WorldWideScience

Sample records for adenoviral vectors expressing

  1. Constructing recombinant replication-defective adenoviral vectors that express glucose transporter-1 through in vitro ligation

    Fangcheng Li; Junliang Li; Ranyi Liu; Xinke Xu; Kaichang Yuan; Zhonghua Wu

    2008-01-01

    BACKGROUND: We constructed a homologous recombination bacterial method based on the pAdEasy system, a widely used system, for generating recombinant adenoviral vectors that express glucose transporter-1 (GLUT1) in rats.OBJECTIVE: This study was designed to investigate the feasibility of generating recombinant replication-defective adenoviral vectors that express GLUT1 in rats by in vitro ligation based on the Adeno-XTM system. DESIGN: An in vitro cell-based experiment. SETTING: This study was performed at the Linbaixin Medical Research Center of the Second Hospital Affiliated to Sun Yat-sen University and Central Laboratory for Prevention and Treatment of Tumor, Sun Yat-sen University between January and August 2004. MATERIALS: Male, adult, Sprague Dawley rats were used to extract total RNA from brain tissue. E. coli DH5?and human embryonic kidney 293 cells (HEK293 cells) used in the present study were cryo-preserved by the Second Hospital Affiliated to Sun Yat-sen University. Rabbit anti-rat GLUT1 polyclonal antibody (Chemicon, U.S.A.) and primers (Shanghai Boya Bioengineering Co., Ltd) were also used. METHODS: E1/E3-deleted replication-defective adenoviral vectors were used. Using in vitro ligation, the target gene was first sub-cloned into a shuttle vector plasmid to obtain the fragment containing target gene expression cassettes by enzyme digestion. Subsequently, the fragment was co-transformed with linearized adenoviral backbone vector into the E. coli strain. The recombinant adenoviral plasmid was transfected into HEK293 cells to assembly recombinant adenoviral vectors with replication capabilities. The procedure was repeated several times for recombinant adenoviral vectors amplification. MAIN OUTCOME MEASURES: Efficiency of recombinant adenoviral vectors to express the target gene was measured by gene and protein expression through polymerase chain reaction and Western Blot assays, respectively.RESULTS: Results demonstrated that recombinant adenoviral

  2. Antitumor Activity and Prolonged Expression from a TRAIL-Expressing Adenoviral Vector

    Jeongwu Lee

    2002-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL induces apoptosis in a variety of transformed cell lines, but generally spares most normal cells. Transduction by an adenoviral vector expressing human TRAIL cDNA (Ad.TRAIL-GFP resulted in both direct tumor cell killing as well as a potent bystander effect through presentation of TRAIL by transduced normal cells. Administration of Ad.TRAIL-GFP significantly prolonged survival of mice harboring either intracerebral glioblastomas or breast carcinoma-induced peritoneal carcinomatosis. Additionally, TRAIL induced prolonged transgene expression in normal tissue, presumably as a result of diminished immunemediated destruction of vector-transduced cells. Taken together, these data suggest that vector-mediated transduction of TRAIL may represent an effective strategy for cancer gene therapy.

  3. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice.

    Vemula, Sai V; Pandey, Aseem; Singh, Neetu; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-10-01

    The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine β-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly. PMID:23892144

  4. Immunization Against the Transgene but not the TetON Switch Reduces Expression From Gutless Adenoviral Vectors in the Brain

    Xiong, Weidong; Candolfi, Marianela; Kroeger, Kurt M.; Puntel, Mariana; Mondkar, Sonali; Larocque, Daniel; Liu, Chunyan; Curtin, James F.; Palmer, Donna; Ng, Philip; Lowenstein, Pedro R; Castro, Maria G.

    2008-01-01

    Immune responses against vectors or encoded transgenes can impose limitations on gene therapy. We demonstrated that tetracycline-regulated high-capacity adenoviral vectors (HC-Ads) sustain regulated transgene expression in the brain even in the presence of systemic pre-existing immune responses against adenoviruses. In this study we assessed whether systemic pre-existing immune responses against the transgene products, i.e., β-Gal or the tetracycline-dependent (TetON) regulatory transcription...

  5. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin

    DelloRusso, Christiana; Scott, Jeannine M.; Hartigan-O'Connor, Dennis; Salvatori, Giovanni; Barjot, Catherine; Robinson, Ann S.; Robert W Crawford; Brooks, Susan V; Jeffrey S. Chamberlain

    2002-01-01

    Duchenne muscular dystrophy is a lethal X-linked recessive disorder caused by mutations in the dystrophin gene. Delivery of functionally effective levels of dystrophin to immunocompetent, adult mdx (dystrophin-deficient) mice has been challenging because of the size of the gene, immune responses against viral vectors, and inefficient infection of mature muscle. Here we show that high titer stocks of three different gutted adenoviral vectors carrying full-length, muscle-specific, dystrophin ex...

  6. Dual-expressing adenoviral vectors encoding the sodium iodide symporter for use in noninvasive radiological imaging of therapeutic gene transfer

    Introduction: Noninvasive analysis of therapeutic transgene expression is important for the development of clinical translational gene therapy strategies against cancer. To image p53 and MnSOD gene transfer noninvasively, we used radiologically detectable dual-expressing adenoviral vectors with the human sodium iodide symporter (hNIS) as the reporter gene. Methods: Dual-expressing adenoviral vectors were constructed with hNIS cloned into E3 region and therapeutic genes, either MnSOD or p53, recombined into the E1 region. Steady-state mRNA levels of hNIS were evaluated by real-time polymerase chain reaction. hNIS function was determined by iodide uptake assay and MnSOD, and p53 protein levels were assessed by Western blots. Results: 125I- accumulation resulting from hNIS expression in both Ad-p53-hNIS- and Ad-MnSOD-hNIS-infected MDA-MB-435 cells could be visualized clearly on phosphorimaging autoradiograph. Iodide accumulation increased with increasing adenovirus titer, and there was a linear correlation between iodide uptake and dose. p53 and MnSOD protein levels increased as a function of adenovirus titer, and there was a direct positive correlation between p53 and MnSOD expression and hNIS function. P53 and MnSOD overexpression inhibited cell growth in the dual-expressing adenoviral vector-infected cells. Conclusions: Radiological detection of hNIS derived from dual-expressing adenoviral vectors is a highly effective method to monitor therapeutic gene transfer and expression in a noninvasive manner

  7. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nørgaard Nielsen, Karen;

    2014-01-01

    approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly...... prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following...

  8. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  9. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie [Cancer Gene Therapy Group, Molecular Cancer Biology Program, Transplantation Laboratory, Haartman Institute, and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Laboratory, Helsinki University Central Hospital, Helsinki (Finland); Soliymani, Rabah [Protein Chemistry Unit, Department of Anatomy, Institute of Biomedicine, Biomedicum Helsinki (Finland); Tenhunen, Mikko [Department of Radiation and Oncology, Helsinki University Central Hospital, Helsinki (Finland); Ahtiainen, Laura [Cancer Gene Therapy Group, Molecular Cancer Biology Program, Transplantation Laboratory, Haartman Institute, and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Laboratory, Helsinki University Central Hospital, Helsinki (Finland); Hemminki, Akseli, E-mail: akseli.hemminki@helsinki.fi [Cancer Gene Therapy Group, Molecular Cancer Biology Program, Transplantation Laboratory, Haartman Institute, and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Laboratory, Helsinki University Central Hospital, Helsinki (Finland)

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  10. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors

    Dummer, R; Bergh, J; Karlsson, Y; Horovitz, JA; Mulder, NH; Huinin, DT; Burg, G; Hofbauer, G; Osanto, S

    2000-01-01

    p53 mutations are common genetic alterations in human cancer. Gene transfer of a wild-type (wt) p53 gene reverses the loss of normal p53 function in vitro and in vivo. A phase I dose escalation study of single intratumoral (i.t.) injection of a replication-defective adenoviral expression vector cont

  11. Prostate-specific expression of Bax delivered by an adenoviral vector induces apoptosis in LNCaP prostate cancer cells.

    Lowe, S L; Rubinchik, S; Honda, T; McDonnell, T J; Dong, J Y; Norris, J S

    2001-09-01

    In prostate carcinoma, overexpression of the anti-apoptotic gene Bcl-2 has been found to be associated with resistance to therapies including radiation and androgen ablation. Restoring the balance of Bcl-2 family members may result in the induction of apoptosis in prostate cancer cells previously resistant to treatment. To accomplish this, a strategy involving overexpression of the pro-apoptotic gene Bax was executed. The use of cytotoxic genes such as Bax require selective expression of the gene. In this study, we examined the ability of selective expression of Bax protein directed by a prostate-specific promoter to induce apoptosis in human prostate carcinoma. A second-generation adenoviral vector was constructed with the modified prostate-specific probasin promoter, ARR2PB, directing expression of an HA-tagged Bax gene and a green fluorescent protein reporter translated from an internal ribosome entry site (ARR2PB.Bax.GFP). ARR2PB promoter activity is tightly regulated and highly prostate specific and is responsive to androgens and glucocorticoids. The prostate-specific promoter-Bax-GFP transgene cassette was inserted into a cloning site near the right inverted terminal repeat of the adenoviral vector to retain specificity of the promoter. LNCaP cells infected with Ad/ARR(2)PB.Bax.GFP showed high levels of Bax expression 48 h after infection resulting in an 85% reduction in cell viability. Importantly, LNCaP cells stably transfected to overexpress Bcl-2 showed similar patterns of cell death when infected with Ad/ARR(2)PB.Bax.GFP, an 82% reduction in cell viability seen 48 h after infection. Apoptosis was confirmed by measuring caspase activation and using the TUNEL assay. Tissue specificity was evaluated using A549 cells (lung adenocarcinoma), SK-Hep-1 (liver cancer) cells, and Hela (cervical cancer) cells which did not show detectable expression of virally delivered Bax protein or any increase in cell death. Systemic administration of Ad/ARR2PB. Bax.GFP in nude

  12. [Construction of recombinant adenoviral vector expressing genes of the conservative influenza proteins M2 and nucleoprotein].

    Esmagambetov, I B; Sedova, E S; Shcherbinin, D N; Lysenko, A A; Garas, M N; Shmarov, M M; Logunov, D Iu

    2014-01-01

    Influenza is a highly contagious and one of the most massive infection diseases. General epidemiological significance has a strain, which belongs to subtype A. A high degree of genetic variety leads to the permanent changes in the antigenic structure of the influenza virus. Therefore, the current influenza vaccines require periodic updating of the composition of strains. Presently, it is important to develop a universal vaccine that can protect against different strains of influenza A virus at the same time and is based on the conserved antigens of the influenza virus. The recombinant adenovirus vectors expressing genes of conserved viral antigenes may be a promising candidate vaccine against influenza A. Using the method of the homologous recombination, we developed in this study recombinant adenovirus of fifth serotype that expresses genes of the ion channel M2 and nucleoprotein NP of the influenza virus A. Genes of the consensus protein M2 and NP of human influenza A virus were included into the structure of the viral genome. The expression of the antigens M2 and NP using recombinant adenovirus vector was detected by a Western blot assay. The immunogenicity of the developed recombinant adenovirus vector was demonstrated by the intranasal immunization of laboratory mice. PMID:25080815

  13. Adenoviral Vectors for Hemophilia Gene Therapy

    Brunetti-Pierri, N; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review article focuses on those that use adenoviral vectors. PMID:24883229

  14. Adenoviral vector mediated-expression of caspase-3 siRNA on apoptosis induced by lipopolysaccharide

    Wu Feixiang; Yu Weifeng; Yuan Yang; Miao Xuerong; Xu Xuewu; Huang Shengdong; Sun Yuming

    2009-01-01

    Objective: To construct the recombinant adenovirus expressing small RNA of rats caspase-3 and observe the down-regulation effect of caspase-3 in neurons induced by lipopolysaccharide(LPS) in vitro. Methods: pShuttleH1-siCas3 containing Oligo DNA of the targeting sequences and pEGFPC1-Cas3 containing caspase-3 and EGFP sequences were constructed respectively, pShuttleH1-siCas3 and pEGFPC1-Cas3 were co-transfected to the 293 cells by liposomes to determine interfering efficacy by flow eytometry, pShuttleH1-siCas3 was linearized and transformed into E. coli BJ5183 cells containing backbone plasmid pAdEasy-1. The recombinant plasmid was transfected into 293 cells to package the adenovirus Ad-siCas3. The titers of adenovirus were determined by the specific 50% tissue culture infection dosage method. After virus infected the cultured hippocampus neurons, LPS-induced apoptosis and caspase-3 mRNA expression were observed. Results: It was identified that the sequence of target gene was correctly inserted into the genome of virus. The expression of green fluorescence protein was reduced by pShuttleH1-siCas3 in 293 cells. The titer of recombinant adenovirus was 1.06×1010 pfu/ml. After virus infection, caspase-3 mRNA was greatly reduced and neurons apoptosis was suppressed. Conclusion: The recombinant adenovirus expressing rats caspase-3 siRNA were successfully constructed, which may probably be further used in pain therapy by its anti-apoptosis effect.

  15. Enhanced antitumor response mediated by the codelivery of paclitaxel and adenoviral vector expressing IL-12.

    Cao, Linjie; Zeng, Qin; Xu, Chaoqun; Shi, Sanjun; Zhang, Zhirong; Sun, Xun

    2013-05-01

    It has been well-established that chemo-immunotherapy using cytotoxic drugs and appropriate cytokines offers a promising approach for the treatment of neoplastic diseases. In view of this, to improve melanoma treatment effect, our study developed a new codelivery system (AL/Ad5/PTX) that paclitaxel (PTX) and adenovirus encoding for murine interleukin-12 (Ad5-mIL-12) were incorporated into anionic liposomes (AL). First, AL/Ad5/PTX complexes were prepared by incorporating Ad5 into anionic PTX liposomes using calcium-induced phase change. Second, the size distribution and zeta potential of AL/Ad5/PTX were investigated. Third, the results of in vitro transduction assays showed that PTX introduced into AL/Ad-luc or AL/Ad5-mIL-12 highly enhanced gene transduction efficiency in B16 cells than naked Ad5 or AL/Ad complexes while it had no comparability in A549 cells. Finally, a melanoma-bearing mouse model was established to assess the antitumor effect. Tumor growth inhibition and prolonged survival time, accompanied by increased mIL-12 or interferon-γ (IFN-γ) expression levels in serum or tumor sites, were observed in mice treated with AL/Ad5-mIL-12/PTX, as compared with those treated with either AL/Ad5-mIL-12 or AL/PTX. In conclusion, these results suggested that codelivery of Ad5-mIL-12 and PTX incorporated into AL could be a relatively efficient strategy for the treatment of melanoma. PMID:23534449

  16. Helper-dependent adenoviral vectors in experimental gene therapy*

    Józkowicz, Alicja; Dulak, Józef

    2005-01-01

    In the majority of potential applications gene therapy will require an effective transfer of a transgene in vivo resulting in high-level and long-term transgene expression, all in the absence of significant toxicity or inflammatory responses. The most efficient vehicles for delivery of foreign genes to the target tissues are modified adenoviruses. Adenoviral vectors of the first generation, despite the high infection efficacy, have an essential drawback: they induce strong immune response, wh...

  17. Construction of a bicistronic recombinant adenoviral vector for human interleukin-10 and enhanced green fluorescent protein expression in bone marrow mesenchymal stem cells

    LIN Jian-qing; LIN Cai-zhu; LIN Xian-zhong; ZENG Kai; GAO You-guang

    2012-01-01

    Background Human interleukin-10 (hlL-10) is a cytokine synthesis inhibitory factor,which is involved in various immune responses.The purpose of this study was to construct an adenoviral vector carrying the hlL-10 gene for expression of biologically active hlL-10 in rat bone marrow mesenchymal stem cells (rMSCs).Methods A pSNAV2.0-hlL10 plasmid was used as a template to obtain a hlL-10 cDNA fragment that was subcloned by restriction enzyme digestion and ligation into a pDC316-IRES-EGFP-lacZ alpha plasmid carrying an enhanced green fluorescent protein (EGFP) marker gene.The pDC316-hlL-10-IRES-EGFP plasmid was linearized by Pmel digestion and used to transfect HEK293 packaging cells using the adenovirus packaging system AdMax.Virus particles were amplified by repeatedly infecting HEK293 cells with the seed virus and then purified by ion exchange.After the number of virus particles and titer was determined,rMSCs were infected with the adenoviral vector.The infection rate was determined by fluorescence microscopy and flow cytometry,and hlL-10 protein expression in rMSCs was measured by Western blotting.Results The virus particle concentration,OD260/280 value and virus titer of the amplified and purified recombinant adenovirus were 3.2×1011 VP/ml,approximately 2.0,and 1.1×1010 TCID50/ml,respectively.Bright green fluorescence was observed by fluorescence microscopy and flow cytometry in the recombinant adenovirus-infected rMSCs.GFP expression was considered the multiplicity of infection (MOI) and was time-dependent.The infection rate was 92.9% at 100 MOI.Conclusions A bicistrenic recombinant adenoviral vector for hlL-10 and EGFP gene expression were successfully constructed.The infection rate of rMSCs by the adenovirus was high (92.9% at 100 MOI) and the target gene hlL-10 was highly expressed in cells.The present study provides an experimental basis for further research of immunosuppressive therapy using hlL-10.The expression level of hlL-10 protein as detected by

  18. Cloning and characterization of an adenoviral vector for highly efficient and doxycycline – suppressible expression of bioactive human single – chain interleukin 12 in colon cancer

    Schäfer Hansjörg

    2007-06-01

    Full Text Available Abstract Background Interleukin-12 (IL-12 is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12. Results High gene expression was obtained utilizing the VP16 herpes simplex transactivator. Strong regulation of gene expression was realized by fusion of the VP16 to a tetracycline repressor with binding of the fusion protein to a flanking tetracycline operator and further enhanced by auto-regulated expression of its fusion gene within a bicistronic promoter construct. Infection of human colon cancer cells (HT29 at a multiplicity of infection (m.o.i. of 10 resulted in the production of up to 8000 ng/106 cells in 48 h, thus exceeding any published vector system so far. Doxycycline concentrations as low as 30 ng/ml resulted in up to 5000-fold suppression, enabling significant reduction of gene expression in a possible clinical setting. Bioactivity of the human single-chain IL-12 was similar to purified human heterodimeric IL-12. Frozen sections of human colon cancer showed high expression of the coxsackie adenovirus receptor with significant production of human single chain IL-12 in colon cancer biopsies after infection with 3*107 p.f.u. Ad.3r-scIL12. Doxycycline mediated suppression of gene expression was up to 9000-fold in the infected colon cancer tissue. Conclusion VP16

  19. Suppression of human colon tumor growth by adenoviral vector-mediated NK4 expression in an athymic mouse model

    Jian-Zheng Jie; Jian-Wei Wang; Jian-Guo Qu; Tao Hung

    2007-01-01

    AIM: To investigate the suppressive effects of adenoviral vector-mediated expression of NK4, an antagonist of hepatocyte growth factor (HGF), on human colon cancer in an athymic mouse model to explore the possibility of applying NK4 to cancer gene therapy.METHODS: A human colon tumor model was developed by subcutaneous implantation of tumor tissue formed by LS174T cells grown in athymic mice. Fifteen tumorbearing mice were randomized into three groups (n = 5in each group) at d 3 after tumor implantation and mice were injected intratumorally with phosphate-buffered saline (PBS) or with recombinant adenovirus expressing β-galactosidase (Ad-LacZ) or NK4 (rvAdCMV/NK4) at a 6-d interval for total 5 injections in each mouse. Tumor sizes were measured during treatment to draw a tumor growth curve. At d 26 after the first treatment, all animals were sacrificed and the tumors were removed to immunohistochemically examine proliferating cell nuclear antigen (PCNA), microvessel density (represented by CD31), and apoptotic cells. In a separate experiment,15 additional athymic mice were employed to develop a tumor metastasis model by intraperitoneal injection(ip) of LS174T cells. These mice were randomized into 3 groups (n = 5 in each group) at d 1 after injection and were treated by ip injection of PBS, or Ad-LacZ, or rvAdCMV/NK4 at a 6-d interval for total two injections in each mouse. All animals were sacrificed at d 14 and the numbers and weights of disseminated tumors within the abdominal cavity were measured.RESULTS: Growth of human colon tumors were significantly suppressed in the athymic mice treated with rvAdCMV/NK4 (2537.4±892.3 mm3) compared to those treated by either PBS (5175.2±1228.6 mm3)or Ad-LacZ (5578.8±1955.7 mm3) (P<0.05). The tumor growth inhibition rate was as high as 51%.Immunohistochemical staining revealed a similar PCNA labeling index (75.1%±11.2% in PBS group vs 72.8%±7.6% in Ad-LacZ group vs 69.3%±9.4% in rvAdCMV/NK4 group) in all groups, but

  20. Capsid modification strategies for detargeting adenoviral vectors.

    Parker, Alan L; Bradshaw, Angela C; Alba, Raul; Nicklin, Stuart A; Baker, Andrew H

    2014-01-01

    Adenoviral vectors hold immense potential for a wide variety of gene therapy based applications; however, their efficacy and toxicity is dictated by "off target" interactions that preclude cell specific targeting to sites of disease. A number of "off target" interactions have been described in the literature that occur between the three major capsid proteins (hexon, penton, and fiber) and components of the circulatory system, including cells such as erythrocytes, white blood cells, and platelets, as well as circulatory proteins including complement proteins, coagulation factors, von Willebrand Factor, p-selectin as well as neutralizing antibodies. Thus, to improve efficacious targeting to sites of disease and limit nonspecific uptake of virus to non-target tissues, specifically the liver and the spleen, it is necessary to develop suitable strategies for genetically modifying the capsid proteins to preclude these interactions. To this end we have developed versatile systems based on homologous recombination for modification of each of the major capsid proteins, which are described herein. PMID:24132476

  1. Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy

    Pasquale Piccolo; Nicola Brunetti-Pierri

    2014-01-01

    Helper-dependent adenoviral (HDAd) vectors that are devoid of all viral coding sequences are promising non-integrating vectors for gene therapy because they efficiently transduce a variety of cell types in vivo, have a large cloning capacity, and drive long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd vectors is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vect...

  2. Induction of a Protective Heterosubtypic Immune Response Against the Influenza Virus by using Recombinant Adenoviral Vectors Expressing Hemagglutinin of the Influenza H5 Virus.

