WorldWideScience

Sample records for adenovirus based vaccine

  1. Canine adenovirus based rabies vaccines.

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  2. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  3. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  4. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    De, Bishnu P.; Pagovich, Odelya E; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2012-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized ...

  5. Anti-Cocaine Vaccine Based on Coupling a Cocaine Analog to a Disrupted Adenovirus

    Koob, George; Hicks, Martin J.; Wee, Sunmee; Rosenberg, Jonathan B; De, Bishnu P.; Kaminksy, Stephen M.; Moreno, Amira; Kim D. Janda; Crystal, Ronald G.

    2011-01-01

    The challenge in developing an anti-cocaine vaccine is that cocaine is a small molecule, invisible to the immune system. Leveraging the knowledge that adenovirus (Ad) capsid proteins are highly immunogenic in humans, we hypothesized that linking a cocaine hapten to Ad capsid proteins would elicit high-affinity, high-titer antibodies against cocaine, sufficient to sequester systemically administered cocaine and prevent access to the brain, thus suppressing cocaine-induced behaviors. Based on t...

  6. Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine.

    Pandey, Aseem; Singh, Neetu; Vemula, Sai V; Couëtil, Laurent; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2012-01-01

    The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines. PMID:22432020

  7. Modeling Pre-Existing Immunity to Adenovirus in Rodents: Immunological Requirements for Successful Development of a Recombinant Adenovirus Serotype 5-based Ebola Vaccine

    Choi, Jin Huk; Schafer, Stephen C.; Zhang, Lihong; Juelich, Terry; Freiberg, Alexander N.; Croyle, Maria A.

    2013-01-01

    Pre-existing immunity (PEI) to human adenovirus serotype 5 (Ad5) worldwide is the primary limitation to routine clinical use of Ad5-based vectors in immunization platforms. Using systemic and mucosal PEI induction models in rodents (mice and guinea pigs), we assessed the influence of PEI on the type of adaptive immune response elicited by an Ad5-based vaccine for Ebola with respect to immunization route. Splenocytes isolated from vaccinated animals revealed that immunization by the same route...

  8. Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future?

    Smaill, Fiona; Xing, Zhou

    2014-08-01

    Despite progress in managing TB, there were 8.6 million new cases in 2012. To control TB will require a more effective vaccine than BCG, new drugs and better diagnostic tests. Recombinant replication-defective adenoviruses expressing foreign DNA have been studied as vaccines. We developed and evaluated a recombinant replication-deficient human Ad5 vector expressing Ag85A (Ad5Ag85A) as a TB vaccine in animal models and a Phase I human study. Animal models of Ad5Ag85A show markedly improved protection over BCG alone and immunization via the respiratory route provides the best type of protection. In humans, intramuscular vaccination was safe; Ad5Ag85A was immunogenic and stimulated polyfunctional T cell responses, more potently in previously BCG-vaccinated volunteers. Pre-existing Ad5 antibodies did not dampen the response. Given its potency, Ad5-based TB vaccines are well-positioned to be delivered to the respiratory tract, induce local lung immunity to control TB, and inform innovative approaches to new TB vaccination strategies. PMID:24935214

  9. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus.

    Lubeck, M D; Davis, A R; Chengalvala, M; Natuk, R J; Morin, J E; Molnar-Kimber, K; Mason, B. B.; Bhat, B M; Mizutani, S; Hung, P P

    1989-01-01

    As a major cause of acute and chronic liver disease as well as hepatocellular carcinoma, hepatitis B virus (HBV) continues to pose significant health problems world-wide. Recombinant hepatitis B vaccines based on adenovirus vectors have been developed to address global needs for effective control of hepatitis B infection. Although considerable progress has been made in the construction of recombinant adenoviruses that express large amounts of HBV gene products, preclinical immunogenicity and ...

  10. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    Vemula, Sai V; Ahi, Yadvinder S; Swaim, Anne-Marie; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  11. Low seroprevalent species D adenovirus vectors as influenza vaccines.

    Weaver, Eric A; Barry, Michael A

    2013-01-01

    Seasonal and pandemic influenza remains a constant threat. While standard influenza vaccines have great utility, the need for improved vaccine technologies have been brought to light by the 2009 swine flu pandemic, highly pathogenic avian influenza infections, and the most recent early and widespread influenza activity. Species C adenoviruses based on serotype 5 (AD5) are potent vehicles for gene-based vaccination. While potent, most humans are already immune to this virus. In this study, low seroprevalent species D adenoviruses Ad26, 28, and 48 were cloned and modified to express the influenza virus A/PR/8/34 hemagglutinin gene for vaccine studies. When studied in vivo, these species D Ad vectors performed quite differently as compared to species C Ad vectors depending on the route of immunization. By intramuscular injection, species D vaccines were markedly weaker than species C vaccines. In contrast, the species D vaccines were equally efficient as species C when delivered mucosally by the intranasal route. Intranasal adenovirus vaccine doses as low as 10(8) virus particles per mouse induced complete protection against a stringent lethal challenge dose of influenza. These data support translation of species D adenoviruses as mucosal vaccines and highlight the fundamental effects of differences in virus tropism on vaccine applications. PMID:23991187

  12. Adenovirus Capsid-Based Anti-Cocaine Vaccine Prevents Cocaine from Binding to the Nonhuman Primate CNS Dopamine Transporter

    Maoz, Anat; Hicks, Martin J.; Vallabhjosula, Shankar; Synan, Michael; Kothari, Paresh J; Dyke, Jonathan P.; Ballon, Douglas J.; KaMinSky, Stephen M.; De, Bishnu P.; Rosenberg, Jonathan B; Martinez, Diana; Koob, George F.; Kim D. Janda; Crystal, Ronald G.

    2013-01-01

    Cocaine addiction is a major problem for which there is no approved pharmacotherapy. We have developed a vaccine to cocaine (dAd5GNE), based on the cocaine analog GNE linked to the capsid proteins of a serotype 5 adenovirus, designed to evoke anti-cocaine antibodies that sequester cocaine in the blood, preventing access to the CNS. To assess the efficacy of dAd5GNE in a large animal model, positron emission tomography (PET) and the radiotracer [11C]PE2I were used to measure cocaine occupancy ...

  13. A universal influenza A vaccine based on adenovirus expressing matrix-2 ectodomain and nucleoprotein protects mice from lethal challenge.

    Zhou, Dongming; Wu, Te-Lang; Lasaro, Marcio O; Latimer, Brian P; Parzych, Elizabeth M; Bian, Ang; Li, Yan; Li, Hua; Erikson, Jan; Xiang, Zhiquan; Ertl, Hildegund C J

    2010-12-01

    A universal influenza vaccine, designed to induce broadly cross-reactive immunity against current and future influenza A virus strains, is in critical demand to reduce the need for annual vaccinations with vaccines chosen upon predicting the predominant circulating viral strains, and to ameliorate the threat of cyclically occurring pandemics that have, in the past, killed tens of millions. Here, we describe a vaccine regimen based on sequential immunization with two serologically distinct chimpanzee-derived replication-defective adenovirus (Ad) vectors expressing the matrix-2 protein ectodomain (M2e) from three divergent strains of influenza A virus fused to the influenza virus nucleoprotein (NP) for induction of antibodies to M2e and virus-specific CD8(+) T cells to NP. In preclinical mouse models, the Ad vaccines expressing M2e and NP elicit robust NP-specific CD8(+) T-cell responses and moderate antibody responses to all three M2e sequences. Most importantly, vaccinated mice are protected against morbidity and mortality following challenge with high doses of different influenza virus strains. Protection requires both antibodies to M2e and cellular immune responses to NP. PMID:20877342

  14. Modeling pre-existing immunity to adenovirus in rodents: immunological requirements for successful development of a recombinant adenovirus serotype 5-based ebola vaccine.

    Choi, Jin Huk; Schafer, Stephen C; Zhang, Lihong; Juelich, Terry; Freiberg, Alexander N; Croyle, Maria A

    2013-09-01

    Pre-existing immunity (PEI) to human adenovirus serotype 5 (Ad5) worldwide is the primary limitation to routine clinical use of Ad5-based vectors in immunization platforms. Using systemic and mucosal PEI induction models in rodents (mice and guinea pigs), we assessed the influence of PEI on the type of adaptive immune response elicited by an Ad5-based vaccine for Ebola with respect to immunization route. Splenocytes isolated from vaccinated animals revealed that immunization by the same route in which PEI was induced significantly compromised Ebola Zaire glycoprotein (ZGP)-specific IFN-γ+ CD8+ T cells and ZGP-specific multifunctional CD8+ T cell populations. ZGP-specific IgG1 antibody levels were also significantly reduced and a sharp increase in serum anti-Ad5 neutralizing antibody (NAB) titers were noted following immunization. These immune parameters correlated with poor survival after lethal challenge with rodent-adapted Ebola Zaire virus (ZEBOV). Although the number of IFN-γ+ CD8+ T cells was reduced in animals given the vaccine by a different route from that used for PEI induction, the multifunctional CD8+ T cell response was not compromised. Survival rates in these groups were higher than when PEI was induced by the same route as immunization. These results suggest that antigen-specific multifunctional CD8(+) T cell and Th2 type antibody responses compromised by PEI to Ad5 are required for protection from Ebola. They also illustrate that methods for induction of PEI used in preclinical studies must be carefully evaluated for successful development of novel Ad5-based vaccines. PMID:23915419

  15. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. PMID:23867013

  16. Vaccine Design: Replication-Defective Adenovirus Vectors.

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies. PMID:27076309

  17. Progress on adenovirus-vectored universal influenza vaccines.

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  18. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy.

    Isabela Resende Pereira

    2015-01-01

    Full Text Available Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd carrying sequences of amastigote surface protein-2 (rAdASP2 and trans-sialidase (rAdTS T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi, when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFNγ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi and the boost (analysis at 180 and 230 dpi. Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28, CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells

  19. A Single Dose Respiratory Recombinant Adenovirus-Based Vaccine Provides Long-Term Protection for Non-Human Primates from Lethal Ebola Infection

    Choi, Jin Huk; Jonsson-Schmunk, Kristina; Qiu, Xiangguo; Shedlock, Devon J.; Strong, Jim; Xu, Jason X.; Michie, Kelly L.; Audet, Jonathan; Fernando, Lisa; Myers, Mark J.; Weiner, David; Bajrovic, Irnela; Tran, Lilian Q.; Wong, Gary; Bello, Alexander

    2014-01-01

    As the Ebola outbreak in West Africa continues and cases appear in the United States and other countries, the need for long-lasting vaccines to preserve global health is imminent. Here, we evaluate the long-term efficacy of a respiratory and sublingual (SL) adenovirus-based vaccine in non-human primates in two phases. In the first, a single respiratory dose of 1.4 × 109 infectious virus particles (ivp)/kg of Ad-CAGoptZGP induced strong Ebola glycoprotein (GP) specific CD8+ and CD4+ T cell res...

  20. Nasal Delivery of an Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Immune Response in Mice

    Croyle, Maria A.; Patel, Ami; Tran, Kaylie N.; Gray, Michael; ZHANG Yi; Strong, James E.; Feldmann, Heinz; Kobinger, Gary P.

    2008-01-01

    Pre-existing immunity to human adenovirus serotype 5 (Ad5) is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M.), nasal (I.N.) or oral (P.O.) route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP) fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-γ+ CD8+ T cells was reduced by 80% and ...

  1. Assessment of route of administration and dose escalation for an adenovirus-based influenza A Virus (H5N1) vaccine in chickens.

    Steitz, Julia; Wagner, Robert A; Bristol, Tyler; Gao, Wentao; Donis, Ruben O; Gambotto, Andrea

    2010-09-01

    Highly pathogenic avian influenza (HPAI) virus causes one of the most economically devastating poultry diseases. An HPAI vaccine to prevent the disease in commercial and backyard birds must be effective, safe, and inexpensive. Recently, we demonstrated the efficacy of an adenovirus-based H5N1 HPAI vaccine (Ad5.HA) in chickens. To further evaluate the potential of the Ad5.HA vaccine and its cost-effectiveness, studies to determine the minimal effective dose and optimal route of administration in chickens were performed. A dose as low as 10(7) viral particles (vp) of adenovirus-based H5N1 vaccine per chicken was sufficient to generate a robust humoral immune response, which correlated with the previously reported level of protection. Several routes of administration, including intratracheal, conjunctival, subcutaneous, and in ovo routes, were evaluated for optimal vaccine administration. However, only the subcutaneous route of immunization induced a satisfactory level of influenza virus-specific antibodies. Importantly, these studies established that the vaccine-induced immunity was cross-reactive against an H5N1 strain from a different clade, emphasizing the potential of cross-protection. Our results suggest that the Ad5.HA HPAI vaccine is safe and effective, with the potential of cross-clade protection. The ease of manufacturing and cost-effectiveness make Ad5.HA an excellent avian influenza vaccine candidate with the ability to protect poultry from HPAI virus infection. Considering the limitations of the influenza vaccine technology currently used for poultry applications, any effort aimed at overcoming those limitations is highly significant. PMID:20660133

  2. Adenovirus-based vaccine against Listeria monocytogenes

    Jensen, Søren; Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech;

    2013-01-01

    bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP......, vaccination of C57BL/6 (L. monocytogenes-resistant) and BALB/c (L. monocytogenes-susceptible) mice with adenoviral vectors encoding natural L. monocytogenes-derived soluble Ags (listeriolysin O and p60) revealed that tethering of these Ags to Ii markedly improved the vaccine-induced CD8(+) T cell response to...... two of three epitopes studied. More importantly, Ii linkage accelerated and augmented vaccine-induced protection in both mouse strains and prolonged protection, in particular that induced by the weak Ag, p60, in L. monocytogenes-susceptible BALB/c mice....

  3. A Single Dose Respiratory Recombinant Adenovirus-Based Vaccine Provides Long-Term Protection for Non-Human Primates from Lethal Ebola Infection.

    Choi, Jin Huk; Jonsson-Schmunk, Kristina; Qiu, Xiangguo; Shedlock, Devon J; Strong, Jim; Xu, Jason X; Michie, Kelly L; Audet, Jonathan; Fernando, Lisa; Myers, Mark J; Weiner, David; Bajrovic, Irnela; Tran, Lilian Q; Wong, Gary; Bello, Alexander; Kobinger, Gary P; Schafer, Stephen C; Croyle, Maria A

    2015-08-01

    As the Ebola outbreak in West Africa continues and cases appear in the United States and other countries, the need for long-lasting vaccines to preserve global health is imminent. Here, we evaluate the long-term efficacy of a respiratory and sublingual (SL) adenovirus-based vaccine in non-human primates in two phases. In the first, a single respiratory dose of 1.4×10(9) infectious virus particles (ivp)/kg of Ad-CAGoptZGP induced strong Ebola glycoprotein (GP) specific CD8+ and CD4+ T cell responses and Ebola GP-specific antibodies in systemic and mucosal compartments and was partially (67%) protective from challenge 62 days after immunization. The same dose given by the SL route induced Ebola GP-specific CD8+ T cell responses similar to that of intramuscular (IM) injection, however, the Ebola GP-specific antibody response was low. All primates succumbed to infection. Three primates were then given the vaccine in a formulation that improved the immune response to Ebola in rodents. Three primates were immunized with 2.0×10(10) ivp/kg of vaccine by the SL route. Diverse populations of polyfunctional Ebola GP-specific CD4+ and CD8+ T cells and significant anti-Ebola GP antibodies were present in samples collected 150 days after respiratory immunization. The formulated vaccine was fully protective against challenge 21 weeks after immunization. While diverse populations of Ebola GP-specific CD4+ T cells were produced after SL immunization, antibodies were not neutralizing and the vaccine was unprotective. To our knowledge, this is the first time that durable protection from a single dose respiratory adenovirus-based Ebola vaccine has been demonstrated in primates. PMID:25363619

  4. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus

    Helin Li; Pengbo Ning; Zhi Lin; Wulong Liang; Kai Kang; Lei He; Yanming Zhang

    2015-03-01

    The use of adenovirus vector-based vaccines is a promising approach for generating antigen-specific immune responses. Improving vaccine potency is necessary in other approaches to address their inadequate protection for the majority of infectious diseases. This study is the first to reconstruct a recombinant replication-defective human adenovirus co-expressing E2 and invasin C-terminal (InvC) glycoproteins (rAd-E2-InvC). rAd-E2-InvC with 2×106 TCID50 was intramuscularly administered two times to CSFV-free pigs at 14 day intervals. No adverse clinical reactions were observed in any of the pigs after the vaccination. The CSFV E2-specific antibody titer was significantly higher in the rAd-E2-InvC group than that in the rAdV-E2 group as measured by NPLA and blocking ELISA. Pigs immunized with rAd-E2-InvC were completely protected against lethal challenge. Neither CSFV RNA nor pathological changes were detected in the tissues after CSFV challenge. These results demonstrate that rAd-E2-InvC could be an alternative to the existing CSF vaccine. Moreover, InvC that acts as an adjuvant could enhance the immunogenicity of rAdV-E2 and induce high CSFV E2-specific antibody titer and protection level.

  5. An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models.

    Scallan, Ciaran D; Tingley, Debora W; Lindbloom, Jonathan D; Toomey, James S; Tucker, Sean N

    2013-01-01

    An oral gene-based avian influenza vaccine would allow rapid development and simplified distribution, but efficacy has previously been difficult to achieve by the oral route. This study assessed protection against avian influenza virus challenge using a chimeric adenovirus vector expressing hemagglutinin and a double-stranded RNA adjuvant. Immunized ferrets and mice were protected upon lethal challenge. Further, ferrets immunized by the peroral route induced cross-clade neutralizing antibodies, and the antibodies were selective against hemagglutinin, not the vector. Similarly, experiments in mice demonstrated selective immune responses against HA with peroral delivery and the ability to circumvent preexisting vector immunity. PMID:23155123

  6. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    Wold, William S.M.; Toth, Karoly

    2013-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vector...

  7. A Tetravalent Dengue Vaccine Based on a Complex Adenovirus Vector Provides Significant Protection in Rhesus Monkeys against All Four Serotypes of Dengue Virus▿

    Raviprakash, Kanakatte; Wang, Danher; Ewing, Dan; Holman, David H.; Block, Karla; Woraratanadharm, Jan; Chen, Lan; Hayes, Curtis; Dong., John Y.; Porter, Kevin

    2008-01-01

    Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vect...

  8. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  9. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  10. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  11. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8+ T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  12. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge.

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-12-20

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8(+) T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains. PMID:19836045

  13. Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time.

    Vemula, Sai V; Amen, Omar; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-12-26

    Reports of human infections with highly pathogenic H5N1 avian influenza viruses in many countries in Asia and Africa with varying case fatality rates highlight the pandemic potential of these viruses. In order to contain a rapidly spreading influenza virus in a pandemic scenario, a vaccine which can induce rapid and robust immune responses, preferably in a single dose, is necessary. Murine beta-defensin 2 (Mbd2), a small molecular weight protein expressed by epithelial cells, has been shown to enhance antigen-specific immune responses by recruiting and activating professional antigen presenting cells to the site of vaccination. This study assessed the potential of Mbd2 to enhance the immunogenicity and protective efficacy of a human adenovirus (HAd)-based vaccine expressing the hemagglutinin (HA) and nucleoprotein (NP) [HAd-HA-NP] of an H5N1 influenza virus. A single inoculation of mice with both HAd-HA-NP and a HAd vector expressing Murine β-defensin 2 (HAd-Mbd2) resulted in significantly higher levels of both humoral and cell-mediated immune responses compared to the groups vaccinated only with HAd-HA-NP. These responses were evident even at day 7 post-immunization. Furthermore, the HAd-HA-NP+HAd-Mbd2-immunized group receiving the lowest vector dose (2 × 10(7)+1 × 10(7)) was completely protected against an rgH5N1 virus challenge on day 7 post-vaccination. These results highlight the potential of Mbd2 as a genetic adjuvant in inducing rapid and robust immune responses to a HAd-based vaccine. PMID:24051000

  14. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  15. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    2010-01-01

    ... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell... hepatitis, the test is inconclusive and may be repeated. (B) If at least 19 of the 20 vaccinates do...

  16. Protective Efficacy of a Single Immunization of a Chimeric Adenovirus Vector-Based Vaccine against Simian Immunodeficiency Virus Challenge in Rhesus Monkeys▿

    Barouch, Dan H.; Liu, Jinyan; Lynch, Diana M; O'Brien, Kara L.; La Porte, Annalena; Simmons, Nathaniel L.; Riggs, Ambryice M.; Clark, Sarah; Abbink, Peter; Montefiori, David C.; Landucci, Gary; Forthal, Donald N.; Self, Steven G.; Carville, Angela; Mansfield, Keith

    2009-01-01

    Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine de...

  17. Biodistribution and Toxicological Safety of Adenovirus Type 5 and Type 35 Vectored Vaccines Against Human Immunodeficiency Virus-1 (HIV-1), Ebola, or Marburg Are Similar Despite Differing Adenovirus Serotype Vector, Manufacturer's Construct, or Gene Inserts

    Sheets, Rebecca L.; Stein, Judith; Bailer, Robert T.; Koup, Richard A.; Andrews, Charla; Nason, Martha; He, Bin; Koo, Edward; Trotter, Holly; Duffy, Chris; Manetz, T. Scott; Gomez, Phillip

    2008-01-01

    The Vaccine Research Center has developed vaccine candidates for different diseases/infectious agents (including HIV-1, Ebola, and Marburg viruses) built on an adenovirus vector platform, based on adenovirus type 5 or 35. To support clinical development of each vaccine candidate, pre-clinical studies were performed in rabbits to determine where in the body they biodistribute and how rapidly they clear, and to screen for potential toxicities (intrinsic and immunotoxicities). The vaccines biodi...

  18. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses.

    Holman, David H; Wang, Danher; Raja, Nicholas U; Luo, Min; Moore, Kevin M; Woraratanadharm, Jan; Mytle, Nutan; Dong, John Y

    2008-05-19

    There are legitimate concerns that the highly pathogenic H5N1 avian influenza virus could adapt for human-to-human transmission and cause a pandemic similar to the 1918 "Spanish flu" that killed 50 million people worldwide. We have developed pandemic influenza vaccines by incorporating multiple antigens from both avian and Spanish influenza viruses into complex recombinant adenovirus vectors. In vaccinated mice, these vaccines induced strong humoral and cellular immune responses against pandemic influenza virus antigens, and protected vaccinated mice against lethal H5N1 virus challenge. These results indicate that this multi-antigen, broadly protective vaccine may serve as a safer and more effective approach than traditional methods for development of a pandemic influenza vaccine. PMID:18395306

  19. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever.

    Warimwe, George M; Gesharisha, Joseph; Carr, B Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K; Al-dubaib, Musaad A; Brun, Alejandro; Gilbert, Sarah C; Nene, Vishvanath; Hill, Adrian V S

    2016-01-01

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs. PMID:26847478

  20. A CD46-binding chimpanzee adenovirus vector as a vaccine carrier.

    Tatsis, Nia; Blejer, Ariella; Lasaro, Marcio O; Hensley, Scott E; Cun, Ann; Tesema, Lello; Li, Yan; Gao, Guang-Ping; Xiang, Zhi Q; Zhou, Dongming; Wilson, James M; Ertl, Hildegund C J

    2007-03-01

    A replication-defective chimeric vector based on the chimpanzee adenovirus serotype C1 was developed and tested as a vaccine carrier in mice. The AdC1 virus is closely related to human adenoviruses of subgroup B2 and uses CD46 for cell attachment. To overcome poor growth of E1-deleted AdC1 vectors on cell lines that provide the E1 of adenovirus of the human serotype 5 (AdHu5) virus in trans, the inverted terminal repeats and some of the early genes of AdC1 were replaced with those from AdC5, a chimpanzee origin adenovirus of subfamily E. The chimeric AdC1/C5 vector efficiently transduces CD46-expressing mouse dendritic cells (DCs) in vitro and initiates their maturation. Transduction of DCs in vivo is inefficient in CD46 transgenic mice. The AdC1/C5 vector induces transgene product-specific B- and CD8(+) T-cell responses in mice. Responses are slightly higher in wild-type mice than in CD46 transgenic mice. Transgene product-specific T-cell responses elicited by the AdC1/C5 vector can be increased by priming or boosting with a heterologous adenovirus vector. Pre-existing immunity to adenovirus of the common human serotype 5 does not affect induction of cell-mediated immune responses by the AdC1/C5 vector. This vector provides an additional tool in a repertoire of adenovirus-based vaccine vectors. PMID:17228314

  1. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (Adenovirus Vaccine) in the context of the Department of Defense acquisition system.

    Hoke, Charles H; Snyder, Clifford E

    2013-03-15

    Respiratory pathogens cause morbidity and mortality in US military basic trainees. Following the influenza pandemic of 1918, and stimulated by WWII, the need to protect military personnel against epidemic respiratory disease was evident. Over several decades, the US military elucidated etiologies of acute respiratory diseases and invented and deployed vaccines to prevent disease caused by influenza, meningococcus, and adenoviruses. In 1994, the Adenovirus Vaccine manufacturer stopped its production. By 1999, supplies were exhausted and adenovirus-associated disease, especially serotype 4-associated febrile respiratory illness, returned to basic training installations. Advisory bodies persuaded Department of Defense leaders to initiate restoration of Adenovirus Vaccine. In 2011, after 10 years of effort by government and contractor personnel and at a cost of about $100 million, the Adenovirus Vaccine was restored to use at all military basic training installations. Disease and adenovirus serotype 4 isolation rates have fallen dramatically since vaccinations resumed in October 2011 and remain very low. Mindful of the adage that "The more successful a vaccine is, the more quickly the need for it will be forgotten.", sustainment of the supply of the Adenovirus Vaccine may be a challenge, and careful management will be required for such sustainment. PMID:23291475

  2. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  3. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  4. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intr...

  5. Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats.

    Holzer, Barbara; Taylor, Geraldine; Rajko-Nenow, Paulina; Hodgson, Sophia; Okoth, Edward; Herbert, Rebecca; Toye, Philip; Baron, Michael D

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes an economically important disease of sheep and goats, primarily in developing countries. It is becoming the object of intensive international control efforts. Current vaccines do not allow vaccinated and infected animals to be distinguished (no DIVA capability). We have previously shown that recombinant, replication-defective, adenovirus expressing the PPRV H glycoprotein (AdH) gives full protection against wild type PPRV challenge. We have now tested lower doses of the vaccine, as well as AdH in combination with a similar construct expressing the PPRV F glycoprotein (AdF). We show here that, in a local breed of goat in a country where PPR disease is common (Kenya), as little as 10(7) pfu of AdH gives significant protection against PPRV challenge, while a vaccine consisting of 10(8) pfu of each of AdH and AdF gives apparently sterile protection. These findings underline the utility of these constructs as DIVA vaccines for use in PPR control. PMID:26796101

  6. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model.

    Patel, Ami; Tikoo, Suresh; Kobinger, Gary

    2010-01-01

    Human adenovirus 5 (AdHu5) vectors are robust vaccine platforms however the presence of naturally-acquired neutralizing antibodies may reduce vector efficacy and potential for re-administration. This study evaluates immune responses and protection following vaccination with a replication-incompetent porcine adenovirus 3 (PAV3) vector as an alternative vaccine to AdHu5 using an avian influenza H5N1 disease model. Vaccine efficacy was evaluated in BALB/c mice following vaccination with different doses of the PAV3 vector expressing an optimized A/Hanoi/30408/2005 H5N1 hemagglutinin antigen (PAV3-HA) and compared with an AdHu5-HA control. PAV3-HA rapidly generated antibody responses, with significant neutralizing antibody titers on day 21, and stronger cellular immune responses detected on day 8, compared to AdHu5-HA. The PAV3-HA vaccine, administered 8 days before challenge, demonstrated improved survival and lower virus load. Evaluation of long-term vaccine efficacy at 12 months post-vaccination showed better protection with the PAV3-HA than with the AdHu5-HA vaccine. Importantly, as opposed to AdHu5, PAV3 vector was not significantly neutralized by human antibodies pooled from over 10,000 individuals. Overall, PAV3-based vector is capable of mediating swift, strong immune responses and offer a promising alternative to AdHu5. PMID:21179494

  7. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  8. Enhancement of fibroblast activation protein α-based vaccines and adenovirus boost immunity by cyclophosphamide through inhibiting IL-10 expression in 4T1 tumor bearing mice.

    Xia, Qiu; Geng, Fei; Zhang, Fang-Fang; Liu, Chen-Lu; Xu, Ping; Lu, Zhen-Zhen; Zhang, Hai-Hong; Kong, Wei; Yu, Xiang-Hui

    2016-08-31

    Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts (CAFs) of more than 90% of malignant epithelia carcinomas. CAFs are the main type of cells in the tumor microenvironment which offer nutrition and protection to the tumor and regulate immunosuppression. To eliminate CAFs, a vaccine targeting FAPα may be used with a heterologous prime-boost strategy to enhance the FAPα-specific cellular immunity. Here, a FAP vaccine using a recombinant adenovirus (rAd) vector was constructed as well as a DNA vaccine reported in our previous work. Although the DNA prime-rAd boost strategy enhanced FAPα-specific immune responses, improvement of anti-tumor immunity effects was not observed. Examination of immunosuppressive factors revealed that high expression of the IL-10 cytokine was considered the main cause of the failure of the prime-boost strategy. However, heterologous vaccination in combination with a low-dose of cyclophosphamide (CY), which was reported to reduce IL-10 production and promote a shift from immunosuppression to immunopotentiation, resulted in enhanced effects in terms of numbers of effector T cells and tumor growth inhibition rates, compared to the CY alone or DNA alone group. Tumor growth was inhibited markedly when the prime-boost strategy was combined with CY in both the prophylactic and therapeutic settings and the survival time of 4T1 tumor bearing mice was also prolonged significantly. With the reduction of IL-10, enhancement of the anti-tumor effect by the prime-boost strategy was observed. These results suggest that FAPα-targeted rAd boosting in combination with CY is an attractive approach to overcoming immunosuppression in cancer vaccines. PMID:27498213

  9. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  10. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5

  11. Cellular Changes Induced by Adenovirus Vaccine Vectors Expressing Foot-and-Mouth Disease Virus Structural and Nonstructural Proteins

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen of cloven-hoofed animals including swine and bovines. The emergency control of outbreaks is dependent on rapid protection and prevention of virus spread. Adenovirus-based FMD subunit vaccines containing the coding region of viral ca...

  12. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  13. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  14. Adenovirus vectored vaccines against influenza a virus do not result in vaccine associated enhanced respiratory disease following heterologous challenge in contrast to whole inactivated virus vaccine

    Heterologous influenza A virus (IAV) challenge following vaccination with an intramuscular (IM) whole inactivated vaccine (WIV) can result in vaccine-associated enhanced respiratory disease (VAERD). The objective of this study was to use an adenovirus (Ad5) vector vaccine platform that expressed IAV...

  15. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  16. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus.

    Singh, Neetu; Pandey, Aseem; Jayashankar, Lakshmi; Mittal, Suresh K

    2008-05-01

    Because of the high prevalence of adenovirus (Ad) infections in humans, it is believed that pre-existing Ad-neutralizing antibodies (vector immunity) may negatively impact the immune response to vaccine antigens when delivered by human Ad (HAd) vectors. In order to evaluate whether bovine Ad subtype 3 (BAd3), a non-HAd vector, can effectively elude high levels of pre-existing vector immunity, naïve and HAd serotype 5 (HAd)-primed mice were immunized with BAd-H5HA [BAd3 vector expressing the hemagglutinin (HA) gene from H5N1 influenza virus]. Even in the presence of very high levels of HAd-specific neutralizing antibody, no significant reductions in HA-specific humoral and cell-mediated immune (CMI) responses were observed in HAd-primed mice immunized with BAd-H5HA. In naïve mice immunized with HAd-H5HA (HAd5 vector expressing H5N1 HA) and boosted with BAd-H5HA, the humoral responses elicited were significantly higher (P mice with BAd-H5HA bestowed full protection from morbidity and mortality following a potentially lethal challenge with A/Hong Kong/483/97. These results demonstrate the importance of BAd vectors as an alternate or supplement to HAd vectors for influenza pandemic preparedness. PMID:18301400

  17. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: vaccine potency, antibody persistence, and maternal antibody transfer.

    Mesonero, Alexander; Suarez, David L; van Santen, Edzard; Tang, De-Chu C; Toro, Haroldo

    2011-06-01

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high

  18. Vaccines within vaccines: the use of adenovirus types 4 and 7 as influenza vaccine vectors.

    Weaver, Eric A

    2014-01-01

    Adenovirus Types 4 and 7 (Ad4 and Ad7) are associated with acute respiratory distress (ARD). In order to prevent widespread Ad-associated ARD (Ad-ARD) the United States military immunizes new recruits using a safe and effective lyophilized wildtype Ad4 and Ad7 delivered orally in an enteric-coated capsule. We cloned Ad4 and Ad7 and modified them to express either a GFP-Luciferase (GFPLuc) fusion gene or a centralized influenza H1 hemagglutinin (HA1-con). BALB/c mice were injected with GFPLuc expressing viruses intramuscularly (i.m.) and intranasally (i.n.). Ad4 induced significantly higher luciferase expression levels as compared with Ad7 by both routes. Ad7 transduction was restored using a human CD46+ transgenic mouse model. Mice immunized with serial dilutions of viruses expressing the HA1-con influenza vaccine gene were challenged with 100 MLD 50 of influenza virus. Ad4 protected BALB/c mice at a lower dose by i.m. immunization as compared with Ad7. Unexpectedly, there was no difference in protection by i.n. immunization. Although Ad7 i.m. transduction was restored in CD46+ transgenic mice, protection against influenza challenge required even higher doses as compared with the BALB/c mice. However, Ad7 i.n. immunized CD46+ transgenic mice were better protected as compared with Ad4. Interestingly, the restoration of Ad7 transduction in CD46+ mice did not increase vaccine efficacy and indicates that Ad7 may transduce a different subset of cells through alternative receptors in the absence of CD46. These data indicate that both Ad4 and Ad7 can effectively induce anti-H1N1 immunity against a heterologous challenge using a centralized H1 gene. Future studies in non-human primates or human clinical trials will determine the overall effectiveness of Ad4 and Ad7 as vaccines for influenza. PMID:24280656

  19. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine

    Zeng, Mingtao; Xu, Qingfu; Elias, Md.; Pichichero, Michael E.; Simpson, Lance L.; Leonard A. Smith

    2007-01-01

    Botulinum neurotoxins cause botulism, a neuroparalytic disease in humans and animals. We constructed a replication-incompetent adenovirus encoding a synthesized codon-optimized gene for expression of the heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). This recombinant human serotype 5 adenoviral vector (Ad5) was evaluated as a genetic vaccine candidate against botulism caused by BoNT/C in a mouse model. A one-time intramuscular injection with 105 to 2 × 107 pfu of adeno...

  20. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  1. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines.

    Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B

    2014-03-01

    There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. PMID:24269321

  2. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induc...

  3. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines.

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV. PMID:26751211

  4. Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines

    Singh, Shakti; Vedi, Satish; Samrat, Subodh Kumar; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2016-01-01

    Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV. PMID:26751211

  5. Effect of Preexisting Immunity to Adenovirus Human Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors▿

    McCoy, Kimberly; Tatsis, Nia; Korioth-Schmitz, Birgit; Lasaro, Marcio O; Scott E Hensley; Lin, Shih-Wen; Li, Yan; Giles-Davis, Wynetta; Cun, Ann; Zhou, Dongming; Xiang, Zhiquan; Letvin, Norman L.; Hildegund C J Ertl

    2007-01-01

    In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T...

  6. Immunogenicity when utilizing adenovirus serotype 4 and 5 vaccines expressing circumsporozoite protein in naïve and Adenovirus (Ad5 immune mice

    Schuldt Nathaniel J

    2012-06-01

    Full Text Available Abstract Background Induction of potent long lasting effector T cell responses against liver stage malaria antigens strongly correlates with protection from malaria. While Adenovirus serotype 5 (Ad5 based malaria vaccine platforms have the ability to induce potent effector T cell responses against transgenes, high rates of pre-existing Ad5 immunity in malaria endemic regions has prompted study of alternative Ad serotype based malaria vaccines as replacements for Ad5 based malaria vaccines. The research described in this article examines the utility of alternative serotype adenovirus serotype 4 (Ad4 expressing a sporozoite surface protein (circumsporozoite protein (CSP (Ad4-CSP to induce immune responses against CSP. The immunogenicity of Ad4-CSP was also tested in homologous and heterologous prime boost vaccinations in both Ad5 naïve and Ad5 immune backgrounds as compared to use of Ad5-CSP. Results In Ad5 naïve animals, use of Ad4-CSP priming vaccinations followed by boosting with Ad5-CSP (Ad4-CSP/Ad5-CSP maximally increased the numbers of CSP specific cytokine secreting cytotoxic T cells relative to repeated use of Ad5-CSP. The Ad4-CSP/Ad5-CSP regimen also induced equivalent levels of CSP specific cell killing as did homologous prime-boost vaccinations with Ad5-CSP, despite stimulating lower numbers of CSP specific cytotoxic T cells. Priming with Ad4-CSP followed by a homologous boost resulted in significantly less CSP specific humoral responses than any other vaccination regimen tested in Ad naïve animals. In Ad5 immune animals, addition of Ad4-CSP in homologous or heterologous prime boost resulted in inductions of higher CSP specific responses than animals repeatedly vaccinated with Ad5-CSP alone. However, the observed responses were well below those observed in similarly treated Ad naïve mice. Conclusions While the Ad4-CSP/Ad5-CSP and Ad5-CSP/Ad5-CSP vaccination regimens resulted in equivalent CSP specific killing in Ad naïve animals

  7. Adenovirus serotype 5 vectored foot-and-mouth disease subunit vaccines: the first decade

    Here we present the results of the first decade of development of a replication-defective human adenovirus (Ad5) containing the capsid and 3C protease coding regions of foot-and-mouth disease virus (FMDV) as a vaccine candidate. In proof-of concept studies we demonstrated that a single inoculation w...

  8. CD46-mediated transduction of a species D adenovirus vaccine improves mucosal vaccine efficacy.

    Camacho, Zenaido T; Turner, Mallory A; Barry, Michael A; Weaver, Eric A

    2014-04-01

    The high levels of preexisting immunity against Adenovirus type 5 (Ad5) have deemed Ad5 unusable for translation as a human vaccine vector. Low seroprevalent alternative viral vectors may be less impacted by preexisting immunity, but they may also have significantly different phenotypes from that of Ad5. In this study we compare species D Ads (26, 28, and 48) to the species C Ad5. In vitro transduction studies show striking differences between the species C and D viruses. Most notably, Ad26 transduced human dendritic cells much more effectively than Ad5. In vivo imaging studies showed strikingly different transgene expression profiles. The Ad5 virus was superior to the species D viruses in BALB/c mice when delivered intramuscularly. However, the inverse was true when the viruses were delivered mucosally via the intranasal epithelia. Intramuscular transduction was restored in mice that ubiquitously expressed human CD46, the primary receptor for species D viruses. We analyzed both species C and D Ads for their ability to induce prophylactic immunity against influenza in the CD46 transgenic mouse model. Surprisingly, the species D vaccines again failed to induce greater levels of protective immunity as compared with the species C Ad5 when delivered intramuscularly. However, the species D Ad vaccine vector, Ad48, induced significantly greater protection as compared with Ad5 when delivered mucosally via the intranasal route in CD46 transgenic mice. These data shed light on the complexities between the species and types of Ad. Our findings indicate that more research will be required to identify the mechanisms that play a key role in the induction of protective immunity induced by species D Ad vaccines. PMID:24635714

  9. Adenovirus vaccine vectors expressing hepatitis B surface antigen: importance of regulatory elements in the adenovirus major late intron.

