WorldWideScience

Sample records for adenovirus vaccine inhibits

  1. Canine adenovirus based rabies vaccines.

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  2. Enhancement of fibroblast activation protein α-based vaccines and adenovirus boost immunity by cyclophosphamide through inhibiting IL-10 expression in 4T1 tumor bearing mice.

    Xia, Qiu; Geng, Fei; Zhang, Fang-Fang; Liu, Chen-Lu; Xu, Ping; Lu, Zhen-Zhen; Zhang, Hai-Hong; Kong, Wei; Yu, Xiang-Hui

    2016-08-31

    Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts (CAFs) of more than 90% of malignant epithelia carcinomas. CAFs are the main type of cells in the tumor microenvironment which offer nutrition and protection to the tumor and regulate immunosuppression. To eliminate CAFs, a vaccine targeting FAPα may be used with a heterologous prime-boost strategy to enhance the FAPα-specific cellular immunity. Here, a FAP vaccine using a recombinant adenovirus (rAd) vector was constructed as well as a DNA vaccine reported in our previous work. Although the DNA prime-rAd boost strategy enhanced FAPα-specific immune responses, improvement of anti-tumor immunity effects was not observed. Examination of immunosuppressive factors revealed that high expression of the IL-10 cytokine was considered the main cause of the failure of the prime-boost strategy. However, heterologous vaccination in combination with a low-dose of cyclophosphamide (CY), which was reported to reduce IL-10 production and promote a shift from immunosuppression to immunopotentiation, resulted in enhanced effects in terms of numbers of effector T cells and tumor growth inhibition rates, compared to the CY alone or DNA alone group. Tumor growth was inhibited markedly when the prime-boost strategy was combined with CY in both the prophylactic and therapeutic settings and the survival time of 4T1 tumor bearing mice was also prolonged significantly. With the reduction of IL-10, enhancement of the anti-tumor effect by the prime-boost strategy was observed. These results suggest that FAPα-targeted rAd boosting in combination with CY is an attractive approach to overcoming immunosuppression in cancer vaccines. PMID:27498213

  3. Vaccine Design: Replication-Defective Adenovirus Vectors.

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies. PMID:27076309

  4. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  5. Low seroprevalent species D adenovirus vectors as influenza vaccines.

    Weaver, Eric A; Barry, Michael A

    2013-01-01

    Seasonal and pandemic influenza remains a constant threat. While standard influenza vaccines have great utility, the need for improved vaccine technologies have been brought to light by the 2009 swine flu pandemic, highly pathogenic avian influenza infections, and the most recent early and widespread influenza activity. Species C adenoviruses based on serotype 5 (AD5) are potent vehicles for gene-based vaccination. While potent, most humans are already immune to this virus. In this study, low seroprevalent species D adenoviruses Ad26, 28, and 48 were cloned and modified to express the influenza virus A/PR/8/34 hemagglutinin gene for vaccine studies. When studied in vivo, these species D Ad vectors performed quite differently as compared to species C Ad vectors depending on the route of immunization. By intramuscular injection, species D vaccines were markedly weaker than species C vaccines. In contrast, the species D vaccines were equally efficient as species C when delivered mucosally by the intranasal route. Intranasal adenovirus vaccine doses as low as 10(8) virus particles per mouse induced complete protection against a stringent lethal challenge dose of influenza. These data support translation of species D adenoviruses as mucosal vaccines and highlight the fundamental effects of differences in virus tropism on vaccine applications. PMID:23991187

  6. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  7. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  8. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    2010-01-01

    ... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell... hepatitis, the test is inconclusive and may be repeated. (B) If at least 19 of the 20 vaccinates do...

  9. Progress on adenovirus-vectored universal influenza vaccines.

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  10. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-01-01

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs. PMID:26847478

  11. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    De, Bishnu P.; Pagovich, Odelya E; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2012-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized ...

  12. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (Adenovirus Vaccine) in the context of the Department of Defense acquisition system.

    Hoke, Charles H; Snyder, Clifford E

    2013-03-15

    Respiratory pathogens cause morbidity and mortality in US military basic trainees. Following the influenza pandemic of 1918, and stimulated by WWII, the need to protect military personnel against epidemic respiratory disease was evident. Over several decades, the US military elucidated etiologies of acute respiratory diseases and invented and deployed vaccines to prevent disease caused by influenza, meningococcus, and adenoviruses. In 1994, the Adenovirus Vaccine manufacturer stopped its production. By 1999, supplies were exhausted and adenovirus-associated disease, especially serotype 4-associated febrile respiratory illness, returned to basic training installations. Advisory bodies persuaded Department of Defense leaders to initiate restoration of Adenovirus Vaccine. In 2011, after 10 years of effort by government and contractor personnel and at a cost of about $100 million, the Adenovirus Vaccine was restored to use at all military basic training installations. Disease and adenovirus serotype 4 isolation rates have fallen dramatically since vaccinations resumed in October 2011 and remain very low. Mindful of the adage that "The more successful a vaccine is, the more quickly the need for it will be forgotten.", sustainment of the supply of the Adenovirus Vaccine may be a challenge, and careful management will be required for such sustainment. PMID:23291475

  13. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  14. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  15. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intr...

  16. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  17. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5

  18. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  19. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  20. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  1. Adenovirus vectored vaccines against influenza a virus do not result in vaccine associated enhanced respiratory disease following heterologous challenge in contrast to whole inactivated virus vaccine

    Heterologous influenza A virus (IAV) challenge following vaccination with an intramuscular (IM) whole inactivated vaccine (WIV) can result in vaccine-associated enhanced respiratory disease (VAERD). The objective of this study was to use an adenovirus (Ad5) vector vaccine platform that expressed IAV...

  2. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: vaccine potency, antibody persistence, and maternal antibody transfer.

    Mesonero, Alexander; Suarez, David L; van Santen, Edzard; Tang, De-Chu C; Toro, Haroldo

    2011-06-01

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high

  3. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. PMID:23867013

  4. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  5. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  6. Vaccines within vaccines: the use of adenovirus types 4 and 7 as influenza vaccine vectors.

    Weaver, Eric A

    2014-01-01

    Adenovirus Types 4 and 7 (Ad4 and Ad7) are associated with acute respiratory distress (ARD). In order to prevent widespread Ad-associated ARD (Ad-ARD) the United States military immunizes new recruits using a safe and effective lyophilized wildtype Ad4 and Ad7 delivered orally in an enteric-coated capsule. We cloned Ad4 and Ad7 and modified them to express either a GFP-Luciferase (GFPLuc) fusion gene or a centralized influenza H1 hemagglutinin (HA1-con). BALB/c mice were injected with GFPLuc expressing viruses intramuscularly (i.m.) and intranasally (i.n.). Ad4 induced significantly higher luciferase expression levels as compared with Ad7 by both routes. Ad7 transduction was restored using a human CD46+ transgenic mouse model. Mice immunized with serial dilutions of viruses expressing the HA1-con influenza vaccine gene were challenged with 100 MLD 50 of influenza virus. Ad4 protected BALB/c mice at a lower dose by i.m. immunization as compared with Ad7. Unexpectedly, there was no difference in protection by i.n. immunization. Although Ad7 i.m. transduction was restored in CD46+ transgenic mice, protection against influenza challenge required even higher doses as compared with the BALB/c mice. However, Ad7 i.n. immunized CD46+ transgenic mice were better protected as compared with Ad4. Interestingly, the restoration of Ad7 transduction in CD46+ mice did not increase vaccine efficacy and indicates that Ad7 may transduce a different subset of cells through alternative receptors in the absence of CD46. These data indicate that both Ad4 and Ad7 can effectively induce anti-H1N1 immunity against a heterologous challenge using a centralized H1 gene. Future studies in non-human primates or human clinical trials will determine the overall effectiveness of Ad4 and Ad7 as vaccines for influenza. PMID:24280656

  7. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine

    Zeng, Mingtao; Xu, Qingfu; Elias, Md.; Pichichero, Michael E.; Simpson, Lance L.; Leonard A. Smith

    2007-01-01

    Botulinum neurotoxins cause botulism, a neuroparalytic disease in humans and animals. We constructed a replication-incompetent adenovirus encoding a synthesized codon-optimized gene for expression of the heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). This recombinant human serotype 5 adenoviral vector (Ad5) was evaluated as a genetic vaccine candidate against botulism caused by BoNT/C in a mouse model. A one-time intramuscular injection with 105 to 2 × 107 pfu of adeno...

  8. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  9. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induc...

  10. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines.

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV. PMID:26751211

  11. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV. PMID:26751211

  12. Adenovirus serotype 5 vectored foot-and-mouth disease subunit vaccines: the first decade

    Here we present the results of the first decade of development of a replication-defective human adenovirus (Ad5) containing the capsid and 3C protease coding regions of foot-and-mouth disease virus (FMDV) as a vaccine candidate. In proof-of concept studies we demonstrated that a single inoculation w...

  13. A CD46-binding chimpanzee adenovirus vector as a vaccine carrier.

    Tatsis, Nia; Blejer, Ariella; Lasaro, Marcio O; Hensley, Scott E; Cun, Ann; Tesema, Lello; Li, Yan; Gao, Guang-Ping; Xiang, Zhi Q; Zhou, Dongming; Wilson, James M; Ertl, Hildegund C J

    2007-03-01

    A replication-defective chimeric vector based on the chimpanzee adenovirus serotype C1 was developed and tested as a vaccine carrier in mice. The AdC1 virus is closely related to human adenoviruses of subgroup B2 and uses CD46 for cell attachment. To overcome poor growth of E1-deleted AdC1 vectors on cell lines that provide the E1 of adenovirus of the human serotype 5 (AdHu5) virus in trans, the inverted terminal repeats and some of the early genes of AdC1 were replaced with those from AdC5, a chimpanzee origin adenovirus of subfamily E. The chimeric AdC1/C5 vector efficiently transduces CD46-expressing mouse dendritic cells (DCs) in vitro and initiates their maturation. Transduction of DCs in vivo is inefficient in CD46 transgenic mice. The AdC1/C5 vector induces transgene product-specific B- and CD8(+) T-cell responses in mice. Responses are slightly higher in wild-type mice than in CD46 transgenic mice. Transgene product-specific T-cell responses elicited by the AdC1/C5 vector can be increased by priming or boosting with a heterologous adenovirus vector. Pre-existing immunity to adenovirus of the common human serotype 5 does not affect induction of cell-mediated immune responses by the AdC1/C5 vector. This vector provides an additional tool in a repertoire of adenovirus-based vaccine vectors. PMID:17228314

  14. CD46-mediated transduction of a species D adenovirus vaccine improves mucosal vaccine efficacy.

    Camacho, Zenaido T; Turner, Mallory A; Barry, Michael A; Weaver, Eric A

    2014-04-01

    The high levels of preexisting immunity against Adenovirus type 5 (Ad5) have deemed Ad5 unusable for translation as a human vaccine vector. Low seroprevalent alternative viral vectors may be less impacted by preexisting immunity, but they may also have significantly different phenotypes from that of Ad5. In this study we compare species D Ads (26, 28, and 48) to the species C Ad5. In vitro transduction studies show striking differences between the species C and D viruses. Most notably, Ad26 transduced human dendritic cells much more effectively than Ad5. In vivo imaging studies showed strikingly different transgene expression profiles. The Ad5 virus was superior to the species D viruses in BALB/c mice when delivered intramuscularly. However, the inverse was true when the viruses were delivered mucosally via the intranasal epithelia. Intramuscular transduction was restored in mice that ubiquitously expressed human CD46, the primary receptor for species D viruses. We analyzed both species C and D Ads for their ability to induce prophylactic immunity against influenza in the CD46 transgenic mouse model. Surprisingly, the species D vaccines again failed to induce greater levels of protective immunity as compared with the species C Ad5 when delivered intramuscularly. However, the species D Ad vaccine vector, Ad48, induced significantly greater protection as compared with Ad5 when delivered mucosally via the intranasal route in CD46 transgenic mice. These data shed light on the complexities between the species and types of Ad. Our findings indicate that more research will be required to identify the mechanisms that play a key role in the induction of protective immunity induced by species D Ad vaccines. PMID:24635714

  15. Adenovirus vaccine vectors expressing hepatitis B surface antigen: importance of regulatory elements in the adenovirus major late intron.

    Mason, B B; Davis, A R; Bhat, B M; Chengalvala, M; Lubeck, M D; Zandle, G; Kostek, B; Cholodofsky, S; Dheer, S; Molnar-Kimber, K

    1990-08-01

    Adenovirus types 4 and 7 are currently used as live oral vaccines for prevention of acute respiratory disease caused by these adenovirus serotypes. To investigate the concept of producing live recombinant vaccines using these serotypes, adenovirus types 4 (Ad4) and 7 (Ad7) were constructed that produce HBsAg upon infection of cell cultures. Ad4 recombinants were constructed that express HBsAg from a cassette inserted 135 bp from the right-hand terminus of the viral genome. The cassette contained the Ad4 major late promoter followed by leader 1 of the tripartite leader, the first intervening sequence between leaders 1 and 2, leaders 2 and 3, the HBsAg gene, and tandem polyadenylation signals from the Ad4 E3B and hexon genes. Using this same cassette, a series of Ad4 recombinants expressing HBsAg were constructed with deletions in the intervening sequence between leaders 1 and 2 to evaluate the contribution of the downstream control elements more precisely. Inclusion of regions located between +82 and +148 as well as +148 and +232 resulted in increases in expression levels of HBsAg in A549-infected cells by 22-fold and 44-fold, respectively, over the levels attained by an adenovirus recombinant retaining only sequences from +1 to +82, showing the importance of these elements in the activation of the major late promoter during the course of a natural Ad4 viral infection. Parallel increases were also observed in steady-state levels of cytoplasmic HBsAg-specific mRNA. When similar Ad7 recombinant viruses were constructed, these viruses also expressed 20-fold more HBsAg due to the presence of the intron. All Ad4 and Ad7 recombinants produced HBsAg particles containing gp27 and p24 which were secreted in the medium. When dogs were immunized intratracheally with one of these Ad7 recombinants, they seroconverted to both Ad7 and HBsAg to a high level. PMID:2371766

  16. Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine.

    Pandey, Aseem; Singh, Neetu; Vemula, Sai V; Couëtil, Laurent; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2012-01-01

    The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines. PMID:22432020

  17. Inhibition of proteolytic processing of adenoviral proteins by epsilon-aminocaproic acid and ambenum in adenovirus-infected cells.

    Nosach, Lidiya; Dyachenko, Nataliya; Zhovnovataya, Valentina; Lozinskiy, Miron; Lozitsky, Victor

    2002-01-01

    Maturation of adenovirus particles is markedly affected by proteolytic processing. The possibility for blocking the conversion of precursor structural core protein (preVII) into mature structure protein VII by officinal drugs epsilon-aminocaproic acid and ambenum has been demonstrated in Hep-2 cells infected with adenovirus. Proteolytic processing may be regarded as one of the targets for inhibiting adenovirus reproduction. PMID:12545207

  18. Biodistribution and Toxicological Safety of Adenovirus Type 5 and Type 35 Vectored Vaccines Against Human Immunodeficiency Virus-1 (HIV-1), Ebola, or Marburg Are Similar Despite Differing Adenovirus Serotype Vector, Manufacturer's Construct, or Gene Inserts

    Sheets, Rebecca L.; Stein, Judith; Bailer, Robert T.; Koup, Richard A.; Andrews, Charla; Nason, Martha; He, Bin; Koo, Edward; Trotter, Holly; Duffy, Chris; Manetz, T. Scott; Gomez, Phillip

    2008-01-01

    The Vaccine Research Center has developed vaccine candidates for different diseases/infectious agents (including HIV-1, Ebola, and Marburg viruses) built on an adenovirus vector platform, based on adenovirus type 5 or 35. To support clinical development of each vaccine candidate, pre-clinical studies were performed in rabbits to determine where in the body they biodistribute and how rapidly they clear, and to screen for potential toxicities (intrinsic and immunotoxicities). The vaccines biodi...

  19. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn;

    2007-01-01

    absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin......-linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed in the...

  20. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 107 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  1. Anti-Cocaine Vaccine Based on Coupling a Cocaine Analog to a Disrupted Adenovirus

    Koob, George; Hicks, Martin J.; Wee, Sunmee; Rosenberg, Jonathan B; De, Bishnu P.; Kaminksy, Stephen M.; Moreno, Amira; Kim D. Janda; Crystal, Ronald G.

    2011-01-01

    The challenge in developing an anti-cocaine vaccine is that cocaine is a small molecule, invisible to the immune system. Leveraging the knowledge that adenovirus (Ad) capsid proteins are highly immunogenic in humans, we hypothesized that linking a cocaine hapten to Ad capsid proteins would elicit high-affinity, high-titer antibodies against cocaine, sufficient to sequester systemically administered cocaine and prevent access to the brain, thus suppressing cocaine-induced behaviors. Based on t...

  2. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    Xiang, Z. Q.; Greenberg, L.; Ertl, H.C; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data dem...

  3. Modeling Pre-Existing Immunity to Adenovirus in Rodents: Immunological Requirements for Successful Development of a Recombinant Adenovirus Serotype 5-based Ebola Vaccine

    Choi, Jin Huk; Schafer, Stephen C.; Zhang, Lihong; Juelich, Terry; Freiberg, Alexander N.; Croyle, Maria A.

    2013-01-01

    Pre-existing immunity (PEI) to human adenovirus serotype 5 (Ad5) worldwide is the primary limitation to routine clinical use of Ad5-based vectors in immunization platforms. Using systemic and mucosal PEI induction models in rodents (mice and guinea pigs), we assessed the influence of PEI on the type of adaptive immune response elicited by an Ad5-based vaccine for Ebola with respect to immunization route. Splenocytes isolated from vaccinated animals revealed that immunization by the same route...

  4. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model.

    Patel, Ami; Tikoo, Suresh; Kobinger, Gary

    2010-01-01

    Human adenovirus 5 (AdHu5) vectors are robust vaccine platforms however the presence of naturally-acquired neutralizing antibodies may reduce vector efficacy and potential for re-administration. This study evaluates immune responses and protection following vaccination with a replication-incompetent porcine adenovirus 3 (PAV3) vector as an alternative vaccine to AdHu5 using an avian influenza H5N1 disease model. Vaccine efficacy was evaluated in BALB/c mice following vaccination with different doses of the PAV3 vector expressing an optimized A/Hanoi/30408/2005 H5N1 hemagglutinin antigen (PAV3-HA) and compared with an AdHu5-HA control. PAV3-HA rapidly generated antibody responses, with significant neutralizing antibody titers on day 21, and stronger cellular immune responses detected on day 8, compared to AdHu5-HA. The PAV3-HA vaccine, administered 8 days before challenge, demonstrated improved survival and lower virus load. Evaluation of long-term vaccine efficacy at 12 months post-vaccination showed better protection with the PAV3-HA than with the AdHu5-HA vaccine. Importantly, as opposed to AdHu5, PAV3 vector was not significantly neutralized by human antibodies pooled from over 10,000 individuals. Overall, PAV3-based vector is capable of mediating swift, strong immune responses and offer a promising alternative to AdHu5. PMID:21179494

  5. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  6. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  7. Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults.

    Green, Christopher A; Scarselli, Elisa; Sande, Charles J; Thompson, Amber J; de Lara, Catherine M; Taylor, Kathryn S; Haworth, Kathryn; Del Sorbo, Mariarosaria; Angus, Brian; Siani, Loredana; Di Marco, Stefania; Traboni, Cinzia; Folgori, Antonella; Colloca, Stefano; Capone, Stefania; Vitelli, Alessandra; Cortese, Riccardo; Klenerman, Paul; Nicosia, Alfredo; Pollard, Andrew J

    2015-08-12

    Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses. We performed an open-label, dose escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intramuscular (IM) and intranasal (IN) administration of the adenovirus-vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralizing antibody titers rose in response to IM prime with PanAd3-RSV and after IM boost for individuals primed by the IN route. Circulating anti-F immunoglobulin G (IgG) and IgA antibody-secreting cells (ASCs) were observed after the IM prime and IM boost. RSV-specific T cell responses were increased after the IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. Interferon-γ (IFN-γ) secretion after boost was from both CD4(+) and CD8(+) T cells, without detectable T helper cell 2 (TH2) cytokines that have been previously associated with immune pathogenesis following exposure to RSV after the formalin-inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease. PMID:26268313

  8. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus.

    Lubeck, M D; Davis, A R; Chengalvala, M; Natuk, R J; Morin, J E; Molnar-Kimber, K; Mason, B. B.; Bhat, B M; Mizutani, S; Hung, P P

    1989-01-01

    As a major cause of acute and chronic liver disease as well as hepatocellular carcinoma, hepatitis B virus (HBV) continues to pose significant health problems world-wide. Recombinant hepatitis B vaccines based on adenovirus vectors have been developed to address global needs for effective control of hepatitis B infection. Although considerable progress has been made in the construction of recombinant adenoviruses that express large amounts of HBV gene products, preclinical immunogenicity and ...