    Shmarov, M M; Sedova, E S; Verkhovskaya, L V; Rudneva, I A; Bogacheva, E A; Barykova, Yu A; Shcherbinin, D N; Lysenko, A A; Tutykhina, I L; Logunov, D Y; Smirnov, Yu A; Naroditsky, B S; Gintsburg, A L

    2010-04-01

    Influenza viruses are characterized by a high degree of antigenic variability, which causes the annual emergence of flu epidemics and irregularly timed pandemics caused by viruses with new antigenic and biological traits. Novel approaches to vaccination can help circumvent this problem. One of these new methods incorporates genetic vaccines based on adenoviral vectors. Recombinant adenoviral vectors which contain hemagglutinin-encoding genes from avian H5N1 and H5N2 (Ad-HA5-1 and Ad-HA5-2) influenza viruses were obtained using the AdEasy Adenoviral Vector System (Stratagene). Laboratory mice received a double intranasal vaccination with Ad-HA5-1 and Ad-HA5-2. This study demonstrates that immunization with recombinant adenoviruses bearing the Н 5 influenza virus hemagglutinin gene induces a immune response which protects immunized mice from a lethal dose of the H5 influenza virus. Moreover, it also protects the host from a lethal dose of the H1 virus, which belongs to the same clade as H5, but does not confer protection from the subtype H3 influenza virus, which belongs to a different clade. PMID:22649637

  3. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis.

    Burmistrova, Daria A; Tillib, Sergey V; Shcheblyakov, Dmitry V; Dolzhikova, Inna V; Shcherbinin, Dmitry N; Zubkova, Olga V; Ivanova, Tatiana I; Tukhvatulin, Amir I; Shmarov, Maxim M; Logunov, Denis Y; Naroditsky, Boris S; Gintsburg, Aleksandr L

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection. PMID:26962869

  4. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis.

    Daria A Burmistrova

    Full Text Available Developing pathogen-specific recombinant antibody fragments (especially nanobodies is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh, for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection.

  5. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  6. Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy

    Pasquale Piccolo

    2014-04-01

    Full Text Available Helper-dependent adenoviral (HDAd vectors that are devoid of all viral coding sequences are promising non-integrating vectors for gene therapy because they efficiently transduce a variety of cell types in vivo, have a large cloning capacity, and drive long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd vectors is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration and result in acute toxicity, the severity of which is dose dependent. Intense efforts have been focused on elucidating adenoviral vector–host interactions and the factors involved in the acute toxicity. This review focuses on the recent acquisition of data on such interactions and on strategies investigated to improve the therapeutic index of HDAd vectors.

  7. Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn "On" Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model.

    VanderVeen, Nathan; Raja, Nicholas; Yi, Elizabeth; Appelman, Henry; Ng, Philip; Palmer, Donna; Zamler, Daniel; Dzaman, Marta; Lowenstein, Pedro R; Castro, Maria G

    2016-06-01

    Glioblastoma multiforme (GBM) is the most commonly occurring primary brain cancer in adults, in whom its highly infiltrative cells prevent total surgical resection, often leading to tumor recurrence and patient death. Our group has discovered a gene therapy approach for GBM that utilizes high-capacity "gutless" adenoviral vectors encoding regulatable therapeutic transgenes. The herpes simplex type 1-thymidine kinase (TK) actively kills dividing tumor cells in the brain when in the presence of the prodrug, ganciclovir (GCV), whereas the FMS-like tyrosine kinase 3 ligand (Flt3L) is an immune-stimulatory molecule under tight regulation by a tetracycline-inducible "Tet-On" activation system that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we evaluated the safety and efficacy of Food and Drug Administration (FDA)-approved doses of the tetracycline doxycycline (DOX) allometrically scaled for rats. DOX initiates the expression of Flt3L, which has been shown to recruit dendritic cells to the brain tumor microenvironment-an integral first step in the development of antitumor immunity. The data revealed a highly safe profile surrounding these human-equivalent doses of DOX under an identical therapeutic window as proposed in the clinical trial. This was confirmed through a neuropathological analysis, liver and kidney histopathology, detection of neutralizing antibodies, and systemic toxicities in the blood. Interestingly, we observed a significant survival advantage in rats with GBM receiving the 300 mg/day equivalent dosage of DOX versus the 200 mg/day equivalent. Additionally, rats rejected "recurrent" brain tumor threats implanted 90 days after their primary brain tumors. We also show that DOX detection within the plasma can be an indicator of optimal dosing of DOX to attain therapeutic levels. This work has significant clinical relevance for an ongoing phase I clinical trial in humans with primary GBM and for other therapeutic approaches using

  8. Helper-dependent adenoviral vectors for liver-directed gene therapy

    Brunetti-Pierri, Nicola; Ng, Philip

    2011-01-01

    Helper-dependent adenoviral (HDAd) vectors devoid of all viral-coding sequences are promising non-integrating vectors for liver-directed gene therapy because they have a large cloning capacity, can efficiently transduce a wide variety of cell types from various species independent of the cell cycle and can result in long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd for liver-directed gene therapy is the host innate inflammatory...

  9. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: rationale for tropism modified vectors in PD gene therapy.

    Travis B Lewis

    Full Text Available BACKGROUND: Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5-based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR. Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA neurons in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Ad5 was delivered to the substantia nigra (SN in wild type (wt and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the

  10. Gene Therapy with Helper-Dependent Adenoviral Vectors: Current Advances and Future Perspectives

    Philip Ng

    2010-09-01

    Full Text Available Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.

  11. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer.

    Binley, K; Iqball, S; Kingsman, A; Kingsman, S; Naylor, S

    1999-10-01

    Recombinant adenoviral vectors have a number of advantages for gene therapy, including transduction of a range of dividing and non-dividing cell types. However, this broad range may be a disadvantage if non-target cells are transduced and are adversely affected by expression of the transferred gene. Here we describe a novel adenoviral vector in which transcription of the transgene is restricted to the patho-physiological condition of low oxygen tension (hypoxia). Hypoxia activates the expression of a number of genes, principally via the stabilisation of members of the bHLH/PAS family of transcription factors that bind to a con- sensus DNA sequence, the hypoxia response element (HRE). We have configured an optimised HRE expression cassette into an adenoviral vector, AdOBHRE. A range of cell types, including primary human skeletal muscle, when transduced with AdOBHRE display a low basal level of transgene expression that is highly induced in hypoxia to levels equivalent to that obtained from the CMV promoter. The AdOBHRE vector could be exploited for transcriptionally targeted gene therapy for the treatment of diseases such as cancer, peripheral arterial disease, arthritis and anaemia where tissue hypoxia is a cardinal feature. PMID:10516721

  12. Transfection of Primary Hepatocytes with Liver-Enriched Transcription Factors Using Adenoviral Vectors.

    Benet, Marta; Jover, Ramiro; Bort, Roque

    2015-01-01

    Primary cultured hepatocytes are probably the best model to study endogenous metabolic pathways, toxicity, or drug metabolism. Many of these studies require expression of ectopic genes. It would be desirable to use a method of transfection that allows dose-response studies, high efficiency of transfection, and the possibility to express several genes at the same time. Adenoviral vectors fulfill these requirements, becoming a valuable tool for primary hepatocyte transfection. Moreover, they are easy to generate and do not require a high level of biocontainment. In the present chapter, we describe the generation, cloning, amplification, and purification of an adenoviral vector capable of infecting primary cultured hepatocytes. This recombinant adenovirus induces robust expression of the protein of interest in hepatocytes within a wide range of doses. PMID:26272145

  13. Expression of Mouse SCP2 Gene Adenoviral Vector Carrying Albumin Promoter in Hepa1-6 Cells%固醇携带蛋白2腺病毒载体的构建与鉴定

    贾岩峰; 崔云峰; 崔乃强; 彭雁飞; 宁召臣; 张琚

    2012-01-01

    Objectives To construct the replication defective adenoviral vector of SCP2 gene carrying murine albumin promoter, and study the relations between SCP2 gene and the formation of cholesterol calculus. Methods The cDNA of SCP2 gene was cloned by using RT-PCR technique. The albumin promoter was linked to SCP2 gene's upstream, and the EGFP gene lied in its downstream. The plasmid pDC312-ALB-SCP2-IRES2 -EGFP was constructed by the gene recombination technique. The Admax Adenoviral Vector System was used to generate the replication defective adenoviral vectors, which were purified by CsCl method. The processes of TCID50 were applied to detect the titers of the adenoviral vectors. The RNA and protein were respectively extracted from the infected Hepal-6 cells by the adenoviral vector. The real-time quantitative PCR was employed to detect the mRNA expression levels, and the Western blotting analysis was used to measure the SCP2 protein levels. Result We constructed successfully the replication defective adenoviral vector of SCP2 gene carrying murine albumin promoter. When the mRNA levels of SCP2 gene were overexpressed, CYP7al mRNA levels were down-regulated (t=3.97,p<0.05); and the mRNA levels of HMGCR were up-regulated (t=3.23,p<0.05). Conclusions The SCP2 gene overexpression may affect cholesterol and bile acid metabolism, which could promote the formation of cholesterol calculus.%目的:构建携带白蛋白启动子SCP2 基因腺病毒载体,研究其与胆固醇结石形成的关系.方法:(1)利用RT-PCR技术克隆小鼠SCP2基因,在其上游接入白蛋白(ALB)启动子,下游连接绿色荧光报告基因(EGFP),构建穿梭质粒pDC312-ALB-SCP2-IRES2-EGFP;(2)采用Ad Max TM Adenoviru5 Vector系统包装病毒,CsCl法纯化病毒、TCID50法测定滴度;(3)重组腺病毒感染小鼠hepa-1-6细胞,实时定量PCR检测mRNA的表达;Western印迹检测SCP2蛋白表达情况;结果:成功构建携带白蛋白启动子SCP2基因腺病毒载体;当SCP2

  14. Comparison of osteogenic potentials of human rat BMP4 and BMP6 gene therapy using [E1-] and [E1-,E2b-] adenoviral vectors

    Hongwei Li, Jin Zhong Li, Debra D. Pittman, Andy Amalfitano, Gerald R. Hankins, Gregory A. Helm

    2006-01-01

    Full Text Available Osteogenic potentials of some recombinant human bone morphogenetic protein (BMP first-generation adenoviral vectors (ADhBMPs are significantly limited in immunocompetent animals. It is unclear what role expression of viral proteins and foreign proteins transduced by adenoviral vectors play in the host immune response and in ectopic bone formation. In this study two sets of experiments were designed and performed. First, rat BMP6 cDNA were amplified, sequenced, and recombined in first-generation adenoviral vector (ADrBMP6. A comparison of human and rat BMP6 adenoviral vectors demonstrated identical osteogenic activities in both immunodeficient and immunocompetent rats. Second, the activities of recombinant human BMP6 in E1- (ADhBMP6 and [E1-,E2b-] ( [E1-,E2b-]ADGFP&hBMP6, and [E1-,E2b-]ADhBMP6 adenoviral vectors were compared in both in vitro and in vivo models. Similar activities of these two generations of BMP adenoviral vectors were found in all models. These results indicate that the amount of viral gene expression and the source of the BMP cDNA are not major factors in the interruption of osteogenic potentials of recombinant BMP6 adenoviral vectors in immunocompetent animals.

  15. Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice

    Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.

  16. Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice

    Fu, Yuanhui [Institute of Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052 (China); College of Life Sciences and Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044 (China); He, Jinsheng, E-mail: jshhe@bjtu.edu.cn [College of Life Sciences and Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044 (China); Department of Immunology, Anhui Medical University, Hefei, Anhui, 230032 (China); Zheng, Xianxian [Department of Immunology, Anhui Medical University, Hefei, Anhui, 230032 (China); Wu, Qiang [Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032 (China); Zhang, Mei; Wang, Xiaobo [Department of Immunology, Anhui Medical University, Hefei, Anhui, 230032 (China); Wang, Yan [Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032 (China); Xie, Can; Tang, Qian; Wei, Wei [Department of Immunology, Anhui Medical University, Hefei, Anhui, 230032 (China); Wang, Min; Song, Jingdong; Qu, Jianguo [Institute of Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052 (China); Zhang, Ying; Wang, Xin [College of Life Sciences and Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044 (China); Hong, Tao [Institute of Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052 (China); College of Life Sciences and Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044 (China)

    2009-04-17

    Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.

  17. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose. PMID:27434682

  18. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. PMID:26514419

  19. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle. PMID:12960972

  20. Construction of recombinant adenoviral vector co-expressing interleukin-7 and enhanced green fluorescent protein%IL-7和EGFP双基因共表达重组腺病毒载体的构建

    宁昌; 余长林; 李建军; 胡锴勋

    2011-01-01

    Objective:To construct the adenoviral vector co - expressing interleukin - 7( IL -7 ) and enhanced green fluorescent protein( EGFP),to lay a experimental foundation for further study on the infection into stem cell. Methods: The target gene IL -7 was cloned into the shuttle plasmid expressed the report gene EGFP. Then the re-combinant shuttle plasmid was transformed into Dh5a bacteria to recombine with backbone vector pAdxsi. Next,the plasmid pAd - EGFP - mIL7 was amplified in H293 cells and purifired, then the viral titer was determined. Results: The recombinanted shuttle plasmid pShuttle - EGFP - mIL7 digested with restriction endonucleases was confirmed by two products which length were respectively about 0. 5kb and 5. 1kb; the recombinanted plasmid pAdxsi - EGFP -mIL7 digested with restriction endonucleases was confirmed by seven products which length were respectively about 14K,11.8K,3. Lkb,2.66kb,2.47K,1.45K and 0.6K; recombinant adenoviral amplifired with titer of 2×l010pfu/ ml. Conclusion: The recombinant adenoviral vector pAdxsi - EGFP - mIL7 was successfully constructed.%目的:构建白细胞介素7(IL-7)和增强型绿色荧光蛋白(EGFP)共表达的重组腺病毒载体,为进一步感染干细胞奠定基础.方法:将目的基因IL-7克隆到含有报告基因EGFP的穿梭质粒中,然后再将构建的重组穿梭质粒转移至pAdxsi载体中,构建重组腺病毒载体质粒,继而在H293细胞中扩增,纯化后测定病毒滴度.结果:pShuttle-EGFP-mIL7重组穿梭质粒经酶切鉴定得到0.5kb和5.1kb 2条带;pAdxsi-EGFP-mIL7重组腺病毒载体质粒经酶切鉴定得到14K、11.8K、3.1kb、2.66kb、2.47K、1.45K、0.6K 7条带;TCID50法测定纯化后的病毒滴度为2×1010pfu/ml.结论:pAdxsi-EGFP-mIL7重组腺病毒载体构建成功.

  1. The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications

    Cristian Capasso

    2014-02-01

    Full Text Available A long time has passed since the first clinical trial with adenoviral (Ad vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  2. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-01

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges. PMID:24549268

  3. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1±4.7%, 54.0±6.4%, 85.7±8.7%, and 98.4±1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704±6,659 picomole/106 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168±2,134 picomole/106 cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression

  4. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    Park, So Yeon; Lee, Won Woo; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Jin; Lee, Heui Ran [Medical Research Center, Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1{+-}4.7%, 54.0{+-}6.4%, 85.7{+-}8.7%, and 98.4{+-}1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704{+-}6,659 picomole/10{sup 6} cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168{+-}2,134 picomole/10{sup 6} cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

  5. A novel Cre recombinase reporter mouse strain facilitates selective and efficient infection of primary immune cells with adenoviral vectors.

    Heger, Klaus; Kober, Maike; Rieß, David; Drees, Christoph; de Vries, Ingrid; Bertossi, Arianna; Roers, Axel; Sixt, Michael; Schmidt-Supprian, Marc

    2015-06-01

    Replication-deficient recombinant adenoviruses are potent vectors for the efficient transient expression of exogenous genes in resting immune cells. However, most leukocytes are refractory to efficient adenoviral transduction as they lack expression of the coxsackie/adenovirus receptor (CAR). To circumvent this obstacle, we generated the R26/CAG-CARΔ1(StopF) (where R26 is ROSA26 and CAG is CMV early enhancer/chicken β actin promoter) knock-in mouse line. This strain allows monitoring of in situ Cre recombinase activity through expression of CARΔ1. Simultaneously, CARΔ1 expression permits selective and highly efficient adenoviral transduction of immune cell populations, such as mast cells or T cells, directly ex vivo in bulk cultures without prior cell purification or activation. Furthermore, we show that CARΔ1 expression dramatically improves adenoviral infection of in vitro differentiated conventional and plasmacytoid dendritic cells (DCs), basophils, mast cells, as well as Hoxb8-immortalized hematopoietic progenitor cells. This novel dual function mouse strain will hence be a valuable tool to rapidly dissect the function of specific genes in leukocyte physiology. PMID:25787118

  6. Comparison of human sodium iodide symporter (hNIS) gene expression between lentiviral and adenoviral vectors in rat mesenchymal stem cell

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been done. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated stably hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning the hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and Rad-hNIS transduced rMSC (adeno-hNIS-rMSC) was evaluated for the hNIS expression 48 hours post infection at MOI 1, 5, 20, 50, and 100. The hNIS expression in lenti-hNIS-rMSC or adeno-hNIS-rMSC was assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry using mono-clonal anti-hNIS antibody revealed that intensity of hNIS immunoreactivity in lenti-hNIS-rMSC was greater than that in adeno-hNIS-rMSC at MOl 20 but lower than that at MOl 50. Western blot analysis also showed that lenti-hNIS-rMSC was intermediate between adeno-hNIS-rMSCs at MOl 20 and 50 in hNIS expression. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (297046659 picomole/106 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (61682134 picomole/106 cells). These results suggest that lentivirus mediated hNIS expression is greater in terms of hNIS function but lower in terms of hNIS protein amount than adenovirus mediated hNIS expression 48 hours post infection. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative viral efficiency of transgene expression

  7. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35ΔRGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The αv-integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-α, and interferon-α in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of αv-integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes

  8. Tropism-modification strategies for targeted gene delivery using adenoviral vectors

    Baker, Andrew H; Parker, Alan L.; Bradshaw, Angela C.; Nicklin, Stuart A.; McNeish, Iain A; Raul Alba; Lynda Coughlan

    2010-01-01

    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in...

  9. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L; Bellamy, Scarlett L.; Betts, Michael R.; James M Wilson

    2014-01-01

    The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T ...

  10. Intranasal vaccination with a helper-dependent adenoviral vector enhances transgene-specific immune responses in BALB/c mice.

    Fu, Yuan-hui; He, Jin-sheng; Zheng, Xian-xian; Wang, Xiao-bo; Xie, Can; Shi, Chang-xin; Zhang, Mei; Tang, Qian; Wei, Wei; Qu, Jian-guo; Hong, Tao

    2010-01-01

    Helper-dependent adenoviral (HDAd) vectors were developed primarily for genetic disease therapy by deleting all coding regions for attenuating the host cellular immune response to adenovirus (Ad) and long-lasting gene expression. Recently Harui et al. reported that HDAd vaccine could stimulate superior transgene-specific cytotoxic T lymphocyte (CTL) and antibody responses via the intraperitoneal route, compared to first-generation adenoviral (FGAd) vaccine. This prompted us to explore the potential of HDAd as a vaccine vector administrated intranasally. In this study, we prepared HDAd and FGAd vectors expressing enhanced green fluorescent protein (EGFP), respectively, and compared their efficacy in mice. Mice were immunized intranasally with 5x10(9) vp HDAd or FGAd vector particles. Despite stimulating similar anti-Ad antibody responses with FGAd vaccine in the prime/boost strategy, HDAd vector expressing EGFP displayed superior transgene-specific serum IgG, mucosal IgA and cellular immune response, with the characterization of balanced or mixed Th1/Th2 CD4+ T-cell responses. Meanwhile, a single dose of intranasal (i.n.) vaccine of HDAd-EGFP induced a serum IgG response with more efficacy than FGAd-EGFP. In addition, i.n. boost immunization enhanced transgene-specific humoral and cellular responses, compared to single i.n. HDAd-EGFP immunization. Our results suggest that HDAd has potential for a mucosal vaccine vector via i.n. route, which will be useful for the development of vaccines against respiratory viruses, such as respiratory syncytial virus and influenza virus. PMID:19945423

  11. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    Andrew H. Baker

    2010-10-01

    Full Text Available Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX, which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs. These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon, pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies, can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX, or alternatively, through the use of polymer

  12. Advances and future challenges in recombinant adenoviral vectored H5N1 influenza vaccines.

    Zhang, Jianfeng

    2012-11-01

    The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future. PMID:23202501

  13. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  14. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  15. Challenges in manufacturing adenoviral vectors for global vaccine product deployment.

    Vellinga, Jort; Smith, J Patrick; Lipiec, Agnieszka; Majhen, Dragomira; Lemckert, Angelique; van Ooij, Mark; Ives, Paul; Yallop, Christopher; Custers, Jerome; Havenga, Menzo

    2014-04-01

    Abstract Once adenovirus vector-based vaccines are licensed for the prevention of important infectious diseases, manufacturing processes capable of reliably delivering large numbers of vaccine doses will be required. The highest burden of disease for many infectious pathogens under investigation occurs in resource-poor settings. Therefore, the price per dose will be an important determinant of success. This review describes common practices for manufacturing replication-incompetent adenovirus vectors at clinical scale. Recent innovations and strategies aimed at improving the cost-effectiveness of manufacturing and ensuring high-volume vaccine production and purification are described. Hereto, technologies to increase bioreactor yields are reviewed. In addition, the use of single-use perfusion bioreactors, modification of some purification steps to avoid the use of expensive endonucleases, and use of charged filters during anion exchange all have the potential to bring down the cost of goods and are thus described. Finally, processes for ensuring quality throughout the manufacturing process, methods for testing viral identity, and safety of master seeds through to the end vaccine product are described. PMID:24593243

  16. Vascular gene transfer from metallic stent surfaces using adenoviral vectors tethered through hydrolysable cross-linkers.