    Mason, B B; Davis, A R; Bhat, B M; Chengalvala, M; Lubeck, M D; Zandle, G; Kostek, B; Cholodofsky, S; Dheer, S; Molnar-Kimber, K

    1990-08-01

    Adenovirus types 4 and 7 are currently used as live oral vaccines for prevention of acute respiratory disease caused by these adenovirus serotypes. To investigate the concept of producing live recombinant vaccines using these serotypes, adenovirus types 4 (Ad4) and 7 (Ad7) were constructed that produce HBsAg upon infection of cell cultures. Ad4 recombinants were constructed that express HBsAg from a cassette inserted 135 bp from the right-hand terminus of the viral genome. The cassette contained the Ad4 major late promoter followed by leader 1 of the tripartite leader, the first intervening sequence between leaders 1 and 2, leaders 2 and 3, the HBsAg gene, and tandem polyadenylation signals from the Ad4 E3B and hexon genes. Using this same cassette, a series of Ad4 recombinants expressing HBsAg were constructed with deletions in the intervening sequence between leaders 1 and 2 to evaluate the contribution of the downstream control elements more precisely. Inclusion of regions located between +82 and +148 as well as +148 and +232 resulted in increases in expression levels of HBsAg in A549-infected cells by 22-fold and 44-fold, respectively, over the levels attained by an adenovirus recombinant retaining only sequences from +1 to +82, showing the importance of these elements in the activation of the major late promoter during the course of a natural Ad4 viral infection. Parallel increases were also observed in steady-state levels of cytoplasmic HBsAg-specific mRNA. When similar Ad7 recombinant viruses were constructed, these viruses also expressed 20-fold more HBsAg due to the presence of the intron. All Ad4 and Ad7 recombinants produced HBsAg particles containing gp27 and p24 which were secreted in the medium. When dogs were immunized intratracheally with one of these Ad7 recombinants, they seroconverted to both Ad7 and HBsAg to a high level. PMID:2371766

  10. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn;

    2007-01-01

    absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin......-linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed in the...

  11. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method

    Roy Chad J

    2011-11-01

    Full Text Available Abstract Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.

  12. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 107 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  13. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    Xiang, Z. Q.; Greenberg, L.; Ertl, H.C; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data dem...

  14. Bolstering Components of the Immune Response Compromised by Prior Exposure to Adenovirus: Guided Formulation Development for a Nasal Ebola Vaccine.

    Choi, Jin Huk; Schafer, Stephen C; Freiberg, Alexander N; Croyle, Maria A

    2015-08-01

    The severity and longevity of the current Ebola outbreak highlight the need for a fast-acting yet long-lasting vaccine for at-risk populations (medical personnel and rural villagers) where repeated prime-boost regimens are not feasible. While recombinant adenovirus (rAd)-based vaccines have conferred full protection against multiple strains of Ebola after a single immunization, their efficacy is impaired by pre-existing immunity (PEI) to adenovirus. To address this important issue, a panel of formulations was evaluated by an in vitro assay for their ability to protect rAd from neutralization. An amphiphilic polymer (F16, FW ∼39,000) significantly improved transgene expression in the presence of anti-Ad neutralizing antibodies (NAB) at concentrations of 5 times the 50% neutralizing dose (ND50). In vivo performance of rAd in F16 was compared with unformulated virus, virus modified with poly(ethylene) glycol (PEG), and virus incorporated into poly(lactic-co-glycolic) acid (PLGA) polymeric beads. Histochemical analysis of lung tissue revealed that F16 promoted strong levels of transgene expression in naive mice and those that were exposed to adenovirus in the nasal cavity 28 days prior to immunization. Multiparameter flow cytometry revealed that F16 induced significantly more polyfunctional antigen-specific CD8+ T cells simultaneously producing IFN-γ, IL-2, and TNF-α than other test formulations. These effects were not compromised by PEI. Data from formulations that provided partial protection from challenge consistently identified specific immunological requirements necessary for protection. This approach may be useful for development of formulations for other vaccine platforms that also employ ubiquitous pathogens as carriers like the influenza virus. PMID:25549696

  15. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  16. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age.

    Alphonse Ouédraogo

    Full Text Available BACKGROUND: Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa. METHODS: A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso. Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84 of 10(9, 10(10, 5X10(10, 10(11 vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination. Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140. RESULTS: Of the forty-eight subjects enrolled, forty-four (91.7% received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1% subjects. Severe (grade 3 laboratory abnormalities occurred in five (10.4% subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35. CONCLUSION: Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part

  17. Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults.

    Green, Christopher A; Scarselli, Elisa; Sande, Charles J; Thompson, Amber J; de Lara, Catherine M; Taylor, Kathryn S; Haworth, Kathryn; Del Sorbo, Mariarosaria; Angus, Brian; Siani, Loredana; Di Marco, Stefania; Traboni, Cinzia; Folgori, Antonella; Colloca, Stefano; Capone, Stefania; Vitelli, Alessandra; Cortese, Riccardo; Klenerman, Paul; Nicosia, Alfredo; Pollard, Andrew J

    2015-08-12

    Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses. We performed an open-label, dose escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intramuscular (IM) and intranasal (IN) administration of the adenovirus-vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralizing antibody titers rose in response to IM prime with PanAd3-RSV and after IM boost for individuals primed by the IN route. Circulating anti-F immunoglobulin G (IgG) and IgA antibody-secreting cells (ASCs) were observed after the IM prime and IM boost. RSV-specific T cell responses were increased after the IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. Interferon-γ (IFN-γ) secretion after boost was from both CD4(+) and CD8(+) T cells, without detectable T helper cell 2 (TH2) cytokines that have been previously associated with immune pathogenesis following exposure to RSV after the formalin-inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease. PMID:26268313

  18. Protection of chickens against avian influenza with nonreplicating adenovirus-vectored vaccine.

    Toro, H; Tang, D C

    2009-04-01

    Protective immunity against avian influenza (AI) virus has been elicited in chickens by single-dose in ovo or i.m. vaccination with a replication-competent adenovirus (Ad)-free human Ad vector encoding the AI virus A/Turkey/Wisconsin/68 H5 (AdTW68. H5) or the A/Chicken/New York/94 H7 (AdChNY94. H7) hemagglutinin (HA). The AdTW68.H5-vaccinated chickens were protected against both H5N1 and H5N2 highly pathogenic AI virus challenges. The AdChNY94. H7-vaccinated chickens were protected against an H7N3 highly pathogenic avian influenza virus challenge. Chickens vaccinated in ovo with AdTW68.H5 followed by posthatch i.m. vaccination with AdChNY94.H7 responded to both vaccinations, with robust antibody titers against both the H5 and H7 AI proteins. The use of a synthetic AI H5 HA gene codon optimized to match the tRNA pool found in chicken cells is more potent than the cognate H5 HA gene. Mass administration of this AI vaccine can be streamlined with available robotic in ovo injectors. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of the nonreplicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination will not interfere with epidemiological surveys of natural AI infections. Finally, the demonstration that Ad-vectored vaccines can be administered repeatedly without appreciably losing potency highlights the commercial potential of this new class of vaccine in poultry. PMID:19276437

  19. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard; Sørensen, Maria Rathmann

    2008-01-01

    potent and versatile Ag delivery vehicles available. However, the impact of chronic infections like HIV and hepatitis C virus underscore the need for further improvements. In this study, we show that the protective immune response to an adenovirus-encoded vaccine Ag can be accelerated, enhanced......, broadened, and prolonged by tethering of the rAg to the MHC class II-associated invariant chain (Ii). Thus, adenovirus-vectored vaccines expressing lymphocytic choriomeningitis virus (LCMV)-derived glycoprotein linked to Ii increased the CD4+ and CD8+ T cell stimulatory capacity in vitro and in vivo....... Furthermore, mice vaccinated with a single dose of adenovirus-expressing LCMV-derived glycoprotein linked to Ii were protected against lethal virus-induced choriomeningitis, lethal challenge with strains mutated in immunodominant T cell epitopes, and systemic infection with a highly invasive strain. In...

  20. Mucosal vaccination with recombinant adenovirus encoding nucleoprotein provides potent protection against influenza virus infection.

    Kim, So-Hee; Kim, Joo Young; Choi, Youngjoo; Nguyen, Huan H; Song, Man Ki; Chang, Jun

    2013-01-01

    Influenza vaccines that target the highly variable surface glycoproteins hemagglutinin and neuraminidase cause inconvenience of having vaccination every year. For this reason, development of universal vaccines targeting conserved viral components is needed. In this study, we generated recombinant adenovirus (rAd) vaccine encoding nucleoprotein (NP) of A/PR/8/34 influenza virus, designated rAd/NP. BALB/c mice were immunized intranasally or sublingually with rAd/NP vaccine and subsequently challenged with lethal doses of heterologous as well as homologous influenza viruses. We found that intranasal immunization of rAd/NP elicited strong mucosal IgA responses as well as stronger CD8 T-cell responses toward immunodominant K(d)-restricted NP147-155 epitope than sublingual immunization. Importantly, only single intranasal but not sublingual immunization of rAd/NP provides potent protection against both homologous and heterologous influenza virus challenges. These results suggest that recombinant rAd/NP could be a universal vaccine candidate for mucosal administration against influenza virus. PMID:24086536

  1. Protection of non-human primates against rabies with an adenovirus recombinant vaccine.

    Xiang, Z Q; Greenberg, L; Ertl, H C; Rupprecht, C E

    2014-02-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  2. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge.

    Schutta, Christopher; Barrera, José; Pisano, Melia; Zsak, Laszlo; Grubman, Marvin J; Mayr, Gregory A; Moraes, Mauro P; Kamicker, Barbara J; Brake, David A; Ettyreddy, Damodar; Brough, Douglas E; Butman, Bryan T; Neilan, John G

    2016-06-01

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge. PMID:26707216

  3. Hexon-modified recombinant E1-deleted adenovirus vectors as dual specificity vaccine carriers for influenza virus.

    Zhou, Dongming; Wu, Te-Lang; Emmer, Kristel L; Kurupati, Raj; Tuyishime, Steven; Li, Yan; Giles-Davis, Wynetta; Zhou, Xiangyang; Xiang, Zhiquan; Liu, Qin; Ratcliffe, Sarah J; Ertl, Hildegund C J

    2013-03-01

    To determine if an ordered and repetitive display of an epitope promoted induction of superior antibody responses, we compared B-cell responses to an influenza A virus epitope that was either encoded as a transgene by an adenovirus (Ad) vector or expressed on the vector's surface. To this end, we constructed a panel of influenza A virus vaccines based on chimpanzee-derived replication-defective adenovirus (AdC) vectors of serotype SAd-V25 also called AdC68. AdC68 vectors were modified to express a linear B-cell epitope of the ectodomain of matrix 2 (M2e) within variable regions 1 (VR1) or 4 (VR4) of the adenovirus hexon. Additional vectors with wild-type or M2e-modified hexon encoded M2e fused to the influenza A virus nucleoprotein (NP) as a transgene product. Hexon-modified vectors were tested for immunogenicity and efficacy in mice in comparison to vectors with native hexon expressing the M2e-NP fusion protein. Upon priming, vectors expressing M2e within VR1 of hexon induced M2e-specific antibody responses of higher magnitude and avidity than those carrying M2e within VR4 or vectors expressing the M2e as part of a transgene product. CD8(+) T-cell responses to the transgenic NP were comparable between vectors. M2e-specific antibody responses could be boosted by a second dose of the VR1 hexon-modified vector but not by repeated immunization with the VR4 hexon-modified vector. PMID:23229092

  4. Approaches for genetic purity testing of live recombinant viral vaccines using a human adenovirus:rabies model.

    Lutze-Wallace, C; Sapp, T; Nadin-Davis, S A; Wandeler, A

    1992-01-01

    A two part purity testing regimen for genetically engineered live viral vaccines is described using a human adenovirus 5: rabies glycoprotein gene recombinant as a model vaccine. Initially, restriction endonuclease analysis of the recombinant viral genome verified the integrity of the recombinant construct and identified the vector genome. The second stage employed the polymerase chain reaction to facilitate a more detailed study of the target rabies glycoprotein cassette. The size of the tar...

  5. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization.

    Gao, Wentao; Soloff, Adam C; Lu, Xiuhua; Montecalvo, Angela; Nguyen, Doan C; Matsuoka, Yumi; Robbins, Paul D; Swayne, David E; Donis, Ruben O; Katz, Jacqueline M; Barratt-Boyes, Simon M; Gambotto, Andrea

    2006-02-01

    The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza. PMID:16439551

  6. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine.

    Liu, Ye; Zhang, Shoufeng; Ma, Guangpeng; Zhang, Fei; Hu, Rongliang

    2008-10-01

    Rabies infections in swine have been reported occasionally in recent years in certain geographic locations. Although a protective vaccine consisting of inactivated rabies virus is available for use in swine, searching for a more economically viable formulation for use in developing countries is always a priority. This work describes the testing of a canine adenovirus that expresses a rabies viral epitope (CAV-2-E3Delta-RGP) in a porcine rabies model. The data presented here show that the recombinant viral vaccine was effective in protecting swine against rabies if administered intramuscularly, but not orally or intranasally, and that protection was probably related to the development of a humoral response that lasted at least 28 weeks. Following vaccination, no behavioral abnormalities were observed in vaccinated swine and virus particles were not detected in either tissues or body fluids, indicating that this formulation was safe. The recombinant virus stimulated an effective level of antibody response in the immunized swine after a single intramuscular inoculation. PMID:18721839

  7. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    Wee, Sunmee; Hicks, Martin J.; De, Bishnu P.; Rosenberg, Jonathan B; Moreno, Amira Y.; KaMinSky, Stephen M.; Kim D. Janda; Crystal, Ronald G.; Koob, George F.

    2011-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexano...

  8. An Adenovirus-Vectored Nasal Vaccine Confers Rapid and Sustained Protection against Anthrax in a Single-Dose Regimen

    Zhang, Jianfeng; Jex, Edward; Feng, Tsungwei; Sivko, Gloria S.; Baillie, Leslie W.; Goldman, Stanley; Van Kampen, Kent R; Tang, De-chu C.

    2013-01-01

    Bacillus anthracis is the causative agent of anthrax, and its spores have been developed into lethal bioweapons. To mitigate an onslaught from airborne anthrax spores that are maliciously disseminated, it is of paramount importance to develop a rapid-response anthrax vaccine that can be mass administered by nonmedical personnel during a crisis. We report here that intranasal instillation of a nonreplicating adenovirus vector encoding B. anthracis protective antigen could confer rapid and sust...

  9. Intranasal Mucosal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances the Protection of BCG-Primed Guinea Pigs against Pulmonary Tuberculosis

    Xing, Zhou; McFarland, Christine T.; Sallenave, Jean-Michel; Izzo, Angelo; Wang, Jun; McMURRAY, David N.

    2009-01-01

    Background Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. Methods and Findings Specific pathogen-free guinea pigs were immuniz...

  10. Alphavirus-Based Vaccines.

    Lundstrom, Kenneth

    2016-01-01

    Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus. PMID:27076308

  11. Cellular based cancer vaccines

    Hansen, Morten; Met, O; Svane, I M;

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  12. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies.

    Lo, Chia-Yun; Wu, Zhengqi; Misplon, Julia A; Price, Graeme E; Pappas, Claudia; Kong, Wing-Pui; Tumpey, Terrence M; Epstein, Suzanne L

    2008-04-16

    Influenza epidemics or pandemics can arise for which strain- or subtype-matched vaccines are unavailable. Heterosubtypic immunity (Het-I) targeting conserved influenza A antigens could reduce morbidity and mortality during preparation of matched vaccines. Various vaccines inducing Het-I in animals have been studied separately using different viruses and conditions, but effectiveness for inducing Het-I has not been directly compared. The present studies compared immunization with cold-adapted (ca) viruses to DNA prime-recombinant adenovirus (rAd) boost vaccination to conserved antigens nucleoprotein (NP), matrix-2 (M2), or A/NP+M2. Both ca and DNA-rAd vaccinations induced antibody and T cell responses, and protected against lethal H1N1 challenge. Only A/NP+M2 DNA-rAd protected against challenge with highly pathogenic A/Vietnam/1203/2004 (H5N1); ca vaccine did not. Existing ca vaccines may provide some Het-I, but experimental vaccination focusing on conserved antigens was more effective in this model for protection against a divergent, highly pathogenic virus. PMID:18378366

  13. A Promising Trigene Recombinant Human Adenovirus Vaccine Against Classical Swine Fever Virus.

    Li, Helin; Gao, Rui; Zhang, Yanming

    2016-05-01

    Classical swine fever (CSF) vaccine based on HAdV-5 had achieved an efficient protection in swine. Both classical swine fever virus (CSFV) E0 glycoprotein and E2 glycoprotein were the targets for neutralizing antibodies and related to immune protection against CSF. Interleukin-2 (IL2), as an adjuvant, also had been used in CSF vaccine research. In this study, coexpression of the CSFV E0, E2, and IL2 genes by HAdV-5 (rAdV-E0-E2-IL2) was constructed and immunized to evaluate its efficacy. Three expressed genes had been sequentially connected with foot-and-mouth disease virus 2A (FMDV 2A). The vaccine was administered by intramuscular inoculation to CSFV-free pigs (10(8) TCID50) twice at triweekly intervals. No adverse clinical signs were observed in any of the pigs after vaccination. The vaccine induced strong humoral and cellular responses that led to complete protection against clinical signs of lethal CSFV infection, viremia, and shedding of challenge virus. The rAdV-E0-E2-IL2 is a promising, efficient, and safe marker vaccine candidate against CSFV. PMID:26918463

  14. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens.

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian Vs; Lambe, Teresa; Gilbert, Sarah C

    2014-03-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  15. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection

    Valdivia-Olarte, Hugo; Requena, David; Ramirez, Manuel; Saravia, Luis E; Izquierdo, Ray; Falconi-Agapito, Francesca; Zavaleta, Milagros; Best, Iván; Fernández-Díaz, Manolo; Zimic, Mirko

    2015-01-01

    Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each gen...

  16. Evaluation of a Fiber-Modified Adenovirus Vector Vaccine against Foot-and-Mouth Disease in Cattle

    Medina, Gisselle N.; Montiel, Nestor; Diaz-San Segundo, Fayna; Sturza, Diego; Ramirez-Medina, Elizabeth; Grubman, Marvin J.

    2015-01-01

    Novel vaccination approaches against foot-and-mouth disease (FMD) include the use of replication-defective human adenovirus type 5 (Ad5) vectors that contain the capsid-encoding regions of FMD virus (FMDV). Ad5 containing serotype A24 capsid sequences (Ad5.A24) has proved to be effective as a vaccine against FMD in livestock species. However, Ad5-vectored FMDV serotype O1 Campos vaccine (Ad5.O1C.2B) provides only partial protection of cattle against homologous challenge. It has been reported that a fiber-modified Ad5 vector expressing Arg-Gly-Asp (RGD) enhances transduction of antigen-presenting cells (APC) in mice. In the current study, we assessed the efficacy of a fiber-modified Ad5 (Adt.O1C.2B.RGD) in cattle. Expression of FMDV capsid proteins was superior in cultured cells infected with the RGD-modified vector. Furthermore, transgene expression of Adt.O1C.2B.RGD was enhanced in cell lines that constitutively express integrin αvβ6, a known receptor for FMDV. In contrast, capsid expression in cattle-derived enriched APC populations was not enhanced by infection with this vector. Our data showed that vaccination with the two vectors yielded similar levels of protection against FMD in cattle. Although none of the vaccinated animals had detectable viremia, FMDV RNA was detected in serum samples from animals with clinical signs. Interestingly, CD4+ and CD8+ gamma interferon (IFN-γ)+ cell responses were detected at significantly higher levels in animals vaccinated with Adt.O1C.2B.RGD than in animals vaccinated with Ad5.O1C.2B. Our results suggest that inclusion of an RGD motif in the fiber of Ad5-vectored FMD vaccine improves transgene delivery and cell-mediated immunity but does not significantly enhance vaccine performance in cattle. PMID:26607309

  17. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  18. Alphavirus-Based Vaccines

    Kenneth Lundstrom

    2014-06-01

    Full Text Available Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.

  19. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines. PMID:23536756

  20. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Alessandra Vitelli

    Full Text Available Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP and matrix 1 (M1. We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  1. A Complex Adenovirus-Vectored Vaccine against Rift Valley Fever Virus Protects Mice against Lethal Infection in the Presence of Preexisting Vector Immunity▿

    Holman, David H.; Penn-Nicholson, Adam; Wang, Danher; Woraratanadharm, Jan; Harr, Mary-Katherine; Luo, Min; Maher, Ellen M.; Holbrook, Michael R.; Dong, John Y.

    2009-01-01

    Rift Valley fever virus (RVFV) has been cited as a potential biological-weapon threat due to the serious and fatal disease it causes in humans and animals and the fact that this mosquito-borne virus can be lethal in an aerosolized form. Current human and veterinary vaccines against RVFV, however, are outdated, inefficient, and unsafe. We have incorporated the RVFV glycoprotein genes into a nonreplicating complex adenovirus (CAdVax) vector platform to develop a novel RVFV vaccine. Mice vaccina...

  2. The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus.

    Wang, Y.; Xiang, Z; Pasquini, S; Ertl, H. C.

    1997-01-01

    An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune respo...

  3. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H.; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R.

    2009-01-01

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We report here the use of a novel Ad5 platform to induce cellular immune responses (CMI) in Ad5 hyper immunized mice. The effectiveness of the Ad5 [E1−, E2b−] vaccine platform was evaluated using HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced foll...

  4. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years. PMID:26511884

  5. Polysaccharide-Based Vaccines

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  6. Utilizing the antigen capsid-incorporation strategy for the development of adenovirus serotype 5-vectored vaccine approaches.

    Gu, Linlin; Farrow, Anitra L; Krendelchtchikov, Alexandre; Matthews, Qiana L

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines. PMID:25993057

  7. Systemic and Mucosal T-Lymphocyte Activation Induced by Recombinant Adenovirus Vaccines in Rhesus Monkeys▿

    Sun, Yue; Bailer, Robert T.; Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Koup, Richard A.; Letvin, Norman L.

    2009-01-01

    The administration of vectors designed to elicited cell-mediated immune responses may have other consequences that are clinically significant. To explore this possibility, we evaluated T-cell activation during the first 2 months after recombinant adenovirus serotype 5 (rAd5) prime or boost immunizations in rhesus monkeys. We also evaluated the kinetics of T-lymphocyte activation in both the systemic and the mucosal compartments after rAd5 administration in monkeys with preexisting immunity to...

  8. Mucin-Based Vaccines

    Richardson, Jonathan P.; MacMillan, Derek

    Mucins are heavily O-glycosylated cell surface and secreted glycoproteins . In addition to orchestrating cell-extracellular matrix and cell-cell interactions in healthy organisms mucins are also the major carriers of altered glycosylation in carcinomas. Tumor-associated antigens displayed by cancer cells comprise oligosaccharide and glycopeptide motifs not encountered in the same locale or at the same frequency in healthy cells, and potentially confer a selective advantage to the tumor. Frequently tumor-associated antigens are under-glycosylated and prematurely sialylated, and it is these relatively simple saccharide and glycopeptide structures that have been targeted to serve as drug candidates in most cases. A major goal is to assemble glycopeptide vaccine candidates based on partial mucin sequences and displaying tumor-associated antigens that can mount a potent immunological tumor-specific response when, in reality, the tumor has already coerced the immune system into a state of co-existence.

  9. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza.

    Zhang, Jianfeng; Tarbet, E Bart; Feng, Tsungwei; Shi, Zhongkai; Van Kampen, Kent R; Tang, De-chu C

    2011-01-01

    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs. PMID:21818346

  10. Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs.

    Braucher, Douglas R; Henningson, Jamie N; Loving, Crystal L; Vincent, Amy L; Kim, Eun; Steitz, Julia; Gambotto, Andrea A; Kehrli, Marcus E

    2012-11-01

    Influenza A virus (IAV) is widely circulating in the swine population and causes significant economic losses. To combat IAV infection, the swine industry utilizes adjuvanted whole inactivated virus (WIV) vaccines, using a prime-boost strategy. These vaccines can provide sterilizing immunity toward homologous virus but often have limited efficacy against a heterologous infection. There is a need for vaccine platforms that induce mucosal and cell-mediated immunity that is cross-reactive to heterologous viruses and can be produced in a short time frame. Nonreplicating adenovirus 5 vector (Ad5) vaccines are one option, as they can be produced rapidly and given intranasally to induce local immunity. Thus, we compared the immunogenicity and efficacy of a single intranasal dose of an Ad5-vectored hemagglutinin (Ad5-HA) vaccine to those of a traditional intramuscular administration of WIV vaccine. Ad5-HA vaccination induced a mucosal IgA response toward homologous IAV and primed an antigen-specific gamma interferon (IFN-γ) response against both challenge viruses. The Ad5-HA vaccine provided protective immunity to homologous challenge and partial protection against heterologous challenge, unlike the WIV vaccine. Nasal shedding was significantly reduced and virus was cleared from the lung by day 5 postinfection following heterologous challenge of Ad5-HA-vaccinated pigs. However, the WIV-vaccinated pigs displayed vaccine-associated enhanced respiratory disease (VAERD) following heterologous challenge, characterized by enhanced macroscopic lung lesions. This study demonstrates that a single intranasal vaccination with an Ad5-HA construct can provide complete protection from homologous challenge and partial protection from heterologous challenge, as opposed to VAERD, which can occur with adjuvanted WIV vaccines. PMID:22933397

  11. A Peptide-Based Plasmodium falciparum Circumsporozoite Assay To Test for Serum Antibody Responses to Pre-Erythrocyte Malaria Vaccines

    Kostense, Stefan; Mommaas, Bregje; Hendriks, Jenny; Verhoeven, Mariëlle; ter Haak, Mariska; Tirion, Felicia; Wiesken, Edison; Pau, Maria Grazia; Radošević, Katarina; Goudsmit, Jaap

    2011-01-01

    Various pre-erythrocyte malaria vaccines are currently in clinical development, and among these is the adenovirus serotype 35-based circumsporozoite (CS) vaccine produced on PER.C6 cells. Although the immunological correlate of protection against malaria remains to be established, the CS antibody titer is a good marker for evaluation of candidate vaccines. Here we describe the validation of an anti-Plasmodium falciparum circumsporozoite antibody enzyme-linked immunosorbent assay (ELISA) based...

  12. An effective vaccine against colon cancer in mice: Use of recombinant adenovirus interleukin-12 transduced dendritic cells

    Xiao-Zhou He; Liang Wang; Yan-Yun Zhang

    2008-01-01

    AIM: To investigate the effect of a vaccine with recombinant adenovirus interleukin-12 (AdVIL-12) transduced dendritic cells (DCs) against colon cancer in mice.METHODS: DCs and AdVIL-12 were incubated together at different time intervals and at different doses. Supernatant was collected and tested for IL-12 by enzyme-linked immunosorbent assay (ELISA). In order to determine whether tumor cell lysate-pulsed (TP) AdVIL-12/DCs enhance therapeutic potential in the established tumor model, CT26 colon tumor cells were implanted subcutaneously (s.c.) in the midflank of naive BALB/c mice. Tumor-bearing mice were injected with a vaccination of CT26 TP AdVIL-12/DCs on d 3 and 10. As a protective colon tumor model, na(i)ve BALB/c mice were immunized s.c. in their abdomens with CT26 TP AdVIL-12/DCs twice at seven day intervals. After the immunization on d 7, the mice were challenged with a lethal dose of CT26 tumor cells and survival times were evaluated. Subsequently, cytotoxic T lymphocyte (CTL) activity and interferon gamma (IFNγ) secretion was evaluated in the immunized mice, and assayed CTL ex vivo.RESULTS: Murine DCs were retrovirally transduced with AdVIL-12 efficiency, and the AdVIL-12 transduced DCs secreted a high level of IL-12 (AdVIL-12/DCs, 615.27 ± 42.3 pg/mL vs DCs, 46.32 ± 7.29 pg/mL, P < 0.05). Vaccination with CT26 TP AdVIL-12/DCs could enhance anti-tumor immunity against CT26 colon tumor in murine therapeutic models (tumor volume on d 19: CT26 TP AdVIL-12/DCs 107 ± 42 mm3 vsCT26 TP DCs 383 ± 65 mm3, P < 0.05) and protective models. Moreover, the CT26 TP AdVIL-12/DC vaccination enhances tumor-specific CTL activity, producing high levels of IFNy in immunized mice. Ex vivo primed T cells with AdVIL-12/DCs were able to induce more effective CTL activity than in primed T cells with CT26 TP/DCs (E:T = 100:1, 69.49% ± 6.11% specific lysis vs 37.44% ± 4.32% specific lysis, P < 0.05).CONCLUSION: Vaccination with recombinant AdVIL-12 transduced DC pulsed tumor

  13. Adenoviral-based foot-and-mouth disease virus vaccine: evaluation of new vectors expressing serotype O in bovines

    Foot-and-mouth disease virus (FMDV), an antigenically variable virus, is considered the most important infectious disease of cloven-hoofed animals. Recently serotypes A and O have been the cause of major outbreaks. We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine...

  14. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    Tang, De-chu C.; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; van Kampen, Kent R.

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many o...

  15. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  16. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  17. The role of human adenoviruses type 41 in acute diarrheal disease in Minas Gerais after rotavirus vaccination

    Thaís Aparecida Vieira Reis

    2016-03-01

    Full Text Available Abstract Human adenovirus species F (HAdV-F type 40 and 41 are commonly associated with acute diarrheal disease (ADD across the world. Despite being the largest state in southeastern Brazil and having the second largest number of inhabitants, there is no information in the State of Minas Gerais regarding the role of HAdV-F in the etiology of ADD. This study was performed to determine the prevalence, to verify the epidemiological aspects of infection, and to characterize the strains of human adenoviruses (HAdV detected. A total of 377 diarrheal fecal samples were obtained between January 2007 and August 2011 from inpatient and outpatient children of age ranging from 0 to 12 years. All samples were previously tested for rotavirus, norovirus, and astrovirus, and 314 of 377 were negative. The viral DNA was extracted, amplified using the polymerase chain reaction and the HAdV-positive samples were sequenced and phylogenetically analyzed. Statistical analyses were performed using the Chi-square test (p < 0.05, considering two conditions: the total of samples tested (377 and the total of negative samples for the remaining viruses tested (314. The overall prevalence of HAdV was 12.47% (47/377; and in 76.60% (36/47 of the positive samples, this virus was the only infectious agent detected. The phylogenetic analysis of partial sequences of 32 positive samples revealed that they all clustered with the HAdV-F type 41. The statistical analysis showed that there was no correlation between the onset of the HAdV infection and the origin of the samples (inpatients or outpatients in the two conditions tested: the total of samples tested (p = 0.598 and the total of negative samples for the remaining viruses tested (p = 0.614. There was a significant association in the occurrence of infection in children aged 0–12 months for the condition 1 (p = 0.030 as well as condition 2 (p = 0.019. The occurrence of infections due to HAdV did not coincide with a pattern of

  18. Highly Sensitive Method for Titration of Adenovirus Vectors

    sprotocols

    2015-01-01

    Authors: Hildegund Ertl, ZhiQuan Xiang, Yan Li, Dongming Zhou, Xiangyang Zhou, Wynetta Giles-Davis & Yi-lin E. Liu ### Abstract Clinical development of vaccines based on adenovirus (Ad) vectors requires accurate techniques to determine vector doses including contents of infectious particles. For vectors derived from Ad virus of human serotype 5 content of infectious particles can readily be determined by plaque assays. Vaccine vectors based on alternative Ad serotypes such as thos...

  19. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice.

    Caetano, Bráulia C; Bruña-Romero, Oscar; Fux, Blima; Mendes, Erica A; Penido, Marcus L O; Gazzinelli, Ricardo T

    2006-04-01

    We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis. PMID:16610929

  20. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease. PMID:23637908

  1. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats.

    Junling Qin

    Full Text Available BACKGROUND: Peste des petits ruminants (PPR is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV expresses a hemagglutinin (H glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2 expressing the H gene of PPRV (China/Tibet strain was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. CONCLUSIONS/SIGNIFICANCE: This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach.

  2. Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus.

    Boyd, Amy C; Ruiz-Hernandez, Raul; Peroval, Marylene Y; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V; Hill, Adrian V S; Gilbert, Sarah C; Butter, Colin

    2013-01-11

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP+M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP+M1 and a secondary vaccination with MVA-NP+M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

  3. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Mark R Soboleski

    Full Text Available BACKGROUND: The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. CONCLUSION/SIGNIFICANCE: Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  4. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-01

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. PMID:27026148

  5. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses

    Mück-Häusl, Martin; Solanki, Manish; Zhang, Wenli; Ruzsics, Zsolt; Ehrhardt, Anja

    2015-01-01

    Recombinant adenoviruses containing a double-stranded DNA genome of 26–45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we ...

  6. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice.

    de Andrade Pereira, Bruna; Maduro Bouillet, Leoneide E; Dorigo, Natalia A; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  7. Comparative immunogenicity of recombinant adenovirus-vectored vaccines expressing different forms of hemagglutinin (HA) proteins from the H5 serotype of influenza A viruses in mice.

    Hu, Xiangjing; Meng, Weixu; Dong, Zhenyuan; Pan, Weiqi; Sun, Caijun; Chen, Ling

    2011-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) H5N1 viruses in poultry and their subsequent transmission to humans have highlighted an urgent need to develop preventive vaccines in the event of a pandemic. In this paper we constructed recombinant adenovirus (rAd)-vectored influenza vaccines expressing different forms of H5 hemagglutinin (HA) from the A/Vietnam/1194/04 (VN/1194/04) virus, a wild-type HA, a sequence codon-optimized HA and a transmembrane (TM) domain-truncated HA. Compared to the rAd vectors expressing the wild-type HA (rAd-04wtHA) and the TM-truncated form of HA (rAd-04optHA-dTM), the rAd vectored vaccine with the sequence codon-optimized HA (rAd-04optHA) showed a tendency to induce much higher hemagglutinin inhibition (HI) antibody titers in mice immunized with a prime-boost vaccine. Furthermore, administration of the rAd-04optHA vaccine to mice could elicit cross-reactive immune responses against the antigenically distinct HK/482/97 virus. Additionally, we constructed another vector containing the codon-optimized HA of the A/Hong Kong/482/97 (HK/482/97) virus. Administration of a bivalent immunization formulation including the rAd-04optHA and rAd-97optHA vaccines to mice induced a stronger immune response against HK/482/97 virus than the monovalent formulation. Taken together, these findings may have some implications for the development of rAd-vectored vaccines in the event of the pandemic spread of HPAI. PMID:20883733

  8. Algae-based oral recombinant vaccines

    Specht, Elizabeth A.; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in ...

  9. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines.

    Shih-Chang Lin

    Full Text Available BACKGROUND: The highly pathogenic avian influenza (HPAI H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA envelope protein is the primary target for subunit vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a an inactivated H5N1 vaccine virus, or (b a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers. CONCLUSION/SIGNIFICANCE: Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development.

  10. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses. PMID:27029122

  11. Rapid generation of fowl adenovirus 9 vectors.

    Pei, Yanlong; Griffin, Bryan; de Jong, Jondavid; Krell, Peter J; Nagy, Éva

    2015-10-01

    Fowl adenoviruses (FAdV) have the largest genomes of any fully sequenced adenovirus genome, and are widely considered as excellent platforms for vaccine development and gene therapy. As such, there is a strong need for stream-lined protocols/strategies for the generation of recombinant adenovirus genomes. Current genome engineering strategies rely upon plasmid based homologous recombination in Escherichia coli BJ5183. This process is time-consuming, involves multiple cloning steps, and low efficiency recombination. This report describes a novel system for the more rapid generation of recombinant fowl adenovirus genomes using the lambda Red recombinase system in E. coli DH10B. In this strategy, PCR based amplicons with around 50 nt long homologous arms, a unique SwaI site and a chloramphenicol resistance gene fragment (CAT cassette), are introduced into the FAdV-9 genome in a highly efficient and site-specific manner. To demonstrate the efficacy of this system we generated FAdV-9 ORF2, and FAdV-9 ORF11 deleted, CAT marked and unmarked FAdV-9 infectious clones (FAdmids), and replaced either ORF2 or ORF11, with an EGFP expression cassette or replaced ORF2 with an EGFP coding sequence via the unique SwaI sites, in approximately one month. All recombinant FAdmids expressed EGFP and were fully infectious in CH-SAH cells. PMID:26238923

  12. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis.

    Zhou Xing

    Full Text Available BACKGROUND: Recombinant adenovirus-vectored (Ad tuberculosis (TB vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models. METHODS AND FINDINGS: Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n, AdAg85A intramuscularly (i.m, BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb. At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge. CONCLUSIONS: Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.

  13. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  14. Intranasal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances Protection by Parenteral Mycobacterium bovis BCG Immunization against Pulmonary Tuberculosis

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-01-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to...

  15. [Two recombinant adenovirus vaccine candidates containing neuraminidase Gene of H5N1 influenza virus (A/Anhui/1/2005) elicited effective cell-mediated immunity in mice].

    Ma, Jing; Zhang, Xiao-Guang; Chen, Hong; Li, Kui-Biao; Zhang, Xiao-Mei; Zhang, Ke; Yang, Liang; Xu, Hong; Shu, Yue-Long; Tan, Wen-Jie; Zeng, Yi

    2009-09-01

    The aim of this study is to develop the recombinant adenovirus vaccine (rAdV) candidates containing neuraminidase (NA) gene of H5N1 influenza virus and test in BALB/c mice the effect of cell-mediated immunity. In this study, two kind of NA gene (WtNA gene, the wild type; Mod. NA gene, the codon-modified type) derived from H5N1 influenza virus (A/Anhui/1/2005) were cloned and inserted respectively into plasmid of adenovirus vector, then the rAdV vaccines candidates (rAdV-WtNA and rAdV-Mod. NA) were developed and purified, followed by immunization intramuscularly (10(9) TCID50 per dose, double injection at 0 and 4th week) in BALB/c mice, the effect of cell-mediated immunity were analysed at 5th week. Results indicated that: (i) NA protein expression was detected in two rAdV vaccines candidates by Western blotting; (ii) the rAdV-Mod. NA vaccine could elicit more robust NA specific cell-mediated immunity in mice than that of rAdV-WtNA vaccine (P = 0. 016) by IFN-gamma ELIspot assay. These findings suggested rAdV-Mod. NA vaccine was a potential vaccine candidate against H5N1 influenza and worthy of further investigation. PMID:19954107

  16. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  17. Adenovirus-mediated REIC/Dkk-3 gene therapy: Development of an autologous cancer vaccination therapy (Review)

    Watanabe, Masami; Nasu,Yasutomo; Kumon, Hiromi

    2013-01-01

    Reduced expression in immortalized cells (REIC)/Dickkopf (Dkk)-3 is a tumor suppressor and therapeutic gene and has been studied with respect to the application of cancer gene therapy. Our previous studies demonstrated that the intratumoral injection of an adenovirus vector carrying the human REIC/Dkk-3 gene (Ad-REIC) suppresses tumor growth in mouse models of prostate, breast and testicular cancer and malignant mesothelioma. The mechanisms underlying these antitumor therapeutic effects have ...

  18. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; YI, SHAOQIONG; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a s...

  19. Genomic and Bioinformatics Analysis of HAdV-4, a Human Adenovirus Causing Acute Respiratory Disease: Implications for Gene Therapy and Vaccine Vector Development

    Purkayastha, Anjan; Ditty, Susan E.; Su, Jing; McGraw, John; Hadfield, Ted L.; Tibbetts, Clark; Seto, Donald

    2005-01-01

    Human adenovirus serotype 4 (HAdV-4) is a reemerging viral pathogenic agent implicated in epidemic outbreaks of acute respiratory disease (ARD). This report presents a genomic and bioinformatics analysis of the prototype 35,990-nucleotide genome (GenBank accession no. AY594253). Intriguingly, the genome analysis suggests a closer phylogenetic relationship with the chimpanzee adenoviruses (simian adenoviruses) rather than with other human adenoviruses, suggesting a recent origin of HAdV-4, and...

  20. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. PMID:27154390

  1. Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Jianfeng Zhang; E Bart Tarbet; Tsungwei Feng; Zhongkai Shi; Van Kampen, Kent R; Tang, De-chu C

    2011-01-01

    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity...