  9. Protection of chickens against avian influenza with nonreplicating adenovirus-vectored vaccine.

    Toro, H; Tang, D C

    2009-04-01

    Protective immunity against avian influenza (AI) virus has been elicited in chickens by single-dose in ovo or i.m. vaccination with a replication-competent adenovirus (Ad)-free human Ad vector encoding the AI virus A/Turkey/Wisconsin/68 H5 (AdTW68. H5) or the A/Chicken/New York/94 H7 (AdChNY94. H7) hemagglutinin (HA). The AdTW68.H5-vaccinated chickens were protected against both H5N1 and H5N2 highly pathogenic AI virus challenges. The AdChNY94. H7-vaccinated chickens were protected against an H7N3 highly pathogenic avian influenza virus challenge. Chickens vaccinated in ovo with AdTW68.H5 followed by posthatch i.m. vaccination with AdChNY94.H7 responded to both vaccinations, with robust antibody titers against both the H5 and H7 AI proteins. The use of a synthetic AI H5 HA gene codon optimized to match the tRNA pool found in chicken cells is more potent than the cognate H5 HA gene. Mass administration of this AI vaccine can be streamlined with available robotic in ovo injectors. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of the nonreplicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination will not interfere with epidemiological surveys of natural AI infections. Finally, the demonstration that Ad-vectored vaccines can be administered repeatedly without appreciably losing potency highlights the commercial potential of this new class of vaccine in poultry. PMID:19276437

  10. Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future?

    Smaill, Fiona; Xing, Zhou

    2014-08-01

    Despite progress in managing TB, there were 8.6 million new cases in 2012. To control TB will require a more effective vaccine than BCG, new drugs and better diagnostic tests. Recombinant replication-defective adenoviruses expressing foreign DNA have been studied as vaccines. We developed and evaluated a recombinant replication-deficient human Ad5 vector expressing Ag85A (Ad5Ag85A) as a TB vaccine in animal models and a Phase I human study. Animal models of Ad5Ag85A show markedly improved protection over BCG alone and immunization via the respiratory route provides the best type of protection. In humans, intramuscular vaccination was safe; Ad5Ag85A was immunogenic and stimulated polyfunctional T cell responses, more potently in previously BCG-vaccinated volunteers. Pre-existing Ad5 antibodies did not dampen the response. Given its potency, Ad5-based TB vaccines are well-positioned to be delivered to the respiratory tract, induce local lung immunity to control TB, and inform innovative approaches to new TB vaccination strategies. PMID:24935214

  11. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard; Sørensen, Maria Rathmann

    2008-01-01

    potent and versatile Ag delivery vehicles available. However, the impact of chronic infections like HIV and hepatitis C virus underscore the need for further improvements. In this study, we show that the protective immune response to an adenovirus-encoded vaccine Ag can be accelerated, enhanced......, broadened, and prolonged by tethering of the rAg to the MHC class II-associated invariant chain (Ii). Thus, adenovirus-vectored vaccines expressing lymphocytic choriomeningitis virus (LCMV)-derived glycoprotein linked to Ii increased the CD4+ and CD8+ T cell stimulatory capacity in vitro and in vivo....... Furthermore, mice vaccinated with a single dose of adenovirus-expressing LCMV-derived glycoprotein linked to Ii were protected against lethal virus-induced choriomeningitis, lethal challenge with strains mutated in immunodominant T cell epitopes, and systemic infection with a highly invasive strain. In...

  12. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation.

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  13. Mucosal vaccination with recombinant adenovirus encoding nucleoprotein provides potent protection against influenza virus infection.

    Kim, So-Hee; Kim, Joo Young; Choi, Youngjoo; Nguyen, Huan H; Song, Man Ki; Chang, Jun

    2013-01-01

    Influenza vaccines that target the highly variable surface glycoproteins hemagglutinin and neuraminidase cause inconvenience of having vaccination every year. For this reason, development of universal vaccines targeting conserved viral components is needed. In this study, we generated recombinant adenovirus (rAd) vaccine encoding nucleoprotein (NP) of A/PR/8/34 influenza virus, designated rAd/NP. BALB/c mice were immunized intranasally or sublingually with rAd/NP vaccine and subsequently challenged with lethal doses of heterologous as well as homologous influenza viruses. We found that intranasal immunization of rAd/NP elicited strong mucosal IgA responses as well as stronger CD8 T-cell responses toward immunodominant K(d)-restricted NP147-155 epitope than sublingual immunization. Importantly, only single intranasal but not sublingual immunization of rAd/NP provides potent protection against both homologous and heterologous influenza virus challenges. These results suggest that recombinant rAd/NP could be a universal vaccine candidate for mucosal administration against influenza virus. PMID:24086536

  14. Protection of non-human primates against rabies with an adenovirus recombinant vaccine.

    Xiang, Z Q; Greenberg, L; Ertl, H C; Rupprecht, C E

    2014-02-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  15. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    Vemula, Sai V; Ahi, Yadvinder S; Swaim, Anne-Marie; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  16. Approaches for genetic purity testing of live recombinant viral vaccines using a human adenovirus:rabies model.

    Lutze-Wallace, C; Sapp, T; Nadin-Davis, S A; Wandeler, A

    1992-01-01

    A two part purity testing regimen for genetically engineered live viral vaccines is described using a human adenovirus 5: rabies glycoprotein gene recombinant as a model vaccine. Initially, restriction endonuclease analysis of the recombinant viral genome verified the integrity of the recombinant construct and identified the vector genome. The second stage employed the polymerase chain reaction to facilitate a more detailed study of the target rabies glycoprotein cassette. The size of the tar...

  17. Cellular Changes Induced by Adenovirus Vaccine Vectors Expressing Foot-and-Mouth Disease Virus Structural and Nonstructural Proteins

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen of cloven-hoofed animals including swine and bovines. The emergency control of outbreaks is dependent on rapid protection and prevention of virus spread. Adenovirus-based FMD subunit vaccines containing the coding region of viral ca...

  18. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine.

    Liu, Ye; Zhang, Shoufeng; Ma, Guangpeng; Zhang, Fei; Hu, Rongliang

    2008-10-01

    Rabies infections in swine have been reported occasionally in recent years in certain geographic locations. Although a protective vaccine consisting of inactivated rabies virus is available for use in swine, searching for a more economically viable formulation for use in developing countries is always a priority. This work describes the testing of a canine adenovirus that expresses a rabies viral epitope (CAV-2-E3Delta-RGP) in a porcine rabies model. The data presented here show that the recombinant viral vaccine was effective in protecting swine against rabies if administered intramuscularly, but not orally or intranasally, and that protection was probably related to the development of a humoral response that lasted at least 28 weeks. Following vaccination, no behavioral abnormalities were observed in vaccinated swine and virus particles were not detected in either tissues or body fluids, indicating that this formulation was safe. The recombinant virus stimulated an effective level of antibody response in the immunized swine after a single intramuscular inoculation. PMID:18721839

  19. Valganciclovir Inhibits Human Adenovirus Replication and Pathology in Permissive Immunosuppressed Female and Male Syrian Hamsters

    Karoly Toth

    2015-03-01

    Full Text Available Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5 infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.

  20. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  1. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    Wee, Sunmee; Hicks, Martin J.; De, Bishnu P.; Rosenberg, Jonathan B; Moreno, Amira Y.; KaMinSky, Stephen M.; Kim D. Janda; Crystal, Ronald G.; Koob, George F.

    2011-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexano...

  2. Nasal Delivery of an Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Immune Response in Mice

    Croyle, Maria A.; Patel, Ami; Tran, Kaylie N.; Gray, Michael; ZHANG Yi; Strong, James E.; Feldmann, Heinz; Kobinger, Gary P.

    2008-01-01

    Pre-existing immunity to human adenovirus serotype 5 (Ad5) is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M.), nasal (I.N.) or oral (P.O.) route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP) fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-γ+ CD8+ T cells was reduced by 80% and ...

  3. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method

    Roy Chad J

    2011-11-01

    Full Text Available Abstract Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.

  4. Immunogenicity when utilizing adenovirus serotype 4 and 5 vaccines expressing circumsporozoite protein in naïve and Adenovirus (Ad5 immune mice

    Schuldt Nathaniel J

    2012-06-01

    Full Text Available Abstract Background Induction of potent long lasting effector T cell responses against liver stage malaria antigens strongly correlates with protection from malaria. While Adenovirus serotype 5 (Ad5 based malaria vaccine platforms have the ability to induce potent effector T cell responses against transgenes, high rates of pre-existing Ad5 immunity in malaria endemic regions has prompted study of alternative Ad serotype based malaria vaccines as replacements for Ad5 based malaria vaccines. The research described in this article examines the utility of alternative serotype adenovirus serotype 4 (Ad4 expressing a sporozoite surface protein (circumsporozoite protein (CSP (Ad4-CSP to induce immune responses against CSP. The immunogenicity of Ad4-CSP was also tested in homologous and heterologous prime boost vaccinations in both Ad5 naïve and Ad5 immune backgrounds as compared to use of Ad5-CSP. Results In Ad5 naïve animals, use of Ad4-CSP priming vaccinations followed by boosting with Ad5-CSP (Ad4-CSP/Ad5-CSP maximally increased the numbers of CSP specific cytokine secreting cytotoxic T cells relative to repeated use of Ad5-CSP. The Ad4-CSP/Ad5-CSP regimen also induced equivalent levels of CSP specific cell killing as did homologous prime-boost vaccinations with Ad5-CSP, despite stimulating lower numbers of CSP specific cytotoxic T cells. Priming with Ad4-CSP followed by a homologous boost resulted in significantly less CSP specific humoral responses than any other vaccination regimen tested in Ad naïve animals. In Ad5 immune animals, addition of Ad4-CSP in homologous or heterologous prime boost resulted in inductions of higher CSP specific responses than animals repeatedly vaccinated with Ad5-CSP alone. However, the observed responses were well below those observed in similarly treated Ad naïve mice. Conclusions While the Ad4-CSP/Ad5-CSP and Ad5-CSP/Ad5-CSP vaccination regimens resulted in equivalent CSP specific killing in Ad naïve animals

  5. Adenovirus-delivered wwox inhibited lung cancer growth in vivo in a mouse model.

    Zhou, Y; Shou, F; Zhang, H; You, Q

    2016-01-01

    Lung cancer is the most prevalent and deadly malignancy worldwide. This study investigated the possibility of inhibiting lung cancer in vivo with adenovirus-delivered WW domain-containing oxidoreductase (wwox). The lung cancer model was established by inoculating A549 lung cancer cells into the pleural space of nude mice. The control or wwox adenovirus was injected into the pleural space 7 days after cell inoculation and 14 days after first injection. The tumor number and burdens were measured 2 weeks after second virus injection. The carcinoembryonic antigen (CEA) and alpha-feto protein (AFP) levels in pleural effusion were analyzed by enzyme-linked immunosorbent assay. Apoptosis, proliferation and angiogenesis of tumor cells were assessed by terminal deoxinucleotidyl transferase-mediated dUTP-fluorescein nick end labeling assay, proliferating cell nuclear antigen (PCNA) and CD31 staining, respectively. Ectopic wwox significantly reduced both the number and size of lung tumors accompanied by substantially lower CEA and AFP levels in pleural effusion. The expression levels of Bcl2, Bcl-xL, vascular endothelial growth factor, PCNA-positive and CD31-positive cells in the tumors were significantly decreased, whereas levels of p21 and p73 and apoptotic cells markedly increased in mice receiving the wwox virus. These data demonstrated that wwox delivered by adenovirus was able to inhibit the growth of lung cancer in vivo, indicating the potential of using wwox as a gene therapy agent for lung cancer. PMID:26516139

  6. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sust...

  7. Intranasal Mucosal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances the Protection of BCG-Primed Guinea Pigs against Pulmonary Tuberculosis

    Xing, Zhou; McFarland, Christine T.; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMURRAY, David N.

    2009-01-01

    Background Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Methods and Findings Specific pathogen-free guinea pigs were immuniz...

  8. Comparative immunogenicity of recombinant adenovirus-vectored vaccines expressing different forms of hemagglutinin (HA) proteins from the H5 serotype of influenza A viruses in mice.

    Hu, Xiangjing; Meng, Weixu; Dong, Zhenyuan; Pan, Weiqi; Sun, Caijun; Chen, Ling

    2011-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) H5N1 viruses in poultry and their subsequent transmission to humans have highlighted an urgent need to develop preventive vaccines in the event of a pandemic. In this paper we constructed recombinant adenovirus (rAd)-vectored influenza vaccines expressing different forms of H5 hemagglutinin (HA) from the A/Vietnam/1194/04 (VN/1194/04) virus, a wild-type HA, a sequence codon-optimized HA and a transmembrane (TM) domain-truncated HA. Compared to the rAd vectors expressing the wild-type HA (rAd-04wtHA) and the TM-truncated form of HA (rAd-04optHA-dTM), the rAd vectored vaccine with the sequence codon-optimized HA (rAd-04optHA) showed a tendency to induce much higher hemagglutinin inhibition (HI) antibody titers in mice immunized with a prime-boost vaccine. Furthermore, administration of the rAd-04optHA vaccine to mice could elicit cross-reactive immune responses against the antigenically distinct HK/482/97 virus. Additionally, we constructed another vector containing the codon-optimized HA of the A/Hong Kong/482/97 (HK/482/97) virus. Administration of a bivalent immunization formulation including the rAd-04optHA and rAd-97optHA vaccines to mice induced a stronger immune response against HK/482/97 virus than the monovalent formulation. Taken together, these findings may have some implications for the development of rAd-vectored vaccines in the event of the pandemic spread of HPAI. PMID:20883733

  9. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  10. A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys against All Four Serotypes of Dengue Virus▿

    Raviprakash, Kanakatte; Wang, Danher; Ewing, Dan; Holman, David H.; Block, Karla; Woraratanadharm, Jan; Chen, Lan; Hayes, Curtis; Dong., John Y.; Porter, Kevin

    2008-01-01

    Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vect...

  11. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies.

    Lo, Chia-Yun; Wu, Zhengqi; Misplon, Julia A; Price, Graeme E; Pappas, Claudia; Kong, Wing-Pui; Tumpey, Terrence M; Epstein, Suzanne L

    2008-04-16

    Influenza epidemics or pandemics can arise for which strain- or subtype-matched vaccines are unavailable. Heterosubtypic immunity (Het-I) targeting conserved influenza A antigens could reduce morbidity and mortality during preparation of matched vaccines. Various vaccines inducing Het-I in animals have been studied separately using different viruses and conditions, but effectiveness for inducing Het-I has not been directly compared. The present studies compared immunization with cold-adapted (ca) viruses to DNA prime-recombinant adenovirus (rAd) boost vaccination to conserved antigens nucleoprotein (NP), matrix-2 (M2), or A/NP+M2. Both ca and DNA-rAd vaccinations induced antibody and T cell responses, and protected against lethal H1N1 challenge. Only A/NP+M2 DNA-rAd protected against challenge with highly pathogenic A/Vietnam/1203/2004 (H5N1); ca vaccine did not. Existing ca vaccines may provide some Het-I, but experimental vaccination focusing on conserved antigens was more effective in this model for protection against a divergent, highly pathogenic virus. PMID:18378366

  12. Modeling pre-existing immunity to adenovirus in rodents: immunological requirements for successful development of a recombinant adenovirus serotype 5-based ebola vaccine.

    Choi, Jin Huk; Schafer, Stephen C; Zhang, Lihong; Juelich, Terry; Freiberg, Alexander N; Croyle, Maria A

    2013-09-01

    Pre-existing immunity (PEI) to human adenovirus serotype 5 (Ad5) worldwide is the primary limitation to routine clinical use of Ad5-based vectors in immunization platforms. Using systemic and mucosal PEI induction models in rodents (mice and guinea pigs), we assessed the influence of PEI on the type of adaptive immune response elicited by an Ad5-based vaccine for Ebola with respect to immunization route. Splenocytes isolated from vaccinated animals revealed that immunization by the same route in which PEI was induced significantly compromised Ebola Zaire glycoprotein (ZGP)-specific IFN-γ+ CD8+ T cells and ZGP-specific multifunctional CD8+ T cell populations. ZGP-specific IgG1 antibody levels were also significantly reduced and a sharp increase in serum anti-Ad5 neutralizing antibody (NAB) titers were noted following immunization. These immune parameters correlated with poor survival after lethal challenge with rodent-adapted Ebola Zaire virus (ZEBOV). Although the number of IFN-γ+ CD8+ T cells was reduced in animals given the vaccine by a different route from that used for PEI induction, the multifunctional CD8+ T cell response was not compromised. Survival rates in these groups were higher than when PEI was induced by the same route as immunization. These results suggest that antigen-specific multifunctional CD8(+) T cell and Th2 type antibody responses compromised by PEI to Ad5 are required for protection from Ebola. They also illustrate that methods for induction of PEI used in preclinical studies must be carefully evaluated for successful development of novel Ad5-based vaccines. PMID:23915419

  13. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens.

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian Vs; Lambe, Teresa; Gilbert, Sarah C

    2014-03-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  14. Bolstering Components of the Immune Response Compromised by Prior Exposure to Adenovirus: Guided Formulation Development for a Nasal Ebola Vaccine.

    Choi, Jin Huk; Schafer, Stephen C; Freiberg, Alexander N; Croyle, Maria A

    2015-08-01

    The severity and longevity of the current Ebola outbreak highlight the need for a fast-acting yet long-lasting vaccine for at-risk populations (medical personnel and rural villagers) where repeated prime-boost regimens are not feasible. While recombinant adenovirus (rAd)-based vaccines have conferred full protection against multiple strains of Ebola after a single immunization, their efficacy is impaired by pre-existing immunity (PEI) to adenovirus. To address this important issue, a panel of formulations was evaluated by an in vitro assay for their ability to protect rAd from neutralization. An amphiphilic polymer (F16, FW ∼39,000) significantly improved transgene expression in the presence of anti-Ad neutralizing antibodies (NAB) at concentrations of 5 times the 50% neutralizing dose (ND50). In vivo performance of rAd in F16 was compared with unformulated virus, virus modified with poly(ethylene) glycol (PEG), and virus incorporated into poly(lactic-co-glycolic) acid (PLGA) polymeric beads. Histochemical analysis of lung tissue revealed that F16 promoted strong levels of transgene expression in naive mice and those that were exposed to adenovirus in the nasal cavity 28 days prior to immunization. Multiparameter flow cytometry revealed that F16 induced significantly more polyfunctional antigen-specific CD8+ T cells simultaneously producing IFN-γ, IL-2, and TNF-α than other test formulations. These effects were not compromised by PEI. Data from formulations that provided partial protection from challenge consistently identified specific immunological requirements necessary for protection. This approach may be useful for development of formulations for other vaccine platforms that also employ ubiquitous pathogens as carriers like the influenza virus. PMID:25549696

  15. A universal influenza A vaccine based on adenovirus expressing matrix-2 ectodomain and nucleoprotein protects mice from lethal challenge.

    Zhou, Dongming; Wu, Te-Lang; Lasaro, Marcio O; Latimer, Brian P; Parzych, Elizabeth M; Bian, Ang; Li, Yan; Li, Hua; Erikson, Jan; Xiang, Zhiquan; Ertl, Hildegund C J

    2010-12-01

    A universal influenza vaccine, designed to induce broadly cross-reactive immunity against current and future influenza A virus strains, is in critical demand to reduce the need for annual vaccinations with vaccines chosen upon predicting the predominant circulating viral strains, and to ameliorate the threat of cyclically occurring pandemics that have, in the past, killed tens of millions. Here, we describe a vaccine regimen based on sequential immunization with two serologically distinct chimpanzee-derived replication-defective adenovirus (Ad) vectors expressing the matrix-2 protein ectodomain (M2e) from three divergent strains of influenza A virus fused to the influenza virus nucleoprotein (NP) for induction of antibodies to M2e and virus-specific CD8(+) T cells to NP. In preclinical mouse models, the Ad vaccines expressing M2e and NP elicit robust NP-specific CD8(+) T-cell responses and moderate antibody responses to all three M2e sequences. Most importantly, vaccinated mice are protected against morbidity and mortality following challenge with high doses of different influenza virus strains. Protection requires both antibodies to M2e and cellular immune responses to NP. PMID:20877342

  16. Adenovirus Capsid-Based Anti-Cocaine Vaccine Prevents Cocaine from Binding to the Nonhuman Primate CNS Dopamine Transporter

    Maoz, Anat; Hicks, Martin J.; Vallabhjosula, Shankar; Synan, Michael; Kothari, Paresh J; Dyke, Jonathan P.; Ballon, Douglas J.; KaMinSky, Stephen M.; De, Bishnu P.; Rosenberg, Jonathan B; Martinez, Diana; Koob, George F.; Kim D. Janda; Crystal, Ronald G.

    2013-01-01

    Cocaine addiction is a major problem for which there is no approved pharmacotherapy. We have developed a vaccine to cocaine (dAd5GNE), based on the cocaine analog GNE linked to the capsid proteins of a serotype 5 adenovirus, designed to evoke anti-cocaine antibodies that sequester cocaine in the blood, preventing access to the CNS. To assess the efficacy of dAd5GNE in a large animal model, positron emission tomography (PET) and the radiotracer [11C]PE2I were used to measure cocaine occupancy ...

  17. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection

    Valdivia-Olarte, Hugo; Requena, David; Ramirez, Manuel; Saravia, Luis E; Izquierdo, Ray; Falconi-Agapito, Francesca; Zavaleta, Milagros; Best, Iván; Fernández-Díaz, Manolo; Zimic, Mirko

    2015-01-01

    Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each gen...