    Fishbein, Ilia; Forbes, Scott P; Adamo, Richard F; Chorny, Michael; Levy, Robert J; Alferiev, Ivan S

    2014-01-01

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  17. Sensitization of prostate cancer cell lines to 5-fluorocytosine induced by a replication incompetent adenoviral vector carrying a cytosine deaminase transcription unit

    2001-01-01

    AIM: To investigate the efficiency of cytosine deaminase adenoviral/5-fluorocytosine system on prostate cancer cell lines. METHODS: Cell culture, infectivity test and sensitivity test, observing the bystander effect and animal model experiment were carried out. RESULTS: All the established prostate cancer cell lines were eventually infectable, but ratio of vector/cell and time of exposed at which infection occurs was dependent on the cell lines. The expression of transfered cytosine deaminase gene peaked at different days, but persisted beyond 11 days. The prostate cell lines were sensitized to the 5-fluorocytosine by infection with the cytosine deaminase gene adenoviral vector, and only 5% of the LNCap and 10% of the RM-1 cells infected were required for 100% cell death. In the animal model, there was significant eradiation of tumor growth at the ratio of 400 vector particles/cell and with the systematic treatment of 5-fluorocytosine. CONCLUSION: The adenoviral vector carrying a cytosine deaminase transcription unit can sensitize the prostate cancer cell lines to 5-fluorocytosine, and the system can significantly inhibit the growth of prostatic tumor in mice.

  18. Potential of Helper-Dependent Adenoviral Vectors in Modulating Airway Innate Immunity

    Rahul Kushwah; Huibi Cao; Jim Hu

    2007-01-01

    Innate immune responses form the first line of defense against foreign insults and recently significant advances have been made in our understanding of the initiation of innate immune response along with its ability to modulate inflammation. In airway diseases such as asthma, COPD and cystic fibrosis, over reacting of the airway innate immune responses leads to cytokine imbalance and airway remodeling or damage. Helper-dependent adenoviral vectors have the potential to deliver genes to modulate airway innate immune responses and have many advantages over its predecessors. However, there still are a few limitations that need to be addressed prior to their use in clinical applications.

  19. Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector.

    Li, Yong; Hickey, Louise; Perrins, Ray; Werlen, Emilie; Patel, Amisha A; Hirschberg, Stefan; Jones, Matt W; Salinas, Sara; Kremer, Eric J; Pickering, Anthony E

    2016-06-15

    Noradrenergic neurons of the brainstem extend projections throughout the neuraxis to modulate a wide range of processes including attention, arousal, autonomic control and sensory processing. A spinal projection from the locus coeruleus (LC) is thought to regulate nociceptive processing. To characterize and selectively manipulate the pontospinal noradrenergic neurons in rats, we implemented a retrograde targeting strategy using a canine adenoviral vector to express channelrhodopsin2 (CAV2-PRS-ChR2-mCherry). LC microinjection of CAV2-PRS-ChR2-mCherry produced selective, stable, transduction of noradrenergic neurons allowing reliable opto-activation in vitro. The ChR2-transduced LC neurons were opto-identifiable in vivo and functional control was demonstrated for >6 months by evoked sleep-wake transitions. Spinal injection of CAV2-PRS-ChR2-mCherry retrogradely transduced pontine noradrenergic neurons, predominantly in the LC but also in A5 and A7. A pontospinal LC (ps:LC) module was identifiable, with somata located more ventrally within the nucleus and with a discrete subset of projection targets. These ps:LC neurons had distinct electrophysiological properties with shorter action potentials and smaller afterhyperpolarizations compared to neurons located in the core of the LC. In vivo recordings of ps:LC neurons showed a lower spontaneous firing frequency than those in the core and they were all excited by noxious stimuli. Using this CAV2-based approach we have demonstrated the ability to retrogradely target, characterise and optogenetically manipulate a central noradrenergic circuit and show that the ps:LC module forms a discrete unit. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26903420

  20. Novel Adenoviral Vector Induces T Cell Responses Despite Anti-Adenoviral Neutralizing Antibodies in Colorectal Cancer Patients

    Morse, Michael A; Chaudhry, Arvind; Gabitzsch, Elizabeth S; Hobeika, Amy C.; Osada, Takuya; Clay, Timothy M.; Amalfitano, Andrea; Burnett, Bruce K.; Devi, Gayathri R.; Hsu, David S; Xu, Younong; Balcaitis, Stephanie; Dua, Rajesh; Nguyen, Susan; Balint, Joseph P.

    2013-01-01

    First generation, E1-deleted Adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce ...

  1. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector

    Kim, In-Hoo; Józkowicz, Alicja; Piedra, Pedro A.; Oka, Kazuhiro; Chan, Lawrence

    2001-01-01

    Ideally, somatic gene therapy should result in lifetime reversal of genetic deficiencies. However, to date, phenotypic correction of monogenic hyperlipidemia in mouse models by in vivo gene therapy has been short-lived and associated with substantial toxicity. We have developed a helper-dependent adenoviral vector (HD-Ad) containing the apolipoprotein (apo) E gene. A single i.v. injection of this vector completely and stably corrected the hypercholesterolemia in apoE-deficient mice, an effect...

  2. Effects of recombinant adenoviral vector containing IRE1α gene on proliferation and apoptosis of ATDC5 stem cells

    Xiang-zhu LI

    2013-09-01

    Full Text Available Objective To construct the recombinant adenoviral vector containing human IRE1α (type I transmembrane protein kinase/endoribonucleasegene, and investigate its effects on proliferation and apoptosis of ATDC5 stem cells. Methods  By using pAdEasyTM adenovirus vector system, the recombinant shuttle vectors of IRE1α full-length gene(pAdTrack-IRE1αand RNase+Kinasedomain(pAdTrack-R+Kwere constructed, and then transferred with pAdEasy-1 to generate recombinant adenovirus plasmid pAd-IRE1α and pAd-R+K by electroporation method. Subsequently, the plasmids were transfected into HEK-293 cells to pack and amplify the recombinant adenovirus Ad-IRE1α and Ad-R+K. The expression of recombinant adenovirus was detected by PCR. The ATDC5 cells wereinfected in vitro by recombinant adenovirus Ad-IRE1α and Ad-R+K, the infection efficiency of green fluorescent protein(GFPwas observed, and the influence of Ad-IRE1α and Ad-R+K on the proliferation and apoptosis of ATDC5 cells under endoplasmic reticulum stress(ERS or non-ERS was detected by flow cytometry(FCM. Results Restriction endonuclease digestion analysis and PCR indicated that the recombinant adenovirus vector Ad-IRE1α andAd-R+K was successfully constructed. FCM detection showed that under ERS conditions, the G1 phasedcreased and S phase increased in ATDC5 cells after transfected by Ad-IRE1α and Ad-R+K, meanwhile the apoptosis rate increased significantly(P<0.05. Conclusion Infection of recombinant adenovirus containing IRE1α gene may promote the proliferation and apoptosis of ATDC5cells.

  3. Bone formation in vivo induced by Cbfa1-carrying adenoviral vectors released from a biodegradable porous {beta}-tricalcium phosphate ({beta}-TCP) material

    Uemura, Toshimasa; Kojima, Hiroko, E-mail: t.uemura@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central-4, Tsukuba, Ibaraki 305-8562 (Japan)

    2011-06-15

    Overexpression of Cbfa1 (a transcription factor indispensable for osteoblastic differentiation) is expected to induce the formation of bone directly and indirectly in vivo by accelerating osteoblastic differentiation. Adenoviral vectors carrying the cDNA of Cbfa1/til-1(Adv-Cbf1) were allowed to be adsorbed onto porous blocks of {beta}-tricalcium phosphate ({beta}-TCP), a biodegradable ceramic, which were then implanted subcutaneously and orthotopically into bone defects. The adenoviral vectors were released sustainingly by biodegradation, providing long-term expression of the genes. Results of the subcutaneous implantation of Adv-Cbfa1-adsorbed {beta}-TCP/osteoprogenitor cells suggest that a larger amount of bone formed in the pores of the implant than in the control material. Regarding orthotopic implantation into bone defects, the released Adv-Cbfa1 accelerated regeneration in the cortical bone, whereas it induced bone resorption in the marrow cavity. A safer gene transfer using a smaller amount of the vector was achieved using biodegradable porous {beta}-TCP as a carrier.

  4. Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection.

    Samrat, Subodh Kumar; Vedi, Satish; Singh, Shakti; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2015-01-01

    Multispecific, broad, and potent T cell responses have been correlated with viral clearance in hepatitis C virus (HCV) infection. However, the majority of infected patients develop chronic infection, suggesting that natural infection mostly leads to development of inefficient T cell immunity. Multiple mechanisms of immune modulation and evasion have been shown in HCV infection through various investigations. This study examined the generation and modulation of T cell responses against core and frameshift (F) proteins of HCV. A single immunization of mice with replication incompetent recombinant adenovirus vectors encoding for F or core antigens induces poor T cell responses and leads to generation of CD4+ and CD8+ T cells with low granzyme B (GrB) expression. These T cells have impaired GrB enzyme activity and are unable to kill peptide loaded target cells. The low intracellular expression of GrB is not due to degranulation of cytotoxic granules containing cytotoxic T cells. Addition of exogenous IL-2 in in vitro cultures leads to partial recovery of GrB production, whereas immunization with the Toll-like receptor (TLR) agonist poly I:C leads to complete restoration of GrB expression in both CD4+ and CD8+ T cells. Thus, a possible new strategy of T cell modulation is recognized wherein effector T cells are caused to be dysfunctional by HCV-derived antigens F or core, and strategies are also delineated to overcome this dysfunction. These studies are important in the investigation of prophylactic vaccine and immunotherapy strategies for HCV infection. PMID:26133045

  5. Imaging expression of adenoviral HSV1-tk suicide gene transfer using the nucleoside analogue FIRU

    Substrates for monitoring HSV1-tk gene expression include uracil and acycloguanosine derivatives.The most commonly used uracil derivative to monitor HSV1-tk gene transfer is 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)-5-[*I]iodouracil (fialuridine; I*-FIAU), where the asterisk denotes any of the radioactive iodine isotopes that can be used. We have previously studied other nucleosides with imaging properties as good as or better than FIAU, including 1-(2-fluoro-2-deoxy-β-D-ribofuranosyl)-5-[*I]iodouracil (FIRU). The first aim of this study was to extend the biodistribution data of 123I-labelled FIRU. Secondly, we assessed the feasibility of detecting differences in HSV1-tk gene expression levels following adenoviral gene transfer in vivo with 123I-FIRU. 9L rat gliosarcoma cells were stably transfected with the HSV1-tk gene (9L-tk+). 123I-FIRU was prepared by radioiodination of 1-(2-fluoro-2-deoxy-β-D-ribofuranosyl)-5-tributylstannyl uracil (FTMRSU; precursor compound) and purified using an activated Sep-Pak column. Incubation of 9L-tk+ cells and the parental 9L cells with 123I-FIRU resulted in a 100-fold higher accumulation of radioactivity in the 9L-tk+ cells after an optimum incubation time of 4 h. NIH-bg-nu-xid mice were then inoculated subcutaneously with HSV1-tk (-) 9L cells or HSV1-tk (+) 9L-tk+ cells into both flanks. Biodistribution studies and gamma camera imaging were performed at 15 min and 1, 2, 4 and 24 h p.i. At 15 min, the tumour/muscle, tumour/blood and tumour/brain ratios were 5.2, 1.0 and 30.3 respectively. Rapid renal clearance of the tracer from the body resulted in increasing tumour/muscle, tumour/blood and tumour/brain ratios, reaching values of 32.2, 12.5 and 171.6 at 4 h p.i. A maximum specific activity of 22%ID/g tissue was reached in the 9L-tk+ tumours 4 h after 123I-FIRU injection. Two Ad5-based adenoviral vectors containing the HSV1-tk gene were constructed: a replication-incompetent vector with the transgene in the former E1 region

  6. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

    Zhang, Chao; Yang, Yong; Chi, Yudan; Yin, Jieyun; Yan, Lijun; Ku, Zhiqiang; Liu, Qingwei; Huang, Zhong; Zhou, Dongming

    2015-09-22

    Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens. PMID:26296491

  7. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  8. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  9. Construction and characterization of calreticulin-HBsAg fusion gene recombinant adenovirus expression vector

    2010-01-01

    AIM: To generate recombinant adenoviral vector con-taining calreticulin (CRT)-hepatitis B surface antigen (HBsAg) fusion gene for developing a safe, effective and HBsAg-specific therapeutic vaccine.METHODS: CRT and HBsAg gene were fused using polymerase chain reaction (PCR), endonuclease diges-tion and ligation methods. The fusion gene was cloned into pENTR/D-TOPO transfer vector after the base pairs of DNA (CACC) sequence was added to the 5′ end. Adenoviral expression vector containing CRT-HBsAg fusion gen...

  10. Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro.

    Aoki, K.; Barker, C.; Danthinne, X; Imperiale, M J; Nabel, G. J.

    1999-01-01

    BACKGROUND: Although recombinant adenovirus vectors are attractive for use in gene expression studies and therapeutic applications, the construction of these vectors remains relatively time-consuming. We report here a strategy that simplifies the production of adenoviruses using the Cre-loxP system. MATERIALS AND METHODS: Full-length recombinant adenovirus DNA was generated in vitro by Cre-mediated recombination between loxP sites in a linearized shuttle plasmid containing a transgene and ade...

  11. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases. PMID:27245510

  12. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  13. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  14. Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination

    Holst, Peter Johannes; Ørskov, Cathrine; Thomsen, Allan Randrup;

    2010-01-01

    Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T c...... effector functions, accumulated in the spleen. These findings indicate that the localization of the adenoviral inoculum and not the total Ag load determines the quality of the CD8(+) T cell response induced with adenoviral vaccines.......Adenoviral vectors have been widely used for experimental gene therapy and vaccination, yet there is a surprising lack of knowledge connecting the route and dose of adenovirus administration to the induced transgene-specific immune response. We have recently demonstrated polyfunctional CD8(+) T...... correlated positively with dissemination, whereas the functional capacity of the generated T cells correlated inversely with vector dissemination. A comparison of the immune response to s.c. or i.v. administration at moderate doses revealed that inoculation by both routes induced a transient peak of IFN...

  15. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice

    de Andrade Pereira, Bruna; E. Maduro Bouillet, Leoneide; Dorigo, Natalia A.; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses....

  16. Evaluation of excipients for enhanced thermal stabilization of a human type 5 adenoviral vector through spray drying.

    LeClair, Daniel A; Cranston, Emily D; Xing, Zhou; Thompson, Michael R

    2016-06-15

    We have produced a thermally stable recombinant human type 5 adenoviral vector (AdHu5) through spray drying with three excipient formulations (l-leucine, lactose/trehalose and mannitol/dextran). Spray drying leads to immobilization of the viral vector which is believed to prevent viral protein unfolding, aggregation and inactivation. The spray dried powders were characterized by scanning electron microscopy, differential scanning calorimetry, Karl Fischer titrations, and X-ray diffraction to identify the effects of temperature and atmospheric moisture on the immobilizing matrix. Thermal stability of the viral vector was confirmed in vitro by infection of A549 lung epithelial cells. Mannitol/dextran powders showed the greatest improvement in thermal stability with almost no viral activity loss after storage at 20°C for 90days (0.7±0.3 log TCID50) which is a significant improvement over the current -80°C storage protocol. Furthermore, viral activity was retained over short term exposure (72h) to temperatures as high as 55°C. Conversely, all powders exhibited activity loss when subjected to moisture due to amplified molecular motion of the matrix. Overall, a straightforward method ideal for the production of thermally stable vaccines has been demonstrated through spray drying AdHu5 with a blend of mannitol and dextran and storing the powder under low humidity conditions. PMID:27130366

  17. Short-term Correction of Arginase Deficiency in a Neonatal Murine Model With a Helper-dependent Adenoviral Vector

    Gau, Chia-Ling; Rosenblatt, Robin A; Cerullo, Vincenzo; Lay, Fides D; Dow, Adrienne C; Livesay, Justin; Brunetti-Pierri, Nicola; Lee, Brendan; Cederbaum, Stephen D; Grody, Wayne W; Lipshutz, Gerald S

    2009-01-01

    Neonatal gene therapy has the potential to ameliorate abnormalities before disease onset. Our gene knockout of arginase I (AI) deficiency is characterized by increasing hyperammonemia, neurological deterioration, and early death. We constructed a helper-dependent adenoviral vector (HDV) carrying AI and examined for correction of this defect. Neonates were administered 5 × 109 viral particles/g and analyzed for survival, arginase activity, and ammonia and amino acids levels. The life expectancy of arg−/− mice increased to 27 days while controls died at 14 days with hyperammonemia and in extremis. Death correlated with a decrease in viral DNA/RNA per cell as liver mass increased. Arginase assays demonstrated that vector-injected hepatocytes had ~20% activity of heterozygotes at 2 weeks of age. Hepatic arginine and ornithine in treated mice were similar to those of saline-injected heterozygotes at 2 weeks, whereas ammonia was normal. By 26 days, arginase activity in the treated arg−/− livers declined to <10%, and arginine and ornithine increased. Ammonia levels began increasing by day 25, suggesting the cause of death to be similar to that of uninjected arg−/− mice, albeit at a later time. These studies demonstrate that the AI deficient newborn mouse can be temporarily corrected and rescued using a HDV. PMID:19367256

  18. Ephrin A2 receptor targeting does not increase adenoviral pancreatic cancer transduction in vivo

    Michael A van Geer; Conny T Bakker; Naoya Koizumi; Hiroyuki Mizuguchi; John G Wesseling; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM:To generate an adenoviral vector specifically targeting the EphA2 receptor (EphA2R) highly expressed on pancreatic cancer cells in vivo.METHODS:YSA,a small peptide ligand that binds the EphA2R with high affinity,was inserted into the HI loop of the adenovirus serotype 5 fiber knob.To further increase the specificity of this vector,binding sites for native adenoviral receptors,the coxsackie and adenovirus receptor (CAR) and integrin,were ablated from the viral capsid.The ablated retargeted adenoviral vector was produced on 293T cells.Specific targeting of this novel adenoviral vector to pancreatic cancer was investigated on established human pancreatic cancer cell lines.Upon demonstrating specific in vitro targeting,in vivo targeting to subcutaneous growing human pancreatic cancer was tested by intravenous and intraperitoneal administration of the ablated adenoviral vector.RESULTS:Ablation of native cellular binding sites reduced adenoviral transduction at least 100-fold.Insertion of the YSA peptide in the HI loop restored adenoviral transduction of EphA2R-expressing cells but not of cells lacking this receptor.YSA-mediated transduction was inhibited by addition of synthetic YSA peptide.The transduction specificity of the ablated retargeted vector towards human pancreatic cancer cells was enhanced almost 10-fold in vitro.In a subsequent in vivo study in a nude (nu/nu) mouse model however,no increased adenoviral targeting to subcutaneously growing human pancreas cancer nodules was seen upon injection into the tail vein,nor upon injection into the peritoneum.CONCLUSION:Targeting the EphA2 receptor increases specificity of adenoviral transduction of human pancreatic cancer cells in vitro but fails to enhance pancreatic cancer transduction in vivo.

  19. Long-Term Reduction of Cocaine Self-Administration in Rats Treated with Adenoviral Vector-Delivered Cocaine Hydrolase: Evidence for Enzymatic Activity

    Zlebnik, Natalie E.; Brimijoin, Stephen; Gao, Yang; Saykao, Amy T.; Parks, Robin J.; Carroll, Marilyn E.

    2014-01-01

    A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decreas...

  20. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector.

    Linfeng Cheng

    Full Text Available Heat shock proteins (HSPs display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV glycoprotein (GP and nucleocapsid protein (NP immunogenicity by heat shock protein 70 (HSP70, a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359-610 aa, HSP70C to the Gn and 0.7 kb fragment of the NP (aa1-274-S0.7. C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7 and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV.

  1. Regulatable Gutless Adenovirus Vectors Sustain Inducible Transgene Expression in the Brain in the Presence of an Immune Response against Adenoviruses

    Xiong, Weidong; Goverdhana, Shyam; Sciascia, Sandra A.; Candolfi, Marianela; Zirger, Jeffrey M.; BARCIA, CARLOS; Curtin, James F.; King, Gwendalyn D; Jaita, Gabriela; Liu, Chunyan; Kroeger, Kurt; Agadjanian, Hasmik; Medina-Kauwe, Lali; Palmer, Donna; Ng, Philip

    2006-01-01

    In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding β-galactosidase (β-gal) dri...

  2. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control

    Sorensen, Maria R; Holst, Peter J; Pircher, Hanspeter;

    2009-01-01

    Antigen-specific immunotherapy is an attractive strategy for cancer control. In the context of antiviral vaccines, adenoviral vectors have emerged as a favorable means for immunization. Therefore, we chose a strategy combining use of these vectors with another successful approach, namely linkage of...... the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor-associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication-deficient human adenovirus 5...... than vaccination with adenovirus expressing GP alone (Ad-GP), or GP and Ii unlinked (Ad-GP+Ii). Ad-Ii-GP- induced tumor control depended on an improved generation of the tumor-associated neoantigen-specific CD8(+) T-cell response and was independent of CD4(+) T cells. IFN-gamma was shown to be a key...

  3. Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers

    Fishbein, Ilia; Forbes, Scott P.; Adamo, Richard F.; Chorny, Michael; Levy, Robert J.; Alferiev, Ivan S.

    2014-01-01

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector r...

  4. Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice.

    Moayeri, Mahtab; Tremblay, Jacqueline M; Debatis, Michelle; Dmitriev, Igor P; Kashentseva, Elena A; Yeh, Anthony J; Cheung, Gordon Y C; Curiel, David T; Leppla, Stephen; Shoemaker, Charles B

    2016-03-01

    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. PMID:26740390

  5. Generation and characterization of novel adenoviral vectors for hybrid nuclease-mediated gene targeting

    Henriques, Sara Filipa Dias

    2013-01-01

    Tese de mestrado [versão pública]. Biologia (Biologia Humana e Ambiente). Universidade de Lisboa, Faculdade de Ciências, 2013 Adenovirus-based vectors are among the most efficient and disseminated gene transfer vehicles currently in use in a broad range of basic and applied research applications including the testing of gene therapy. As a gene therapy modality, gene targeting relies on the site-specific genome modification based on “integrases” or on the error-free homologous recombination...

  6. Efficient directional cloning of recombinant adenovirus vectors using DNA-protein complex.

    Okada, T; Ramsey, W J; Munir, J; Wildner, O.; Blaese, R M

    1998-01-01

    We describe an efficient cloning system utilizing adenoviral DNA-protein complexes which allows the directional cloning of genes into adenoviral expression vectors in a single step. DNA-protein complexes derived from a recombinant adenovirus (AVC2.null) were isolated by sequential use of CsCl step gradients followed by isopycnic centrifugation in a mixture of CsCl and guanidine HCl. AVC2.null is an adenoviral expression vector containing unique restriction sites between the human CMV-IE promo...