  2. Algae-based oral recombinant vaccines

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  3. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  4. Recombinant influenza vaccines.

    Sedova, E S; Shcherbinin, D N; Migunov, A I; Smirnov, Iu A; Logunov, D Iu; Shmarov, M M; Tsybalova, L M; Naroditskiĭ, B S; Kiselev, O I; Gintsburg, A L

    2012-10-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains. PMID:23346377

  5. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  6. PEGylated Adenoviruses: From Mice to Monkeys

    Piyanuch Wonganan

    2010-02-01

    Full Text Available Covalent modification with polyethylene glycol (PEG, a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.

  7. Plant-Based Vaccines: Production and Challenges

    Erna Laere

    2016-01-01

    Full Text Available Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.

  8. Particle-based platforms for malaria vaccines.

    Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali

    2015-12-22

    Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. PMID:26458803

  9. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Xiang Zuoshuang; Hur Junguk; Feldman Eva L; He Yongqun

    2011-01-01

    Abstract Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of va...

  10. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route. PMID:26844553

  11. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Hamada F Rady

    Full Text Available Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC. DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  12. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Emma-Jo Hayton

    Full Text Available TRIAL DESIGN: HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. METHODS: Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. RESULTS: Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern. CONCLUSIONS: These data demonstrate

  13. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  14. A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque.

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M

    2009-12-01

    We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149

  15. Mucosal immunization with recombinant adenovirus encoding soluble globular head of hemagglutinin protects mice against lethal influenza virus infection.

    Kim, Joo Young; Choi, Youngjoo; Nguyen, Huan H; Song, Man Ki; Chang, Jun

    2013-12-01

    Influenza virus is one of the major sources of respiratory tract infection. Due to antigenic drift in surface glycoproteins the virus causes annual epidemics with severe morbidity and mortality. Although hemagglutinin (HA) is one of the highly variable surface glycoproteins of the influenza virus, it remains the most attractive target for vaccine development against seasonal influenza infection because antibodies generated against HA provide virus neutralization and subsequent protection against the virus infection. Combination of recombinant adenovirus (rAd) vector-based vaccine and mucosal administration is a promising regimen for safe and effective vaccination against influenza. In this study, we constructed rAd encoding the globular head region of HA from A/Puerto Rico/8/34 virus as vaccine candidate. The rAd vaccine was engineered to express high level of the protein in secreted form. Intranasal or sublingual immunization of mice with the rAd-based vaccine candidates induced significant levels of sustained HA-specific mucosal IgA and IgG. When challenged with lethal dose of homologous virus, the vaccinated mice were completely protected from the infection. The results demonstrate that intranasal or sublingual vaccination with HA-encoding rAd elicits protective immunity against infection with homologous influenza virus. This finding underlines the potential of our recombinant adenovirus-based influenza vaccine candidate for both efficacy and rapid production. PMID:24385946

  16. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses....

  17. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  18. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Samantha Sayers; Guerlain Ulysse; Zuoshuang Xiang; Yongqun He

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bi...

  19. Ad 2.0: a novel recombineering platform for high-throughput generation of tailored adenoviruses.

    Mück-Häusl, Martin; Solanki, Manish; Zhang, Wenli; Ruzsics, Zsolt; Ehrhardt, Anja

    2015-04-30

    Recombinant adenoviruses containing a double-stranded DNA genome of 26-45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies. PMID:25609697

  20. Detection of human adenoviruses in organic fresh produce using molecular and cell culture-based methods.

    Marti, Elisabet; Barardi, Célia Regina Monte

    2016-08-01

    The consumption of organic fresh produce has increased in recent years due to consumer demand for healthy foods without chemical additives. However, the number of foodborne outbreaks associated with fresh produce has also increased. Contamination of food with enteric viruses is a major concern because the viruses have a low infectious dose and high persistence in the environment. Human adenovirus (HAdV) has been proposed as a good marker of faecal contamination. Therefore, the aim of this study was to evaluate the efficiency of the plaque assay (PA), real time PCR (qPCR) and integrated cell culture-RT-qPCR (ICC-RT-qPCR) for the recovery of HAdV from artificially and naturally contaminated fresh produce. Organic lettuce, strawberries and green onions were selected because these fresh products are frequently associated with foodborne outbreaks. The virus extraction efficiencies from artificially contaminated samples varied from 2.8% to 32.8% depending on the food matrix and the quantification method used. Although the HAdV recoveries determined by qPCR were higher than those determined by PA and ICC-RT-qPCR, PA was defined as the most reproducible method. The qPCR assays were more sensitive than the PA and ICC-RT-qPCR assays; however, this technique alone did not provide information about the viability of the pathogen. ICC-RT-qPCR was more sensitive than PA for detecting infectious particles in fresh produce samples. HAdV genome copies were detected in 93.3% of the analysed naturally contaminated samples, attesting to the common faecal contamination of the fresh produce tested. However, only 33.3% of the total samples were positive for infectious HAdV particles based on ICC-RT-qPCR. In conclusion, this study reported that HAdV can be an efficient viral marker for fresh produce contamination. Good detection of infectious HAdV was obtained with the ICC-RT-qPCR and PA assays. Thus, we suggest that the ICC-RT-qPCR and PA assays should be considered when quantitative

  1. Elaboration of optical immunosensors based on the surface plasmon resonance for detecting specific antibodies and antigens of Epstein-Barr virus and human adenovirus.

    Nesterova, N V; Nosach, L M; Zagorodnya, S D; Povnitsa, O Y; Boltovets, P M; Baranova, G V; Golovan, A V

    2008-01-01

    The study of antigen-antibody interaction on the model of Epstein-Barr virus (EBV) and second type adenovirus (Ad2) based on the surface plasmon resonance (SPR) was carried out. Kinetic and concentration dependences between virus antigens and specific antisera to them at different pH were determined. Experimental samples of biosensors for the detection by SPR method of virus (EBV and Ad2) antigens using monospecific antibodies, immobilized on the surface of gold, and also for detection of specific antibodies in the blood sera of patients with EBV or adenovirus infection were elaborated PMID:19351051

  2. Outpatient-Based Pneumococcal Vaccine Campaign and Survey of Perceptions about Pneumococcal Vaccination in Patients and Doctors

    Song, Joon Young; Cheong, Hee Jin; Heo, Jung Yeon; Noh, Ji Yun; Seo, Yu Bin; Kim, In Seon; Choi, Won Suk; Kim, Woo Joo

    2013-01-01

    Purpose Despite the ready availability of pneumococcal vaccine, vaccination rates are quite low in South Korea. This study was designed to assess perceptions and awareness about pneumococcal vaccines among subjects at risk and find strategies to increases vaccine coverage rates. Materials and Methods A cross sectional, community-based survey was conducted to assess perceptions about the pneumococcal vaccine at a local public health center. In a tertiary hospital, an outpatient-based pneumococ...

  3. Tailoring a Combination Preerythrocytic Malaria Vaccine.

    Bauza, Karolis; Atcheson, Erwan; Malinauskas, Tomas; Blagborough, Andrew M; Reyes-Sandoval, Arturo

    2015-01-01

    The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria. PMID:26667840

  4. Vaccinations

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  5. Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment.

    Kundu, Arti; McBride, Graham; Wuertz, Stefan

    2013-10-15

    We used site-specific quantitative microbial risk assessment (QMRA) to assess the probability of adenovirus illness for three groups of swimmers: adults with primary contact, children with primary contact, and secondary contact regardless of age. Human enteroviruses and adenoviruses were monitored by qPCR in a multi-use watershed and Adenovirus type 40/41 was detected in 11% of 73 samples, ranging from 147 to 4117 genomes per liter. Enterovirus was detected only once (32 genomes per liter). Seven of eight virus detections occurred when E. coli concentrations were below the single sample maximum water quality criterion for contact recreation, and five of eight virus detections occurred when fecal coliforms were below the corresponding criterion. We employed dose-harmonization to convert viral genome measurements to TCID50 values needed for dose-response curves. The three scenarios considered different amounts of water ingestion and Monte Carlo simulation was used to account for the variability associated with the doses. The mean illness risk in children based on adenovirus measurements obtained over 11 months was estimated to be 3.5%, which is below the 3.6% risk considered tolerable by the current United States EPA recreational criteria for gastrointestinal illnesses (GI). The mean risks of GI illness for adults and secondary contact were 1.9% and 1.0%, respectively. These risks changed appreciably when different distributions were fitted to the data as determined by Monte Carlo simulations. In general, risk was at a maximum for the log-logistic distribution and lowest for the hockey stick distribution in all three selected scenarios. Also, under default assumptions, the risk was lowered considerably when assuming that only a small proportion of Adenovirus 40/41 (3%) was as infectious as Adenovirus type 4, compared to the assumption that all genomes were Adenovirus 4. In conclusion, site-specific QMRA on water-borne adenoviruses in this watershed provided a similar

  6. Immune Response to Recombinant Capsid Proteins of Adenovirus in Humans: Antifiber and Anti-Penton Base Antibodies Have a Synergistic Effect on Neutralizing Activity

    Gahéry-Ségard, Hanne; Farace, Françoise; Godfrin, Dominique; Gaston, Jesintha; Lengagne, Renée; Tursz, Thomas; Boulanger, Pierre; Guillet, Jean-Gérard

    1998-01-01

    Replication-deficient adenovirus used in humans for gene therapy induces a strong immune response to the vector, resulting in transient recombinant protein expression and the blocking of gene transfer upon a second administration. Therefore, in this study we examined in detail the capsid-specific humoral immune response in sera of patients with lung cancer who had been given one dose of a replication-defective adenovirus. We analyzed the immune response to the three major components of the viral capsid, hexon (Hx), penton base (Pb), and fiber (Fi). A longitudinal study of the humoral response assayed on adenovirus particle-coated enzyme-linked immunosorbent assay plates showed that patients had preexisting immunity to adenovirus prior to the administration of adenovirus–β-gal. The level of the response increased in three patients after adenovirus administration and remained at a maximum after three months. One patient had a strong immune response to adenovirus prior to treatment, and this response was unaffected by adenovirus administration. Sera collected from the patients were assayed for recognition of each individual viral capsid protein to determine more precisely the molecular basis of the humoral immune response. Clear differences existed in the humoral response to the three major components of the viral capsid in serum from humans. Sequential appearance of these antibodies was observed: anti-Fi antibodies appeared first, followed by anti-Pb antibodies and then by anti-Hx antibodies. Moreover, anti-Fi antibodies preferentially recognized the native trimeric form of Fi protein, suggesting that they recognized conformational epitopes. Our results showed that sera with no neutralizing activity contained only anti-Fi antibodies. In contrast, neutralizing activity was only obtained with sera containing anti-Fi and anti-Pb antibodies. More importantly, we showed that anti-native Fi and anti-Pb antibodies had a synergistic effect on neutralization. The

  7. Applications of nanoparticles for DNA based rabies vaccine.

    Shah, Muhammad Ali A; Khan, Sajid Umar; Ali, Zeeshan; Yang, Haowen; Liu, Keke; Mao, Lanlan

    2014-01-01

    Rabies is a fatal encephalomyelitis. Most cases occur in developing countries and are transmitted by dogs. The cell culture vaccines as associated with high cost; therefore, have not replaced the unsafe brain-derived vaccines. In the developing countries these brain-derived rabies vaccines still can be seen in action. Moreover, there will be a need for vaccines against rabies-related viruses against which classical vaccines are not always effective. The worldwide incidence of rabies and the inability of currently used vaccination strategies to provide highly potent and cost-effective therapy indicate the need for alternate control strategies. DNA vaccines have emerged as the safest vaccines and best remedy for complicated diseases like hepatitis, HIV, and rabies. A number of recombinant DNA vaccines are now being developed against several diseases such as AIDS and malaria. Therefore, it can be a valuable alternative for the production of cheaper rabies vaccines against its larger spectrum of viruses. In this review we report published data on DNA-based immunization with sequences encoding rabies with special reference to nanotechnology. PMID:24730305

  8. School-Based Influenza Vaccination: Parents’ Perspectives

    Lind, Candace; Russell, Margaret L; MacDonald, Judy; Collins, Ramona; Frank, Christine J.; Davis, Amy E.

    2014-01-01

    Background School-age children are important drivers of annual influenza epidemics yet influenza vaccination coverage of this population is low despite universal publicly funded influenza vaccination in Alberta, Canada. Immunizing children at school may potentially increase vaccine uptake. As parents are a key stakeholder group for such a program, it is important to consider their concerns. Purpose We explored parents’ perspectives on the acceptability of adding an annual influenza immunizati...

  9. Construction of recombinant adenovirus vector containing AFP and generation of adenovirus-mediated AFP gene modified dendritic cells vaccine%含人AFP基因重组腺病毒载体的构建及其转染树突状细胞瘤苗的制备

    杨静悦; 曹大勇; 刘文超; 斯小明

    2009-01-01

    Objective:To construct recombinant adenovirus vectors containing human AFP genes,and infect dendritic cell. Methods: Full length AFP cDNAs were subcloned into pIND vector,followed by being cloned into shuttle2 vector.The AFP gene fragments resulted from the shuttle2-AFP digested with PI-Sce and I-Ceu were linked to the linear adeno-X virus DNA.After packaged with HEK293 cells,the adenovirus expression vector was obtained.The plasmid pAdeno-AFP was identified by endonuclease and PCR.After dendritic cells were infected pAdeno-AFP,the surface molecules of pAdeno-AFP/DC were analysed by flow cytometry.AFP levels in culture supernatant of pAdeno-AFP/DC were measured by ELISA. Results: AFP gene in the inserted DNA of adeno-AFP was confirmed by PCR,and predictive fragments proved by restriction enzyme digestion analysis were exhibited.All the above results indicated that human AFP gene had been connected with pAdeno-X vectors correctly.The recombinant adenovirus vector of human AFP gene packaged in HEK293 cells,it will be used to introduce the target gene into dendritic cell.pAdeno-AFP/DC were able to upregulate CD1a,CD11c,CD80,CD86 and HLA-DR.And pAdeno-AFP/DC could secrete high level of AFP in vitro. Conclusion: The recombinant adenovirus vector of human AFP gene have been constructed successfully.The established AFP -DC vaccine may be a tool of the hepatocellular carcinoma immunotherapy,and it will be the foundation of future clinical use of DC vaccine.%目的:构建含人AFP基因的腺病毒载体,体外转染树突状细胞,制备树突状细胞肝癌瘤苗.方法: 将AFP基因亚克隆到pIND 载体和Shuttle2载体中,构建穿梭载体Shuttle2-AFP.用PI-Sce Ⅰ和I-CeuⅠ双酶切后将所获AFP基因片段再与线性化的腺病毒载体pAdeno-X连接,构成pAdeno-AFP重组腺病毒载体.其后,用重组腺病毒载体转染HEK293细胞,包装腺病毒表达载体.通过酶切、PCR对腺病毒载体进行鉴定.包装好的重组病毒载体pAdeno-AFP体外

  10. Immune response and protection in raccoons (Procyon lotor) following consumption of baits containing ONRAB®, a human adenovirus rabies glycoprotein recombinant vaccine.

    Brown, L J; Rosatte, R C; Fehlner-Gardiner, C; Taylor, J S; Davies, J C; Donovan, D

    2012-10-01

    We investigated the immune response and protection conferred in raccoons (Procyon lotor) following consumption of ONRAB(®) oral rabies vaccine baits. Forty-two wild-caught, captive raccoons were each offered an ONRAB vaccine bait; 21 controls received no vaccine baits. Blood samples collected from all raccoons before treatment, and each week posttreatment for 16 wk, were assessed for the presence of rabies virus antibody. In the bait group, an individual was considered to have responded to vaccination if serum samples from three or more consecutive weeks were antibody-positive. Using this criterion, 77% (20/26) of raccoons that consumed ONRAB baits with no observed vaccine spillage (full dose) demonstrated a humoral immune response. In the group that received a partial dose (0.05-0.90 mL vaccine recovered), 50% (8/16) of raccoons responded to vaccination. Regardless of the vaccine dose received, among the 28 raccoons that responded to vaccination 18 had antibody initially detectable at week 2 and 22 remained antibody-positive for at least 10 consecutive weeks. Kinetics of the humoral immune response suggest that the best time to conduct postbaiting surveillance for evidence of vaccination would be 6-13 wk following bait deployment, with the highest antibody prevalence expected between weeks 8-10. A sub-sample of 29 raccoons (20 ONRAB, 9 controls) was challenged with raccoon rabies virus variant 350 days posttreatment. Eight of nine controls (89%) developed rabies whereas 15/20 vaccinates (75%) survived. Survival following rabies challenge was significantly higher in raccoons presented ONRAB vaccine baits. PMID:23060502

  11. Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques

    We investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization. Both immunization strategies induced strong SIV Gag-specific IFN-γ and T-cell proliferation responses and mediated a conservation of CD4+ memory T-cells and a reduction of viral load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply

  12. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret.

    Rao, Srinivas S; Kong, Wing-Pui; Wei, Chih-Jen; Van Hoeven, Neal; Gorres, J Patrick; Nason, Martha; Andersen, Hanne; Tumpey, Terrence M; Nabel, Gary J

    2010-01-01

    Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. PMID:20352112

  13. Construction and Immunogenicity of Recombinant Adenovirus Vaccines Expressing the HMW1, HMW2, or Hia Adhesion Protein of Nontypeable Haemophilus influenzae▿

    Winter, Linda E.; Barenkamp, Stephen J.

    2010-01-01

    The objective of the present study was to construct and assess the immunogenicity of recombinant adenovirus vectors expressing the HMW1, HMW2, or Hia protein of nontypeable Haemophilus influenzae (NTHi). These proteins are critical adhesins and potential protective antigens expressed by NTHi. Segments of the hmw1A and hmw2A structural genes that encode the distal one-half of mature HMW1 or HMW2 were cloned into the T7 expression vector pGEMEX-2. These constructs encoded stable HMW1 or HMW2 re...

  14. Angiotensin II increases gene expression after selective intra-arterial adenovirus delivery in a rabbit model assessed using in vivo SSTR2-based reporter imaging

    Singh, Sheela P.; Ravoori, Murali K.; Dixon, Katherine A.; Han, Lin; Gupta, Sanjay; Uthamanthil, Rajesh; Wright, Kenneth C; Kundra, Vikas

    2016-01-01

    Background Gene therapy has been hampered by low expression upon in vivo delivery. Using a somatostatin receptor type 2 (SSTR2)-based reporter, we assessed whether angiotensin II (AII) can improve gene expression by adenovirus upon intra-arterial (IA) delivery in a large animal model. Methods A SSTR2-based reporter that can be imaged by a clinically approved radiopharmaceutical was used to assess gene expression. Eight rabbits bearing VX2 tumors in each thigh were randomly injected IA with ad...

  15. A population-based evaluation of a publicly funded, school-based HPV vaccine program in British Columbia, Canada: parental factors associated with HPV vaccine receipt.

    Gina Ogilvie; Maureen Anderson; Fawziah Marra; Shelly McNeil; Karen Pielak; Meena Dawar; Marilyn McIvor; Thomas Ehlen; Simon Dobson; Deborah Money; David M Patrick; Monika Naus

    2010-01-01

    BACKGROUND: Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada. METHODS AND FINDINGS: All parents of girls enrolled in grade 6 during...

  16. Prospects of HA-Based Universal Influenza Vaccine

    Anwar M. Hashem

    2015-01-01

    Full Text Available Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs. Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA. Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.

  17. Production and purification of non replicative canine adenovirus type 2 derived vectors

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez Dunia, Daniel; Klonjkowski, Bernard

    2013-01-01

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central ne...

  18. RNA-Based Vaccines in Cancer Immunotherapy

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  19. Pre-Existing Adenovirus Immunity Modifies a Complex Mixed Th1 and Th2 Cytokine Response to an Ad5/HIV-1 Vaccine Candidate in Humans

    Pine, Samuel O.; KUBLIN, James G.; Hammer, Scott M.; Borgerding, Joleen; Huang, Yunda; Casimiro, Danilo R.; McElrath, M. Juliana

    2011-01-01

    The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732). Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-s...

  20. VaccineDA: Prediction, design and genome-wide screening of oligodeoxynucleotide-based vaccine adjuvants.

    Nagpal, Gandharva; Gupta, Sudheer; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Prakash, Satya; Raghava, Gajendra P S

    2015-01-01

    Immunomodulatory oligodeoxynucleotides (IMODNs) are the short DNA sequences that activate the innate immune system via toll-like receptor 9. These sequences predominantly contain unmethylated CpG motifs. In this work, we describe VaccineDA (Vaccine DNA adjuvants), a web-based resource developed to design IMODN-based vaccine adjuvants. We collected and analyzed 2193 experimentally validated IMODNs obtained from the literature. Certain types of nucleotides (e.g., T, GT, TC, TT, CGT, TCG, TTT) are dominant in IMODNs. Based on these observations, we developed support vector machine-based models to predict IMODNs using various compositions. The developed models achieved the maximum Matthews Correlation Coefficient (MCC) of 0.75 with an accuracy of 87.57% using the pentanucleotide composition. The integration of motif information further improved the performance of our model from the MCC of 0.75 to 0.77. Similarly, models were developed to predict palindromic IMODNs and attained a maximum MCC of 0.84 with the accuracy of 91.94%. These models were evaluated using a five-fold cross-validation technique as well as validated on an independent dataset. The models developed in this study were integrated into VaccineDA to provide a wide range of services that facilitate the design of DNA-based vaccine adjuvants (http://crdd.osdd.net/raghava/vaccineda/). PMID:26212482

  1. A novel method for synthetic vaccine construction based on protein assembly

    Zhida Liu; Hang Zhou; Wenjun Wang; Wenjie Tan; Yang-Xin Fu; Mingzhao Zhu

    2014-01-01

    In the history of vaccine development, the synthetic vaccine is a milestone that is in stark contrast with traditional vaccines based on live-attenuated or inactivated microorganisms. Synthetic vaccines not only are safer than attenuated or inactivated microorganisms but also provide the opportunity for vaccine design for specific purposes. The first generation of synthetic vaccines has been largely based on DNA recombination technology and genetic manipulation. This de novo generation is occ...

  2. Production of Rice Seed-Based Allergy Vaccines.

    Takagi, Hidenori; Takaiwa, Fumio

    2016-01-01

    Recombinant hypoallergenic derivative is the next generation of tolerogen replacing the natural allergen extract to increase safety and efficacy. Japanese cedar pollinosis is the predominant seasonal allergy disease in Japan. A rice seed-based oral vaccine containing the recombinant hypoallergens derived from these allergens was developed. Efficacy of this rice-based allergy vaccine was evaluated by oral administration in animal models. PMID:27076162

  3. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine.

    Jones, Frank R; Gabitzsch, Elizabeth S; Xu, Younong; Balint, Joseph P; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan

    2011-09-16

    Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082

  4. Recent advances in recombinant protein-based malaria vaccines.

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  5. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans.

    Samuel O Pine

    Full Text Available The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732. Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36 or Ad5-seropositive (titer >200; n = 34. Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes. At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008, and significantly more IP-10 (p = 0.0009, IL-2 (p = 0.006 and IL-10 (p = 0.05 in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these

  6. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Fonseca, Jairo Andres; Cabrera-Mora, Monica; Kashentseva, Elena A; Villegas, John Paul; Fernandez, Alejandra; Van Pelt, Amelia; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2016-01-01

    A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective

  7. Development of CpG ODN Based Vaccine Adjuvant Formulations.

    Gursel, Mayda; Gursel, Ihsan

    2016-01-01

    Development of effective vaccine mediated immune responses relies on the use of vaccine adjuvants capable of enhancing and directing the adaptive immune response to the antigen. When used as vaccine adjuvants, type I interferon inducing agents can elicit potent effector/memory T cell responses and humoral immunity. Distinct sequences of single stranded synthetic oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine oligodeoxynucleotide motifs (CpG ODN) can generate type I interferon production via a TLR9-MyD88-IRF7-mediated signaling pathway. Here, we describe two different methods of preparing CpG ODN-based vaccine adjuvant formulations that can induce a robust IFNα response from human peripheral blood mononuclear cells. PMID:27076306

  8. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L; Bellamy, Scarlett L.; Betts, Michael R.; James M Wilson

    2014-01-01

    The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T ...

  9. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens;

    2011-01-01

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b...... memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...... demonstrated that this protection was mediated primarily through IFN-¿ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model....

  10. Protection Induced by Simultaneous Subcutaneous and Endobronchial Vaccination with BCG/BCG and BCG/Adenovirus Expressing Antigen 85A against Mycobacterium bovis in Cattle.

    Dean, Gillian S; Clifford, Derek; Whelan, Adam O; Tchilian, Elma Z; Beverley, Peter C L; Salguero, Francisco J; Xing, Zhou; Vordermeier, Hans M; Villarreal-Ramos, Bernardo

    2015-01-01

    The incidence of bovine tuberculosis (bTB) in the GB has been increasing since the 1980s. Immunisation, alongside current control measures, has been proposed as a sustainable measure to control bTB. Immunisation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been shown to protect against bTB. Furthermore, much experimental data indicates that pulmonary local immunity is important for protection against respiratory infections including Mycobacterium tuberculosis and that pulmonary immunisation is highly effective. Here, we evaluated protection against M. bovis, the main causative agent of bTB, conferred by BCG delivered subcutaneously, endobronchially or by the new strategy of simultaneous immunisation by both routes. We also tested simultaneous subcutaneous immunisation with BCG and endobronchial delivery of a recombinant type 5 adenovirus expressing mycobacterial antigen 85A. There was significantly reduced visible pathology in animals receiving the simultaneous BCG/BCG or BCG/Ad85 treatment compared to naïve controls. Furthermore, there were significantly fewer advanced microscopic granulomata in animals receiving BCG/Ad85A compared to naive controls. Thus, combining local and systemic immunisation limits the development of pathology, which in turn could decrease bTB transmission. PMID:26544594

  11. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein.

    Roy, Soumitra; Kobinger, Gary P; Lin, Jianping; Figueredo, Joanita; Calcedo, Roberto; Kobasa, Darwyn; Wilson, James M

    2007-09-28

    The development of adenoviral vectors based on non-human serotypes such as the chimpanzee adenovirus simian adenovirus 24 (AdC7) may allow for their utilization in populations harboring neutralizing antibodies to common human serotypes. Because adenoviral vectors can be used to generate potent T cell responses, they may be useful as vaccines against pandemic influenza such as may be caused by the H5N1 strains that are currently endemic in avian populations. The influenza nucleoprotein (NP) is known to provide MHC Class I restricted epitopes that are effective in evoking a cytolytic response. Because there is only low sequence variation in NP sequences between different influenza strains, a T cell vaccine may provide heterosubtypic protection against a spectrum of influenza A strains. An AdC7 vector expressing the influenza A/Puerto Rico/8/34 NP was tested for its efficacy in protecting BALB/c mice against two H5N1 strains and compared to a conventional human adenovirus serotype 5 vaccine. The AdC7 NP vaccine elicited a strong anti-NP T cell response. When tested in a mouse challenge model, there was improved survival following challenge with two strains of H5N1 that have caused human outbreaks, Vietnam/1203/04 and Hong Kong/483/97, although the improved survival reached statistical significance only with the strain from Vietnam. PMID:17728024

  12. Improved NYVAC-based vaccine vectors.

    Karen V Kibler

    Full Text Available While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144 have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.

  13. Interferon induction by adenoviruses

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression. (author)

  14. Progress and prospects for L2-based human papillomavirus vaccines.

    Jiang, Rosie T; Schellenbacher, Christina; Chackerian, Bryce; Roden, Richard B S

    2016-07-01

    Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized. PMID:26901354

  15. Novel synthetic (poly)glycerolphosphate-based antistaphylococcal conjugate vaccine.

    Chen, Quanyi; Dintaman, Jay; Lees, Andrew; Sen, Goutam; Schwartz, David; Shirtliff, Mark E; Park, Saeyoung; Lee, Jean C; Mond, James J; Snapper, Clifford M

    2013-07-01

    Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4(+) T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid. PMID:23649092

  16. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice.

    Li, Wu; Li, Min; Deng, Guangcun; Zhao, Liping; Liu, Xiaoming; Wang, Yujiong

    2015-08-01

    Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection. PMID:25962477

  17. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-01

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process. PMID:26430814

  18. Virus-based nanoparticles as platform technologies for modern vaccines.

    Lee, Karin L; Twyman, Richard M; Fiering, Steven; Steinmetz, Nicole F

    2016-07-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website. PMID:26782096

  19. Caractérisation de vaccin à base glucides

    Tontini, Marta

    2012-01-01

    CARACTERISATION DE VACCINS A BASE DE GLUCIDESVariables influençant l'immunogénicité et propriétés physico-chimiques des vaccins glycoconjuguésDe nombreux aspects peuvent influer sur l'immunogénicité des vaccins conjugués et les principales variables étudiées jusqu'ici sont la taille du fragment saccharide et la nature des glycosides: taux de protéine dans le conjugué purifié, la stratégie de conjugaison, nature de l’espaceur et la protéine porteuse.La taille de la partie saccharidique et le r...

  20. Incorporation of 4-1BB ligand into an adenovirus vaccine vector increases the number of functional antigen-specific CD8 T cells and enhances the duration of protection against influenza-induced respiratory disease.

    Moraes, Theo J; Lin, Gloria H Y; Wen, Tao; Watts, Tania H

    2011-08-26

    T cell based influenza vaccines offer the potential for cross protective immunity to multiple clades of influenza virus. Here we explored the effect of increasing CD8 T cell responses during intranasal vaccination by incorporating a T cell costimulator, 4-1BBL. Inclusion of 4-1BBL in an influenza nucleoprotein (NP)-containing adenoviral vector increased the number of NP-specific CD8 T cells and lowered the vaccine dose required for short-term protection from influenza-induced disease in mice. At higher vaccine doses, the inclusion of 4-1BBL increased the duration of protection of mice from influenza-induced mortality. Bone marrow chimera experiments revealed that the major effects of 4-1BBL were directly on αβ T cells with minor additional effects through cells other than αβ T cells. The implications of these findings are that including 4-1BBL or adjuvants that induce 4-1BBL expression may be of benefit in a vaccine setting for enhancing the magnitude and duration of T cell responses to influenza virus. PMID:21704101

  1. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced. PMID:18411943

  2. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Yoshikazu Nakayama; Atsushi Aruga

    2015-01-01

    Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing he...

  3. Highest Vaccine Uptake after School-Based Delivery - A County-Level Evaluation of the Implementation Strategies for HPV Catch-Up Vaccination in Sweden

    Rehn, Moa; Uhnoo, Ingrid; Kuhlmann-Berenzon, Sharon; Wallensten, Anders; Sparen, Par; Netterlid, Eva

    2016-01-01

    Background The Swedish school-based vaccination programme offers HPV vaccine to girls born >= 1999 in 5-6th grade. In 2012, all counties introduced free-of-charge catch-up vaccination campaigns targeting girls born 1993-1998. Varying vaccine uptake in the catch-up group by December 2012 suggested that some implementation strategies were more successful than others. In order to inform future vaccination campaigns, we assessed the impact of different implementation strategies on the county-l...

  4. Inactivation of Influenza A virus, Adenovirus, and Cytomegalovirus with PAXgene tissue fixative and formalin.

    Kap, Marcel; Arron, Georgina I; Loibner, M; Hausleitner, Anja; Siaulyte, Gintare; Zatloukal, Kurt; Murk, Jean-Luc; Riegman, Peter

    2013-08-01

    Formalin fixation is known to inactivate most viruses in a vaccine production context, but nothing is published about virus activity in tissues treated with alternative, non-crosslinking fixatives. We used a model assay based on cell culture to test formalin and PAXgene Tissue fixative for their virus-inactivating abilities. MDCK, A549, and MRC-5 cells were infected with Influenza A virus, Adenovirus, and Cytomegalovirus, respectively. When 75% of the cells showed a cytopathic effect (CPE), the cells were harvested and incubated for 15 min, or 1, 3, 6, or 24 hours, with PBS (positive control), 4% formalin, or PAXgene Tissue Fix. The cells were disrupted and the released virus was used to infect fresh MDCK, A549, and MRC-5 cells cultured on cover slips in 24-well plates. The viral cultures were monitored for CPE and by immunocytochemistry (ICC) to record viral replication and infectivity. Inactivation of Adenovirus by formalin occurred after 3 h, while Influenza A virus as well as Cytomegalovirus were inactivated by formalin after 15 min. All three virus strains were inactivated by PAXgene Tissue fixative after 15 min. We conclude that PAXgene Tissue fixative is at least as effective as formalin in inactivating infectivity of Influenza A virus, Adenovirus, and Cytomegalovirus. PMID:24845590

  5. Analysis of Antibody Responses to Protective Antigen-Based Anthrax Vaccines through Use of Competitive Assays▿

    Rebecca A Brady; Verma, Anita; Meade, Bruce D.; Burns, Drusilla L.

    2010-01-01

    The licensed anthrax vaccine and many of the new anthrax vaccines being developed are based on protective antigen (PA), a nontoxic component of anthrax toxin. For this reason, an understanding of the immune response to PA vaccination is important. In this study, we examined the antibody response elicited by PA-based vaccines and identified the domains of PA that contribute to that response in humans as well as nonhuman primates (NHPs) and rabbits, animal species that will be used to generate ...

  6. Tipping the Proteome with Gene-Based Vaccines: Weighing in on the Role of Nano materials

    Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe, the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to boost their performance. In addition, we explore the idea that combining RNA and nano materials may hold the key to successful gene-based vaccines for prevention and treatment of disease

  7. Construction and characterization of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75

    Ramesh Kumar

    2015-02-01

    Full Text Available Aim: Generation of recombinant human adenovirus type 5 expressing foot-and-mouth disease virus (FMDV capsid protein genes along with full-length 2B, 3B and 3Cpro and its characterization. Materials and Methods: FMD viral RNA isolation, cDNA synthesis, and polymerase chain reaction were performed to synthesize expression cassettes (P1-2AB3BCwt and P1-2AB3BCm followed by cloning in pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were transformed with the recombinant pShuttle-CMV to produce recombinant adenoviral plasmids. HEK-293 cells were transfected with the recombinant adenoviral plasmids to generate recombinant adenoviruses (hAd5/P1-2AB3BCwt and hAd5/P1-2AB3BCm. Expression of the target proteins was analyzed by sandwich ELISA and indirect immunofluorescence assay. The recombinant adenoviruses were purified and concentrated by CsCl density gradient ultracentrifugation. Growth kinetics and thermostability of the recombinant adenoviruses were compared with that of non-recombinant replication-defective adenovirus (dAd5. Results: The recombinant adenoviruses containing capsid protein genes of the FMDV O/IND/R2/75 were generated and amplified in HEK-293 cells. The titer of the recombinant adenoviruses was approximately 108, 109.5 and 1011 TCID50/ml in supernatant media, cell lysate and CsCl purified preparation, respectively. Expression of the FMDV capsid protein was detectable in sandwich ELISA and confirmed by immunofluorescence assay. Growth kinetics of the recombinant adenoviruses did not reveal a significant difference when compared with that of dAd5. A decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded in the virus titers during 60 h incubation period and found to be statistically significant (p<0.01. Conclusion: Recombinant adenoviruses expressing capsid proteins of the FMDV O/IND/R2/75 were constructed and produced in high titers. In vitro expression of the target proteins in the adenovirus vector system was

  8. Is an HIV vaccine possible?

    Nancy A. Wilson

    2009-08-01

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  9. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla;

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed....... IFNγ in supernatants of whole-blood cultured with Mhs-antigen was used as a marker of cell-mediated immune response (CMI). All pigs secreted IFNγ after primary vaccination followed by an increased production after booster vaccination. The CMI response was highest with vaccine B when compared...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...

  10. Structure of human adenovirus

    Nemerow, Glen R.; Stewart, Phoebe L.; Reddy, Vijay S. (Scripps); (Vanderbilt)

    2012-07-11

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 {angstrom} resolution. The virus structure revealed the location, folds, and interactions of major and minor (cement proteins) on the inner and outer capsid surface. This new structural information sheds further light on the process of adenovirus capsid assembly and virus-host cell interactions.

  11. Towards a Coronavirus-Based HIV Multigene Vaccine

    Klara K. Eriksson

    2006-01-01

    Full Text Available Human immunodeficiency virus (HIV infection represents one of the major health threats in the developing world. The costly treatment of infected individuals with multiple highly efficient anti-HIV drugs is only affordable in industrialized countries. Thus, an efficient vaccination strategy is required to prevent the further spread of the infection. The molecular biology of coronaviruses and particular features of the human coronavirus 229E (HCoV 229E indicate that HCoV 229E-based vaccine vectors can become a new class of highly efficient vaccines. First, the receptor of HCoV 229E, human aminopeptidase N (hAPN or CD13 is expressed mainly on human dendritic cells (DCs and macrophages indicating that targeting of HCoV 229E-based vectors to professional antigen presenting cells can be achieved by receptor-mediated transduction. Second, HCoV 229E structural genes can be replaced by multiple transcriptional units encoding various antigens. These virus-like particles (VLPs containing HCoV 229E-based vector RNA have the ability to transduce human DCs and to mediate heterologous gene expression in these cells. Finally, coronavirus infections are associated with mainly respiratory and enteric diseases, and natural transmission of coronaviruses occurs via mucosal surfaces. In humans, HCoV 229E causes common cold by infecting the upper respiratory tract. HCoV 229E infections are mainly encountered in children and re-infection occurs frequently in adults. It is thus most likely that pre-existing immunity against HCoV 229E will not significantly impact on the vaccination efficiency if HCoV 229E-based vectors are used in humans.

  12. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. PMID:27215342

  13. Clinical development of Ebola vaccines.

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  14. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus) microplus induce similar reproductive suppression to three initial vaccinations under production conditions

    Fernández Erlinda; Suárez Marisela; Lleonart Ricardo; Méndez Luis; Rodríguez Elsa; Machado Héctor; Joglar Marisdania; Alfonso Aymé; Valdés Mario; Pérez Danny; Sánchez Dunia; Montero Carlos; Vargas Milagros; Estrada Mario P; Rodríguez-Mallón Alina

    2010-01-01

    Abstract Background The cattle tick, Rhipicephalus (Boophilus) microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core el...

  15. Prophylactic and therapeutic vaccines for obesity

    Na, Ha-Na; Kim, Hun; Nam, Jae-Hwan

    2013-01-01

    Chronic diseases such as obesity and diabetes are major causes of death and disability throughout the world. Many causes are known to trigger these chronic diseases, and infectious agents such as viruses are also pathological factors. In particular, it is considered that adenovirus 36 infections may be associated with obesity. If this is the case, a vaccine against adenovirus 36 may be a form of prophylaxis to combat obesity. Other types of therapeutic vaccines to combat obesity are also bein...

  16. Capsid-like Arrays in Crystals of Chimpanzee Adenovirus Hexon

    The major coat protein, hexon, from a chimpanzee adenovirus (AdC68) is of interest as a target for vaccine vector modification. AdC68 hexon has been crystallized in the orthorhombic space group C222 with unit cell dimensions of a = 90.8 Angstroms, b = 433.0 Angstroms, c = 159.3 Angstroms, and one trimer (3 x 104,942 Da) in the asymmetric unit. The crystals diffract to 2.1 Angstroms resolution. Initial studies reveal that the molecular arrangement is quite unlike that in hexon crystals for human adenovirus. In the AdC68 crystals, hexon trimers are parallel and pack closely in two-dimensional continuous arrays similar to those formed on electron microscope grids. The AdC68 crystals are the first in which adenovirus hexon has molecular interactions that mimic those used in constructing the viral capsid

  17. Adenovirus (For Parents)

    ... respiratory tract as well, causing bronchiolitis , croup , or viral pneumonia, which is less common but can cause serious illness in infants. Adenovirus can also produce a dry, harsh cough that can resemble whooping cough (pertussis) . Gastroenteritis is an inflammation of the stomach and the ...

  18. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon.

