cyclase in rat brown fat.

  6. BIOTIC STRESS IMPACT ON ACTIVITY OF VARIOUS FORMS OF ADENYLATE CYCLASE IN ORGANELLES OF POTATO PLANT CELLS

    Lomovatskaya L.A.

    2006-12-01

    Full Text Available Notwithstanding significant interest towards study of adenylate cyclase plant signal system, there is still no complete picture of functioning and regulation mechanisms of this signal system in plants under biotic stress. With this in view, our study was aimed at identification of various forms of adenylate cyclase (transmembrane and “soluble” in the nucleus and chloroplasts of potato cells and modulation of their activity under the impact of exopolysaсcharides ofpotato ring rot pathogen. The investigations conducted allowed to conclude that two forms of adenylate cyclase function in nuclei and chloroplasts of potato plants: transmembrane and “soluble”. Activity of these forms of the enzyme extracted from plant cells of the two potato varieties contrasted by resistance to potato ring rot pathogen Clavibacter michiganensis subsp. sepedonicus, changed in the reverse manner with the mediated impact of exopolysaсcharides secreted by virulent and mucinous strain of bacterial pathogen: in the plants of resistant сultivar it increased, in the plants of sensitive сultivar it was oppressed. It was concluded that activity of both forms of adenylate cyclase directly depended on the degree of resistance of a particular potato variety to given pathogen.

  7. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide (PACAP in the retina

    Tomoya eNakamachi

    2012-11-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP, which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.

  8. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  9. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state

    Buchko, G.W.; Robinson, H.; Abendroth, J.; Staker, B. L.; Myler, P. J.

    2010-04-16

    In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 {angstrom} resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP{sub bd}) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 {angstrom}. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.

  10. Activation of the Pacidamycin PacL Adenylation Domain by MbtH-Like Proteins†

    Zhang, Wenjun; Heemstra, John R.; Walsh, Christopher T.; Imker, Heidi J.

    2010-01-01

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (~70 residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated n...

  11. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    Mounira Tlili

    2015-01-01

    Full Text Available The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP, we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC and cytokines (IL-1α and TNF-α in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.

  12. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death

    Vaudry, David; Rousselle, Cécile; Basille, Magali; Falluel-Morel, Anthony; Pamantung, Tommy F.; Fontaine, Marc; Fournier, Alain; Vaudry, Hubert; Gonzalez, Bruno J

    2002-01-01

    Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors. Exposure of cultured cerebellar granule cells to ethanol inhibited neurite outgrowth and provoke...

  13. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [3H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [3H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  14. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  15. Activation of the Pacidamycin PacL Adenylation Domain by MbtH-Like Proteins†

    Zhang, Wenjun; Heemstra, John R.; Walsh, Christopher T.; Imker, Heidi J.

    2010-01-01

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (~70 residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways. PMID:20964365

  16. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins.

    Zhang, Wenjun; Heemstra, John R; Walsh, Christopher T; Imker, Heidi J

    2010-11-23

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (∼70-residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways. PMID:20964365

  17. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating.

    Hurley, Matthew M; Maunze, Brian; Block, Megan E; Frenkel, Mogen M; Reilly, Michael J; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  18. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    Adrenalectomy caused a large increase in the number of β-adrenergic binding sites on liver plasma membranes as measured by 125I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for 3H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in β-adrenergic mediated action was much less than what may be expected as a result of the increase in the β-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 μM) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory α2-adrenergic receptors in adrenalectomy is responsible for the muted β-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 μM), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The α-adrenergic antagonists had no significant effect on the β-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the β-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of α-adrenergic receptors

  19. The fission yeast git5 gene encodes a Gbeta subunit required for glucose-triggered adenylate cyclase activation.

    Landry, S; Pettit, M T; Apolinario, E; Hoffman, C. S.

    2000-01-01

    Fission yeast adenylate cyclase is activated by the gpa2 Galpha subunit of a heterotrimeric guanine-nucleotide binding protein (G protein). We show that the git5 gene, also required for this activation, encodes a Gbeta subunit. In contrast to another study, we show that git5 is not a negative regulator of the gpa1 Galpha involved in the pheromone response pathway. While 43% identical to mammalian Gbeta's, the git5 protein lacks the amino-terminal coiled-coil found in other Gbeta subunits, yet...

  20. Examination of the relationship of substrate dynamics to enzymic structure, binding energy, and catalysis: NMR studies of adenosine 5'-triphosphate and adenylate kinase

    By measuring the deuterium NMR-relaxation rates of adenylyl (β, λ-methylene)diphosphonic acid (AMPPCP) labeled with deuterium at the adenine ring [8-2H]AMPPCP and upon the phosphonate chain (AMPPCD2P) free in solution and bound to the MgATP site of adenylate kinases (AK) the local motional dynamics of AMPPCP and MgAMPPCP in the two environments were established. The analysis of the experimental data involved the rigorous experimental verification that the systems studied were in the fast exchange limit on an NMR timescale. In addition analysis required careful examination of the equations describing quadrupolar relaxation, particularly the spectral density equations which contain information on molecular motion. Having determined the local dynamics of the nucleotides and their complexes with Mg + 2 free in solution and bound to AK and observing that MgAMPPCP is an excellent model for the natural substrate of AK, MgATP, we examined the relationship of local substrate dynamics to enzyme structure, binding energy, and catalysis

  1. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    Ono, Junichi [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Takada, Shoji [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Saito, Shinji, E-mail: shinji@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan); The Graduate University for Advanced Studies, Okazaki 444-8585 (Japan)

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  2. Fast closure of N-terminal long loops but slow formation of β strands precedes the folding transition state of Escherichia coli adenylate kinase.

    Orevi, Tomer; Ben Ishay, Eldad; Gershanov, Sivan Levin; Dalak, Mayan Ben; Amir, Dan; Haas, Elisha

    2014-05-20

    The nature of the earliest steps of the initiation of the folding pathway of globular proteins is still controversial. To elucidate the role of early closure of long loop structures in the folding transition, we studied the folding kinetics of subdomain structures in Escherichia coli adenylate kinase (AK) using Förster type resonance excitation energy transfer (FRET)-based methods. The overall folding rate of the AK molecule and of several segments that form native β strands is 0.5 ± 0.3 s(-1), in sharp contrast to the 1000-fold faster closure of three long loop structures in the CORE domain. A FRET-based "double kinetics" analysis revealed complex transient changes in the initially closed N-terminal loop structure that then opens and closes again at the end of the folding pathway. The study of subdomain folding in situ suggests a hierarchic ordered folding mechanism, in which early and rapid cross-linking by hydrophobic loop closure provides structural stabilization at the initiation of the folding pathway. PMID:24787383

  3. Ca2+ influx and tyrosine kinases trigger Bordetella adenylate cyclase toxin (ACT endocytosis. Cell physiology and expression of the CD11b/CD18 integrin major determinants of the entry route.

    Kepa B Uribe

    Full Text Available Humans infected with Bordetella pertussis, the whooping cough bacterium, show evidences of impaired host defenses. This pathogenic bacterium produces a unique adenylate cyclase toxin (ACT which enters human phagocytes and catalyzes the unregulated formation of cAMP, hampering important bactericidal functions of these immune cells that eventually cause cell death by apoptosis and/or necrosis. Additionally, ACT permeabilizes cells through pore formation in the target cell membrane. Recently, we demonstrated that ACT is internalised into macrophages together with other membrane components, such as the integrin CD11b/CD18 (CR3, its receptor in these immune cells, and GM1. The goal of this study was to determine whether ACT uptake is restricted to receptor-bearing macrophages or on the contrary may also take place into cells devoid of receptor and gain more insights on the signalling involved. Here, we show that ACT is rapidly eliminated from the cell membrane of either CR3-positive as negative cells, though through different entry routes, which depends in part, on the target cell physiology and characteristics. ACT-induced Ca(2+ influx and activation of non-receptor Tyr kinases into the target cell appear to be common master denominators in the different endocytic strategies activated by this toxin. Very importantly, we show that, upon incubation with ACT, target cells are capable of repairing the cell membrane, which suggests the mounting of an anti-toxin cell repair-response, very likely involving the toxin elimination from the cell surface.

  4. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes.

    Ahmad, Jawid Nazir; Cerny, Ondrej; Linhartova, Irena; Masin, Jiri; Osicka, Radim; Sebo, Peter

    2016-03-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in virulence of Bordetella pertussis. CyaA penetrates myeloid cells expressing the complement receptor 3 (αM β2 integrin CD11b/CD18) and subverts bactericidal capacities of neutrophils and macrophages by catalysing unregulated conversion of cytosolic ATP to the key signalling molecule adenosine 3',5'-cyclic monophosphate (cAMP). We show that the signalling of CyaA-produced cAMP hijacks, by an as yet unknown mechanism, the activity of the tyrosine phosphatase SHP-1 and activates the pro-apoptotic BimEL-Bax cascade. Mitochondrial hyperpolarization occurred in human THP-1 macrophages within 10 min of exposure to low CyaA concentrations (e.g. 20 ng ml(-1) ) and was accompanied by accumulation of BimEL and association of the pro-apoptotic factor Bax with mitochondria. BimEL accumulation required cAMP/protein kinase A signalling, depended on SHP-1 activity and was selectively inhibited upon small interfering RNA knockdown of SHP-1 but not of the SHP-2 phosphatase. Moreover, signalling of CyaA-produced cAMP inhibited the AKT/protein kinase B pro-survival cascade, enhancing activity of the FoxO3a transcription factor and inducing Bim transcription. Synergy of FoxO3a activation with SHP-1 hijacking thus enables the toxin to rapidly trigger a persistent accumulation of BimEL, thereby activating the pro-apoptotic programme of macrophages and subverting the innate immunity of the host. PMID:26334669

  5. Degradation of Activated Protein Kinases by Ubiquitination

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.

  6. Mechanism of adenylate kinase. Structural and functional demonstration of arginine-138 as a key catalytic residue that cannot be replaced by lysine

    Replacement of the arginine-138 of adenylate kinase (AK) by lysine or methionine resulted in a decrease in kcat by a factor of 104, increases in Km by a factor of 10-20, and relatively little changes in dissociation constants. Proton nuclear magnetic resonance (NMR) studies were then undertaken to obtain structural information for quantitative interpretation of the kinetic data. Since the lysine mutant (R138K) represents a conservative mutation with surprisingly large effects on kinetics, structural studies were focused on the wild type (WT) and R138K. The results and conclusions are summarized as follows: (i) The aromatic spin systems of WT and R138K were assigned from total correlated spectroscopy (TOCSY). (ii) Proton NMR titrations with AMP and MgATP suggested that substrate binding affinities and substrate-induced conformational changes are nearly identical between WT and R138K. (iii) Notable differences were observed between the proton NMR spectra of the WT and R138K complexes with the reaction mixture, which agrees with the perturbation in the Km values of R138K. (iv) Qualitative comparison of the NOESY cross peaks between aliphatic side chains and aromatic protons indicates that the patterns are almost identical between free WT and free R138K. (v) The above kinetic and structural results led to the conclusion that Arg-138 stabilizes the ternary complexes by 1.4-1.8 kcal/mol and stabilizes the transition state by at least 7 kcal/mol and that the critical functional role of Arg-138 cannot be replaced by lysine. (vi) Since Arg-138 is distant from the substrate sites proposed from previous NMR studies serious revision will be required for this model

  7. Event Detection and Sub-state Discovery from Bio-molecular Simulations Using Higher-Order Statistics: Application To Enzyme Adenylate Kinase

    Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2012-01-01

    Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562

  8. A Multiple-Labeling Strategy for Nonribosomal Peptide Synthetases Using Active-Site-Directed Proteomic Probes for Adenylation Domains.