  18. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  19. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle

    Medina, Gisselle N.; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J.

    2015-01-01

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4+ and CD8+ gamma interferon (IFN-γ)+ cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle. PMID:26607309

  20. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines. PMID:23536756

  1. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Alessandra Vitelli

    Full Text Available Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP and matrix 1 (M1. We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  2. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  3. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  4. A Complex Adenovirus-Vectored Vaccine against Rift Valley Fever Virus Protects Mice against Lethal Infection in the Presence of Preexisting Vector Immunity▿

    Holman, David H.; Penn-Nicholson, Adam; Wang, Danher; Woraratanadharm, Jan; Harr, Mary-Katherine; Luo, Min; Maher, Ellen M.; Holbrook, Michael R.; Dong, John Y.

    2009-01-01

    Rift Valley fever virus (RVFV) has been cited as a potential biological-weapon threat due to the serious and fatal disease it causes in humans and animals and the fact that this mosquito-borne virus can be lethal in an aerosolized form. Current human and veterinary vaccines against RVFV, however, are outdated, inefficient, and unsafe. We have incorporated the RVFV glycoprotein genes into a nonreplicating complex adenovirus (CAdVax) vector platform to develop a novel RVFV vaccine. Mice vaccina...

  5. Protective Efficacy of a Single Immunization of a Chimeric Adenovirus Vector-Based Vaccine against Simian Immunodeficiency Virus Challenge in Rhesus Monkeys▿

    Barouch, Dan H.; Liu, Jinyan; Lynch, Diana M; O'Brien, Kara L.; La Porte, Annalena; Simmons, Nathaniel L.; Riggs, Ambryice M.; Clark, Sarah; Abbink, Peter; Montefiori, David C.; Landucci, Gary; Forthal, Donald N.; Self, Steven G.; Carville, Angela; Mansfield, Keith

    2009-01-01

    Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine de...

  6. The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus.

    Wang, Y.; Xiang, Z; Pasquini, S; Ertl, H. C.

    1997-01-01

    An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune respo...

  7. Hexon-modified recombinant E1-deleted adenovirus vectors as dual specificity vaccine carriers for influenza virus.

    Zhou, Dongming; Wu, Te-Lang; Emmer, Kristel L; Kurupati, Raj; Tuyishime, Steven; Li, Yan; Giles-Davis, Wynetta; Zhou, Xiangyang; Xiang, Zhiquan; Liu, Qin; Ratcliffe, Sarah J; Ertl, Hildegund C J

    2013-03-01

    To determine if an ordered and repetitive display of an epitope promoted induction of superior antibody responses, we compared B-cell responses to an influenza A virus epitope that was either encoded as a transgene by an adenovirus (Ad) vector or expressed on the vector's surface. To this end, we constructed a panel of influenza A virus vaccines based on chimpanzee-derived replication-defective adenovirus (AdC) vectors of serotype SAd-V25 also called AdC68. AdC68 vectors were modified to express a linear B-cell epitope of the ectodomain of matrix 2 (M2e) within variable regions 1 (VR1) or 4 (VR4) of the adenovirus hexon. Additional vectors with wild-type or M2e-modified hexon encoded M2e fused to the influenza A virus nucleoprotein (NP) as a transgene product. Hexon-modified vectors were tested for immunogenicity and efficacy in mice in comparison to vectors with native hexon expressing the M2e-NP fusion protein. Upon priming, vectors expressing M2e within VR1 of hexon induced M2e-specific antibody responses of higher magnitude and avidity than those carrying M2e within VR4 or vectors expressing the M2e as part of a transgene product. CD8(+) T-cell responses to the transgenic NP were comparable between vectors. M2e-specific antibody responses could be boosted by a second dose of the VR1 hexon-modified vector but not by repeated immunization with the VR4 hexon-modified vector. PMID:23229092

  8. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Emma-Jo Hayton

    Full Text Available TRIAL DESIGN: HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. METHODS: Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. RESULTS: Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern. CONCLUSIONS: These data demonstrate

  9. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H.; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R.

    2009-01-01

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We report here the use of a novel Ad5 platform to induce cellular immune responses (CMI) in Ad5 hyper immunized mice. The effectiveness of the Ad5 [E1−, E2b−] vaccine platform was evaluated using HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced foll...

  10. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses.

    Holman, David H; Wang, Danher; Raja, Nicholas U; Luo, Min; Moore, Kevin M; Woraratanadharm, Jan; Mytle, Nutan; Dong, John Y

    2008-05-19

    There are legitimate concerns that the highly pathogenic H5N1 avian influenza virus could adapt for human-to-human transmission and cause a pandemic similar to the 1918 "Spanish flu" that killed 50 million people worldwide. We have developed pandemic influenza vaccines by incorporating multiple antigens from both avian and Spanish influenza viruses into complex recombinant adenovirus vectors. In vaccinated mice, these vaccines induced strong humoral and cellular immune responses against pandemic influenza virus antigens, and protected vaccinated mice against lethal H5N1 virus challenge. These results indicate that this multi-antigen, broadly protective vaccine may serve as a safer and more effective approach than traditional methods for development of a pandemic influenza vaccine. PMID:18395306

  11. Adenovirus Vectors Block Human Immunodeficiency Virus–1 Replication in Human Alveolar Macrophages by Inhibition of the Long Terminal Repeat

    Kaner, Robert J.; Santiago, Francisco; Rahaghi, Franck; Michaels, Elizabeth; Moore, John P.; Crystal, Ronald G.

    2009-01-01

    Heterologous viruses may transactivate or suppress human immunodeficiency virus (HIV)–1 replication. An adenovirus type 5 gene transfer vector (Ad5) HIV-1 vaccine was recently evaluated in a clinical trial, without efficacy. In this context, it is relevant to ask what effect Ad vectors have on HIV-1 replication, particularly in cells that are part of the innate immune system. Infection of HIV-1–infected human alveolar macrophages (AMs) obtained from HIV-1+ individuals with an Ad vector contai...

  12. Utilizing the antigen capsid-incorporation strategy for the development of adenovirus serotype 5-vectored vaccine approaches.

    Gu, Linlin; Farrow, Anitra L; Krendelchtchikov, Alexandre; Matthews, Qiana L

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines. PMID:25993057

  13. Systemic and Mucosal T-Lymphocyte Activation Induced by Recombinant Adenovirus Vaccines in Rhesus Monkeys▿

    Sun, Yue; Bailer, Robert T.; Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Koup, Richard A.; Letvin, Norman L.

    2009-01-01

    The administration of vectors designed to elicited cell-mediated immune responses may have other consequences that are clinically significant. To explore this possibility, we evaluated T-cell activation during the first 2 months after recombinant adenovirus serotype 5 (rAd5) prime or boost immunizations in rhesus monkeys. We also evaluated the kinetics of T-lymphocyte activation in both the systemic and the mucosal compartments after rAd5 administration in monkeys with preexisting immunity to...

  14. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy.

    Isabela Resende Pereira

    2015-01-01

    Full Text Available Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd carrying sequences of amastigote surface protein-2 (rAdASP2 and trans-sialidase (rAdTS T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi, when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFNγ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi and the boost (analysis at 180 and 230 dpi. Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28, CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells

  15. Inhibition of Dual Specific Oncolytic Adenovirus on Esophageal Cancer via Activation of Caspases by a Mitochondrial-dependent Pathway

    SU Jia-qiang; CHI Bao-rong; LI Xiao; LIU Lei; LIU Li-ming; QI Yan-xin; WANG Zhuo-yue; JIN Ning-yi

    2012-01-01

    We investigated the anti-tumor effects of dual cancer specific-oncolytic adenovirus Ad-VP on esophageal cancer(EC).The anti-tumor activity of Ad-VP was compared with that of the control recombinant adenoviruses (Ad-GP,Ad-Apoptin,Ad-EGFP) in human esophageal cancer cell EC-109 and human normal liver cell L02 in vitro.In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assays,the growth of EC-109 cells was slightly inhibited by Ad-GP.Ad-Apoptin and Ad-EGFP.However,Ad-VP induced a significant cytotoxic effect.Infection of EC-109 cells with Ad-VP resulted in a significant induction of apoptosis of them in vitro,detected by 4′,6-diamidino-2-phenylindole(DAPI) or acridine orange and ethidium bromide staining.The results of Western blot and flow cytometric assay indicate the loss of mitochondrial membrane potential(△ψm),the release of cytochrome c and the activation of caspase-3,6 and 7 in Ad-VP infiected EC-109 cells.In contrast,all these assays show almost no effects of the recombinant adenoviruses on L02 cells.These results demonstrate that the treatment of tumors with Ad-VP selectively inhibits tumor growth and induces apoptosis of esophageal cancer cells.Ad-VP may provide a novel and powerful strategy for cancer gene therapy.

  16. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza.

    Zhang, Jianfeng; Tarbet, E Bart; Feng, Tsungwei; Shi, Zhongkai; Van Kampen, Kent R; Tang, De-chu C

    2011-01-01

    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs. PMID:21818346

  17. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge.

    Schutta, Christopher; Barrera, José; Pisano, Melia; Zsak, Laszlo; Grubman, Marvin J; Mayr, Gregory A; Moraes, Mauro P; Kamicker, Barbara J; Brake, David A; Ettyreddy, Damodar; Brough, Douglas E; Butman, Bryan T; Neilan, John G

    2016-06-01

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge. PMID:26707216

  18. Adenovirus E4orf6 protein inhibits DNA repair and radiosensitizes human tumor cells

    Full text: Double strand break repair (DSBR), although vital to normal cell survival and genomic stability, limits tumor cell kill following treatment with ionizing radiation (IR). The primary mechanism for DSBR in mammalian cells, non-homologous end joining (NHEJ), requires multiple proteins, one of which is DNA-dependent protein kinase (DNA-PK). Cells deficient in DNA-PK, although phenotypically normal, are among the most radiosensitive cells available. It has previously been shown that the E4orf6 gene product of adenovirus type 5 interacts with and inhibits the activity of DNA-PK. Therefore, we hypothesized that E4orf6, by interacting with DNA-PK, would inhibit the DSBR capacity of tumor cells and thus increase tumor cell kill upon treatment with IR. Stable clones expressing either wild type E4orf6, an E4orf6 mutant (L245P) that is defective at E1B-55K localization to the nucleus, or a neomycin control vector were established in colorectal carcinoma (RKO) cells. Based on clonogenic assays, we report a 10-fold increase in radiosensitivity of the wild type E4orf6 expressing clones at 6Gy of IR compared to both the neomycin and L245P mutant clones. Furthermore, the increase in sensitivity correlates with inhibition in DSBR based on sub-lethal damage repair assay. Preliminary data suggests that the transfected E4orf6 interacts with the endogenous DNA-PK and this results in a 20% decrease in the kinase activity of the DNA-PK compared to neomycin expressing control cells. These results indicate that E4orf6 radiosensitizes tumor cells by inhibiting their DSBR activity. We have constructed an adenoviral vector expressing E4orf6 in a tetracycline-inducible manner, which provides temporal control for E4orf6 expression. We are currently investigating the radiosensitizing properties of this expression vector. Successful use of this vector in vitro and in mouse xenografts, will set the stage for its future use in conjunction with localized radiotherapy of radioresistant

  19. Assessment of route of administration and dose escalation for an adenovirus-based influenza A Virus (H5N1) vaccine in chickens.

    Steitz, Julia; Wagner, Robert A; Bristol, Tyler; Gao, Wentao; Donis, Ruben O; Gambotto, Andrea

    2010-09-01

    Highly pathogenic avian influenza (HPAI) virus causes one of the most economically devastating poultry diseases. An HPAI vaccine to prevent the disease in commercial and backyard birds must be effective, safe, and inexpensive. Recently, we demonstrated the efficacy of an adenovirus-based H5N1 HPAI vaccine (Ad5.HA) in chickens. To further evaluate the potential of the Ad5.HA vaccine and its cost-effectiveness, studies to determine the minimal effective dose and optimal route of administration in chickens were performed. A dose as low as 10(7) viral particles (vp) of adenovirus-based H5N1 vaccine per chicken was sufficient to generate a robust humoral immune response, which correlated with the previously reported level of protection. Several routes of administration, including intratracheal, conjunctival, subcutaneous, and in ovo routes, were evaluated for optimal vaccine administration. However, only the subcutaneous route of immunization induced a satisfactory level of influenza virus-specific antibodies. Importantly, these studies established that the vaccine-induced immunity was cross-reactive against an H5N1 strain from a different clade, emphasizing the potential of cross-protection. Our results suggest that the Ad5.HA HPAI vaccine is safe and effective, with the potential of cross-clade protection. The ease of manufacturing and cost-effectiveness make Ad5.HA an excellent avian influenza vaccine candidate with the ability to protect poultry from HPAI virus infection. Considering the limitations of the influenza vaccine technology currently used for poultry applications, any effort aimed at overcoming those limitations is highly significant. PMID:20660133

  20. Adenovirus-based vaccine against Listeria monocytogenes

    Jensen, Søren; Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech;

    2013-01-01

    bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP......, vaccination of C57BL/6 (L. monocytogenes-resistant) and BALB/c (L. monocytogenes-susceptible) mice with adenoviral vectors encoding natural L. monocytogenes-derived soluble Ags (listeriolysin O and p60) revealed that tethering of these Ags to Ii markedly improved the vaccine-induced CD8(+) T cell response to...... two of three epitopes studied. More importantly, Ii linkage accelerated and augmented vaccine-induced protection in both mouse strains and prolonged protection, in particular that induced by the weak Ag, p60, in L. monocytogenes-susceptible BALB/c mice....

  1. A Single Dose Respiratory Recombinant Adenovirus-Based Vaccine Provides Long-Term Protection for Non-Human Primates from Lethal Ebola Infection

    Choi, Jin Huk; Jonsson-Schmunk, Kristina; Qiu, Xiangguo; Shedlock, Devon J.; Strong, Jim; Xu, Jason X.; Michie, Kelly L.; Audet, Jonathan; Fernando, Lisa; Myers, Mark J.; Weiner, David; Bajrovic, Irnela; Tran, Lilian Q.; Wong, Gary; Bello, Alexander

    2014-01-01

    As the Ebola outbreak in West Africa continues and cases appear in the United States and other countries, the need for long-lasting vaccines to preserve global health is imminent. Here, we evaluate the long-term efficacy of a respiratory and sublingual (SL) adenovirus-based vaccine in non-human primates in two phases. In the first, a single respiratory dose of 1.4 × 109 infectious virus particles (ivp)/kg of Ad-CAGoptZGP induced strong Ebola glycoprotein (GP) specific CD8+ and CD4+ T cell res...

  2. Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs.

    Braucher, Douglas R; Henningson, Jamie N; Loving, Crystal L; Vincent, Amy L; Kim, Eun; Steitz, Julia; Gambotto, Andrea A; Kehrli, Marcus E

    2012-11-01

    Influenza A virus (IAV) is widely circulating in the swine population and causes significant economic losses. To combat IAV infection, the swine industry utilizes adjuvanted whole inactivated virus (WIV) vaccines, using a prime-boost strategy. These vaccines can provide sterilizing immunity toward homologous virus but often have limited efficacy against a heterologous infection. There is a need for vaccine platforms that induce mucosal and cell-mediated immunity that is cross-reactive to heterologous viruses and can be produced in a short time frame. Nonreplicating adenovirus 5 vector (Ad5) vaccines are one option, as they can be produced rapidly and given intranasally to induce local immunity. Thus, we compared the immunogenicity and efficacy of a single intranasal dose of an Ad5-vectored hemagglutinin (Ad5-HA) vaccine to those of a traditional intramuscular administration of WIV vaccine. Ad5-HA vaccination induced a mucosal IgA response toward homologous IAV and primed an antigen-specific gamma interferon (IFN-γ) response against both challenge viruses. The Ad5-HA vaccine provided protective immunity to homologous challenge and partial protection against heterologous challenge, unlike the WIV vaccine. Nasal shedding was significantly reduced and virus was cleared from the lung by day 5 postinfection following heterologous challenge of Ad5-HA-vaccinated pigs. However, the WIV-vaccinated pigs displayed vaccine-associated enhanced respiratory disease (VAERD) following heterologous challenge, characterized by enhanced macroscopic lung lesions. This study demonstrates that a single intranasal vaccination with an Ad5-HA construct can provide complete protection from homologous challenge and partial protection from heterologous challenge, as opposed to VAERD, which can occur with adjuvanted WIV vaccines. PMID:22933397

  3. Adenovirus-mediated Expression of both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Inhibits Lung Cancer Cell Growth

    Hui TIAN; Xianxi LIU; Bing ZHANG; Qifeng SUN; Dongfeng SUN

    2007-01-01

    Polyamine biosynthesis is controlled primarily by ornithine decarboxylase (ODC) and Sadenosylmethionine decarboxylase (AdoMetDC). Antisense sequences of ODC and AdoMetDC genes were cloned into an adenoviral vector (named Ad-ODC-AdoMetDCas). To evaluate the effects of recombinant adenovirus Ad-ODC-AdoMetDCas that can simultaneously express both antisense ODC and AdoMetDC,the human lung cancer cell line A-549 was infected with Ad-ODC-AdoMetDCas or the control vector.Viable cell counting, determination of polyamine concentrations, cell cycle analysis, and Matrigel invasion assays were carried out to assess the properties of tumor growth and invasiveness. Our study showed that adenovirus-mediated antisense ODC and AdoMetDC expression inhibits tumor cell growth through blocking the polyamine synthesis pathway. Tumor cells were arrested at the G1 phase after gene transfer and the invasiveness was reduced. It suggested that the recombinant adenovirus Ad-ODC-AdoMetDCas might be a new anticancer reagent in the treatment of lung cancers.

  4. Adenovirus-mediated delivery of interferon-γ gene inhibits the growth of nasopharyngeal carcinoma

    Liu Ran-yi

    2012-12-01

    Full Text Available Abstract Background Interferon-γ (IFN-γ is regarded as a potent antitumor agent, but its clinical application is limited by its short half-life and significant side effects. In this paper, we tried to develop IFN-γ gene therapy by a replication defective adenovirus encoding the human IFN-γ (Ad-IFNγ, and evaluate the antitumoral effects of Ad-IFNγ on nasopharyngeal carcinoma (NPC cell lines in vitro and in xenografts model. Methods The mRNA levels of human IFN-γ in Ad-IFNγ-infected NPC cells were detected by reverse transcription-polymerase chain reaction (RT-PCR, and IFN-γ protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA in the culture supernatants of NPC cells and tumor tissues and bloods of nude mice treated with Ad-IFNγ. The effects of Ad-IFNγ on NPC cell proliferation was determined using MTT assay, cell cycle distribution was determined by flow cytometry analysis for DNA content, and cells apoptosis were analyzed by Annexin V-FITC/7-AAD binding assay and hoechst 33342/PI double staining. The anti-tumor effects and toxicity of Ad-IFNγ were evaluated in BALB/c nude mice carrying NPC xenografts. Results The results demonstrated that Ad-IFNγ efficiently expressed human IFN-γ protein in NPC cell lines in vitro and in vivo. Ad-IFNγ infection resulted in antiproliferative effects on NPC cells by inducing G1 phase arrest and cell apoptosis. Intratumoral administration of Ad-IFNγ significantly inhibited the growth of CNE-2 and C666-1 cell xenografts in nude mice, while no significant toxicity was observed. Conclusions These findings indicate IFN-γ gene therapy mediated by replication defective adenoviral vector is likely a promising approach in the treatment of nasopharyngeal carcinoma.

  5. An effective vaccine against colon cancer in mice: Use of recombinant adenovirus interleukin-12 transduced dendritic cells

    Xiao-Zhou He; Liang Wang; Yan-Yun Zhang

    2008-01-01

    AIM: To investigate the effect of a vaccine with recombinant adenovirus interleukin-12 (AdVIL-12) transduced dendritic cells (DCs) against colon cancer in mice.METHODS: DCs and AdVIL-12 were incubated together at different time intervals and at different doses. Supernatant was collected and tested for IL-12 by enzyme-linked immunosorbent assay (ELISA). In order to determine whether tumor cell lysate-pulsed (TP) AdVIL-12/DCs enhance therapeutic potential in the established tumor model, CT26 colon tumor cells were implanted subcutaneously (s.c.) in the midflank of naive BALB/c mice. Tumor-bearing mice were injected with a vaccination of CT26 TP AdVIL-12/DCs on d 3 and 10. As a protective colon tumor model, na(i)ve BALB/c mice were immunized s.c. in their abdomens with CT26 TP AdVIL-12/DCs twice at seven day intervals. After the immunization on d 7, the mice were challenged with a lethal dose of CT26 tumor cells and survival times were evaluated. Subsequently, cytotoxic T lymphocyte (CTL) activity and interferon gamma (IFNγ) secretion was evaluated in the immunized mice, and assayed CTL ex vivo.RESULTS: Murine DCs were retrovirally transduced with AdVIL-12 efficiency, and the AdVIL-12 transduced DCs secreted a high level of IL-12 (AdVIL-12/DCs, 615.27 ± 42.3 pg/mL vs DCs, 46.32 ± 7.29 pg/mL, P < 0.05). Vaccination with CT26 TP AdVIL-12/DCs could enhance anti-tumor immunity against CT26 colon tumor in murine therapeutic models (tumor volume on d 19: CT26 TP AdVIL-12/DCs 107 ± 42 mm3 vsCT26 TP DCs 383 ± 65 mm3, P < 0.05) and protective models. Moreover, the CT26 TP AdVIL-12/DC vaccination enhances tumor-specific CTL activity, producing high levels of IFNy in immunized mice. Ex vivo primed T cells with AdVIL-12/DCs were able to induce more effective CTL activity than in primed T cells with CT26 TP/DCs (E:T = 100:1, 69.49% ± 6.11% specific lysis vs 37.44% ± 4.32% specific lysis, P < 0.05).CONCLUSION: Vaccination with recombinant AdVIL-12 transduced DC pulsed tumor

  6. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    Tang, De-chu C.; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; van Kampen, Kent R.