    Xingui Tian

    Full Text Available Enterovirus 71 (EV71 is responsible for hand, foot and mouth disease with high mortality among children. Various neutralizing B cell epitopes of EV71 have been identified as potential vaccine candidates. Capsid-incorporation of antigens into adenovirus (Ad has been developed for a novel vaccine approach. We constructed Ad3-based EV71 vaccine vectors by incorporating a neutralizing epitope SP70 containing 15 amino acids derived from capsid protein VP1 of EV71 within the different surface-exposed domains of the capsid protein hexon of Ad3EGFP, a recombinant adenovirus type 3 (Ad3 expressing enhanced green fluorescence protein. Thermostability and growth kinetic assays suggested that the SP70 epitope incorporation into hypervariable region (HVR1, HVR2, or HVR7 of the hexon did not affect Ad fitness. The SP70 epitopes were thought to be exposed on all hexon-modified intact virion surfaces. Repeated administration of BALB/c mice with the modified Ads resulted in boosting of the anti-SP70 humoral immune response. Importantly, the modified Ads immunization of mother mice conferred protection in vivo to neonatal mice against the lethal EV71 challenge, and the modified Ads-immunized mice serum also conferred passive protection against the lethal challenge in newborn mice. Compared with the recombinant GST-fused SP70 protein immunization, immunization with the Ads containing SP70 in HVR1 or HVR2 elicited higher SP70-specific IgG titers, higher neutralization titers, and conferred more effective protection to neonatal mice. Thus, this study provides valuable information for hexon-modified Ad3 vector development as a promising EV71 vaccine candidate and as an epitope-delivering vehicle for other pathogens.

  19. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  20. The foot-and-mouth disease carrier state divergence in vaccinated and non-vaccinated cattle

    The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated following simulated-natural virus exposure of 43 cattle that were either naïve or vaccinated using a recombinant, adenovirus-vectored vaccine. Although vaccinated cattle were protected against clinical dise...

  1. Immunogenicity of adenovirus-derived porcine parvovirus-like particles displaying B and T cell epitopes of foot-and-mouth disease.

    Pan, Qunxing; Wang, Hui; Ouyang, Wei; Wang, Xiaoli; Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; He, Kongwang

    2016-01-20

    Virus-like particles (VLPs) vaccines combine many of the advantages of whole-virus vaccines and recombinant subunit vaccines, integrating key features that underlay their immunogenicity, safety and protective potential. We have hypothesized here the effective insertion of the VP1 epitopes (three amino acid residues 21-40, 141-160 and 200-213 in VP1, designated VPe) of foot-and-mouth disease (FMDV) within the external loops of PPV VP2 could be carried out without altering assembly based on structural and antigenic data. To investigate the possibility, development of two recombinant adenovirus rAd-PPV:VP2-FMDV:VPe a or rAd-PPV:VP2-FMDV:VPe b were expressed in HEK-293 cells. Out of the two insertion strategies tested, one of them tolerated an insert of 57 amino acids in one of the four external loops without disrupting the VLPs assembly. Mice were inoculated with the two recombinant adenoviruses, and an immunogenicity study showed that the highest levels of FMDV-specific humoral responses and T cell proliferation could be induced by rAd-PPV:VP2-FMDV:VPe b expressing hybrid PPV:VLPs (FMDV) in the absence of an adjuvant. Then, the protective efficacy of inoculating swine with rAd-PPV:VP2-FMDV:VPe b was tested. All pigs inoculated with rAd-PPV:VP2-FMDV:VPe b were protected from viral challenge, meanwhile the neutralizing antibody titers were significantly higher than those in the group inoculated with swine FMD type O synthetic peptide vaccine. Our results clearly demonstrate the potential usefulness of adenovirus-derived PPV VLPs as a vaccine strategy in prevention of FMDV. PMID:26685093

  2. Peptide/protein vaccine delivery system based on PLGA particles.

    Allahyari, Mojgan; Mohit, Elham

    2016-03-01

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  3. Crystal Structure of the Fibre Head Domain of the Atadenovirus Snake Adenovirus 1

    Singh, Abhimanyu K.; Menéndez-Conejero, Rosa; San Martín, Carmen; van Raaij, Mark J.

    2014-01-01

    Adenoviruses are non-enveloped icosahedral viruses with trimeric fibre proteins protruding from their vertices. There are five known genera, from which only Mastadenoviruses have been widely studied. Apart from studying adenovirus as a biological model system and with a view to prevent or combat viral infection, there is a major interest in using adenovirus for vaccination, cancer therapy and gene therapy purposes. Adenoviruses from the Atadenovirus genus have been isolated from squamate reptile hosts, ruminants and birds and have a characteristic gene organization and capsid morphology. The carboxy-terminal virus-distal fibre head domains are likely responsible for primary receptor recognition. We determined the high-resolution crystal structure of the Snake Adenovirus 1 (SnAdV-1) fibre head using the multi-wavelength anomalous dispersion (MAD) method. Despite the absence of significant sequence homology, this Atadenovirus fibre head has the same beta-sandwich propeller topology as other adenovirus fibre heads. However, it is about half the size, mainly due to much shorter loops connecting the beta-strands. The detailed structure of the SnAdV-1 fibre head and other animal adenovirus fibre heads, together with the future identification of their natural receptors, may lead to the development of new strategies to target adenovirus vectors to cells of interest. PMID:25486282

  4. [H5N1: vaccine solutions for humans and other animals].

    Durand, Maurice-Paul

    2006-01-01

    The hypervirulence of H5N1 influenza virus makes it impossible to produce a vaccine traditionally (with egg embryos), but there are alternative solutions. A live recombinant fowl-pox H5 virus is used for avian pathology. An inactivated H5N2 adjuvant vaccine is rendered immunogenic by using hemagglutinin H5 (DIVA technique). Disease prevention strategies differ between European and Asian countries. WHO has opted for a recombinant vaccine based on a non pathogenic virus (PR8) to which modified H5 and N1 from a pandemic virus are grafted The poor immunogenicity of this vaccine will require the use of large doses and immunostimulants. A live vaccine based on an adenovirus coupled to the H5 gene was recently developed. Finally, Chinese authors are examining the preventive and curative potential of hyperimmune serum raised in animals. PMID:17195620

  5. Toolbox for Non-Intrusive Structural and Functional Analysis of Recombinant VLP Based Vaccines: A Case Study with Hepatitis B Vaccine

    Mulder, Anke M.; Bridget Carragher; Victoria Towne; Yuan Meng; Yang Wang; Lance Dieter; Potter, Clinton S.; Washabaugh, Michael W.; Sitrin, Robert D; Qinjian Zhao

    2012-01-01

    BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccin...

  6. Seroprevalence of neutralizing antibodies to human adenoviruses type-5 and type-26 and chimpanzee adenovirus type-68 in healthy Chinese adults.

    Zhang, Shujun; Huang, Wenxiang; Zhou, Xiangyang; Zhao, Qiquan; Wang, Qun; Jia, Bei

    2013-06-01

    Replication-defective adenoviruses have been utilized as candidate vaccine vectors. However, clinical application of the best-studied human adenovirus type-5 (AdHu5) is limited by the high prevalence of preexisting neutralizing antibodies resulting from natural infection. Therefore, rare adenovirus serotypes, such as human adenovirus type-26 (AdHu26) and chimpanzee adenovirus type-68 (AdC68), have been employed as substitutes for AdHu5. However, few studies have described the epidemiology of pre-existing immunity to these adenoviruses in China. Thus, 1,154 participants from six regions in China were examined to assess the presence of neutralizing antibodies against AdHu5, AdHu26, and AdC68. The seroprevalence rates of neutralizing antibodies were as follows: AdHu5, 73.1% (844/1,154) (95% confidence interval: 70.5-75.6%); AdHu26, 35.3% (407/1,154) (95% confidence interval: 32.6-38.1%); and AdC68, 12.7% (147/1,154) (95% confidence interval: 10.9-14.8%), respectively. The most frequently detected and highest titer antibodies were specific for AdHu5. The results indicate that AdHu26 and AdC68 serve as more suitable vaccine vectors than AdHu5. PMID:23588735

  7. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Gennaro Ciliberto

    2011-09-01

    Full Text Available Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  8. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  9. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  10. Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells.

    Bai, M.; Harfe, B; Freimuth, P

    1993-01-01

    The adenovirus penton base protein has a cell rounding activity and may lyse endosomes during virus entry into the cytoplasm. We found that penton base that was expressed in Escherichia coli also caused cell rounding and that cells adhered to polystyrene wells that were coated with the protein. Mutant analysis showed that both properties required an Arg-Gly-Asp (RGD) sequence at residues 340 to 342 of penton base. In flat adherent cells, virus mutants with amino acid substitutions in the RGD ...

  11. Subcutaneous immunization with recombinant adenovirus expressing influenza A nucleoprotein protects mice against lethal viral challenge.

    Hashem, Anwar; Jaentschke, Bozena; Gravel, Caroline; Tocchi, Monika; Doyle, Tracey; Rosu-Myles, Michael; He, Runtao; Li, Xuguang

    2012-04-01

    Current influenza vaccines mainly induce strain-specific neutralizing antibodies and need to be updated each year, resulting in significant burdens on vaccine manufacturers and regulatory agencies. Genetic immunization strategies based on the highly conserved nucleoprotein (NP) of influenza have attracted great attention as NP could induce heterosubtypic immunity. It is unclear, however, whether different forms of vectors and/or vaccination regimens could have contributed to the previously reported discrepancies in the magnitude of protection of NP-based genetic vaccinations. Here, we evaluated a plasmid DNA vector (pNP) and a recombinant adenovirus vector (rAd-NP) containing the NP gene through various combinations of immunization regimens in mice. We found that pNP afforded only partial protection even after 4 injections, with full protection against lethal challenge achieved only with the fourth boost using rAd-NP. Alternatively, only two doses of rAd-NP delivered subcutaneously were needed to induce an enhanced immune response and completely protect the animals, a finding which, to our knowledge, has not been reported before. PMID:22370512

  12. Hexavalent IPV-based combination vaccines for public-sector markets of low-resource countries.

    Mahmood, Kutub; Pelkowski, Sonia; Atherly, Deborah; Sitrin, Robert D; Donnelly, John J

    2013-09-01

    In anticipation of the successful eradication of wild polio virus, alternative vaccination strategies for public-sector markets of low-resource countries are extremely important, but are still under development. Following polio eradication, inactivated polio vaccine (IPV) would be the only polio vaccine available, and would be needed for early childhood immunization for several years, as maintenance of herd immunity will be important for sustaining polio eradication. Low-cost combination vaccines containing IPV could provide reliable and continuous immunization in the post-polio eradication period. Combination vaccines can potentially simplify complex pediatric routine immunization schedules, improve compliance, and reduce costs. Hexavalent vaccines containing Diphtheria (D), Tetanus (T), whole cell pertussis (wP), Hepatitis B (HBV), Haemophilus b (Hib) and the three IPV serotype antigens have been considered as the ultimate combination vaccine for routine immunization. This product review evaluates potential hexavalent vaccine candidates by composition, probable time to market, expected cost of goods, presentation, and technical feasibility and offers suggestions for development of low-cost hexavalent combination vaccines. Because there are significant technical challenges facing wP-based hexavalent vaccine development, this review also discusses other alternative approaches to hexavalent that could also ensure a timely and reliable supply of low-cost IPV based combination vaccines. PMID:23787559

  13. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies.

    Aboul-Ata, Aboul-Ata E; Vitti, Antonella; Nuzzaci, Maria; El-Attar, Ahmad K; Piazzolla, Giuseppina; Tortorella, Cosimo; Harandi, Ali M; Olson, Olof; Wright, Sandra A; Piazzolla, Pasquale

    2014-01-01

    A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and

  14. Human adenovirus type identification

    Banik U; Adhikary AK

    2015-01-01

    Urmila Banik,1 Arun Kumar Adhikary21Unit of Pathology, 2Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Kedah, MalaysiaThe published paper in your journal entitling “Human adenovirus type 8 epidemic keratoconjunctivitis with large corneal epithelial full-layer detachment: an endemic outbreak with uncommon manifestations” has come into our attention.1 The article provides interesting clinical presentation of corneal epithelial layer detachment among 25%...

  15. [Construction of recombinant adenovirus co-expressing M1 and HA genes of influenza virus type A].

    Guo, Jian-Qiang; Yao, Li-Hong; Chen, Ai-Jun; Xu, Yi; Jia, Run-Qing; Bo, Hong; Dong, Jie; Zhou, Jian-Fang; Shu, Yue-Long; Zhang, Zhi-Qing

    2009-03-01

    Based on the human H5N1 influenza virus strain A/Anhui/1/2005, recombinant adenovirus co-expressing M1 and HA genes of H5N1 influenza virus was constructed using an internal ribosome entry site (IRES) sequence to link the two genes. The M1 and HA genes of H5N1 influenza virus were amplified by PCR and subcloned into pStar vector separately. Then the M1-IRES-HA fragment was amplified and subcloned into pShuttle-CMV vector, the shuttle plasmid was then linearized and transformed into BJ5183 bacteria which contained backbone vector pAd-Easy. The recombinant vector pAd-Easy was packaged in 293 cells to get recombinant adenovirus Ad-M1/HA. CPE was observed after 293 cells were transfected by Ad-M1/HA. The co-expression of M1 and HA genes was confirmed by Western-blot and IFA (immunofluorescence assay). The IRES containing recombinant adenovirus allowed functional co-expression of M1 and HA genes and provided the foundation for developing new influenza vaccines with adenoviral vector. PMID:19678564

  16. Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma.

    Siurala, Mikko; Bramante, Simona; Vassilev, Lotta; Hirvinen, Mari; Parviainen, Suvi; Tähtinen, Siri; Guse, Kilian; Cerullo, Vincenzo; Kanerva, Anna; Kipar, Anja; Vähä-Koskela, Markus; Hemminki, Akseli

    2015-02-15

    Despite originating from several different tissues, soft-tissue sarcomas (STS) are often grouped together as they share mesenchymal origin and treatment guidelines. Also, with some exceptions, a common denominator is that when the tumor cannot be cured with surgery, the efficacy of current therapies is poor and new treatment modalities are thus needed. We have studied the combination of a capsid-modified oncolytic adenovirus CGTG-102 (Ad5/3-D24-GMCSF) with doxorubicin, with or without ifosfamide, the preferred first-line chemotherapeutic options for most types of STS. We show that CGTG-102 and doxorubicin plus ifosfamide together are able to increase cell killing of Syrian hamster STS cells over single agents, as well as upregulate immunogenic cell death markers. When tested in vivo against established STS tumors in fully immunocompetent Syrian hamsters, the combination was highly effective. CGTG-102 and doxorubicin (without ifosfamide) resulted in synergistic antitumor efficacy against human STS xenografts in comparison with single agent treatments. Doxorubicin increased adenoviral replication in human and hamster STS cells, potentially contributing to the observed therapeutic synergy. In conclusion, the preclinical data generated here support clinical translation of the combination of CGTG-102 and doxorubicin, or doxorubicin plus ifosfamide, for the treatment of STS, and provide clues on the mechanisms of synergy. PMID:24975392

  17. Immune Response to Recombinant Capsid Proteins of Adenovirus in Humans: Antifiber and Anti-Penton Base Antibodies Have a Synergistic Effect on Neutralizing Activity

    Gahéry-Ségard, Hanne; Farace, Françoise; Godfrin, Dominique; Gaston, Jesintha; Lengagne, Renée; Tursz, Thomas; Boulanger, Pierre; Guillet, Jean-Gérard

    1998-01-01

    Replication-deficient adenovirus used in humans for gene therapy induces a strong immune response to the vector, resulting in transient recombinant protein expression and the blocking of gene transfer upon a second administration. Therefore, in this study we examined in detail the capsid-specific humoral immune response in sera of patients with lung cancer who had been given one dose of a replication-defective adenovirus. We analyzed the immune response to the three major components of the vi...

  18. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. PMID:26994964

  19. Gene-based vaccine development for improving animal production in developing countries. Possibilities and constraints

    For vaccine production, recombinant antigens must be protective. Identifying protective antigens or candidate antigens is an essential precursor to vaccine development. Even when a protective antigen has been identified, cloning of its gene does not lead directly to vaccine development. The fimbrial protein of Dichelobacter nodosus, the agent of foot-rot in ruminants, was known to be protective. Recombinant vaccines against this infection are ineffective if expressed protein subunits are not assembled as mature fimbriae. Antigenic competition between different, but closely related, recombinant antigens limited the use of multivalent vaccines based on this technology. Recombinant antigens may need adjuvants to enhance response. DNA vaccines, potentiated with genes for different cytokines, may replace the need for aggressive adjuvants, and especially where cellular immunity is essential for protection. The expression of antigens from animal pathogens in plants and the demonstration of some immunity to a disease like rinderpest after ingestion of these, suggests an alternative approach to vaccination by injection. Research on disease pathogenesis and the identification of candidate antigens is specific to the disease agent. The definition of expression systems and the formulation of a vaccine for each disease must be followed by research to establish safety and efficacy. Where vaccines are based on unique gene sequences, the intellectual property is likely to be protected by patent. Organizations, licensed to produce recombinant vaccines, expect to recover their costs and to make a profit. The consequence is that genetically-derived vaccines are expensive. The capacity of vaccines to help animal owners of poorer countries depends not only on quality and cost but also on the veterinary infrastructure where they are used. Ensuring the existence of an effective animal health infrastructure in developing countries is as great a challenge for the developed world as

  20. TheQ1 Influence of Innate and Pre-Existing Immunity on Adenovirus Therapy

    Zaiss, Anne K.; Machado, Hidevaldo B.; Herschman, Harvey R.

    2009-01-01

    Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre-existing Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing antibodies that bind virus and block target cell transduction can be developed;...

  1. Investigating Stakeholder Attitudes and Opinions on School-Based Human Papillomavirus Vaccination Programs

    Nodulman, Jessica A.; Starling, Randall; Kong, Alberta S.; Buller, David B.; Wheeler, Cosette M.; Woodall, W. Gill

    2015-01-01

    Background: In several countries worldwide, school-based human papillomavirus (HPV) vaccination programs have been successful; however, little research has explored US stakeholders' acceptance toward school-based HPV vaccination programs. Methods: A total of 13 focus groups and 12 key informant interviews (N?=?117; 85% females; 66% racial/ethnic…

  2. Efficacy of a Vaccine Based on Protective Antigen and Killed Spores against Experimental Inhalational Anthrax▿ ‡

    Gauthier, Yves P.; Tournier, Jean-Nicolas; Paucod, Jean-Charles; Corre, Jean-Philippe; Mock, Michèle; Goossens, Pierre L.; Vidal, Dominique R.

    2008-01-01

    Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so...

  3. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and tit...

  4. Challenges in manufacturing adenoviral vectors for global vaccine product deployment.

    Vellinga, Jort; Smith, J Patrick; Lipiec, Agnieszka; Majhen, Dragomira; Lemckert, Angelique; van Ooij, Mark; Ives, Paul; Yallop, Christopher; Custers, Jerome; Havenga, Menzo

    2014-04-01

    Abstract Once adenovirus vector-based vaccines are licensed for the prevention of important infectious diseases, manufacturing processes capable of reliably delivering large numbers of vaccine doses will be required. The highest burden of disease for many infectious pathogens under investigation occurs in resource-poor settings. Therefore, the price per dose will be an important determinant of success. This review describes common practices for manufacturing replication-incompetent adenovirus vectors at clinical scale. Recent innovations and strategies aimed at improving the cost-effectiveness of manufacturing and ensuring high-volume vaccine production and purification are described. Hereto, technologies to increase bioreactor yields are reviewed. In addition, the use of single-use perfusion bioreactors, modification of some purification steps to avoid the use of expensive endonucleases, and use of charged filters during anion exchange all have the potential to bring down the cost of goods and are thus described. Finally, processes for ensuring quality throughout the manufacturing process, methods for testing viral identity, and safety of master seeds through to the end vaccine product are described. PMID:24593243

  5. Clarification of vaccines: An overview of filter based technology trends and best practices.

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. PMID:26657051

  6. Design of nanomaterial based systems for novel vaccine development.

    Yang, Liu; Li, Wen; Kirberger, Michael; Liao, Wenzhen; Ren, Jiaoyan

    2016-05-26

    With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines. PMID:26891972

  7. What you always needed to know about electroporation based DNA vaccines

    Gothelf, Anita Birgitte; Gehl, Julie

    2012-01-01

    Vaccinations are increasingly used to fight infectious disease, and DNA vaccines offer considerable advantages, including broader possibilities for vaccination and lack of need for cold storage. It has been amply demonstrated, that electroporation augments uptake of DNA in both skin and muscle, and...... it is foreseen that future DNA vaccination may to a large extent be coupled with and dependent upon electroporation based delivery. Understanding the basic science of electroporation and exploiting knowledge obtained on optimization of DNA electrotransfer to muscle and skin, may greatly augment...

  8. Cell culture based production of avian influenza vaccines

    Wielink, van, P.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce influenza vaccines, as they are more robust and lack the long lead times associated with the production of large quantities of embryonated eggs. In the study that is described in this thesis, the prod...

  9. Exploring the potential of novel multivalent DNA-based vaccines

    Fissolo, Nicolas Miguel

    2005-01-01

    In this dissertation, we exploited the DNA vaccination approach to test in the mouse some aspects relevant for the design of optimal CTL-stimulating, multiepitope vaccines. We have used three different ways to prime multispecific CD8+ T cell responses: 1) We have cloned a polytope DNA vaccine that encodes 10 epitopes binding MHC class I molecules encoded by the K, D or L locus (of H-2d, H-2b and H-2k haplotype mice). Vaccination of different mouse strains showed that Ld-restricted CD8+ T cell...

  10. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer.

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-14

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  11. Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells.

    Zhang, Nian-Hua; Peng, Rui-Qing; Ding, Ya; Zhang, Xiao-Shi

    2016-08-01

    The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity. PMID:27373420

  12. Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human papillomavirus vaccines

    Ip, P. P.; Boerma, A.; Walczak, M.; Oosterhuis, K.; Haanen, J. B.; Schumacher, T. N.; Nijman, H. W.; Daemen, T.

    2015-01-01

    Cellular immunity against cancer can be achieved with viral vector-and DNA-based immunizations. In preclinical studies, cancer vaccines are very potent, but in clinical trials these potencies are not achieved yet. Thus, a rational approach to improve cancer vaccines is warranted. We previously demon

  13. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  14. Acute disseminated encephalomyelitis onset: evaluation based on vaccine adverse events reporting systems.

    Paolo Pellegrino

    Full Text Available OBJECTIVE: To evaluate epidemiological features of post vaccine acute disseminated encephalomyelitis (ADEM by considering data from different pharmacovigilance surveillance systems. METHODS: The Vaccine Adverse Event Reporting System (VAERS database and the EudraVigilance post-authorisation module (EVPM were searched to identify post vaccine ADEM cases. Epidemiological features including sex and related vaccines were analysed. RESULTS: We retrieved 205 and 236 ADEM cases from the EVPM and VAERS databases, respectively, of which 404 were considered for epidemiological analysis following verification and causality assessment. Half of the patients had less than 18 years and with a slight male predominance. The time interval from vaccination to ADEM onset was 2-30 days in 61% of the cases. Vaccine against seasonal flu and human papilloma virus vaccine were those most frequently associated with ADEM, accounting for almost 30% of the total cases. Mean number of reports per year between 2005 and 2012 in VAERS database was 40±21.7, decreasing after 2010 mainly because of a reduction of reports associated with human papilloma virus and Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B vaccines. CONCLUSIONS: This study has a high epidemiological power as it is based on information on adverse events having occurred in over one billion people. It suffers from lack of rigorous case verification due to the weakness intrinsic to the surveillance databases used. At variance with previous reports on a prevalence of ADEM in childhood we demonstrate that it may occur at any age when post vaccination. This study also shows that the diminishing trend in post vaccine ADEM reporting related to Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B and human papilloma virus vaccine groups is most likely not [corrected] due to a decline in vaccine coverage indicative of a reduced attention to this adverse drug reaction.

  15. Acute Disseminated Encephalomyelitis Onset: Evaluation Based on Vaccine Adverse Events Reporting Systems

    Perrone, Valentina; Pozzi, Marco; Antoniazzi, Stefania; Clementi, Emilio; Radice, Sonia

    2013-01-01

    Objective To evaluate epidemiological features of post vaccine acute disseminated encephalomyelitis (ADEM) by considering data from different pharmacovigilance surveillance systems. Methods The Vaccine Adverse Event Reporting System (VAERS) database and the EudraVigilance post-authorisation module (EVPM) were searched to identify post vaccine ADEM cases. Epidemiological features including sex and related vaccines were analysed. Results We retrieved 205 and 236 ADEM cases from the EVPM and VAERS databases, respectively, of which 404 were considered for epidemiological analysis following verification and causality assessment. Half of the patients had less than 18 years and with a slight male predominance. The time interval from vaccination to ADEM onset was 2-30 days in 61% of the cases. Vaccine against seasonal flu and human papilloma virus vaccine were those most frequently associated with ADEM, accounting for almost 30% of the total cases. Mean number of reports per year between 2005 and 2012 in VAERS database was 40±21.7, decreasing after 2010 mainly because of a reduction of reports associated with human papilloma virus and Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B vaccines. Conclusions This study has a high epidemiological power as it is based on information on adverse events having occurred in over one billion people. It suffers from lack of rigorous case verification due to the weakness intrinsic to the surveillance databases used. At variance with previous reports on a prevalence of ADEM in childhood we demonstrate that it may occur at any age when post vaccination. This study also shows that the diminishing trend in post vaccine ADEM reporting related to Diphtheria, Pertussis, Tetanus, Polio and Haemophilus Influentiae type B and human papilloma virus vaccine groups is most likely due to a decline in vaccine coverage indicative of a reduced attention to this adverse drug reaction. PMID:24147076

  16. Targeted vaccine adjuvants based on modified cholera toxin.

    Lycke, Nils

    2005-09-01

    The present review describes immunomodulation with targeted adjuvants that will allow for the development of efficacious mucosal vaccines. We have studied cholera toxin (CT) and derivatives thereof, to rationally design vaccine adjuvant vectors that are both highly efficacious as well as safe and non-toxic. Two strategies were exploited; the first using CT or the enzymatically inactive receptor-binding B-subunit of CT (CTB) and the second, using CTA1 or an enzymatically inactive mutant CTA1R7K., that was linked, in a fusion protein, to the B-cell targeting moiety, DD, from Staphylococcus areus proteinA. Our studies provide compelling evidence that delivery of Ag in the absence of ADP-ribosylation can promote tolerance, whereas, ADP-ribosyltransferase-active conjugates, prevent tolerance but induce IgA immunity. Our analysis revealed unique subsets of mucosal and systemic DC that appeared to be responsible for the ADP-ribosyltransferase sensitive dichotomy between tolerance and IgA immunity. Whether targeting of B cells suffice for tolerance-induction or requires participation of DCs, is at present an unresolved issue. Nevertheless, enzymatic modulation differentiates and matures the DC to promote CD4 T cell help for IgA B cell development. Ag-presentation in the absence of enzyme, as seen with CTA1R7K-DD, expands specific T cells to a similar extent as enzymatically active CTA1-DD, but fails to recruit help for germinal center expansion of activated B cells. We have given special attention to the genes that adjuvants turn on using Affymetrix technology. In particular, modulation of the expression of co-stimulatory molecules on the targeted APC; CD80, CD86, CD83 and B7RP-1, play important roles for the effect of the ADP-ribosylating CTA1-based adjuvants for the development of tolerance or active IgA immunity. PMID:16178769

  17. Vaccines based on the cell surface carbohydrates of pathogenic bacteria

    Jones Christopher

    2005-01-01

    Full Text Available Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-organism is covalently attached to an appropriate carrier protein are proving to be the most effective means to generate protective immune responses to prevent a wide range of diseases. The technology appears to be generic and applicable to a wide range of pathogens, as long as antibodies against surface carbohydrates help protect against infection. Three such vaccines, against Haemophilus influenzae type b, Neisseria meningitidis Group C and seven serotypes of Streptococcus pneumoniae, have already been licensed and many others are in development. This article discusses the rationale for the development and use of glycoconjugate vaccines, the mechanisms by which they elicit T cell-dependent immune responses and the implications of this for vaccine development, the role of physicochemical methods in the characterisation and quality control of these vaccines, and the novel products which are under development.

  18. Developing plant-based vaccines against neglected tropical diseases: where are we?

    Rosales-Mendoza, Sergio; Govea-Alonso, Dania O; Monreal-Escalante, Elizabeth; Fragoso, Gladis; Sciutto, Edda

    2012-12-17

    Neglected tropical diseases (NTDs) impair the lives of 1 billion people worldwide, and threaten the health of millions more. Although vaccine candidates have been proposed to prevent some NTDs, no vaccine is available at the market yet. Vaccines against NTDs should be low-cost and needle-free to reduce the logistic cost of their administration. Plant-based vaccines meet both requirements: plant systems allow antigen production at low cost, and also yield an optimal delivery vehicle that prevents or delays digestive hydrolysis of vaccine antigens. This review covers recent reports on the development of plant-based vaccines against NTDs. Efforts conducted by a number of research groups to develop vaccines as a mean to fight rabies, cysticercosis, dengue, and helminthiasis are emphasized. Future perspectives are identified, such as the need to develop vaccination models for more than ten pathologies through a plant-based biotechnological approach. Current limitations on the method are also noted, and molecular approaches that might allow us to address such limitations are discussed. PMID:23142588

  19. Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac.

    Valle, Manuel Rodriguez; Mèndez, Luis; Valdez, Mario; Redondo, Miguel; Espinosa, Carlos Montero; Vargas, Milagro; Cruz, Ricardo Lleonart; Barrios, Humberto Perez; Seoane, Guillermo; Ramirez, Emerio Serrano; Boue, Oscar; Vigil, Jorge Lodos; Machado, Héctor; Nordelo, Carlos Borroto; Piñeiro, Marisdania Joglar

    2004-01-01

    Boophilus microplus has developed resistance against a range of chemical acaricides which has stimulated the development of alternative methods such as vaccination against ticks. In Cuba, the Bm86-based recombinant vaccine Gavac has been successfully used in a number of controlled laboratory and field trials in cattle against B. microplus. In this paper, we have evaluated Gavac in a large scale field trial wherein 588,573 dairy cattle were vaccinated with the aim to reduce the number of acaricidal treatments. It was found that the number of acaricidal treatments could be reduced by 87% over a period of 8 years (1995--2003). Prior to the introduction of the vaccine, 54 clinical cases of babesiosis and six fatal cases were reported per 1000 animals. Six years later, the incidence of babesiosis was reduced to 1.9 cases per 1000 cattle and mortality reduced to 0.18 per 1000. The national consumption of acaricides in Cuba could be reduced by 82% after the implementation of the integrated anti-B. microplus control program. PMID:15651533

  20. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  1. Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies.

    Niu, Yange; Liu, Ye; Yang, Limin; Qu, Hongren; Zhao, Jingyi; Hu, Rongliang; Li, Jing; Liu, Wenjun

    2016-04-01

    Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5-6 IU/mL in mice and 7-9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%-80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies. PMID:27068655

  2. Adenovirus infection in immunocompromised patients

    Sylwia Rynans

    2013-09-01

    Full Text Available Human adenoviruses belong to the Adenoviridae family and they are divided into seven species, including 56 types. Adenoviruses are common opportunistic pathogens that are rarely associated with clinical symptoms in immunocompetent patients. However, they are emerging pathogens causing morbidity and mortality in recipients of hematopoietic stem cell and solid organ transplants, HIV infected patients and patients with primary immune deficiencies. Clinical presentation ranges from asymptomatic viraemia to respiratory and gastrointestinal disease, haemorrhagic cystitis and severe disseminated illness. There is currently no formally approved therapy for the treatment of adenovirus infections.This article presents current knowledge about adenoviruses, their pathogenicity and information about available methods to diagnose and treat adenoviral infections.

  3. Tracking adenovirus infections in reptiles

    Ball, Inna

    2015-01-01

    The purpose of this project was to screen reptiles for the presence of adenovirus (AdV) infection, develop serological tests for the detection of antibodies against AdVs in squamate reptiles and to examine the serological relationships between lizard and snake AdVs, helping to ensure the establishment and maintenance of healthy populations. An additional aim of the project was the establishment of an agamid cell line and isolation of adenoviruses from bearded dragons (Pogona vitticeps). A...

  4. New approaches to the development of virus vaccines for veterinary use.

    Yamanouchi, K; Barrett, T; Kai, C

    1998-12-01

    The marked progress in recombinant deoxyribonucleic acid (DNA) technology during the past decade has led to the development of a variety of safe new vaccine vectors which are capable of efficiently expressing foreign immunogens. These have been based on a variety of virus types--poxviruses, herpesviruses and adenoviruses--and have led to the production of many new potential recombinant vaccines. Of these recombinant vaccines, the rabies vaccine, in which the rabies G protein is expressed in a vaccinia vector, has been widely used in the field to prevent the spread of rabies both in Europe and in the United States of America. A recombinant Newcastle disease virus vaccine, using fowlpox virus as the vector to express immunogenic proteins from the Newcastle disease virus, has been licensed as the first commercial recombinant vectored vaccine. Many other recombinant virus vaccines are still at the stage of laboratory or field testing. The most recent breakthrough in vaccinology has been the success with the use of naked DNA as a means of vaccination. This approach has shown great promise in mouse model systems and has now become the most active field in new vaccine development. Molecular redesigning of conventional ribonucleic acid (RNA) viruses to obtain more stable attenuated vaccines was previously possible only for positive-strand RNA viruses, such as poliovirus. However, recent advances in molecular biological techniques have enabled the rescuing of negative-strand viruses from DNA copies of their genomes. This has made it possible to engineer specific changes in the genomes of Rhabdoviridae and Paramyxoviridae, both of which include several viruses of veterinary importance. The authors describe the current progress in the development of vector vaccines, DNA vaccines and vaccines based on engineered positive- and negative-strand RNA virus genomes, with special emphasis on their application to diseases of veterinary importance. PMID:9850535

  5. A commercial PCV2a-based vaccine significantly reduces PCV2b transmission in experimental conditions.

    Rose, N; Andraud, M; Bigault, L; Jestin, A; Grasland, B

    2016-07-19

    Transmission characteristics of PCV2 have been compared between vaccinated and non-vaccinated pigs in experimental conditions. Twenty-four Specific Pathogen Free (SPF) piglets, vaccinated against PCV2 at 3weeks of age (PCV2a recombinant CAP protein-based vaccine), were inoculated at 15days post-vaccination with a PCV2b inoculum (6⋅10(5) TCID50), and put in contact with 24 vaccinated SPF piglets during 42days post-inoculation. Those piglets were shared in six replicates of a contact trial involving 4 inoculated piglets mingled with 4 susceptible SPF piglets. Two replicates of a similar contact trial were made with non-vaccinated pigs. Non vaccinated animals received a placebo at vaccination time and were inoculated the same way and at the same time as the vaccinated group. All the animals were monitored twice weekly using quantitative real-time PCR and ELISA for serology until 42days post-inoculation. The frequency of infection and the PCV2 genome load in sera of the vaccinated pigs were significantly reduced compared to the non-vaccinated animals. The duration of infectiousness was significantly different between vaccinated and non-vaccinated groups (16.6days [14.7;18.4] and 26.6days [22.9;30.4] respectively). The transmission rate was also considerably decreased in vaccinated pigs (β=0.09 [0.05-0.14] compared to β=0.19 [0.11-0.32] in non-vaccinated pigs). This led to an estimated reproduction ratio of 1.5 [95% CI 0.8 - 2.2] in vaccinated animals versus 5.1 [95% CI 2.5 - 8.2] in non-vaccinated pigs when merging data of this experiment with previous trials carried out in same conditions. PMID:27318416

  6. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac.

    de la Fuente, J; Rodríguez, M; Montero, C; Redondo, M; García-García, J C; Méndez, L; Serrano, E; Valdés, M; Enríquez, A; Canales, M; Ramos, E; Boué, O; Machado, H; Lleonart, R

    1999-11-01

    The control of tick infestations and the transmission of tick-borne diseases remain a challenge for the cattle industry in tropical and subtropical areas of the world. Traditional control methods have been only partially successful and the parasites continue to result in significant losses for the cattle industry. Recently, vaccines containing the recombinant B. microplus gut antigen Bm86 have been developed. Our vaccine formulation (Gavac, Heber Biotec S.A., Havana, Cuba) has been registered and is commercially available in Cuba, Colombia, Dominican Republic, Brazil and Mexico. In controlled pen trials, Gavac has been effective for the control of artificial infestations of B. annulatus, B. decoloratus and chemical-sensitive and resistant B. microplus strains from Australia, Africa, America and Iran. In controlled field trials in Cuba, Brazil, Argentina and Mexico, Gavac has shown a 55-100% efficacy in the control of B. microplus infestations in grazing cattle 12-36 weeks after the first vaccination. Field trials under production conditions have been conducted in Cuba, Colombia, Brazil and Mexico in pure and cross-bred cattle herds. The application of Gavac has increased the time between acaricide treatments by an average of 32 /-21 days (P = 0.0005) resulting in important savings for the cattle industry. In Cuba, a cost-effectiveness analysis was conducted in more than 260000 animals. The cost-effectiveness analysis showed a 60% reduction in the number of acaricide treatments, together with the control of tick infestations and transmission of babesiosis, which resulted in savings of 23.4 dollars animal(-1) year (-1). These results clearly demonstrate the advantage of vaccination and support the application of Gavac for the control of Boophilus spp. infestations. PMID:10596754

  7. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals

    Pit Sze Liew

    2015-01-01

    Full Text Available Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.

  8. Identification and Application of Neutralizing Epitopes of Human Adenovirus Type 55 Hexon Protein

    Xingui Tian

    2015-10-01

    Full Text Available Human adenovirus type 55 (HAdV55 is a newly identified re-emergent acute respiratory disease (ARD pathogen with a proposed recombination of hexon gene between HAdV11 and HAdV14 strains. The identification of the neutralizing epitopes is important for the surveillance and vaccine development against HAdV55 infection. In this study, four type-specific epitope peptides of HAdV55 hexon protein, A55R1 (residues 138 to 152, A55R2 (residues 179 to 187, A55R4 (residues 247 to 259 and A55R7 (residues 429 to 443, were predicted by multiple sequence alignment and homology modeling methods, and then confirmed with synthetic peptides by enzyme-linked immunosorbent assay (ELISA and neutralization tests (NT. Finally, the A55R2 was incorporated into human adenoviruses 3 (HAdV3 and a chimeric adenovirus rAd3A55R2 was successfully obtained. The chimeric rAd3A55R2 could induce neutralizing antibodies against both HAdV3 and HAdV55. This current study will contribute to the development of novel adenovirus vaccine candidate and adenovirus structural analysis.

  9. Influence of maternally-derived antibodies in 6-week old dogs for the efficacy of a new vaccine to protect dogs against virulent challenge with canine distemper virus, adenovirus or parvovirus

    Stephen Wilson

    2014-01-01

    In conclusion, two doses of the DHPPi/L4R vaccine administered to dogs from six weeks of age in the presence of maternal antibodies aided in the protection against virulent challenge with CDV, CAV-1 or CPV.

  10. Parental education and text messaging reminders as effective community based tools to increase HPV vaccination rates among Mexican American children

    Abraham Aragones

    2015-01-01

    Conclusions: Parental text messaging plus education, implemented in a community based setting, was strongly associated with vaccine completion rates among vaccine-eligible Mexican American children. Although pilot in nature, the study achieved an 88% series completion rate in the children of those who received the text messages, significantly higher than current vaccination levels.

  11. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  12. Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Gardner, Jeffrey R.; LIVINGSTON, PHILIP O.; Ragupathi, Govind; Tan, Derek S.; Gin, David Y.

    2014-01-01

    Immunoadjuvants are used to potentiate the activity of modern subunit vaccines that are based on molecular antigens. An emerging approach involves the combination of multiple adjuvants in a single formulation to achieve optimal vaccine efficacy. Herein, to investigate such potential synergies, we synthesized novel adjuvant conjugates based on the saponin natural product QS-21 and the aldehyde tucaresol via chemoselective acylation of an amine at the terminus of the acyl chain domain in QS sap...

  13. GET POKED: Comparing an Incentive-Based Flu Campaign with Vaccinate-or-Mask Policies to Boost Influenza Vaccination Rates Among Healthcare Workers.