    Ishikawa, Fumihiro; Suzuki, Takehiro; Dohmae, Naoshi; Kakeya, Hideaki

    2015-12-01

    Genetic approaches have greatly contributed to our understanding of nonribosomal peptide biosynthetic machinery; however, proteomic investigations are limited. Here, we developed a highly sensitive detection strategy for multidomain nonribosomal peptide synthetases (NRPSs) by using a multiple-labeling technique with active-site-directed probes for adenylation domains. When applied to gramicidin S-producing and -nonproducing strains of Aneurinibacillus migulanus (DSM 5759 and DSM 2895, respectively), the multiple technique sensitively detected an active multidomain NRPS (GrsB) in lysates obtained from the organisms. This functional proteomics method revealed an unknown inactive precursor (or other inactive form) of GrsB in the nonproducing strain. This method provides a new option for the direct detection, functional analysis, and high-resolution identification of low-abundance active NRPS enzymes in native proteomic environments. PMID:26467472

  9. Molecular cloning and amplification of the adenylate cyclase gene.

    Wang, J Y; Clegg, D O; Koshland, D E

    1981-01-01

    A segment of DNA containing cya, the gene for adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1], has been isolated from Salmonella typhimurium. The phage lambda gt4 was used as a cloning vector and adenylate cyclase-positive hybrid phages were isolated that complemented adenylate cyclase-negative bacteria. The cloned DNA fragment encodes a polypeptide of molecular weight 81,000 that gives rise to adenylate cyclase activity. This protein represents a functional mutant of the ...

  10. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Tamás Juhász; Eszter Szentléleky; Csilla Szűcs Somogyi; Roland Takács; Nóra Dobrosi; Máté Engler; Andrea Tamás; Dóra Reglődi; Róza Zákány

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during cho...

  11. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  12. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF. PMID:25649277

  13. Regulation of brain adenylate cyclase by calmodulin

    This thesis examined the interaction between the Ca2+-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[125I]-CaM-diazopyruvamide (125I-CAM-DAP) behaved like native CaM with respect to Ca2+-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca2+-dependent stimulation of adenylate cyclase. 125I-CaM-DAP cross-linked to CaM-binding proteins in a Ca2+-dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  14. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    Frödin, M; Sekine, N; Roche, E; Filloux, C; Prentki, M; Wollheim, C B; Van Obberghen, E

    1995-01-01

    of this kinase is not sufficient for secretion. In the presence of glucose, however, nerve growth factor potentiated insulin secretion. In INS-1 cells, activation of 44-kDa MAP kinase was partially correlated with the induction of early response genes junB, nur77, and zif268 but not with stimulation......The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK...

  15. Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe

    Susan M. Byrne; Hoffman, Charles S.

    1993-01-01

    An important eukaryotic signal transduction pathway involves the regulation of the effector enzyme adenylate cyclase, which produces the second messenger, cAMP. Previous genetic analyses demonstrated that glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene requires the function of adenylate cyclase, encoded by the git2 gene. As mutations in git2 and in six additional git genes are suppressed by exogenous cAMP, these ‘upstream’ git genes were proposed to act to produ...

  16. The influence of low-level radiation and gangliosides on adenylate cyclase activity in thymus and thyroid glands of chicks in ontogenesis

    Adenylate cyclase (AC) activity was studied in thymus and thyroid gland of intact chick embryos and those irradiated with a dose of 0.029 Gy prior to incubation, and newly hatched chocks in the presence of total ganglioside fractions extracted from the same organs. Gangliosides were shown to increase the enzyme activity of thymocytes and thyreocytes during the postnatal development. It is suggested that small radiation doses potentiate the stimulatory effect of ganglioside fractions on AC

  17. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice

    Rat, Dorothea; Schmitt, Ulrich; Tippmann, Frank; Dewachter, Ilse; Theunis, Clara; Wieczerzak, Ewa; Postina, Rolf; Van Leuven, Fred Van; Fahrenholz, Falk; Kojro, Elzbieta

    2011-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic properties and is a potent alpha-secretase activator. As PACAP peptides and their specific receptor PAC1 are localized in central nervous system areas affected by Alzheimer's disease (AD), this study aims to examine the role of the natural peptide PACAP as a valuable approach in AD therapy. We investigated the effect of PACAP in the brain of an AD transgenic mouse model. The long-term intranasal da...

  18. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oil than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.

  19. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexi...

  20. The Role of Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase-Activating Polypeptide in the Neural Pathways Controlling the Lower Urinary Tract

    Yoshiyama, Mitsuharu; de Groat, William C.

    2008-01-01

    Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are expressed in the neural pathways regulating the lower urinary tract. VIP-immunoreactivity (IR) is present in afferent and autonomic efferent neurons innervating the bladder and urethra, whereas PACAP-IR is present primarily in afferent neurons. Exogenously applied VIP relaxes bladder and urethral smooth muscle and excites parasympathetic neurons in bladder ganglia. PACAP relaxes bladder ...

  1. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient Mice

    Otto, Christiane; Kovalchuk, Yury; Wolfer, David Paul; Gass, Peter; Mart??n, Miguel; Zuschratter, Werner; Gr??ne, Hermann Josef; Kellendonk, Christoph; Tronche, Fran??ois; Maldonado, Rafael; Lipp, Hans-Peter; Konnerth, Arthur; Sch??tz, G??nter

    2001-01-01

    The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, har...

  2. The effects of isatin (indole-2, 3-dione on pituitary adenylate cyclase-activating polypeptide-induced hyperthermia in rats

    Tóth Gábor

    2002-02-01

    Full Text Available Abstract Background Previous studies have demonstrated that centrally administered natriuretic peptides and pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38 have hyperthermic properties. Isatin (indole-2, 3-dione is an endogenous indole that has previously been found to inhibit hyperthermic effects of natriuretic peptides. In this study the aim was to investigate the effects of isatin on thermoregulatory actions of PACAP-38, in rats. Results One μg intracerebroventricular (icv. injection of PACAP-38 had hyperthermic effect in male, Wistar rats, with an onset of the effect at 2 h and a decline by the 6th h after administration. Intraperitoneal (ip. injection of different doses of isatin (25-50 mg/kg significantly decreased the hyperthermic effect of 1 μg PACAP-38 (icv., whereas 12.5 mg/kg isatin (ip. had no inhibiting effect. Isatin alone did not modify the body temperature of the animals. Conclusion The mechanisms that participate in the mediation of the PACAP-38-induced hyperthermia may be modified by isatin. The capability of isatin to antagonize the hyperthermia induced by all members of the natriuretic peptide family and by PACAP-38 makes it unlikely to be acting directly on receptors for natriuretic peptides or on those for PACAP in these hyperthermic processes.

  3. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  4. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. PMID:26851652

  5. [Mitogen-activated protein kinases in atherosclerosis].

    Bryk, Dorota; Olejarz, Wioletta; Zapolska-Downar, Danuta

    2014-01-01

    Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases) intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase), JNK (c-Jun N-terminal kinase) and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis. PMID:24491891

  6. Mitogen-activated protein kinases in atherosclerosis

    Dorota Bryk

    2014-01-01

    Full Text Available Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase, JNK (c-Jun N-terminal kinase and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

  7. Protein kinase A activity is associated with metacyclogenesis in Leishmania amazonensis.

    Genestra, Marcelo; Cysne-Finkelstein, Léa; Leon, Leonor

    2004-01-01

    Because of the importance of cell signalling processes in proliferation and differentiation, the adenylate cyclase pathway was studied, specifically the protein kinase A (PKA) in Leishmania amazonensis. The PKAs of soluble (SF) and enriched membrane fractions (MF) from infective/non-infective promastigotes and axenic amastigotes were assayed. In order to purify the PKA molecule, fractions were chromatographed on DEAE-cellulose columns and the phosphorylative activity was evaluated using [gamma(32)P]-ATP as the phosphate source. These experiments were performed in the presence of cyclic adenosine monophosphate (cAMP) and an inhibitor of PKA. Our data demonstrated that the PKA activity was significantly higher (about two times) in SF from promastigotes with a high concentration of metacyclic forms, when compared with the non-infective promastigotes, suggesting an association of this activity and the metacyclogenesis process. A discrete phosphorylative activity in axenic amastigotes was observed. As the adenylate cyclase/cAMP pathway would be involved in the parasite-host interiorization, the PKA activity may constitute a good intracellular target for studies of leishmanicidal drugs. PMID:15338471

  8. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  9. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  10. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].

    Iakovlev, N N; Chagovets, N R; Maksimova, L V

    1980-01-01

    Changes in the contents of adenine nucleotides, creatine phosphate, inorganic phosphate, creatine, glucose-6-phosphate and glycogen and the activity of adenylate cyclase, creatine kinase, glycogen phosphorylase 31:51-AMP-phosphodiesterase and glycogen synthetase in muscles and of blood catecholamines were studied in adult rats before loading, immediately after the cessation of the muscular activity, and at rest. Adenine nucleotides are established to play a regulatory role in catabolic and anabolic processes nucleotides are established to play a regulatory role in catabolic and anabolic processes related to the muscular activity. It is established that compensation and supercompensation of the working losses of muscular creatine phosphate and glycogen are due to activation of anabolic processes under conditions of higher phosphorylation of the adenylic system. PMID:6247797

  11. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45Ca2+ uptake into the cell monolayer, and (f) increased 86Rb+ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca2+-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca2+ gating

  12. Intein-mediated Rapid Purification of Recombinant Human Pituitary Adenylate Cyclase Activating Polypeptide

    Rong-jie YU; An HONG; Yun DAI; Yuan GAO

    2004-01-01

    In order to obtain the recombinant human PACAP efficiently by intein-mediated single column purification, a gene encoding human PACAP was synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-PAC was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the PACAPintein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by DTT and the rhPACAP was released from the chitin-bound intein tag. The activity of the rhPACAP to stimulate cyclic AMP accumulation was detected using the human pancreas carcinoma cells SW1990. Twenty-two milligrams of rhPACAP with the purity over 98% was obtained by single column purification from 1 liter of induced culture. The preliminary biological assay indicated that the rhPACAP, which has an extra Met at its N-terminus compared with the native human PACAP, had the similar activity of stimulating cAMP accumulation with the standard PACAP38 in the SW1990 cells. A new efficient production procedure of the active recombinant human PACAP was established.

  13. Urinary cyclic adenosine 3',5'-monophosphate response in McCune-Albright syndrome: clinical evidence for altered renal adenylate cyclase activity.