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many o...

  7. A Promising Trigene Recombinant Human Adenovirus Vaccine Against Classical Swine Fever Virus.

    Li, Helin; Gao, Rui; Zhang, Yanming

    2016-05-01

    Classical swine fever (CSF) vaccine based on HAdV-5 had achieved an efficient protection in swine. Both classical swine fever virus (CSFV) E0 glycoprotein and E2 glycoprotein were the targets for neutralizing antibodies and related to immune protection against CSF. Interleukin-2 (IL2), as an adjuvant, also had been used in CSF vaccine research. In this study, coexpression of the CSFV E0, E2, and IL2 genes by HAdV-5 (rAdV-E0-E2-IL2) was constructed and immunized to evaluate its efficacy. Three expressed genes had been sequentially connected with foot-and-mouth disease virus 2A (FMDV 2A). The vaccine was administered by intramuscular inoculation to CSFV-free pigs (10(8) TCID50) twice at triweekly intervals. No adverse clinical signs were observed in any of the pigs after vaccination. The vaccine induced strong humoral and cellular responses that led to complete protection against clinical signs of lethal CSFV infection, viremia, and shedding of challenge virus. The rAdV-E0-E2-IL2 is a promising, efficient, and safe marker vaccine candidate against CSFV. PMID:26918463

  8. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus

    Helin Li; Pengbo Ning; Zhi Lin; Wulong Liang; Kai Kang; Lei He; Yanming Zhang

    2015-03-01

    The use of adenovirus vector-based vaccines is a promising approach for generating antigen-specific immune responses. Improving vaccine potency is necessary in other approaches to address their inadequate protection for the majority of infectious diseases. This study is the first to reconstruct a recombinant replication-defective human adenovirus co-expressing E2 and invasin C-terminal (InvC) glycoproteins (rAd-E2-InvC). rAd-E2-InvC with 2×106 TCID50 was intramuscularly administered two times to CSFV-free pigs at 14 day intervals. No adverse clinical reactions were observed in any of the pigs after the vaccination. The CSFV E2-specific antibody titer was significantly higher in the rAd-E2-InvC group than that in the rAdV-E2 group as measured by NPLA and blocking ELISA. Pigs immunized with rAd-E2-InvC were completely protected against lethal challenge. Neither CSFV RNA nor pathological changes were detected in the tissues after CSFV challenge. These results demonstrate that rAd-E2-InvC could be an alternative to the existing CSF vaccine. Moreover, InvC that acts as an adjuvant could enhance the immunogenicity of rAdV-E2 and induce high CSFV E2-specific antibody titer and protection level.

  9. A Single Dose Respiratory Recombinant Adenovirus-Based Vaccine Provides Long-Term Protection for Non-Human Primates from Lethal Ebola Infection.

    Choi, Jin Huk; Jonsson-Schmunk, Kristina; Qiu, Xiangguo; Shedlock, Devon J; Strong, Jim; Xu, Jason X; Michie, Kelly L; Audet, Jonathan; Fernando, Lisa; Myers, Mark J; Weiner, David; Bajrovic, Irnela; Tran, Lilian Q; Wong, Gary; Bello, Alexander; Kobinger, Gary P; Schafer, Stephen C; Croyle, Maria A

    2015-08-01

    As the Ebola outbreak in West Africa continues and cases appear in the United States and other countries, the need for long-lasting vaccines to preserve global health is imminent. Here, we evaluate the long-term efficacy of a respiratory and sublingual (SL) adenovirus-based vaccine in non-human primates in two phases. In the first, a single respiratory dose of 1.4×10(9) infectious virus particles (ivp)/kg of Ad-CAGoptZGP induced strong Ebola glycoprotein (GP) specific CD8+ and CD4+ T cell responses and Ebola GP-specific antibodies in systemic and mucosal compartments and was partially (67%) protective from challenge 62 days after immunization. The same dose given by the SL route induced Ebola GP-specific CD8+ T cell responses similar to that of intramuscular (IM) injection, however, the Ebola GP-specific antibody response was low. All primates succumbed to infection. Three primates were then given the vaccine in a formulation that improved the immune response to Ebola in rodents. Three primates were immunized with 2.0×10(10) ivp/kg of vaccine by the SL route. Diverse populations of polyfunctional Ebola GP-specific CD4+ and CD8+ T cells and significant anti-Ebola GP antibodies were present in samples collected 150 days after respiratory immunization. The formulated vaccine was fully protective against challenge 21 weeks after immunization. While diverse populations of Ebola GP-specific CD4+ T cells were produced after SL immunization, antibodies were not neutralizing and the vaccine was unprotective. To our knowledge, this is the first time that durable protection from a single dose respiratory adenovirus-based Ebola vaccine has been demonstrated in primates. PMID:25363619

  10. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  11. The role of human adenoviruses type 41 in acute diarrheal disease in Minas Gerais after rotavirus vaccination

    Thaís Aparecida Vieira Reis

    2016-03-01

    Full Text Available Abstract Human adenovirus species F (HAdV-F type 40 and 41 are commonly associated with acute diarrheal disease (ADD across the world. Despite being the largest state in southeastern Brazil and having the second largest number of inhabitants, there is no information in the State of Minas Gerais regarding the role of HAdV-F in the etiology of ADD. This study was performed to determine the prevalence, to verify the epidemiological aspects of infection, and to characterize the strains of human adenoviruses (HAdV detected. A total of 377 diarrheal fecal samples were obtained between January 2007 and August 2011 from inpatient and outpatient children of age ranging from 0 to 12 years. All samples were previously tested for rotavirus, norovirus, and astrovirus, and 314 of 377 were negative. The viral DNA was extracted, amplified using the polymerase chain reaction and the HAdV-positive samples were sequenced and phylogenetically analyzed. Statistical analyses were performed using the Chi-square test (p < 0.05, considering two conditions: the total of samples tested (377 and the total of negative samples for the remaining viruses tested (314. The overall prevalence of HAdV was 12.47% (47/377; and in 76.60% (36/47 of the positive samples, this virus was the only infectious agent detected. The phylogenetic analysis of partial sequences of 32 positive samples revealed that they all clustered with the HAdV-F type 41. The statistical analysis showed that there was no correlation between the onset of the HAdV infection and the origin of the samples (inpatients or outpatients in the two conditions tested: the total of samples tested (p = 0.598 and the total of negative samples for the remaining viruses tested (p = 0.614. There was a significant association in the occurrence of infection in children aged 0–12 months for the condition 1 (p = 0.030 as well as condition 2 (p = 0.019. The occurrence of infections due to HAdV did not coincide with a pattern of

  12. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination

    It is commonly believed that epidemic spreading on scale-free networks is difficult to control and that the disease can spread even with a low infection rate, lacking an epidemic threshold. In this paper, we study epidemic spreading on complex networks under the framework of game theory, in which a voluntary vaccination strategy is incorporated. In particular, individuals face the 'dilemma' of vaccination: they have to decide whether or not to vaccinate according to the trade-off between the risk and the side effects or cost of vaccination. Remarkably and quite excitingly, we find that disease outbreak can be more effectively inhibited on scale-free networks than on random networks. This is because the hub nodes of scale-free networks are more inclined to take self-vaccination after balancing the pros and cons. This result is encouraging as it indicates that real-world networks, which are often claimed to be scale free, can be favorably and easily controlled under voluntary vaccination. Our work provides a way of understanding how to prevent the outbreak of diseases under voluntary vaccination, and is expected to provide valuable information on effective disease control and appropriate decision-making.

  13. Adenovirus-mediated expression of both antisense ODC and AdoMetDC inhibited colorectal cancer cell growth in vitro

    Bing ZHANG; Xian-xi LIU; Yan ZHANG; Chun-ying JIANG; Qing-shan TENG; Hai-yan HU; Wei WANG; Lei GONG

    2006-01-01

    Aim: To construct a recombinant adenovirus that can simultaneously express both antisense ornithine decarboxylase (ODC) and adenosylmethionine decarboxylase (AdoMetDC) and detect its inhibitory effect on the intracellular polyamine pool and colorectal cancer cell growth. Methods: A 205-bp cDNA of AdoMetDC was reverse-inserted into recombinant pAdTrack-ODCas vectors and recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the packaging cell HEK293 after they were linearized by Pad. Green fluorescent protein expression was used to monitor the process of adenovirus packaging. The ODC and AdoMetDC protein levels were identified by western blotting, and intracellular polyamine content was detected by reverse-phase high performance liquid chromatography. A viable cell count was used to determine the growth of HT-29 cells with or without exogenous polyamine. Results: Sequencing confirmed that AdoMetDC cDNA was successfully ligated into the pAdTrack-ODCas vector. GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting demonstrated that both ODC and AdoMetDC were downregulated by Ad-ODC-AdoMetDCas, and consequently 3 kinds of polyamine (putrescine, spermidine and spermine) were reduced to very low levels. HT-29 cell growth was significantly inhibited as compared with control conditions, and growth arrest was not reversed by exogenous putrescine. Conclusion: The successfully constructed recombinant adenovirus, Ad-ODC-AdoMetDCas, blocked polyamine synthesis and has therapeutic potential for treating colorectal cancer in vitro.

  14. Adenovirus-mediated CTLA4Ig gene inhibits infiltration of immune cells and cell apoptosis in rats after liver transplantation

    Guo-Ping Jiang; Zhen-Hua Hu; Shu-Sen Zheng; Chang-Ku Jia; Ai-Bin Zhang; Wei-Lin Wang

    2005-01-01

    AIM: To investigate the role of adenovirus-mediated CTLA4Ig gene therapy in inhibiting the infiltration of macrophages and CD8+T cells and cell apoptosis after liver transplantation.METHODS: The rat orthotopic liver transplantation model was applied. The rats were divided into three groups:group Ⅰ: rejection control (SD-to-Wistar); group Ⅱ: acute rejection treated with intramuscular injection of CsA injection of 1× 109 PFU adenovirus-mediated CTLA4Ig gene liquor in dorsal vein of penis 7 d before liver transplantation(SD-to-Wistar+CTLA4Ig). Immunohistochemistry and transferase-mediated dUTPnick-end labeling (TUNEL)were used to analyze the expression of CTLA4Ig gene in liver, infiltration of macrophages and CD8+T cells, cell apoptosis in grafts at different time-points after liver transplantation. Histopathological examination was done.RESULTS: CTLA4Ig gene expression was positive in liver on d 7 after administering adenovirus-mediated CTLA4Ig gene via vein, and remained positive until day 60 after liver transplantation. Infiltration of macrophages and CD8+T cells in CTLA4Ig-treated group was less than in rejection control group and CsA-treated group. The apoptotic index of rejection group on d 3, 5, and 7 were significantly higher than that of CTLA4Ig-treated group. A good correlation was found between severity of rejection reaction and infiltration of immune activator cells or cell apoptotic index in grafts.CONCLUSION: CTLA4Ig gene is constantly expressed in liver and plays an important role in inducing immune tolerance.

  15. Inhibition of adenovirus replication by a trisubstituted piperazin-2-one derivative

    Sanchez-Cespedes, Javier; Moyer, Crystal L.; Whitby, Landon R.; Boger, Dale L.; Nemerow, Glen R.

    2014-01-01

    The number of disseminated adenovirus (Ad) infections continues to increase mostly due to the growing use of immunosuppressive treatments. Recipients of solid organ or hematopoietic stem cell transplants, mainly in pediatric units, exhibit a high morbidity and mortality due to these infections. Unfortunately, there are no Ad-specific antiviral drugs currently approved for medical use. To address this situation, we used high-throughput screening (HTS) of synthetic small molecule libraries to i...

  16. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice.

    Caetano, Bráulia C; Bruña-Romero, Oscar; Fux, Blima; Mendes, Erica A; Penido, Marcus L O; Gazzinelli, Ricardo T

    2006-04-01

    We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis. PMID:16610929

  17. An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models.

    Scallan, Ciaran D; Tingley, Debora W; Lindbloom, Jonathan D; Toomey, James S; Tucker, Sean N

    2013-01-01

    An oral gene-based avian influenza vaccine would allow rapid development and simplified distribution, but efficacy has previously been difficult to achieve by the oral route. This study assessed protection against avian influenza virus challenge using a chimeric adenovirus vector expressing hemagglutinin and a double-stranded RNA adjuvant. Immunized ferrets and mice were protected upon lethal challenge. Further, ferrets immunized by the peroral route induced cross-clade neutralizing antibodies, and the antibodies were selective against hemagglutinin, not the vector. Similarly, experiments in mice demonstrated selective immune responses against HA with peroral delivery and the ability to circumvent preexisting vector immunity. PMID:23155123

  18. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease. PMID:23637908

  19. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats.

    Junling Qin

    Full Text Available BACKGROUND: Peste des petits ruminants (PPR is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV expresses a hemagglutinin (H glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2 expressing the H gene of PPRV (China/Tibet strain was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. CONCLUSIONS/SIGNIFICANCE: This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach.

  20. Adenovirus delivered short hairpin RNA targeting a conserved site in the 5' non-translated region inhibits all four serotypes of dengue viruses.

    Anil Babu Korrapati

    Full Text Available BACKGROUND: Dengue is a mosquito-borne viral disease caused by four closely related serotypes of Dengue viruses (DENVs. This disease whose symptoms range from mild fever to potentially fatal haemorrhagic fever and hypovolemic shock, threatens nearly half the global population. There is neither a preventive vaccine nor an effective antiviral therapy against dengue disease. The difference between severe and mild disease appears to be dependent on the viral load. Early diagnosis may enable timely therapeutic intervention to blunt disease severity by reducing the viral load. Harnessing the therapeutic potential of RNA interference (RNAi to attenuate DENV replication may offer one approach to dengue therapy. METHODOLOGY/PRINCIPAL FINDINGS: We screened the non-translated regions (NTRs of the RNA genomes of representative members of the four DENV serotypes for putative siRNA targets mapping to known transcription/translation regulatory elements. We identified a target site in the 5' NTR that maps to the 5' upstream AUG region, a highly conserved cis-acting element essential for viral replication. We used a replication-defective human adenovirus type 5 (AdV5 vector to deliver a short-hairpin RNA (shRNA targeting this site into cells. We show that this shRNA matures to the cognate siRNA and is able to inhibit effectively antigen secretion, viral RNA replication and infectious virus production by all four DENV serotypes. CONCLUSION/SIGNIFICANCE: The data demonstrate the feasibility of using AdV5-mediated delivery of shRNAs targeting conserved sites in the viral genome to achieve inhibition of all four DENV serotypes. This paves the way towards exploration of RNAi as a possible therapeutic strategy to curtail DENV infection.

  1. Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus.

    Boyd, Amy C; Ruiz-Hernandez, Raul; Peroval, Marylene Y; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V; Hill, Adrian V S; Gilbert, Sarah C; Butter, Colin

    2013-01-11

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP+M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP+M1 and a secondary vaccination with MVA-NP+M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

  2. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Mark R Soboleski

    Full Text Available BACKGROUND: The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. CONCLUSION/SIGNIFICANCE: Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  3. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-01

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. PMID:27026148

  4. Inhibition of KIT RNAi mediated with adenovirus in gastrointestinal stromal tumor xenograft

    2010-01-01

    AIM: To investigate a therapeutic method for gastrointestinal stromal tumor (GIST) based on KIT RNA interference (RNAi) with AdMax adenovirus. METHODS: KIT short hairpin RNA (shRNA), whose lateral sides were decorated with restriction endonuclease sequences, was designed. T 4 DNA ligase catalyzed the joint of the KIT shRNA and the green fluorescent protein-containing PDC316-EGFP-U6 to form PDC316EGFP-U6-KIT. Homologous recombination of AdEGFPU6-KIT was performed with the AdMax system. Heterotopically transp...

  5. ADENOVIRUS-MEDIATED EXPRESSION OF PEX, A NONCATALYTIC FRAGMENT OF MATRIX METALLOPROTEINASE-2, AND IT'S INHIBITION ON ANGIOGENESIS AND TUMOR GROWTH

    2006-01-01

    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  6. Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats.

    Holzer, Barbara; Taylor, Geraldine; Rajko-Nenow, Paulina; Hodgson, Sophia; Okoth, Edward; Herbert, Rebecca; Toye, Philip; Baron, Michael D

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes an economically important disease of sheep and goats, primarily in developing countries. It is becoming the object of intensive international control efforts. Current vaccines do not allow vaccinated and infected animals to be distinguished (no DIVA capability). We have previously shown that recombinant, replication-defective, adenovirus expressing the PPRV H glycoprotein (AdH) gives full protection against wild type PPRV challenge. We have now tested lower doses of the vaccine, as well as AdH in combination with a similar construct expressing the PPRV F glycoprotein (AdF). We show here that, in a local breed of goat in a country where PPR disease is common (Kenya), as little as 10(7) pfu of AdH gives significant protection against PPRV challenge, while a vaccine consisting of 10(8) pfu of each of AdH and AdF gives apparently sterile protection. These findings underline the utility of these constructs as DIVA vaccines for use in PPR control. PMID:26796101

  7. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice.

    de Andrade Pereira, Bruna; Maduro Bouillet, Leoneide E; Dorigo, Natalia A; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  8. Adenovirus encoding XAF-1 and TNF‑α in the same open reading frame efficiently inhibits hepatocellular cancer cells.

    Li, Kai; Li, Xinhong; Wu, Zhongjun; Zheng, Liansheng; Cui, Yuqin; Wang, Jun; Huang, Yin; Yan, Zhihong

    2016-06-01

    X‑linked inhibitor of apoptosis (XIAP)‑associated factor 1 (XAF‑1), a tumor suppressor, is downregulated in most human malignant tumors. However, the tumor suppressive role of XAF‑1 in hepatocellular carcinoma (HCC) and its therapeutic value require further elucidation. The present study examined the expression of XAF‑1 at the mRNA and protein level in the HCC and paired peritumor tissue specimens, as well as in HCC cell lines and a normal liver cell line. A recombinant adenovirus which co‑expressed XAF‑1 and TNF‑α was then constructed, and its effects on the proliferation and colony formation ability of the MHCC97H HCC cell line were assessed using apoptosis induction, flow cytometry, trypan blue staining assay and a clonogenic assay. The results demonstrated that the expression of XAF‑1 was significantly reduced in HCC tissues compared with that in their matched peritumor specimens, and a significant correlation with the tumor size, stage and tumor ‑ nodes ‑ metastasis stage was identified. The reduced levels of XAF‑1 were further confirmed the HCC cell lines MHCC97L, HepG2 and MHCC97H compared with those in the L02 normal liver cell line. The recombinant adenovirus Ad‑XAF‑1&TNF‑α, which co‑expressed XAF‑1 and TNF‑α, was shown to efficiently express the two proteins at the mRNA and protein level. Furthermore, infection with Ad‑XAF‑1&TNF‑α synergistically induced apoptosis, reduced the proliferation and colony formation ability of MHCC97L cells to a significantly greater extent than overexpression of XAF‑1 or TNF‑α individually. To the best of our knowledge, the present study was the first to construct an adenovirus which co‑expressed XAF‑1 and TNF‑α in the same open reading frame and expressed them proportionally. As Ad‑XAF‑1&TNF‑α inhibited HCC cells with enhanced efficiency, it may be applicable for the treatment of HCC. PMID:27121136

  9. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge.

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8(+) T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains. PMID:19836045

  10. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8+ T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  11. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines.

    Shih-Chang Lin

    Full Text Available BACKGROUND: The highly pathogenic avian influenza (HPAI H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA envelope protein is the primary target for subunit vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a an inactivated H5N1 vaccine virus, or (b a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers. CONCLUSION/SIGNIFICANCE: Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development.

  12. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  13. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  14. Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time.