    Marwaha, Seema; Lorv, Bailey; Henseleit, Susanne; Iroanyah, Ngozi

    2016-01-01

    The median influenza vaccination rate for Toronto acute care facilities in 2013/14 was only 44%, well below the target rate of 90%. While many Toronto hospitals adopted a vaccinate-or-mask policy, Trillium Health Partners (THP) opted to create a multimodal incentives-based flu campaign entitled GET POKED. This campaign, which required significant additional resourcing, only increased our vaccination rate by 10%. While having some modest success, we believe it is unlikely that non-policy based interventions will efficiently and sustainably raise flu vaccine rates. Vaccinate-or-mask policies, while having some inherent challenges, may be worth exploring as part of THP's larger flu-prevention strategy. PMID:27009712

  14. A novel M2e based flu vaccine formulation for dogs.

    Denis Leclerc

    Full Text Available BACKGROUND: The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. METHODOLOGY AND PRINCIPAL FINDINGS: The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. CONCLUSIONS AND SIGNIFICANCE: The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs.

  15. A Novel M2e Based Flu Vaccine Formulation for Dogs

    Leclerc, Denis; Rivest, Marie; Babin, Cindy; López-Macias, Constantino; Savard, Pierre

    2013-01-01

    Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs. PMID:24098576

  16. Gene-based vaccine development for improving animal production in developing countries

    Full text: The cloning and expression of microbial genes in alternate hosts to enhance production of antigens for animal vaccines against all disease is theoretically achievable. It is essential, however, that antigens expressed in this way are known to be protective. Many years of costly research usually precedes the identification of such antigens or combinations of antigens. Thus, while conventional vaccines based on living, attenuated or inactivated microorganisms may be effective, the protective components contained in them i.e. the candidates for cloning, have yet to be found. The principal protective antigen in vaccines against foot rot of sheep and goats is fimbrial protein of Dichelobacter nodosus. Recombinant vaccines against this infection are ineffective if the protein subunits are not assembled and presented to the host in a manner morphologically indistinguishable from those of the natural fimbriae. Availability of recombinant antigen does not necessarily avoid the need for the use of adjuvants to potentiate response. Oil emulsion vaccines, while enhancing immune response, almost inevitably cause a marked reaction at the site of injection. Livestock owners in developing countries are as likely as those elsewhere to object to these reactions. The need to find an acceptable and effective formulation adds to the cost of recombinant vaccines and their application in countries with limited resources for disease control. Another costly feature of recombinant vaccines has been the patenting of processes involving gene technology and licencing agreements for production under the protection of these patents. In some systems antigenic competition between similar and disparate antigens limits the usefulness of even recombinant antigens that, administered individually, are highly potent. In the case of programs for the control and eventual eradication of footrot in sheep and goats in Nepal this problem was overcome by the prior identification of causal serotypes

  17. B cell infection and activation by rabies virus-based vaccines.

    Lytle, Andrew G; Norton, James E; Dorfmeier, Corin L; Shen, Shixue; McGettigan, James P

    2013-08-01

    Replication-deficient rabies viruses (RABV) are promising rabies postexposure vaccines due to their prompt and potent stimulation of protective virus neutralizing antibody titers, which are produced in mice by both T-dependent and T-independent mechanisms. To promote such early and robust B cell stimulation, we hypothesized that live RABV-based vaccines directly infect B cells, thereby activating a large pool of antigen-presenting cells (APCs) capable of providing early priming and costimulation to CD4(+) T cells. In this report, we show that live RABV-based vaccine vectors efficiently infect naive primary murine and human B cells ex vivo. Infection of B cells resulted in the significant upregulation of early markers of B cell activation and antigen presentation, including CD69, major histocompatibility complex class II (MHC-II), and CD40 in murine B cells or HLA-DR and CD40 in human B cells compared to mock-infected cells or cells treated with an inactivated RABV-based vaccine. Furthermore, primary B cells infected with a live RABV expressing ovalbumin were able to prime and stimulate naive CD4(+) OT-II T cells to proliferate and to secrete interleukin-2 (IL-2), demonstrating a functional consequence of B cell infection and activation by live RABV-based vaccine vectors. We propose that this direct B cell stimulation by live RABV-based vaccines is a potential mechanism underlying their induction of early protective T cell-dependent B cell responses, and that designing live RABV-based vaccines to infect and activate B cells represents a promising strategy to develop a single-dose postexposure rabies vaccine where the generation of early protective antibody titers is critical. PMID:23760241

  18. Refinement of a DNA based Alzheimer disease epitope vaccine in rabbits

    Ghochikyan, Anahit; Davtyan, Hayk; Petrushina, Irina; Hovakimyan, Armine; Movsesyan, Nina; Davtyan, Arpine; Kiyatkin, Anatoly; Cribbs, David H.; Agadjanyan, Michael G.

    2013-01-01

    We previously demonstrated that our second-generation DNA-based Alzheimer disease (AD) epitope vaccine comprising three copies of a short amyloid-β (Aβ) B cell epitope, Aβ11 fused with the foreign promiscuous Th epitope, PADRE (p3Aβ11-PADRE) was immunogenic in mice. However, since DNA vaccines exhibit poor immunogenicity in large animals and humans, in this study, we sought to improve the immunogenicity of p3Aβ11-PADRE by modifying this vaccine to express protein 3Aβ11-PADRE with a free N-ter...

  19. Progress and challenges in the vaccine-based treatment of head and neck cancers

    Venuti Aldo

    2009-05-01

    Full Text Available Abstract Head and neck (HN cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours.

  20. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the study of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses

  1. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  2. Two initial vaccinations with the Bm86-based Gavacplus vaccine against Rhipicephalus (Boophilus microplus induce similar reproductive suppression to three initial vaccinations under production conditions

    Fernández Erlinda

    2010-09-01

    Full Text Available Abstract Background The cattle tick, Rhipicephalus (Boophilus microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core element of broad control programs against this ectoparasite, in which acquired immunity in cattle to Bm86 is combined with a rational use of acaricides. At present, the conventional vaccine scheme consists of three doses that should be administered at weeks 0, 4 and 7, followed by a booster every six months. Results In this study we assayed a reduction in the number of the initial doses of Gavacplus, evaluated the time course and the level of bovine anti-Bm86 antibodies elicited, and analyzed the vaccine effect on ticks engorging on immunized cattle under production conditions. Following three different immunization schemes, the bovines developed a strong and specific immune response characterized by elevated anti-Bm86 IgG titers. A reduction in the weight of engorging female ticks, in the weight of the eggs laid and also in R. microplus viable eggs percentage was obtained by using only two doses of Gavacplus administered at weeks 0 and 4, followed by a booster six months later. This reduction did not differ from the results obtained on ticks engorging on cattle immunized at weeks 0, 4 and 7. It was also demonstrated that anti-Bm86 antibody titers over 1:640, measured in bovines immunized at weeks 0 and 4, were sufficient to affect weight and reproductive potential of female ticks as compared with ticks engorging on unvaccinated animals. In addition, no statistically significant differences were detected in the average weight of eggs laid by ticks engorged on

  3. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  4. Future directions for the development of Chlamydomonas-based vaccines.

    Rosales-Mendoza, Sergio

    2013-09-01

    Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed. PMID:24053395

  5. Virus like particle-based vaccines against emerging infectious disease viruses.

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families. PMID:27405928

  6. The case for a rational genome-based vaccine against malaria

    Carla eProietti

    2015-01-01

    Full Text Available Historically, vaccines have been designed to mimic the immunity induced by natural exposure to the target pathogen, but this approach has not been effective for any parasitic pathogens of humans or complex pathogens that cause chronic disease in humans, such as Plasmodium. Despite intense efforts by many laboratories around the world on different aspects of Plasmodium spp. molecular and cell biology, epidemiology and immunology, progress towards the goal of an effective malaria vaccine has been disappointing. The premise of rational vaccine design is to induce the desired immune response against the key pathogen antigens or epitopes targeted by protective immune responses. We advocate that development of an optimally efficacious malaria vaccine will need to improve on nature, and that this can be accomplished by rational vaccine design facilitated by mining genomic, proteomic and transcriptomic datasets in the context of relevant biological function. In our opinion, modern genome-based rational vaccine design offers enormous potential above and beyond that of whole-organism vaccines approaches established over 200 years ago where immunity is likely suboptimal due to the many genetic and immunological host-parasite adaptations evolved to allow the Plasmodium parasite to coexist in the human host, and which are associated with logistic and regulatory hurdles for production and delivery.

  7. 钙网蛋白融合HBsAg基因重组腺病毒新型载体疫苗的构建与鉴定%Construction and characterization of a novel therapeutic vaccine of recombinant adenovirus vector containing calreticulin/HBsAg fusion gene

    张兰春; 王宝红; 王芳; 马春玲

    2011-01-01

    Objective:To generate recombinant adenoviral vector containing CRT-HBsAg fusion gene for developing a safe, effective and HBsAg-specific therapeutic vaccine.Methods:The fusion of CRT and HBsAg gene was constructed by using polymerase chain reaction(PCR), endonuclease digestion and ligation methods, and then the fusion gene was cloned into pENTR/D-TOPO transfer vector after the base pairs of DNA (CACC) sequence was added to the 5' end.Adenoviral expression vector(Ad-CRT/HBsAg)containing CRT-HBsAg fusion gene was constructed by homologous recombinantion.The linearized DNA plasmid of the recombinant adenoviral vector was transfected into human embryo kidney (HEK 293A) cells to package and amplify recombinant adenovirns.The recombinant adenovirus titer was characterized by using the End-dilution assay.The expression of the CRT/HBsAg fusion protein in Ad-CRT/HBsAg transfected 293A cells was detected by Western blot.Results:The CRT-HBsAg fusion gene was characterized by using PCR, and sequencing result revealed that the length and sequence were accurate.The recombinant adenoviral vector, Ad-CRT/HBsAg, was generated successfully.The titer of Ad-CRT/HBsAg was characterized as 2.68×1011 pfu/ml.The CRT-HBsAg fusion protein was expressed by HEK 293A cells correctly.Conclusion:Recombinant replication-defective adenovirus expression vector containing CRT/HBsAg fusion gene was constructed successfully, and this study has provided an experimental basis for further research of HBV gene therapy.%目的:构建表达钙网蛋白(calreticulin,CRT)与乙型肝炎病毒表面抗原(hepatitis B surface antigen,HBsAg)融合基因重组腺病毒载体(Ad-CRT/HBsAg),为研发新型乙型肝炎病毒(hepatitis B virus,HBV)治疗性疫苗奠定基础.方法:采用腺病毒表达系统(ViraPowerTM Adenofiral Expression System)构建重组腺病毒表达载体.首先利用RT-PCR的方法扩增CRT基因,并进一步构建CRT与HBsAg基因融合重组的pJW4303表达载体,在构建过程中给

  8. B Cell Infection and Activation by Rabies Virus-Based Vaccines

    Lytle, Andrew G.; Norton, James E.; Dorfmeier, Corin L.; Shen, Shixue; McGettigan, James P.

    2013-01-01

    Replication-deficient rabies viruses (RABV) are promising rabies postexposure vaccines due to their prompt and potent stimulation of protective virus neutralizing antibody titers, which are produced in mice by both T-dependent and T-independent mechanisms. To promote such early and robust B cell stimulation, we hypothesized that live RABV-based vaccines directly infect B cells, thereby activating a large pool of antigen-presenting cells (APCs) capable of providing early priming and costimulat...

  9. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    Ru Wen; Umeano, Afoma C.; Lily Francis; Nivita Sharma; Smanla Tundup; Shanta Dhar

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death ...

  10. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2007-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the ide...

  11. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1.

    Tompkins, Stephen Mark; Zhao, Zi-Shan; Lo, Chia-Yun; Misplon, Julia A; Liu, Teresa; Ye, Zhiping; Hogan, Robert J; Wu, Zhengqi; Benton, Kimberly A; Tumpey, Terrence M; Epstein, Suzanne L

    2007-03-01

    Changes in influenza viruses require regular reformulation of strain-specific influenza vaccines. Vaccines based on conserved antigens provide broader protection. Influenza matrix protein 2 (M2) is highly conserved across influenza A subtypes. To evaluate its efficacy as a vaccine candidate, we vaccinated mice with M2 peptide of a widely shared consensus sequence. This vaccination induced antibodies that cross-reacted with divergent M2 peptide from an H5N1 subtype. A DNA vaccine expressing full-length consensus-sequence M2 (M2-DNA) induced M2-specific antibody responses and protected against challenge with lethal influenza. Mice primed with M2-DNA and then boosted with recombinant adenovirus expressing M2 (M2-Ad) had enhanced antibody responses that crossreacted with human and avian M2 sequences and produced T-cell responses. This M2 prime-boost vaccination conferred broad protection against challenge with lethal influenza A, including an H5N1 strain. Vaccination with M2, with key sequences represented, may provide broad protection against influenza A. PMID:17552096

  12. Vaccine development for Tuberculosis: Past, Present and Future Challenges

    Dileep Tiwari

    2011-06-01

    Full Text Available About one third of the world's population is infected with Mycobacterium tuberculosis (M. tb, and new infections occur at a rate of about one per second. Additionally, more people in the developed world contact tuberculosis (TB because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe, still the treatment is difficult and requires long courses of multiple antibiotics. However, antibiotic resistance is a growing problem in multidrugresistant (MDR tuberculosis. But mostly the prevention relies on screening programs and vaccination, usually with Bacillus Calmette- Guérin (BCG vaccine. BCG is the most commonly used vaccine worldwide, but not as a powerful vaccine. BCG also provides some protection against severe forms of pediatric TB, but has been shown to be unreliable against adult pulmonary TB which accounts for most of the disease burden worldwide. Currently, there is an urgent need for novel, more effective vaccine that can prevent all forms of TB including drug resistant strains for all age groups and among people with HIV. The first recombinant tuberculosis vaccine rBCG30, entered clinical trials in year 2004, but, still no effective vaccine is available in a market. Study showed that DNA TB vaccine given with conventional chemotherapy can accelerate the disappearance of bacteria as well as protect against re-infection in mice and it is quite effective against TB. A very promising TB vaccine, MVA85A, is currently in phase II trials and is based on a genetically modified vaccinia virus. Many other strategies are also being used to develop novel vaccines, including both subunit vaccines such as Hybrid-1, HyVac4 or M72, and recombinant adenoviruses such as Ad35. Some of these vaccines can be effectively administered without needles making them preferable for areas where HIV is very common and few of

  13. Development of a model based on oncolytic adenovirus loaded with L-carnosine as a drug delivery system for cancer therapy

    Garofalo, Mariangela

    2015-01-01

    Oncolytic viruses are viruses that are able to replicate specifically and infect and destroy only tumor cells. Many clinical studies have shown that the oncolytic approach alone could not efficiently destroy the large tumor mass, thus by limiting an efficacy virotherapy. Combination of oncolytic adenoviruses (Ads) and chemotherapeutic drugs has shown promising therapeutic results due to the synergistic action of virus and drug and is considered as a potential approach for cancer therapy. In t...

  14. Recent advances in recombinant protein-based malaria vaccines

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro;

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...

  15. Genetically modified dendritic cell-based cancer vaccines

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155. ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  16. Genetically engineered dendritic cell-based cancer vaccines

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478. ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  17. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza.

    Byoung-Shik Shim

    Full Text Available BACKGROUND: The ectodomain of matrix protein 2 (M2e of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n. route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l. route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. METHODS AND RESULTS: A recombinant M2 protein with three tandem copies of the M2e (3M2eC was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. CONCLUSIONS: The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.

  18. Immune responses of recombinant adenovirus-5 vector vaccine of human papillomavirus type 16 E6E7 and its anti-tumor effects in mice%表达人乳头瘤病毒16型E6E7重组腺病毒疫苗对小鼠的免疫和抗肿瘤效应

    吴洁; 陈刚; 金素凤; 高孟; 庄昉成; 李剑波; 姜云水; 毛子安

    2014-01-01

    目的 评价HPV16 E6E7的复制缺陷型重组5型腺病毒(PK-HPV-ad5)治疗性疫苗对实验小鼠免疫应答和抗肿瘤的生物学效应.方法 使用基因重组技术构建PK-HPV-ad5疫苗,并通过小鼠免疫试验,检测小鼠总抗体和特异性IFNγ,同时将造模小鼠分成疫苗组和对照组,分别对其进行抑瘤试验、TC-1肿瘤细胞挑战试验和肿瘤切除后防复发试验.结果 HPV16 E6E7诱导的总抗体第12天的水平相对较高(1:400~1:600);3批次疫苗特异性IFNγ在第14天与对照组比较分别升高8.6、5.9和8.9倍,差异有统计学意义(t=15.721、6.967和14.342,P均<0.01).抑瘤试验表明疫苗剂量为107IU/只时小鼠肿瘤生长率为0,与对照组比较差异有统计学意义(确切概率法,P<0.01),3批次疫苗验证有效剂量为107IU/只时肿瘤抑制率可达80%(8/10)以上.TC-1肿瘤细胞挑战试验结果显示:小鼠先接种疫苗能引起特异性的免疫应答,并能保护90%(9/10)的小鼠免受TC-1肿瘤细胞的攻击;肿瘤切除后防止复发试验提示在注射相同剂量疫苗时,对104个/只和105个/只肿瘤细胞造模小鼠,第0、5天免疫组肿瘤复发数少于第5,8天免疫组(1/10,4/10 vs 8/10,7/10).结论 PK-HPV-ad5疫苗能诱导小鼠产生特异性的免疫应答,对抗肿瘤复发有治疗潜力.%Objective To evaluate the immune responses and anti-tumor effects of replication-deficient recombinant adenovirus-5 vector vaccine of human papillomavirus type 16 E6E7 as a theraputic vaccine (PK-HPV-ad5) in mouse models.Methods PK-HPV-ad5 vaccine was constructed by gene recombination technique.HPV16E6E7 total antibody and specific IFNγ of the vaccine were detected by mouse immune experiment.The model mice were divided into vaccine group and control group,and were used for anti-tumor test,TC-1 tumor cell challenge test and evaluation of tumor excision combined with vaccine to prevent tumor recurrence.Results HPV16 E6E7 total antibody increased to a

  19. Oncolytic Adenoviruses in Cancer Treatment

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  20. An Update on Canine Adenovirus Type 2 and Its Vectors

    Eric J. Kremer

    2010-09-01

    Full Text Available Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2 biology and gives an overview of the generation of early region 1 (E1-deleted to helper-dependent (HD CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.

  1. A duplex real-time PCR assay based on TaqMan technology for simultaneous detection and differentiation of canine adenovirus types 1 and 2.

    Dowgier, Giulia; Mari, Viviana; Losurdo, Michele; Larocca, Vittorio; Colaianni, Maria Loredana; Cirone, Francesco; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio; Decaro, Nicola

    2016-08-01

    Canine adenoviruses are a major cause of disease in dogs, coyotes, red foxes and wolves, as well as in other carnivores and marine mammals. Canine adenovirus type 1 (CAdV-1) and canine adenovirus type 2 (CAdV-2) cause infectious canine hepatitis (ICH) and infectious tracheobronchitis (ITB), respectively. In this study, a duplex real-time PCR assay for simultaneous detection and characterisation of CAdV-1 and CAdV-2 was developed by using a single primer pair and virus-specific probes. The assay was validated testing standard DNAs produced on purpose and clinical samples of various matrices known to be positive for CAdV-1, CAdV-2 or both viruses. Precise calculation of DNA loads in samples containing a wide range of viral amounts was allowed by generating a standard curve for absolute quantification. The assay was proven to be highly specific, since no cross-reactions with the different CAdV type was observed, and sensitive, being able to detect less than 10 copies of CAdV-1/CAdV-2 DNA. The low intra-assay and interassay coefficient of variations demonstrated a high repeatability, thus confirming the potential use of this assay for quantitative detection of CAdV-1 and CAdV-2 for rapid diagnosis and epidemiological investigations. PMID:27040113

  2. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  3. A Plant-Based Transient Expression System for the Rapid Production of Malaria Vaccine Candidates.

    Boes, Alexander; Reimann, Andreas; Twyman, Richard M; Fischer, Rainer; Schillberg, Stefan; Spiegel, Holger

    2016-01-01

    There are currently no vaccines that provide sterile immunity against malaria. Various proteins from different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates, but none of them have fulfilled expectations. Therefore, combinations of key antigens from different stages of the parasites life cycle may be essential for the development of efficacious malaria vaccines. Following the identification of promising antigens using bioinformatics, proteomics, and/or immunological approaches, it is necessary to express, purify, and characterize these proteins and explore the potential of fusion constructs combining different antigens or antigen domains before committing to expensive and time-consuming clinical development. Here, using malaria vaccine candidates as an example, we describe how Agrobacterium tumefaciens-based transient expression in plants can be combined with a modular and flexible cloning strategy as a robust and versatile tool for the rapid production of candidate antigens during research and development. PMID:27076325

  4. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity.

    Krause, Anja; Joh, Ju H; Hackett, Neil R; Roelvink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imre; Crystal, Ronald G; Worgall, Stefan

    2006-06-01

    On the basis of the concept that the capsid proteins of adenovirus (Ad) gene transfer vectors can be genetically manipulated to enhance the immunogenicity of Ad-based vaccines, the present study compared the antiantigen immunogenicity of Ad vectors with a common epitope of the hemagglutinin (HA) protein of the influenza A virus incorporated into the outer Ad capsid protein hexon, penton base, fiber knob, or protein IX. Incorporation of the same epitope into the different capsid proteins provided insights into the correlation between epitope position and antiepitope immunity. Following immunization of three different strains of mice (C57BL/6, BALB/c, and CBA) with either an equal number of Ad particles (resulting in a different total HA copy number) or different Ad particle numbers (to achieve the same HA copy number), the highest primary (immunoglobulin M [IgM]) and secondary (IgG) anti-HA humoral and cellular CD4 gamma interferon and interleukin-4 responses against HA were always achieved with the Ad vector carrying the HA epitope in fiber knob. These observations suggest that the immune response against an epitope inserted into Ad capsid proteins is not necessarily dependent on the capsid protein number and imply that the choice of incorporation site in Ad capsid proteins in their use as vaccines needs to be compared in vivo. PMID:16699033

  5. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela

    2016-01-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  6. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines.

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela; Van Der Wielen, Marie

    2016-07-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  7. The administration of a single dose of a multivalent (DHPPiL4R vaccine prevents clinical signs and mortality following virulent challenge with canine distemper virus, canine adenovirus or canine parvovirus

    Stephen Wilson

    2014-01-01

    In conclusion, we demonstrated that a single administration of a minimum titre, multivalent vaccine to dogs of six weeks of age is efficacious and prevents clinical signs and mortality caused by CAV-1 and CDV; prevents clinical signs and significantly reduces virus shedding caused by CAV-2; and prevents clinical signs, leucopoenia and viral excretion caused by CPV.

  8. Quantitative Real-Time PCR Assays for Detection of Human Adenoviruses and Identification of Serotypes 40 and 41

    Jothikumar, Narayanan; Cromeans, Theresa L.; Hill, Vincent R.; Lu, Xiaoyan; Sobsey, Mark D.; Erdman, Dean D.

    2005-01-01

    A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV4...

  9. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  10. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    Khurana, Surender; Coyle, Elizabeth M; Manischewitz, Jody; King, Lisa R; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions. PMID:25629161

  11. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: A population-based study.

    Herweijer, Eva; Sundström, Karin; Ploner, Alexander; Uhnoo, Ingrid; Sparén, Pär; Arnheim-Dahlström, Lisen

    2016-06-15

    Human papillomavirus (HPV) types 16/18, included in HPV vaccines, contribute to the majority of cervical cancer, and a substantial proportion of cervical intraepithelial neoplasia (CIN) grades 2/3 or worse (CIN2+/CIN3+) including adenocarcinoma in situ or worse. The aim of this study was to quantify the effect of quadrivalent HPV (qHPV) vaccination on incidence of CIN2+ and CIN3+. A nationwide cohort of girls and young women resident in Sweden 2006-2013 and aged 13-29 (n = 1,333,691) was followed for vaccination and histologically confirmed high-grade cervical lesions. Data were collected using the Swedish nationwide healthcare registers. Poisson regression was used to calculate incidence rate ratios (IRRs) and vaccine effectiveness [(1-IRR)x100%] comparing fully vaccinated with unvaccinated individuals. IRRs were adjusted for attained age and parental education, and stratified on vaccination initiation age. Effectiveness against CIN2+ was 75% (IRR = 0.25, 95%CI = 0.18-0.35) for those initiating vaccination before age 17, and 46% (IRR = 0.54, 95%CI = 0.46-0.64) and 22% (IRR = 0.78, 95%CI = 0.65-0.93) for those initiating vaccination at ages 17-19, and at ages 20-29, respectively. Vaccine effectiveness against CIN3+ was similar to vaccine effectiveness against CIN2+. Results were robust for both women participating to the organized screening program and for women at prescreening ages. We show high effectiveness of qHPV vaccination on CIN2+ and CIN3+ lesions, with greater effectiveness observed in girls younger at vaccination initiation. Continued monitoring of impact of HPV vaccination in the population is needed in order to evaluate both long-term vaccine effectiveness and to evaluate whether the vaccination program achieves anticipated effects in prevention of invasive cervical cancer. PMID:26856527

  12. 78 FR 33798 - Oral Rabies Vaccine Trial; Availability of a Supplemental Environmental Assessment

    2013-06-05

    ... whether the wildlife rabies vaccine will produce sufficient levels of population immunity against raccoon... of conflicts that APHIS-WS addresses. Wildlife is the dominant reservoir of rabies in the United... new wildlife rabies vaccine, human adenovirus type 5 rabies glycoprotein recombinant vaccine...

  13. Adenovirus retargeting and systemic delivery

    Seymour, L. W.; Fisher, K. D.; Green, N. K.; Hale, S. J.; Lyons, M.; Mautner, V.; Nicum, S.; Onion, D.; Oupický, D.; Stevenson, M.; Ulbrich, Karel

    Berlin: Springer Verlag, 2003 - (Rubanyi, G.; Ylä-Herttuala, S.), s. 107-117 ISBN 3-540-00413-0 R&D Projects: GA AV ČR KSK4055109 Keywords : gene delivery * adenovirus * HPMA copolymers Subject RIV: CC - Organic Chemistry

  14. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

    Peter M Ferguson

    Full Text Available Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

  15. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice.

    Chen, Zhenhai; Gupta, Tuhina; Xu, Pei; Phan, Shannon; Pickar, Adrian; Yau, Wilson; Karls, Russell K; Quinn, Frederick D; Sakamoto, Kaori; He, Biao

    2015-12-16

    Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development. PMID:26552000

  16. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses.

    Willet, Mallory; Kurup, Drishya; Papaneri, Amy; Wirblich, Christoph; Hooper, Jay W; Kwilas, Steve A; Keshwara, Rohan; Hudacek, Andrew; Beilfuss, Stefanie; Rudolph, Grit; Pommerening, Elke; Vos, Adriaan; Neubert, Andreas; Jahrling, Peter; Blaney, Joseph E; Johnson, Reed F; Schnell, Matthias J

    2015-10-01

    We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced. PMID:26063224

  17. A New Strategy Based on Smrho Protein Loaded Chitosan Nanoparticles as a Candidate Oral Vaccine against Schistosomiasis

    Oliveira, Carolina R.; Rezende, Cíntia M. F.; Silva, Marina R.; Ana Paula Pêgo; Olga Borges; Alfredo M. Goes

    2012-01-01

    BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticl...

  18. TAA Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy

    Roberto Bei

    2010-01-01

    Full Text Available DNA-based cancer vaccines represent an attractive strategy for inducing immunity to tumor associated antigens (TAAs in cancer patients. The demonstration that the delivery of a recombinant plasmid encoding epitopes can lead to epitope production, processing, and presentation to CD8+ T-lymphocytes, and the advantage of using a single DNA construct encoding multiple epitopes of one or more TAAs to elicit a broad spectrum of cytotoxic T-lymphocytes has encouraged the development of a variety of strategies aimed at increasing immunogenicity of TAA polyepitope DNA-based vaccines. The polyepitope DNA-based cancer vaccine approach can (a circumvent the variability of peptide presentation by tumor cells, (b allow the introduction in the plasmid construct of multiple immunogenic epitopes including heteroclitic epitope versions, and (c permit to enroll patients with different major histocompatibility complex (MHC haplotypes. This review will discuss the rationale for using the TAA polyepitope DNA-based vaccination strategy and recent results corroborating the usefulness of DNA encoding polyepitope vaccines as a potential tool for cancer therapy.

  19. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models

    Soledad eMac Keon

    2015-05-01

    Full Text Available Dendritic cells (DCs play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel T there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts towards an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.

  20. Vaccination: Developing and implementing a competency-based-curriculum at the Medical Faculty of LMU Munich

    Vogel, B.

    2016-02-01

    Full Text Available Background: In Germany medical students should gain proficiency and specific skills in the vaccination field. Especially important is the efficient communication of scientific results about vaccinations to the community, in order to give professional counseling with a complete overview about therapeutic options.Aim of the project: The aim of this project is to set up a vaccination-related curriculum in the Medical Faculty at the Ludwig-Maximilians-University in Munich. The structure of the curriculum is based on the National catalogue for competency-based learning objectives in the field of vaccination (Nationaler Kompetenzbasierter Lernzielekatalog Medizin NKLM. Through this curriculum, the students will not only acquire the classical educational skills concerning vaccination in theory and practice, but they will also learn how to become independent in the decision-making process and counseling. Moreover, the students will become aware of consequences of action related to this specific topic.Methods: According to defined guidelines, an analysis was performed on courses, which are currently offered by the university. A separate analysis of the NKLM was carried out. Both analyses identified the active courses related to the topic of vaccination as well as the NKLM learning objectives. The match between the topics taught in current courses and the NKLM learning objectives identified gaps concerning the teaching of specific content. Courses were modified in order to implement the missing NKLM learning objectives.Results: These analyses identified 24 vaccination-related courses, which are currently taught at the University. Meanwhile, 35 learning objectives on vaccination were identified in the NKLM catalogue. Four of which were identified as not yet part of the teaching program. In summary, this interdisciplinary work enabled the development of a new vaccination-related curriculum, including 35 learning objectives, which are now implemented in

  1. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA

    Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø;

    2015-01-01

    failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response......Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible...... for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have...

  2. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  3. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-01-01

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo. PMID:24326926

  4. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S;

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of cancer...

  5. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S; Munksgaard, Signe B; Zocca, Mai-Britt; Claesson, Mogens Helweg; Rosenberg, Jacob

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of...

  6. Bone marrow dendritic cell-based anticancer vaccines

    Indrová, Marie; Mendoza, Luis; Reiniš, Milan; Vonka, V.; Šmahel, M.; Němečková, Š.; Jandlová, Táňa; Bubeník, Jan

    2001-01-01

    Roč. 495, - (2001), s. 355-358. ISSN 0065-2598 R&D Projects: GA MZd NC5526; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA7052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV16 * dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.513, year: 2000

  7. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines

    Shigeo Koido

    2016-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whol...

  8. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    Burgdorf, Stefan; Claesson, Mogens; Nielsen, Hans; Rosenberg, Jacob

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction of......-inflammatory cytokines in serum of patients who achieved stable disease following vaccination suggest the occurrence of vaccine-induced Th1 responses. Since Th1 responses seem to be essential in cancer immunotherapy this may indicate a therapeutic potential of the vaccine....... responding patients. The aim of this study was to evaluate cytokine and biomarker responses in patients with colorectal cancer treated with a cancer vaccine based on dendritic cells pulsed with an allogeneic melanoma cell lysate. Material and methods. Plasma and serum samples were collected prior to...

  9. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    Burgdorf, Stefan K; Claesson, Mogens Helweg; Nielsen, Hans J; Rosenberg, Jacob

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction of......-inflammatory cytokines in serum of patients who achieved stable disease following vaccination suggest the occurrence of vaccine-induced Th1 responses. Since Th1 responses seem to be essential in cancer immunotherapy this may indicate a therapeutic potential of the vaccine....... responding patients. The aim of this study was to evaluate cytokine and biomarker responses in patients with colorectal cancer treated with a cancer vaccine based on dendritic cells pulsed with an allogeneic melanoma cell lysate. Material and methods. Plasma and serum samples were collected prior to...

  10. Totally synthetic peptide-based immunocontraceptive vaccines show activity in dogs of different breeds.

    Walker, John; Ghosh, Souravi; Pagnon, Joanne; Colantoni, Caterina; Newbold, Andrea; Zeng, Weiguang; Jackson, David C

    2007-10-10

    In this study we examine the immunogenicity of totally synthetic peptide-based immunocontraceptive vaccines in dogs. Seven individual epitope-based vaccines were assembled in which a different T helper (T(H)) cell epitope derived from the sequence of F protein of canine distemper virus was synthesized in tandem with a peptide representing luteinising hormone releasing hormone (LHRH). Each of the individual T(H)-LHRH peptide vaccines was inoculated subcutaneously into dogs. The results demonstrate that five of the seven peptide vaccines were able to elicit strong anti-LHRH antibody responses in beagle foxhounds accompanied by a concomitant suppression in the levels of the hormones testosterone and progesterone in the majority of the animals. A pool of these five peptides was then used to inoculate five different breeds of dogs. All animals responded with high levels of anti-LHRH antibody. An investigation of the proliferative responses of peripheral blood mononuclear cells (PBMC) obtained from inoculated dogs showed that the majority of breeds responded to each of the individual T helper cell epitope tested. The results provide a strategy for development of an immunocontraceptive vaccine for use in multiple breeds of dogs. PMID:17825958

  11. Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections.

    Shen, Chaoyun; Ku, Zhiqiang; Zhou, Yu; Li, Dapeng; Wang, Lili; Lan, Ke; Liu, Qingwei; Huang, Zhong

    2016-07-25

    Coxsackievirus A6 (CA6) is emerging as one of the major causative agents of hand, foot, and mouth disease (HFMD) worldwide. However, no vaccine is currently available for preventing CA6 infection. Here, we report the development of a virus-like particle (VLP)-based recombinant vaccine for CA6. We produced CA6 VLPs in insect cells by infecting the cells with a baculovirus coexpressing the genes encoding CA6 P1 and 3CD. Biochemical analyses showed that the produced VLPs consisted of VP0, VP1, and VP3 capsid subunit proteins generated by the cleavage of P1 by 3CD. Mice immunized with these VLPs produced CA6-specific serum antibodies. Passive transfer of antisera from CA6 VLP-immunized mice protected recipient mice from lethal infections caused by homologous and heterologous CA6 strains. Moreover, active immunization of mice with CA6 VLPs efficiently conferred protection against both homologous and heterologous CA6 infections. These results suggested that CA6 VLP-based recombinant vaccine is a promising candidate vaccine for preventing CA6 infection and can be incorporated into a multivalent HFMD vaccine formulation to achieve broad-spectrum and effective prevention of this disease. PMID:27340093

  12. Practice- and Community-Based Interventions to Increase Human Papillomavirus Vaccine Coverage

    Niccolai, Linda M.; Hansen, Caitlin E.

    2016-01-01

    IMPORTANCE Vaccines against human papillomavirus (HPV) are recommended for routine use in adolescents aged 11 to 12 years in the United States, but uptake remains suboptimal. Educational interventions focused on parents and patients to increase coverage have not generally demonstrated effectiveness. OBJECTIVE To systematically review the literature on effectiveness of interventions conducted at the practice or community level to increase uptake of HPV vaccines in the United States. EVIDENCE REVIEW Keyword searches of the PubMed, Web of Science, and MEDLINE databases identified studies of adolescents that included the outcome of HPV vaccination published through July 2014. References of identified articles were also reviewed. A total of 366 records were screened, 38 full-text articles were reviewed, and 14 published studies were included. Results were summarized by different intervention approaches. FINDINGS Practice- and community-based intervention approaches included reminder and recall (n = 7), physician-focused interventions (eg, audit and feedback) (n = 6), school-based programs (n = 2), and social marketing (n = 2) (2 interventions tested multiple approaches). Seven studies used a randomized design, and 8 used quasiexperimental approaches (one used both). Thirteen studies included girls, and 2 studies included boys. Studies were conducted in a variety of populations and geographic locations. Twelve studies reported significant increases in at least one HPV vaccination outcome, one reported a nonsignificant increase, and one reported mixed effects. CONCLUSIONS AND RELEVANCE Most practice- and community-based interventions significantly increased HPV vaccination rates using varied approaches across diverse populations. This finding is in stark contrast to a recent review that did not find effects to warrant widespread implementation for any educational intervention. To address the current suboptimal rates of HPV vaccination in the United States, future efforts

  13. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  14. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  15. Poliovirus Vaccines

    Isik Yalcin

    2008-01-01

    The two types of poliovirus vaccines are inactivated vaccine, given parenterally, and live virus vaccine, given orally. Oral poliovirus is the vaccine of choice for global eradication. Either inactivated vaccine or oral vaccine may be given concurrently with other routinely recommended childhood vaccines. No serious adverse events have been associated with the vaccine. Oral poliovirus vaccine can cause vaccine associated paralytic poliomyelitis.

  16. Population-based enrolment of adolescents in a long-term follow-up trial of human papillomavirus vaccine efficacy.

    Lehtinen, M; Idänpään-Heikkilä, I; Lunnas, T; Palmroth, J; Barr, E; Cacciatore, R; Isaksson, R; Kekki, M; Koskela, P; Kosunen, E; Kuortti, M; Lahti, L; Liljamo, T; Luostarinen, T; Apter, D; Pukkala, E; Paavonen, J

    2006-04-01

    We evaluated a study setting for assessment of the long-term vaccine efficacy (VE) of human papillomavirus (HPV) virus-like-particle (VLP) vaccine against cervical carcinoma. A total of 22,412 16- to 17-year old adolescent women from seven cities in Finland were invited by letter to participate in a phase III study of a quadrivalent HPV (types 6, 11, 16, 18) VLP vaccine, between September 2002 and March 2003. A total of 30,947 18-year old women were invited to participate as unvaccinated controls. These women were asked about their willingness to participate in an HPV vaccination trial and to fill a health questionnaire. These three population-based cohorts of adolescent women, including women vaccinated with HPV vaccine or placebo vaccine and unvaccinated control women, are systematically followed over time. The study cohort database will be linked with the Finnish Cancer Registry using cervical carcinoma in situ (CIS) and invasive cervical carcinoma (ICC) as endpoints. Assuming that the cumulative incidence of CIS and ICC over 15 years is 0.45%, and that there is no loss to follow-up, and power of 80%, the determination of 70% total VE will require 3357 HPV vaccine recipients, 3357 placebo vaccine recipients, and 6714 unvaccinated controls. At the baseline, 2632 (12%) of the invited adolescents volunteered to the phase III vaccination trial, and 6790 (22%) responded to the questionnaire study. During a recruitment period of 10 months, 874 HPV vaccine recipients, 875 placebo recipients and 1919 unvaccinated controls were enrolled. Population-based enrollment of large cohorts of vaccinated and unvaccinated adolescents for passive registry-based follow-up with cervical carcinoma as the end-point is feasible and currently going on in Finland. PMID:16595046

  17. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.