  7. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus

    Small interfering RNA (siRNA) is currently being evaluated not only as a powerful tool for functional genomics, but also as a potentially promising therapeutic agent for cancer and infectious diseases. Inhibitory effect of siRNA on viral replication has been demonstrated in multiple pathogenic viruses. However, because of the high sequence specificity of siRNA-mediated RNA degradation, antiviral efficacy of siRNA directed to viral genome will be largely limited by emergence of escape variants resistant to siRNA due to high mutation rates of virus, especially RNA viruses such as poliovirus and hepatitis C virus (HCV). To investigate the therapeutic feasibility of siRNAs specific for the putative cellular cofactors for HCV, we constructed adenovirus vectors expressing siRNAs against La, polypyrimidine tract-binding protein (PTB), subunit gamma of human eukaryotic initiation factors 2B (eIF2Bγ), and human VAMP-associated protein of 33 kDa (hVAP-33). Adenoviral-mediated expression of siRNAs markedly diminished expression of the endogenous genes, and silencing of La, PTB, and hVAP-33 by siRNAs substantially blocked HCV replication in Huh-7 cells. Thus, our studies demonstrate the feasibility and potential of adenoviral-delivered siRNAs specific for cellular cofactors in combating HCV infection, which can be used either alone or in combination with siRNA against viral genome to prevent the escape of mutant variants and provide additive or synergistic anti-HCV effects

  8. Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats.

    Yin, G; Chen, J; Wei, S; Wang, H; Chen, Q; Lin, Y; Hu, J; Luo, E

    2015-08-01

    This study investigated the efficacy of human osteoprotegerin (hOPG) transgene to accelerate osteointegration of titanium implant in ovariectomized (OVX) rats. Bone marrow stromal cells transduced with Ad-hOPG-EGFP could sustainedly express hOPG. Osteoclast precursor RAW264.7 cells treated by the hOPG were examined by tartrate-resistant acid phosphatase (TRAP) staining and bone slice resorption assay. The results showed differentiation and function of osteoclasts were significantly suppressed by hOPG in vitro. Ad-hOPG-EGFP was locally administered to the bone defect prior to implant placement in OVX and sham rats. After 3, 7, 28 days of implantation, the femurs were harvested for molecular and histological analyses. Successful transgene expression was confirmed by western blot and cryosectioning. A significant reduction in TRAP+ numbers was detected in Ad-hOPG-EGFP group. Real-time reverse transcriptase-PCR examination revealed that hOPG transgene markedly diminished the expression of cathepsin K and receptor activator for nuclear factor-κ B ligand in vivo. The transgene hOPG modification revealed a marked increasing osteointegration and restored implant stability in OVX rats (Prats. Osteoprotegerin gene therapy may be an effective strategy to osteointegration of implants under osteoporotic conditions. PMID:25871826

  9. Adenoviral Producer Cells

    Imre Kovesdi

    2010-08-01

    Full Text Available Adenovirus (Ad vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue. Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.

  10. Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference

    Huibi CAO; Anan WANG; Bernard MARTIN; David R.KOEHLER; Pamela L.ZEITLIN; A.Keith TANAWELL; Jim HU

    2005-01-01

    Interleukin (IL)-8 is a potent neutrophil chemotactic factor and a crucial mediator in neutrophil-dependent inflammation.Various cell types produce IL-8, either in response to external stimuli such as cytokines or bacterial infection, or after malignant transformation. Anti-IL-8 strategies have been considered for anti-inflammatory therapy. In this paper we demonstrate that the RNA interference technique can be used to efficiently down-regulate IL-8 protein expression in airway epithelial cells. We used a helper-dependent adenoviral vector to express a small hairpin (sh)RNA targeting human IL-8 in cultured airway epithelial cells (IB3-1, Cftr-/-; C38, Cftr-corrected) stimulated with TNF-α, IL-1 β or heat-inactivated Burkholderia cenocepacia. Stimulated IL-8 expression in IB3-1 and C38 cells was significantly reduced by shRNA expression. The shRNA targeting IL-8 had no effect on the activation of NF-κB, or on the protein levels of Iκ B or IL-6, suggesting that this anti-IL-8 strategy was highly specific, and therefore may offer potential for the treatment of inflammatory diseases.

  11. Myocardial transfection of hypoxia inducible factor-1α via an adenoviral vector during coronary artery bypass grafting. A multicenter phase I and safety study

    Increasing numbers of patients with advanced coronary artery disease have limited options for percutaneous and/or surgical revascularization. A prospective, randomized, phase I clinical multicenter trial was performed to assess the feasibility and safety of delivering a pro-angiogenic transcription factor termed 'hypoxia inducible factor-1α', delivered to ischemic cardiac muscle via a type 2 adenoviral (Ad2HIF) vector. The 13 patients were included under the following criteria: 1 hypoperfused area of viable ventricular muscle without options for revascularization and left ventricular ejection fraction ≥30%. After coronary artery bypass grafting was completed, 10 injections of the study drug (n=10), in 3 escalating doses up to 1 x 1011 viral particles or saline (n=3) as a placebo control, were injected intramyocardially. After completion of the 1-year follow-up, all patients had uncomplicated postoperative courses, are alive and feeling well; 1 patient had a self-limited run of tachycardia postoperatively and at 6 months, 1 patient developed recurrent angina. Positron emission tomography perfusion analysis revealed improvement in the Ad2HIF injected areas in selected patients. These data support the feasibility and preliminary safety of adenoviral transfection with Ad2HIF in regions of viable myocardium. Additional studies will be required to determine the efficacy and safety of Ad2HIF. (author)

  12. A Human Vaccine Strategy Based On Chimpanzee Adenoviral and MVA Vectors That Primes, Boosts and Sustains Functional HCV Specific T-Cell Memory*

    Swadling, Leo; Capone, Stefania; Antrobus, Richard D.; Brown, Anthony; Richardson, Rachel; Newell, Evan W.; Halliday, John; Kelly, Christabel; Bowen, Dan; Fergusson, Joannah; Kurioka, Ayako; Ammendola, Virginia; Sorbo, Mariarosaria Del; Grazioli, Fabiana; Esposito, Maria Luisa; Siani, Loredana; Traboni, Cinzia; Hill, Adrian; Colloca, Stefano; Davis, Mark; Nicosia, Alfredo; Cortese, Riccardo; Folgori, Antonella; Klenerman, Paul; Barnes, Eleanor

    2015-01-01

    A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies and assessment of host immunity during acute infection highlight the critical role that effective T-cell immunity plays in viral control. In this first-in-man study we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A and NS5B proteins of HCV genotype-1b. Analysis employed single cell mass cytometry (CyTOF), and HLA class-I peptide tetramer technology in healthy human volunteers. We show that HCV specific T-cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8+ and CD4+ HCV specific T-cells targeting multiple HCV antigens. Sustained memory and effector T-cell populations are generated and T-cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) following heterologous MVA boost. We have developed a HCV vaccine strategy, with durable, broad, sustained and balanced T-cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine. PMID:25378645

  13. New pre-pandemic influenza vaccines: an egg- and adjuvant-independent human adenoviral vector strategy induces long-lasting protective immune responses in mice.

    Hoelscher, M A; Jayashankar, L; Garg, S; Veguilla, V; Lu, X; Singh, N; Katz, J M; Mittal, S K; Sambhara, S

    2007-12-01

    Highly pathogenic avian H5N1 influenza viruses that are currently circulating in southeast Asia may acquire the potential to cause the next influenza pandemic. A number of alternate approaches are being pursued to generate cross-protective, dose-sparing, safe, and effective vaccines, as traditional vaccine approaches, i.e., embryonated egg-grown, are not immunogenic. We developed a replication-incompetent adenoviral vector-based, adjuvant- and egg-independent pandemic influenza vaccine strategy as a potential alternative to conventional egg-derived vaccines. In this paper, we address suboptimal dose and longevity of vaccine-induced protective immunity and demonstrate that a vaccine dose as little as 1 x 10(6) plaque-forming unit (PFU) is sufficient to induce protective immune responses against a highly pathogenic H5N1 virus. Furthermore, the vaccine-induced humoral and cellular immune responses and protective immunity persisted at least for a year. PMID:17957181

  14. Preparation of a recombinant adenoviral encoding human NIS gene and its specific expression in cardiomyocytes

    Objective: To construct a recombinant adenovirus vector containing the human NIS gene with the myosin light chain-2(MLC-2v) gene as the promoter and evaluate its specific expression and feasibility as a reporter gene in cardiomyocytes. Methods: MLC-2v promoter and NIS were subcloned into an adenovirus shuttle vector, and forwarded by homologous recombination in the bacteria BJ5183 containing AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the HEK293 cells to obtain recombinant adenovirus Ad-MLC-NIS. Ad-cytomegalovirus (CMV)-NIS with cytomegalovirus as the promoter, Ad-MLC without NIS and Ad-NIS without promoter were constructed as the controls. Cardiomyocytes and non-cardiomyocytes were then infected by the adenovirus. The protein expression was tested by Western blot analysis. The function and features of NIS protein were evaluated by dynamic iodide uptake and NaClO4 iodine uptake inhibition test in vitro. The viability and proliferation of cardiomyocytes after adenovirus transfection and radioiodine incubation were checked by trypan blue staining. Results: Recombinant NIS adenovirus was successfully constructed. Western blot analysis showed that the NIS protein was highly expressed in cardiomyocytes transfected with Ad-MLC-NIS, and all cells transfected with Ad-CMV-NIS. However, in non-cardiomyocytes transfected with Ad-MLC-NIS, little NIS protein was detected. Dynamic iodine uptake tests showed that the peaks of iodide uptake of the three different cell lines (H9C2, A549, U87 cell) transfected with Ad-MLC-NIS were 5844.0, 833.6 and 846.0 counts · min-1, respectively. The iodide uptake function of H9C2 was inhibited by NaClO4. There was almost no change in cell viability and proliferation when the MOI was 100. Conclusions: Ad-MLC-NIS allows myocardial specific expression of an external gene, and the cardiomyocytes with NIS expression are capable of iodine uptake. Further research of NIS as a reporter gene in

  15. Priming of CD8 T Cells by Adenoviral Vectors Is Critically Dependent on B7 and Dendritic Cells but Only Partially Dependent on CD28 Ligation on CD8 T Cells

    Nielsen, Karen N; Steffensen, Maria A; Christensen, Jan P;

    2014-01-01

    Adenoviral vectors have long been forerunners in the development of effective CD8 T cell-based vaccines; therefore, it is imperative that we understand the factors controlling the induction of robust and long-lasting transgene-specific immune responses by these vectors. In this study, we investig......Adenoviral vectors have long been forerunners in the development of effective CD8 T cell-based vaccines; therefore, it is imperative that we understand the factors controlling the induction of robust and long-lasting transgene-specific immune responses by these vectors. In this study, we...... investigated the organ sites, molecules, and cell subsets that play a critical role in the priming of transgene-specific CD8 T cells after vaccination with a replication-deficient adenoviral vector. Using a human adenovirus serotype 5 (Ad5) vector and genetically engineered mice, we found that CD8(+) and/or CD......103(+) dendritic cells in the draining lymph node played a critical role in the priming of Ad5-induced CD8 T cell responses. Moreover, we found that CD80/86, but not CD28, was essential for efficient generation of both primary effectors and memory CD8 T cells. Interestingly, the lack of CD28...

  16. Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice.

    de Andrade Pereira, Bruna; Maduro Bouillet, Leoneide E; Dorigo, Natalia A; Fraefel, Cornel; Bruna-Romero, Oscar

    2015-01-01

    Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels. PMID:26679149

  17. Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery

    Steinau Hans-Ulrich

    2011-01-01

    Full Text Available Abstract Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin.

  18. Adenoviral-mediated localized CTLA-4Ig gene expression induces long-term allograft pancreas survival and donor-specific immune tolerance in rats

    2008-01-01

    T cell activation following alloantigen recognition plays a critical role in the development of the rejection in all solid organ, tissue and cell transplantation. A recombinant molecule, cytotoxic T lymphocyte antigen 4 antibody (CTLA-4Ig), is known to induce to T-cell into "anergy" by blocking the costimulatory B7-CD28 interaction. Either systemic or localized administration of CTLA-Ig has been shown to prolong allograft survival and induce donor-specific tolerance in some transplant models. In this study, we characterized the expression and immunosuppressive effectiveness of adenoviral-mediated CTLA-4Ig gene transfer. We demonstrated transduction of the allografts with AdCTLA-41g resulted in localized expression, permanent graft survival and stable donor-specific tolerance. In addition, by performing simultaneous dual-organ transplantation, we targeted on immunosuppression through a local expression of CTLA-4Ig via adenoviral-mediated gene transfer into pancreatic allografts.

  19. Pre-Existing Vector Immunity Does Not Prevent Replication Deficient Adenovirus from Inducing Efficient CD8 T-Cell Memory and Recall Responses

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes; Bassi, Maria Rosaria; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2012-01-01

    Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated i...

  20. Evaluation of the immune response to recombinant DNA vaccine and adenoviral vaccine co-expressing the M1 and HA genes of H5N1 influenza virus in mice.

    Guo, Jianqiang; Yao, Lihong; Chen, Aijun; Liu, Xiaoyu; Fu, Jinqi; Xu, Pengwei; Zhang, Zhiqing

    2011-06-01

    In order to evaluate the response to vector-expressed M1 and HA genes of influenza virus in mice, we prepared recombinant plasmid pStar-M1/HA and recombinant adenovirus Ad-M1/HA containing both the full-length matrix protein 1(M1) and hemagglutinin (HA) genes of human H5N1 influenza virus strain A/Anhui/1/2005. We then combined the DNA vaccine and adenoviral vaccine in immunization of BALB/c mice with a prime-boost regime. We immunized the mice with DNA vaccine at day 0 and 28 and with recombinant adenoviral vaccines at day 14 and 42. We took blood samples before each injection and 14 days after the final injection for detection of humoral immune responses. At day 56, we sacrificed the mice and collected splenocytes for detection of cellular immune responses. ELISA and hemagglutination inhibition (HI) assay showed that specific IgG Abs against H5N1 influenza virus was induced in serum of the immunized mice. ELISPOT results confirmed that the specific cellular immune responses were successfully induced against the M1 and HA proteins of H5N1 influenza virus. This study provides new strategy for development of novel influenza vaccines. PMID:22034816

  1. Construction of adenoviral vectors expressing F and G glycoproteins of human respiratory syncytial virus (HRSV Construção de vetores adenovirais expressando as glicoproteínas F e G de vírus respiratório sincicial humano (HRSV

    Ithana Monteiro Kosaka

    2004-06-01

    Full Text Available Human Respiratory Syncytial Virus (HRSV was first characterized in 1957 and has since been recognized as the most common viral cause of severe respiratory tract infection in young infants worldwide. Despite many years of research there is still no effective treatment or any immediate prospect of a vaccine. The HRSV genome is composed of single stranded negative sense RNA and the virion consists of a nucleocapsid packaged within a lipid envelope. The envelope contains spike-like projections, each being a homo-oligomer of one of three transmembrane viral envelope proteins: the attachment protein G, the fusion protein F involved in viral penetration and the small hydrofobic protein SH. The aim of this work was to construct two recombinant replication-defective adenoviruses carrying separately F and G genes from HRSV. This system was chosen because adenovirus delivers genes into target cells with high efficiency in a variety of cell lines and can be used in vitro and in vivo. In order to obtain the recombinant viruses, we did RT-PCR of RNA extracted from the HRSV A2 strain, the genes F and G were cloned in to pAdeno-X vectors. pAdeno-F and pAdeno-G were transfected in HEK-293 cells for the production of recombinant viruses, that expressed efficiently these two proteins and provide us the means for doing functional assays and immunization tests.O Vírus Sincicial Respiratório Humano (HRSV foi isolado e caracterizado pela primeira vez em 1957 e é considerado como o patógeno viral mais freqüente do trato respiratório de bebês e crianças. Apesar de muitos anos de pesquisa, não há ainda um tratamento específico ou uma vacina licenciada. Seu genoma é composto por uma fita simples de RNA polaridade negativa e o vírion consiste em um nucleocapsídeo empacotado por um envelope lipídico. O envelope contém projeções, chamadas espículas, constituídas de homoligômeros de uma das 3 glicoproteínas de membrana: a proteína de ligação G

  2. Capsomere specific bioresponsive coating of adenoviral vectors with pHPMA-copolymers can mediate charge dependent hepatocyte transduction in vivo

    Prill, J.-M.; Pasquarelli, N.; Šubr, Vladimír; Engler, T.; Ulbrich, Karel; Kochanek, S.; Kreppel, F.

    Prague: Institute of Macromolecular Chemistry AS CR, 2012. s. 67. ISBN 978-80-85009-72-9. [Prague Meeting on Macromolecules /76./ - Polymers in Medicine. 01.07.2012-05.07.2012, Prague] Institutional support: RVO:61389013 Keywords : Adenovirus vectors * HPMA Subject RIV: CD - Macromolecular Chemistry

  3. Immunization with Hexon modified adenoviral vectors integrated with gp83 epitope provides protection against Trypanosoma cruzi infection.

    Anitra L Farrow

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary.The "antigen capsid-incorporation" strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5 vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83. This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies.This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses, as evidenced by the production of several Ig isotypes

  4. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus.

    Singh, Neetu; Pandey, Aseem; Jayashankar, Lakshmi; Mittal, Suresh K

    2008-05-01

    Because of the high prevalence of adenovirus (Ad) infections in humans, it is believed that pre-existing Ad-neutralizing antibodies (vector immunity) may negatively impact the immune response to vaccine antigens when delivered by human Ad (HAd) vectors. In order to evaluate whether bovine Ad subtype 3 (BAd3), a non-HAd vector, can effectively elude high levels of pre-existing vector immunity, naïve and HAd serotype 5 (HAd)-primed mice were immunized with BAd-H5HA [BAd3 vector expressing the hemagglutinin (HA) gene from H5N1 influenza virus]. Even in the presence of very high levels of HAd-specific neutralizing antibody, no significant reductions in HA-specific humoral and cell-mediated immune (CMI) responses were observed in HAd-primed mice immunized with BAd-H5HA. In naïve mice immunized with HAd-H5HA (HAd5 vector expressing H5N1 HA) and boosted with BAd-H5HA, the humoral responses elicited were significantly higher (P mice with BAd-H5HA bestowed full protection from morbidity and mortality following a potentially lethal challenge with A/Hong Kong/483/97. These results demonstrate the importance of BAd vectors as an alternate or supplement to HAd vectors for influenza pandemic preparedness. PMID:18301400

  5. Genetic Modification of Baculovirus Expression Vectors

    Shu-fen Li; Hua-lin Wang; Zhi-hong Hu; Fei Deng

    2012-01-01

    As a protein expression vector,the baculovirus demonstrates many advantages over other vectors.With the development of biotechnology,baculoviral vectors have been genetically modified to facilitate high level expression of heterologous proteins in both insect and mammalian cells.These modifications include utilization of different promoters and signal peptides,deletion or replacement of viral genes for increasing protein secretion,integration of polycistronic expression cassette for producing protein complexes,and baculovirus pseudotyping,promoter accommodation or surface display for enhancing mammalian cell targeting gene delivery.This review summarizes the development and the current state of art of the baculovirus expression system.Further development of baculovirus expression systems will make them even more feasible and accessible for advanced applications.

  6. Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation

    Purpose/Objective: The effect of adenoviral-mediated p53 transgene expression on the radiation response of two human prostate cancer cell lines, the p53wild-type LNCaP and p53null PC3 lines, was examined. The objective was to determine if this vector sensitizes cells to radiation independently of their p53 status. Methods and Materials: A recombinant adenovirus-5 vector (RPR/INGN 201, Introgen Therapeutics, Houston, TX) containing a CMV promoter and wild-type p53-cDNA (Ad5-p53) was used to facilitate p53 transgene expression. A multiplicity of infection (MOI) of 10-40 viral particles per cell was used, based on Ad5/CMV/lacz infection and staining for the β-galactosidase reporter gene product. Clonogenic assays were performed to evaluate the degree of sensitization to radiation of viral-transduced cells compared with irradiated nontransduced controls. The relative efficacy of these treatments to induce apoptotic cell death was determined using the TUNEL assay. Results: The delivery of Ad5-p53 (10 MOI) reduced control plating efficiency from 36.5% to 0.86% in the LNCaP cell line and from 75.1% to 4.1% in the PC3 cell line. After correcting for the effect of Ad5-p53 on plating efficiency, the surviving fraction after 2 Gy (SF2) of gamma-irradiation was reduced over 2.5-fold, from 0.187 to 0.072, with transgene p53 expression in the LNCaP cell line. Surviving fraction after 4 Gy (SF4) was reduced over 4.5-fold, from 0.014 to 0.003, after Ad5-p53 treatment. In the PC3 cell line, Ad5-p53 (40 MOI) reduced SF2 over 1.9-fold from 0.708 to 0.367, and SF4 over 6-fold from 0.335 to 0.056. In both the LNCaP and PC3 cell lines, the combination of Ad5-p53 plus radiation (2 Gy) resulted in supra-additive apoptosis (∼20% for LNCaP and ∼15% for PC3 at 50 MOI), above that seen from the addition of the controls; control vector Ad5-pA plus RT (0.15% for LNCaP and 1.44% for PC3), Ad5-p53 alone (28.6% for LNCaP and 21.7% for PC3), RT alone (0% for LNCaP and 0.23% for PC3), or Ad5-p

  7. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Ana Paula Morais Martins Almeida

    2011-08-01

    Full Text Available The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures, has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.

  8. An integrative expression vector for Actinosynnema pretiosum

    Song Ruth

    2007-10-01

    Full Text Available Abstract Background The Actinomycete Actinosynnema pretiosum ssp. auranticum has commercial importance due to its production of ansamitocin P-3 (AP-3, a potent antitumor agent. One way to increase AP-3 production would be to constitutively express selected genes so as to relieve bottlenecks in the biosynthetic pathway; however, an integrative expression vector for A. pretiosum is lacking. The aim of this study was to construct a vector for heterologous gene expression in A. pretiosum. Results A series of integrative expression vectors have been made with the following features: the IS117 transposase from Streptomyces coelicolor, the constitutive ermE* promoter from Saccharopolyspora erythraea, different ribosome-binding site (RBS sequences and xylE as a translational reporter. Positive E. coli clones and A. pretiosum transconjugants were assayed by catechol. pAP42, containing an E. coli consensus RBS, and pAP43, containing an asm19 RBS, gave strong and moderate gene expression, respectively. In addition, an operon construct capable of multi-gene expression was created. Plasmid integration sites in transconjugants were investigated and four different sites were observed. Although the most common integration site was within a putative ORF with sequence similarity to NADH-flavin reductase, AP-3 levels and cell growth of transconjugants were unaffected. Conclusion A set of integrative vectors for constitutive gene expression in A. pretiosum has been constructed. Gene translation is easily determined by colorimetric assay on an agar plate. The vectors are suitable for studies relating to AP-3 biosynthesis as they do not affect AP-3 production.