    Zung, A; Chalew, S A; Schwindinger, W F; Levine, M A; Phillip, M; Jara, A; Counts, D R; Kowarski, A A

    1995-12-01

    The recent finding of an activating mutation in the Gs alpha protein, the protein that couples receptors to stimulation of adenylate cyclase, from endocrine and nonendocrine tissues of patients with McCune-Albright syndrome (MAS) suggests that alterations in adenylate cyclase activity may account for the clinical abnormalities in these patients. Many patients with MAS have hypophosphatemia. This may result from the presence of the activating Gs alpha mutation in proximal renal tubules or the elaboration of a phosphaturic factor from fibrous dysplasia. We, therefore, sought to characterize renal cAMP generation and phosphate handling in MAS patients. Intravenous infusion of PTH is a classic clinical test used to evaluate hormonal responsiveness of renal proximal tubule adenylate cyclase and examine PTH-dependent phosphate clearance. We performed PTH infusion in 6 MAS patients, 10 normal subjects, and 6 patients with pseudohypoparathyroidism (PHP). The basal urinary cAMP (UcAMP) level in the MAS group [5.5 +/- 2.6 nmol/dL glomerular filtration (GF)] was elevated (P PHP (1.9 +/- 0.6 nmol/dL GF). However, PTH-stimulated peak UcAMP (15.0 +/- 7.0 nmol/dL GF) and the peak/basal UcAMP ratio (3.1 +/- 1.7) in MAS were significantly lower than the respective values in normal subjects (30.8 +/- 16.9 nmol/dL GF and 9.3 +/- 2.9; P PHP (respectively, 3.1 +/- 1.5 nmol/dL GF and 2.0 +/- 1.7). By contrast, the PTH-induced phosphaturic response in MAS patients was similar to that in the normal subjects. Our study provides clinical evidence that MAS patients have altered renal adenylate cyclase activity, manifested by an elevated basal UcAMP, but a blunted UcAMP response to PTH stimulation. These observations are presumably due to a mutation in the Gs alpha protein in the renal tubules. Despite the blunted UcAMP excretion, the phosphaturic response to PTH in MAS patients is intact. PMID:8530601

  14. Molecular Imaging of the ATM Kinase Activity

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models

  15. Molecular Imaging of the ATM Kinase Activity

    Williams, Terence M. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Nyati, Shyam [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Ross, Brian D. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Rehemtulla, Alnawaz, E-mail: alnawaz@umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  16. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography

    Led, Jens Jørgen; Switon, Werner K.; Jensen, Kaj Frank

    1983-01-01

    The catalytic activity of highly purified Escherichia coli glycyl-tRNA synthetase has been studied by 31P-NMR spectroscopy and thin-layer chromatography on poly(ethyleneimine)-cellulose. It was found that this synthetase, besides the activation of its cognate amino acid and the syntheses of...... adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A), also catalyzes the formation of ADP from inorganic phosphate and the enzyme-bound glycyl adenylate. Accordingly it was shown that E. coli glycyl-tRNA synthetase, in the presence of inorganic phosphate, glycine...... remaining catalytic activities of aminoacyl-tRNA synthetases is discussed, as well as the biological significance of the reaction....

  17. Janus Activated Kinase inhibition in Myelofibrosis

    H Malhotra

    2012-01-01

    Full Text Available Janus Activated Kinase (JAK 2 plays an important role in the pathogenesis of myelofibrosis (MF. Ruxolitinib (INCB018424, Jakafi is a potent dual JAK1 and JAK2 inhibitor. In November 2011, it became approved by the US FDA for the treatment of intermediate or high-risk MF. This review shall outline the role of Ruxolitinib in the current management of MF and its potential future.

  18. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-09-01

    The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr-Tyr cross-linking (o,o‧-ditysosine formation) and partial flavin cofactor reduction.

  19. Creatine kinase activity is associated with blood pressure

    L.M. Brewster; G. Mairuhu; N.R. Bindraban; R.P. Koopmans; J.F. Clark; G.A. van Montfrans

    2006-01-01

    Background - We previously hypothesized that high activity of creatine kinase, the central regulatory enzyme of energy metabolism, facilitates the development of high blood pressure. Creatine kinase rapidly provides adenosine triphosphate to highly energy-demanding processes, including cardiovascula

  20. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    Graphical abstract: Protein color center emissions were observed in the wavelength range from 340 nm to 900 nm from nano-clusters of the photo-activated adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi. Highlights: ► Adenylyl cyclase nPAC in aqueous pH 7.5 buffer dissolved only to nano-clusters. ► Nano-cluster size was determined by light attenuation (scattering) measurements. ► The size of the nano-clusters was growing by coalescing during observation period. ► In nPAC nano-clusters color centers were present in emission range of 360–900 nm. ► The nPAC color center emission is compared with fluorescent protein emission. - Abstract: The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360–900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  1. Evaluation of Kinase Activity Profiling Using Chemical Proteomics.

    Ruprecht, Benjamin; Zecha, Jana; Heinzlmeir, Stephanie; Médard, Guillaume; Lemeer, Simone; Kuster, Bernhard

    2015-12-18

    Protein kinases are important mediators of intracellular signaling and are reversibly activated by phosphorylation. Immobilized kinase inhibitors can be used to enrich these often low-abundance proteins, to identify targets of kinase inhibitors, or to probe their selectivity. It has been suggested that the binding of kinases to affinity beads reflects a kinase's activation status, a concept that is under considerable debate. To assess the merits of the idea, we performed a series of experiments including quantitative phosphoproteomics and purification of kinases by single or mixed affinity matrices from signaling activated or resting cancer cells. The data show that mixed affinity beads largely bind kinases independent of their activation status, and experiments using individual immobilized kinase inhibitors show mixed results in terms of preference for binding the active or inactive conformation. Taken together, activity- or conformation-dependent binding to such affinity resins depends (i) on the kinase, (ii) on the affinity probe, and (iii) on the activation status of the lysate or cell. As a result, great caution should be exercised when inferring kinase activity from such binding data. The results also suggest that assaying kinase activity using binding data is restricted to a limited number of well-chosen cases. PMID:26378887

  2. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  3. A direct pyrophosphatase-coupled assay provides new insights into the activation of the secreted adenylate cyclase from Bordetella pertussis by calmodulin.

    Lawrence, Anthony J; Coote, John G; Kazi, Yasmin F; Lawrence, Paul D; MacDonald-Fyall, Julia; Orr, Barbara M; Parton, Roger; Riehle, Mathis; Sinclair, James; Young, John; Price, Nicholas C

    2002-06-21

    Continuous recording of the activity of recombinant adenylate cyclase (CyaA) of Bordetella pertussis (EC ) by conductimetric determination of enzyme-coupled pyrophosphate cleavage has enabled us to define a number of novel features of the activation of this enzyme by calmodulin and establish conditions under which valid activation data can be obtained. Activation either in the presence or absence of calcium is characterized by a concentration-dependent lag phase. The rate of formation and breakdown of the activated complex can be determined from an analysis of the lag phase kinetics and is in good agreement with thermodynamic data obtained by measuring the dependence of activation on calmodulin concentration, which show that calcium increases k(on) by about 30-fold. The rate of breakdown of the activated complex, formed either in the presence or absence of calcium, has been determined by dilution experiments and has been shown to be independent of the presence of calcium. The coupled assay is established as a rapid, convenient and safe method which should be readily applicable to the continuous assays of most other enzymes that catalyze reactions in which inorganic pyrophosphate is liberated. PMID:11934879

  4. Uridylation and adenylation of RNAs.

    Song, JianBo; Song, Jun; Mo, BeiXin; Chen, XueMei

    2015-11-01

    The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area. PMID:26563174

  5. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    GilLevkowitz

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  6. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2003-01-01

    contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None of the...

  7. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress

    Shuang Liang; Renbin Huang; Xing Lin; Jianchun Huang; Zhongshi Huang; Huagang Liu

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression were significantly elevated, and depression-like behaviors were improved. Open-field and novelty-suppressed feeding tests showed that mouse activity levels were increased and feeding latency was shortened following treatment. Our results indicate that YLSPS inhibits depression by upregulating monoamine neurotransmitters, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression.

  8. High quality, small molecule-activity datasets for kinase research.

    Sharma, Rajan; Schürer, Stephan C; Muskal, Steven M

    2016-01-01

    Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR) data. Bioactivity databases such as the Kinase Knowledgebase (KKB), WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note. PMID:27429748

  9. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  10. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways.

    Giorgio Fedele

    Full Text Available The complex pathology of B. pertussis infection is due to multiple virulence factors having disparate effects on different cell types. We focused our investigation on the ability of B. pertussis to modulate host immunity, in particular on the role played by adenylate cyclase toxin (CyaA, an important virulence factor of B. pertussis. As a tool, we used human monocyte derived dendritic cells (MDDC, an ex vivo model useful for the evaluation of the regulatory potential of DC on T cell immune responses. The work compared MDDC functions after encounter with wild-type B. pertussis (BpWT or a mutant lacking CyaA (BpCyaA-, or the BpCyaA- strain supplemented with either the fully functional CyaA or a derivative, CyaA*, lacking adenylate cyclase activity. As a first step, MDDC maturation, cytokine production, and modulation of T helper cell polarization were evaluated. As a second step, engagement of Toll-like receptors (TLR 2 and TLR4 by B. pertussis and the signaling events connected to this were analyzed. These approaches allowed us to demonstrate that CyaA expressed by B. pertussis strongly interferes with DC functions, by reducing the expression of phenotypic markers and immunomodulatory cytokines, and blocking IL-12p70 production. B. pertussis-treated MDDC promoted a mixed Th1/Th17 polarization, and the activity of CyaA altered the Th1/Th17 balance, enhancing Th17 and limiting Th1 expansion. We also demonstrated that Th1 effectors are induced by B. pertussis-MDDC in the absence of IL-12p70 through an ERK1/2 dependent mechanism, and that p38 MAPK is essential for MDDC-driven Th17 expansion. The data suggest that CyaA mediates an escape strategy for the bacterium, since it reduces Th1 immunity and increases Th17 responses thought to be responsible, when the response is exacerbated, for enhanced lung inflammation and injury.

  11. Mitogen-activated protein kinase signaling in plants

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of...... substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  12. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction

  13. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany); Tanwar, M.; Veetil, S.K.; Kateriya, S. [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Stierl, M.; Hegemann, P. [Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2013-09-23

    Highlights: • Lyophilizing of NgPAC2 from Naegleria gruberi caused loss of BLUF domain activity. • Photo-induced tyrosine to flavin electron transfer in lyophilized NgPAC2. • Photo-induced Tyr–Tyr cross-linking to o,o′-dityrosine in lyophilized NgPAC2. • Photo-induced partial flavin cofactor reduction in lyophilized NgPAC2. • Two NgPAC2 conformations with fast and slow photo-induced electron transfer. - Abstract: The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr–Tyr cross-linking (o,o′-ditysosine formation) and partial flavin cofactor reduction.

  14. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress☆

    Liang, Shuang; Huang, Renbin; Lin, Xing; Huang, Jianchun; Huang, Zhongshi; Liu, Huagang

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity ...

  15. [Determination of riboflavin kinase activity in yeast].

    Shavlovsky, G M; Kashchenko, V E

    1975-01-01

    It is established that the main reason of the riboflavin kinase (RFK, EC 2.7.1.26) low specific activity in the cell-free extracts of the yeast Pichia guillermondii Wickerham ATCC 9058 is the presence of alkaline phosphatase (EC 3.1.3.1), effectively destructing flaven mononucleotide. By chromatography of the cell-free extracts of P. guillermondii on DEAE-Sephadex A-50, CM-Sphadex C-50, CM-cellulose, Sephadexes G-75 and G-100 RFK and alkaline phosphatase may be separated completely. Any of these procedures results in a several times increase of the RFK activity as compared with the initial preparation. One failed to obtain a similar effect by fractionation of the extracts with amminium sulphate and by hydroxylapatite chromatography. A simple method is developed for determining the activity of RFK in the cell-free extracts of yeast on the basis of negative adsorption of this enzyme on DEAE-Sephadex A-50. A selective inhibition of alkaline phosphatase by ions Be2+ and F- yields a less satisfactory result. The data are presented on the PFK activity of certain species of flavinogenic (Pichia guillermondii, Torulopsis camdida) and non-flavinogenic (Pichia ohmeri, Candida utilis, Saccharomyces cervisiae) yeast. PMID:174262

  16. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M

    1994-08-19

    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  17. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor.

    Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1(+) were large in size, had oval nuclei, and merged with CD34(+) cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1(-/-) mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1(-/-) and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1. PMID:26925806

  18. Pituitary Adenylate Cyclase Activating Peptide (1-38 and its analog (Acetyl-[Ala15, Ala20] PACAP 38-polyamide reverse methacholine airway hyperresponsiveness in rats

    Mounira Tlili

    2015-09-01

    Full Text Available The aim of this study was to investigate both functionally and structurally bronchodilator effects of Pituitary adenylate cyclase activating peptide (PACAP38 and acetyl-[Ala15, Ala20] PACAP38-polyamide, a potent PACAP38 analog, in rats challenged by methacholine (MeCh. Male Wistar rats were divided randomly into five groups. Groups 1 and 2 inhaled respectively aerosols of saline or increasing doses of MeCh (0.5, 1, 2.12, 4.25, 8.5, 17, 34 and 68mg/L. The other groups received terbutaline (Terb (250 µg/rat (10-6 M, PACAP38 (50 µg/rat (0.1 mM or PACAP38 analog (50 µg/rat associated to MeCh from the dose of 4.25 mg/L. Total lung resistances (RL were recorded before and 2 min after MeCh administration by pneumomultitest equipment. MeCh administration induced a significant and a dose-dependent increase (p<0.05 of RL compared to control rats. Terb, PACAP38 and PACAP38 analog reversed significantly the MeCh-induced bronchial constriction, smooth muscle (SM layer thickness and bronchial lumen mucus abundance. PACAP38 analog prevents effectively bronchial smooth muscle layer thickness, mucus hypersecretion and lumen decrease. Therefore, it may constitute a potent therapeutic bronchodilator.

  19. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice.

    Egri, P; Fekete, C; Dénes, Á; Reglődi, D; Hashimoto, H; Fülöp, B D; Gereben, Balázs

    2016-06-01

    The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes. PMID:27046436

  20. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  1. Structural and functional identification of the pituitary adenylate cyclase-activating polypeptide receptor VPAC2 from the frog Rana tigrina rugulosa.

    Hoo, R L; Alexandre, D; Chan, S M; Anouar, Y; Pang, R T; Vaudry, H; Chow, B K

    2001-10-01

    Recently, a frog pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) receptor (fPVR) has been characterized, and interestingly, this receptor exhibits characteristics of both mammalian PACAP type II receptors VPAC(1)R and VPAC(2)R. In order to investigate the receptors responsible for mediating the actions of VIP and PACAP in amphibians, in this report, a frog VPAC(2) receptor (fVPAC(2)R) cDNA was isolated. fVPAC(2)R shares 47.7, 46.9 and 62.5% amino acid sequence identity with fPVR, human VPAC(1)R and human VPAC(2)R respectively. Functionally, fVPAC(2)R, when expressed in CHO cells, was responsive to both frog peptides including VIP, PACAP38 and PACAP27 where the EC(50) values of these peptides in intracellular cAMP production were 0.15, 0.18 and 0.16 microM respectively. The pharmacological profiles of human peptides (VIP, PACAP38 and peptide histidine methionine) to stimulate frog and human VPAC(2)Rs were compared, and it was found that these peptides could only activate the frog receptor at micromolar concentrations. fVPAC(2)R was found to be widely distributed in various peripheral tissues as well as several regions of the brain. The presence of the receptor transcripts suggests the functional roles of the receptor in mediating the actions of PACAP and/or VIP in these tissues. As VIP and particularly PACAP27 are highly conserved peptides in vertebrate evolution, comparative studies of these peptides and their receptors in non-mammalian vertebrates should provide clues to better understand the physiology of these important peptides in human and other vertebrates. PMID:11564605

  2. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies

    Chaudhuri, Rima; Yang, Pengyi; Vafaee, Fatemeh; Fazakerley, Daniel; Humphrey, Sean; James, David; Kuncic, Zdenka

    2016-01-01

    In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds), making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs) is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same linear consensus motif

  3. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.

    Westa Domanova

    Full Text Available In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds, making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same

  4. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.

    Domanova, Westa; Krycer, James; Chaudhuri, Rima; Yang, Pengyi; Vafaee, Fatemeh; Fazakerley, Daniel; Humphrey, Sean; James, David; Kuncic, Zdenka

    2016-01-01

    In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds), making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs) is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same linear consensus motif

  5. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine kinases

  6. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  7. Enhanced casein kinase II activity in human tumour cell cultures

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...... and in established cell lines was reduced to about the same basic level after treatment with heparin, a highly specific inhibitor of CKII activity. The activity of the cAMP-dependent protein kinase was virtually the same in fibroblasts and various human tumour cell lines investigated....

  8. Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria

    Sandrini, Michael; Shannon, O.; Clausen, A.R.;

    2007-01-01

    kinase-deficient Escherichia coli strains become highly susceptible to nucleoside analogs when they express recombinant kinases from Staphylococcus aureus or Streptococcus pyogenes. We further demonstrate that recombinant S. aureus deoxyadenosine kinase efficiently phosphorylates the anticancer drug...... gemcitabine in vitro and is therefore the key enzyme in the activation pathway. When adult mice were infected intraperitoneally with a fatal dose of S. pyogenes strain AP1 and afterwards received gemcitabine, they failed to develop a systemic infection. Nucleoside analogs may therefore represent a promising...

  9. Inactivation of a MAPK-like protein kinase and activation of a MBP kinase in germinating barley embryos

    Testerink, C.; Vennik, M.; Kijne, J.W.; Wang, M.; Heimovaara-Dijkstra, S.

    2000-01-01

    We provide evidence for involvement of two different 45 kDa protein kinases in rehydration and germination of barley embryos. In dry embryos, a myelin basic protein (MBP) phosphorylating kinase was detected, which could be immunoprecipitated with an anti-MAPK (mitogen-activated protein kinase) antib

  10. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4IRAK-1-K239S). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4IRAK-1-K239S cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate

  11. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion

    Yi Ma; Tianjie Luo; Wenna Xu; Zulu Ye; An Hong

    2012-01-01

    The recombinant peptide,DBAYL,a promising therapeutic peptide for type 2 diabetes,is a new,potent,and highly selective agonist for VPAC2 generated through sitedirected mutagenesis based on sequence alignments of pituitary adenylate cyclase-activating peptide (PACAP),vasoactive intestinal peptide (VIP),and related analogs.The recombinant DBAYL was used to evaluate its effect and mechanism in blood glucose metabolism and utilization.As much as 28.9 mg recombinant DBAYL peptide with purity over 98% can be obtained from 1 I of Luria-Bertani medium culture by the method established in this study and the prepared DBAYL with four mutations (N10Q,V18L,N29Q,and M added to the N-terminal)were much more stable than BAY55-9837.The half-life of recombinant DBAYL was about 25 folds compared with that of BAY55-9837 in vitro.The bioactivity assay of DBAYL showed that it displaced [125I]PACAP38 and [125I]VIP from VPAC2 with a half-maximal inhibitory concentration of 48.4 ± 6.9 and 47.1 ± 4.9 nM,respectively,which were significantly lower than that of BAY55-9837,one established VPAC2 agonists.DBAYL enhances the cAMP accumulation in CHO cells expressing human VPAC2 with a half-maximal stimulatory concentration (EC5o) of 0.68 nM,whereas the receptor potency of DBAYL at human VPAC1 (ECso of 737 nM) was only 1/1083of that at human VPAC2,and DBAYL had no activity toward human PAC1 receptor.Western blot analysis of the key proteins of insulin receptor signaling pathway:insulin receptor substrate 1 (IRS-1) and glucose transporter 4(GLUT4) indicated that the DBAYL could significantly induce the insulin-stimulated IRS-1 and GLUT4 expression more efficiently than BAY55-9837 and VIP in adipocytes.Compared with BAY55-9837 and PACAP38,the recombinant peptide DBAYL can more efficiently promote insulin release and decrease plasma glucose level in Institute of Cancer Research (ICR) mice.These results suggested that DBAYL could efficiently improve glucose uptake and glucose-dependent insulin

  12. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    , approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA and......Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...

  13. Conservation, variability and the modeling of active protein kinases.

    James D R Knight

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  14. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  15. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  16. Is kinase activity essential for biological functions of BRI1?

    Weihui Xu; Juan Huang; Baohua Li; Jiayang Li; Yonghong Wang

    2008-01-01

    Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bril, bril-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 9891 in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bril-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bril-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.

  17. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  18. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels.

    Smith, Sabrina; Boitz, Jan; Chidambaram, Ehzilan Subramanian; Chatterjee, Abhishek; Ait-Tihyaty, Maria; Ullman, Buddy; Jardim, Armando

    2016-06-01

    The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools. PMID:26853689

  19. The molecular regulation of Janus kinase (JAK) activation.

    Babon, Jeffrey J; Lucet, Isabelle S; Murphy, James M; Nicola, Nicos A; Varghese, Leila N

    2014-08-15

    The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors. PMID:25057888

  20. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  1. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  2. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32P-ACC phosphorylated by the casein kinases was identified

  3. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  4. Overinhibition of Mitogen-Activated Protein Kinase Inducing Tau Hyperphosphorylation

    LI Hong-lian; CHEN Juan; LIU Shi-jie; ZHANG Jia-yu; WANG Qun; WANG Jian-zhi

    2005-01-01

    To reveal the relationship between mitogen-activated protein kinase (MAPK) and tau phosphorylation, we used different concentration of PD98059, an inhibitor of MEK (MAPK kinase), to treat mice neuroblastma (N2a) cell line for 6 h. It showed that the activity of MAPK decreased in a dose-dependent manner. But Western blot and immunofluorescence revealed that just when the cells were treated with 16 μmol/L PD98059, tau was hyperphosphorylated at Ser396/404 and Ser199/202 sites. We obtained the conclusion that overinhibited MAPK induced tau hyperphosphorylation at Ser396/404 and Ser199/202 sites.

  5. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism.

    Pinkosky, Stephen L; Filippov, Sergey; Srivastava, Rai Ajit K; Hanselman, Jeffrey C; Bradshaw, Cheryl D; Hurley, Timothy R; Cramer, Clay T; Spahr, Mark A; Brant, Ashley F; Houghton, Jacob L; Baker, Chris; Naples, Mark; Adeli, Khosrow; Newton, Roger S

    2013-01-01

    ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca(2+)/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease. PMID:23118444

  6. Redox Regulation of the AMP-Activated Protein Kinase

    Yingying Han; Qilong Wang; Ping Song; Yi Zhu; Ming-Hui Zou

    2010-01-01

    Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death. Objectives The aim of this study is to determine if AMP-activated protein kinase (AMPK), a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC). Methods Bovine aortic endothelial cells (BAEC) were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation. Results In BAEC, Berberine caused a dos...

  7. Mitogen activated protein kinases: a role in inflammatory bowel disease?

    Broom, O J; Widjaya, B; Troelsen, J;

    2009-01-01

    Since their discovery more than 15 years ago, the mitogen activated protein kinases (MAPK) have been implicated in an ever-increasingly diverse array of pathways, including inflammatory signalling cascades. Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are...... their related signalling proteins in influencing the progression of IBD....

  8. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  9. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel; Doehn, Ulrik; Thorup, Katrine; Idrissova, Leila; Hansen, Klaus; Jensen, Ole N; Jørgensen, Thomas J; Biondi, Ricardo M; Frödin, Morten

    2007-01-01

    The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We invest...

  10. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  11. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  12. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    Sayed, M; Kim, S O; Salh, B S;

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...

  13. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias

    2013-11-01

    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  14. Emerging Roles of AMP-Activated Protein Kinase

    Fritzen, Andreas Mæchel

    The cellular energy sensor AMP-activated protein kinase (AMPK) is activated, when the energy balance of the cell decreases. AMPK has been proposed to regulate multiple metabolic processes. However, much of the evidence for these general effects of AMPK relies on investigations in cell systems or...... exercise appears to inhibit pyruvate dehydrogenase (PDH) activity by an immediate up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) protein content. Consequently, this may inhibit glucose oxidation and thereby generate conditions for increased FA oxidation and glycogen resynthesis in skeletal muscle...... importance for prioritising energy dissipation, inhibition of lipid storage pathways and regulation of mitochondrial and metabolic proteins, but this needs further investigations. In addition, we provide evidence that AMPK is regulating autophagic signalling in skeletal muscle. Thus, in skeletal muscle AMPK...