    Anke M Mulder

    Full Text Available BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg VLP-based vaccine. METHODOLOGY: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA. The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM and in-solution atomic force microscopy (AFM. PRINCIPAL FINDINGS: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing. SIGNIFICANCE: Together, the methods presented here comprise a novel

  18. A school-based human papillomavirus vaccination program in barretos, Brazil: final results of a demonstrative study.

    José Humberto Tavares Guerreiro Fregnani

    Full Text Available INTRODUCTION: The implementation of a public HPV vaccination program in several developing countries, especially in Latin America, is a great challenge for health care specialists. AIM: To evaluate the uptake and the three-dose completion rates of a school-based HPV vaccination program in Barretos (Brazil. METHODS: THE STUDY INCLUDED GIRLS WHO WERE ENROLLED IN PUBLIC AND PRIVATE SCHOOLS AND WHO REGULARLY ATTENDED THE SIXTH AND SEVENTH GRADES OF ELEMENTARY SCHOOL (MEAN AGE: 11.9 years. A meeting with the parents or guardians occurred approximately one week before the vaccination in order to explain the project and clarify the doubts. The quadrivalent vaccine was administered using the same schedule as in the product package (0-2-6 months. The school visits for regular vaccination occurred on previously scheduled dates. The vaccine was also made available at Barretos Cancer Hospital for the girls who could not be vaccinated on the day when the team visited the school. RESULTS: Among the potential candidates for vaccination (n = 1,574, the parents or guardians of 1,513 girls (96.1% responded to the invitation to participate in the study. A total of 1,389 parents or guardians agreed to participate in the program (acceptance rate = 91.8%. The main reason for refusing to participate in the vaccination program was fear of adverse events. The vaccine uptake rates for the first, second, and third doses were 87.5%, 86.3% and 85.0%, respectively. The three-dose completion rate was 97.2%. CONCLUSIONS: This demonstrative study achieved high rates of vaccination uptake and completion of three vaccine doses in children 10-16 years old from Brazil. The feasibility and success of an HPV vaccination program for adolescents in a developing country may depend on the integration between the public health and schooling systems.

  19. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes

    Swaminathan Sathyamangalam

    2007-02-01

    Full Text Available Abstract Background Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. Results This work stems from the emergence of (i the DEN virus envelope (E domain III (EDIII as the most important region of the molecule from a vaccine perspective and (ii the adenovirus (Ad as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Conclusion Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has

  20. Structure-based vaccines provide protection in a mouse model of ehrlichiosis.

    Sunil Thomas

    Full Text Available BACKGROUND: Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection. METHODOLOGY/PRINCIPAL FINDINGS: We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28 and Ehrlichia Heat shock protein 60 (Hsp60/GroEL antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.

  1. Muc1 based breast cancer vaccines: role of post translational modifications

    Vaccine development is one of the most promising fields in cancer research. After autologous transplantation, due to low tumour burden, patients are more likely to respond immunologically to a cancer vaccine. MUC1 with its adhesive and anti adhesive functions, immunostimulatory and immunosuppressive activities, is therefore a good candidate for breast cancer vaccine. A structure-based insight into the immunogenicity of natural MUC1 glyco forms, of its sub-domains, motifs and post translational modification like glycosylation and myriostoylation may aid the design of tumour vaccines. Primary sequences of human MUC1 were retrieved from the SWISSPROT data bank. Protein pattern search: The primary sequence of Human MUC1 was searched at PROSITE (a dictionary of protein sites and patterns) database. Our study observes that post-translational modifications play an important role in presenting MUC1 as a candidate for breast cancer vaccine. It is found that the phosphorylation and glycosylation of important functional motifs of MUC1 may take part in the production of cytokines that may provide immunization. (author)

  2. DENDRITIC CELL-BASED VACCINE THERAPY IN PATIENTS WITH RENAL CELL CARCINOMA

    D. A. Nosov

    2014-07-01

    Full Text Available Objective: to study the efficiency and tolerance of autologous vaccine therapy based on dendritic cells (DC in patients with renal cell carcinoma (RCC and to examine changes in immunological parameters and their association with the efficiency of the therapy. Subjects and methods. Twenty-nine patients with RCC received autologous vaccine therapy based on DC in 2002 to 2008. Therapy was performed in the induction mode in 16 patients before disease progression and in the adjuvant mode (8 vaccinations in 13 patients after radical nephrectomy (grade III or radical metastasectomy. Peripheral blood monocyte-derived DCs treated with autologous tumor lysate were used to prepare the vaccine. Results. In a group of 16 patients with distant metastases, partial regressions were recorded in 2 (12.5% patients and long (> 6-month stabilizations of a tumor process were observed in other 2 (12.5% patients. The median time prior to progression was 3 (range 1.5-12 months. Thirteen patients on adjuvant treatment did not achieve the median time to progression: 4 patients showed no signs of disease progression ?12 to ?25 months after metastasectomy. Patients with a clinical effect (disease regression or long stabilization showed a significant increase in the populations of CD3+CD8+ and CD3-CD16+ T lymphocytes (natural killers (NK cells after 3 vaccinations from 23.3 to 27.2% (p = 0.018 and from 15.17 to 20.3%, respectively (p = 0.03. Prior to vaccine therapy, the count of CD3+CD16+-NK cells was thrice greater in patients with the progressive disease than that in the donor group - 11.2 and 3.5%, respectively. The baseline count of CD4+CD25+ Т lymphocytes in patients with progressive disease was also significantly higher than that in patients with the clinical effect - 12.01 and 5.6%, respectively. Conclusion. In patients with RCC, DC-based vaccine therapy is able to induce a specific anti-tumor immune response that is transformed into the clinical effect in some

  3. History of vaccination

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  4. Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation

    Hung Chien-Fu

    2010-11-01

    Full Text Available Abstract Background Effective vaccination against human papillomavirus (HPV represents an opportunity to control cervical cancer. Peptide-based vaccines targeting HPV E6 and/or E7 antigens while safe, will most likely require additional strategies to enhance the vaccine potency. Methods We tested the HPV-16 E7 peptide-based vaccine in combination with a strategy to enhance CD4+ T help using a Pan HLA-DR epitope (PADRE peptide and a strategy to enhance dendritic cell activation using the toll-like receptor 3 ligand, poly(I:C. Results We observed that mice vaccinated with E7 peptide-based vaccine in combination with PADRE peptide and poly(I:C generated better E7-specific CD8+ T cell immune responses as well as significantly improved therapeutic anti-tumor effects against TC-1 tumors compared to E7 peptide-based vaccine with either PADRE peptide or poly(I:C alone. Furthermore, we found that intratumoral vaccination with the E7 peptide in conjunction with PADRE peptide and poly(I:C generates a significantly higher frequency of E7-specific CD8+ T cells as well as better survival compared to subcutaneous vaccination with the same regimen in treated mice. Conclusions The combination of PADRE peptide and poly(I:C with antigenic peptide is capable of generating potent antigen-specific CD8+ T cell immune responses and antitumor effects in vaccinated mice. Our study has significant clinical implications for peptide-based vaccination.

  5. Peptide-based candidate vaccine against respiratory syncytial virus.

    Yusibov, Vidadi; Mett, Vadim; Mett, Valentina; Davidson, Carley; Musiychuk, Konstantin; Gilliam, Suzan; Farese, Ann; Macvittie, Thomas; Mann, Dean

    2005-03-18

    We engineered a 21-mer peptide representing amino acids 170-190 of the respiratory syncytial virus (RSV) G protein as a fusion with the Alfalfa mosaic virus (AlMV) coat protein (CP), produced recombinant AlMV particles presenting this peptide (VMR-RSV) on their surfaces and tested the immunogenicity in vitro in human dendritic cells and in vivo in non-human primates. Significant pathogen-specific immune responses were generated in both systems: (i) human dendritic cells armed with VMR-RSV generated vigorous CD4+ and CD8+ T cell responses; (ii) non-human primates that received these particles responded by mounting strong cellular and humoral immune responses. This approach may validate the use of a novel RSV vaccine delivery vehicle in humans. PMID:15755607

  6. Print News Coverage of School-Based Human Papillomavirus Vaccine Mandates

    Casciotti, Dana M.; Smith, Katherine C.; Andon, Lindsay; Vernick, Jon; Tsui, Amy; Klassen, Ann C.

    2014-01-01

    Background: In 2007, legislation was proposed in 24 states and the District of Columbia for school-based human papillomavirus (HPV) vaccine mandates, and mandates were enacted in Texas, Virginia, and the District of Columbia. Media coverage of these events was extensive, and media messages both reflected and contributed to controversy surrounding…

  7. Association of School-Based Influenza Vaccination Clinics and School Absenteeism--Arkansas, 2012-2013

    Gicquelais, Rachel E.; Safi, Haytham; Butler, Sandra; Smith, Nathaniel; Haselow, Dirk T.

    2016-01-01

    Background: Influenza is a major cause of seasonal viral respiratory illness among school-aged children. Accordingly, the Arkansas Department of Health (ADH) coordinates >800 school-based influenza immunization clinics before each influenza season. We quantified the relationship between student influenza vaccination in Arkansas public schools…

  8. Imitation dynamics of vaccine decision-making behaviours based on the game theory.

    Yang, Junyuan; Martcheva, Maia; Chen, Yuming

    2016-01-01

    Based on game theory, we propose an age-structured model to investigate the imitation dynamics of vaccine uptake. We first obtain the existence and local stability of equilibria. We show that Hopf bifurcation can occur. We also establish the global stability of the boundary equilibria and persistence of the disease. The theoretical results are supported by numerical simulations. PMID:26536171

  9. Optimization of a Der p 2-based prophylactic DNA vaccine against house dust mite allergy.

    Pulsawat, Pinya; Pitakpolrat, Patrawadee; Prompetchara, Eakachai; Kaewamatawong, Theerayuth; Techakriengkrai, Navapon; Sirivichayakul, Sunee; Buranapraditkun, Supranee; Hannaman, Drew; Ruxrungtham, Kiat; Jacquet, Alain

    2013-03-01

    DNA vaccines encoding allergens are promising immunotherapeutics to prevent or to treat allergy through induction of allergen-specific Th1 responses. Despite anti-allergy effects observed in small rodents, DNA-based vaccines are weak immunogens in primates and humans and particularly when administered by conventional injection. The goal of the present study was to improve the immunogenicity of a prophylactic vaccine encoding the major house dust mite allergen Der p 2. In this context, we evaluated the influence of different DNA backbones including notably intron and CpG enriched sequence, the DNA dose, the in vivo delivery by electroporation as well as the heterologous prime boost regimen on the vaccine efficiency. We found that a minimal allergen expression level threshold must be reached to induce the production of specific antibodies but beyond this limit, the intensity of the immune response was independent on the DNA dose and allergen expression. The in vivo DNA delivery by electroporation drastically enhanced the production of specific antibodies but not the IFNg secretion. Vaccination of naïve mice with DNA encoding Der p 2 delivered by electroporation even at very low dose (2μg) prevented the development of house dust mite allergy through Th1-skewed immune response characterized by the drastic reduction of allergen-specific IgE, IL-5 and lung inflammation together with the induction of strong specific IgG2a titers and IFNg secretion. CpG cassette in the DNA backbone does not play a critical role in the efficient prophylaxis. Finally, comparable protective immune responses were observed when using heterologous DNA prime/protein boost or homologous DNA prime/boost. Taken together, these data suggest that the potent Th1 response induced by DNA-based vaccine encoding allergens through electroporation provides the rationale for the evaluation of DNA encoding Der p 2 into HDM allergy clinical trials. PMID:23396105

  10. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  11. Vaccine Safety

    ... the safety of Tdap, Meningococcal, and HPV vaccines Human Papillomavirus (HPV) Vaccine is Very Safe Read about the safety of ... Hepatitis A Vaccine Safety Hepatitis B Vaccine Safety Human Papillomavirus (HPV) Vaccine Safety FAQs about HPV Safety Influenza (Flu) Vaccine ...

  12. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone.

    Ketner, G; Spencer, F; Tugendreich, S; C. Connelly; Hieter, P

    1994-01-01

    A yeast artificial chromosome (YAC) containing a complete human adenovirus type 2 genome was constructed, and viral DNA derived from the YAC was shown to be infectious upon introduction into mammalian cells. The adenovirus YAC could be manipulated efficiently using homologous recombination-based methods in the yeast host, and mutant viruses, including a variant that expresses the human analog of the Saccharomyces cerevisiae CDC27 gene, were readily recovered from modified derivatives of the Y...

  13. Immunostimulatory activities of dendritic cells loaded with adenovirus vector carrying HBcAg/HBsAg

    Jia, Hongyu; Li, Chunling; Zhang, Yimin; Yu, Liang; Xiang, Dairong; Liu, Jun; Chen, Fengzhe; Han, Xiaochun

    2015-01-01

    Objective: This study is to investigate the immunostimulatory activities of dendritic cells (DCs) transfected with HBcAg and/or HBsAg recombinant adenovirus (rAd). Methods: DCs were transfected with rAd (DC/Ad-C+Ad-S, DC/Ad-C, and DC/Ad-S), or pulsed with HBcAg antigen (DC/HBcAg). Flow cytometry was used to detect the phenotype of DCs and the cytokine production of T lymphocytes. Mice were vaccinated with DCs transfected with rAd or pulsed with antigen, and DNA vaccine. Mixed lymphocyte react...

  14. PERSPECTIVES OF THE DEVELOPMENT OF MUCOSAL VACCINES AGAINST DANGEROUS INFECTIONS ON THE BASE OF TRANSGENIC PLANTS

    A.V. Tretyakova

    2012-08-01

    Full Text Available Mucosal vaccines created on the base of transgenic plants reacting with mucosal layers of the intestines and other organs are considered to be the perspective method of the vaccination. These vaccines induce both mucosal and general humoral immunogenicity after the peroral administration. The folding of antigenic proteins synthesizing in plants occurs via eukaryotic type and has advantages before yeast and prokaryotic platforms. This feature results to more adequate synthesis of antibodies against pathogens and to the interaction with effector molecules of complement. Earlier we together with The State Scientific Center “Vector”, Institute of chemical biology and fundamental medicine SB RAS and Dr R.Hammond from Laboratory of Plant Pathology (Maryland, USA created two candidate vaccines : one of them against AIDS (HIV-1 and hepatitis B on the base of the chimeric gene TBI-HBS, encoding simultaneously 9 antigenic determinants of HIV-1 and the main surface antigen of hepatitis B (HBsAg. The second candidate vaccine was created against hepatitis B on the base of the genetic construct with the gene preS2-S encoding the synthesis of two subunits of the main surface antigen of hepatitis B and the signal peptide HDEL which directed antigens for the accumulation on ER. Both vaccines were tested on mice and confirmed their immunogenicity as the pronounced antibodies response. Twice vaccinated mice maintained the antibodies response during 11 months after there was little tendency to lowering. It was established that transgenic plants – vaccines (tomato kept the capability to the synthesis of antigenic determinants in seven seed generations during 7 years. The results of the development of the mucosal vaccine against cervical carcinoma (carcinoma of uterine cervix evoked by human papillomaviruses of high oncogenic risks were presented in this report. We created the genetic construct consisting of 35S CaMV promoter, Ώ (omega leader of TMV, the

  15. Frequent Detection of Human Adenovirus from the Lower Gastrointestinal Tract in Men Who Have Sex with Men

    Curlin, Marcel E.; Huang, Meei-li; Lu, Xiaoyan; Celum, Connie L.; Sanchez, Jorge; Selke, Stacy; Baeten, Jared M.; Zuckerman, Richard A.; Erdman, Dean D.; Corey, Lawrence

    2010-01-01

    Background The association between baseline seropositivity to human adenovirus (HAdV) type 5 and increased HIV acquisition in the Step HIV Vaccine Study has raised questions concerning frequency of acquired and/or persistent Adenovirus infections among adults at high risk of HIV-1 infection. Methodology To evaluate the frequency and pattern of HAdV shedding from the lower GI tract, we retrospectively tested rectal swabs for HAdVs in a cohort of 20 HSV-2 positive HIV-positive Peruvian men who ...

  16. Analysis of genetic heterogeneity in the HCAR adenovirus-binding Ig1 domain in a Caucasian Flemish population

    Wollants Elke

    2002-01-01

    Full Text Available Abstract Background Polymorphisms in the gene that encodes the human cellular receptor for group B coxsackieviruses and adenoviruses (HCAR could be responsible for differences in susceptibility to infections with these pathogens. Moreover, adenovirus subgroup C-mediated gene therapy could be influenced by mutations in the coding exons for the aminoterminal immunoglobulin-like 1 (Ig1 domain, which is the essential component for adenovirus fiber knob binding. Results Using two primersets in the adjacent intron sequences, HCAR exons 2 and 3, which comprise the full-length Ig1 domain, were amplified by polymerase chain reactions in 108 unselected and unrelated healthy Belgian volunteers. After nucleotide sequencing, no polymorphisms could be demonstrated in the adenovirus-binding Ig1 exons 2 and 3 of the HCAR gene. Conclusions The adenovirus-binding Ig1 domain seems to be a highly conserved region in the Caucasian population which is a reassuring finding regarding adenovector-based gene therapy.

  17. Nucleic Acid Vaccines

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  18. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice.

    Xie, Yinli; Gao, Peng; Li, Zhiyong

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  19. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  20. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses

    Shahla; Shahsavandi; Mohammad; Majid; Ebrahimi; Kaveh; Sadeghi; Homayoon; Mahravani

    2015-01-01

    Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.

  1. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses

    Nishat, Sharmeen; Andreana, Peter R.

    2016-01-01

    Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs). Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs), isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses. PMID:27213458

  2. Ontology-based time information representation of vaccine adverse events in VAERS for temporal analysis

    Tao Cui

    2012-12-01

    Full Text Available Abstract Background The U.S. FDA/CDC Vaccine Adverse Event Reporting System (VAERS provides a valuable data source for post-vaccination adverse event analyses. The structured data in the system has been widely used, but the information in the write-up narratives is rarely included in these kinds of analyses. In fact, the unstructured nature of the narratives makes the data embedded in them difficult to be used for any further studies. Results We developed an ontology-based approach to represent the data in the narratives in a “machine-understandable” way, so that it can be easily queried and further analyzed. Our focus is the time aspect in the data for time trending analysis. The Time Event Ontology (TEO, Ontology of Adverse Events (OAE, and Vaccine Ontology (VO are leveraged for the semantic representation of this purpose. A VAERS case report is presented as a use case for the ontological representations. The advantages of using our ontology-based Semantic web representation and data analysis are emphasized. Conclusions We believe that representing both the structured data and the data from write-up narratives in an integrated, unified, and “machine-understandable” way can improve research for vaccine safety analyses, causality assessments, and retrospective studies.

  3. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses.

    Nishat, Sharmeen; Andreana, Peter R

    2016-01-01

    Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs). Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs), isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses. PMID:27213458

  4. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G; Hviid, Lars

    2002-01-01

    statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM) in......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to...... particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  5. Successful vaccination with a polyvalent live vector despite existing immunity to an expressed antigen.

    Flexner, C; Murphy, B R; Rooney, J F; Wohlenberg, C; Yuferov, V; Notkins, A L; Moss, B

    1988-09-15

    A global vaccination strategy must take into account production and delivery costs as well as efficacy and safety. A heat-stable, polyvalent vaccine that requires only one inoculation and induces a high level of humoral and cellular immunity against several diseases is therefore desirable. A new approach is to use live microorganisms such as mycobacteria, enteric bacteria, adenoviruses, herpesviruses and poxviruses as vaccine vectors. A potential limitation of live polyvalent vaccines, however, is existing immunity within the target population not only to the vector, but to any of the expressed antigens. This could restrict replication of the vector, curtail expression of antigens, and reduce the total immune response to the vaccine. Recently acquired immunity to vaccinia virus can severely limit the efficacy of a live recombinant vaccinia-based vaccine, so a strategy involving closely spaced inoculations with the same vector expressing different antigens may present difficulties. We have constructed a recombinant vaccinia virus that expresses surface proteins from two diverse pathogens, influenza A virus haemagglutinin and herpes simplex virus type 1 (HSV-1) glycoprotein D. Mice that had recently recovered from infection with either HSV-1 or influenza A virus could still be effectively immunized with the double recombinant. PMID:2842693

  6. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  7. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø; Ditlev, Sisse B; Resende, Mafalda; Nielsen, Morten A; Theander, Thor G; Salanti, Ali; Sander, Adam F

    2015-01-01

    Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA

  8. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  9. Epitope engineering and molecular metrics of immunogenicity: a computational approach to VLP-based vaccine design.

    Joshi, Harshad; Lewis, Kristen; Singharoy, Abhishek; Ortoleva, Peter J

    2013-10-01

    Developing antiviral vaccines is increasingly challenging due to associated time and cost of production as well as emerging drug-resistant strains. A computer-aided vaccine design strategy is presented that could greatly accelerate the discovery process and yield vaccines with high immunogenicity and thermal stability. Our strategy is based on foreign viral epitopes engineered onto well-established virus-like particles (VLPs) and demonstrates that such constructs present similar affinity for antibodies as does a native virus. This binding affinity serves as one molecular metric of immunogenicity. As a demonstration, we engineered a preS1 epitope of hepatitis B virus (HBV) onto the EF loop of human papillomavirus VLP (HPV-VLP). HBV-associated HzKR127 antibody displayed binding affinity for this structure at distances and strengths similar to those for the complex of the antibody with the full HBV (PDBID: 2EH8). This antibody binding affinity assessment, along with other molecular immunogenicity metrics, could be a key component of a computer-aided vaccine design strategy. PMID:23933338

  10. Construction and Immunogenicity Testing of Whole Recombinant Yeast-Based T-Cell Vaccines.

    King, Thomas H; Guo, Zhimin; Hermreck, Melanie; Bellgrau, Donald; Rodell, Timothy C

    2016-01-01

    GlobeImmune's Tarmogen(®) immunotherapy platform utilizes recombinant Saccharomyces cerevisiae yeast as a vaccine vector to deliver heterologous antigens for activation of disease-specific, targeted cellular immunity. The vaccines elicit immune-mediated killing of target cells expressing viral and cancer antigens in vivo via a CD8(+) CTL-mediated mechanism. Tarmogens are not neutralized by host immune responses and can be administered repeatedly to boost antigen-specific immunity. Production of the vaccines yields stable off-the-shelf products that avoid the need for patient-specific manufacturing found with other immunotherapeutic approaches. Tarmogens for the treatment of chronic hepatitis B and C and various cancers were well tolerated and immunogenic in phase 1 and 2 clinical trials encompassing >600 subjects. The platform is being widely utilized in basic vaccine research and the most rapid path to success in these endeavors follows from optimal immunoassay selection and execution. This chapter provides detailed methods for the construction and preclinical immunogenicity testing of yeast-based immunotherapeutic products to support the rapid and efficient use of this versatile technology. PMID:27076321

  11. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES

    Chen Hui-Ming

    2012-04-01

    Full Text Available Abstract Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs, a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100 DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100 tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can

  12. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. PMID:24773322

  13. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre

    There are more than 100 known adenovirus serotypes, including 50 human serotypes. They can infect all 5 major vertebrate classes but only Aviadenovirus infecting birds and Mastadenovirus infecting mammals have been well studied. CELO (chicken embryo lethal orphan) adenovirus is responsible for mild respiratory pathologies in birds. Most studies on CELO virus have focussed on its genome sequence and organisation whereas the structural work on CELO proteins has only recently started. Contrary to most adenoviruses, the vertices of CELO virus reveal pentons with two fibres of different lengths. The distal parts (or head) of those fibres are involved in cellular receptor binding. Here we have determined the atomic structure of the short-fibre head of CELO (amino acids 201-410) at 2.0 A resolution. Despite low sequence identity, this structure is conserved compared to the other adenovirus fibre heads. We have used the existing CELO long-fibre head structure and the one we show here for a structure-based alignment of 11 known adenovirus fibre heads which was subsequently used for the construction of an evolutionary tree. Both the fibre head sequence and structural alignments suggest that enteric human group F adenovirus 41 (short fibre) is closer to the CELO fibre heads than the canine CAdV-2 fibre head, that lies closer to the human virus fibre heads

  14. Hepatitis B Vaccination in Bangladesh: a Suggestion Based on Current Evidence

    Shafquat Mohammed Rafiq

    2006-12-01

    Full Text Available IntroductionThe hepatitis B virus (HBV causes up to a million deaths worldwide and 16 million health care related infections in the tropics each year(1,2, and over 350 million become chronically infected carriers who have no significant liver disease; approximately three quarters of them are in Asia and the western pacific region(3,4. HBV infection is a potentially life threatening condition as many of the affected individuals progress to chronic hepatitis,cirrhosis and hepatocellular carcinoma (HCC(3. In infants and children, acute hepatitis B infection is nearly always asymptomatic, whereas in adults it is usually the opposite. But on the other hand, the risk of becoming chronic carriage is much greater in children than in adults; as many as 90% of infants born to Hepatitis B e Antigen (HBeAg positive mothers become carriers themselves and, therefore, in long term are more likely to developchronic liver disease(5. Currently, though several antiviral drugs are used,there is no reliable curative treatment for HBV once it has been acquired and prevention by universal immunization remains the strategy for reducing the number of acute infections, chronic carriage and the long-term burden from diseases such as HCC(4,6. In 1991, in an attempt to reduce the global impact of HBV infection, WHO recommended that hepatitis B vaccination should be integrated into national immunization programs in all countries(7.Some Asian countries, for instance, Thailand, haveadopted the policy of immunizing children universally against the disease as early as 1992, however many others lagged behind(4.The true prevalence of Hepatitis B in Bangladesh is yet to be ascertained by a reliable study. Data available from different studies show that it ranges between 0.8 and 5.4% depending on the study design, samples and laboratory methods used(8-10.These data were based on detection of HBsAg antigen; the rates would have been higher, had they been based on anti-HBc antibody(11

  15. Long-Term Single-Dose Efficacy of a Vesicular Stomatitis Virus-Based Andes Virus Vaccine in Syrian Hamsters

    Joseph Prescott

    2014-01-01

    Full Text Available Andes virus (ANDV is highly pathogenic in humans and is the primary etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in South America. Case-fatality rates are as high as 50% and there are no approved vaccines or specific therapies for infection. Our laboratory has recently developed a replication-competent recombinant vesicular stomatitis virus (VSV-based vaccine that expressed the glycoproteins of Andes virus in place of the native VSV glycoprotein (G. This vaccine is highly efficacious in the Syrian hamster model of HCPS when given 28 days before challenge with ANDV, or when given around the time of challenge (peri-exposure, and even protects when administered post-exposure. Herein, we sought to test the durability of the immune response to a single dose of this vaccine in Syrian hamsters. This vaccine was efficacious in hamsters challenged intranasally with ANDV 6 months after vaccination (p = 0.025, but animals were not significantly protected following 1 year of vaccination (p = 0.090. The decrease in protection correlated with a reduction of measurable neutralizing antibody responses, and suggests that a more robust vaccination schedule might be required to provide long-term immunity.

  16. Typhoid fever vaccination strategies.

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control. PMID:25902360

  17. Chromatography paper strip sampling of enteric adenoviruses type 40 and 41 positive stool specimens

    Rahman Mustafizur

    2005-02-01

    Full Text Available Abstract Background The enteric subgroup F adenoviruses type 40 (Ad40 and 41 (Ad41 are the second most important cause of acute infantile gastroenteritis after rotaviruses. Repeated community outbreaks have been associated with antigenic changes among the Ad40 and Ad41 strains due to host immune pressure. Therefore large field epidemiological surveys and studies on the genetic variations in different isolates of Ad40 and Ad41 are important for disease control programs, the design of efficient diagnostic kits and vaccines against subgroup F adenoviruses. A novel method using sodium dodecyl sulphate SDS/EDTA-pretreated chromatography paper strips was evaluated for the collection, storage and shipping of Ad40/41 contaminated stool samples. Results This study shows that adenoviral DNA can be successfully detected in the filter strips by PCR after four months storage at -20°C, 4°C, room temperature (20–25°C and 37°C. Furthermore no adenoviral infectivity was observed upon contact with the SDS/EDTA-pretreated strips. Conclusions Collecting, storing and transporting adenovirus type 40 and 41 positive stool samples on SDS/EDTA-pretreated chromatography filter strips is a convenient, biosafe and cost effective method for studying new genome variants and monitoring spread of enteric adenovirus strains during outbreaks.

  18. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines.

    Richie, Thomas L; Billingsley, Peter F; Sim, B Kim Lee; James, Eric R; Chakravarty, Sumana; Epstein, Judith E; Lyke, Kirsten E; Mordmüller, Benjamin; Alonso, Pedro; Duffy, Patrick E; Doumbo, Ogobara K; Sauerwein, Robert W; Tanner, Marcel; Abdulla, Salim; Kremsner, Peter G; Seder, Robert A; Hoffman, Stephen L

    2015-12-22

    Sanaria Inc. has developed methods to manufacture, purify and cryopreserve aseptic Plasmodium falciparum (Pf) sporozoites (SPZ), and is using this platform technology to develop an injectable PfSPZ-based vaccine that provides high-grade, durable protection against infection with Pf malaria. Several candidate vaccines are being developed and tested, including PfSPZ Vaccine, in which the PfSPZ are attenuated by irradiation, PfSPZ-CVac, in which fully infectious PfSPZ are attenuated in vivo by concomitant administration of an anti-malarial drug, and PfSPZ-GA1, in which the PfSPZ are attenuated by gene knockout. Forty-three research groups in 15 countries, organized as the International PfSPZ Consortium (I-PfSPZ-C), are collaborating to advance this program by providing intellectual, clinical, and financial support. Fourteen clinical trials of these products have been completed in the USA, Europe and Africa, two are underway and at least 12 more are planned for 2015-2016 in the US (four trials), Germany (2 trials), Tanzania, Kenya, Mali, Burkina Faso, Ghana and Equatorial Guinea. Sanaria anticipates application to license a first generation product as early as late 2017, initially to protect adults, and a year later to protect all persons >6 months of age for at least six months. Improved vaccine candidates will be advanced as needed until the following requirements have been met: long-term protection against natural transmission, excellent safety and tolerability, and operational feasibility for population-wide administration. Here we describe the three most developed whole PfSPZ vaccine candidates, associated clinical trials, initial plans for licensure and deployment, and long-term objectives for a final product suitable for mass administration to achieve regional malaria elimination and eventual global eradication. PMID:26469720

  19. Programming of Influenza Vaccine Broadness and Persistence by Mucoadhesive Polymer-Based Adjuvant Systems.

    Noh, Hyun Jong; Chowdhury, Mohammed Y E; Cho, Seonghun; Kim, Jae-Hoon; Park, Hye Sun; Kim, Chul-Joong; Poo, Haryoung; Sung, Moon-Hee; Lee, Jong-Soo; Lim, Yong Taik

    2015-09-01

    The development of an anti-influenza vaccine with the potential for cross-protection against seasonal drift variants as well as occasionally emerging reassortant viruses is essential. In this study, we successfully generated a novel anti-influenza vaccine system combining conserved matrix protein 2 (sM2) and stalk domain of hemagglutinin (HA2) fusion protein (sM2HA2) and poly-γ-glutamic acid (γ-PGA)-based vaccine adjuvant systems that can act as a mucoadhesive delivery vehicle of sM2HA2 as well as a robust strategy for the incorporation of hydrophobic immunostimulatory 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21. Intranasal coadministration of sM2HA2 and the combination adjuvant γ-PGA/MPL/QS21 (CA-PMQ) was able to induce a high degree of protective mucosal, systemic, and cell-mediated immune responses. The sM2HA2/CA-PMQ immunization was able to prevent disease symptoms, confering complete protection against lethal infection with divergent influenza subtypes (H5N1, H1N1, H5N2, H7N3, and H9N2) that lasted for at least 6 mo. Therefore, our data suggest that mucosal administration of sM2HA2 in combination with CA-PMQ could be a potent strategy for a broad cross-protective influenza vaccine, and CA-PMQ as a mucosal adjuvant could be used for effective mucosal vaccines. PMID:26216889

  20. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Yoshimi Tsuda

    2011-08-01

    Full Text Available BACKGROUND: Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  1. Evaluation of a monoclonal antibody based approach for the selection of Foot-and-Mouth Disease (FMD) vaccine strains

    Mahapatra, M.; Aggarwal, N.; Cox, S; Statham, R.J.; Knowles, N J; Barnett, P.V.; Paton, D.J.

    2007-01-01

    Evaluation of a monoclonal antibody based approach for the selection of Foot-and-Mouth Disease (FMD) vaccine strains UNITED KINGDOM (Mahapatra, M.) UNITED KINGDOM Received: 2007-04-08 Revised: 2007-06-18 Accepted: 2007-06-22

  2. Recent advances in the development of vaccines for Ebola virus disease.

    Ohimain, Elijah Ige

    2016-01-01

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. PMID:26596227

  3. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors. PMID:26519158

  4. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae.

    Kong, Il Gyu; Sato, Ayuko; Yuki, Yoshikazu; Nochi, Tomonori; Takahashi, Haruko; Sawada, Shinichi; Mejima, Mio; Kurokawa, Shiho; Okada, Kazunari; Sato, Shintaro; Briles, David E; Kunisawa, Jun; Inoue, Yusuke; Yamamoto, Masafumi; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2013-05-01

    To establish a safer and more effective vaccine against pneumococcal respiratory infections, current knowledge regarding the antigens common among pneumococcal strains and improvements to the system for delivering these antigens across the mucosal barrier must be integrated. We developed a pneumococcal vaccine that combines the advantages of pneumococcal surface protein A (PspA) with a nontoxic intranasal vaccine delivery system based on a nanometer-sized hydrogel (nanogel) consisting of a cationic cholesteryl group-bearing pullulan (cCHP). The efficacy of the nanogel-based PspA nasal vaccine (cCHP-PspA) was tested in murine pneumococcal airway infection models. Intranasal vaccination with cCHP-PspA provided protective immunity against lethal challenge with Streptococcus pneumoniae Xen10, reduced colonization and invasion by bacteria in the upper and lower respiratory tracts, and induced systemic and nasal mucosal Th17 responses, high levels of PspA-specific serum immunoglobulin G (IgG), and nasal and bronchial IgA antibody responses. Moreover, there was no sign of PspA delivery by nanogel to either the olfactory bulbs or the central nervous system after intranasal administration. These results demonstrate the effectiveness and safety of the nanogel-based PspA nasal vaccine system as a universal mucosal vaccine against pneumococcal respiratory infection. PMID:23460513

  5. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef

    2015-01-01

    Background Grass pollen is one of the most important sources of respiratory allergies worldwide. Objective This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Methods Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B viru...

  6. Anti-Viral Drugs for Human Adenoviruses

    Chor Wing Sing

    2010-10-01

    Full Text Available There are many stages in the development of a new drug for viral infection and such processes are even further complicated for adenovirus by the fact that there are at least 51 serotypes, forming six distinct groups (A–F, with different degree of infectivity. This review attempts to address the importance of developing pharmaceuticals for adenovirus and also review recent development in drug discovery for adenovirus, including newer strategies such as microRNA approaches. Different drug screening strategies will also be discussed.

  7. A Novel Immunogenic Spore Coat-Associated Protein in Bacillus Anthracis: Characterization via Proteomics Approaches and a Vector-Based Vaccine System

    Liu, Yu-Tsueng; Lin, Shwu-Bin; Huang, Cheng-Po; Huang, Chun-Ming

    2007-01-01

    New generation anthrax vaccines have been actively explored with the aim of enhancing efficacies and decreasing undesirable side effects that could be caused by licensed vaccines. Targeting novel antigens and/or eliminating the requirements for multiple needle injections and adjuvants are major objectives in the development of new anthrax vaccines. Using proteomics approaches, we identified a spore coat-associated protein (SCAP) in Bacillus anthracis. An E. coli vector-based vaccine system wa...

  8. The prevalence of neutralising antibodies to chimpanzee adenovirus type 6 and type 7 in healthy adult volunteers, patients with chronic hepatitis B and patients with primary hepatocellular carcinoma in China.

    Jian, Li; Zhao, Qiquan; Zhang, Shujun; Huang, Wenxiang; Xiong, Yujiao; Zhou, Xiangyang; Jia, Bei

    2014-03-01

    The presence of neutralising antibodies (NAbs) against adenovirus in the population is a major hurdle preventing the effective use of replication-defective adenoviruses (Ads) as candidates for gene therapy and vaccine vectors for many diseases. Only a few studies have described the epidemiology of pre-existing immunity to chimpanzee Ads in China. To assess the prevalence of NAbs to chimpanzee adenovirus serotypes 6 and 7 (AdC6 and AdC7), we enrolled 998 healthy participants from five regions in China as well as 196 chronic hepatitis B virus (HBV) patients and 193 primary hepatocellular carcinoma (HCC) patients from Chongqing, China. The total seroprevalence rates of AdC6 and AdC7 NAbs in the healthy participants were 12.22 % (122/998) (95 % confidence interval [CI], 10.34-14.40 %) and 13.13 % (131/998) (95 % CI, 11.17-15.36 %), respectively. The seroprevalence rates of AdC6 and AdC7 NAbs in the HBV patients were 21.43 % (42/196) (95 % CI, 16.26-27.69 %) and 25.51 % (50/196) (95 % CI, 19.92-32.04 %), respectively. The seroprevalence rates of AdC6 and AdC7 NAbs in the HCC patients were 27.46 % (53/193) (95 % CI, 21.65-34.15 %) and 31.09 % (60/193) (95 % CI, 24.98-37.93 %), respectively. The seroprevalence rates of these Ads were not associated with age and gender. The present study may provide useful insights for developing future AdC-based vaccines and gene therapies. PMID:24057756

  9. Live virus vaccines based on a yellow fever vaccine backbone: Standardized template with key considerations for a risk/benefit assessment

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T.

    2014-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for mark...

  10. Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumoniae

    Nanoparticle (NP) technologies are becoming commonplace in the development of vaccine delivery systems to protect against various diseases. The current study determined the efficacy of intranasal delivery of a 234 ± 87.5 nm poly lactic-co-glycolic acid nanoparticle vaccine construct in establishing protection against experimental respiratory pneumococcal infection. Nanoparticles encapsulating heat-killed Streptococcus pneumoniae (NP-HKSP) were retained in the lungs 11 days following nasal administration compared to empty NP. Immunization with NP-HKSP produced significant resistance against S. pneumoniae infection compared to administration of HKSP alone. Increased protection correlated with a significant increase in antigen-specific Th1-associated IFN-γ cytokine response by pulmonary lymphocytes. This study establishes the efficacy of NP-based technology as a non-invasive and targeted approach for nasal-pulmonary immunization against pulmonary infections.

  11. Evaluation of peptide selection approaches for epitope‐based vaccine design

    Schubert, B.; Lund, Ole; Nielsen, Morten

    2013-01-01

    A major challenge in epitope-based vaccine (EV) design stems from the vast genomic variation of pathogens and the diversity of the host cellular immune system. Several computational approaches have been published to assist the selection of potential T cell epitopes for EV design. So far, no...... thorough comparison between the current methods has been realized. Using human immunodeficiency virus as test case, different EV selection algorithms were evaluated with respect to their ability to select small peptides sets with broad coverage of allelic and pathogenic diversity. The methods were compared...... in terms of in silico measurements simulating important vaccine properties like the ability of inducing protection against a multivariant pathogen in a population; the predicted immunogenicity; pathogen, allele, and population coverage; as well as the conservation of selected epitopes. Additionally...

  12. Bringing plant-based veterinary vaccines to market: Managing regulatory and commercial hurdles.

    MacDonald, Jacqueline; Doshi, Ketan; Dussault, Marike; Hall, J Christopher; Holbrook, Larry; Jones, Ginny; Kaldis, Angelo; Klima, Cassidy L; Macdonald, Phil; McAllister, Tim; McLean, Michael D; Potter, Andrew; Richman, Alex; Shearer, Heather; Yarosh, Oksana; Yoo, Han Sang; Topp, Edward; Menassa, Rima

    2015-12-01

    The production of recombinant vaccines in plants may help to reduce the burden of veterinary diseases, which cause major economic losses and in some cases can affect human health. While there is abundant research in this area, a knowledge gap exists between the ability to create and evaluate plant-based products in the laboratory, and the ability to take these products on a path to commercialization. The current report, arising from a workshop sponsored by an Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme, addresses this gap by providing guidance in planning for the commercialization of plant-made vaccines for animal use. It includes relevant information on developing business plans, assessing market opportunities, manufacturing scale-up, financing, protecting and using intellectual property, and regulatory approval with a focus on Canadian regulations. PMID:26232717

  13. Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumoniae

    Mott, Brittney [University of North Texas Health Science Center, Department of Molecular Biology and Immunology (United States); Thamake, Sanjay [Radio-Isotope Therapy of America Foundation (United States); Vishwanatha, Jamboor; Jones, Harlan P., E-mail: harlan.jones@unthsc.edu [University of North Texas Health Science Center, Department of Molecular Biology and Immunology (United States)

    2013-05-15

    Nanoparticle (NP) technologies are becoming commonplace in the development of vaccine delivery systems to protect against various diseases. The current study determined the efficacy of intranasal delivery of a 234 {+-} 87.5 nm poly lactic-co-glycolic acid nanoparticle vaccine construct in establishing protection against experimental respiratory pneumococcal infection. Nanoparticles encapsulating heat-killed Streptococcus pneumoniae (NP-HKSP) were retained in the lungs 11 days following nasal administration compared to empty NP. Immunization with NP-HKSP produced significant resistance against S. pneumoniae infection compared to administration of HKSP alone. Increased protection correlated with a significant increase in antigen-specific Th1-associated IFN-{gamma} cytokine response by pulmonary lymphocytes. This study establishes the efficacy of NP-based technology as a non-invasive and targeted approach for nasal-pulmonary immunization against pulmonary infections.