  9. Molecular and macromolecular alterations of recombinant adenoviral vectors do not resolve changes in hepatic drug metabolism during infection

    Croyle Maria A

    2008-09-01

    Full Text Available Abstract In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several different recombinant adenoviruses at a dose of 5.7 × 1012 virus particles (vp/kg to male Sprague Dawley rats. Wild type adenovirus, containing all viral genes, suppressed CYP3A2 and 2C11 activity by 37% and 39%, respectively within six hours. Levels fell to 67% (CYP3A2 and 79% (CYP2C11 of control by 14 days (p ≤ 0.01. Helper-dependent adenovirus, with all viral genes removed, suppressed CYP3A2 (43% and CYP2C11 (55% within six hours. CYP3A2 remained significantly suppressed (47%, 14 days, p ≤ 0.01 while CYP2C11 returned to baseline at this time. CYP3A2 and 2C11 were reduced by 45 and 42% respectively 6 hours after treatment with PEGylated adenovirus, which has a low immunological profile (p ≤ 0.05. CYP3A2 remained suppressed (34%, p ≤ 0.05 for 14 days while CYP2C11 recovered. Inactivated virus suppressed CYP3A2 activity by 25–50% for 14 days (p ≤ 0.05. CYP2C11 was affected similar manner but recovered by day 14. Microarray and in vitro studies suggest that changes in cellular signaling pathways initiated early in virus infection contribute to changes in CYP.

  10. 腺病毒载体介导胞嘧啶脱氨酶基因转染的前列腺癌细胞株对5-氟胞嘧啶作用敏感性的研究%Sensitization of prostate cancer cell lines to 5-fluorocytosine induced by adenoviral vector carrying a CD transcription unit

    殷莲华; 王新红

    2001-01-01

    目的研究胞嘧啶脱氨酶/5-氟胞嘧啶系统对前列腺癌细胞株的作用.方法细胞培养,细胞转染,药物敏感性实验,观察旁观者效应,动物实验.结果腺病毒载体可以转染所有已建立的前列腺癌细胞株,但是每种细胞株转染所要求的载体浓度以及暴露时间不同.转染的胞嘧啶脱氨酶基因在细胞内的表达高峰出现在不同的时间,但一直持续到11天以后.腺病毒载体介导的胞嘧啶脱氨酶基因转染可以使前列腺癌细胞株提高对5-氟胞嘧啶的敏感性.在LNCap和RM-1细胞株中,只有5%的细胞转染了胞嘧啶脱氨酶基因就可以引起100%的细胞杀伤效应.在动物实验中,用400MOI转染过的肿瘤细胞建立小鼠皮下肿瘤并同时腹腔注射5-氟胞嘧啶,可以有效的抑制肿瘤生长.结论腺病毒载体介导的胞嘧啶脱氨酶基因转染可以提高前列腺癌细胞株对5-氟胞嘧啶的敏感性,胞嘧啶脱氨酶/5-氟胞嘧啶的联合应用能显著抑制小鼠肿瘤生长.%Objective To investigate the efficiency of the cytosine deaminase adenoviral/5-fluorocytosine system on prostate cancer cell lines. Methods We used cell culture, infectivity and sensitivity tests, to observe bystander effect by animal tests. Results Established prostate cancer cell lines are eventually infectible by adenoviral vector. The ratio of vector/cell at which infection occurs depends on the specific cell line. The peak of expression of the transferred cytosine deaminase gene occurred in cells at different time, but persisted beyond 11 days. These prostate cell lines are sensitized to 5-fluorocytosine by infection with adenoviral vector carrying the cytosine deaminase gene. Only 5% of the LNCap and 10% of the RM-1 cells were infected and produced 100% cell death. In the animal test, there was significant inhibition of tumor growth at a ratio of 400 vector particles/cell with the systematic treatment of 5-fluorocytosine. Conclusions Adenoviral

  11. Adenoviral delivery of the EMX2 gene suppresses growth in human gastric cancer.

    Jie Li

    Full Text Available BACKGROUND: EMX2 is a human orthologue of the Drosophila empty spiracles homeobox gene that has been implicated in embryogenesis. Recent studies suggest possible involvement of EMX2 in human cancers; however, the role of EMX2 in carcinogenesis needs further exploration. RESULTS: In this study, we reported that down-regulation of EMX2 expression was significantly correlated with EMX2 promoter hypermethylation in gastric cancer. Restoring EMX2 expression using an adenovirus delivery system in gastric cancer cell lines lacking endogenous EMX2 expression led to inhibition of cell proliferation and Wnt signaling pathway both in vitro and in a gastric cancer xenograft model in vivo. In addition, we observed that animals treated with the adenoviral EMX2 expression vector had significantly better survival than those treated with empty adenoviral vector. CONCLUSION: Our study suggests that EMX2 is a putative tumor suppressor in human gastric cancer. The adenoviral-EMX2 may have potential as a novel gene therapy for the treatment of patients with gastric cancer.

  12. Adenoviral Delivery of the EMX2 Gene Suppresses Growth in Human Gastric Cancer

    Li, Jie; Mo, Minli; Chen, Zhao; Chen, Zhe; Sheng, Qing; Mu, Hang; Zhang, Fang; Zhang, Yi; Zhi, Xiu-Yi; Li, Hui; He, Biao; Zhou, Hai-Meng

    2012-01-01

    Background EMX2 is a human orthologue of the Drosophila empty spiracles homeobox gene that has been implicated in embryogenesis. Recent studies suggest possible involvement of EMX2 in human cancers; however, the role of EMX2 in carcinogenesis needs further exploration. Results In this study, we reported that down-regulation of EMX2 expression was significantly correlated with EMX2 promoter hypermethylation in gastric cancer. Restoring EMX2 expression using an adenovirus delivery system in gastric cancer cell lines lacking endogenous EMX2 expression led to inhibition of cell proliferation and Wnt signaling pathway both in vitro and in a gastric cancer xenograft model in vivo. In addition, we observed that animals treated with the adenoviral EMX2 expression vector had significantly better survival than those treated with empty adenoviral vector. Conclusion Our study suggests that EMX2 is a putative tumor suppressor in human gastric cancer. The adenoviral-EMX2 may have potential as a novel gene therapy for the treatment of patients with gastric cancer. PMID:23029345

  13. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection

    Earlier studies involving comparison of different reporter probes have shown conflicting results between pyrimidine nucleosides [e.g., 2'-fluoro-2'-deoxy-1-β-d-arabinofuranosyl-5-iodouracil (FIAU)] and acycloguanosine derivatives [e.g., penciclovir (PCV), 9-(4-fluoro-3-hydroxymethylbutyl)guanine (FHBG)]. We hypothesized that this reported discrepancy may be related to how the reporter gene is delivered to the cells - stably transfected vs adenoviral infection. We directly compared the uptake characteristics of [18F]FHBG, [3H]PCV, and [14C]FIAU in cell culture and in vivo using an adenoviral mediated gene transfer model and stably transfected cells. We further compared the uptake of three reporter probes using both HSV1-tk and a mutant HSV1-sr39tk expressing cells to assess the optimal reporter probe/reporter gene combination. [14C]FIAU accumulation was greater than that of [3H]PCV and [18F]FHBG in control cells and in HSV1-tk stably transfected cells (P8 pfu), [18F]FHBG and [3H]PCV accumulation was significantly greater than that of [14C]FIAU (P18F]FHBG and [3H]PCV accumulated to a significantly greater extent than [14C]FIAU in C6-stb-sr39tk+ and AdCMV-HSV1-sr39tk infected C6 cells (P14C]FIAU led to significantly higher %ID/g in C6-stb-tk+ xenografts than [18F]FHBG (P14C]FIAU, [18F]FHBG led to as high %ID/g in HSV1-tk expressing hepatocytes and to significantly greater %ID/g in C6-stb-sr39tk+ xenografts and HSV1-sr39tk expressing hepatocytes. Dynamic sequential images showed that [18F]FHBG was well retained in HSV1-sr39tk expressing cells (C6-stb-sr39tk+) for at least 4 h after injection, while it was rapidly cleared from HSV1-tk expressing cells (MH3924A-stb-tk+). [14C]FIAU accumulated in HSV1-tk stably expressing cells to a greater extent than either [3H]PCV or [18F]FHBG. However, the accumulation of [3H]PCV and [18F]FHBG in adenoviral infected C6 cells or hepatocytes was equivalent to or greater than that of [14C]FIAU. These results may be due to intracellular

  14. Construction and expression of SET gene and siRNA recombinant adenovirus vectors

    Xu Bo-qun; Lu Pin-hong; Li Ying; Xue Kai; Li Mei; Ma Xiang; Diao Fei-yan; Cui Yu-gui; Liu Jia-yin

    2010-01-01

    Objective: To construct SET gene recombinant adenovirus vector and SET gene small interfering RNA (SiRNA) recombinant adenovirus vector for over-expression or knock-down of SET levels.Methods: The cDNA sequence of SET was cloned by reverse transcriptive polymerase chain reaction (RT-PCR) and the SET gene fragment was subcloned into adenovirus shuttle plasmid pAdTrack-CMV to construct the shuttle plasmid pAdTrack-SET. The shuttle plasmid pAdtrack-SET was transformed into BJ5183 cells with the adenoviral backbone pAdEasy-1 to obtain the homologous recombinant Ad-CMV-SET and the recombinant Ad-CMV-SET was packaged and amplified in the AD293 cells. The expression of SET in AD293 cells was detected by Western blot. In addition, we constructed SET gene SiRNA recombinant adenovirus vector (Ad-H1-SiRNA/SET) and its efficacy of knockdown of SET protein was detected in infected GC-2spd(ts) cells by Western blot. Results: The recombinant adenovirus vectors, both SET gene recombinant adenovirus vector Ad-CMV-SET and SET gene SiRNA recombinant adenovirus vector Ad-H1-SiRNA/SET, were proven to be constructed successfully by the evidence of endonulease digestion and sequencing. AD293 cells infected with either recombinant adenovirus vector of Ad-CMV-SET or Ad-H1-SiRNA/SET were observed to express GFP. The expression of SET protein was up-regulated significantly in AD293 cells infected with SET gene recombinant adenovirus vector. On the contrast, SET protein was significantly down-regulated in the GC-2spd(ts) cells infected with Ad-H1-SiRNA/SET (P<0.05) and the knockdown efficiency was approximately 50%-70%. Conclusion: The recombinant adenovirus vector Ad-CMV-SET and Ad-H1-SiRNA/SET were successfully constructed and effectively expressed in germ cells and somatic cells. It provides an experimental tool for further study of SET gene in the physiological and pathophysiological mechanism of reproduction-related diseases.

  15. Vector-Mediated In Vivo Antibody Expression.

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. PMID:26104192

  16. Plant Virus Expression Vector Development: New Perspectives

    Kathleen Hefferon

    2014-01-01

    Full Text Available Plant made biologics have elicited much attention over recent years for their potential in assisting those in developing countries who have poor access to modern medicine. Additional applications such as the stockpiling of vaccines against pandemic infectious diseases or potential biological warfare agents are also under investigation. Plant virus expression vectors represent a technology that enables high levels of pharmaceutical proteins to be produced in a very short period of time. Recent advances in research and development have brought about the generation of superior virus expression systems which can be readily delivered to the host plant in a manner that is both efficient and cost effective. This review presents recent innovations in plant virus expression systems and their uses for producing biologics from plants.

  17. A fiber-modified adenoviral vector interacts with immunoevasion molecules of the B7 family at the surface of murine leukemia cells derived from dormant tumors

    Rogée Sophie

    2011-08-01

    Full Text Available Abstract Tumor cells can escape the immune system by overexpressing molecules of the B7 family, e.g. B7-H1 (PD-L1 or CD86, which suppresses the anti-tumor T-cell responses through binding to the PD-1 receptor, and similarly for B7.1 (CD80, through binding to CTLA-4. Moreover, direct interactions between B7-H1 and B7.1 molecules are also likely to participate in the immunoevasion mechanism. In this study, we used a mouse model of tumor dormancy, DA1-3b leukemia cells. We previously showed that a minor population of DA1-3b cells persists in equilibrium with the immune system for long periods of time, and that the levels of surface expression of B7-H1 and B7.1 molecules correlates with the dormancy time. We found that leukemia cells DA1-3b/d365 cells, which derived from long-term dormant tumors and overexpressed B7-H1 and B7.1 molecules, were highly permissive to Ad5FB4, a human adenovirus serotype 5 (Ad5 vector pseudotyped with chimeric human-bovine fibers. Both B7-H1 and B7.1 were required for Ad5FB4-cell binding and entry, since (i siRNA silencing of one or the other B7 gene transcript resulted in a net decrease in the cell binding and Ad5FB4-mediated transduction of DA1-3b/d365; and (ii plasmid-directed expression of B7.1 and B7-H1 proteins conferred to Ad5FB4-refractory human cells a full permissiveness to this vector. Binding data and flow cytometry analysis suggested that B7.1 and B7-H1 molecules played different roles in Ad5FB4-mediated transduction of DA1-3b/d365, with B7.1 involved in cell attachment of Ad5FB4, and B7-H1 in Ad5FB4 internalization. BRET analysis showed that B7.1 and B7-H1 formed heterodimeric complexes at the cell surface, and that Ad5FB4 penton, the viral capsomere carrying the fiber projection, could negatively interfere with the formation of B7.1/B7-H1 heterodimers, or modify their conformation. As interactors of B7-H1/B7.1 molecules, Ad5FB4 particles and/or their penton capsomeres represent potential therapeutic agents

  18. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated E1A and cytosine deaminase genes in cancers of the breast, ovary and colon.

    Akbulut, Hakan; Zhang, Lixin; Tang, Yucheng; Deisseroth, Albert

    2003-05-01

    Prodrug activating transcription unit gene therapy is one of several promising approaches to cancer gene therapy. Combining that approach with conditionally replication-competent viral vectors that are truly tumor specific has been an important objective of recent work. In this study, we report the construction of a new conditionally replication-competent bicistronic adenoviral vector in which the cytosine deaminase (CD) gene and the E1a gene are driven by the L-plastin tumor-specific promoter (AdLpCDIRESE1a). A similar vector driven by the CMV promoter has also been constructed (AdCMVCDIRESE1a) as a control. We have carried out in vitro cytotoxicity in carcinomas of the breast, ovary and colon, and in vivo efficacy studies with these vectors in an animal model of colon cancer. While the addition of the AdLpCDIRESE1a vector to established cancer cell lines showed significant cytotoxicity in tumor cells derived from carcinomas of the breast (MCF-7), colon (HTB-38) and ovary (Ovcar 5), no significant toxicity was seen in explant cultures of normal human mammary epithelial cells (HMEC) exposed to this vector. The addition of 5-fluorocytosine (5FC) significantly increased the cytotoxicity in an additive fashion of both the AdLpCDIRESE1a and AdCMVCDIRESE1a vectors as well as that of the AdLpCD replication incompetent vector to established tumor cell lines. However, no significant cytotoxicity was observed with the addition of 5FC to explant cultures of normal human mammary epithelial cells that had been exposed to the L-plastin-driven vectors. Studies with mixtures of infected and uninfected tumor cell lines showed that the established cancer cell lines infected with the AdLpCDIRESE1a vector generated significant toxicity to surrounding uninfected cells (the "bystander effect") even at a ratio of 0.25 of infected cells to infected + uninfected cells in the presence of 5FC. The injection of the AdLpCDIRESE1a vector into subcutaneous deposits of human tumor nodules in the

  19. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein.

    Roy, Soumitra; Kobinger, Gary P; Lin, Jianping; Figueredo, Joanita; Calcedo, Roberto; Kobasa, Darwyn; Wilson, James M

    2007-09-28

    The development of adenoviral vectors based on non-human serotypes such as the chimpanzee adenovirus simian adenovirus 24 (AdC7) may allow for their utilization in populations harboring neutralizing antibodies to common human serotypes. Because adenoviral vectors can be used to generate potent T cell responses, they may be useful as vaccines against pandemic influenza such as may be caused by the H5N1 strains that are currently endemic in avian populations. The influenza nucleoprotein (NP) is known to provide MHC Class I restricted epitopes that are effective in evoking a cytolytic response. Because there is only low sequence variation in NP sequences between different influenza strains, a T cell vaccine may provide heterosubtypic protection against a spectrum of influenza A strains. An AdC7 vector expressing the influenza A/Puerto Rico/8/34 NP was tested for its efficacy in protecting BALB/c mice against two H5N1 strains and compared to a conventional human adenovirus serotype 5 vaccine. The AdC7 NP vaccine elicited a strong anti-NP T cell response. When tested in a mouse challenge model, there was improved survival following challenge with two strains of H5N1 that have caused human outbreaks, Vietnam/1203/04 and Hong Kong/483/97, although the improved survival reached statistical significance only with the strain from Vietnam. PMID:17728024

  20. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  1. Adenoviral transfer of human interleukin-10 gene in lethal pancreatitis

    Zi-Qian Chen; Yao-Qing Tang; Yi Zhang; Zhi-Hong Jiang; En-Qiang Mao; Wei-Guo Zou; Ruo-Qing Lei; Tian-Quan Han; Sheng-Dao Zhang

    2004-01-01

    AIM: To evaluate the therapeutic effect of adenoviral-vectordelivered human interleukin-10 (hIL-10) gene on severe acute pancreatitis (SAP) rats.METHODS: Healthy Sprague-Dawley (SD) rats were intraperitoneally injected with adenoviral IL-10 gene (AdvhIL-10), empty vector (Adv0) or PBS solution. Blood,liver, pancreas and lung were harvested on the second day to examine hIL-10 level by ELISA and serum amylase by enzymatic assay. A SAP model was induced by retrograde injection of sodium taurocholate through pancreatic duct.SAP rats were then administered with AdvhIL-10, Adv0 and PBS solution by a single intraperitoneal injection 20 min after SAP induction. In addition to serum amylase assay,levels of hIL-10 and tumor necrosis factor-α (TNF-α) were detected by RT-PCR, ELISA and histological study. The mortality rate was studied and analyzed by Kaplan-Meier and log rank analysis.RESULTS: The levels of hIL-10 in the pancreas, liver and lung of healthy rats increased significantly after AdvhIL-10injection (1.42 ng/g in liver, 0.91 ng/g in pancreas); while there was no significant change of hIL-10 in the other two control groups. The concentration of hIL-10 was increased significantly in the SAP rats after AdvhIL-10 injection (1.68 ng/g in liver, 1.12 ng/g in pancreas) compared to the other two SAP groups with blank vector or PBS treatment (P<0.05). The serum amylase levels remained normal in the AdvhIL-10 transfected healthy rats. However,the serum amylase level was significantly elevated in the other two control SAP rats. In contrast, serum amylase was down-regulated in the AdvhIL-10 treated SAP groups.The TNF-α expression in the AdvhIL-10 treated SAP rats was significantly lower compared to the other two control SAP groups. The pathohistological changes in the AdvhIL-10 treated group were better than those in the other two control groups. Furthermore, the mortality of the AdvhIL-10 treated group was significantly reduced compared to the other two control groups (P

  2. [Methods for construction of transgenic plant expression vector: a review].

    Zhang, Yangpu; Yang, Shushen

    2015-03-01

    Construction of recombinant plasmid vector for gene expression is a key step in making transgenic plants and important to study gene function and plant genetic engineering. A right choice of gene construction method can be cost-effective and achieve more diverse recombinant plasmids. In addition to the traditional methods in construction of plant gene expression vectors, such as Gateway technology, three DNA method and one step cloning, a few novel methods have been developed in recent years. These methods include oligonucleotide synthesis-based construction of small fragment gene expression vectors via competitive connection; construction of small RNA expression vector using pre-microRNA; recombination-fusion PCR method which inserts DNA fragments of multiple restriction sites into the target vector; and insertion of a DNA fragment into any region of a linear vector via In-Fusion Kit. Construction of complex vectors with many fragments uses sequence and ligation-independent cloning method, Gibson isothermal assembly or Golden Gate assembly. This paper summarizes our working experience in the area of recombinant vector construction and reports from others with an intention to disseminate ideas about currently widely used DNA recombination methods for plant transformation. PMID:26204753

  3. [Immunological evaluation of vector-expressed M2 and HA genes of H5N1 influenza virus in mice].

    Guo, Jianqiang; Yao, Lihong; Chen, Aijun; Xu, Yi; Liu, Xiaoyu; Shu, Yuelong; Zhang, Zhiqing

    2010-05-01

    We developed vectors expressing two antigen of H5N1 influenza virus. Based on the human H5N1 avian influenza virus strain A/Anhui/1/2005 isolated in China, we amplified the matrix protein 2 (M2) and Hemagglutinin (HA) genes by PCR and subcloned them into pStar vector to construct two genes co-expressing recombinant DNA vaccine pStar-M2/HA. After transfection of 293 cells with the plasmid, we confirmed with indirect immunofluorescence assay (IFA) that M2 and HA genes cloned on plasmid pStar co-expressed successfully. Using Ad-Easy adenovirus vector system, by homologous recombination in bacteria and packaging in 293 cells, we constructed two recombinant adenoviruses, namely Ad-M2 and Ad-HA. After infection of 293 cells with the recombinant adenoviruses, we confirmed with IFA that M2 and HA genes cloned into adenoviruses expressed successfully. We then combined the recombinant DNA vaccine and adenoviral vector vaccines in immunization of BALB/c mice with a prime-boost regime. On day 0 and day 28, we immunized the mice with DNA vaccine and on day 14 and day 42, with recombinant adenovirus vaccines. We took blood samples before each injection and 14 days after the final injection. On day 56, we collected splenocytes from the mice. ELISA and hemagglutination inhibition (HI) assay showed that the vaccines successfully induced specific IgG antibodies against HA protein in serum of the immunized mice. ELISPOT confirmed that the vaccines successfully induced the special cellular immune response to M2 and HA protein of H5N1 influenza virus. The study on combined immunization with M2 and HA genes provided basis for development of novel influenza vaccine. PMID:20684310

  4. Adenoviral-based foot-and-mouth disease virus vaccine: evaluation of new vectors expressing serotype O in bovines

    Foot-and-mouth disease virus (FMDV), an antigenically variable virus, is considered the most important infectious disease of cloven-hoofed animals. Recently serotypes A and O have been the cause of major outbreaks. We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine...