    Vemula, Sai V; Amen, Omar; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-12-26

    Reports of human infections with highly pathogenic H5N1 avian influenza viruses in many countries in Asia and Africa with varying case fatality rates highlight the pandemic potential of these viruses. In order to contain a rapidly spreading influenza virus in a pandemic scenario, a vaccine which can induce rapid and robust immune responses, preferably in a single dose, is necessary. Murine beta-defensin 2 (Mbd2), a small molecular weight protein expressed by epithelial cells, has been shown to enhance antigen-specific immune responses by recruiting and activating professional antigen presenting cells to the site of vaccination. This study assessed the potential of Mbd2 to enhance the immunogenicity and protective efficacy of a human adenovirus (HAd)-based vaccine expressing the hemagglutinin (HA) and nucleoprotein (NP) [HAd-HA-NP] of an H5N1 influenza virus. A single inoculation of mice with both HAd-HA-NP and a HAd vector expressing Murine β-defensin 2 (HAd-Mbd2) resulted in significantly higher levels of both humoral and cell-mediated immune responses compared to the groups vaccinated only with HAd-HA-NP. These responses were evident even at day 7 post-immunization. Furthermore, the HAd-HA-NP+HAd-Mbd2-immunized group receiving the lowest vector dose (2 × 10(7)+1 × 10(7)) was completely protected against an rgH5N1 virus challenge on day 7 post-vaccination. These results highlight the potential of Mbd2 as a genetic adjuvant in inducing rapid and robust immune responses to a HAd-based vaccine. PMID:24051000

  15. Prostate Specific Antigen Promoter-Driven Adenovirus-Mediated Expression of Both ODC and AdoMetDC Antisenses Inhibit Prostate Cancer Growth

    Wei Li; Hui Xiong; Yi-lin Hong; Chun-hua Zhang; Chang-chun Liu

    2010-01-01

    Objective:To generate recombinant adenovirus that could simultaneously express ornithine decarboxylase(ODC)and S-adenosylmethionine decarboxylase(AdoMetDC)antisenses specifically in prostate cancer cells,and evaluate its inhibitory effect on prostate cancer in vivo.Methods:Fragments of ODC and AdoMetDC genes were generated by PCR,cloned into the pPGL-PSES,and then recombined with pAdEasy-1 vectors in AdEasy-1 cells.Ad-PSES-ODC-AdoMetDCas virus was produced in HEK293 cells.Following transfection with Ad-PSES-ODC-AdoMetDCas,the levels of ODC or AdoMetDC were determined by RT-PCR and western blot assays.The effect of Ad-PSES-ODC-AdoMetDCas treatment on tumor formation and growth was evaluated in xenograft models of prostate cancers in vivo.Results:The plasmid pAdEasy-PSES-ODC-AdoMetDCas was successfully constructed and the recombinant Ad-PSES-ODC-AdoMetDCas adenovirus was produced.Transfection with Ad-PSES-ODC-AdoMetDCas adenovirus significantly inhibited the expression of ODC and AdoMetDC genes specifically in prostate DU145cells,but not H1299,HT29 and HepG2 cancer cells,and disrupted the ability of DU145 cells to form solid prostate cancer in vivo.Intratumoral treatment with Ad-PSES-ODC-AdoMetDCas adenovirus significantly inhibited the growth of engrafted prostate tumors in vivo.Conclusion:The recombinant Ad-PSES-ODC-AdoMetDCas adenovirus specifically reduces the expression of both ODC and AdoMetDC genes in prostate cells and may be used for treatment of prostate cancers at the clinic.

  16. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.

    Zhou Xing

    Full Text Available BACKGROUND: Recombinant adenovirus-vectored (Ad tuberculosis (TB vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. METHODS AND FINDINGS: Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n, AdAg85A intramuscularly (i.m, BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb. At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. CONCLUSIONS: Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.

  17. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  18. Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition.

    Victoria R Tenge

    2014-09-01

    Full Text Available Human α-defensins are potent anti-microbial peptides with the ability to neutralize bacterial and viral targets. Single alanine mutagenesis has been used to identify determinants of anti-bacterial activity and binding to bacterial proteins such as anthrax lethal factor. Similar analyses of α-defensin interactions with non-enveloped viruses are limited. We used a comprehensive set of human α-defensin 5 (HD5 and human neutrophil peptide 1 (HNP1 alanine scan mutants in a combination of binding and neutralization assays with human adenovirus (AdV and human papillomavirus (HPV. We have identified a core of critical hydrophobic residues that are common determinants for all of the virus-defensin interactions that were analyzed, while specificity in viral recognition is conferred by specific surface-exposed charged residues. The hydrophobic residues serve multiple roles in maintaining the tertiary and quaternary structure of the defensins as well as forming an interface for virus binding. Many of the important solvent-exposed residues of HD5 group together to form a critical surface. However, a single discrete binding face was not identified for HNP1. In lieu of whole AdV, we used a recombinant capsid subunit comprised of penton base and fiber in quantitative binding studies and determined that the anti-viral potency of HD5 was a function of stoichiometry rather than affinity. Our studies support a mechanism in which α-defensins depend on hydrophobic and charge-charge interactions to bind at high copy number to these non-enveloped viruses to neutralize infection and provide insight into properties that guide α-defensin anti-viral activity.

  19. Intranasal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances Protection by Parenteral Mycobacterium bovis BCG Immunization against Pulmonary Tuberculosis

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-01-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to...

  20. [Two recombinant adenovirus vaccine candidates containing neuraminidase Gene of H5N1 influenza virus (A/Anhui/1/2005) elicited effective cell-mediated immunity in mice].

    Ma, Jing; Zhang, Xiao-Guang; Chen, Hong; Li, Kui-Biao; Zhang, Xiao-Mei; Zhang, Ke; Yang, Liang; Xu, Hong; Shu, Yue-Long; Tan, Wen-Jie; Zeng, Yi

    2009-09-01

    The aim of this study is to develop the recombinant adenovirus vaccine (rAdV) candidates containing neuraminidase (NA) gene of H5N1 influenza virus and test in BALB/c mice the effect of cell-mediated immunity. In this study, two kind of NA gene (WtNA gene, the wild type; Mod. NA gene, the codon-modified type) derived from H5N1 influenza virus (A/Anhui/1/2005) were cloned and inserted respectively into plasmid of adenovirus vector, then the rAdV vaccines candidates (rAdV-WtNA and rAdV-Mod. NA) were developed and purified, followed by immunization intramuscularly (10(9) TCID50 per dose, double injection at 0 and 4th week) in BALB/c mice, the effect of cell-mediated immunity were analysed at 5th week. Results indicated that: (i) NA protein expression was detected in two rAdV vaccines candidates by Western blotting; (ii) the rAdV-Mod. NA vaccine could elicit more robust NA specific cell-mediated immunity in mice than that of rAdV-WtNA vaccine (P = 0. 016) by IFN-gamma ELIspot assay. These findings suggested rAdV-Mod. NA vaccine was a potential vaccine candidate against H5N1 influenza and worthy of further investigation. PMID:19954107

  1. Gene therapy that inhibits NF-κB results in apoptosis of human hepatocarcinoma by recombinant adenovirus

    Tie-Jun Li; Li-Ping Jia; Xiao-Ling Gao; Ai-Long Huang

    2006-01-01

    AIM: To investigate whether the recombinant adenovirus induces the TNF-α-mediated apoptosis in vivo.METHODS: Human hepatocarcinoma cell line (HepG2)cells were transfected into BALB/c nude mice, and the tumor growth curve was drawn. We analyzed apoptosis in HepG2 cells by TUNEL, HE staining and electron microscopy.RESULTS: AdIκBαM was expressed stably and efficiently in HepG2 and could not be degraded by induction of TNF-α. Tumor growth in mice could be reduced remarkably if treated by AdIκBαM plus TNF-α. There was apoptosis of > 70% of cells treated with AdIκBαM plus TNF-α and about 50% of cells treated with AdIκBαM. In contrast, there was few cell apoptosis in HepG2 cells treated with phosphate buffered saline and AdIκBα. HepG2 cells in mice also exhibited a high level of apoptosis after in vivo injection with AdIκBαM. The tumor growth curve indicated the tumor transfected with AdIκBαM could be restrained.CONCLUSION: AdIκBαM gene therapy greatly enhances apoptosis due to inhibition of an NF-κB-mediated antiapoptosis signaling pathway.

  2. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL) and IKK inhibition (AdIKKβKA) to overcome TRAIL resistance in lung cancer cells. Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer

  3. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    Karacay Bahri

    2010-10-01

    Full Text Available Abstract Background Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL and IKK inhibition (AdIKKβKA to overcome TRAIL resistance in lung cancer cells. Methods Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Results Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Conclusions Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer.

  4. Adenovirus-mediated REIC/Dkk-3 gene therapy: Development of an autologous cancer vaccination therapy (Review)

    Watanabe, Masami; Nasu,Yasutomo; Kumon, Hiromi

    2013-01-01

    Reduced expression in immortalized cells (REIC)/Dickkopf (Dkk)-3 is a tumor suppressor and therapeutic gene and has been studied with respect to the application of cancer gene therapy. Our previous studies demonstrated that the intratumoral injection of an adenovirus vector carrying the human REIC/Dkk-3 gene (Ad-REIC) suppresses tumor growth in mouse models of prostate, breast and testicular cancer and malignant mesothelioma. The mechanisms underlying these antitumor therapeutic effects have ...

  5. Genomic and Bioinformatics Analysis of HAdV-4, a Human Adenovirus Causing Acute Respiratory Disease: Implications for Gene Therapy and Vaccine Vector Development

    Purkayastha, Anjan; Ditty, Susan E.; Su, Jing; McGraw, John; Hadfield, Ted L.; Tibbetts, Clark; Seto, Donald

    2005-01-01

    Human adenovirus serotype 4 (HAdV-4) is a reemerging viral pathogenic agent implicated in epidemic outbreaks of acute respiratory disease (ARD). This report presents a genomic and bioinformatics analysis of the prototype 35,990-nucleotide genome (GenBank accession no. AY594253). Intriguingly, the genome analysis suggests a closer phylogenetic relationship with the chimpanzee adenoviruses (simian adenoviruses) rather than with other human adenoviruses, suggesting a recent origin of HAdV-4, and...

  6. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. PMID:27154390

  7. Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Jianfeng Zhang; E Bart Tarbet; Tsungwei Feng; Zhongkai Shi; Van Kampen, Kent R; Tang, De-chu C

    2011-01-01

    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity...

  8. Prostate Specific Antigen Promoter-Driven Adenovirus-Mediated Expression of Both ODC and AdoMetDC Antisenses Inhibit Prostate Cancer Growth

    Wei Li; Hui Xiong; Yi-lin Hong; Chun-hua Zhang; Chang-chun Liu

    2011-01-01

    Objective: To generate recombinant adenovirus that could simultaneously express ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase(AdoMetDC) antisenses specifically in prostate cancer cells,and evaluate its inhibitory effect on prostate cancer in vivo.Methods: Fragments of ODC and AdoMetDC genes were generated by PCR,cloned into the pPGL-PSES,and then recombined with pAdEasy-1 vectors in AdEasy-1 cells.Ad-PSES-ODC-AdoMetDCas virus was produced in HEK293 cells.Following transfection with Ad-PSES-ODC-AdoMetDCas,the levels of ODC or AdoMetDC were determined by RT-PCR and western blot assays.The effect of Ad-PSES-ODC-AdoMetDCas treatment on tumor formation and growth was evaluated in xenograft models of prostate cancers in vivo.Results: The plasmid pAdEasy-PSES-ODC-AdoMetDCas was successfully constructed and the recombinant Ad-PSES-ODC-AdoMetDCas adenovirus was produced.Transfection with Ad-PSES-ODC-AdoMetDCasadenovirus significantly inhibited the expression of ODC and AdoMetDC genes specifically in prostate DU145 cells,but not H1299,HT29 and HepG2 cancer cells,and disrupted the ability of DU145 cells to form solid prostate cancer in vivo.Intratumoral treatment with Ad-PSES-ODC-AdoMetDCas adenovirus significantly inhibited the growth of engrafted prostate tumors in vivo.both ODC and AdoMetDC genes in prostate cells and may be used for treatment of prostate cancers at the clinic.

  9. Development of a Murine Mycobacterial Growth Inhibition Assay for Evaluating Vaccines against Mycobacterium tuberculosis▿ †

    Parra, Marcela; Yang, Amy L.; Lim, Jaehyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P.; Jacobs, William R.; Brennan, Michael; Morris, Sheldon L.

    2009-01-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immu...

  10. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus.

    Singh, Neetu; Pandey, Aseem; Jayashankar, Lakshmi; Mittal, Suresh K

    2008-05-01

    Because of the high prevalence of adenovirus (Ad) infections in humans, it is believed that pre-existing Ad-neutralizing antibodies (vector immunity) may negatively impact the immune response to vaccine antigens when delivered by human Ad (HAd) vectors. In order to evaluate whether bovine Ad subtype 3 (BAd3), a non-HAd vector, can effectively elude high levels of pre-existing vector immunity, naïve and HAd serotype 5 (HAd)-primed mice were immunized with BAd-H5HA [BAd3 vector expressing the hemagglutinin (HA) gene from H5N1 influenza virus]. Even in the presence of very high levels of HAd-specific neutralizing antibody, no significant reductions in HA-specific humoral and cell-mediated immune (CMI) responses were observed in HAd-primed mice immunized with BAd-H5HA. In naïve mice immunized with HAd-H5HA (HAd5 vector expressing H5N1 HA) and boosted with BAd-H5HA, the humoral responses elicited were significantly higher (P mice with BAd-H5HA bestowed full protection from morbidity and mortality following a potentially lethal challenge with A/Hong Kong/483/97. These results demonstrate the importance of BAd vectors as an alternate or supplement to HAd vectors for influenza pandemic preparedness. PMID:18301400

  11. HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells

    Prolactinoma is one of the most common types of pituitary adenoma. It has been reported that a variety of growth factors and cytokines regulating cell growth and angiogenesis play an important role in the growth of prolactinoma. HoxD10 has been shown to impair endothelial cell migration, block angiogenesis, and maintain a differentiated phenotype of cells. We investigated whether HoxD10 gene delivery could inhibit the growth of prolactinoma. Rat GH4 lactotrope tumor cells were infected with adenovirus/adeno-associated virus (Ad/AAV) hybrid vectors carrying the mouse HoxD10 gene (Hyb-HoxD10) or the β-galactosidase gene (Hyb-Gal). Hyb-HoxD10 expression inhibited GH4 cell proliferation in vitro. The expression of FGF-2 and cyclin D2 was inhibited in GH4 cells infected with Hyb-HoxD10. GH4 cells transduced with Hyb-HoxD10 did not form tumors in nude mice. These results indicate that the delivery of HoxD10 could potentially inhibit the growth of PRL-secreting tumors. This approach may be a useful tool for targeted therapy of prolactinoma and other neoplasms

  12. Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis.

    Parra, Marcela; Yang, Amy L; Lim, JaeHyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P; Jacobs, William R; Brennan, Michael; Morris, Sheldon L

    2009-07-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability. PMID:19458207

  13. Adenovirus-mediated NDRG2 inhibits the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro

    Sheng Qiang; Zhen-Fang Du; Min Huang

    2014-01-01

    Objective: To investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of human renal cell carcinoma cell line OS-RC-2 in vitro. Methods: NDRG2 was harvested by RT-PCR, confirmed by DNA sequencing, and then cloned into the eukaryotic expression vector pIRES2-EGFP, which encodes green fluorescent protein (GFP), to construct pIRES2-EGFP-NDRG2 plasmid. OS-RC-2 cells with NDRG2 negative expression were transfected with pIRES2-EGFP-NDRG2 plasmid. The growth of transfected OS-RC-2 cells was observed under light and fluorescence microscopes. After colony-forming cell assays, cell proliferation detection and MTT assays, the growth curves of cells in each group were plotted to investigate the inhibitory effects of adenovirus-mediated NDRG2 on the proliferation of OS-RC-2 cells. Cell cycle was determined by flow cytometry. Confocal laser scanning microscopy showed that NDRG2 protein was specifically located on subcellular organelle. Results: A eukaryotic expression vector pIRES2-EGFP-NDRG2 was successfully constructed. After NDRG2 transfection, the growth of OS-RC-2 cells was inhibited. Flow cytometry showed that cells were arrested in S phase but the peak of cell apoptosis was not present, and confocal laser scanning microscopy showed that NDRG2 protein was located in mitochondrion. Conclusions: NDRG2 can significantly inhibit the proliferation of OS-RC-2 cells in vitro and its protein is specifically expressed in the mitochondrion.

  14. Adenovirus-directed expression of TIPE2 suppresses gastric cancer growth via induction of apoptosis and inhibition of AKT and ERK1/2 signaling.

    Zhu, Y; Tao, M; Wu, J; Meng, Y; Xu, C; Tian, Y; Zhou, X; Xiang, J; Zhang, H; Xie, Y

    2016-04-01

    Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TNFAIP8L2/TIPE2) as a novel anti-inflammatory factor plays an important role in maintaining immune homeostasis. Recently, TIPE2 has been shown to inhibit hepatocarcinoma growth and metastasis through targeting Ras and Rac1. However, its effects in human cancers are poorly understood. In the present study, we analyzed TIPE2 mRNA expression in a panel of human gastric cancer cells (AGS, HGC-27 and SGC-7901) and then examined the cell-autonomous effects of adenovirus-mediated human TIPE2 gene transfer (AdVTIPE2) on AGS and HGC-27 human gastric cancer cells. We found that compared with the GES-1 normal human gastric mucous epithelial cells, human TIPE2 was lost in the AGS, HGC-27 and SGC-7901 gastric cancer cells. Adenovirus-mediated human TIPE2 overexpression significantly inhibited AGS and HGC-27 gastric cancer cell growth and induced AGS and HGC-27 tumor cell apoptosis in vitro. Furthermore, AdVTIPE2 treatment obviously suppressed the growth of AGS gastric cancer subcutaneously xenografted tumors implanted in athymic BALB/c nude mice in vivo. Mechanistically, AdVTIPE2 exhibited marked effects on the upregulation of Bax, cleaved Caspase-9, cleaved Caspase-3, cleaved poly ADP ribose polymerase as well as the downregulation of B-cell lymphoma (Bcl)-XL, phosphorylated-protein kinase B (p-PKB/AKT), phosphorylated-extracellular signal-regulated kinase 1/2 (p-ERK1/2) in AGS gastric cancer cells in vitro and in vivo. Collectively, AdVTIPE2 suppressed gastric cancer growth very possibly by the activation of intrinsic apoptotic pathway and the attenuation of AKT and ERK1/2 signaling. Thus, our data indicated that TIPE2 may be a novel potential therapeutic target for human gastric cancer. PMID:26987289

  15. Oncolytic adenovirus armed with IL-24 Inhibits the growth of breast cancer in vitro and in vivo

    Zhu Wei

    2012-05-01

    Full Text Available Abstract Background Interleukin-24 (IL-24 is a cytokine that belongs to the IL-10 family. It can selectively induce cancer cell apoptosis which has been utilized as a cancer gene therapy strategy. Methods A recombinant type five adenovirus containing IL-24 gene (designated CNHK600-IL24 was constructed, whose replication is activated only in tumor cells. The replication of CNHK600-IL24 in breast tumor cells and fibroblasts were assessed by TCID50 and MTT assay; the secretion of IL-24 was measured by ELISA and western blotting. The in vivo anti-tumor effect of CNHK600-IL24 was investigated in nude mice carrying orthotopic or metastatic breast tumor. Results We observed that CNHK600-IL24 could replicate efficiently and resulted in high level IL-24 expression and massive cell death in human breast cancer cell MDA-MB-231 but not in normal fibroblast cell MRC-5. In addition, orthotopic breast tumor growth in the nude mice model was significantly suppressed when CNHK600-IL24 was administered. In the metastatic model generated by tail vein injection, CNHK600-IL24 virotherapy significantly improved survival compared with the same virus expressing EGFP (median survival CNHK600-IL24, 55 days vs. CNHK600-EGFP, 41 day, p  Conclusion The oncolytic adenovirus armed with IL-24, which exhibited enhanced anti-tumor activity and improved survival, is a promising candidate for virotherapy of breast cancer.

  16. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  17. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses....

  18. Adenovirus-mediated Transfer of p53 and p16 Inhibiting Proliferating Activity of Human Bladder Cancer Cell EJ in vitro and in vivo

    朱朝辉; 邢诗安; 林晨; 曾甫清; 鲁功成; 付明; 张雪艳; 梁萧; 吴旻

    2002-01-01

    Summary: To evaluate the effects of adenovirus (Ad)-mediated transfer of p53 and p16 on humanbladder cancer cells EJ, EJ were transfected with Ad-p53 and Ad-p16. Cell growth, morphologi-cal change, cell cycle, apoptosis were measured using MTT assay, flow gytometry, cloning forma-tion, immunocytochemical assays. Ad-p16 or Ad-p53 alone could inhibit the proliferating activityof EJ cells in vitro. Ad-p53 could induce apoptosis of partial EJ cells. G1 arrest was observed 72 hafter infection with Ad-p16, but apoptosis was not obvious. The transfer of Ad-p16 and Ad-p53could significantly inhibit the growth of EJ cells, decrease the cloning formation rate and induceapoptosis of large number of EJ cells. The occurrence time of subcutaneous tumor was delayed andthe tumor volume in 4 weeks was diminished by using Ad-p53 combined with Ad-p16 and the dif-ference was significant compared with using Ad-p53 or Ad-p16 alone. It was suggested that thetransfer of wild-type p53 and p16 could significantly inhibit the growth of human bladder cancer invitro and in vivo.

  19. mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA.