  14. DNA prime-protein boost based vaccination with a conserved region of leptospiral immunoglobulin-like A and B proteins enhances protection against leptospirosis.

    Forster, Karine M; Hartwig, Daiane D; Oliveira, Thaís L; Bacelo, Kátia L; Schuch, Rodrigo; Amaral, Marta G; Dellagostin, Odir A

    2015-12-01

    Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of the Leptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain ofLeptospira interrogans, the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development. PMID:26676320

  15. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vac...

  16. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  17. Hepatitis A Vaccination Rates and Related Factors in a 2005 Population-based Study in Nonsan, Korea

    Kim, Eun Young; Na, Baeg Ju; Lee, Moo Sik; Kim, Keon Yeop; Ki, Moran

    2009-01-01

    OBJECTIVES The incidence of clinical hepatitis A has increased in young Korean adults since the mid-1990s. Although hepatitis A vaccinations have been administered in private clinics over the past 10 yr, no data exist on the vaccination rate and relating factors. METHODS In 2005, a population-based survey of 12-35-month-old children was carried out in Nonsan, Korea. An interview survey was completed for 71.3% of the children. All data came from a vaccination card or confirmation from a provid...

  18. Positive Impact of a Shelter-based Hepatitis B Vaccine Program in Homeless Baltimore Children and Adolescents

    Schwarz, Kathleen; Garrett, Beth; Lee, Jennifer; Thompson, Douglas; Thiel, Thelma; Alter, Miriam J.; Strathdee, Stephanie

    2008-01-01

    Homeless youth are at increased risk for hepatitis B virus (HBV) infection and HBV vaccine coverage is poor in this group. The purpose of our study was to determine if a shelter-based HBV vaccine program in children and adolescents 2–18 years of age with a randomized controlled trial using a culturally appropriate HBV video could increase HBV vaccine coverage rates. Subjects were randomized to an 8 min HBV video or a control, smoking prevention video. Before exposure to the videos, HBV knowle...

  19. RECOMBINANT INFLUENZA VACCINES

    Sedova, E.; Shcherbinin, D.; Migunov, A.; Smirnov, Iu; Logunov, D.; Shmarov, M.; Tsybalova, L.; Naroditskiĭ, B.; O. Kiselev; Gintsburg, A.

    2012-01-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery pla...

  20. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  1. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform.

    Kim, Mi-Young; Reljic, Rajko; Kilbourne, Jacquelyn; Ceballos-Olvera, Ivonne; Yang, Moon-Sik; Reyes-del Valle, Jorge; Mason, Hugh S

    2015-04-01

    Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens. PMID:25728317

  2. Chikungunya vaccines in development.

    Schwameis, Michael; Buchtele, Nina; Wadowski, Patricia Pia; Schoergenhofer, Christian; Jilma, Bernd

    2016-03-01

    Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates. PMID:26554522

  3. The population impact of a large school-based influenza vaccination campaign.

    Carlos G Grijalva

    Full Text Available BACKGROUND: The optimal vaccination strategy to mitigate the impact of influenza epidemics is unclear. In 2005, a countywide school-based influenza vaccination campaign was launched in Knox County, Tennessee (population 385,899. Approximately 41% and 48% of eligible county children aged 5-17 years were immunized with live attenuated influenza vaccine before the 2005-2006 and 2006-2007 influenza seasons, respectively. We sought to determine the population impact of this campaign. METHODS: Laboratory-confirmed influenza data defined influenza seasons. We calculated the incidence of medically attended acute respiratory illness attributable to influenza in Knox and Knox-surrounding counties (concurrent controls during consecutive seasons (5 precampaign and 2 campaign seasons using negative binomial regression and rate difference methods. Age-stratified analyses compared the incidence of emergency department (ED visits and hospitalizations attributable to influenza. RESULTS: During precampaign seasons, estimated ED visit rates attributable to influenza were 12.39 (95% CI: 10.34-14.44 per 1000 Knox children aged 5-17 years and similar in Knox-surrounding counties. During the campaign seasons, annual Knox influenza-associated ED visit rates declined relative to rates in Knox-surrounding counties: rate ratios 0.55 (95% CI: 0.27-0.83 and 0.70 (95% CI: 0.56-0.84 for the first and second campaign seasons, respectively. Overall, there were about 35% or 4.86 per 1000 fewer influenza-associated ED visits among Knox County children aged 5-17 years attributable to the campaign. No significant declines in Knox compared to surrounding counties were detected for influenza associated ED visits in children aged <5 years, all adults combined or selected adult age subgroups, although power for these analyses was limited. Alternate rate-difference analyses yielded consistent results. CONCLUSION: Vaccination of approximately 45% of Knox school-aged children with

  4. EVALUATION OF OIL BASED AVIAN INFLUENZA VACCINE (H5NI PREPARED WITH DIFFERENT CONCENTRATIONS OF ADJUVANT

    M. IQBAL, M. NISAR, ANWARUL-HAQ, S. NOOR AND Z. J. GILL

    2008-12-01

    Full Text Available Bird flu vaccine from H5N1 strain of avian influenza virus was prepared with two concentrations of adjuvant (Montanide ISA 70MVG. Two vaccines (I and II were prepared containing 50 and 60% Montanide, respectively. Immune response of both the vaccines as single, as well as booster, dose was evaluated in layer birds through haemagglutination inhibition test. Single dose of both vaccines showed poor immune response, while booster dose gave better response with both the vaccines. However, the vaccine prepared with 60% Montanide provided better immune response compared with the vaccine containing 50% montanide.

  5. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. PMID:22414558

  6. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    Amaya Leunda; Aline Baldo; Martine Goossens; Kris Huygen; Philippe Herman; Marta Romano

    2014-01-01

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already ...

  7. A retrospective investigation of canine adenovirus (CAV infection in adult dogs in Turkey : article

    S. Gur

    2009-05-01

    Full Text Available Canine adenovirus (CAV type 1 and 2, respectively, cause infectious canine hepatitis and infectious canine laryngotracheitis in members of the families Canidae and Ursidae worldwide. Both of these infections are acute diseases, especially in young dogs. The aim of this study was to conduct a serological investigation of canine adenovirus infection. For this purpose, serumsamples were collected from native pure-bred Kangal (n = 11, and Akbash dogs (n = 17 and Turkish Greyhounds (n=15 in Eskisehir and Konya provinces. None ofthe dogs were previously vaccinated against CAV types. Indirect ELISA detected 88.2 %, 93.3 % and 100 % prevalences in Akbash, Greyhound and Kangal dogs, respectively. The remainder of the samples (n = 51 were collected at the Afyonkarahisar Municipality Shelter. Fourty-two of these dogs (82.3 % were detected as seropositive. In total, 82 of 94 dogs (87.2 % were found to be positive for CAV serum antibodies.

  8. A retrospective investigation of canine adenovirus (CAV) infection in adult dogs in Turkey.

    Gür, S; Acar, A

    2009-06-01

    Canine adenovirus (CAV) type 1 and 2, respectively, cause infectious canine hepatitis and infectious canine laryngotracheitis in members of the families Canidae and Ursidae worldwide. Both of these infections are acute diseases, especially in young dogs. The aim of this study was to conduct a serological investigation of canine adenovirus infection. For this purpose, serum samples were collected from native pure-bred Kangal(n = 11), and Akbash dogs (n = 17) and Turkish Greyhounds (n = 15) in Eskişehir and Konya provinces. None of the dogs were previously vaccinated against CAV types. Indirect ELISA detected 88.2%, 93.3% and 100% prevalences in Akbash, Greyhound and Kangal dogs, respectively. The remainder of the samples (n = 51) were collected at the Afyonkarahisar Municipality Shelter. Fourty-two of these dogs (82.3%) were detected as seropositive. In total, 82 of 94 dogs (87.2%) were found to be positive for CAV serum antibodies. PMID:19831268

  9. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA

    Thrane, Susan; Janitzek, Christoph M.; Agerbæk, Mette Ø.; Ditlev, Sisse B.; Resende, Mafalda; Nielsen, Morten A.; Theander, Thor G.; Salanti, Ali; Sander, Adam F.

    2015-01-01

    Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, ...

  10. Duration of immunity following the administration of oil-based avian influenza H5N1 vaccine in layers

    NISAR, Maryam; Rashid, Asif; Iqbal, Muhammad

    2011-01-01

    Avian influenza (AI) occurs worldwide and causes tremendous economic losses. The disease is characterised by respiratory signs, depression, and reduced food and water intake. In the present study, an oil-based vaccine created by using Montanide ISA 70 MVG, was prepared and the duration of immunity checked at different time intervals. For this purpose, the cumulative mean titre (CMT) was calculated after employing haemagglutination inhibition test in 50 pullets at day zero before vaccination a...

  11. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters

    Engell-Noerregaard, Lotte; Hansen, Troels Holz; Andersen, Mads Hald;

    2009-01-01

    During the past years numerous clinical trials have been carried out to assess the ability of dendritic cell (DC) based immunotherapy to induce clinically relevant immune responses in patients with malignant diseases. A broad range of cancer types have been targeted including malignant melanoma...... which in the disseminated stage have a very poor prognosis and only limited treatment options with moderate effectiveness. Herein we describe the results of a focused search of recently published clinical studies on dendritic cell vaccination in melanoma and review different vaccine parameters which are...... included for analysis covering a total of 626 patients with malignant melanoma treated with DC based therapy. Clinical response (CR, PR and SD) were found to be significantly correlated with the use of peptide antigens (p = 0.03), the use of any helper antigen/adjuvant (p = 0.002), and induction of antigen...

  12. A lipid based multi-compartmental system: Liposomes-in-double emulsion for oral vaccine delivery.

    Liau, Jin Jau; Hook, Sarah; Prestidge, Clive A; Barnes, Timothy J

    2015-11-01

    The gastric mucosa provides the entry point for the majority of pathogens, as well as being the induction site for protective immunity; however, there remain few examples of oral vaccines due to the challenges presented by the gastrointestinal route. In this study, we develop a lipid-based multi-compartmental system for oral vaccine delivery. Specifically, we have optimised the formulation of a water-in-oil-in-water double emulsion prepared from a triglyceride - soya bean oil, using surfactants Span 80/Tween 80 and Pluronic F127 to stabilise the internal and external water phases, respectively. Into the internal water phase, we also incorporated a PEGylated liposome, prepared using hydrogenated phosphatidyl choline as a carrier for our model protein, FITC-labelled ovalbumin. We demonstrated the successful incorporation of intact liposomes into the internal water phase of the double emulsion using imaging techniques including cryo-SEM and confocal microscopy. Finally, we use in vitro release studies of FITC-ovalbumin, to provide further confirmation of the multi-compartmental structure of the double emulsion system and demonstrate significant extended release of the entrapped model antigen compared with PEG-liposomes; these characteristics are attractive for oral vaccine delivery. PMID:26455337

  13. Limitations of the rabbit pyrogen test for assessing meningococcal OMV based vaccines.

    Vipond, Caroline; Findlay, Lucy; Feavers, Ian; Care, Rory

    2016-01-01

    The rabbit pyrogen test was developed in the early 1900's to detect contaminating pyrogens in parenteral medicines. Since its conception alternative methods with improved sensitivity, relevancy and which are ethically more acceptable have been developed. However, the test is a current Pharmacopeial method and is used to evaluate the pyrogen content of some vaccines. In this article the limitations and pitfalls of using the test to measure pyrogenicity of vaccines containing outer membrane vesicles are described. The method is unsuitable as a safety test for these products due to the high levels of endotoxin present in the vaccine which generate a pyrogenic response in rabbits when delivered intravenously without any dilution. Its use as a consistency test is also ambiguous as the test gives a qualitative rather than quantitative response and the rabbit models are highly variable. In addition there is evidence that measuring the temperature rise of the animals over three hours does not capture the maximum fever response. Finally the article considers the use of alternative methods and the validity of animal models when applying a consistency based approach for assessing the quality of licensed products. PMID:26626274

  14. Antigen dose escalation study of a VEGF-based therapeutic cancer vaccine in non human primates.

    Morera, Yanelys; Bequet-Romero, Mónica; Ayala, Marta; Pérez, Pedro Puente; Castro, Jorge; Sánchez, Javier; Alba, José Suárez; Ancízar, Julio; Cosme, Karelia; Gavilondo, Jorge V

    2012-01-01

    CIGB-247 is a cancer therapeutic, based on recombinant modified human vascular endothelial growth factor (VEGF) as antigen, in combination with the oil free adjuvant VSSP (very small sized proteoliposomes of Neisseria meningitidis outer membrane). Our previous experimental studies in mice with CIGB-247 have shown that the vaccine has both anti-tumoral and anti-metastatic activity, and produces both antibodies that block VEGF-VEGF receptor interaction, and a specific T-cell cytotoxic response against tumor cells. CIGB-247, with an antigen dose of 100 μg, has been characterized by an excellent safety profile in mice, rats, rabbits, and non human primates. In this article we extend the immunogenicity and safety studies of CIGB-247 in non human primates, scaling the antigen dose from 100 μg to 200 and 400 μg/vaccination. Our results indicate that such dose escalation did not affect animal behavior, clinical status, and blood parameters and biochemistry. Also, vaccination did not interfere with skin deep skin wound healing. Anti-VEGF IgG antibodies and specific T-cell mediated responses were documented at all three studied doses. Antigen dose apparently did not determine differences in maximum antibody titer during the 8 weekly immunization induction phase, or the subsequent increase in antibodies seen for monthly boosters delivered afterwards. Higher antigen doses had a positive influence in antibody titer maintenance, after cessation of immunizations. Boosters were important to achieve maximum antibody VEGF blocking activity, and specific T-cell responses in all individuals. Purified IgG from CIGB-247 immunized monkey sera was able to impair proliferation and formation of capillary-like structures in Matrigel, for HMEC cells in culture. Altogether, these results support the further clinical development of the CIGB-247 therapeutic cancer vaccine, and inform on the potential mechanisms involved in its effect. PMID:22075086

  15. Feasibility and challenges in the development of immunocontraceptive vaccine based on zona pellucida glycoproteins.

    Choudhury, Sangeeta; Srivastava, Neelu; Narwal, P S; Rath, Archana; Jaiswal, Sonika; Gupta, Satish K

    2007-01-01

    The zona pellucida (ZP) glycoproteins play a crucial role during fertilization and thus are considered as important target antigens for the development of immunocontraceptive vaccines aiming to inhibit fertility at a pre-fertilization stage. In order to evaluate the immunocontraceptive potential of ZP glycoproteins, bonnet monkey (Macaca radiata) ZP2, ZP3 and ZP4 have been cloned and expressed using either E. coli or baculovirus expression systems. Active immunization studies with the recombinant ZP glycoproteins in female baboons (Papio anubis) and bonnet monkeys revealed curtailment of fertility. In order to minimize the ovarian pathology, synthetic peptides corresponding to B cell epitopes that are devoid of 'oophoritogenic' T cell epitopes were designed and their in vitro immunocontraceptive potential explored. There are several issues that need to be addressed before ZP glycoproteins based immunocontraceptive vaccines become feasible for use in humans. Nonetheless, the utility of such a vaccine is imminent for controlling wild life population. In this direction, active immunization of female non-descript dogs with recombinant canine ZP3 conjugated to diphtheria toxoid led to curtailment of fertility. Further, canine ZP3 has also been expressed in insect cells as a fusion protein with rabies virus glycoprotein G (RV-G), an antigen that is involved in providing protection against rabies. The immunogenicity of such a recombinant protein and its potential to curtail fertility was explored both in female mice and dogs. Simultaneously, DNA vaccine encoding canine ZP3 and RV-G have been made and evaluated for their immunogenicity. The results obtained so far, current shortcomings and the possible ways to circumvent these have been discussed in the present manuscript. PMID:17566293

  16. The swine CD81 enhances E2-based DNA vaccination against classical swine fever.

    Li, Wenliang; Mao, Li; Zhou, Bin; Liu, Xia; Yang, Leilei; Zhang, Wenwen; Jiang, Jieyuan

    2015-07-01

    Classical swine fever (CSF) is a highly contagious and economically important viral disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV can induce neutralizing antibodies and protective immunity, and is widely used for novel vaccine development. The objective of this study was to explore whether a tetraspanin molecule CD81 could improve the immune responses of an E2-based DNA vaccine. Plasmids pVAX-CD81, pVAX-E2 and pVAX-CD81-E2 were constructed and the expression of target proteins was confirmed in BHK-21 cells by indirect immunofluorescence assay. BALB/c mice were divided into 5 groups and immunized with different plasmids (pVAX-E2, pVAX-CD81-E2, pVAX-E2+pVAX-CD81, pVAX-CD81 and PBS) three times with two weeks interval. The results showed that the introduction of CD81 promoted higher humoral and cellular immune responses than E2 expression alone (P<0.05). In addition, immunization with pVAX-CD81-E2 induced stronger immune responses than pVAX-E2+pVAX-CD81. Furthermore, four groups of pigs were immunized with pVAX-E2, pVAX-CD81-E2, pVAX-CD81 and PBS, respectively. Humoral and cellular immune responses detection showed similar results with those in mice. Compared to pVAX-E2, pVAX-CD81-E2 induced higher titers of neutralizing antibodies after viral challenge and conferred stronger protection. These results confirmed the capacity of swine CD81 enhancing the humoral and cellular responses with an adjuvant effect on CSFV DNA vaccine. This is the first report demonstrating the adjuvant effect of CD81 to enhance the DNA vaccination for swine pathogen. PMID:26051512

  17. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays.

    van der Maaden, Koen; Luttge, Regina; Vos, Pieter Jan; Bouwstra, Joke; Kersten, Gideon; Ploemen, Ivo

    2015-08-01

    In the literature, several types of microneedles have been extensively described. However, porous microneedle arrays only received minimal attention. Hence, only little is known about drug delivery via these microneedles. However, porous microneedle arrays may have potential for future microneedle-based drug and vaccine delivery and could be a valuable addition to the other microneedle-based drug delivery approaches. To gain more insight into porous microneedle technologies, the scientific and patent literature is reviewed, and we focus on the possibilities and constraints of porous microneedle technologies for dermal drug delivery. Furthermore, we show preliminary data with commercially available porous microneedles and describe future directions in this field of research. PMID:26044672

  18. Plant based oral vaccines for human and animal pathogens – a new era of prophylaxis: current and future perspectives

    Kuldeep Dhama

    Full Text Available Vaccination remains a high priority for animal disease prevention and control especially on account of rising antimicrobial resistant strains of pathogens and frightening increase in new emerging and reemerging pathogens. Traditional vaccines have limitation like residual virulence, need of extensive safety precautions, production difficulty and huge initial investments. Additionally, they are inefficient in producing a protective response at mucosal surfaces such as of lungs and intestinal tract, the actual sites where disease agents enter the body. Recent advances in plant molecular farming has resulted in genetic manipulations in plants to make them bioreactors for production of various recombinant proteins, by using infectious vectors or stable transgenic systems, which formulate the edible/oral vaccines. Such plant-based oral/edible vaccines have several advantages like they are functionally similar to conventional vaccines, demonstrate extended storage period in food grains, are heat-stable and does not require cold storage, eliminate need for expensive purification steps, are free from contaminating pathogens, can be produced in large scale in a time bound fashion and their delivery is easier with practical feasibility for large masses application. Additionally, these are also ideal for vaccination of animals and birds living in the wild areas thereby preventing many zoonoses. However, at this moment there are many practical challenges like degradation of vaccine antigen by enzymes of upper digestive tract, dosage regime, oral tolerance and the issues concerned to the use of genetically modified plant. In the near future the biomedical applications of these vaccines could become a common alternative to conventional vaccines, for which there is a great need to strengthen research and development activities in this promising area for protecting health of animals as well as of humans.

  19. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  20. Development of a Sterne-Based Complement Fixation Test to Monitor the Humoral Response Induced by Anthrax Vaccines.

    Adone, Rosanna; Sali, Michela; Francia, Massimiliano; Iatarola, Michela; Donatiello, Adelia; Fasanella, Antonio

    2016-01-01

    Anthrax is a zoonotic disease caused by Bacillus anthracis spore-forming bacterium. Since it is primarily a disease of animals, the control in animals, and humans depend on the prevention in livestock, principally cattle, sheep, and goats. Most veterinary vaccines utilize the toxigenic, uncapsulated (pXO1+/pXO2-) B. anthracis strain 34F2 which affords protection through the production of neutralizing antibodies directed to the toxin components Protective Antigen (PA), Lethal Factor (LF), and Edema Factor (EF). The titration of specific antibodies in sera of vaccinated animals is crucial to evaluate the efficacy of the vaccination and to obtain epidemiological information for an effective anthrax surveillance. In this study, we developed a Sterne-based Complement Fixation Test (CFT) to detect specific antibodies induced in animals vaccinated with Sterne 34F2. We assessed its efficacy in laboratory animals and under field conditions by monitoring the humoral response induced by vaccination in cattle. The results indicated that the Sterne-based CFT is able to correctly identify vaccinated animals. It proved to be a very sensitive and specific test. Moreover, the Sterne-based CFT offers many benefits with regard to costs, standardization and reproducibility of the assay procedure. PMID:26858700

  1. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  2. Vaccination: problems and perspectives.

    S. M. Kharit

    2014-01-01

    Massive vaccination had proved its effective morbidity reduction. Today it is necessary to extend vaccination schedule, creation of selective, regional schedules based on epidemiological, clinical, economical substantiation. Development of vaccination needs the profound scientific research, modernization of adverse reaction observing system, betterment training system and awareness of population.

  3. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    Amaya Leunda

    2014-06-01

    Full Text Available Novel efficient vaccines are needed to control tuberculosis (TB, a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine. In this review we provide up to date information on novel tuberculosis (TB vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  4. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations.

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-01-01

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed. PMID:26344627

  5. Clinical vaccine development

    Han, Seunghoon

    2015-01-01

    Vaccination is regarded as one of the biggest triumphs in the history of medicine. We are living in the most successful period of vaccine development. The accumulation of multidisciplinary knowledge and the investment of massive funding have enabled the development of vaccines against many infectious diseases as well as other diseases including malignant tumors. The paradigm of clinical vaccine evaluation and licensure has also been modernized based on scientific improvements and historical e...

  6. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  7. Enfermedad neurologica por adenovirus Neurologic disease due to adenovirus infection

    Cristina L. Lema

    2005-06-01

    Full Text Available El objetivo de este trabajo fue determinar la prevalencia de adenovirus (ADV en las infecciones del sistema nervioso central (SNC. Se analizaron 108 muestras de líquido cefalorraquídeo (LCR provenientes de 79 casos de encefalitis, 7 meningitis y 22 de otras patologías neurológicas, recibidas en el período 2000-2002. Cuarenta y nueve (47.35% se obtuvieron de pacientes inmunocomprometidos. La presencia de ADV se investigó mediante reacción en cadena de la polimerasa en formato anidado (Nested-PCR. La identificación del genogrupo se realizó mediante análisis filogenético de la secuencia nucleotídica parcial de la región que codifica para la proteína del hexón. Se detectó la presencia de ADV en 6 de 108 (5.5% muestras de LCR analizadas. Todos los casos positivos pertenecieron a pacientes con encefalitis que fueron 79, (6/79, 7.6%. No se observó diferencia estadísticamente significativa entre los casos de infección por ADV en pacientes inmunocomprometidos e inmunocompetentes (p>0.05. Las cepas de ADV detectadas se agruparon en los genogrupos B1 y C. En conclusión, nuestros resultados describen el rol de los ADV en las infecciones neurológicas en Argentina. La información presentada contribuye al conocimiento de su epidemiología, en particular en casos de encefalitis.The aim of this study was to assess the prevalence of adenovirusm (ADV infections in neurological disorders. A total of 108 cerebrospinal fluid (CSF samples from 79 encephalitis cases, 7 meningitis and 22 other neurological diseases analysed in our laboratory between 2000 and 2002 were studied. Forty nine (47.4% belonged to immunocompromised patients. Viral genome was detected using nested polymerase chain reaction (Nested-PCR and ADV genotypes were identified using partial gene sequence analysis of hexon gene. Adenovirus were detected in 6 of 108 (5.5% CSF samples tested. All of these were from encephalitis cases, 6/79, representing 7.6% of them. No statistically

  8. Targeted chromosomal insertion of large DNA into the human genome by a fiber-modified high-capacity adenovirus-based vector system.

    Manuel A F V Gonçalves

    Full Text Available A prominent goal in gene therapy research concerns the development of gene transfer vehicles that can integrate exogenous DNA at specific chromosomal loci to prevent insertional oncogenesis and provide for long-term transgene expression. Adenovirus (Ad vectors arguably represent the most efficient delivery systems of episomal DNA into eukaryotic cell nuclei. The most advanced recombinant Ads lack all adenoviral genes. This renders these so-called high-capacity (hc Ad vectors less cytotoxic/immunogenic than those only deleted in early regions and creates space for the insertion of large/multiple transgenes. The versatility of hcAd vectors is been increased by capsid modifications to alter their tropism and by the incorporation into their genomes of sequences promoting chromosomal insertion of exogenous DNA. Adeno-associated virus (AAV can insert its genome into a specific human locus designated AAVS1. Trans- and cis-acting elements needed for this reaction are the AAV Rep78/68 proteins and Rep78/68-binding sequences, respectively. Here, we describe the generation, characterization and testing of fiber-modified dual hcAd/AAV hybrid vectors (dHVs containing both these elements. Due to the inhibitory effects of Rep78/68 on Ad-dependent DNA replication, we deployed a recombinase-inducible gene switch to repress Rep68 synthesis during vector rescue and propagation. Flow cytometric analyses revealed that rep68-positive dHVs can be produced similarly well as rep68-negative control vectors. Western blot experiments and immunofluorescence microscopy analyses demonstrated transfer of recombinase-dependent rep68 genes into target cells. Studies in HeLa cells and in the dystrophin-deficient myoblasts from a Duchenne muscular dystrophy (DMD patient showed that induction of Rep68 synthesis in cells transduced with fiber-modified and rep68-positive dHVs leads to increased stable transduction levels and AAVS1-targeted integration of vector DNA. These results

  9. Effect of route of delivery on heterologous protection against HCV induced by an adenovirus vector carrying HCV structural genes

    Guan Jie

    2011-11-01

    Full Text Available Abstract Background An effective vaccine and new therapeutic methods for hepatitis C virus (HCV are needed, and a potent HCV vaccine must induce robust and sustained cellular-mediated immunity (CMI. Research has indicated that adenoviral and vaccinia vectors may have the ability to elicit strong B and T cell immune responses to target antigens. Results A recombinant replication-defective adenovirus serotype 5 (rAd5 vector, rAd5-CE1E2, and a recombinant Tian Tan vaccinia vector, rTTV-CE1E2, were constructed to express the HCV CE1E2 gene (1-746 amino acid HCV 1b subtype. Mice were prime-immunised with rAd5-CE1E2 delivered via intramuscular injection (i.m., intranasal injection (i.n., or intradermal injection (i.d. and boosted using a different combination of injection routes. CMI was evaluated via IFN-γ ELISPOT and ICS 2 weeks after immunisation, or 16 weeks after boost for long-term responses. The humoral response was analysed by ELISA. With the exception of priming by i.n. injection, a robust CMI response against multiple HCV antigens (core, E1, E2 was elicited and remained at a high level for a long period (16 weeks post-vaccination in mice. However, i.n. priming elicited the highest anti-core antibody levels. Priming with i.d. rAd5-CE1E2 and boosting with i.d. rTTV-CE1E2 carried out simultaneously enhanced CMI and the humoral immune response, compared to the homologous rAd5-CE1E2 immune groups. All regimens demonstrated equivalent cross-protective potency in a heterologous surrogate challenge assay based on a recombinant HCV (JFH1, 2a vaccinia virus. Conclusions Our data suggest that a rAd5-CE1E2-based HCV vaccine would be capable of eliciting an effective immune response and cross-protection. These findings have important implications for the development of T cell-based HCV vaccine candidates.

  10. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines.

    Qiao, Chenmeng; Liu, Jiandong; Yang, Jun; Li, Yan; Weng, Jie; Shao, Yiming; Zhang, Xin

    2016-04-01

    Human immunodeficiency virus (HIV) DNA vaccine can induce cellular and humoral immunity. A safe and effective HIV DNA vaccine is urgent need to prevent the spread of acquired immune deficiency syndrome (AIDS). The major drawback of DNA vaccines is the low immunogenicity, which is caused by the poor delivery to antigen presenting cells and insufficient antigen expression. Sparked by the capability of endosomal/lysosomal escape of the zwitterionic lipid distearoyl phosphoethanol-amine-polycarboxybetaine (DSPE-PCB), we attempted to develop a zwitterionic-based cationic liposome with enhanced immunogenicity of DNA vaccines. The mannosylated zwitterionic-based cationic liposome (man-ZCL) was constructed as a DNA vaccine adjuvant for HIV vaccination. Man-ZCL could complex with DNA antigens to form a tight structure and protect them from nuclei enzyme degradation. Benefited from the capability of the specific mannose receptor mediated antigen processing cells targeting and enhanced endosomal/lysosomal escape, the man-ZCL lipoplexes were supposed to promote antigen presentation and the immunogenicity of DNA vaccines. In vitro and in vivo results revealed that man-ZCL lipoplexes showed enhanced anti-HIV immune responses and lower toxicity compared with CpG/DNA and Lipo2k/DNA, and triggered a Th1/Th2 mixed immunity. An antigen-depot effect was observed in the administration site, and this resulted in enhanced retention of DNA antigens in draining lymph nodes. Most importantly, the man-ZCL could assist to activate T cells through a non-inflammasome pathway. These findings suggested that the man-ZCL could be potentially applied as a safe and efficient DNA adjuvant for HIV vaccines. PMID:26851653

  11. Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions

    Tambunan, Usman Sumo Friend; Sipahutar, Feimmy Ruth Pratiwi; Parikesit, Arli Aditya; Kerami, Djati

    2016-01-01

    From 2003 to 2013, Indonesia had the highest number of avian influenza A cases in humans, with 192 cases and 160 fatalities. Avian influenza is caused by influenza virus type A, such as subtype H5N1. This virus has two glycoproteins: hemagglutinin and neuraminidase, which will become the primary target to be neutralized by vaccine. Vaccine is the most effective immunologic intervention. In this study, we use the epitope-based vaccine design from hemagglutinin and neuraminidase of H5N1 Indonesian strain virus by using immunoinformatics approach in order to predict the binding of B-cell and T-cell epitopes (class I and class II human leukocyte antigen [HLA]). BCPREDS was used to predict the B-cell epitope. Propred, Propred I, netMHCpan, and netMHCIIpan were used to predict the T-cell epitope. Two B-cell epitopes of hemagglutinin candidates and one B-cell epitope of neuraminidase candidates were obtained to bind T-cell CD4+ (class II HLA), and also five T-cell epitope hemagglutinin and four T-cell epitope neuraminidase were obtained to bind T-cell CD8+ (class I HLA). The visualization of epitopes was done using MOE 2008.10. It shows that the binding affinity of epitope–HLA was based on minimum binding free energy (ΔGbinding). Based on this result, visualization, and dynamic simulation, four hemagglutinin epitopes (MEKIVLLLA, CPYLGSPSF, KCQTPMGAI, and IGTSTLNQR) and two neuraminidase epitopes (NPNQKIITI and CYPDAGEIT) were computed as having the best binding affinity from HLA ligand. The results mentioned above are from in silico experiments and need to be validated using wet experiment. PMID:27147821

  12. HPV vaccine

    Vaccine - HPV; Immunization - HPV; Gardasil; Cervarix; HPV2; HPV4; Vaccine to prevent cervical cancer ... Girls ages 11 and 12 should receive the HPV vaccine series: The vaccine is given in three shots ...

  13. HCV prototype vaccine based on hepatitis B core virus-like particles

    Marija Mihailova

    2008-01-01

    HCV prototype vaccine based on hepatitis B core virus-like particles Abstract In the current study the C-terminally truncated HBc expression vectors were used for exposure of different hepatitis C virus (HCV) protein (core, E2, and NS3) fragments. All created chimeric constructs directed high level of recombinant protein synthesis in E.coli. However, not all chimeric proteins were able to self-assemble into virus-like particles (VLPs). HBcCterm/HVR1tetramer VLPs turned ou...

  14. A pRb-responsive, RGD-modified, and Hyaluronidase-armed Canine Oncolytic Adenovirus for Application in Veterinary Oncology

    Laborda, Eduardo; Puig-Saus, Cristina; Rodriguez-García, Alba; Moreno, Rafael; Cascalló, Manel; Pastor, Josep; Alemany, Ramon

    2014-01-01

    Human and canine cancer share similarities such as genetic and molecular aspects, biological complexity, tumor epidemiology, and targeted therapeutic treatment. Lack of good animal models for human adenovirotherapy has spurred the use of canine adenovirus 2-based oncolytic viruses. We have constructed a canine oncolytic virus that mimics the characteristics of our previously published human adenovirus ICOVIR17: expression of E1a controlled by E2F sites, deletion of the pRb-binding site of E1a...

  15. Fatal adenovirus 32 infection in a bone marrow transplant recipient.

    Charles, A K; Caul, E. O.; Porter, H J; Oakhill, A

    1995-01-01

    A case of disseminated adenovirus type 32 infection causing severe hepatitis, gastrointestinal ulceration and also with respiratory involvement is reported in a bone marrow transplant recipient. Typical viral inclusions were seen in the postmortem histological sections and adenovirus infection was confirmed using in situ hybridisation and isolation of adenovirus type 32 from separate organs at necropsy. This is the first case in which adenovirus 32 was the cause of fatal disseminated disease ...

  16. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    Yinli Xie; Peng Gao; Zhiyong Li

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expr...

  17. Modification of beta-glucuronidase-based-DNA vaccines against HPV16 E7 oncoprotein.

    Šmahel, M.; Poláková, I.; Pokorná, D.; Ludvíková, V.; Vlasák, Josef

    Milford: Meetings Management, 2007. s. 33. [International Conference "DNA Vaccines 2007" /3./. 23.05.2007-25.05.2007, Torrequebrada] Institutional research plan: CEZ:AV0Z50510513 Keywords : DNA vaccines * oncoprotein Subject RIV: EB - Genetics ; Molecular Biology

  18. Adenovirus and mycoplasma infection in an ornate box turtle (Terrapene ornata ornata) in Hungary.

    Farkas, Szilvia L; Gál, János

    2009-07-01

    A female, adult ornate box turtle (Terrapene ornata ornata) with fatty liver was submitted for virologic examination in Hungary. Signs of an adenovirus infection including degeneration of the liver cells, enlarged nuclei and intranuclear inclusion bodies were detected by light microscopic examination. The presence of an adenovirus was later confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Phylogenetic analyses revealed that this novel chelonian adenovirus was distinct from previously described reptilian adenoviruses, not belonging to any of the recognized genera of the family Adenoviridae. As a part of the routine diagnostic procedure for chelonians the detection of herpes-, rana- and iridoviruses together with Mycoplasma spp. was attempted. Amplicons were generated by a general mycoplasma polymerase chain reaction (PCR) targeting the 16S/23S ribosomal RNA (rRNA) intergenic spacer region, as well as, a specific Mycoplasma agassizii PCR targeting the 16S rRNA gene. Based on the analyses of partial sequences of the 16S rRNA gene, the Mycoplasma sp. of the ornate box turtle seemed to be identical with the recently described eastern box turtle (Terrapene carolina carolina) Mycoplasma sp. This is the first report of a novel chelonian adenovirus and a mycoplasma infection in an ornate box turtle (T. ornata ornata) in Europe. PMID:19375875

  19. Immunity conferred by an experimental vaccine based on the recombinant PCV2 Cap protein expressed in Trichoplusia ni-larvae.

    Pérez-Martín, Eva; Gómez-Sebastián, Silvia; Argilaguet, Jordi M; Sibila, Marina; Fort, María; Nofrarías, Miquel; Kurtz, Sherry; Escribano, José M; Segalés, Joaquim; Rodríguez, Fernando

    2010-03-01

    Porcine circovirus type 2 (PCV2) vaccination has been recently included as a measure to control postweaning multisystemic wasting syndrome (PMWS) in the field. Aiming to obtain a more affordable vaccine to be extensively implemented in the field, a highly efficient non-fermentative expression platform based on Trichoplusia ni (T. ni) larvae was used to produce a baculovirus-derived recombinant PCV2 Cap protein (rCap) for vaccine purposes. Vaccination of pigs with rCap induced solid protection against PCV2 experimental infection, inhibiting both the viremia and the viral shedding very efficiently. The protection afforded by the rCap vaccine strongly correlated with the induction of specific humoral immune responses, even in the presence of PCV2-specific maternal immunity, although cellular responses also seemed to play a partial role. In summary, we have shown that rCap expressed in T. ni larvae could be a cost-effective PCV2 vaccine candidate to be tested under field conditions. PMID:20056179

  20. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope.

    Chen, Shaoheng; Zheng, Dan; Li, Changgui; Zhang, Wenjie; Xu, Wenting; Liu, Xueying; Fang, Fang; Chen, Ze

    2015-01-01

    We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB(*)) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB(*) adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections. PMID:25767809

  1. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  2. Designing a field trial of an equine grass sickness vaccine: A questionnaire-based feasibility study.

    Ireland, Joanne L; McGorum, Bruce C; Proudman, Christopher J; Newton, J Richard

    2016-07-01

    Without an experimental model of equine grass sickness (EGS), a randomised controlled field trial (RCT) represents the only method of evaluating the efficacy of Clostridium botulinum type C vaccination in preventing naturally occurring disease. Clinical trial feasibility is an important aspect of preliminary work undertaken prior to initiating RCTs, estimating parameters that are important for study design. This cross-sectional study aimed to assess the feasibility of conducting a nationwide RCT of a candidate vaccine for EGS based on responses from a sample of British equine veterinary practices (n = 119/284). Seventy-three percent of practices had attended ≥1 EGS case within the preceding 2 years (median four cases), and 51.3% regularly attended recurrently affected premises. Veterinary surgeons had greater confidence diagnosing acute/subacute EGS based solely on history and clinical signs compared to chronic EGS. Ninety-one percent of respondents (n = 103/113) considered the proposed RCT to be important/very important to equine veterinary research. Ninety-one percent of respondents (n = 102/112) indicated preparedness to assist in owner recruitment and 92.9% (n = 104/112) indicated willingness to participate in a RCT. The most frequent reasons for practices declining to participate were low incidence of EGS (n = 4), did not believe clients would wish to participate (n = 3) and amount of paperwork/data collection involved (n = 2). There was considerable support amongst participating veterinary practices for a RCT evaluating the efficacy of Clostridium botulinum vaccination for the prevention of EGS in Britain. Substantial proportions of participating practices would be prepared to participate in the RCT and regularly attended EGS-affected premises that would meet trial inclusion criteria. PMID:27240918

  3. PEGylated Adenoviruses: From Mice to Monkeys

    Piyanuch Wonganan; Croyle, Maria A.

    2010-01-01

    Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnost...