  15. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  16. Ca2+/calmodulin-dependent protein kinase kinase is not involved in hypothalamic AMP-activated protein kinase activation by neuroglucopenia.

    Junji Kawashima

    Full Text Available Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+/Calmodulin-dependent protein kinase kinase (CaMKK, which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO, a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV in rats 30 min before 2DG ICV injection (40 µmol to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.

  17. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  18. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer;

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...

  19. INHIBITING MAP KINASE ACTIVITY PREVENTS CALCIUM TRANSIENTS AND MITOSIS ENTRY IN EARLY SEA URCHIN EMBRYOS

    Philipova, Rada; Larman, Mark G.; Leckie, Calum P.; Harrison, Patrick K.; Groigno, Laurence; Whitaker, Michael

    2005-01-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos both kinases show a similar activation profile, peaking at the time of mitosis entry.

  20. Association of Common Genetic Variants in Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 with Type 2 Diabetes Mellitus in a Chinese Han Population

    Ting-Ting Li; Hong Qiao; Hui-Xin Tong; Tian-Wei Zhuang; Tong-Tong Wang

    2016-01-01

    Background:A study has identified several novel susceptibility variants of the mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) gene for type 2 diabetes mellitus (T2DM) within the German population.Among the variants,five single nucleotide polymorphisms (SNPs) of MAP4K4 (rs1003376,rs11674694,rs2236935,rs2236936,and rs6543087) showed significant association with T2DM or diabetes-related quantitative traits.We aimed to evaluate whether common SNPs in the MAP4K4 gene were associated with T2DM in the Chinese population.Methods:Five candidate SNPs were genotyped in 996 patients newly diagnosed with T2DM and in 976 control subjects,using the SNPscanTM method.All subjects were recruited from the Second Affiliated Hospital,Harbin Medical University from October 2010 to September 2013.We evaluated the T2DM risk conferred by individual SNPs and haplotypes using logistic analysis,and the association between the five SNPs and metabolic traits in the subgroups.Results:Of the five variants,SNP rs2236935T/C was significantly associated with T2DM in this study population (odds ratio =1.293;95% confidence interval:1.034-1.619,P =0.025).In addition,among the controls,rs 1003376 was significantly associated with an increased body mass index (P =0.045) and homeostatic model assessment-insulin resistance (P =0.037).Conclusions:MAP4K4 gene is associated with T2DM in a Chinese Han population,and MAP4K4 gene variants may contribute to the risk toward the development of T2DM.

  1. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    Xiangpei Kong

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  2. Effects of cadmium on canine renal cortical adenylate cyclase

    The present studies examine the effects of cadmium (Cd2+) on adenylate cyclase activity in basolateral renal cortical membranes from normal dogs. Cd2+, in the dose range of 1 to 200 μM caused a dose-dependent inhibition of adenylate cyclase activity due to competitive inhibition with respect to the allosteric activator Mg2+. In addition, increasing Cd2+ concentrations from 0 to 25 μM resulted in a purely competitive inhibition with respect to ATP. In the absence of other divalent cations Cd2+ was a potent stimulator of basal adenylate cyclase activity, far more potent than the physiological activator of the system Mg2+. It is concluded that Cd2+ behaves as a partial agonist in this system, due to its ability to form a new enzymatic substrate complex: Cd-ATP, which competes with the physiological substrate Mg-ATP at the catalytic site of the enzyme. In addition, Cd2+ in the absence of other divalent cation stimulates basal enzyme activity, presumably through interaction at an additional site, closely related to the allosteric metal regulatory site of this enzyme system

  3. A mathematical model of human thymidine kinase 2 activity

    Radivoyevitch, Tom; Munch-Petersen, Birgitte; Wang, Liya;

    2011-01-01

    _ The mitochondrial enzyme thymidine kinase 2 (TK2) phosphorylates deoxythymidine (dT) and deoxycytidine (dC) to form dTMP and dCMP, which in cells rapidly become the negative-feedback end-products dTTP and dCTP. TK2 kinetic activity exhibits Hill coefficients of ∼0.5 (apparent negative cooperati......_ The mitochondrial enzyme thymidine kinase 2 (TK2) phosphorylates deoxythymidine (dT) and deoxycytidine (dC) to form dTMP and dCMP, which in cells rapidly become the negative-feedback end-products dTTP and dCTP. TK2 kinetic activity exhibits Hill coefficients of ∼0.5 (apparent negative...

  4. Activation and signaling of the p38 MAP kinase pathway

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  5. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. PMID:26948880

  6. Training volume, androgen use and serum creatine kinase activity.

    Häkkinen, K; Alén, M

    1989-01-01

    Serum creatine kinase (CK) activities were investigated in elite male strength athletes (n = 20) during normal weight training and bodybuilding training (one training session per day), during high volume strength training (two sessions per day) and during strength training (one session per day) with the use of high dose synthetic androgens (five athletes in each subgroup). The findings demonstrated that the increase in serum CK was highest in the subgroup using androgens. These results sugges...

  7. Mitogen-activated protein kinases in the acute diabetic myocardium

    Strnisková, M.; Barančík, M.; Neckář, Jan; Ravingerová, T.

    2003-01-01

    Roč. 249, 1-2 (2003), s. 59-65. ISSN 0300-8177 R&D Projects: GA MŠk LN00A069 Grant ostatní: VEGA(SK) 2/2063/22 Institutional research plan: CEZ:AV0Z5011922 Keywords : experimental diabetes * ischemia * mitogen-activated protein kinases (MAPK) Subject RIV: ED - Physiology Impact factor: 1.763, year: 2003

  8. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    Katherine D McMahon; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria kn...

  9. Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-11-15

    P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties. PMID:21774788

  10. Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase

    Calcineurin is a phosphoprotein phosphatase that is activated by divalent cations and further stimulated by calmodulin. In this study calcineurin is shown to be a substrate for both glycogen synthase (casein) kinase-1 (CK-1) and cyclic AMP-dependent protein kinase (A-kinase). Either kinase can catalyze the incorporation of 1.0-1.4 mol 32P/mol calcineurin. Analysis by SDS-PAGE revealed that only the α subunit is phosphorylated. Phosphorylation of calcineurin by either kinase leads to its activation. Using p-nitrophenyl phosphate as a substrate the authors observed a 2-3 fold activation of calcineurin by either Mn2+ or Ni2+ (in the presence or absence of calmodulin) after phosphorylation of calcineurin by either CK-1 or A-kinase. In the absence of Mn2+ or Ni2+ phosphorylated calcineurin, like the nonphosphorylated enzyme, showed very little activity. Ni2+ was a more potent activator of phosphorylated calcineurin compared to Mn2+. Higher levels of activation (5-8 fold) of calcineurin by calmodulin was observed when phosphorylated calcineurin was pretreated with Ni2+ before measurement of phosphatase activity. These results indicate that phosphorylation may be an important mechanism by which calcineurin activity is regulated by Ca2+

  11. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage

    Ansar, Saema; Edvinsson, Lars

    2008-01-01

    BACKGROUND AND PURPOSE: The pathogenesis of cerebral ischemia associated with subarachnoid hemorrhage (SAH) still remains elusive. The aim of this study was to examine the involvement of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) subtypes in the pathophysiology of cerebral...... ischemia after SAH in cerebral arteries and microvessels and to examine temporal activation of the kinases. We hypothesize that treatment with a MAPK or PKC inhibitor will prevent the SAH-induced kinase activation in brain vessels. METHODS: SAH was induced by injecting 250 microL blood into the......: Among the 8 investigated PKC isoforms, only PKC delta was activated at 1 hour and at 48 hours, whereas PKC alpha was activated at 48 hours after SAH. For the MAPKs, there was early phosphorylation at 1 hour of extracellular signal-regulated kinase 1/2, whereas c-jun N-terminal kinase and p38 showed...

  12. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. (Univ. of Miami School of Medicine, FL (USA))

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  13. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking [125I]PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by [125I]PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that [a] no other AC-regulatory proteins are known to be of this size, [b] the catalytic unit of bovine brain enzyme is in the same range and [c] this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase

  14. Modulation of the protein kinase activity of mTOR.

    Lawrence, J C; Lin, T A; McMahon, L P; Choi, K M

    2004-01-01

    mTOR is a founding member of a family of protein kinases having catalytic domains homologous to those in phosphatidylinositol 3-OH kinase. mTOR participates in the control by insulin of the phosphorylation of lipin, which is required for adipocyte differentiation, and the two translational regulators, p70S6K and PHAS-I. The phosphorylation of mTOR, itself, is stimulated by insulin in Ser2448, a site that is also phosphorylated by protein kinase B (PKB) in vitro and in response to activation of PKB activity in vivo. Ser2448 is located in a short stretch of amino acids not found in the two TOR proteins in yeast. A mutant mTOR lacking this stretch exhibited increased activity, and binding of the antibody, mTAb-1, to this region markedly increased mTOR activity. In contrast, rapamycin-FKBP12 inhibited mTOR activity towards both PHAS-I and p70S6K, although this complex inhibited the phosphorylation of some sites more than that of others. Mutating Ser2035 to Ile in the FKBP12-rapamycin binding domain rendered mTOR resistant to inhibition by rapamycin. Unexpectedly, this mutation markedly decreased the ability of mTOR to phosphorylate certain sites in both PHAS-I and p70S6K. The results support the hypotheses that rapamycin disrupts substrate recognition instead of directly inhibiting phosphotransferase activity and that mTOR activity in cells is controlled by the phosphorylation of an inhibitory regulatory domain containing the mTAb-1 epitope. PMID:14560959

  15. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    Tumbale, Percy [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Williams, Jessica S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Schellenberg, Matthew J. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology; Kunkel, Thomas A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. of Molecular Genetics; Williams, R. Scott [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States). Lab. of Structural Biology and Lab. Molecular Genetics

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  16. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  17. Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    Parikh, Kaushal; Diks, Sander H.; Tuynman, Jurriaan H. B.; Verhaar, Auke; Lowenberg, Mark; Hommes, Daan W.; Joore, Jos; Pandey, Akhilesh; Peppelenbosch, Maikel P.

    2009-01-01

    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to pred

  18. Cellular reprogramming through mitogen-activated protein kinases

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  19. Activation of tracheal smooth muscle contraction: synergism between Ca2+ and activators of protein kinase C.

    Park, S.; Rasmussen, H

    1985-01-01

    The effects of divalent ionophores (A23187 and ionomycin), Ca2+ channel agonist (BAY K 8644), and protein kinase C (C-kinase) activators [phorbol 12-myristate 13-acetate (PMA), mezerein] on bovine tracheal smooth muscle contraction were investigated. A23187 (5 microM) and ionomycin (0.5 microM) produced a prompt but transient contraction. C-kinase activators either produced no effect--e.g., PMA at 200 nM--or produced a rise in tension that was slow in onset but then gradually increased--e.g.,...

  20. Protein kinase activity associated with the nuclear lamina.

    Dessev, G; Iovcheva, C; Tasheva, B; R. Goldman

    1988-01-01

    A nuclear lamina-enriched fraction from Ehrlich ascites tumor cells contains a tightly bound protein kinase activity, which phosphorylates in vitro the nuclear lamins, a 52-kilodalton protein, and several unknown minor components. The enzyme(s) is thermolabile, independent of Ca2+ and cAMP, and inhibited by quercetin. After treatment with 4 M urea it remains bound to the nuclear lamina in an active state, but it is irreversibly inactivated in 6 M urea. The lamin proteins are phosphorylated on...

  1. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model.