  5. In vivo gene delivery and expression by bacteriophage lambda vectors

    Lankes, HA; Zanghi, CN; Santos, K; Capella, C.; Duke, CMP; Dewhurst, S

    2007-01-01

    Aims Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. Methods and Results Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo...

  6. Adenoviral gene therapy in gastric cancer: A review

    Nima Khalighinejad; Hesammodin Hariri; Omid Behnamfar; Arash Yousefi; Amir Momeni

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors.Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.

  7. Measurement of feline cytokines interleukin-12 and interferon- g produced by heat inducible gene therapy adenoviral vector using real time PCR

    Biologic tumor therapy using Interleukin-12 (IL-12) has shown promise as an adjuvant to radiation therapy. The goals for cancer gene immunotherapy include effective eradication of established tumors and generation of a lasting systemic immune response. Among the cytokines, IL-12 has been found to be most effective gene in eradicating experimental tumors, preventing the development of metastases, and eliciting long-term antitumor immunity. Depending on the tumor model, IL-12 can exert antitumor activities via T cells, NK cells or NKT cells. It induces the production of IFN-g and IFN-inducible protein-10. It is also postulated to have antiangiogenic effects, thus inhibiting tumor formation and metastases. However, its use in clinical trials has been restricted largely owing to its systemic hematologic and hepatotoxicity. We tested the efficacy of adenovirus mediated expression of feline IL-12 gene placed under the control of an inducible promoter, the heat shock proteins (hsp70B). This places gene expression under the control of an external physical agent (hyperthermia), thus offering an 'on-off' switch and potentially reducing systemic toxicity by restricting its expression locally to the tumor. Crandell Feline Kidney (CrFK) cells were infected using the construct and the supernatant was then used to stimulate production of interferon g (IFN-g) in feline peripheral blood mononuclear cells (PBMC). As there is no commercially available ELISA kit currently available to detect or measure feline cytokines, we used real time-PCR to measure cytokine mRNA. These results will be used to initiate a clinical trial in cats with soft tissue sarcomas examining hyperthermia Induced gene therapy in conjunction with radiation therapy. The real time- PCR techniques developed here will be used to quantitatively measure cytokine mRNA levels in the punch biopsy samples obtained from the cats during the clinical trial. Support for this study was in part by NCI grant CA72745

  8. Use of Integrase-Minus Lentiviral Vector for Transient Expression

    Hossein Azadeh

    2012-01-01

    Full Text Available Objective: Lentivirus-derived vectors are among the most promising viral vectors for gene therapy which is currently available, but their use in clinical practice is limited due to associated risk of insertional mutagenesis. Gene targeting is an ideal method for gene therapy, but it has low efficiency in comparison to viral vector methods. In this study, we are going to design and construct an integrase-minus lentiviral vector. This vector is suitable for transient expression of gene and gene targeting with viral vector.Materials and Methods: In this experimental study, three missense mutations were induced in the catalytic domain of Integrase gene in the pLP1 plasmid and resulted D64V, D116A and E152G changes in the amino acid sequence through site directed mutagenesis. The pLenti6.2-GW/EmGFP transfer vector, associated with native and mutated packaging mix, was transfected into 293T cell line. In order to titer the lentivirus stock, the viruses were harvested. Finally, the viruses transduced into COS-7 cell line to assess green fluorescent protein (GFP gene expression by a fluorescence microscopy.Results: Recombinant and wild lentiviruses titer was about 5~8×106 transducing units/ml in COS-7 cell line. The number of GFP-positive cells transduced with native viruses was decreased slightly during two weeks after viral transduction. In contrast, in the case of integrase-minus viruses, a dramatic decrease in the number of GFP positive cells was observed.Conclusion: This study was conducted to overcome the integration of lentiviral genome into a host genome. Nonintegrating lentiviral vectors can be used for transient gene expression and gene targeting if a Target gene cassette is placed in the lentivirus gene structure. This combination method decreases disadvantages of both processes, such as random integration of lentiviruses and low efficiency of gene targeting.

  9. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives

    Chen GX

    2014-10-01

    Full Text Available Guang-xia Chen,1,* Shu Zhang,2–4,* Xiao-hua He,1 Shi-yu Liu,1 Chao Ma,2–4 Xiao-Ping Zou2–4 1Department of Gastroenterology, First People’s Hospital of Xuzhou, Xuzhou, Jiangsu Province, People’s Republic of China; 2Department of Gastroenterology, Drum Tower Hospital, 3Medical School of Nanjing University, 4Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, People’s Republic of China *These authors have contributed equally to the paperAbstract: Gene therapy has promised to be a highly effective antitumor treatment by introducing a tumor suppressor gene or the abrogation of an oncogene. Among the potential therapeutic transgenes, the tumor suppressor gene p53 serves as an attractive target. Restoration of wild-type p53 function in tumors can be achieved by introduction of an intact complementary deoxyribonucleic acid copy of the p53 gene using a suitable viral vector, in most cases an adenoviral vector (Adp53. Preclinical in vitro and in vivo studies have shown that Adp53 triggers a dramatic tumor regression response in various cancers. These viruses are engineered to lack certain early proteins and are thus replication defective, including Gendicine, SCH-58500, and Advexin. Several types of tumor-specific p53-expressing conditionally replicating adenovirus vectors (known as replication-competent CRAdp53 vectors have been developed, such as ONYX 015, AdDelta24-p53, SG600-p53, OBP-702, and H101. Various clinical trials have been conducted to investigate the safety and efficiency of these adenoviral vectors. In this review we will talk about the biological mechanisms, clinical utility, and therapeutic potentials of the replication-deficient Adp53-based and replication-competent CRAdp53-based gene therapy.Keywords: adenovirus, Adp53, CRAdp53

  10. Split-intron retroviral vectors: enhanced expression with improved safety.

    Ismail, S I; Kingsman, S M; Kingsman, A J; Uden, M

    2000-03-01

    The inclusion of retrovirus-derived introns within retrovirus-based expression vectors leads to a fraction of the resulting transcripts being spliced. Such splicing has been shown to markedly improve expression (W. J. Krall et al., Gene Ther. 3:37-48, 1996). One way to improve upon this still further might involve the use of more efficient introns instead of those from the provirus. Currently, however, incorporation of such introns remains self-defeating since they are removed in the nucleus of the producer cell. In the past, elaborate ways to overcome this problem have included the use of alphaviruses to make the vector transcripts within the cytoplasm, thus avoiding the nuclear splicing machinery during vector production (K. J. Li and H. Garoff, Proc. Natl. Acad. Sci. USA 95:3650-3654, 1998). We now present a novel design for the inclusion of introns within a retroviral vector. In essence, this is achieved by exploiting the retroviral replication process to copy not only the U3 promoter but also a synthetic splice donor to the 5'-long-terminal-repeat position during reverse transcription. Once copied, synthesized transcripts then contain a splice donor at their 5' end capable of interacting with a consensus splice acceptor engineered downstream of the packaging signal. Upon transduction, we demonstrate these vectors to produce enhanced expression from near fully spliced (and thus packaging signal minus) transcripts. The unique design of these high titer and high-expression retroviral vectors may be of use in a number of gene therapy applications. PMID:10666267

  11. A versatile expression vector system for mammalian cell factories

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Hansen, Bjarne Gram; Andersen, Mikael Rørdam; Mortensen, Uffe Hasbro

    The development of the field of mammalian cell factories requests fast and high-throughput methods which means high need for simpler and more efficient cloning techniques. This project applies the ligation-free USERTM (uracil-specific excision reagent) cloning technique to construct mammalian...... expression vectors with maximum flexibility....

  12. Novel redox nanomedicine improves gene expression of polyion complex vector

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an RO...

  13. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  14. Adenoviral Vectors for Hemophilia Gene Therapy

    Brunetti-Pierri, N.; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review ...

  15. Expression vectors for the construction of hybrid Ty-VLPs.

    Adams, S E; Richardson, S M; Kingsman, S M; Kingsman, A J

    1994-04-01

    Purification of expressed proteins can be facilitated by expressing the recombinant protein as a fusion with a carrier protein that assembles into particulate structures. This article describes the use of expression vectors in producing a hybrid of the yeast retrotransposon Ty, which self-assembles into virus-like particles (VLPs). Hybrid VLPs can be used in such laboratory applications as the production of polyclonal and monoclonal antibodies, structure/function analyses, the detection of important antigenic determinants, and epitope mapping of monoclonal antibodies. PMID:7859156

  16. Negotiating meaning for the symbolic expressions for vectors and vector equations in a classroom community of practice

    Sweeney, George Franklin

    2012-01-01

    In this study, I analyze the development of meaning for the symbolic expressions for vectors and vector equations in an introductory, inquiry-oriented linear algebra course. Linear algebra is one of the first in-depth experiences that students have with vectors and vector equations, and as such my study examines these meanings in their formative and advanced states. The analysis in this study seeks to answer two fundamental questions : 1. What are the different meanings that this classroom co...

  17. Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors.

    Sheffield, P; Garrard, S; Derewenda, Z

    1999-02-01

    We describe the construction of expression vectors based on three of the most frequently used gene fusion affinity tags [glutathione S-transferase (GST), maltose binding protein (MBP), and the His6 peptide]. The polylinkers of pGEX4T1, pMal-c2, and a pET vector were replaced with the polylinker isolated from the baculovirus expression plasmid pFastBac. Once appropriate restriction sites have been introduced into a gene, it can be fused to all three affinity tags with little effort, allowing expression-screening experiments to be performed efficiently. We discuss the development and use of these vectors with respect to overcoming purification problems encountered for the RhoA GDP/GTP nucleotide dissociation inhibitor (RhoGDI) and their advantages over commercially available expression vectors. PMID:10024467

  18. Imaging of Viral Thymidine Kinase Gene Expression by Replicating Oncolytic Adenovirus and Prediction of Therapeutic Efficacy

    Kim, Eun-Jung; Yoo, Ji Young; Choi, Young-Hwan; Ahn, Keun-Jae; Lee, Jong-Doo; Yun, Chae-Ok; Yun, Mijin

    2008-01-01

    Purpose We have used a genetically attenuated adenoviral vector which expresses HSVtk to assess the possible additive role of suicidal gene therapy for enhanced oncolytic effect of the virus. Expression of TK was measured using a radiotracer-based molecular counting and imaging system. Materials and Methods Replication-competent recombinant adenoviral vector (Ad-ΔE1B19/55) was used in this study, whereas replication-incompetent adenovirus (Ad-ΔE1A) was generated as a control. Both Ad-ΔE1B19/5...

  19. Recombination-ready Sindbis replicon expression vectors for transgene expression

    Olson Ken E

    2007-10-01

    Full Text Available Abstract Background Sindbis viruses have been widely used as tools to study gene function in cells. Despite the utility of these systems, the construction and production of alphavirus replicons is time consuming and inefficient due to potential additional restriction sites within the insert region and lack of directionality for insert ligation. In this report, we present a system useful for producing recombinant Sindbis replicons that uses lambda phage recombination technology to rapidly and specifically construct replicon expression plasmids that contain insert regions in the desired orientation. Results Recombination of the gene of interest with the replicon plasmid resulted in nearly 100% recombinants, each of which contained a correctly orientated insert. Replicons were easily produced in cell culture and packaged into pseudo-infectious viral particles. Insect and mammalian cells infected with pseudo-infectious viral particles expressed various transgenes at high levels. Finally, inserts from persistently replicating replicon RNA were easily isolated and recombined back into entry plasmids for sequencing and subsequent analysis. Conclusion Replication-ready replicon expression plasmids make the use of alphavirus replicons fast and easy as compared to traditional replicon production methods. This system represents a significant step forward in the utility and ease of use of alphavirus replicons in the study of gene function.

  20. Split-Intron Retroviral Vectors: Enhanced Expression with Improved Safety

    Ismail, Said I.; Kingsman, Susan M.; Kingsman, Alan J.; Uden, Mark

    2000-01-01

    The inclusion of retrovirus-derived introns within retrovirus-based expression vectors leads to a fraction of the resulting transcripts being spliced. Such splicing has been shown to markedly improve expression (W. J. Krall et al., Gene Ther. 3:37–48, 1996). One way to improve upon this still further might involve the use of more efficient introns instead of those from the provirus. Currently, however, incorporation of such introns remains self-defeating since they are removed in the nucleus ...

  1. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  2. Construction and Expression of Eukaryotic Expression Vector of Mature Polypeptide of Duck Interferon Alpha Gene

    PEI Fucheng; LI Jingpeng; LI Lu; ZHANG Jianguang; REN Guiping

    2006-01-01

    To study biological activities of Duck Interferon Alpha (DuIFN-α) and prepare antivirus medicine, the eukaryotic expression vector of mature polypeptide of Duck Interferon Alpha (mDuIFN-α) gene was constructed and expressed in insect cell. By means of PCR technique, the mDuIFN-α gene was cloned from pMD-18-duIFN-αrecombinant. The gene was then inserted to pGEM-T vector and identified by restriction endonuclease analysis and sequencing. The mDuIFN-α gene was ligated with the eukaryotic expression vector pMelBacA, then transfected into Sf9cell line. Recombinant polypeptide was effectively expressed in insect cell and its molecular weight was 34 ku.

  3. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  4. Adeno-Associated Virus Vectors (AAV Expressing Phenylalanine Hydroxylase (PAH

    Ayşegül Akbay Yarpuzlu

    2009-06-01

    Full Text Available Recent articles have appeared in the literature reporting use of adeno-associated virus vectors (AAV expressing phenylalanine hydroxylase in animal trials and suggesting its use in treatment of phenylketonuria (PKU as a form of gene therapy However, agents used in gene therapy to deliver genes are not site-specific and DNA is may be put in the wrong place, causing damage to the organism. The adverse immunogenicity of AAVs also needs to be reconsidered. This letter is written to discuss present unreadiness for Phase 1 clinical trials of gene therapy of PKU. Turk Jem 2009; 13: 18-9

  5. [Expression and identification of eukaryotic expression vectors of Brucella melitensis lipoprotein OMP19].

    He, Zuoping; Luo, Peifang; Hu, Feihuan; Weng, Yunceng; Wang, Wenjing; Li, Chengyao

    2016-04-01

    Objective To construct eukaryotic expression vectors carrying Brucella melitensis outer membrane protein 19 (OMP19), express them in transfected Huh7.5.1 and JEG-3 cells, and analyze their role in cell apoptosis. Methods Brucella melitensis lipidated OMP19 (L-OMP19) gene and unlipidated OMP19 (U-OMP19) gene were amplified by PCR and inserted into the vector pZeroBack/blunt. The correct L-OMP19 and U-OMP19 genes verified by XbaI and BamHI double digestion and sequencing were cloned into the lentivirus expression vector pHAGE-CMV-MCS-IZsGreen to construct vectors pHAGE-L-OMP19 and pHAGE-U-OMP19, which were separately transfected into 293FT cells, Huh7.5.1 and JEG-3 cells. L-OMP19 and U-OMP19 in the cells were detected by Western blotting and immunofluorescence technique. Flow cytometry combined with annexin V-PE/7-AAD staining was used to detect the cell apoptosis. Results The lentiviral vectors pHAGE-L-OMP19 and pHAGE-U-OMP19 were constructed correctly and the recombinant lipoproteins L-OMP19 and U-OMP19 expressed in the above cells were well recognized by the specific antibodies against L-OMP19 in Western blotting and immunofluorescence technique. L-OMP19 and U-OMP19 induced JEG-3 cell death, but did not induce the apoptosis of Huh7.5.1 cells. Conclusion The eukaryotic expression vectors of L-OMP19 and U-OMP19 have been constructed successfully. Recombinant lipoproteins L-OMP19 and U-OMP19 expressed in cells have a good antigenicity, which could be used as experimental materials for the research on the relationship between host cells and lipoproteins in Brucella infection. PMID:27053612

  6. Novel redox nanomedicine improves gene expression of polyion complex vector

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  7. Novel redox nanomedicine improves gene expression of polyion complex vector

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  8. Novel redox nanomedicine improves gene expression of polyion complex vector

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  9. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis

    2006-01-01

    To develop a gene therapy strategy for treating bovine mastitis, a new mammary-specific vector containing human lysozyme (hLYZ) cDNA and kanamycin resistance gene was constructed for intramammary expression and clinical studies. After one time acupuncture or intracisternal infusion of healthy cows with 400 μg of the p215C3LYZ vector, over 2.0 μg/ml of rhLYZ could be detected by enzymatic assay for about 3 weeks in the milk samples. Western blotting showed that rhLYZ secreted into milk samples from the vector-injected cows had molecular weight similar to that of the natural hLYZ in human colostrums.Twenty days after the primary injection, the quarters were re-injected with the same vector by quarter acupuncture and even higher concentrations of rhLYZ could be detected. Indirect competitive ELISA of milk samples showed that the vector injection did not induce detectable humoral immune response against hLYZ. Clinical studies showed that twice acupuncture of quarters with the p215C3LYZ vector had overt therapeutic effect on clinical and subclinical mastitis previously treated with antibiotics, including disappearance of clinical symptoms and relatively high microbiological cure rates. These data provide a solid rationale for using the vector to develop gene therapy for treating bovine mastitis.

  10. A Functional Screen for Regulatory Elements that Improve Retroviral Vector Gene Expression

    Groth, Amy C; Emery, David W.

    2010-01-01

    Recombinant retroviruses constitute the most common class of gene delivery vectors used in hematopoietic cell-based gene therapy. However, the use of these vectors can be limited by inadequate levels of transgene expression, often mediated by expression variegation and vector silencing due to chromosomal position effects. Toward the goal of addressing this problem, we sought to identify cis-regulatory elements from the human genome that can improve the level and stability of retroviral vector...

  11. Plasmid vector with temperature-controlled gene expression

    In plasmid pBR327, a fragment 169 b.p. long including promotor p3 of the bla gene has been deleted. The deletional derivative so obtained (pSP2) has been used to construct a recombinant plasmid bearing a fragment of phage λ DNA with the p/sub R/ promotor and the gene of the temperature-sensitive repressor cI. It has been shown that the plasmid vector so constructed (pCE119) with promotor cR performs repressor-cI-controlled transcription of the bla gene, as a result of which induction for an hour at 420C leads to an almost 100-fold increase in the amount of product of the bla gene as compared with that at 320C. The possibility of the use of plasmid cPE119 for the expression of other genes has been demonstrated for the case of the semisynthetic β-galactosidase gene of E. coli. In this case, on induction of the cells with recombinant plasmid pCEZ12 for 3 hours at 420C, a 300-fold increase in the amount of active β-galactosidase, as compared with that at 320C, was observed. It is important to point out that under these conditions (at 420C), at least 99% of the cells containing the plasmid retain the phenotype lacZ+, which indicates the stability of the proposed vector system

  12. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  13. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    Jespersen, Thomas; Grunnet, M; Angelo, K;

    2002-01-01

    and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained...

  14. A new method to customize protein expression vectors for fast, efficient and background free parallel cloning

    Scholz, J.; Besir, H.; Strasser, C; Suppmann, S

    2013-01-01

    Background: Expression and purification of correctly folded proteins typically require screening of different parameters such as protein variants, solubility enhancing tags or expression hosts. Parallel vector series that cover all variations are available, but not without compromise. We have established a fast, efficient and absolutely background free cloning approach that can be applied to any selected vector. Results: Here we describe a method to tailor selected expression vectors for para...

  15. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  16. Construction of eukaryotic expression vector NONO expression product and its intracellular localization in cells

    Cui-ling WU

    2011-04-01

    Full Text Available Objective To construct an eukaryotic expression vector NONO(containing nucleotide octamer-binding protein without POU domain of mouse,and detect its expression and intracellular localization in NIH3T3 cells,so as to obtain a tool to assist the study of intracellular biological functions of NONO.Methods The total RNA was extracted from the liver of BALB/c mice,the corresponding coding sequences of mouse NONO(GenBank accession No.53237024 were amplified by RT-PCR and then cloned into hemagglutinin(HA-tagged vector of pcDNA3-HA to form a new recombinant plasmid named pcDNA3-NONO-HA.The recombinant plasmid was verified by polymerase chain reaction(PCR and double digestion by restricted endonuclease,followed by sequencing.The recombinant plasmid was then transfected into NIH3T3 cells with the liposome transfection reagent Polyfect as a medium.Twenty-four hours later,immunofluorescence was performed.After detection of fusion protein NONO-HA by specific antibody of HA tag and the Alexa Fluor 488 coupled secondary antibody,the expression and localization of the fusion protein were observed by fluorescence microscopy.Results The results of identification by PCR,digestion with restriction endonuclease and sequencing indicated that the recombinant plasmid pcDNA3-NONO-HA was correctly constructed.After transfection of the recombinant plasmid,the fusion protein was found to highly express in NIH3T3 cells and distribute mainly in the cytoplasm.Conclusion The eukaryotic expression vector for HA-NONO fusion protein is successfully constructed and effectively expressed in mammalian cells.The constructed vector may serve as an assistant tool in the study of intracellular biological functions of NONO.

  17. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  18. Cloning vectors for expression of cDNA libraries in mammalian cells.

    Murphy, A.J.; Efstratiadis, A

    1987-01-01

    We have constructed a series of compound cloning vectors (lambda ZD vectors), each consisting of phage lambda arms carrying a modified version of the retroviral expression vector pZIP-neoSV (x)1. cDNA, inserted into a cloning site present in the retroviral vector component, is cloned with high efficiency using the lambda system. A cDNA library in plasmids is then released by homologous recombination between the retroviral long terminal repeats. Retroviral transduction is achieved by transient...

  19. A Large U3 Deletion Causes Increased In Vivo Expression from a Nonintegrating Lentiviral Vector

    Bayer, Matthew; Kantor, Boris; Cockrell, Adam; Ma, Hong; Zeithaml, Brian; Li, Xiangping; McCown, Thomas; Kafri, Tal

    2008-01-01

    The feasibility of employing nonintegrating lentiviral vectors has been demonstrated by recent studies showing the ability of nonintegrating lentiviral vectors to maintain transgene expression in vitro and in vivo. Furthermore, HIV-1 vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. How...