    Diken, Mustafa; Kreiter, Sebastian; Vascotto, Fulvia; Selmi, Abderraouf; Attig, Sebastian; Diekmann, Jan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2013-12-01

    Vaccination with in vitro transcribed RNA encoding tumor antigens is an emerging approach in cancer immunotherapy. Attempting to further improve RNA vaccine efficacy, we have explored combining RNA with immunomodulators such as rapamycin. Rapamycin, the inhibitor of mTOR, was used originally for immunosuppression. Recent reports in mouse systems, however, suggest that mTOR inhibition may enhance the formation and differentiation of the memory CD8(+) T-cell pool. Because memory T-cell formation is critical to the outcome of vaccination approaches, we studied the impact of rapamycin on the in vivo primed RNA vaccine-induced immune response using the chicken ovalbumin-expressing B16 melanoma model in C57BL/6 mice. Our data show that treatment with rapamycin at the effector-to-memory transition phase skews the vaccine-induced immune response toward the formation of a quantitatively and qualitatively superior memory pool and results in a better recall response. Tumor-infiltrating immune cells from these mice display a favorable ratio of effector versus suppressor cell populations. Survival of mice treated with the combined regimen of RNA vaccination with rapamycin is significantly longer (91.5 days) than that in the control groups receiving only one of these compounds (32 and 46 days, respectively). Our findings indicate that rapamycin enhances therapeutic efficacy of antigen-specific CD8(+) T cells induced by RNA vaccination, and we propose further clinical exploration of rapamycin as a component of immunotherapeutic regimens. PMID:24778131

  20. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age.

    Alphonse Ouédraogo

    Full Text Available BACKGROUND: Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa. METHODS: A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso. Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84 of 10(9, 10(10, 5X10(10, 10(11 vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination. Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140. RESULTS: Of the forty-eight subjects enrolled, forty-four (91.7% received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1% subjects. Severe (grade 3 laboratory abnormalities occurred in five (10.4% subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35. CONCLUSION: Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part

  1. Effect of Preexisting Immunity to Adenovirus Human Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors▿

    McCoy, Kimberly; Tatsis, Nia; Korioth-Schmitz, Birgit; Lasaro, Marcio O; Scott E Hensley; Lin, Shih-Wen; Li, Yan; Giles-Davis, Wynetta; Cun, Ann; Zhou, Dongming; Xiang, Zhiquan; Letvin, Norman L.; Hildegund C J Ertl

    2007-01-01

    In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T...

  2. Vaccinations

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  3. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  4. Construction of recombinant adenovirus vector containing AFP and generation of adenovirus-mediated AFP gene modified dendritic cells vaccine%含人AFP基因重组腺病毒载体的构建及其转染树突状细胞瘤苗的制备

    杨静悦; 曹大勇; 刘文超; 斯小明

    2009-01-01

    Objective:To construct recombinant adenovirus vectors containing human AFP genes,and infect dendritic cell. Methods: Full length AFP cDNAs were subcloned into pIND vector,followed by being cloned into shuttle2 vector.The AFP gene fragments resulted from the shuttle2-AFP digested with PI-Sce and I-Ceu were linked to the linear adeno-X virus DNA.After packaged with HEK293 cells,the adenovirus expression vector was obtained.The plasmid pAdeno-AFP was identified by endonuclease and PCR.After dendritic cells were infected pAdeno-AFP,the surface molecules of pAdeno-AFP/DC were analysed by flow cytometry.AFP levels in culture supernatant of pAdeno-AFP/DC were measured by ELISA. Results: AFP gene in the inserted DNA of adeno-AFP was confirmed by PCR,and predictive fragments proved by restriction enzyme digestion analysis were exhibited.All the above results indicated that human AFP gene had been connected with pAdeno-X vectors correctly.The recombinant adenovirus vector of human AFP gene packaged in HEK293 cells,it will be used to introduce the target gene into dendritic cell.pAdeno-AFP/DC were able to upregulate CD1a,CD11c,CD80,CD86 and HLA-DR.And pAdeno-AFP/DC could secrete high level of AFP in vitro. Conclusion: The recombinant adenovirus vector of human AFP gene have been constructed successfully.The established AFP -DC vaccine may be a tool of the hepatocellular carcinoma immunotherapy,and it will be the foundation of future clinical use of DC vaccine.%目的:构建含人AFP基因的腺病毒载体,体外转染树突状细胞,制备树突状细胞肝癌瘤苗.方法: 将AFP基因亚克隆到pIND 载体和Shuttle2载体中,构建穿梭载体Shuttle2-AFP.用PI-Sce Ⅰ和I-CeuⅠ双酶切后将所获AFP基因片段再与线性化的腺病毒载体pAdeno-X连接,构成pAdeno-AFP重组腺病毒载体.其后,用重组腺病毒载体转染HEK293细胞,包装腺病毒表达载体.通过酶切、PCR对腺病毒载体进行鉴定.包装好的重组病毒载体pAdeno-AFP体外

  5. Immune response and protection in raccoons (Procyon lotor) following consumption of baits containing ONRAB®, a human adenovirus rabies glycoprotein recombinant vaccine.

    Brown, L J; Rosatte, R C; Fehlner-Gardiner, C; Taylor, J S; Davies, J C; Donovan, D

    2012-10-01

    We investigated the immune response and protection conferred in raccoons (Procyon lotor) following consumption of ONRAB(®) oral rabies vaccine baits. Forty-two wild-caught, captive raccoons were each offered an ONRAB vaccine bait; 21 controls received no vaccine baits. Blood samples collected from all raccoons before treatment, and each week posttreatment for 16 wk, were assessed for the presence of rabies virus antibody. In the bait group, an individual was considered to have responded to vaccination if serum samples from three or more consecutive weeks were antibody-positive. Using this criterion, 77% (20/26) of raccoons that consumed ONRAB baits with no observed vaccine spillage (full dose) demonstrated a humoral immune response. In the group that received a partial dose (0.05-0.90 mL vaccine recovered), 50% (8/16) of raccoons responded to vaccination. Regardless of the vaccine dose received, among the 28 raccoons that responded to vaccination 18 had antibody initially detectable at week 2 and 22 remained antibody-positive for at least 10 consecutive weeks. Kinetics of the humoral immune response suggest that the best time to conduct postbaiting surveillance for evidence of vaccination would be 6-13 wk following bait deployment, with the highest antibody prevalence expected between weeks 8-10. A sub-sample of 29 raccoons (20 ONRAB, 9 controls) was challenged with raccoon rabies virus variant 350 days posttreatment. Eight of nine controls (89%) developed rabies whereas 15/20 vaccinates (75%) survived. Survival following rabies challenge was significantly higher in raccoons presented ONRAB vaccine baits. PMID:23060502

  6. Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques

    We investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization. Both immunization strategies induced strong SIV Gag-specific IFN-γ and T-cell proliferation responses and mediated a conservation of CD4+ memory T-cells and a reduction of viral load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply

  7. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo.

    Saito, Y; Swanson, X; Mhashilkar, A M; Oida, Y; Schrock, R; Branch, C D; Chada, S; Zumstein, L; Ramesh, R

    2003-11-01

    The tumor-suppressor gene PTEN encodes a multifunctional phosphatase that is mutated in a variety of human cancers. PTEN inhibits the phosphatidylinositol 3-kinase pathway and downstream functions, including activation of Akt/protein kinase B (PKB), cell survival, and cell proliferation in tumor cells carrying mutant- or deletion-type PTEN. In such tumor cells, enforced expression of PTEN decreases cell proliferation through cell-cycle arrest at G1 phase accompanied, in some cases, by induction of apoptosis. More recently, the tumor-suppressive effect of PTEN has been reported in ovarian and thyroid tumors that are wild type for PTEN. In the present study, we examined the tumor-suppressive effect of PTEN in human colorectal cancer cells that are wild type for PTEN. Adenoviral-mediated transfer of PTEN (Ad-PTEN) suppressed cell growth and induced apoptosis significantly in colorectal cancer cells (DLD-1, HT29, and SW480) carrying wtPTEN than in normal colon fibroblast cells (CCD-18Co) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) and cell-cycle arrest at the G2/M phase, but not the G1 phase. Furthermore, treatment of human colorectal tumor xenografts (HT-29, and SW480) with Ad-PTEN resulted in significant (P=0.01) suppression of tumor growth. These results indicate that Ad-PTEN exerts its tumor-suppressive effect on colorectal cancer cells through inhibition of cell-cycle progression and induction of cell death. Thus Ad-PTEN may be a potential therapeutic for treatment of colorectal cancers. PMID:14528320

  8. Immunogenicity test of tetanus component in adsorbed vaccines by toxin binding inhibition test

    Denise Cristina Souza Matos

    2002-09-01

    Full Text Available Samples from 20 lots of diphtheria-tetanus (adult use dT vaccine and from 20 lots of diphtheria-tetanus-pertussis (DTP vaccine were used to standardize and validate the in vitro toxin binding inhibition (ToBI test for the immunogenicity test of the tetanus component. The levels of tetanus antitoxin obtained by ToBI test were compared to those obtained using the toxin neutralization (TN test in mice routinely employed to perform the quality control of the tetanus component in adsorbed vaccines. The results ranged from 1.8 to 3.5 IU/ml for dT and 2 to 4 IU/ml for DTP by ToBI test and 1.4 to 3 IU/ml for dT and 1.8 to 3.5 IU/ml for DTP by TN in mice. These results were significantly correlated. From this study, it is concluded that the ToBI test is an alternative to the in vivo neutralization procedure in the immunogenicity test of the tetanus component in adsorbed vaccines. A substantial refinement and a reduction in use of animals can be achieved.

  9. Construction and Immunogenicity of Recombinant Adenovirus Vaccines Expressing the HMW1, HMW2, or Hia Adhesion Protein of Nontypeable Haemophilus influenzae▿

    Winter, Linda E.; Barenkamp, Stephen J.

    2010-01-01

    The objective of the present study was to construct and assess the immunogenicity of recombinant adenovirus vectors expressing the HMW1, HMW2, or Hia protein of nontypeable Haemophilus influenzae (NTHi). These proteins are critical adhesins and potential protective antigens expressed by NTHi. Segments of the hmw1A and hmw2A structural genes that encode the distal one-half of mature HMW1 or HMW2 were cloned into the T7 expression vector pGEMEX-2. These constructs encoded stable HMW1 or HMW2 re...

  10. Production and purification of non replicative canine adenovirus type 2 derived vectors

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez Dunia, Daniel; Klonjkowski, Bernard

    2013-01-01

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central ne...

  11. Pre-Existing Adenovirus Immunity Modifies a Complex Mixed Th1 and Th2 Cytokine Response to an Ad5/HIV-1 Vaccine Candidate in Humans

    Pine, Samuel O.; KUBLIN, James G.; Hammer, Scott M.; Borgerding, Joleen; Huang, Yunda; Casimiro, Danilo R.; McElrath, M. Juliana

    2011-01-01

    The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732). Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-s...

  12. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine.

    Jones, Frank R; Gabitzsch, Elizabeth S; Xu, Younong; Balint, Joseph P; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan

    2011-09-16

    Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082

  13. An in vitro growth inhibition test for measuring the potency of Leptospira spp. Sejroe group vaccine in buffaloes.

    de Nardi, Geraldo; Genovez, Margareth Elide; Ribeiro, Marcio Garcia; Castro, Vanessa; Jorge, André Mendes

    2010-07-01

    Leptospira spp. serovars Hardjo and Wollfi from Sejroe serogroup have been detected in livestock in Brazil, where the main control procedures rely on vaccination. The potency of two commercial vaccines available in this country was monitored by microagglutination test-MAT and in vitro growth inhibition test-GIT in serum samples from 33 female buffaloes divided into: G1-unvaccinated control; G2-vaccinated with Leptobac-6 containing serovars Hardjo and Wolffi and G3-vaccinated with Triangle-9 containing serovar Hardjo. G2 and G3 animals were vaccinated on day zero, and received a booster and two revaccinations on days 30, 210 and 390 and G1 animals received phosphate buffered saline. Serum samples were collected at 15-day intervals between days 0 and 60; and at 30-day intervals between days 60 and 540 and were tested by MAT and GIT with serovars Hardjo and Wolffi. G1 remained negative throughout the experiment. Both vaccines were able to induce agglutinating and growth inhibition antibodies. Six months after the last revaccination, all animals tested negative by MAT, but still were positive by GIT until the end of experimental period. GIT could be a good tool to evaluate the potency and to monitor antibodies responses of vaccines of Sejroe group serovars. PMID:20332068

  14. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans.

    Samuel O Pine

    Full Text Available The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732. Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36 or Ad5-seropositive (titer >200; n = 34. Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes. At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008, and significantly more IP-10 (p = 0.0009, IL-2 (p = 0.006 and IL-10 (p = 0.05 in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these

  15. Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses.

    Lin, Shih-Chang; Liu, Wen-Chun; Lin, Yu-Fen; Huang, Yu-Hsuan; Liu, Jin-Hwang; Wu, Suh-Chin

    2013-11-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to trigger severe diseases in poultry and humans, prompting efforts to develop an effective vaccine. Toward that goal, we constructed a recombinant adenovirus vector encoding influenza hemagglutin (rAd-HA) and a flagellin-containing virus-like particle (FliC-VLP). Using a murine model, we investigated a heterologous prime-boost vaccination regimen combining these two vectors. Our results indicate that priming with the rAd-HA vector followed by a FliC-VLP booster induced the highest HA-specific total IgG, IgG1and IgG2a. Maximum neutralizing antibody titers against homologous and heterologous clades of H5N1 virus strains and hemagglutination inhibition resulted from the heterologous vaccination strategy. Our results are likely to contribute to the development of more effective H5N1 vaccines. PMID:23813782

  16. Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10

    Douglas Matthew Marvel

    2014-02-01

    Full Text Available DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  17. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines.

    Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B

    2014-03-01

    There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. PMID:24269321

  18. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L; Bellamy, Scarlett L.; Betts, Michael R.; James M Wilson

    2014-01-01

    The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T ...

  19. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle.

    Dean, Gillian S; Clifford, Derek; Whelan, Adam O; Tchilian, Elma Z; Beverley, Peter C L; Salguero, Francisco J; Xing, Zhou; Vordermeier, Hans M; Villarreal-Ramos, Bernardo

    2015-01-01

    The incidence of bovine tuberculosis (bTB) in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission. PMID:26544594

  20. Rapid generation of fowl adenovirus 9 vectors.

    Pei, Yanlong; Griffin, Bryan; de Jong, Jondavid; Krell, Peter J; Nagy, Éva

    2015-10-01

    Fowl adenoviruses (FAdV) have the largest genomes of any fully sequenced adenovirus genome, and are widely considered as excellent platforms for vaccine development and gene therapy. As such, there is a strong need for stream-lined protocols/strategies for the generation of recombinant adenovirus genomes. Current genome engineering strategies rely upon plasmid based homologous recombination in Escherichia coli BJ5183. This process is time-consuming, involves multiple cloning steps, and low efficiency recombination. This report describes a novel system for the more rapid generation of recombinant fowl adenovirus genomes using the lambda Red recombinase system in E. coli DH10B. In this strategy, PCR based amplicons with around 50 nt long homologous arms, a unique SwaI site and a chloramphenicol resistance gene fragment (CAT cassette), are introduced into the FAdV-9 genome in a highly efficient and site-specific manner. To demonstrate the efficacy of this system we generated FAdV-9 ORF2, and FAdV-9 ORF11 deleted, CAT marked and unmarked FAdV-9 infectious clones (FAdmids), and replaced either ORF2 or ORF11, with an EGFP expression cassette or replaced ORF2 with an EGFP coding sequence via the unique SwaI sites, in approximately one month. All recombinant FAdmids expressed EGFP and were fully infectious in CH-SAH cells. PMID:26238923

  1. Interferon induction by adenoviruses

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression. (author)

  2. Comparison of serum hemagglutinin and neuraminidase inhibition antibodies after 2010-2011 trivalent inactivated influenza vaccination in healthcare personnel.

    Laguio-Vila, Maryrose R; Thompson, Mark G; Reynolds, Sue; Spencer, Sarah M; Gaglani, Manjusha; Naleway, Allison; Ball, Sarah; Bozeman, Sam; Baker, Steven; Martínez-Sobrido, Luis; Levine, Min; Katz, Jackie; Fry, Alicia M; Treanor, John J

    2015-01-01

    Background.  Most inactivated influenza vaccines contain purified and standardized hemagglutinin (HA) and residual neuraminidase (NA) antigens. Vaccine-associated HA antibody responses (hemagglutination inhibition [HAI]) are well described, but less is known about the immune response to the NA. Methods.  Serum of 1349 healthcare personnel (HCP) electing or declining the 2010-2011 trivalent-inactivated influenza vaccine ([IIV3], containing A/California/7/2009 p(H1N1), A/Perth/16/2009 [H3N2], B/Brisbane/60/2008 strains) were tested for NA-inhibiting (NAI) antibody by a modified lectin-based assay using pseudotyped N1 and N2 influenza A viruses with an irrelevant (H5) HA. Neuraminidase-inhibiting and HAI antibody titers were evaluated approximately 30 days after vaccination and end-of-season for those with polymerase chain reaction (PCR)-confirmed influenza infection. Results.  In 916 HCP (68%) receiving IIV3, a 2-fold increase in N1 and N2 NAI antibody occurred in 63.7% and 47.3%, respectively. Smaller responses occurred in HCP age >50 years and those without prior 2009-2010 IIV3 nor monovalent A(H1N1)pdm09 influenza vaccinations. Forty-four PCR-confirmed influenza infections were observed, primarily affecting those with lower pre-exposure HAI and NAI antibodies. Higher pre-NAI titers correlated with shorter duration of illness for A(H1N1)pdm09 virus infections. Conclusions.  Trivalent-inactivated influenza vaccine is modestly immunogenic for N1 and N2 antigens in HCP. Vaccines eliciting robust NA immune responses may improve efficacy and reduce influenza-associated morbidity. PMID:25884004

  3. An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells.

    Xiao-Tong Song; Kevin Evel-Kabler; Lisa Rollins; Melissa Aldrich; Feng Gao; Xue F Huang; Si-Yi Chen

    2006-01-01

    BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA) to inhibit suppressor of cytokine signaling (SOCS) 1, a key negative regulator of the JAK/STAT pathway, and inves...

  4. Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68 (H3N2).

    Tang, M; Harp, J A; Wesley, R D

    2002-11-01

    Immunization with recombinant adenoviral vaccine that induces potent immunity has been applied to many infectious diseases. We report here developing a recombinant adenoviral vaccine encoding the HA gene from swine H3N2 influenza virus (SIV). Two replication-defective recombinant adenoviruses were generated: (1) rAd-HA: recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus, and (2) rAd-vector: a control recombinant adenovirus containing adenovirus and transfer plasmids without a foreign HA gene. Mice given rAd-HA developed high titers of neutralizing and hemagglutination inhibition antibodies to SIV in comparison to mice inoculated with rAd-vector or PBS as early as 2 weeks after immunization, and these antibodies were substantially increased in the mice given rAd-HA within the next 3 weeks following the first dose. However, these antibodies were not able to neutralize the virus, A/HK/68 (H3N2), used for challenge. Nonetheless mice immunized with one or two doses of rAd-HA were protected from lethal challenge with heterologous virus, A/HK/1/68 (H3N2). A statistically significant ( P mice vs. rAd-vector or PBS mice was observed. PMID:12417948

  5. Highly Sensitive Method for Titration of Adenovirus Vectors

    sprotocols

    2015-01-01

    Authors: Hildegund Ertl, ZhiQuan Xiang, Yan Li, Dongming Zhou, Xiangyang Zhou, Wynetta Giles-Davis & Yi-lin E. Liu ### Abstract Clinical development of vaccines based on adenovirus (Ad) vectors requires accurate techniques to determine vector doses including contents of infectious particles. For vectors derived from Ad virus of human serotype 5 content of infectious particles can readily be determined by plaque assays. Vaccine vectors based on alternative Ad serotypes such as thos...

  6. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    Khurana, Surender; Coyle, Elizabeth M; Manischewitz, Jody; King, Lisa R; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions. PMID:25629161

  7. Neuraminidase inhibiting antibody responses in pigs differ between influenza A virus N2 lineages and by vaccine type.

    Sandbulte, Matthew R; Gauger, Phillip C; Kitikoon, Pravina; Chen, Hongjun; Perez, Daniel R; Roth, James A; Vincent, Amy L

    2016-07-19

    The neuraminidase (NA) protein of influenza A viruses (IAV) has important functional roles in the viral replication cycle. Antibodies specific to NA can reduce viral replication and limit disease severity, but are not routinely measured. We analyzed NA inhibiting (NI) antibody titers in serum and respiratory specimens of pigs vaccinated with intramuscular whole-inactivated virus (WIV), intranasal live-attenuated influenza virus (LAIV), and intranasal wild type (WT) IAV. NI titers were also analyzed in sera from an investigation of piglet vaccination in the presence of passive maternally-derived antibodies. Test antigens contained genetically divergent swine-lineage NA genes homologous or heterologous to the vaccines with mismatched hemagglutinin genes (HA). Naïve piglets responded to WIV and LAIV vaccines and WT infection with strong homologous serum NI titers. Cross-reactivity to heterologous NAs depended on the degree of genetic divergence between the NA genes. Bronchoalveolar lavage specimens of LAIV and WT-immunized groups also had significant NI titers against the homologous antigen whereas the WIV group did not. Piglets of vaccinated sows received high levels of passive NI antibody, but their NI responses to homologous LAIV vaccination were impeded. These data demonstrate the utility of the enzyme-linked lectin assay for efficient NI antibody titration of serum as well as respiratory tract secretions. Swine IAV vaccines that induce robust NI responses are likely to provide broader protection against the diverse and rapidly evolving IAV strains that circulate in pig populations. Mucosal antibodies to NA may be one of the protective immune mechanisms induced by LAIV vaccines. PMID:27325350

  8. The rapid fluorescent focus inhibition test is a suitable method for batch potency testing of inactivated rabies vaccines.