    Lamine, Asma; Létourneau, Myriam; Doan, Ngoc Duc; Maucotel, Julie; Couvineau, Alain; Vaudry, Hubert; Chatenet, David; Vaudry, David; Fournier, Alain

    2016-09-01

    Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in various PD models. Nonetheless, its peripheral actions, paired with low metabolic stability, hampered its clinical use. We have developed Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) as an improved PACAP-derived neuroprotective compound. In vitro, this analog stimulated cAMP production, maintained mitochondrial potential and protected SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium (MPP(+)) toxicity, as potently as PACAP. Furthermore, contrasting with PACAP, it is stable in human plasma and against dipeptidyl peptidase IV activity. When injected intravenously to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, PACAP and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) restored tyrosine hydoxylase expression into the substantia nigra and modulated the inflammatory response. Albeit falls of mean arterial pressure (MAP) were observed with both PACAP- and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27)-treated mice, the intensity of the decrease as well as its duration were significantly less marked after iv injections of the analog than after those of the native polypeptide. Moreover, no significant changes in heart rate were measured with the animals for both compounds. Thus, Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) appears as a promising lead molecule for the development of PACAP-derived drugs potentially useful for the treatment of PD or other neurodegenerative diseases. PMID:26006268

  2. Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli.

    Uno, I.; Mitsuzawa, H.; Matsumoto, K.; Tanaka, K; Oshima, T.; Ishikawa, T

    1985-01-01

    Plasmids carrying the CYR1 gene of yeast Saccharomyces cerevisiae, which encodes adenylate cyclase, were introduced into the cya mutant strain of Escherichia coli. The transformants had a GTP-independent adenylate cyclase activity but did not produce cAMP. The E. coli transformant carrying the yeast RAS2 or RAS2val19 gene had no adenylate cyclase activity. Transformant cells carrying both CYR1 and RAS2 produced GTP-dependent adenylate cyclase and cAMP, and those carrying CYR1 and RAS2val19 pr...

  3. P21-activated kinase 1 and breast cancer

    Jun-Xiang Zhang; Da-Qiang Li; Rakesh Kumar

    2010-01-01

    @@ The p21 activated kinase 1 (PAK1) belongs to PAKs family, a group of highly evolutionarily conserved protein family of serine/threonine kinases, which acts as a downstream effector of the small GTPases Cdc42 and Rac1, firstly reported in 1994[1]. As a serine/threonine kinase, PAK1 plays an important role in many cellular functions including cell morphogenesis, motility, survival, mitosis, angiogenesis, and tumorigenesis. More than 40 proteins have been reported to be phosphorylated by PAK1[2]. Accumulating experimental data in multiple experimental systems provide compelling evidence that PAK1 plays an important role in breast cancer promotion and progression. PAK1 is overexpressed and/or hyperactivated in more than 50% of breast cancers[3]. On the other hand, PAK1 overexpression in estrogen receptor alpha (ER α) positive breast cancer is also closely associated with a reduced responsiveness to tamoxifen therapy[4]. Since PAK1 plays such a vital role in breast cancer, PAK1 targeted therapeutic approaches are likely to be useful in breast cancer treatment as well as in other human cancers with PAK1 upregulation and/or hyperactivation[5].

  4. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    Straarup, EM; Schousboe, P; Hansen, HQ;

    1997-01-01

    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...... with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation...

  5. Activation of the Antiviral Kinase PKR and Viral Countermeasures

    Bianca Dauber

    2009-10-01

    Full Text Available The interferon-induced double-stranded (dsRNA-dependent protein kinase (PKR limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5’-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.

  6. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2008-10-08

    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  7. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  8. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine

    Leonardi, Roberta; Rock, Charles O.; Jackowski, Suzanne; Zhang, Yong-Mei

    2007-01-01

    The human isoform 2 of pantothenate kinase (PanK2) is localized to the mitochondria, and mutations in this protein are associated with a progressive neurodegenerative disorder. PanK2 inhibition by acetyl-CoA is so stringent (IC50 < 1 μM) that it is unclear how the enzyme functions in the presence of intracellular CoA concentrations. Palmitoylcarnitine was discovered to be a potent activator of PanK2 that functions to competitively antagonize acetyl-CoA inhibition. Acetyl-CoA was a competitive...

  9. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    Belén Mezquita

    2014-02-01

    Full Text Available One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT and a truncated isoform of VEGFR-1 (i21-VEGFR-1, which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.

  10. Mitogen-activated protein kinase (MAPK) in cardiac tissues.

    Page, C; Doubell, A F

    Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. PMID:8739228

  11. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen;

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically...... transgenic mice overexpressing a kinase dead (KD) AMPK were incubated with glucose tracers and the AMPK-activating compound 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) ex vivo. GS activity and glucose uptake and utilization (glycolysis and glycogen synthesis) were assessed. RESULTS Even though...

  12. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024

  13. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  14. Linked decreases in Liver Kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes

    Petursson, Freyr; Husa, Matt; June, Ron; Lotz, Martin; Terkeltaub, Robert; Liu-Bryan, Ru

    2013-01-01

    Abstract Introduction AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and p...

  15. Identification of transglutaminase 2 kinase substrates using a novel on-chip activity assay.

    Jung, Se-Hui; Kong, Deok-Hoon; Jeon, Hye-Yoon; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Min-Soo; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-08-15

    Transglutaminase 2 (TG2) is an enzyme that plays a critical role in a wide variety of cellular processes through its multifunctional activities. TG2 kinase has emerged as an important regulator of apoptosis, as well as of chromatin structure and function. However, systematic investigation of TG2 kinase substrates is limited due to a lack of a suitable TG2 kinase activity assays. Thus, we developed a novel on-chip TG2 kinase activity assay for quantitative determination of TG2 kinase activity and for screening TG2 kinase substrate proteins in a high-throughput manner. Quantitative TG2 kinase activity was determined by selective detection of substrate protein phosphorylation on the surface of well-type amine arrays. The limit of detection (LOD) of this assay was 4.34μg/ml. We successfully applied this new activity assay to the kinetic analysis of 27 TG2-related proteins for TG2 kinase activity in a high-throughput manner and determined Michaelis-Menten constants (Km) of these proteins. We used the Km values and cellular locations of the TG2-related proteins to construct a substrate affinity map for TG2 kinase. Therefore, this on-chip TG2 kinase activity assay has a strong potential for the systematic investigation of substrate proteins and will be helpful for studying new physiological functions. PMID:27040940

  16. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    Kolkova, K; Novitskaya, V; Pedersen, N;

    2000-01-01

    ), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently......The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma...... transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor...

  17. Changes in brain mRNA levels of gonadotropin-releasing hormone, pituitary adenylate cyclase activating polypeptide, and somatostatin during ovulatory luteinizing hormone and growth hormone surges in goldfish.

    Canosa, Luis Fabián; Stacey, Norm; Peter, Richard Ector

    2008-12-01

    In goldfish, circulating LH and growth hormone (GH) levels surge at the time of ovulation. In the present study, changes in gene expression of salmon gonadotropin-releasing hormone (sGnRH), chicken GnRH-II (cGnRH-II), somatostatin (SS) and pituitary adenylate cyclase activating polypeptide (PACAP) were analyzed during temperature- and spawning substrate-induced ovulation in goldfish. The results demonstrated that increases in PACAP gene expression during ovulation are best correlated with the GH secretion profile. These results suggest that PACAP, instead of GnRH, is involved in the control of GH secretion during ovulation. Increases of two of the SS transcripts during ovulation are interpreted as the activation of a negative feedback mechanism triggered by high GH levels. The results showed a differential regulation of sGnRH and cGnRH-II gene expression during ovulation, suggesting that sGnRH controls LH secretion, whereas cGnRH-II correlates best with spawning behavior. This conclusion is further supported by the finding that nonovulated fish induced to perform spawning behavior by prostaglandin F2alpha treatment increased cGnRH-II expression in both forebrain and midbrain, but decreased sGnRH expression in the forebrain. PMID:18815210

  18. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    Kopper, F.; Bierwirth, C.; Schon, M.;

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (gamma H2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on transiesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  19. Requirements for activation and RAFT localization of the T-lymphocyte kinase Rlk/Txk

    Debnath Jayanta

    2001-05-01

    Full Text Available Abstract Background The Tec family kinases are implicated in signaling from lymphocyte antigen receptors and are activated following phosphorylation by Src kinases. For most Tec kinases, this activation requires an interaction between their pleckstrin homology (PH domains and the products of phosphoinositide 3-Kinase, which localizes Tec kinases to membrane RAFTs. Rlk/Txk is a Tec related kinase expressed in T cells that lacks a pleckstrin homology domain, having instead a palmitoylated cysteine-string motif. To evaluate Rlk's function in T cell receptor signaling cascades, we examined the requirements for Rlk localization and activation by Src family kinases. Results We demonstrate that Rlk is also associated with RAFTs, despite its lack of a pleckstrin homology domain. Rlk RAFT association requires the cysteine-string motif and is independent of PI3 Kinase activity. We further demonstrate that Rlk can be phosphorylated and activated by Src kinases, leading to a decrease in its half-life. A specific tyrosine in the activation loop of Rlk, Y420, is required for phosphorylation and activation, as well as for decreased stability, but is not required for lipid RAFT association. Mutation of this tyrosine also prevents increased tyrosine phosphorylation of Rlk after stimulation of the T cell receptor, suggesting that Rlk is phosphorylated by Src family kinases in response to T cell receptor engagement. Conclusions Like the other related Tec kinases, Rlk is associated with lipid RAFTs and can be phosphorylated and activated by Src family kinases, supporting a role for Rlk in signaling downstream of Src kinases in T cell activation.

  20. Oscillatory change of SR-protein kinase activities during oocyte maturation meiosis in fish

    杨仲安; 曹丹; 桂建芳

    2000-01-01

    The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.

  1. Tissue-dependent regulation of protein tyrosine kinase activity during embryonic development

    1991-01-01

    Protein tyrosine kinase activity was assayed in a variety of chicken tissues during embryonic development and in the adult. In some tissues protein tyrosine kinase activity decreased during embryonic development; however, in other tissues it remained high throughout development, it contrast to the level of protein tyrosine phosphorylation, which decreased during development. The highest levels of tyrosine kinase activity were detected in 17-d embryonic brain although only low levels of protei...

  2. High quality, small molecule-activity datasets for kinase research [version 1; referees: 2 approved

    Rajan Sharma

    2016-06-01

    Full Text Available Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR data. Bioactivity databases such as the Kinase Knowledgebase (KKB, WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note.

  3. AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte

    AMP-activated protein kinase (AMPK) is activated in adipocytes during exercise and other states in which lipolysis is stimulated. However, the mechanism(s) responsible for this effect and its physiological relevance are unclear. To examine these questions, 3T3-L1 adipocytes were treated with agents...

  4. TPX2 Protein of Arabidopsis Activates Aurora Kinase 1, But Not Aurora Kinase 3 In Vitro

    Tomaštíková, Eva; Demidov, D.; Jeřábková, Hana; Binarová, Pavla; Houben, A.; Doležel, Jaroslav; Petrovská, Beáta

    2015-01-01

    Roč. 33, č. 6 (2015), s. 1988-1995. ISSN 0735-9640 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204; GA ČR GAP501/12/2333 Institutional support: RVO:61389030 ; RVO:61388971 Keywords : Aurora kinase * Targeting protein for Xklp2 * In vitro kinase assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.656, year: 2014

  5. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism[S

    Pinkosky, Stephen L.; Filippov, Sergey; Srivastava, Rai Ajit K.; Hanselman, Jeffrey C.; Bradshaw, Cheryl D.; Hurley, Timothy R.; Cramer, Clay T.; Spahr, Mark A.; Brant, Ashley F.; Houghton, Jacob L.; Baker, Chris; Naples, Mark; Adeli, Khosrow; Newton, Roger S.