  20. The construction of adenovirus vector carrying human tissue inhibitor of metalloproteinase-2 gene

    Objective: To construct an adenoviral vector carrying human tissue inhibitor of metalloproteinase-2 (TIMP-2) gene for gene therapy. Methods: A recombinant adenovirus (AdhTIMP-2) containing human TIMP-2 cDNA fragment was generated by homologous recombination in BJ5183 bacteria. Recombinant plasmids were screened by alteration of antibiotic. The adenovirus vector was then package and amplified in 293 cells. The expression of TIMP-2 was detected by the techniques of Western blot and RT-PCR. Results: The recombinant adenoviral vector carrying human TIMP-2 was constructed. The titer was 4 x 1011 pfu/ml after purification. The expression of TIMP-2 gene in 293 cells was detected by RT-PCR. After the 293 cells were transfected with AdhTIMP-2 24 hours, TIMP-2 protein could be detected in the medium by Western blot. Conclusions: The recombinant adenoviral vector carrying human TIMP-2 is successfully constructed and paved the way for further application in vascular disease gene therapy

  1. A Large U3 Deletion Causes Increased In Vivo Expression from a Nonintegrating Lentiviral Vector

    Bayer, Matthew; Kantor, Boris; Cockrell, Adam; Ma, Hong; Zeithaml, Brian; Li, Xiangping; McCown, Thomas; Kafri, Tal

    2008-01-01

    The feasibility of employing nonintegrating lentiviral vectors has been demonstrated by recent studies showing the ability of nonintegrating lentiviral vectors to maintain transgene expression in vitro and in vivo. Furthermore, HIV-1 vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. Here we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector’s U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained. PMID:18797449

  2. Gene Cloning of Murine α-Fetoprotein Gene and Construction of Its Eukaryotic Expression Vector and Expression in CHO Cells

    易继林; 田耕

    2003-01-01

    To clone the murine α-fetoprotein (AFP) gene, construct the eukaryotic expression vector of AFP and express in CHO cells, total RNA were extracted from Hepa 1-6 cells, and then the murine α-fetoprotein gene was amplified by RT-PCR and cloned into the eukaryotic expression vector pcDNA3.1. The recombinant of vector was identified by restriction enzyme analysis and sequencing. A fter transient transfection of CHO cells with the vector, Western blotting was used to detect the expression of AFP. It is concluded that the 1.8kb murine α-fetoprotein gene was successfully cloned and its eukaryotic expression vector was successfully constructed.

  3. Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression

    Lisowski, Leszek; Lau, Ashley; Wang, Zhongya; Zhang, Yue(Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.); Zhang, Feijie; Grompe, Markus; Kay, Mark A

    2012-01-01

    Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we created new rAAV-rDNA vectors, with an expression cassette flanked by ribosomal DNA (rDNA) sequences cap...

  4. Development of expression vectors for Escherichia coli based on the pCR2 replicon

    Deb J K; Walia Rupali; Mukherjee K J

    2007-01-01

    Abstract Background Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility. Results We utilized the pCR2 replicon of Corynebacterium renale, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% st...

  5. Expression patterns of cotton chloroplast genes during development: implications for development of plastid transformation vectors

    In order to express genes of interest in plastids, transformation vectors must be developed that include appropriate promoters to drive expression at effective levels in both green and non-green tissues. Typically, chloroplasts are transformed with vectors that contain ribosomal RNA promoters for h...

  6. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors. PMID:26519158

  7. A set of ligation-independent expression vectors for co-expression of proteins in Escherichia coli.

    Chanda, Pranab K; Edris, Wade A; Kennedy, Jeffrey D

    2006-05-01

    A set of ligation-independent expression vectors system has been developed for co-expression of proteins in Escherichia coli. These vectors contain a strong T7 promoter, different drug resistant genes, and an origin of DNA replication from a different incompatibility group, allowing combinations of these plasmids to be stably maintained together. In addition, these plasmids also contain the lacI gene, a transcriptional terminator, and a 3' polyhistidine (6x His) affinity tag (H6) for easy purification of target proteins. All of these vectors contain an identical transportable cassette flanked by suitable restriction enzyme cleavage sites for easy cloning and shuttling among different vectors. This cassette incorporates a ligation-independent cloning (LIC) site for LIC manipulations, an optimal ribosome binding site for efficient protein translation, and a 6x His affinity tag for protein purification Therefore, any E. coli expression vector of choice can be easily converted to LIC type expression vectors by shuttling the cassette using the restriction enzyme cleavage sites at the ends. We have demonstrated the expression capabilities of these vectors by co-expressing three bacterial (dsbA, dsbG, and Trx) and also two other mammalian proteins (KChIP1 and Kv4.3). We further show that co-expressed KChIP1/Kv4.3 forms soluble protein complexes that can be purified for further studies. PMID:16325426

  8. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors

    Lai, Yi; Yue, Yongping; LIU, MINGJU; Ghosh, Arkasubhra; Engelhardt, John F.; Jeffrey S. Chamberlain; Duan, Dongsheng

    2005-01-01

    Although adeno-associated virus (AAV)-mediated gene therapy has been hindered by the small viral packaging capacity of the vector, trans-splicing AAV vectors are able to package twice the size of the vector genome. Unfortunately, the efficiency of current trans-splicing vectors is very low. Here we show that rational design of the gene splitting site has a profound influence on trans-splicing vector-mediated gene expression. Using mRNA accumulation as a guide, we generated a set of efficient ...

  9. 腺病毒介导过氧化物酶体增殖物激活受体-γ1基因脑室内转染对大鼠缺血/再灌注脑的保护作用%The neuroprotection of adenoviral vector-mediated PPAR-γ1 intracerebroventricular transfection against the ischemia/reperfusion injury in rats

    唐吉伟; 徐军美; 钱自亮

    2012-01-01

    Objective To explore the feasibility of PPAR-γ1 gene transfection via intracerebroventricular injection and possible protective effect against cerebral ischemia reperfusion injury.Methods Ninety adult male SD rats were randomly divided into 6 groups(n=18).In group Ⅰ,the rats were intracerebroventricularly injected with normal saline 0.1 ml.In group Ⅱ,the rats were injected with empty adenoviral(Adv)vector 0.1 ml.In group Ⅲ,the rats were injected with 0.1 ml Adv-PPAR-γ1 and the group Ⅳ received Adv-EGFP 0.1 ml.The group Ⅴ was intragastrically administered with Pioglitazone.After 3 days,middle cerebral artery occlusion model was established.The group I was sham-operation group.In group Ⅱ-Ⅴ middle cerebral artery was obstructed for 90 min followed by reperfusion for 24 h.Twenty-four hours after operation,samples were collected.The expression of green fluorescent protein in Group Ⅳ was observed with fluorescence microscope to assess the adenovirus-mediated transfection.The cerebral infarction volume was measured by triphenyltetrazolium chloride(TTC)staining.The permeability of blood-brain barrier was determined by Evan's blue.Brain water was calculated by wet-dry weight method.The histopathology was observed under light microscope and electron microscope.The activity of myeloperoxidase(MPO)was tested.The expressions of IL-1β,inter-cellular adhesion mdecule-1(ICAM-1),aquaporin protein(AQP-4)and matrix metalloproteinase-9(MMP-9)protein were determined by Western Blotting.Results After the animals were intracerebroventricularly administered Adv-EGFP plasmid,that the fluorescence for EGFP was positive in brain tissue suggested the successful transfection of viral gene.In response to I/R injury,the permeability of blood-brain barrier(0.094 5±0.009 5),brain water(87.4±4.7),and the activity of MPO were dramatically increased(0.213±0.044)as well as the cerebral infarction volume(42.3±2.6).The expressions of IL-1β(0.84±0.05),ICAM-1(0.85±0.07),AQP-4

  10. Usefulness of intra-arterial embolization method using gelfoam particles in effective gene transduction of adenoviral vector for liver-directed gene therapy: an preliminary animal study in dogs

    Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. Using the angiographic approach, three dogs each weighing 9.5-11kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x1011 particles/kg of recombinant adv. CMV.LacZ(LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by X-gal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy

  11. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high

  12. Construction of Prokaryotic Expression Vector for pbv220/NT4-ADNF-9

    ZHENG Guo-xi; ZHU Kang; JING Yang; WEI Jun-rong; ZHU Hong-liang

    2008-01-01

    Objective To construct a prokaryotic expression vector bearing fusion gene NT4-ADNF-9 for future studies on genetic therapies for sensorineural deafness. Methods Double strand ADNF-9 Edna was synthesized using asymmetrical primer/templates and ligated to the 3' terminal of signal and leader peptides of neurotrophin 4 (NT4). The fusion gene NT4-ADNF-9, was subeloned into prokaryotic expression vector Pbv220, and named Pbv220/NT4-ADNF-9. DNA sequence of the fusion gene was analyzed. The fusion protein was isolated by SDS-PAGE and its bioactivity was evaluated using primary culture of day 8 chicken embryonic DRGcells. Results The correct sequence of fusion gene NT4-ADNF-9 was successfully subcloned into the Pbv220 vector. The expressed ADNF-9 protein showed its effects in promoting cell survival and neurite growth. Conclusion Prokaryotic expression vector Pbv220/NT4-ADNF-9 was constructed successfully and the expressed fusion protein demonstrated satisfactory bioactivity.

  13. Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle

    Van den Berghe Loïc

    2007-10-01

    Full Text Available Abstract Background Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals. Results Our data demonstrate that the efficiency of the FGF-1 IRES is comparable to that of the EMCV IRES for long term expression of bicistronic transgenes in mouse muscle, whereas the FGF-2 IRES has a very poor activity. Interestingly, we show that despite the global decrease of vector expression over time, the ratio of firefly to renilla luciferase remains stable with bicistronic vectors containing the FGF-1 or FGF-2 IRES and is slightly affected with the EMCV IRES, whereas it is clearly unstable for mixed monocistronic vectors. In addition, long term expression more drastically decreases with monocistronic vectors, and is different for single or mixed vector injection. Conclusion These data validate the use of bicistronic vectors rather than mixed monocistronic vectors for long term expression, and support the use of the

  14. Gene Therapy for Bladder Overactivity and Nociception with Herpes Simplex Virus Vectors Expressing Preproenkephalin

    Yokoyama, Hitoshi; Sasaki, Katsumi; Franks, Michael E.; Goins, William F.; Goss, James R; de Groat, William C.; Glorioso, Joseph C; Chancellor, Michael B.; Yoshimura, Naoki

    2009-01-01

    Interstitial cystitis/painful bladder syndrome (IC/PBS) is a major challenge to treat. We studied the effect of targeted and localized expression of enkephalin in afferent nerves that innervate the bladder by gene transfer using replication-defective herpes simplex virus (HSV) vectors in a rat model of bladder hyperactivity and pain. Replication-deficient HSV vectors encoding preproenkephalin, which is a precursor for Met- and Leu-enkephalin, or control vector encoding the lacZ reporter gene,...

  15. A novel adenovirus vector for easy cloning in the E3 region downstream of the CMV promoter

    Orfanoudakis Georges; Boulade-Ladame Charlotte; Mailly Laurent; Deryckere François

    2008-01-01

    Abstract The construction of expression vectors derived from the human adenovirus type 5 (Ad5), usually based on homologous recombination, is time consuming as a shuttle plasmid has to be selected before recombination with the viral genome. Here, we describe a method allowing direct cloning of a transgene in the E3 region of the Ad5 genome already containing the immediate early CMV promoter upstream of three unique restriction sites. This allowed the construction of recombinant adenoviral gen...

  16. Intranasal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances Protection by Parenteral Mycobacterium bovis BCG Immunization against Pulmonary Tuberculosis

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-01-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to...

  17. Serial bone marrow transplantation reveals in vivo expression of the pCLPG retroviral vector

    Fratini Paula

    2010-01-01

    Full Text Available Abstract Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system.

  18. A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum

    Veltman, Douwe M.; Akar, Gunkut; Bosgraaf, Leonard; Van Haastert, Peter J. M.

    2009-01-01

    A new set of extrachromosomal Dictyostelium expression vectors is presented that can be modified according to the experimental needs with minimal cloning efforts. To achieve this, the vector consists of four functional regions that are separated by unique restriction sites, (1) an Escherichia coli r

  19. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  20. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    Michael A van Geer; Koert FD Kuhlmann; Conny T Bakker; Fibo JW ten Kate; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions.METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices.Tissue slices were cultured ex vivo for 1-6 d in an incubator using 95% O2. Slices were subsequently analyzed for viability and morphology. In addition the slices were incubated with different viral vectors expressing the repor ter genes GFP or DsRed.Expression of these reporter genes was measured at 72 h after infection.RESULTS: With the Krumdieck tissue slicer, uniform slices could be generated from pancreatic tissue but only upon embedding the tissue in 3% low melting agarose. Immunohistological examination showed the presence of all pancreatic cell types. Pancreatic normal and cancer tissue slices could be cultured for up to 6 d, while retaining viability and a moderate to good morphology. Reporter gene expression indicated that the slices could be infected and transduced efficiently by adenoviral vectors and by adeno associated viral vectors, whereas transduction with lentiviral vectors was limited. For the adenoviral vector, the transduction seemed limited to the peripheral layers of the explants.CONCLUSION: The presented sys tem al lows reproducible processing of minimal amounts of pancreatic tissue into slices uniform in size, suitable for pre-clinical evaluation of gene therapy vectors.

  1. Multiple shRNA expressions in a single plasmid vector improve RNAi against the XPA gene

    To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells

  2. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load

    Hoegh-Petersen, Mette; Thomsen, Allan R; Christensen, Jan P; Holst, Peter J

    2009-01-01

    -infection. Adenovirus-based vaccines are substantially more immunogenic than DNA vaccines and can be applied to induce mucosal immunity. Here we show that a significant reduction of the late viral load in the spleens, at 60 days post-infection, was achieved when immunizing mice both intranasally and subcutaneously with...

  3. CONSTRUCTION,EXPRESSION AND BIOLOGICAL ASSESSMENT OF BPI23—Fcγ1 RECOMBINANT PROTEIN PROKARYOTIC EXPRESSION VECTOR

    安云庆; 管远志; 等

    2002-01-01

    Objective:To construct pBV-BPI600-Fcγ1700 recombinant expression vector,to transform it into Escherichia coli DH5α,and to induce the expression of BPI23-Fcγ1 anti-bacterial recombinant protein.Methods:Genes coding for BPI23 and Fcγ1 were amplified by RT-PCR from mRNA extracted from Hl-60 cell and normal human leukocytes;recombinant cloning vector and recombinant expression vector were then constructed.pBV-BPI600-Fcγ1700 recombinant expression vector was transformed into the competent Escherichia coli DH5α and BPI23-Fcγ1 recombinant protein was expressed by a temperature-induced method.Results:(1)Expected amplified products BPI600bp and Fcγ1700bp were obtained by RT-PCR method.(2)pUC18-BPI180,pUC18-BPI420 and pUC18-Fcγ1700 recombinant cloning vectors were successfully constructed, and sequences were identical with the reported ones.(3)pBV-BPI600-Fcγ1700 recombinant expression vector was successfully constructed,and the enzyme digestion analysis showed an expected result.(4)The expression level of BPI23-Fcγ1 recombinant protein accounted for 20% of total bacterial proteins.(5)The renatured BPI23-Fcγ1 recombinant protein showed bacteriocidal activity and biological function of complement fixation,and opsonization.Conclusion:pBV-BPI600-Fcγ1700 recombinant expression vector was successfully constructed,and BPI23-Fcγ1 recombinant protein with double biological activity of BPI and IgGFc was expressed in Escherichia coli.

  4. Seeking gene relationships in gene expression data using support vector machine regression

    Yu Robert; DeHoff Kevin; Amos Christopher I; Shete Sanjay

    2007-01-01

    Abstract Several genetic determinants responsible for individual variation in gene expression have been located using linkage and association analyses. These analyses have revealed regulatory relationships between genes. The heritability of expression variation as a quantitative phenotype reflects its underlying genetic architecture. Using support vector machine regression (SVMR) and gene ontological information, we proposed an approach to identify gene relationships in expression data provid...

  5. Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Korson Mark

    2007-04-01

    Full Text Available Abstract Background Methylmalonic acidemia (MMA, a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT. Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition. Methods To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine Mut embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the MUT gene. Enzymatic and expression studies were used to assess the extent of functional correction. Results Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or Mut murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-14C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes. Conclusion These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.

  6. Construction and identification of recombination expression vector Ksp-Cadherin-Gpx1-Klk1

    解立怡; 薛武军; 项和立; 麻孙凯

    2008-01-01

    Objective To construct and identify the Gpx1-Klk1 vector which contains kidney-specific promoter (Ksp-cadherin). Methods Through PCR amplification, the human Gpx1, Klk1, and Ksp-cadherin cDNA were obtained by taking Gpx1 cDNA, Klk1 cDNA, and Ksp-cadherin BAC as templates. After being testified, the PCR products were inserted into the expressive vector pIRES-EGFP step-by-step to produce a recombinant vector Ksp-cadherin-Gpx1-Klk1. This vector was examined by restriction enzyme digestion and sequence analysis...

  7. Stable Gammaretroviral Vector Expression during Embryonic Stem Cell-Derived In Vitro Hematopoietic Development

    Ramezani, Ali; Hawley, Teresa S.; Hawley, Robert G.

    2006-01-01

    Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are subjected to in vitro hematopoietic differentiation. Here we report the construction of a self-inactivating vector from MSCV, MSinSB, which transmits an intron embedded within the internal transgene cassette to transduced cells. The internal transgene transcripti...

  8. Expression of truncated dystrophin cDNAs mediated by a lentiviral vector

    Shunchang Sun; Haitao Chen; Weidong Chen; Jingbo He; Yunsheng Peng

    2008-01-01

    Background: The success of Duchenne muscular dystrophy gene therapy requires promising tools for gene delivery and mini-gene cassettes that can express therapeutic levels of a functional protein. Aims: To explore the expression feasibility of truncated dystrophin cDNAs mediated by a lentiviral vector derived from feline immunodeficiency virus. Materials and Methods: Three truncated dystrophin cDNAs were constructed by PCR cloning, then these cDNAs were inserted into lentiviral vectors. R...

  9. Construction and transfection of sense/antisense eukaryotic expression vectors for human cathepsin L gene

    Maolin He; Anmin Chen

    2005-01-01

    Objective: To obtain sense/antisense eukaryotic expression vectors for human cathepsin L gene, and study the biological effects on human osteosarcoma cell line MG-63 after transfection. Methods: Cathepsin L gene sense/antisense eukaryotic expression vectors were constructed with recombinant technology and transfected into the human osteosarcoma cell line MG-63. The expression of cathepsin L gene mRNA was examined with RT-PCR and the expression of cathepsin L was examined with Western blot. Results: The sense/antisense recombinant eukaryotic expression vectors for cathepsin L were successfully constructed and transfected into MG-63 cell.Conclusion: Antisense cathepsin L gene can significantly inhibit the expression of cathepsin L mRNA and protein.

  10. Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice

    Schmitz, V; Wang, L.; Barajas, M. (Miguel); Gomar, C.; Prieto, J.; Qian, C

    2004-01-01

    Aim and method: In this study, we explored the responsiveness of different tumour entities (colorectal carcinoma (CRC), hepatocellular carcinoma (HCC), and the murine Lewis lung carcinoma (LLC)) to angiostatic antitumour treatment with two recombinant adenoviral vectors encoding angiostatin-like molecule (AdK1-3) and endostatin (Adendo).

  11. Amplification of inflammation in emphysema and its association with latent adenoviral infection.

    Retamales, I; Elliott, W M; Meshi, B; Coxson, H O; Pare, P D; Sciurba, F C; Rogers, R M; Hayashi, S; Hogg, J C

    2001-08-01

    This study examines the hypothesis that the cigarette smoke-induced inflammatory process is amplified in severe emphysema and explores the association of this response with latent adenoviral infection. Lung tissue from patients with similar smoking histories and either no (n = 7), mild (n = 7), or severe emphysema (n = 7) was obtained by lung resection. Numbers of polymorphonuclear cells (PMN), macrophages, B cells, CD4, CD8 lymphocytes, and eosinophils present in tissue and airspaces and of epithelial cells expressing adenoviral E1A protein were determined using quantitative techniques. Severe emphysema was associated with an absolute increase in the total number of inflammatory cells in the lung tissue and airspaces. The computed tomography (CT) determined extent of lung destruction was related to the number of cells/m(2) surface area by R(2) values that ranged from 0.858 (CD8 cells) to 0.483 (B cells) in the tissue and 0.630 (CD4 cells) to 0.198 (B cells) in the airspaces. These changes were associated with a 5- to 40-fold increase in the number of alveolar epithelial cells expressing adenoviral E1A protein in mild and severe disease, respectively. We conclude that cigarette smoke-induced lung inflammation is amplified in severe emphysema and that latent expression of the adenoviral E1A protein expressed by alveolar epithelial cells influenced this amplification process. PMID:11500352

  12. AAVPG: A vigilant vector where transgene expression is induced by p53

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl2, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×105±0.43×105 photons/s; post-treatment, 6.6×105±2.1×105 photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress

  13. AAVPG: A vigilant vector where transgene expression is induced by p53

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E., E-mail: bstrauss@usp.br

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  14. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    Fuerstenberg, S; Beug, H; Introna, M;

    1990-01-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The...... exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells....

  15. [Construction of a set of secreting expression vectors for Saccharomyces cerevisiea].