  4. Vaccines for allergy.

    Linhart, Birgit; Valenta, Rudolf

    2012-06-01

    Vaccines aim to establish or strengthen immune responses but are also effective for the treatment of allergy. The latter is surprising because allergy represents a hyper-immune response based on immunoglobulin E production against harmless environmental antigens, i.e., allergens. Nevertheless, vaccination with allergens, termed allergen-specific immunotherapy is the only disease-modifying therapy of allergy with long-lasting effects. New forms of allergy diagnosis and allergy vaccines based on recombinant allergen-derivatives, peptides and allergen genes have emerged through molecular allergen characterization. The molecular allergy vaccines allow sophisticated targeting of the immune system and may eliminate side effects which so far have limited the use of traditional allergen extract-based vaccines. Successful clinical trials performed with the new vaccines indicate that broad allergy vaccination is on the horizon and may help to control the allergy pandemic. PMID:22521141

  5. Understanding Public Perceptions of the HPV Vaccination Based on Online Comments to Canadian News Articles

    Feinberg, Yael; Pereira, Jennifer A.; Quach, Susan; Kwong, Jeffrey C.; Natasha S Crowcroft; Wilson, Sarah E.; Guay, Maryse; Lei, Yang; Deeks, Shelley L; ,

    2015-01-01

    Background Given the variation in human papillomavirus (HPV) vaccine coverage across Canada, and debate regarding delivery of HPV vaccines in Catholic schools, we studied online comments on Canadian news websites to understand public perceptions of HPV and HPV vaccine. Methods We searched English- and French-language Canadian news websites for 2012 articles that contained the terms “HPV” or “human papillomavirus.” Articles about HPV vaccinations that contained at least one comment were includ...

  6. DEVELOPMENT OF RECOMBINANT VACCINE AGAINST A(H1N1) 2009 INFLUENZA BASED ON VIRUS-LIKE NANOPARTICLES CARRYING THE EXTRACELLULAR DOMAIN OF M2 PROTEIN

    Kotlyarov, R.; Kuprianov, V.; Migunov, A.; Stepanova, L.; Tsybalova, L.; Kiselev, O.; Ravin, N.; Skryabin, K.

    2010-01-01

    The conventional vaccines currently being used to deal with influenza are based on a virus obtained in chicken embryos or its components. The high variability of the major immunogenic surface proteins – hemagglutinin and neuraminidase–require the development of strain–specific vaccines that match the antigenic specificity of a newly emerging virus. Recombinant vaccines based on single viral proteins that could be easily produced in standard expression systems are attractive alternatives to tr...

  7. Construction and identification of recombinant adenovirus-mediated gene transfer system for rat vascular endothelial growth factor

    Hongyu Yang; Hong Qi; Junjie Zou; Xiwei Zhang

    2008-01-01

    Objective: To construct the recombinant adenovirus vector carrying rat vascular endothelial growth factor(VEGF), as preparation for genetic transfection that follows. Methods: Rat VEGF was obtained by using RT-PCR amplification and then cloned into the shutter plasmid pDC316. Subsequently, this newly constructed plasmid pDC316-VEGF, after identification by nuclease digestion analysis and sequencing analysis, was transfected into human embryonic kidney cells HEK293 by Lipofectamine 2000 mediation, together with adenovirus-packaging plasmid pBHGE3. Based on the homologous recombination of the two plasmids within HEK293 cells, the recombinant adenovirus vector carrying VEGF and VDC316-VEGF was created. VDC316-VEGF was subsequently identified using PCR, purified using repeated plaque passages, proliferated using freezing and melting within HEK293 cells, and titrated using 50% Tissue Culture Infective Dose(TCID50) assay. Results:The newly constructed recombinant adenovirus was confirmed to carry rat VEGF based on PCR results, and its titration value determined based on TCID50 assay was 3×109 pfu/ml. Conclusion:The recombinant adenovirus carrying rat VEGF was successfully constructed. The newly constructed adenovirus can produce a sufficiently high titration value within HEK293 cells, providing a reliable tool for genetic transfection in further gene therapy researches.

  8. T cells induced by recombinant chimpanzee adenovirus alone and in prime-boost regimens decrease chimeric EcoHIV/NDK challenge virus load

    Roshorm, Yaowaluck; Cottingham, Mathew G.; Potash, Mary-Jane; Volsky, David J.; Hanke, Tomáš

    2012-01-01

    The popularity of nonreplicating adenoviruses of chimpanzee origin (ChAdVs) as vectors for subunit vaccines is on the rise. This is mainly for their excellent safety and impressive immunogenicity observed in human studies to date. Here, we recloned the chimpanzee adenovirus sero type 68 (ChAdV-68), also designated SAdV-25 and AdC68, genome and demonstrated its straightforward genetic manipulation facilitated by the use of bacterial artificial chromosome recombineering. To generate the ChAdV68...

  9. Patient reported outcome data following influenza A (H1N1p vaccination in the 2009–2010 season: web-based and telephone evaluation

    Wade AG

    2011-10-01

    Full Text Available Alan G Wade1, Gordon M Crawford1, Neil Pumford1, Alex McConnachie21Patients Direct, 3 Todd Campus, Glasgow, UK; 2Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UKBackground: There has been worldwide interest in the safety of the pandemic influenza A (H1N1p vaccines, although limited data are available from the vaccine recipients’ perspective. This evaluation was designed to collect data from people who had received an influenza vaccination during the 2009–2010 season using a web-based data collection tool supplemented by telephone reporting (PROBE.Methods: People scheduled to receive the influenza A (H1N1p or seasonal influenza vaccines were recruited through media advertising and campaigns throughout the West of Scotland. Vaccine recipients participated in the evaluation by answering demographic and side effect questions using PROBE methodology on the day of the immunization, after 3 days, 8 days, 6 weeks, 12 weeks, and 26 weeks.Results: A total of 1103 vaccine recipients including 134 young children (0–4 years participated in the evaluation; 694 (63% received H1N1p vaccine only, 135 (12% seasonal vaccine only, 224 (20% both H1N1p and seasonal vaccines, and 50 (5% received H1N1p or seasonal vaccine with a non-influenza vaccine (eg, travel or pneumococcal. Overall, 42% of recipients reported experiencing a side effect after their baseline vaccination; the most commonly reported were general and arm side effects (>20%. Injection site discomfort/pain and flu-like symptoms were reported by 57% and 24% of recipients, respectively. A significantly higher proportion of the 960 H1N1p vaccine recipients experienced a side effect (44% vs 27%, P < 0.001 or injection site discomfort/pain (61% vs 26%, P < 0.001 than those receiving seasonal influenza vaccines. Female sex and H1N1p vaccination were associated with a significantly higher risk of injection site discomfort/pain, whereas the 70+ age group was associated with a

  10. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  11. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    Iole Macchia

    2013-01-01

    Full Text Available The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs and tumor-associated antigens (TAAs and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM- based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma.

  12. The role of community pharmacy-based vaccination in the USA: current practice and future directions

    Bach AT

    2015-07-01

    Full Text Available Albert T Bach, Jeffery A Goad School of Pharmacy, Chapman University, Irvine, California, USA Abstract: Community pharmacy-based provision of immunizations in the USA has become commonplace in the last few decades, with success in increasing rates of immunizations. Community pharmacy-based vaccination services are provided by pharmacists educated in the practice of immunization delivery and provide a convenient and accessible option for receiving immunizations. The pharmacist's role in immunization practice has been described as serving in the roles of educator, facilitator, and immunizer. With a majority of pharmacist-provided vaccinations occurring in the community pharmacy setting, there are many examples of community pharmacists serving in these immunization roles with successful outcomes. Different community pharmacies employ a number of different models and workflow practices that usually consist of a year-round in-house service staffed by their own immunizing pharmacist. Challenges that currently exist in this setting are variability in scopes of immunization practice for pharmacists across states, inconsistent reimbursement mechanisms, and barriers in technology. Many of these challenges can be alleviated by continual education; working with legislators, state boards of pharmacy, stakeholders, and payers to standardize laws; and reimbursement design. Other challenges that may need to be addressed are improvements in communication and continuity of care between community pharmacists and the patient centered medical home. Keywords: immunization, pharmacy practice, pharmacists, continuity of care 

  13. Crystal Structure of Human Adenovirus at 3.5 Å Resolution

    Reddy, Vijay S.; Natchiar, S. Kundhavai; Stewart, Phoebe L.; Nemerow, Glen R. (Scripps); (Vanderbilt)

    2010-09-27

    Rational development of adenovirus vectors for therapeutic gene transfer is hampered by the lack of accurate structural information. Here, we report the x-ray structure at 3.5 angstrom resolution of the 150-megadalton adenovirus capsid containing nearly 1 million amino acids. We describe interactions between the major capsid protein (hexon) and several accessory molecules that stabilize the capsid. The virus structure also reveals an altered association between the penton base and the trimeric fiber protein, perhaps reflecting an early event in cell entry. The high-resolution structure provides a substantial advance toward understanding the assembly and cell entry mechanisms of a large double-stranded DNA virus and provides new opportunities for improving adenovirus-mediated gene transfer.

  14. Vaccination practices of Quebec family physicians. Influenza vaccination status and professional practices for influenza vaccination.

    Milord F

    2001-11-01

    Full Text Available OBJECTIVE: To assess influenza vaccination status and influenza vaccination practices of family physicians in Quebec. DESIGN: Mail survey of a random sample of 1000 family physicians. SETTING: Family practices in the province of Quebec. PARTICIPANTS: Of 1000 Quebec family physicians sent questionnaires, 550 responded. After excluding physicians who worked only in institutions, had no patients older than 65 years, or did clinical work less than 20% of the time, 379 respondents were eligible for the study. MAIN OUTCOME MEASURES: Vaccination status of family physicians in 1996 and professional practices based on six clinical and administrative activities pertaining to influenza vaccination. RESULTS: Prevalence of vaccination was 35.5% (95% confidence interval 30.8% to 40.4% among responding physicians and was higher among those 60 years and older, those with a chronic condition, and those perceiving high peer pressure to get vaccinated. Most respondents frequently assessed the current influenza vaccination status of their patients, risk factors for influenza-related complications, and contraindications to the vaccine. They also frequently provided education about influenza and its vaccine, recommended vaccination, and administered the vaccine. Only a few reported assessing prior influenza vaccinations or recording vaccination status regularly. Finally, vaccinated physicians recommended the vaccine more frequently to their patients than unvaccinated physicians did. CONCLUSION: Promotion programs focusing on peer influence could increase vaccination of family physicians. This could in turn improve vaccination coverage of elderly patients.

  15. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  16. Human cytomegalovirus vaccine based on the envelope gH/gL pentamer complex.

    Wussow, Felix; Chiuppesi, Flavia; Martinez, Joy; Campo, John; Johnson, Erica; Flechsig, Christin; Newell, Maegan; Tran, Elaine; Ortiz, Jose; La Rosa, Corinna; Herrmann, Andreas; Longmate, Jeff; Chakraborty, Rana; Barry, Peter A; Diamond, Don J

    2014-11-01

    Human Cytomegalovirus (HCMV) utilizes two different pathways for host cell entry. HCMV entry into fibroblasts requires glycoproteins gB and gH/gL, whereas HCMV entry into epithelial and endothelial cells (EC) requires an additional complex composed of gH, gL, UL128, UL130, and UL131A, referred to as the gH/gL-pentamer complex (gH/gL-PC). While there are no established correlates of protection against HCMV, antibodies are thought to be important in controlling infection. Neutralizing antibodies (NAb) that prevent gH/gL-PC mediated entry into EC are candidates to be assessed for in vivo protective function. However, these potent NAb are predominantly directed against conformational epitopes derived from the assembled gH/gL-PC. To address these concerns, we constructed Modified Vaccinia Ankara (MVA) viruses co-expressing all five gH/gL-PC subunits (MVA-gH/gL-PC), subsets of gH/gL-PC subunits (gH/gL or UL128/UL130/UL131A), or the gB subunit from HCMV strain TB40/E. We provide evidence for cell surface expression and assembly of complexes expressing full-length gH or gB, or their secretion when the corresponding transmembrane domains are deleted. Mice or rhesus macaques (RM) were vaccinated three times with MVA recombinants and serum NAb titers that prevented 50% infection of human EC or fibroblasts by HCMV TB40/E were determined. NAb responses induced by MVA-gH/gL-PC blocked HCMV infection of EC with potencies that were two orders of magnitude greater than those induced by MVA expressing gH/gL, UL128-UL131A, or gB. In addition, MVA-gH/gL-PC induced NAb responses that were durable and efficacious to prevent HCMV infection of Hofbauer macrophages, a fetal-derived cell localized within the placenta. NAb were also detectable in saliva of vaccinated RM and reached serum peak levels comparable to NAb titers found in HCMV hyperimmune globulins. This vaccine based on a translational poxvirus platform co-delivers all five HCMV gH/gL-PC subunits to achieve robust humoral

  17. Reasons for non-vaccination

    Dannetun, Eva

    2006-01-01

    Vaccines are among the most effective public health interventions used today. Population based vaccination programmes are mainly aimed at protecting against common childhood diseases, but other population groups are also the targets for different recommendations. The objectives of this thesis were to assess coverage and reasons for non-vaccination for three of vaccination programmes recommended by the National Board of Health and Welfare: influenza vaccine for the elderly, ...

  18. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  19. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  20. Analysis of T cell responses to chimpanzee adenovirus vectors encoding HIV gag-pol-nef antigen.

    Herath, S; Le Heron, A; Colloca, S; Bergin, P; Patterson, S; Weber, J; Tatoud, R; Dickson, G

    2015-12-16

    Adenoviruses have been shown to be both immunogenic and efficient at presenting HIV proteins but recent trials have suggested that they may play a role in increasing the risk of HIV acquisition. This risk may be associated with the presence of pre-existing immunity to the viral vectors. Chimpanzee adenoviruses (chAd) have low seroprevalence in human populations and so reduce this risk. ChAd3 and chAd63 were used to deliver an HIV gag, pol and nef transgene. ELISpot analysis of T cell responses in mice showed that both chAd vectors were able to induce an immune response to Gag and Pol peptides but that only the chAd3 vector induced responses to Nef peptides. Although the route of injection did not influence the magnitude of immune responses to either chAd vector, the dose of vector did. Taken together these results demonstrate that chimpanzee adenoviruses are suitable vector candidates for the delivery of HIV proteins and could be used for an HIV vaccine and furthermore the chAd3 vector produces a broader response to the HIV transgene. PMID:26546736

  1. Analysis of T cell responses to chimpanzee adenovirus vectors encoding HIV gag–pol–nef antigen

    Herath, S.; Le Heron, A.; Colloca, S.; Bergin, P.; Patterson, S.; Weber, J.; Tatoud, R.; Dickson, G.

    2015-01-01

    Adenoviruses have been shown to be both immunogenic and efficient at presenting HIV proteins but recent trials have suggested that they may play a role in increasing the risk of HIV acquisition. This risk may be associated with the presence of pre-existing immunity to the viral vectors. Chimpanzee adenoviruses (chAd) have low seroprevalence in human populations and so reduce this risk. ChAd3 and chAd63 were used to deliver an HIV gag, pol and nef transgene. ELISpot analysis of T cell responses in mice showed that both chAd vectors were able to induce an immune response to Gag and Pol peptides but that only the chAd3 vector induced responses to Nef peptides. Although the route of injection did not influence the magnitude of immune responses to either chAd vector, the dose of vector did. Taken together these results demonstrate that chimpanzee adenoviruses are suitable vector candidates for the delivery of HIV proteins and could be used for an HIV vaccine and furthermore the chAd3 vector produces a broader response to the HIV transgene. PMID:26546736

  2. Induction and Comparison of SIV immunity in Ad5 Naïve and Ad5 Immune Non-human Primates using an Ad5 [E1-, E2b-] based vaccine

    Gabitzsch, Elizabeth S; Xu, Younong; Balint, Joseph P.; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Jones, Frank R.

    2011-01-01

    The effectiveness of recombinant Adenovirus serotype 5 (Ad5) vectors to induce immune responses against targeted antigens has been limited by the presence of pre-existing or Ad5 vaccine induced anti-vector immunity. The Ad5 [E1-, E2b-] platform, a recombinant Ad5 with additional deletions, has been previously reported by us to induce immune responses in the presence of Ad5 immunity. In an Ad5 immune non-human primate (NHP) model, an Ad5 [E1-, E2b-] construct expressing HIV-1 Gag induced immun...

  3. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    CD8+ T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc18-27, was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C18-27 encoding gene. ERTS fusion significantly enhanced specific CD8+ T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  4. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection.

    Chaput, N.; Schartz, N.E.; Andre, F.; Taieb, J.; Novault, S.; Bonnaventure, P.; Aubert, N.; Bernard, J.; Lemonnier, F.; Merad, M.; Adema, G.J.; Adams, M.; Ferrantini, M.; Carpentier, A.F.; Escudier, B.; Tursz, T.; Angevin, E.; Zitvogel, L.

    2004-01-01

    Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of p

  5. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  6. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-01-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the char...

  7. IL-12-based vaccination therapy reverses liver-induced systemic tolerance in a mouse model of hepatitis B virus carrier.

    Zeng, Zhutian; Kong, Xiaohui; Li, Fenglei; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2013-10-15

    Liver-induced systemic immune tolerance that occurs during chronic hepadnavirus infection is the biggest obstacle for effective viral clearance. Immunotherapeutic reversal of this tolerance is a promising strategy in the clinic but remains to be explored. In this study, using a hepatitis B virus (HBV)-carrier mouse model, we report that IL-12-based vaccination therapy can efficiently reverse systemic tolerance toward HBV. HBV-carrier mice lost responsiveness to hepatitis B surface Ag (HBsAg) vaccination, and IL-12 alone could not reverse this liver-induced immune tolerance. However, after IL-12-based vaccination therapy, the majority of treated mice became HBsAg(-) in serum; hepatitis B core Ag was also undetectable in hepatocytes. HBV clearance was dependent on HBsAg vaccine-induced anti-HBV immunity. Further results showed that IL-12-based vaccination therapy strongly enhanced hepatic HBV-specific CD8(+) T cell responses, including proliferation and IFN-γ secretion. Systemic HBV-specific CD4(+) T cell responses were also restored in HBV-carrier mice, leading to the arousal of HBsAg-specific follicular Th-germinal center B cell responses and anti-hepatitis B surface Ag Ab production. Recovery of HBsAg-specific responses also correlated with both reduced CD4(+)Foxp3(+) regulatory T cell frequency and an enhanced capacity of effector T cells to overcome inhibition by regulatory T cells. In conclusion, IL-12-based vaccination therapy may reverse liver-induced immune tolerance toward HBV by restoring systemic HBV-specific CD4(+) T cell responses, eliciting robust hepatic HBV-specific CD8(+) T cell responses, and facilitating the generation of HBsAg-specific humoral immunity; thus, this therapy may become a viable approach to treating patients with chronic hepatitis B. PMID:24048897

  8. Identification of a nonstructural DNA-binding protein (DBP as an antigen with diagnostic potential for human adenovirus.

    Li Guo

    Full Text Available BACKGROUND: Human adenoviruses (HAdVs have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a nonstructural antigenic protein, the DNA binding protein (DBP of human adenovirus 5 and 35 (Ad5, Ad35 - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ(2 = 44.9, P<0.01 the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. CONCLUSIONS/SIGNIFICANCE: The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis.

  9. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  10. Vaccines for allergy

    Linhart, Birgit; Valenta, Rudolf

    2012-01-01

    Vaccines aim to establish or strengthen immune responses but are also effective for the treatment of allergy. The latter is surprising because allergy represents a hyper-immune response based on immunoglobulin E production against harmless environmental antigens, i.e., allergens. Nevertheless, vaccination with allergens, termed allergen-specific immunotherapy is the only disease-modifying therapy of allergy with long-lasting effects. New forms of allergy diagnosis and allergy vaccines based o...

  11. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors

    The eradication of large, established tumors by active immunotherapy is a major challenge because of the numerous cancer evasion mechanisms that exist. This study aimed to establish a novel combination therapy consisting of messenger RNA (mRNA)-based cancer vaccines and radiation, which would facilitate the effective treatment of established tumors with aggressive growth kinetics. The combination of a tumor-specific mRNA-based vaccination with radiation was tested in two syngeneic tumor models, a highly immunogenic E.G7-OVA and a low immunogenic Lewis lung cancer (LLC). The molecular mechanism induced by the combination therapy was evaluated via gene expression arrays as well as flow cytometry analyses of tumor infiltrating cells. In both tumor models we demonstrated that a combination of mRNA-based immunotherapy with radiation results in a strong synergistic anti-tumor effect. This was manifested as either complete tumor eradication or delay in tumor growth. Gene expression analysis of mouse tumors revealed a variety of substantial changes at the tumor site following radiation. Genes associated with antigen presentation, infiltration of immune cells, adhesion, and activation of the innate immune system were upregulated. A combination of radiation and immunotherapy induced significant downregulation of tumor associated factors and upregulation of tumor suppressors. Moreover, combination therapy significantly increased CD4+, CD8+ and NKT cell infiltration of mouse tumors. Our data provide a scientific rationale for combining immunotherapy with radiation and provide a basis for the development of more potent anti-cancer therapies. The online version of this article (doi:10.1186/1748-717X-9-180) contains supplementary material, which is available to authorized users

  12. The case for PfEMP1-based vaccines to protect pregnant women against Plasmodium falciparum malaria

    Hviid, Lars

    2011-01-01

    develop a vaccine protecting pregnant women and their offspring against mortality and morbidity caused by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta. It is based on a detailed understanding of the parasite antigen and the host receptor involved in this accumulation, as...... well as knowledge regarding the protective immune response that is acquired in response to placental P. falciparum infection. Nevertheless, it remains controversial in some quarters whether such a vaccine would have the desired impact, or indeed whether the strategy is meaningful. This article...

  13. The Effects of Salt on the Physicochemical Properties and Immunogenicity of Protein Based Vaccine Formulated in Cationic Liposome

    Yan, Weili; Huang, Leaf

    2008-01-01

    Recently, we have developed a simple and potent therapeutic cancer vaccine consisting of a cationic lipid and a peptide antigen. In this report, we expanded the utility of this formulation to a protein based vaccine. First, we formulated the human papillomavirus (HPV) 16 E7 protein (E7) in different doses of DOTAP liposome. The results showed that these formulations failed to regress an established tumor. However, when sodium chloride (30 mM) was added to the DOTAP (100 nmol) / E7 (20 μg) for...

  14. Guillain-Barré Syndrome During the 2009–2010 H1N1 Influenza Vaccination Campaign: Population-based Surveillance Among 45 Million Americans

    Wise, Matthew E.; Viray, Melissa; Sejvar, James J.; Lewis, Paige; Baughman, Andrew L.; Connor, Walter; Danila, Richard; Giambrone, Greg P.; Hale, Christa; Hogan, Brenna C.; Meek, James I.; Murphree, Rendi; Oh, John Y.; Reingold, Arthur; Tellman, Norisse

    2012-01-01

    Because of widespread distribution of the influenza A (H1N1) 2009 monovalent vaccine (pH1N1 vaccine) and the prior association between Guillain-Barré syndrome (GBS) and the 1976 H1N1 influenza vaccine, enhanced surveillance was implemented to estimate the magnitude of any increased GBS risk following administration of pH1N1 vaccine. The authors conducted active, population-based surveillance for incident cases of GBS among 45 million persons residing at 10 Emerging Infections Program sites du...

  15. Mouse adenovirus type 1 infection of macrophages

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  16. Structure and Uncoating of Immature Adenovirus

    Perez-Berna, A.J.; Mangel, W.; Marabini, R.; Scheres, S. H. W., Menendez-Conejero, R.; Dmitriev, I. P.; Curiel, D. T.; Flint, S. J.; San Martin, C.

    2009-09-18

    Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particles as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.

  17. Traceless bioresponsive coating of adenovirus vectors

    Prill, J.-M.; Šubr, Vladimír; Engler, T.; Ulbrich, Karel; Kochanek, S.; Kreppel, F.

    Milwaukee: American Society of Gene & Cell Therapy, 2011. s. 416. [Annual Meeting of American Society of Gene & Cell Therapy /14./. 18.05.2011-21.05.2011, Seattle] R&D Projects: GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * HPMA copolymers * surface modification Subject RIV: CD - Macromolecular Chemistry

  18. Deaths from Adenovirus in the US Military

    2012-03-26

    Dr. Joel Gaydos, science advisor for the Armed Forces Health Surveillance Center, and Dr. Robert Potter, a research associate for the Armed Forces Medical Examiner System, discuss deaths from adenovirus in the US military.  Created: 3/26/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/29/2012.

  19. α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model

    Jenikova, Gabriela; Hruz, Petr; Andersson, Karl M.; Tejman-Yarden, Noa; Ferreira, Patricia C. D.; Andersen, Yolanda S.; Davids, Barbara J.; Gillin, Frances D.; Svärd, Staffan G; Curtiss, Roy; Eckmann, Lars

    2011-01-01

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella ente...

  20. A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis

    Dhanda, Sandeep Kumar; Vir, Pooja; Singla, Deepak; Gupta, Sudheer; Kumar, Shailesh; Raghava, Gajendra P. S.

    2016-01-01

    Development of an effective vaccine against drug-resistant Mycobacterium tuberculosis (Mtb) is crucial for saving millions of premature deaths every year due to tuberculosis. This paper describes a web portal developed for assisting researchers in designing vaccines against emerging Mtb strains using traditional and modern approaches. Firstly, we annotated 59 genomes of Mycobacterium species to understand similarity/dissimilarity between tuberculoid, non-tuberculoid and vaccine strains at gen...

  1. A novel transgenic mouse model for immunological evaluation of carcinoembryonic antigen–based DNA minigene vaccines

    Zhou, He; Luo, Yunping; Mizutani, Masato; Mizutani, Noriko; Becker, Jürgen C; Primus, F. James; Xiang, Rong; Reisfeld, Ralph A.

    2004-01-01

    A lack of relevant animal models has hampered preclinical screening and critical evaluation of the efficacy of human vaccines in vivo. Carcinoembryonic antigen–A2Kb (CEA–A2Kb) double transgenic mice provide a biologically relevant model for preclinical screening and critical evaluation of human CEA vaccine efficacy in vivo, particularly because such animals are peripherally tolerant of CEA. We established the utility of this model by demonstrating that an oral DNA minigene vaccine induces eff...

  2. A model-based economic analysis of pre-pandemic influenza vaccination cost-effectiveness

    Halder, Nilimesh; Joel K Kelso; George J Milne

    2014-01-01

    Background A vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic. A pre-pandemic vaccine, although probably having lower efficacy, could be produced and used pre-emptively. While several previous studies have investigated the cost effectiveness of pre-emptive vaccination strategies, they have not been directly compared to realistic re...

  3. Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Makidon, Paul E.; Bielinska, Anna U.; Nigavekar, Shraddha S.; Janczak, Katarzyna W.; Jessica Knowlton; Alison J Scott; Nicholas Mank; Zhengyi Cao; Sivaprakash Rathinavelu; Michael R Beer; J Erby Wilkinson; Blanco, Luz P.; Jeffrey J Landers; Baker, James R.

    2008-01-01

    BACKGROUND: Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations. METHODOLOGY AND...

  4. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism.

    Cho, H J; Takabayashi, K; Cheng, P M; Nguyen, M D; Corr, M; Tuck, S; Raz, E

    2000-05-01

    Immunostimulatory DNA sequences (ISS) contain unmethylated CpG dinucleotides within a defined motif. Immunization with ISS-based vaccines has been shown to induce high antigen-specific cytotoxic lymphocyte (CTL) activity and a Th1-biased immune response. We have developed a novel ISS-based vaccine composed of ovalbumin (OVA) chemically conjugated to ISS-oligodeoxynucleotide (ODN). Protein-ISS conjugate (PIC) is more potent in priming CTL activity and Th1-biased immunity than other ISS-based vaccines. Cytotoxic lymphocyte activation by ISS-ODN-based vaccines is preserved in both CD4-/- and MHC class II-/- gene-deficient animals. Furthermore, PIC provides protection against a lethal burden of OVA-expressing tumor cells in a CD8+ cell-dependent manner. These results demonstrate that PIC acts through two unique mechanisms: T-helper-independent activation of CTL and facilitation of exogenous antigen presentation on MHC class I. This technology may have clinical applications in cancer therapy and in stimulating host defense in AIDS and chronic immunosuppression. PMID:10802617

  5. Evaluation and validation of a single-dilution potency assay based upon serology of vaccines containing diphtheria toxoid: statistical analysis

    Marsman FR; Akkermans AM; Hendriksen CFM; de Jong WH

    1993-01-01

    This document presents the results of a validation study to the use of a single dilution assay in potency testing of the diphtheria component of DPT-polio vaccines. Based on historical data of multi-dilution assays on 27 consecutive batches a simulation study was performed to test the actual perfor

  6. Evaluation of a Computer-Based Patient Education and Motivation Tool on Knowledge, Attitudes and Practice towards Influenza Vaccination

    Joshi, Ashish; Lichenstein, Richard; King, James; Arora, Mohit; Khan, Salwa

    2009-01-01

    The objective of this pilot study was to assess and describe changes in knowledge, attitudes and practice regarding influenza vaccination in an inner city setting using an interactive computer-based educational program. A convenience sample of ninety participants whose children were in the age group of 6 months to 5 years was enrolled in this…

  7. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus.

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-01

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545

  8. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-01

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate’s protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545

  9. A New Method for the Evaluation of Vaccine Safety Based on Comprehensive Gene Expression Analysis

    Haruka Momose

    2010-01-01

    Full Text Available For the past 50 years, quality control and safety tests have been used to evaluate vaccine safety. However, conventional animal safety tests need to be improved in several aspects. For example, the number of test animals used needs to be reduced and the test period shortened. It is, therefore, necessary to develop a new vaccine evaluation system. In this review, we show that gene expression patterns are well correlated to biological responses in vaccinated rats. Our findings and methods using experimental biology and genome science provide an important means of assessment for vaccine toxicity.

  10. A review of malaria vaccine clinical projects based on the WHO rainbow table

    Schwartz Lauren

    2012-01-01

    Full Text Available Abstract Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.

  11. Α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model.

    Jenikova, Gabriela; Hruz, Petr; Andersson, Mattias K; Tejman-Yarden, Noa; Ferreira, Patricia C D; Andersen, Yolanda S; Davids, Barbara J; Gillin, Frances D; Svärd, Staffan G; Curtiss, Roy; Eckmann, Lars

    2011-11-28

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella enterica Serovar Typhimurium vaccine strains were constructed that stably expressed each antigen, maintained colonization capacity, and sustained total attenuation in the host. Oral administration of the vaccine strains induced antigen-specific serum IgG, particularly IgG(2A), and mucosal IgA for α1-giardin and α-enolase, but not for ornithine carbamoyl transferase. Immunization with the α1-giardin vaccine induced significant protection against subsequent G. lamblia challenge, which was further enhanced by boosting with cholera toxin or sublingual α1-giardin administration. The α-enolase vaccine afforded no protection. Analysis of α1-giardin from divergent assemblage A and B isolates of G. lamblia revealed >97% amino acid sequence conservation and immunological cross-reactivity, further supporting the potential utility of this antigen in vaccine development. Together. These results indicate that α1-giardin is a suitable candidate antigen for a vaccine against giardiasis. PMID:22001876

  12. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax.

    Blagborough, A M; Musiychuk, K; Bi, H; Jones, R M; Chichester, J A; Streatfield, S; Sala, K A; Zakutansky, S E; Upton, L M; Sinden, R E; Brian, I; Biswas, S; Sattabonkot, J; Yusibov, V

    2016-06-14

    Malaria transmission blocking (TB) vaccines (TBVs) directed against proteins expressed on the sexual stages of Plasmodium parasites are a potentially effective means to reduce transmission. Antibodies induced by TBVs block parasite development in the mosquito, and thus inhibit transmission to further human hosts. The ookinete surface protein P25 is a primary target for TBV development. Recently, transient expression in plants using hybrid viral vectors has demonstrated potential as a strategy for cost-effective and scalable production of recombinant vaccines. Using a plant virus-based expression system, we produced recombinant P25 protein of Plasmodium vivax (Pvs25) in Nicotiana benthamiana fused to a modified lichenase carrier protein. This candidate vaccine, Pvs25-FhCMB, was purified, characterized and evaluated for immunogenicity and efficacy using multiple adjuvants in a transgenic rodent model. An in vivo TB effect of up to a 65% reduction in intensity and 54% reduction in prevalence was observed using Abisco-100 adjuvant. The ability of this immunogen to induce a TB response was additionally combined with heterologous prime-boost vaccination with viral vectors expressing Pvs25. Significant blockade was observed when combining both platforms, achieving a 74% and 68% reduction in intensity and prevalence, respectively. This observation was confirmed by direct membrane feeding on field P. vivax samples, resulting in reductions in intensity/prevalence of 85.3% and 25.5%. These data demonstrate the potential of this vaccine candidate and support the feasibility of expressing Plasmodium antigens in a plant-based system for the production of TBVs, while demonstrating the potential advantages of combining multiple vaccine delivery systems to maximize efficacy. PMID:27177945

  13. Scalable chromatography-based purification of virus-like particle carrier for epitope based influenza A vaccine produced in Escherichia coli.

    Lagoutte, Priscillia; Mignon, Charlotte; Donnat, Stéphanie; Stadthagen, Gustavo; Mast, Jan; Sodoyer, Régis; Lugari, Adrien; Werle, Bettina

    2016-06-01

    Virus-like particles (VLPs) are promising molecular structures for the design and construction of novel vaccines, diagnostic tools, and gene therapy vectors. Size, oligomer assembly and repetitiveness of epitopes are optimal features to induce strong immune responses. Several VLP-based vaccines are currently licensed and commercialized, and many vaccine candidates are now under preclinical and clinical studies. In recent years, the development of genetically engineered recombinant VLPs has accelerated the need for new, improved downstream processes. In particular, a rapid low cost purification process has been identified as a remaining key challenge in manufacturing process development. In the present study we set up a size-exclusion chromatography-based, scalable purification protocol for the purification of a VLP-based influenza A vaccine produced in Escherichia coli. Recombinant VLPs derived from the RNA bacteriophage MS2 displaying an epitope from the ectodomain of Matrix 2 protein from influenza A virus were produced and purified. The 3 steps purification protocol uses a recently developed multimodal size-exclusion chromatography medium (Capto™ Core 700) in combination with detergent extraction and size-exclusion polishing to reach a 89% VLP purity with a 19% yield. The combination of this downstream strategy following production in E. coli would be suited for production of VLP-based veterinary vaccines targeting livestock and companion animals where large amounts of doses must be produced at an affordable price. PMID:26947397

  14. New tuberculosis vaccines.

    Martín Montañés, Carlos; Gicquel, Brigitte

    2011-03-01

    The current tuberculosis (TB) vaccine, bacille Calmette-Guerin (BCG), is a live vaccine used worldwide, as it protects against severe forms of the disease, saving thousands of lives every year, but its efficacy against pulmonary forms of TB, responsible for transmission of the diseases, is variable. For more than 80 years now no new TB vaccines have been successfully developed. Over the last decade the effort of the scientific community has resulted in the design and construction of promising vaccine candidates. The goal is to develop a new generation of vaccines effective against respiratory forms of the disease. We will focus this review on new prophylactic vaccine candidates that aim to prevent TB diseases. Two are the main strategies used to improve the immunity conferred by the current BCG vaccine, by boosting it with new subunit vaccines, and a second strategy is focused on the construction of new more effective live vaccines, capable to replace the current BCG and to be used as prime vaccines. After rigorous preclinical studies in different animal models new TB vaccine candidates enter in clinical trials in humans. First, a small Phase I for safety followed by immunological evaluation in Phase II trials and finally evaluated in large population Phase III efficacy trials in endemic countries. At present BCG prime and boost with different subunit vaccine candidates are the more advanced assessed in Phase II. Two prime vaccines (based on recombinant BCG) have been successfully evaluated for safety in Phase I trials. A short number of live attenuated vaccines are in advance preclinical studies and the candidates ready to enter Phase I safety trials are produced under current good manufacturing practices. PMID:21420568

  15. Pneumococcal vaccine.

    1999-01-01

    Streptococcus pneumoniae is a frequent cause of pneumonia and meningitis. This article looks at the pneumococcal vaccine, its uses, efficacy, and adverse effects and how vaccination may be improved. We also look at the role of the new conjugate vaccines.

  16. Polio Vaccination

    ... to its advantages over IPV in providing intestinal immunity and providing secondary spread of the vaccine to unprotected contacts. Who needs this vaccine and when? Side Effects Excerpt from Vaccine Information Statement A Polio-Free ...

  17. Smallpox Vaccination

    ... Newsletters Events Also Known As Smallpox = Vaccinia Smallpox Vaccination Recommend on Facebook Tweet Share Compartir The smallpox ... like many other vaccines. For that reason, the vaccination site must be cared for carefully to prevent ...

  18. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested. PMID:26886513

  19. Quantitative Real-Time PCR Assays for Detection of Human Adenoviruses and Identification of Serotypes 40 and 41

    Jothikumar, Narayanan; Cromeans, Theresa L.; Hill, Vincent R.; Lu, Xiaoyan; Sobsey, Mark D.; Erdman, Dean D.

    2005-01-01

    A quantitative real-time TaqMan PCR assay for detection of human adenoviruses (HAdV) was developed using broadly reactive consensus primers and a TaqMan probe targeting a conserved region of the hexon gene. The TaqMan assay correctly identified 56 representative adenovirus prototype strains and field isolates from all six adenovirus species (A to F). Based on infectious units, the TaqMan assay was able to detect as few as 0.4 and 0.004 infectious units of adenovirus serotype 2 (AdV2) and AdV41, respectively, with results obtained in less than 90 min. Using genomic equivalents, the broadly reactive TaqMan assay was able to detect 5 copies of AdV40 (which had zero mismatches with the PCR primers and probe), 8 copies of AdV41, and 350 copies of AdV3 (which had the most mismatches [seven] of any adenovirus serotype tested). For specific detection and identification of F species serotypes AdV40 and AdV41, a second real-time PCR assay was developed using fluorescence resonance energy transfer (FRET) probes that target the adenovirus fiber gene. The FRET-based assay had a detection limit of 3 to 5 copies of AdV40 and AdV41 standard DNA and was able to distinguish between AdV40 and AdV41 based on melting curve analysis. Both the TaqMan and FRET PCR assays were quantitative over a wide range of virus titers. Application of these assays for detection of adenoviruses and type-specific identification of AdV40 and AdV41 will be useful for identifying these viruses in environmental and clinical samples. PMID:15933012

  20. A Comparison Study of iTEP Nanoparticle-Based CTL Vaccine Carriers Revealed a Surprise Relationship between the Stability and Efficiency of the Carriers

    Dong, Shuyun; Xu, Tiefeng; Zhao, Peng; Parent, Kristin N.; Chen, Mingnan

    2016-01-01

    Vaccine carriers have been shown to enhance cytotoxic T lymphocyte (CTL) epitope peptide vaccines by addressing intrinsic limitations of the vaccines. We have previously developed an immune-tolerant elastin-like polypeptide (iTEP)-based nanoparticle (NP) as an effective and unique CTL vaccine carrier. The NP is unique for its humoral immune tolerance, flexible structure, and ability to deliver CTL vaccines as polypeptide fusions. Here, we aimed to improve the NP by increasing its stability since we found it was not stable. We thus generated a more stable iTEP NP (ST-NP) and used it to deliver a CTL peptide vaccine, SIINFEKL. However, we surprisingly found that the ST-NP had a lower efficiency than the previously developed, marginally stable iTEP NP (MS-NP) in terms of promoting vaccine presentation and vaccine-induced CTL responses. On the other hand, dendritic cells (DCs) showed preferential uptake of the ST-NP but not the MS-NP. To develop an iTEP vaccine carrier that outperforms both the MS-NP and the ST-NP, we devised an iTEP NP that has a changeable stability responsive to a cytosolic, reductive environment, termed reductive environment-dependent NP or RED-NP. The RED-NP showed an intermediate ability to promote vaccine presentation and T cell responses in vitro between the MS-NP and the ST-NP. However, the RED-NP induced the strongest CTL responses in vivo among all three NPs. In conclusion, iTEP NPs that have a dynamically changeable stability are most effective to deliver and enhance CTL peptide vaccines. The work also demonstrated the versatile nature of iTEP vaccine carriers. PMID:27022414