    2013-01-01

    ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca2+/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease. PMID:23118444

  6. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  7. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2014-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in a dose-dependent manner. Cordycepin-induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin-dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit. PMID:24286368

  8. Estrus cycle effect on muscle tyrosine kinase activity in bitches.

    Gomes Pöppl, Álan; Costa Valle, Sandra; Hilário Díaz González, Félix; de Castro Beck, Carlos Afonso; Kucharski, Luiz Carlos; Silveira Martins Da Silva, Roselis

    2012-03-01

    Estrus cycle is a well recognized cause of insulin resistance in bitches. The insulin receptor (IR) as well as the insulin-like growth factor-I receptor belong to the same subfamily of tyrosine kinase (TK) receptors. The objective of this study was to evaluate basal TK activity in muscle tissue of bitches during the estrus cycle. Twenty-four bitches were used in the study (7 in anestrus, 7 in estrus, and 10 in diestrus). Muscle samples, taken after spaying surgery to determine TK activity, were immediately frozen in liquid nitrogen and then stored at -80°C until the membranes were prepared by sequential centrifugation after being homogenized. TK activity was determined by Poly (Glu 4:Tyr 1) phosphorylation and expressed in cpm/μg of protein. TK activity was significantly lower (P < 0.001) in the animals in estrus (104.5 ± 11.9 cpm/μg of protein) and diestrus (94.5 ± 16.9 cpm/μg of protein) when compared with bitches in anestrus (183.2 ± 39.2 cpm/μg of protein). These results demonstrate, for the first time, lower basal TK activity in the muscle tissue of female dogs during estrus and diestrus, which may represent lower insulin signaling capacity, opening a new field of investigation into the molecular mechanisms of insulin resistance in dogs. PMID:22139063

  9. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    Biondi, R M; Engel, M; Sauane, M;

    1996-01-01

    Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show that ...... on histidine residues, however, only the B isoform appeared to be serine phosphorylated....

  10. Parkin Regulates the Activity of Pyruvate Kinase M2.

    Liu, Kun; Li, Fanzhou; Han, Haichao; Chen, Yue; Mao, Zebin; Luo, Jianyuan; Zhao, Yingming; Zheng, Bin; Gu, Wei; Zhao, Wenhui

    2016-05-01

    Parkin, a ubiquitin E3 ligase, is mutated in most cases of autosomal recessive early onset Parkinson disease. It was discovered that Parkin is also mutated in glioblastoma and other human malignancies and that it inhibits tumor cell growth. Here, we identified pyruvate kinase M2 (PKM2) as a unique substrate for parkin through biochemical purification. We found that parkin interacts with PKM2 both in vitro and in vivo, and this interaction dramatically increases during glucose starvation. Ubiquitylation of PKM2 by parkin does not affect its stability but decreases its enzymatic activity. Parkin regulates the glycolysis pathway and affects the cell metabolism. Our studies revealed the novel important roles of parkin in tumor cell metabolism and provided new insight for therapy of Parkinson disease. PMID:26975375

  11. Identification of casein kinase 1, casein kinase 2, and cAMP-dependent protein kinase-like activities in Trypanosoma evansi

    José Manuel Galán-Caridad

    2004-12-01

    Full Text Available Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA for casein kinase (CK1 and P2 (RRRADDSDDDDD for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22, a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II

  12. The casein kinase II beta subunit binds to Mos and inhibits Mos activity.

    Chen, M.; D. Li; Krebs, E G; Cooper, J. A.

    1997-01-01

    Mos is a germ cell-specific serine/threonine kinase and is required for Xenopus oocyte maturation. Active Mos stimulates a mitogen-activated protein kinase (MAPK) by directly phosphorylating and activating MAPK kinase (MKK). We report here that the Xenopus homolog of the beta subunit of casein kinase II (CKII beta) binds to and regulates Mos. The Mos-interacting region of CKII beta was mapped to the C terminus. Mos bound to CKII beta in somatic cells ectopically expressing Mos and CKII beta a...

  13. Predicting Kinase Activity in Angiotensin Receptor Phosphoproteomes Based on Sequence-Motifs and Interactions

    Bøgebo, Rikke; Horn, Heiko; Olsen, Jesper V;

    2014-01-01

    -arrestin dependent signalling. Two complimentary global phosphoproteomics studies have analyzed the complex signalling induced by the AT1aR. Here we integrate the data sets from these studies and perform a joint analysis using a novel method for prediction of differential kinase activity from phosphoproteomics data...... developed a new method for kinase-centric analysis of phosphoproteomes to pinpoint differential kinase activity in large-scale data sets....

  14. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways

    Mills, I.; Cohen, C. R.; Kamal, K.; Li, G.; Shin, T.; Du, W.; Sumpio, B. E.

    1997-01-01

    Smooth muscle cell (SMC) phenotype can be altered by physical forces as demonstrated by cyclic strain-induced changes in proliferation, orientation, and secretion of macromolecules. However, the magnitude of strain required and the intracellular coupling pathways remain ill defined. To examine the strain requirements for SMC proliferation, we selectively seeded bovine aortic SMC either on the center or periphery of silastic membranes which were deformed with 150 mm Hg vacuum (0-7% center; 7-24% periphery). SMC located in either the center or peripheral regions showed enhanced proliferation compared to cells grown under the absence of cyclic strain. Moreover, SMC located in the center region demonstrated significantly (P proliferation as compared to those in the periphery. In contrast, SMC exposed to high strain (7-24%) demonstrated alignment perpendicular to the strain gradient, whereas SMC in the center (0-7%) remained aligned randomly. To determine the mechanisms of these phenomena, we examined the effect of cyclic strain on bovine aortic SMC signaling pathways. We observed strain-induced stimulation of the cyclic AMP pathway including adenylate cyclase activity and cyclic AMP accumulation. In addition, exposure of SMC to cyclic strain caused a significant increase in protein kinase C (PKC) activity and enzyme translocation from the cytosol to a particulate fraction. Further study was conducted to examine the effect of strain magnitude on signaling, particularly protein kinase A (PKA) activity as well as cAMP response element (CRE) binding protein levels. We observed significantly (P proliferation or alignment. These data characterize the strain determinants for activation of SMC proliferation and alignment. Although strain activated both the AC/cAMP/PKA and the PKC pathways in SMC, singular inhibition of PKA and PKC failed to prevent strain-induced alignment and proliferation, suggesting either their lack of involvement or the multifactorial nature of these

  15. Elevated serum thymidine kinase activity in canine splenic hemangiosarcoma*.

    Thamm, D H; Kamstock, D A; Sharp, C R; Johnson, S I; Mazzaferro, E; Herold, L V; Barnes, S M; Winkler, K; Selting, K A

    2012-12-01

    Thymidine kinase 1 (TK1) is a soluble biomarker associated with DNA synthesis. This prospective study evaluated serum TK1 activity in dogs presenting with hemoabdomen and a splenic mass. An ELISA using azidothymidine as a substrate was used to evaluate TK1 activity. Sixty-two dogs with hemoabdomen and 15 normal controls were studied. Serum TK1 activity was significantly higher in dogs with hemangiosarcoma (HSA) than in normal dogs (mean ± SEM = 17.0 ± 5.0 and 2.01 ± 0.6, respectively), but not dogs with benign disease (mean ± SEM = 10.0 ± 3.3). Using a cut-off of 6.55 U/L, TK activity demonstrated a sensitivity of 0.52, specificity of 0.93, positive predictive value of 0.94 and negative predictive value of 0.48 for distinguishing HSA versus normal. When interval thresholds of 7.95 U/L were used together, diagnostic utility was increased. Serum TK1 evaluation may help to discriminate between benign disease and HSA in dogs with hemoabdomen and a splenic mass. PMID:22236280

  16. Mitogen-activated protein kinase signaling in plants under abiotic stress.

    Sinha, Alok Krishna; Jaggi, Monika; Raghuram, Badmi; Tuteja, Narendra

    2011-02-01

    Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants. PMID:21512321

  17. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    Agarwala Usha; Blaydes Jeremy P; Maurer Richard I; Essex Jon W; Kilburn Jeremy D; Warenius Hilmar M; Seabra Laurence A

    2011-01-01

    Abstract Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6) are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the c...

  18. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    Agarwala Usha

    2011-06-01

    Full Text Available Abstract Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6 are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP. An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with

  19. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  20. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  1. Blunted Activation of Rho-Kinase in Yak Pulmonary Circulation

    Takeshi Ishizaki

    2015-01-01

    Full Text Available Yaks have adapted to high altitude and they do not develop hypoxic pulmonary hypertension. Although we previously identified the important role of augmented nitric oxide synthase activity in the yak pulmonary circulatory system, evidence of the direct involvement of Rho-kinase as a basal vascular tone regulator is lacking. Four domesticated male pure-bred yaks and four bulls that were born and raised at an altitude of 3000 m in the Tien-Shan mountains were studied at an altitude of 3,100 m. Mean pulmonary artery pressure (mPAP was measured before and after fasudil (60 mg in 20 mL of saline was intravenously administered using a Swan-Ganz catheter at a rate of 3.3 mL/min for 30 min. Fasudil decreased mPAP in bulls from 67.8±14.9 to 32.3±5.3 mmHg (P<0.05 after 15 min and the level was maintained for 30 min, but it merely blunted mPAP in yaks from 28.2±4.5 to 25.1±11.1 and 23.2±2.7 mmHg after 5 and 30 min, respectively. These findings comprise the first evidence of a modest role of Rho-kinase in the maintenance of pulmonary artery pressure in the yak.

  2. Blunted activation of Rho-kinase in yak pulmonary circulation.

    Ishizaki, Takeshi; Mizuno, Shiro; Sakai, Akio; Matsukawa, Shigeru; Kojonazarov, Baktybek; Zamirbek, Baiserkeev; Umeda, Yukihiro; Morikawa, Miwa; Anzai, Masaki; Ishizuka, Tamotsu; Aldashev, Almaz

    2015-01-01

    Yaks have adapted to high altitude and they do not develop hypoxic pulmonary hypertension. Although we previously identified the important role of augmented nitric oxide synthase activity in the yak pulmonary circulatory system, evidence of the direct involvement of Rho-kinase as a basal vascular tone regulator is lacking. Four domesticated male pure-bred yaks and four bulls that were born and raised at an altitude of 3000 m in the Tien-Shan mountains were studied at an altitude of 3,100 m. Mean pulmonary artery pressure (mPAP) was measured before and after fasudil (60 mg in 20 mL of saline) was intravenously administered using a Swan-Ganz catheter at a rate of 3.3 mL/min for 30 min. Fasudil decreased mPAP in bulls from 67.8±14.9 to 32.3±5.3 mmHg (P < 0.05) after 15 min and the level was maintained for 30 min, but it merely blunted mPAP in yaks from 28.2±4.5 to 25.1±11.1 and 23.2±2.7 mmHg after 5 and 30 min, respectively. These findings comprise the first evidence of a modest role of Rho-kinase in the maintenance of pulmonary artery pressure in the yak. PMID:25654121

  3. c-Abl Tyrosine Kinase Adopts Multiple Active Conformational States in Solution

    2016-01-01

    Protein tyrosine kinases of the Abl family have diverse roles in normal cellular regulation and drive several forms of leukemia as oncogenic fusion proteins. In the crystal structure of the inactive c-Abl kinase core, the SH2 and SH3 domains dock onto the back of the kinase domain, resulting in a compact, assembled state. This inactive conformation is stabilized by the interaction of the myristoylated N-cap with a pocket in the C-lobe of the kinase domain. Mutations that perturb these intramolecular interactions result in kinase activation. Here, we present X-ray scattering solution structures of multidomain c-Abl kinase core proteins modeling diverse active states. Surprisingly, the relative positions of the regulatory N-cap, SH3, and SH2 domains in an active myristic acid binding pocket mutant (A356N) were virtually identical to those of the assembled wild-type kinase core, indicating that Abl kinase activation does not require dramatic reorganization of the downregulated core structure. In contrast, the positions of the SH2 and SH3 domains in a clinically relevant imatinib-resistant gatekeeper mutant (T315I) appear to be reconfigured relative to their positions in the wild-type protein. Our results demonstrate that c-Abl kinase activation can occur either with (T315I) or without (A356N) global allosteric changes in the core, revealing the potential for previously unrecognized signaling diversity. PMID:27166638