    Krämer, B; Schildger, H; Behrensdorf-Nicol, H A; Hanschmann, K M; Duchow, K

    2009-04-01

    The European Pharmacopoeia proposes two methods for potency determination of inactivated rabies vaccines for veterinary use: The first one is a classical mouse challenge test, which is imprecise, time-consuming, and causes severe distress to the test animals. Alternatively, the potency may be determined serologically by measuring the neutralizing antibody titers induced after vaccination of mice by using a rapid fluorescent focus inhibition test (RFFIT). Although this method is faster and less painful for the animals, it is not widely used yet, and only little data exist concerning the comparability of both methods. We have therefore performed a comparative study, in which we demonstrated a good correlation between the challenge test results and the mean titers determined by RFFIT. Furthermore, all vaccine batches failing the challenge test were also recognized as insufficient in the serological assay. This publication further describes the influence of different vaccine administration routes on the resulting antibody titers, and it proposes various modifications to the serological assay protocol which could improve its overall practicability. Finally, we recommend that the serological assay be used for the potency testing of inactivated rabies vaccines. PMID:19181541

  9. Designation of a Novel DKK1 Multiepitope DNA Vaccine and Inhibition of Bone Loss in Collagen-Induced Arthritic Mice

    Zhang, Xiaoqing; Liu, Sibo; Li, Shentao; Du, Yuxuan; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2015-01-01

    Dickkopf-1 (DKK1), a secretory inhibitor of canonical Wnt signaling, plays a critical role in certain bone loss diseases. Studies have shown that serum levels of DKK1 are significantly higher in rheumatoid arthritis (RA) patients and are correlated with the severity of the disease, which indicates the possibility that bone erosion in RA may be inhibited by neutralizing the biological activity of DKK1. In this study, we selected a panel of twelve peptides using the software DNASTAR 7.1 and screened high affinity and immunogenicity epitopes in vitro and in vivo assays. Furthermore, we optimized four B cell epitopes to design a novel DKK1 multiepitope DNA vaccine and evaluated its bone protective effects in collagen-induced arthritis (CIA), a mouse model of RA. High level expression of the designed vaccine was measured in supernatant of COS7 cells. In addition, intramuscular immunization of BALB/c mice with this vaccine was also highly expressed and sufficient to induce the production of long-term IgG, which neutralized natural DKK1 in vivo. Importantly, this vaccine significantly attenuated bone erosion in CIA mice compared with positive control mice. These results provide evidence for the development of a DNA vaccine targeted against DKK1 to attenuate bone erosion. PMID:26075259

  10. PEGylated Adenoviruses: From Mice to Monkeys

    Piyanuch Wonganan

    2010-02-01

    Full Text Available Covalent modification with polyethylene glycol (PEG, a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.

  11. Construction and characterization of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75

    Ramesh Kumar

    2015-02-01

    Full Text Available Aim: Generation of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus (FMDV capsid protein genes along with full-length 2B, 3B and 3Cpro and its characterization. Materials and Methods: FMD viral RNA isolation, cDNA synthesis, and polymerase chain reaction were performed to synthesize expression cassettes (P1-2AB3BCwt and P1-2AB3BCm followed by cloning in pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were transformed with the recombinant pShuttle-CMV to produce recombinant adenoviral plasmids. HEK-293 cells were transfected with the recombinant adenoviral plasmids to generate recombinant adenoviruses (hAd5/P1-2AB3BCwt and hAd5/P1-2AB3BCm. Expression of the target proteins was analyzed by sandwich ELISA and indirect immunofluorescence assay. The recombinant adenoviruses were purified and concentrated by CsCl density gradient ultracentrifugation. Growth kinetics and thermostability of the recombinant adenoviruses were compared with that of non-recombinant replication-defective adenovirus (dAd5. Results: The recombinant adenoviruses containing capsid protein genes of the FMDV O/IND/R2/75 were generated and amplified in HEK-293 cells. The titer of the recombinant adenoviruses was approximately 108, 109.5 and 1011 TCID50/ml in supernatant media, cell lysate and CsCl purified preparation, respectively. Expression of the FMDV capsid protein was detectable in sandwich ELISA and confirmed by immunofluorescence assay. Growth kinetics of the recombinant adenoviruses did not reveal a significant difference when compared with that of dAd5. A decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded in the virus titers during 60 h incubation period and found to be statistically significant (p<0.01. Conclusion: Recombinant adenoviruses expressing capsid proteins of the FMDV O/IND/R2/75 were constructed and produced in high titers. In vitro expression of the target proteins in the adenovirus vector system was

  12. Structure of human adenovirus

    Nemerow, Glen R.; Stewart, Phoebe L.; Reddy, Vijay S. (Scripps); (Vanderbilt)

    2012-07-11

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 {angstrom} resolution. The virus structure revealed the location, folds, and interactions of major and minor (cement proteins) on the inner and outer capsid surface. This new structural information sheds further light on the process of adenovirus capsid assembly and virus-host cell interactions.

  13. Clinical development of Ebola vaccines.

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  14. Prophylactic and therapeutic vaccines for obesity

    Na, Ha-Na; Kim, Hun; Nam, Jae-Hwan

    2013-01-01

    Chronic diseases such as obesity and diabetes are major causes of death and disability throughout the world. Many causes are known to trigger these chronic diseases, and infectious agents such as viruses are also pathological factors. In particular, it is considered that adenovirus 36 infections may be associated with obesity. If this is the case, a vaccine against adenovirus 36 may be a form of prophylaxis to combat obesity. Other types of therapeutic vaccines to combat obesity are also bein...

  15. Capsid-like Arrays in Crystals of Chimpanzee Adenovirus Hexon

    The major coat protein, hexon, from a chimpanzee adenovirus (AdC68) is of interest as a target for vaccine vector modification. AdC68 hexon has been crystallized in the orthorhombic space group C222 with unit cell dimensions of a = 90.8 Angstroms, b = 433.0 Angstroms, c = 159.3 Angstroms, and one trimer (3 x 104,942 Da) in the asymmetric unit. The crystals diffract to 2.1 Angstroms resolution. Initial studies reveal that the molecular arrangement is quite unlike that in hexon crystals for human adenovirus. In the AdC68 crystals, hexon trimers are parallel and pack closely in two-dimensional continuous arrays similar to those formed on electron microscope grids. The AdC68 crystals are the first in which adenovirus hexon has molecular interactions that mimic those used in constructing the viral capsid

  16. Adenovirus (For Parents)

    ... respiratory tract as well, causing bronchiolitis , croup , or viral pneumonia, which is less common but can cause serious illness in infants. Adenovirus can also produce a dry, harsh cough that can resemble whooping cough (pertussis) . Gastroenteritis is an inflammation of the stomach and the ...

  17. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses

    Mück-Häusl, Martin; Solanki, Manish; Zhang, Wenli; Ruzsics, Zsolt; Ehrhardt, Anja

    2015-01-01

    Recombinant adenoviruses containing a double-stranded DNA genome of 26–45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we ...

  18. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  19. The foot-and-mouth disease carrier state divergence in vaccinated and non-vaccinated cattle

    The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated following simulated-natural virus exposure of 43 cattle that were either naïve or vaccinated using a recombinant, adenovirus-vectored vaccine. Although vaccinated cattle were protected against clinical dise...

  20. Crystal Structure of the Fibre Head Domain of the Atadenovirus Snake Adenovirus 1

    Singh, Abhimanyu K.; Menéndez-Conejero, Rosa; San Martín, Carmen; van Raaij, Mark J.

    2014-01-01

    Adenoviruses are non-enveloped icosahedral viruses with trimeric fibre proteins protruding from their vertices. There are five known genera, from which only Mastadenoviruses have been widely studied. Apart from studying adenovirus as a biological model system and with a view to prevent or combat viral infection, there is a major interest in using adenovirus for vaccination, cancer therapy and gene therapy purposes. Adenoviruses from the Atadenovirus genus have been isolated from squamate reptile hosts, ruminants and birds and have a characteristic gene organization and capsid morphology. The carboxy-terminal virus-distal fibre head domains are likely responsible for primary receptor recognition. We determined the high-resolution crystal structure of the Snake Adenovirus 1 (SnAdV-1) fibre head using the multi-wavelength anomalous dispersion (MAD) method. Despite the absence of significant sequence homology, this Atadenovirus fibre head has the same beta-sandwich propeller topology as other adenovirus fibre heads. However, it is about half the size, mainly due to much shorter loops connecting the beta-strands. The detailed structure of the SnAdV-1 fibre head and other animal adenovirus fibre heads, together with the future identification of their natural receptors, may lead to the development of new strategies to target adenovirus vectors to cells of interest. PMID:25486282

  1. Seroprevalence of neutralizing antibodies to human adenoviruses type-5 and type-26 and chimpanzee adenovirus type-68 in healthy Chinese adults.

    Zhang, Shujun; Huang, Wenxiang; Zhou, Xiangyang; Zhao, Qiquan; Wang, Qun; Jia, Bei

    2013-06-01

    Replication-defective adenoviruses have been utilized as candidate vaccine vectors. However, clinical application of the best-studied human adenovirus type-5 (AdHu5) is limited by the high prevalence of preexisting neutralizing antibodies resulting from natural infection. Therefore, rare adenovirus serotypes, such as human adenovirus type-26 (AdHu26) and chimpanzee adenovirus type-68 (AdC68), have been employed as substitutes for AdHu5. However, few studies have described the epidemiology of pre-existing immunity to these adenoviruses in China. Thus, 1,154 participants from six regions in China were examined to assess the presence of neutralizing antibodies against AdHu5, AdHu26, and AdC68. The seroprevalence rates of neutralizing antibodies were as follows: AdHu5, 73.1% (844/1,154) (95% confidence interval: 70.5-75.6%); AdHu26, 35.3% (407/1,154) (95% confidence interval: 32.6-38.1%); and AdC68, 12.7% (147/1,154) (95% confidence interval: 10.9-14.8%), respectively. The most frequently detected and highest titer antibodies were specific for AdHu5. The results indicate that AdHu26 and AdC68 serve as more suitable vaccine vectors than AdHu5. PMID:23588735

  2. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy. PMID:27485078

  3. Radioimmunoassay of human serum antibody specific for adenovirus type 5-purified fiber

    A radioimmunoassay (RIA), utilizing a second antibody to separate immune complexes, was developed to provide a sensitive and specific measure of serum antibody to adenovirus type 5 (Ad 5) fiber. Purity of fiber antigen was ascertained by sodium dodecyl sulfate urea-polyacrylamide gel electrophoresis and isoelectric focusing in ampholyte pH gradients. After labeling with 125I to high specific activity, the iodinated fiber did not exhibit loss of antigenic reactivity and remained stable for 3 weeks when stored at --200C with supplemental protein. Rabbit anti-Ad 5 serum with a neutralization titer of 1:320 precipitated 50 percent of the labeled fiber at a serum dilution of 1:50,000 when tested by the RIA. In competition assays as little as 0.5 ng of unlabeled fiber per milliliter was sufficient to inhibit the 125I fiber-antibody reaction. Serum specimens from 20 volunteers, obtained before and after vaccination with purified Ad 5 fiber or hexon subunit vaccine, were tested by RIA, hemagglutination-inhibition (HI), and neutralization tests. A comparison of mean antibody titers of post-inoculation sera showed that the RIA was 300 and 1000 times more sensitive than the HI and neutralization tests, respectively. Moreover, 19 of the men who were negative by the standard serologic tests before vaccination were shown to have anti-fiber antibody, with a mean RIA titer of 1:1028. Specificity of the RIA was demonstrated by the lack of an increase in antibody to Ad 5 fiber among those individuals vaccinated with the hexon subunit. Thus, the development of a highly sensitive and reproducible RIA allows for the detection of antibody specific for the Ad 5 fiber in serum which contains antibodies to the different virion antigenic determinants associated with Ad 5. (U.S.)

  4. An Alternative and Effective HIV Vaccination Approach Based on Inhibition of Antigen Presentation Attenuators in Dendritic Cells.

    2006-01-01

    Full Text Available BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA to inhibit suppressor of cytokine signaling (SOCS 1, a key negative regulator of the JAK/STAT pathway, and investigated the effect of this silencing on the ability of dendritic cells (DCs to induce anti-HIV-1 immunity. We found that SOCS1-silenced DCs broadly induced enhanced HIV-1 envelope (Env-specific CD8(+ cytotoxic T lymphocytes and CD4(+ T helper cells, as well as antibody responses, in mice. Importantly, SOCS1-silenced DCs were more resistant to HIV Env-mediated suppression and were capable of inducing memory HIV Env-specific antibody and T cell responses. SOCS1-restricted signaling, as well as production of proinflammatory cytokines such as interleukin-12 by DCs, play a critical role in regulating the anti-HIV immune response. Furthermore, the potency of HIV DNA vaccination is significantly enhanced by coimmunization with SOCS1 siRNA expressor DNA. CONCLUSIONS: This study demonstrates that SOCS1 functions as an antigen presentation attenuator to control both HIV-1-specific humoral and cellular responses. This study represents the first, to our knowledge, attempt to elicit HIV-specific T cell and antibody responses by inhibiting a host's antigen presentation attenuator, which may open a new and alternative avenue to develop effective therapeutic and prophylactic HIV vaccines.

  5. Human adenovirus type identification

    Banik U; Adhikary AK

    2015-01-01

    Urmila Banik,1 Arun Kumar Adhikary21Unit of Pathology, 2Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Kedah, MalaysiaThe published paper in your journal entitling “Human adenovirus type 8 epidemic keratoconjunctivitis with large corneal epithelial full-layer detachment: an endemic outbreak with uncommon manifestations” has come into our attention.1 The article provides interesting clinical presentation of corneal epithelial layer detachment among 25%...

  6. Recombinant E.coli LLO/OVA Vaccination Effectively Inhibits Murine Melanoma Metastasis to Lung by CD8+T Cells Immunity

    Man Xu; Ming-shen Dai; Can Mi

    2009-01-01

    Objective: To construct recombinant E.coli LLO/OVA and investigate its tumor metastatic inhibition effect in B16 OVA melanoma challenged mice.Methods: Recombinant E.coli LLO/OVA was constructed and the expression of listeriolysin O (LLO) and ovalbumin (OVA) of the vaccine was determined by coomassie brilliant blue staining and western blotting. After 3 subcutaneous injections of E.coli LLO/OVA, the percentages of CD3+CD4+T, CD4+CD25+T, CD3+CD8+T and OVA257(264 SIINFEKL specific CD8+T cells were determined by flow cytomytry, and the tumor metastatic inhibition effect in B16 OVA melanoma challenged mice was observed.Results: Recombinant E.coli LLO/OVA was successfully constructed, and the expression of LLO and OVA of the vaccine was confirmed. After 3 subcutaneous injections of E.coli LLO/OVA and E.coli OVA in mice, the percentages of CD3+CD4+T, CD4+CD25+T and CD3+CD8+T cells were equivalent in the two groups of mice. However, there were significantly more OVA257(264 SIINFEKL specific CD8+T cells in E.coli LLO/OVA vaccinated mice than that in E.coli OVA vaccinated mice. The prophylactic E.coli LLO/OVA vaccination effectively prevented the tumor metastasis to lungs in B16 OVA melanoma challenged mice. Depletion of CD8+T cells significantly impaired the tumor inhibition effect of the vaccine in B16 OVA challenged mice. The therapeutic vaccination of E.coli LLO/OVA significantly prevented melanoma metastasis to lungs in B16 OVA challenged mice too.Conclusion: Recombinant E.coli LLO/OVA vaccination is highly effective in inhibiting murine malignant melanoma metastasis by promoting CD8+T cell immunity.

  7. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10(sup 4) high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994)

  8. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  9. Inhibition of influenza M2-induced cell death alleviates its negative contribution to vaccination efficiency.

    Petr O Ilyinskii

    Full Text Available The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1 was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed.

  10. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8+ T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8+ T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  11. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Zhang, Han [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan)

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  12. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; YI, SHAOQIONG; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a s...

  13. Recombinant influenza vaccines.

    Sedova, E S; Shcherbinin, D N; Migunov, A I; Smirnov, Iu A; Logunov, D Iu; Shmarov, M M; Tsybalova, L M; Naroditskiĭ, B S; Kiselev, O I; Gintsburg, A L

    2012-10-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains. PMID:23346377

  14. Effect of immunization with fetal cells on adenovirus-12 oncogenesis

    Abe,Shinji

    1974-06-01

    Full Text Available The effect of immunization with hamster fetal cells on the tumor induction by adnovirus type 12 was studied by in vivo and in vitro. The immunization with lO-day old fetal cells showed a recognizable inhibition on the tumor induction by adenovirus type 12. The inhibition was observed only in males but not in females. For the inhibition, immnization with 107 or more cells was required. The immunization with same dose of l2-day-old fetal cells were ineffective. The inoculation of the spleen cells from hamsters immunized with un· irradiated fetal cells strongly inhibited the adenovirus·12 onocogenesis. Membrane immunofluorescent test, however, failed to demonstrate the fetal antigens in any of adnovirus-12-induced tumor cells, SV40induced tumor cells and cells from spontaneous hamster lymphoma.

  15. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies.

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  16. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  17. Inhibition of collagen-induced arthritis by DNA vaccines encoding TCR Vβ5.2 and TCR Vβ8.2

    GE Ping-ling; MA Li-ping; WANG Wei; LI Yun; ZHAO Wen-ming

    2009-01-01

    Background Arthritogenic T lymphocytes with common T cell receptor (TCR) Vβ clonotypes, infiltrating in the articulars of rheumatoid arthritis (RA) patients, play a central role in the pathogenesis of RA. TCR Vβ5.2 and TCR Vβ8.2 are the main pathogenic T cell clonotypes in the course of collagen-induced arthritis (CIA) progression in Lewis rats. To investigate a TCR-based immunotherapy for RA, we constructed recombinant DNA vaccines encoding TCR Vβ5.2 and TCR Vβ8.2, and evaluated the inhibitive effects of the two vaccines on CIA rats. Methods Genes encoding TCR Vβ5.2 and TCR Vβ8.2 were amplified by RT-PCR from spleen lymphocytes of Lewis rats and cloned into the eukaryotic expression vector pTargeT. The expression of vaccines was confirmed by RT-PCR and immunohistochemistry. The inhibitive effects of the vaccines on articulars of CIA rats were assessed with arthritis index evaluation and histology. Interferon γ (IFN-γ) and interleukin (IL)-4 production by spleen lymphocytes were tested with enzyme-linked immunospot assay (ELISPOT) technique, the changes in peripheral CD4+ and CD8+ lymphocyte populations were tested by flow cytometry, and the level of anti-CII antibody in serum was assayed by enzyme-linked immunosorbent assay (ELISA).Results Recombinant DNA vaccines pTargeToTCR Vβ5.2 and pTargeT-pTCR Vβ8.2 were successfully constructed. Both vaccines inhibited CIA, which alleviated the arthritis index score (P<0.05), decreased the level of IFN-γ (P<0.05), and reduced the ratio of CD4+/CD8+ lymphocytes (P<0.05) and the anti-CII antibody in serum (P<0.05). In addition, the histological change in DNA-vaccinated rats was less serious than CIA rats. Compared to pTCR Vβ 8.2 and pTCR Vβ5.2 groups, the group that was injected with a combination of the two vaccines showed stronger inhibitive effects on CIA than either individual vaccine.Conclusion The recombinant plasmids pTargeT-TCR Vβ5.2 and pTargeT-TCR Vβ8.2 have obvious inhibatory effects on CIA rats and

  18. Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro

    Li HUANG; Qing-an XU; Chang LIU; Ming-wen FAN; Yu-hong LI

    2013-01-01

    Aim: To investigate the effects of anti-caries DNA vaccine-induced salivary secretory immunoglobulin A (S-IgA) antibodies on Streptococcus mutans (S.mutans) adherence and biofilms formation in vitro.Methods: Adult female Wistar rats were intranasally immunized with the anti-caries DNA vaccine pGJA-P/VAX.Their saliva samples were collected at different times after the immunization,and S-IgA antibody level in the saliva and its inhibition on S.mutans adherence were examined.The effects of S-IgA in the saliva with the strongest inhibitory effects were examined at 3 different stages,ie acquired pellicles,biofilm formation and production of mature biofilms.The number of viable bacteria and depth of the biofilm at 16 h in each stage were determined using counting colony forming units and using a confocal laser scanning microscopy (CLSM).The participation of S-IgA in acquired pellicles and its aggregation with S.mutans were also observed under CLSM.Results: The S-lgA titer in saliva reached its peak and exhibited the strongest inhibition on S.mutans adhesion at 10 weeks after the immunization.The colonies and depth of the biofilm in the saliva-pretreated group were 41.79% and 41.02%,respectively,less than the control group.The colonies and depth of the biofilm in the co-culture group were 27.4% and 22.81% less than the control group.The assembly of S.mutans and S-IgA was observed under CLSM after co-cultivation.In the mature-stage biofilm,no differences were observed between the different groups.Conclusion: These results demonstrate that the anti-caries DNA vaccine induces the production of specific S-IgA antibodies that may prevent dental caries by inhibiting the initial adherence of S.mutans onto tooth surfaces,thereby reducing the accumulation of S.mutans on the acquired pellicles.

  19. Adenovirus infection in immunocompromised patients

    Sylwia Rynans

    2013-09-01

    Full Text Available Human adenoviruses belong to the Adenoviridae family and they are divided into seven species, including 56 types. Adenoviruses are common opportunistic pathogens that are rarely associated with clinical symptoms in immunocompetent patients. However, they are emerging pathogens causing morbidity and mortality in recipients of hematopoietic stem cell and solid organ transplants, HIV infected patients and patients with primary immune deficiencies. Clinical presentation ranges from asymptomatic viraemia to respiratory and gastrointestinal disease, haemorrhagic cystitis and severe disseminated illness. There is currently no formally approved therapy for the treatment of adenovirus infections.This article presents current knowledge about adenoviruses, their pathogenicity and information about available methods to diagnose and treat adenoviral infections.

  20. Tracking adenovirus infections in reptiles

    Ball, Inna

    2015-01-01

    The purpose of this project was to screen reptiles for the presence of adenovirus (AdV) infection, develop serological tests for the detection of antibodies against AdVs in squamate reptiles and to examine the serological relationships between lizard and snake AdVs, helping to ensure the establishment and maintenance of healthy populations. An additional aim of the project was the establishment of an agamid cell line and isolation of adenoviruses from bearded dragons (Pogona vitticeps). A...

  1. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.

    Mukherjee, Pinku; Basu, Gargi D; Tinder, Teresa L; Subramani, Durai B; Bradley, Judy M; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2009-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer. PMID:19109152

  2. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    Xingui Tian

    2015-10-01

    Full Text Available Human adenovirus type 55 (HAdV55 is a newly identified re-emergent acute respiratory disease (ARD pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152, A55R2 (residues 179 to 187, A55R4 (residues 247 to 259 and A55R7 (residues 429 to 443, were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA and neutralization tests (NT. Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3 and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis.

  3. Influence of maternally-derived antibodies in 6-week old dogs for the efficacy of a new vaccine to protect dogs against virulent challenge with canine distemper virus, adenovirus or parvovirus

    Stephen Wilson

    2014-01-01

    In conclusion, two doses of the DHPPi/L4R vaccine administered to dogs from six weeks of age in the presence of maternal antibodies aided in the protection against virulent challenge with CDV, CAV-1 or CPV.

  4. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  5. Immunogenicity and efficacy of a recombinant adenovirus expressing hemagglutinin from the H5N1 subtype of swine influenza virus in mice.

    Wu, Yunpu; Qiao, Chuanling; Yang, Huanliang; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2014-04-01

    The H5N1 influenza viruses infect a range of avian species and have recently been isolated from humans and pigs. In this study we generated a replication-defective recombinant adenovirus (rAd-H5HA-EGFP) expressing the hemagglutinin (HA) gene of H5N1 A/Swine/Fujian/1/2001 (SW/FJ/1/01) and evaluated its immunogenicity and protective efficacy in BALB/c mice. The recombinant virus induced high levels of hemagglutination inhibition (HI) antibody at a median tissue culture infective dose of 10(8) or 10(7). Compared with mice in the control groups, the mice vaccinated with rAd-H5HA-EGFP did not show apparent weight loss after challenge with either the homologous SW/FJ/1/01 or the heterologous H5N1 A/Chicken/Hunan/77/2005 (CK/HuN/77/05). Replication of the challenge virus was partially or completely inhibited, and viruses were detected at significantly lower numbers in the organs of the vaccinated mice, all of which survived the challenge with CK/HuN/77/05, whereas most of the control mice did not. These results indicate that rAd-H5HA-EGFP can provide effective immune protection from highly pathogenic H5N1 viruses in mice and is therefore a promising new candidate vaccine against H5N1 influenza in animals. PMID:24688173

  6. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice.

    Li, Wu; Li, Min; Deng, Guangcun; Zhao, Liping; Liu, Xiaoming; Wang, Yujiong

    2015-08-01

    Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection. PMID:25962477

  7. Incorporation of 4-1BB ligand into an adenovirus vaccine vector increases the number of functional antigen-specific CD8 T cells and enhances the duration of protection against influenza-induced respiratory disease.

    Moraes, Theo J; Lin, Gloria H Y; Wen, Tao; Watts, Tania H

    2011-08-26

    T cell based influenza vaccines offer the potential for cross protective immunity to multiple clades of influenza virus. Here we explored the effect of increasing CD8 T cell responses during intranasal vaccination by incorporating a T cell costimulator, 4-1BBL. Inclusion of 4-1BBL in an influenza nucleoprotein (NP)-containing adenoviral vector increased the number of NP-specific CD8 T cells and lowered the vaccine dose required for short-term protection from influenza-induced disease in mice. At higher vaccine doses, the inclusion of 4-1BBL increased the duration of protection of mice from influenza-induced mortality. Bone marrow chimera experiments revealed that the major effects of 4-1BBL were directly on αβ T cells with minor additional effects through cells other than αβ T cells. The implications of these findings are that including 4-1BBL or adjuvants that induce 4-1BBL expression may be of benefit in a vaccine setting for enhancing the magnitude and duration of T cell responses to influenza virus. PMID:21704101

  8. [Anti-adenovirus activity of a substance and medical form of ribamydil in cell culture].

    Nosach, L N; Diachenko, N S; Zhovnovataia, V L

    2009-01-01

    The inhibiting effect of ribamydil on adenovirus reproduction was studied under the determination of the number of cells with virus- induced DNA-containing intranucleus inclusion bodies and hexone antigen, the synthesis of adenovirus proteins and the infection virus by t he investigation. EC50 of ribamydil substance is 4-8 microg/ml, but complete suppression of adenovirus genome expression was found when adding ribamydil after the virus adsorption, in concentrations of 125-500 microg/ml. The original effect of ribamydil on the expression of adenovirus genome was found under its effect in concentration of 31 microg/ml. Intranucleus virus-induced inclusion bodies of the early type only were found under these conditions. Synthesis of the structural virus polypeptides, including hexone polypeptide (II) and non-structural polypeptide 100K, taking part in hexone trimerization, proceed intensively but without formation of immunologically active hexone. The inhibiting effect of officinal form of ribamydil was less expressed as compared with the substance (EC50: 62 microg/ml). The work results prove that the therapeutic effect of ribamydil (ribavirin) under treatment of adenovirus infections may be achieved in case when it is used in a dose excluding the expression of the adenovirus genome. PMID:20458939

  9. Immune responses of recombinant adenovirus-5 vector vaccine of human papillomavirus type 16 E6E7 and its anti-tumor effects in mice%表达人乳头瘤病毒16型E6E7重组腺病毒疫苗对小鼠的免疫和抗肿瘤效应

    吴洁; 陈刚; 金素凤; 高孟; 庄昉成; 李剑波; 姜云水; 毛子安

    2014-01-01

    目的 评价HPV16 E6E7的复制缺陷型重组5型腺病毒(PK-HPV-ad5)治疗性疫苗对实验小鼠免疫应答和抗肿瘤的生物学效应.方法 使用基因重组技术构建PK-HPV-ad5疫苗,并通过小鼠免疫试验,检测小鼠总抗体和特异性IFNγ,同时将造模小鼠分成疫苗组和对照组,分别对其进行抑瘤试验、TC-1肿瘤细胞挑战试验和肿瘤切除后防复发试验.结果 HPV16 E6E7诱导的总抗体第12天的水平相对较高(1:400~1:600);3批次疫苗特异性IFNγ在第14天与对照组比较分别升高8.6、5.9和8.9倍,差异有统计学意义(t=15.721、6.967和14.342,P均<0.01).抑瘤试验表明疫苗剂量为107IU/只时小鼠肿瘤生长率为0,与对照组比较差异有统计学意义(确切概率法,P<0.01),3批次疫苗验证有效剂量为107IU/只时肿瘤抑制率可达80%(8/10)以上.TC-1肿瘤细胞挑战试验结果显示:小鼠先接种疫苗能引起特异性的免疫应答,并能保护90%(9/10)的小鼠免受TC-1肿瘤细胞的攻击;肿瘤切除后防止复发试验提示在注射相同剂量疫苗时,对104个/只和105个/只肿瘤细胞造模小鼠,第0、5天免疫组肿瘤复发数少于第5,8天免疫组(1/10,4/10 vs 8/10,7/10).结论 PK-HPV-ad5疫苗能诱导小鼠产生特异性的免疫应答,对抗肿瘤复发有治疗潜力.%Objective To evaluate the immune responses and anti-tumor effects of replication-deficient recombinant adenovirus-5 vector vaccine of human papillomavirus type 16 E6E7 as a theraputic vaccine (PK-HPV-ad5) in mouse models.Methods PK-HPV-ad5 vaccine was constructed by gene recombination technique.HPV16E6E7 total antibody and specific IFNγ of the vaccine were detected by mouse immune experiment.The model mice were divided into vaccine group and control group,and were used for anti-tumor test,TC-1 tumor cell challenge test and evaluation of tumor excision combined with vaccine to prevent tumor recurrence.Results HPV16 E6E7 total antibody increased to a

  10. Oncolytic Adenoviruses in Cancer Treatment

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  11. An Update on Canine Adenovirus Type 2 and Its Vectors

    Eric J. Kremer

    2010-09-01

    Full Text Available Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2 biology and gives an overview of the generation of early region 1 (E1-deleted to helper-dependent (HD CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.

  12. The administration of a single dose of a multivalent (DHPPiL4R vaccine prevents clinical signs and mortality following virulent challenge with canine distemper virus, canine adenovirus or canine parvovirus

    Stephen Wilson

    2014-01-01

    In conclusion, we demonstrated that a single administration of a minimum titre, multivalent vaccine to dogs of six weeks of age is efficacious and prevents clinical signs and mortality caused by CAV-1 and CDV; prevents clinical signs and significantly reduces virus shedding caused by CAV-2; and prevents clinical signs, leucopoenia and viral excretion caused by CPV.

  13. Application of mesenchymal stem cells as a vehicle to deliver replication-competent adenovirus for treating malignant glioma

    Song-Nan Zhang

    2012-05-01

    Full Text Available Although gene therapy was regarded as a promising approach for glioma treatment, its therapeutic efficacy was often disappointing because of the lack of efficient drug delivery systems. Mesenchymal stem cells(MSCs have been reported to have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. Therefore, in this study, we attempted to treat glioma by using MSCs as a vehicle for delivering replication-competent adenovirus. We firstly compared the infectivity of type 3, type 5, and type 35 fiber-modified adenoviruses in MSCs. We also determined suitable adenovirus titer in vitro and then used this titer to analyze the ability of MSCs to deliver replication-competent adenovirus into glioma in vivo. Our results indicated that type 35 fiber-modified adenovirus showed higher infectivity than did naked type 3 or type 5 fiber-modified adenovirus. MSCs carrying replication-competent adenovirus significantly inhibited tumor growth in vivo compared with other control groups. In conclusion, MSCs are an effective vehicle that can successfully transport replication-competent adenovirus into glioma, making it a potential therapeutic strategy for treating malignant glioma.

  14. 78 FR 33798 - Oral Rabies Vaccine Trial; Availability of a Supplemental Environmental Assessment

    2013-06-05

    ... whether the wildlife rabies vaccine will produce sufficient levels of population immunity against raccoon... of conflicts that APHIS-WS addresses. Wildlife is the dominant reservoir of rabies in the United... new wildlife rabies vaccine, human adenovirus type 5 rabies glycoprotein recombinant vaccine...

  15. Adenovirus retargeting and systemic delivery

    Seymour, L. W.; Fisher, K. D.; Green, N. K.; Hale, S. J.; Lyons, M.; Mautner, V.; Nicum, S.; Onion, D.; Oupický, D.; Stevenson, M.; Ulbrich, Karel

    Berlin: Springer Verlag, 2003 - (Rubanyi, G.; Ylä-Herttuala, S.), s. 107-117 ISBN 3-540-00413-0 R&D Projects: GA AV ČR KSK4055109 Keywords : gene delivery * adenovirus * HPMA copolymers Subject RIV: CC - Organic Chemistry

  16. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  17. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination.

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3(+) CD25(+) CD4(+) Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8(+) T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced K(b)/A12-21-monospecific CD8(+) T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical K(b)/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3(+) CD25(+) Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3(+) CD25(+) Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1(-/-) hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76-90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8(+) T cells in this diabetes model. PMID:27406624

  18. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  19. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses.

    Lin, Shih-Chang; Liu, Wen-Chun; Jan, Jia-Tsrong; Wu, Suh-Chin

    2014-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus, a known trigger of diseases in poultry and humans, is perceived as a serious threat to public health. There is a clear need for a broadly protective H5N1 vaccine or vaccines for inducing neutralizing antibodies against multiple clades/subclades. We constructed single, double, and triple mutants of glycan-masked hemagglutiinin (HA) antigens at residues 83, 127 and 138 (i.e., g83, g127, g138, g83+g127, g127+g138, g83+g138 and g83+g127+g138), and then obtained their corresponding HA-expressing adenovirus vectors and recombinant HA proteins using a prime-boost immunization strategy. Our results indicate that the glycan-masked g127+g138 double mutant induced more potent HA-inhibition, virus neutralization antibodies, cross-clade protection against heterologous H5N1 clades, correlated with the enhanced bindings to the receptor binding sites and the highly conserved stem region of HA. The immune refocusing stem-specific antibodies elicited by the glycan-masked H5HA g127+g138 and g83+g127+g138 mutants overlapped with broadly neutralizing epitopes of the CR6261 monoclonal antibody that neutralizes most group 1 subtypes. These findings may provide useful information in the development of a broadly protective H5N1 influenza vaccine. PMID:24671139

  20. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses.

    Mück-Häusl, Martin; Solanki, Manish; Zhang, Wenli; Ruzsics, Zsolt; Ehrhardt, Anja

    2015-04-30

    Recombinant adenoviruses containing a double-stranded DNA genome of 26-45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies. PMID:25609697

  1. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-01-01

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo. PMID:24326926

  2. Mucosal immunization with recombinant adenovirus encoding soluble globular head of hemagglutinin protects mice against lethal influenza virus infection.

    Kim, Joo Young; Choi, Youngjoo; Nguyen, Huan H; Song, Man Ki; Chang, Jun

    2013-12-01

    Influenza virus is one of the major sources of respiratory tract infection. Due to antigenic drift in surface glycoproteins the virus causes annual epidemics with severe morbidity and mortality. Although hemagglutinin (HA) is one of the highly variable surface glycoproteins of the influenza virus, it remains the most attractive target for vaccine development against seasonal influenza infection because antibodies generated against HA provide virus neutralization and subsequent protection against the virus infection. Combination of recombinant adenovirus (rAd) vector-based vaccine and mucosal administration is a promising regimen for safe and effective vaccination against influenza. In this study, we constructed rAd encoding the globular head region of HA from A/Puerto Rico/8/34 virus as vaccine candidate. The rAd vaccine was engineered to express high level of the protein in secreted form. Intranasal or sublingual immunization of mice with the rAd-based vaccine candidates induced significant levels of sustained HA-specific mucosal IgA and IgG. When challenged with lethal dose of homologous virus, the vaccinated mice were completely protected from the infection. The results demonstrate that intranasal or sublingual vaccination with HA-encoding rAd elicits protective immunity against infection with homologous influenza virus. This finding underlines the potential of our recombinant adenovirus-based influenza vaccine candidate for both efficacy and rapid production. PMID:24385946

  3. Poliovirus Vaccines

    Isik Yalcin

    2008-01-01

    The two types of poliovirus vaccines are inactivated vaccine, given parenterally, and live virus vaccine, given orally. Oral poliovirus is the vaccine of choice for global eradication. Either inactivated vaccine or oral vaccine may be given concurrently with other routinely recommended childhood vaccines. No serious adverse events have been associated with the vaccine. Oral poliovirus vaccine can cause vaccine associated paralytic poliomyelitis.

  4. A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque.

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M

    2009-12-01

    We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149

  5. Antibody-Mediated Fcγ Receptor-Based Mechanisms of HIV Inhibition: Recent Findings and New Vaccination Strategies

    Christiane Moog; Vincent Holl; Maryse Peressin

    2009-01-01

    The HIV/AIDS pandemic is one of the most devastating pandemics worldwide. Today, the major route of infection by HIV is sexual transmission. One of the most promising strategies for vaccination against HIV sexual infection is the development of a mucosal vaccine, which should be able to induce strong local and systemic protective immunity. It is believed that both humoral and cellular immune responses are needed for inducing a sterilizing protection against HIV. Recently, passive administrati...

  6. Inhibition of the Production of Anti-OspA Borreliacidal Antibody with T Cells from Hamsters Vaccinated against Borrelia burgdorferi

    Jensen, Jani R.; Du Chateau, Brian K.; Munson, Erik L.; Callister, Steven M.; Schell, Ronald F.

    1998-01-01

    The serious morbidity associated with Lyme borreliosis has focused considerable effort on the development of a comprehensive vaccine for protection against infection with Borrelia burgdorferi. Induction of borreliacidal antibody by vaccination or infection has been shown to correlate with protection of humans and animals against infection with the Lyme spirochete. In this report, we showed that high levels of borreliacidal antibody (titer of 1,280) were produced in vitro when T and B cells fr...

  7. Neonatal bacillus Calmette-Guerin vaccination inhibits de novo allergic inflammatory response in mice via alteration of CD4+CD25+T-regulatory cells

    Qian LI; Hua-hao SHEN

    2009-01-01

    Aim: The hygiene hypothesis suggests a lack of bacterial infections would favor the development of allergic diseases. My-cobacterium bovis bacille Calmette-Guerin (BCG) infection can inhibit allergen-induced asthma reactions, but the underly-hag mechanism of this infection on the immunological responses is unclear. T-regulatory (Treg) cells are thought to play a role as a crucial immunoregulatory cells that are capable of regulating adaptive immune responses. We conducted this study to investigate whether the protective effect of the BCG vaccination on allergic pulmonary inflammation is associated with the alteration of CD4+CD25+ Treg cells in a murine asthma model and the mechanisms of Treg cells. Methods: Newborn C57BL/6 mice were vaccinated 3 times with BCG on d 0, 7, and 14 and subsequently sensitized and challenged with ovalbumin. Eosinophil infiltration was investigated. The frequencies of spleen CD4+CD25+ Treg cells and the expression of specific transcriptional factor Foxp3 were assayed. The cytotoxic lymphocyte associated antigen (CTLA)-4 expression and cytokine interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) levels were measured. Results: We showed that treatment of mice with BCG inhibited de novo allergic inflammatory response in a mouse model of asthma. BCG treatments are associated with the increase of CD4+CD25+ Treg cells and Foxp3 expression, accompanied by an increased CTLA-4 expression and cytokine IL-10 and TGF-β levels (P<0.05). Conclusion: Neonatal BCG vaccinations ameliorate de novo local eosinophilic inflammation induced by allergen and in-crease the numbers of CD4+CD25+ Treg cells and Foxp3 expression. The cell-cell contact inhibition and regulatory cytokine production may be involved in the regulatory mechanism.

  8. Vaccine Safety

    ... the safety of Tdap, Meningococcal, and HPV vaccines Human Papillomavirus (HPV) Vaccine is Very Safe Read about the safety of ... Hepatitis A Vaccine Safety Hepatitis B Vaccine Safety Human Papillomavirus (HPV) Vaccine Safety FAQs about HPV Safety Influenza (Flu) Vaccine ...

  9. Immunostimulatory activities of dendritic cells loaded with adenovirus vector carrying HBcAg/HBsAg

    Jia, Hongyu; Li, Chunling; Zhang, Yimin; Yu, Liang; Xiang, Dairong; Liu, Jun; Chen, Fengzhe; Han, Xiaochun

    2015-01-01

    Objective: This study is to investigate the immunostimulatory activities of dendritic cells (DCs) transfected with HBcAg and/or HBsAg recombinant adenovirus (rAd). Methods: DCs were transfected with rAd (DC/Ad-C+Ad-S, DC/Ad-C, and DC/Ad-S), or pulsed with HBcAg antigen (DC/HBcAg). Flow cytometry was used to detect the phenotype of DCs and the cytokine production of T lymphocytes. Mice were vaccinated with DCs transfected with rAd or pulsed with antigen, and DNA vaccine. Mixed lymphocyte react...

  10. [An analysis of the DNA synthesized in adenovirus-infected cells under exposure to nucleoside analogs].

    Nosach, L N; Butenko, S I; Timofeeva, M Ia; Diachenko, N S; Tikhomirova, T P

    1989-01-01

    The method of dot DNA-DNA hybridization was used to reveal the inhibition of the synthesis of the adenoviral DNA by 6-azacytidine, cyclocytidine and ribamidyl in the adenovirus-infected cells Hep-2, a degree of which depended on the preparation concentration. PMID:2482929