  4. Horse chestnut extract induces contraction force generation in fibroblasts through activation of Rho/Rho kinase.

    Fujimura, Tsutomu; Moriwaki, Shigeru; Hotta, Mitsuyuki; Kitahara, Takashi; Takema, Yoshinori

    2006-06-01

    Contraction forces generated by non-muscle cells such as fibroblasts play important roles in determining cell morphology, vasoconstriction, and/or wound healing. However, few factors that induce cell contraction forces are known, such as lysophosphatidic acid and thrombin. Our study analyzed various plant extracts for ingredients that induce generation of cell contraction forces in fibroblasts populating collagen gels. We found that an extract of Horse chestnut (Aesculus hippocastanum) is able to induce such contraction forces in fibroblasts. The involvement of actin polymerization and stress fiber formation in the force generation was suggested by inhibition of this effect by cytochalasin D and by Rhodamine phalloidin. Rho kinase inhibitors (Y27632 and HA1077) and a Rho inhibitor (exoenzyme C3) significantly inhibited the force generation induced by the Horse chestnut extract. H7, which inhibits Rho kinase as well as other protein kinases, also significantly inhibited induction of force generation. However, inhibitors of other protein kinases such as myosin light chain kinase (ML-9), protein kinase C (Calphostin), protein kinase A (KT5720), and tyrosine kinase (Genistein, Herbimycin A) had no effect on force generation induced by Horse chestnut extract. These results suggest that the Horse chestnut extract induces generation of contraction forces in fibroblasts through stress fiber formation followed by activation of Rho protein and Rho kinase but not myosin light chain kinase or other protein kinases. PMID:16754996

  5. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    Ichiro N. Maruyama

    2014-04-01

    Full Text Available Receptor tyrosine kinases (RTKs play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.

  6. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis.

    Glaser, P; Elmaoglou-Lazaridou, A; Krin, E.; Ladant, D.; Bârzu, O; Danchin, A

    1989-01-01

    In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture sup...

  7. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    Miao Xu; Yuanyuan Xiao; Jun Yin; Wolin Hou; Xueying Yu; Li Shen; Fang Liu; Li Wei; Weiping Jia

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation wer...

  8. Involvement of Hypothalamic AMP-Activated Protein Kinase in Leptin-Induced Sympathetic Nerve Activation

    Mamoru Tanida; Naoki Yamamoto; Toshishige Shibamoto; Kamal Rahmouni

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effec...

  9. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2013-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in...

  10. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals

    Procházka, Radek; Blaha, Milan

    2015-01-01

    Roč. 61, č. 6 (2015), s. 495-502. ISSN 0916-8818 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : cumulus oocyte complexes * meiosis resumption * mitogen-activated protein kinase 3/1 (MAPK3/1) Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.515, year: 2014

  11. Redox regulation of the AMP-activated protein kinase.

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  12. The role of AMP-activated protein kinase in regulation of skeletal muscle metabolism

    Anna Dziewulska; Paweł Dobrzyń; Agnieszka Dobrzyń

    2010-01-01

    AMP-activated protein kinase (AMPK) is a conserved, ubiquitously expressed eukaryotic enzyme that is activated in response to increasing AMP level. Regulation of AMPK activity in skeletal muscle is coordinated by contraction and phosphorylation by upstream kinases and a growing number of hormones and cytokines. Once activated, AMPK turns on catabolic, ATP-generating pathways, and turns off ATP-consuming metabolic processes such as biosynthesis and proliferation. Activation of AMPK promotes gl...

  13. Expression and Purification of PI3 Kinase {alpha} and Development of an ATP Depletion and an AlphaScreen PI3 Kinase Activity Assay

    Boldyreff, Brigitte; Rasmussen, Tine L; Jensen, Hans H; Cloutier, Alexandre; Beaudet, Lucille; Roby, Philippe; Issinger, Olaf-Georg

    2008-01-01

    Phosphoinositide-3-kinases are important targets for drug development because many proteins in the PI3 kinase signaling pathway are mutated, hyperactivated, or overexpressed in human cancers. Here, the authors coexpressed the human class Ia PI3 kinase p110alpha catalytic domain with an N-terminal....... In parallel, a second assay format using the AlphaScreen technology was optimized to measure PI3 kinase activity. Both assay formats used should be suitable for high-throughput screening for the identification of PI3 kinase inhibitors. (Journal of Biomolecular Screening XXXX:xx-xx)....

  14. Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition

    Soundararajan, M.; Roos, A.K.; Savitsky, P.;

    2013-01-01

    Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK sub...

  15. Calmodulin binds to and inhibits the activity of phosphoglycerate kinase.

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Phosphoglycerate kinase (PGK) functions as a cytoplasmic ATP-generating glycolytic enzyme, a nuclear mediator in DNA replication and repair, a stimulator of Sendai virus transcription and an extracellular disulfide reductase in angiogenesis. Probing of a developmental expression library from Dictyostelium discoideum with radiolabelled calmodulin led to the isolation of a cDNA encoding a putative calmodulin-binding protein (DdPGK) with 68% sequence similarity to human PGK. Dictyostelium, rabbit and yeast PGKs bound to calmodulin-agarose in a calcium-dependent manner while DdPGK constructs lacking the calmodulin-binding domain (209KPFLAILGGAKVSDKIKLIE228) failed to bind. The calmodulin-binding domain shows 80% identity between diverse organisms and is situated beside the hinge and within the ATP binding domain adjacent to nine mutations associated with PGK deficiency. Calmodulin addition inhibits yeast PGK activity in vitro while the calmodulin antagonist W-7 abrogates this inhibition. Together, these data suggest that PGK activity may be negatively regulated by calcium and calmodulin signalling in eukaryotic cells. PMID:15363631

  16. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  17. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1

    Frödin, Morten; Jensen, Claus J.; Merienne, Karine; Gammeltoft, Steen

    2000-01-01

    The 90 kDa ribosomal S6 kinase-2 (RSK2) is a growth factor-stimulated protein kinase with two kinase domains. The C-terminal kinase of RSK2 is activated by ERK-type MAP kinases, leading to autophosphorylation of RSK2 at Ser386 in a hydrophobic motif. The N-terminal kinase is activated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) through phosphorylation of Ser227, and phosphorylates the substrates of RSK. Here, we identify Ser386 in the hydrophobic motif of RSK2 as a phosphorylation...

  18. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R Scott

    2013-01-01

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions employed by ATP-dependent DNA ligases 1,2 . Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5′-adenylated (5′-AMP) DNA lesions 3–6 (Fig. 1a). Aprataxin (Aptx) reverses DNA-adenylation but the context for dead...

  19. The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides

    Paecht-Horowitz, Mella; Eirich, Frederick R.

    1988-01-01

    The spontaneous polymerization of amino acid adenylates on Na-montmorillonite in dilute, neutral suspension, after polypeptides were adsorbed on the clay, is studied. It is found that the degrees of polymerization of the oligopeptides and polypeptides obtained is dependent on the amounts of polypeptides that were preadsorbed. It is concluded that a catalytic activity may derive from c-spacings that offer adsorption sites for the reagent amino acid adenylate within the peripheral recesses of irregularly stacked clay platelets by bringing the anhydride bonds and neutral amino groups into favorable reaction distances.

  20. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  1. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  2. P34^ Kinase and MAP Kinase Activities and Parthenogenetic Activation in Porcine Oocytes after Injection of Miniature Pig Sperm Extracts

    Matsuura, Daizou; Maeda, Teruo

    2008-01-01

    The aim of the present study was to examine the rate of activation and time-dependent changes in p34cdc2 kinase and MAP kinase activities in porcine oocytes after injection of sperm extracts (SE) or treatment with Ca2+ ionophore to clarify whether SE injection is useful for porcine oocyte activation. SE was prepared from miniature pig sperm by non-ionic surfactant. Oocytes that were treated with Ca2+ ionophore and injected with SE were activated at rates of 41% and 46%, respectively. The acti...

  3. Protein kinase A binds and activates heat shock factor 1.

    Ayesha Murshid

    Full Text Available BACKGROUND: Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1, a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS: In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA. HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320, both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1 and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS: These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.

  4. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation

    Mahajan, Nupam P.; Liu, Yuanbo; Majumder, Samarpan; Warren, Maria R.; Parker, Carol E.; Mohler, James L.; Earp, H. Shelton; Whang, Young E.

    2007-01-01

    Activation of the androgen receptor (AR) may play a role in androgen-independent progression of prostate cancer. Multiple mechanisms of AR activation, including stimulation by tyrosine kinases, have been postulated. We and others have recently shown involvement of activated Cdc42-associated tyrosine kinase Ack1 in advanced human prostate cancer. Here we provide the molecular basis for interplay between Ack1 and AR in prostate cancer cells. Activated Ack1 promoted androgen-independent growth o...

  5. Histidine kinase activity in nuclei of Physarum polycephalum

    Nuclei of the true slime mold Physarum polycephalum, contain a kinase that specifically phosphorylates the 1-nitrogen of histidine-75 of histone H4, in vitro. Phosphohistidine is alkali stable and acid labile. Similar alkali stable phosphorylation has been observed with beef heart extracts and S-100 extracts from S. cerevisiae. The activity may be similar to that previously reported by R.A. Smith and his colleagues in several mammalian tissues. They have begun a search for nuclear proteins that contain phosphohistidine. Cultures of Physarum were grown in the presence of 32P-phosphate using several different labeling protocols. Labeled nuclear proteins were fractionated on a Superose-12 column. Alkali stable phosphate label eluted close to the position of histone H1, although it was not on H1 itself. No alkali stable phosphate eluted at the position of histone H4, which was obtained in high yield by this procedure. The absence of alkali-stable phosphorylation of histone H4 was confirmed by gel electrophoresis of the crude nuclear proteins. The fraction containing alkali-stable phosphate was shown to contain phosphohistidine by amino acid analysis of a total alkaline hydrolysate. They conclude that Physarum nuclei possess at least one protein that contains phosphohistidine in vivo and that histone H4 does not contain phosphohistidine in this system

  6. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  7. HCLK2 is required for activity of the DNA damage response kinase ATR

    Rendtlew Danielsen, Jannie M; Larsen, Dorthe Helena; Schou, Kenneth Bødtker;

    2008-01-01

    ATR is a protein kinase that orchestrates the cellular response to replication problems and DNA damage. HCLK2 has previously been reported to stabilize ATR and Chk1. Here we provide evidence that human HCLK2 acts at an early step in the ATR signaling pathway and contributes to full-scale activation...... of ATR kinase activity. We show that HCLK2 forms a complex with ATR-ATRIP and the ATR activator TopBP1. We demonstrate that HCLK2-induced ATR kinase activity toward substrates requires TopBP1 and vice versa and provides evidence that HCLK2 facilitates efficient ATR-TopBP1 association. Consistent with...

  8. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  9. Phosphorylation and inhibition of. gamma. -glutamyl transferase activity by cAMP-dependent protein kinase

    Kolesnichenko, L.S.; Chernov, N.N.

    1986-10-20

    It was shown that preparations of bovine kidney ..gamma..-glutamyl transferase of differing degrees of purity are phosphorylated by cAMP-dependent protein kinase. This is accompanied by a decrease in both the transferase and hydrolase activities of the enzyme. Consequently, ..gamma..-glutamyl transferase may serve as the substrate and target of the regulation of cAMP-dependent protein kinase.

  10. Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running

    Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.

    2000-01-01

    Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.