    Zhao, Yingyi; Liang, Shizhong; Huang, Kun; Huang, Ribo

    2002-08-01

    The DNA fragment ecoding the Signal peptide of inulinase of Kluyveromyces smarxianu was synthesized chemically. This fragment was cloned in-frame in the expression vector pYES2 of Saccharomyces cerevisiae, resulting in a set of new secreting expression vectors pYES2 I, pYES2 II, pYES2 III. The L-Asparaginase gene (ASN) of E. coli and alpha-acetylactate decarboxylase gene (ALDC) of B. brevis which were amplified by PCR and cloned into the new vectors respectively were transformed into Saccharomyces cerevisia, and most of enzyme activities were secreted into the medium. The new secreting expression vectors still have excellent segregational stability even after growth for 100 h in the absence of selective pressure. PMID:12557548

  16. Construction of Fusion Expression Vector Carrying GFP and ZmCIPK

    TAI Fu-ju; WANG Qi; WANG Wei; SHEN Teng-fei; LI Xiao

    2011-01-01

    [Objective] The aim was to isolate the CBL-interacting protein kinases (CIPK) from maize (Zea mays L. ) and construct the fusion gene expression vector which consisted the ZmCIPK8 and GFP. [Method] The ZmClPK8 cDNA was successfully cloned by using RT-PCR method. And then, it was connected to the pBlueScript SK (pSK) plasmid, which contained the GFP gene. So that the fusion gene vector pSKCIPK-GFP was obtained. Then, the fusion gene was connected into the efficient plant expression vector PB1121 to construct the fusion gene expression vector PBI-ClPK-GFP. At last, the recombined expression vector was transformed to Agrobacterium tumefaciems LBA4404 to produce the engineering strain LBA4404-PBI-ClPK-GFP. [Result] The fusion gene expression vector which consisted of GFP and ZmCIPKB gene and engineering strain LBA4404-PBI-ClPK-GFP were successfully constructed. [Conclusion] The results lays a foundation for further study of subcellular localization of ZmCIPK8, which can help to clarify the molecular mechanism of regulation serious stresses, and also provides an important basis for the research on resistance stress engineering of maize.

  17. Expression of truncated dystrophin cDNAs mediated by a lentiviral vector

    Shunchang Sun

    2008-01-01

    Full Text Available Background: The success of Duchenne muscular dystrophy gene therapy requires promising tools for gene delivery and mini-gene cassettes that can express therapeutic levels of a functional protein. Aims: To explore the expression feasibility of truncated dystrophin cDNAs mediated by a lentiviral vector derived from feline immunodeficiency virus. Materials and Methods: Three truncated dystrophin cDNAs were constructed by PCR cloning, then these cDNAs were inserted into lentiviral vectors. Recombinant lentiviruses were generated by transient transfection of lentiviral vector constructs into 293Ad 5+ cells. Cultured myoblasts were then infected with recombinant lentiviruses. Expression of truncated dystrophin cDNAs was detected by Western blot analysis. Results: Mediated by lentiviral vectors, three cDNAs constructed by PCR cloning expressed relative truncated dystrophins in cultured myoblasts. Conclusions: Truncated dystrophin cDNAs can express themselves successfully mediated by feline immunodeficiency virus vectors. It offers the possibility of an approach utilizing truncated dystrophin cDNAs and lentiviral vectors toward gene therapy of Duchenne muscular dystrophy.

  18. Construction of vectors for inducible and constitutive gene expression in Lactobacillus.

    Duong, Tri; Miller, Michael J; Barrangou, Rodolphe; Azcarate-Peril, M Andrea; Klaenhammer, Todd R

    2011-05-01

    Microarray analysis of the genome of Lactobacillus acidophilus identified a number of operons that were differentially expressed in response to carbohydrate source or constitutively expressed regardless of carbohydrate source. These included operons implicated in the transport and catabolism of fructooligosaccharides (FOS), lactose (lac), trehalose (tre) and genes directing glycolysis. Analysis of these operons identified a number of putative promoter and repressor elements, which were used to construct a series of expression vectors for use in lactobacilli, based on the broad host range pWV01 replicon. A β-glucuronidase (GusA3) reporter gene was cloned into each vector to characterize expression from each promoter. GUS reporter assays showed FOS, lac and tre based vectors to be highly inducible by their specific carbohydrate and repressed by glucose. Additionally, a construct based on the phosphoglycerate mutase (pgm) promoter was constitutively highly expressed. To demonstrate the potential utility of these vectors, we constructed a plasmid for the overexpression of the oxalate degradation pathway (Frc and Oxc) of L. acidophilus NCFM. This construct was able to improve oxalate degradation by L. gasseri ATCC 33323 and compliment a L. acidophilus oxalate-deficient mutant. Development of these expression vectors could support several novel applications, including the expression of enzymes, proteins, vaccines and biotherapeutics by intestinal lactobacilli. PMID:21375708

  19. Interleukin-2 expression and glioma cell proliferation following Vaceinia vector gene transfection in vivo

    Xiaogang Wang; Xuezhong Wei; Jiangqiu Liu

    2008-01-01

    BACKGROUND: The effectiveness of gene therapy is closely related to the efficiency of vector transfection and expression.OBJECTIVE: This study was designed to transfect a human brain glioma cell line with recombinant Vaccinia virus expressing the interleukin-2 (rVV-IL-2) gene, and to observe IL-2 expression and glioma cell proliferation potential after transfection. DESIGN: Experimental observation. SETTING: Department of Neurosurgery, Shenyang Military Area Command of Chinese PLA. MATERIALS: The rVV-IL-2 vectors were obtained through homologous recombination and screening in the Second Military Medical University of Chinese PLA. The human brain glioma cell line and IL-2-dependent cells were produced by the Second Military Medical University of Chinese PLA. Human IL-2 was produced by Genzyme Corporation. MAIN OUTCOME MEASURES: IL-2 expression at different time points after transfection of human brain glioma cells with varying MOI of Vaccinia viral vectors; in vitro proliferation capacity of human brain glioma cells among the 4 groups. RESULTS: IL-2 expression was detectable 4 hours after Vaccinia viral vector transfection and reached 300 kU/L by 8 hours. There was no significant difference in the proliferating rate of human brain glioma cells among the 4 groups (P > 0.05).CONCLUSION: Vaccinia viral vectors can transfect human brain glioma cells in vitro and express high levels of IL-2. Vaccinia virus and high IL-2 expression do not influence the proliferation rate of human brain glioma cells in vitro.

  20. Efficient generation of double heterologous promoter controlled oncolytic adenovirus vectors by a single homologous recombination step in Escherichia coli

    Wildner Oliver

    2006-08-01

    Full Text Available Abstract Background Oncolytic adenoviruses are promising agents for the multimodal treatment of cancer. However, tumor-selectivity is crucial for their applicability in patients. Recent studies by several groups demonstrated that oncolytic adenoviruses with tumor-/tissue-specific expression of the E1 and E4 genes, which are pivotal for adenoviral replication, have a specificity profile that is superior to viruses that solely target the expression of E1 or E4 genes. Presently the E1 and E4 regions are modified in a time consuming sequential fashion. Results Based on the widely used adenoviral cloning system AdEasy we generated a novel transfer vector that allows efficient and rapid generation of conditionally replication-competent adenovirus type 5 based vectors with the viral E1 and E4 genes under the transcriptional control of heterologous promoters. For insertion of the promoters of interest our transfer vector has two unique multiple cloning sites. Additionally, our shuttle plasmid allows encoding of a transgene within the E1A transcription unit. The modifications, including E1 mutations, are introduced into the adenoviral genome by a single homologous recombination step in Escherichia coli. Subsequently infectious viruses are rescued from plasmids. As a proof-of-concept we generated two conditionally replication-competent adenoviruses Ad.Ki•COX and Ad.COX•Ki with the promoters of the Ki-67 protein and the cyclooxygenase-2 (COX-2 driving E1 and E4 and vice versa. Conclusion We demonstrated with our cloning system efficient generation of double heterologous promoter controlled oncolytic adenoviral vectors by a single homologous recombination step in bacteria. The generated viruses showed preferential replication in tumor cells and in a subcutaneous HT-29 colon cancer xenograft model the viruses demonstrated significant oncolytic activity comparable with dl327.

  1. Immunocompromised Children with Severe Adenoviral Respiratory Infection

    Joanna C. Tylka

    2016-01-01

    Full Text Available Purpose. To investigate the impact of severe respiratory adenoviral infection on morbidity and case fatality in immunocompromised children. Methods. Combined retrospective-prospective cohort study of patients admitted to the intensive care unit (ICU in four children’s hospitals with severe adenoviral respiratory infection and an immunocompromised state between August 2009 and October 2013. We performed a secondary case control analysis, matching our cohort 1 : 1 by age and severity of illness score with immunocompetent patients also with severe respiratory adenoviral infection. Results. Nineteen immunocompromised patients were included in our analysis. Eleven patients (58% did not survive to hospital discharge. Case fatality was associated with cause of immunocompromised state (p=0.015, multiple organ dysfunction syndrome (p=0.001, requirement of renal replacement therapy (p=0.01, ICU admission severity of illness score (p=0.011, and treatment with cidofovir (p=0.005. Immunocompromised patients were more likely than matched controls to have multiple organ dysfunction syndrome (p=0.01, require renal replacement therapy (p=0.02, and not survive to hospital discharge (p=0.004. One year after infection, 43% of immunocompromised survivors required chronic mechanical ventilator support. Conclusions. There is substantial case fatality as well as short- and long-term morbidity associated with severe adenoviral respiratory infection in immunocompromised children.

  2. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    Sang-Ho Park

    2016-08-01

    Full Text Available Grapevine Algerian latent virus (GALV is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP, but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

  3. Construction of recombinant adenovirus co-expression vector carrying the human transforming growth factor-β1 and vascular endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts

    WEI Xue-lei; LIN Lin; HOU Yu; FU Xin; ZHANG Ji-ying; MAO Ze-bin; YU Chang-long

    2008-01-01

    Background Remodeling of the anterior cruciate ligament (ACL) graft usually takes longer than expected. Gene therapy offers a radical different approach to remodeling of the graft. In this study, the internal ribosome entry site (IRES) sequence was used to construct a new recombinant adenovirus which permits co-expression of transforming growth factor-β1 (TGFβ1) and vascular endothelial growth factor 165 (VEGF165) genes (named Ad-VEGF165-1RES-TGFβ1). We investigated the effects of the new adenovirus on the migration of and matrix synthesis by ACL fibroblasts.Methods Adenoviral vector containing TGFβ1 and VEGF165 genes was constructed. ACL fibroblasts were obtained from New Zealand white rabbits. After ACL fibroblasts were exposed to Ad-VEGF165-1RES-TGFβ1, the expression of VEGF165 and TGFβ1 proteins were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis. Bioassay of VEGF165 and TGFβ1 proteins were assessed by Western blotting analysis. Proliferation and migration of ACL fibroblasts were assessed by in vitro wound closure assay. Gene expression of collagen type I, collagen type Ⅲ, and fibronectin mRNA among matrix markers were assessed by real-time PCR.Results The results showed the successful construction of a recombinant co-expression adenovirus vector containing TGFβI and VEGF165 genes. Co-expression of TGFβ1 and VEGF165 can induce relatively rapid and continuous proliferation of ACL fibroblasts and high gene expression of collagen type Ⅰ, collagen typeⅢ, and fibronectin mRNA among matrix markers.Conclusion Co-expression of TGFβ1 and VEGF165 genes has more powerful and efficient effects on the migration of and matrix synthesis by ACL fibroblasts.

  4. [Construction of PPENK-MIDGE-NLS gene vector and the expression in rat].

    Chen, Xi; Xu, Xuemin; Peng, Xijuan; Jiang, Wei; Yao, Linong

    2015-02-01

    Increasing the production and secretion of endogenous opioid peptide by immune cell can significantly induce myocardial protective effects against ischemia-reperfusion injury. Gene therapy is promising to increase endogenous enkephalin (ENK). However, classical viral and plasmid vectors for gene delivery are hampered by immunogenicity, gene recombination, oncogene activation, the production of antibacterial antibody and changes in physiological gene expression. Minimalistic immunologically defined gene expression (MIDGE) can overcome all the deficients of viral and plasmid vectors. The exon of rat's preproenkephalin (PPENK) gene was amplified by PCR and the fragments were cloned into pEGFP-N1 plasmids. The recombined plasmids were digested with enzymes to obtain a linear vector contained promoter, preproenkephalin gene, RNA stable sequences and oligodesoxy nucleotides (ODNs) added to both ends of the gene vector to protect gene vector from exonuclease degradation. A nuclear localization sequence (NLS) was attached to an ODN to ensure the effective transport to the nucleus and transgene expression. Flow cytometry, laser confocal microscopy and Western blotting demonstrated that PPENK-MIDGE-NLS can transfect leukocyte of rat in vivo, increase the expression of proenkephalin (PENK) in tissue, and the transfection efficiency depends on gene vector's dosage. These results indicate that PPENK-MIDGE-NLS could be an innovative method to protect and treatment of myocardial ischemia-reperfusion injury. PMID:26062347

  5. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs

    Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy

  6. Use of intron-disrupted polyadenylation sites to enhance expression and safety of retroviral vectors.

    Ismail, S I; Rohll, J B; Kingsman, S M; Kingsman, A J; Uden, M

    2001-01-01

    Normal mRNA polyadenylation signals are composed of an AAUAAA motif and G/U box spaced 20 to 30 bp apart. If this spacing is increased further, then polyadenylation is disrupted. Previously it has been demonstrated that insertion of an intron will similarly disrupt this signal even though such introns are removed during a nuclear splicing reaction (X. Liu and J. Mertz, Nucleic Acids Res. 21:5256-5263, 1993). This observation has led to the suggestion that polyadenylation site selection is undertaken prior to intron excision. We now present results that both support and extend these observations and in doing so create a novel class of retroviral expression vector with improved qualities. We found that when an intron-disrupted polyadenylation signal is inserted within a retroviral expression vector, such a signal, although reformed in the producer cell, remains benign until transduction, where it is then preferentially used. Thus, we demonstrate that upon transduction these vectors now produce a majority of shortened subgenomic species and as a consequence have a reduced tendency for subsequent mobilization from transduced cells. In addition, we demonstrate that the use of this internal signal leads to enhanced expression from such vectors and that this is achieved without any loss in titer. Therefore, split polyadenylation signals confer enhanced performance and improved safety upon retroviral expression vectors into which they are inserted. Such split signals may prove useful for the future optimization of retroviral vectors in gene therapy. PMID:11119589

  7. Vector insert-targeted integrative antisense expression system for plasmid stabilization.

    Luke, Jeremy M; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2011-01-01

    Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides. PMID:20607625

  8. BioVector, a flexible system for gene specific-expression in plants

    Wang, Xu; Fan, Chengming; Zhang, Xiaomei; Zhu, Jinlong; Fu, Yong-Fu

    2013-01-01

    Background Functional genomic research always needs to assemble different DNA fragments into a binary vector, so as to express genes with different tags from various promoters with different levels. The cloning systems available bear similar disadvantages, such as promoters/tags are fixed on a binary vector, which is generally with low cloning efficiency and limited for cloning sites if a novel promoter/tag is in need. Therefore, it is difficult both to assemble a gene and a promoter together...

  9. Expression of the mouse dihydrofolate reductase complementary deoxyribonucleic acid in simian virus 40 vectors.

    Subramani, S.; Mulligan, R.; Berg, P

    1981-01-01

    A mouse complementary deoxyribonucleic acid segment coding for the enzyme dihydrofolate reductase has been cloned in two general classes of vectors containing simian virus 40 deoxyribonucleic acid: (i) those that can be propagated as virions in permissive cells and (ii) those that can be introduced into and maintained stably in various mammalian cells. Both types of vectors express the mouse dihydrofolate reductase by using signals supplied by simian virus 40 deoxyribonucleic acid sequences. ...

  10. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells

    Ogris Manfred

    2010-03-01

    Full Text Available Abstract Background The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP and directed into a 2000 bp long matrix attachment region sequence (MARS derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. Results Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P element that is known to be less affected by epigenetic silencing events. Conclusions The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.

  11. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells.

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Horii, Masae; Hamana, Hiroshi; Nagai, Terumi; Muraguchi, Atsushi

    2014-02-14

    Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis. PMID:24462869

  12. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  13. Lentivirus Vector Gene Expression during ES Cell-Derived Hematopoietic Development In Vitro

    Hamaguchi, Isao; Woods, Niels-Bjarne; Panagopoulos, Ioannis; Andersson, Elisabet; Mikkola, Hanna; Fahlman, Cecilia; Zufferey, Romain; Carlsson, Leif; Trono, Didier; Karlsson, Stefan

    2000-01-01

    The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP)...

  14. Facial expression recognition based on local region specific features and support vector machines

    Ghimire, Deepak; Jeong, Sunghwan; Lee, Joonwhoan; Park, Sang Hyun

    2016-01-01

    Facial expressions are one of the most powerful, natural and immediate means for human being to communicate their emotions and intensions. Recognition of facial expression has many applications including human-computer interaction, cognitive science, human emotion analysis, personality development etc. In this paper, we propose a new method for the recognition of facial expressions from single image frame that uses combination of appearance and geometric features with support vector machines ...

  15. Effect of vector-expressed siRNA on HBV replication in hepatoblastoma cells

    Jun Liu; Ying Guo; Cai-Fang Xue; Ying-Hui Li; Yu-Xiao Huang; Jin Ding; Wei-Dong Gong; Ya Zhao

    2004-01-01

    AIM: To study the effect of siRNA expressed from DNA vector on HBV replication.METHODS: Human U6 promoter was amplified from genomic DNA and cloned into plasmid pUC18 to construct a mammalian siRNA expression vector pUC18U6. Then oligonucleotides coding for a short hairpin RNA against HBV were cloned into pUC18U6 to form pUC18U6HBVsir which was introduced into 2.2.15 cells by using liposome-mediated transfection.2.2.15 cells transfected by pUC18U6 and pUC18U6GFPsir which expressed siRNA against green fluorescent protein and mock-transfected 2.2.15 cells were used as controls.Concentration of HBsAg in the supernatant of the transfected cells was measured by using solid-phase radioimmunoassay.RESULTS: A mammalian siRNA expression vector pUC18U6was constructed successfully. Compared with controls,pUC18U6HBVsir which expressed siRNA against HBV decreased concentration of HBsAg significantly by 44%(P<0.05).CONCLUSION: HBV replication in 2.2.15 cells is inhibited by siRNA expressed from the DNA vector.

  16. Expression of Multiple Functional RNAs or Proteins from One Viral Vector.

    Björklund, Tomas

    2016-01-01

    In this chapter, we will cover the available design choices for enabling expression of two functional protein or RNA sequences from a single viral vector. Such vectors are very useful in the neuroscience-related field of neuronal control and modulation, e.g., using optogenetics or DREADDs, but are also desirable in applications of CRISPR/Cas9 in situ genome editing and more refined therapeutic approaches. Each approach to achieving this combined expression has its own strengths and limitations, which makes them more or less suitable for different applications. In this chapter, we describe the available alternatives and provide tips on how they can be implemented. PMID:26611577

  17. Dystrophin Delivery to Muscles of mdx Mice Using Lentiviral Vectors Leads to Myogenic Progenitor Targeting and Stable Gene Expression

    Kimura, En; Li, Sheng; Gregorevic, Paul; Fall, Brent M; Jeffrey S. Chamberlain

    2009-01-01

    To explore whether stable transduction of myogenic stem cells using lentiviral vectors could be of benefit for treating dystrophic muscles, we generated vectors expressing a functional microdystrophin/enhanced green fluorescence protein fusion (µDys/eGFP) gene. Lentiviral vector injection into neonatal mdx4cv muscles resulted in widespread and stable expression of dystrophin for at least 2 years. This expression resulted in a significant amelioration of muscle pathophysiology as assessed by a...

  18. A validated system for ligation-free USER™ -based assembly of expression vectors for mammalian cell engineering

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Hansen, Bjarne Gram; Holm, Dorte Koefoed; Andersen, Mikael Rørdam; Mortensen, Uffe Hasbro

    2013-01-01

    The development in the field of mammalian cell factories require fast and high-throughput methods, this means a high need for simpler and more efficient cloning techniques. For optimization of protein expression by genetic engineering and for allowing metabolic engineering in mammalian cells, a new versatile expression vector system was developed. This vector system applies the ligation-free uracilexcision cloning technique to construct mammalian expression vectors of multiple parts and with ...

  19. Reversal of MDR1 gene-dependent multidrug resistance using short hairpin RNA expression vectors

    GAN Hui-zhu; ZHENG De-ming; ZHANG Gui-zhen; ZHAO Ji-sheng; ZHANG Feng-chun; BU Li-sha; YANG Shao-juan; PIAO Song-lan; DU Zhen-wu; GAO Shen

    2005-01-01

    Background RNA interference using short hairpin RNA (shRNA) can mediate sequence-specific inhibition of gene expression in mammalian cells. A vector-based approach for synthesizing shRNA has been developed recently. Overexpression of P-glycoprotein (P-gp), the MDR1 gene product, confers multidrug resistance (MDR) to cancer cells. In this study, we reversed MDR using shRNA expression vectors in a multidrug-resistant human breast cancer cell line (MCF-7/AdrR). Methods The two shRNA expression vectors were constructed and introduced into MCF-7/AdrR cells. Expression of MDR1 mRNA was assessed by RT-PCR, and P-gp expression was determined by Western Blot and immunocytochemistry. Apoptosis and sensitization of the breast cancer cells to doxorubicin were quantified by flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. Cellular daunorubicin accumulation was assayed by laser confocal scanning microscopy (LCSM). Statistical significance of differences in mean values was evaluated by Student's t tests. P<0.05 was considered statistically significant.Results In MCF-7/AdrA cells transfected with MDR1-A and MDR1-B shRNA expression vectors, RT-PCR showed that MDR1 mRNA expression was reduced by 40.9% (P<0.05), 30.1% (P<0.01) (transient transfection) and 37.6 % (P<0.05), 28.0% (P<0.01) (stable transfection), respectively. Western Blot and immunocytochemistry showed that P-gp expression was significantly and specifically inhibited. Resistance against doxorubicin was decreased from 162-fold to 109-fold (P<0.05), 54-fold (P<0.01) (transient transfection) and to 108-fold (P<0.05), 50-fold (P<0.01) (stable transfection). Furthermore, shRNA vectors significantly enhanced the cellular daunorubicin accumulation. The combination of shRNA vectors and doxorubicin significantly induced apoptosis in MCF-7/AdrR cells. Conclusions shRNA expression vectors effectively reduce MDR expression in a sustained fashion and can restore the sensitivity of drug-resistant cancer

  20. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens;

    2011-01-01

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b...... memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...... demonstrated that this protection was mediated primarily through IFN-¿ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model....

  1. Development of expression vectors for Escherichia coli based on the pCR2 replicon

    Deb J K

    2007-05-01

    Full Text Available Abstract Background Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility. Results We utilized the pCR2 replicon of Corynebacterium renale, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% stable over a large number of generations in the absence of selection pressure. Compatibility of this plasmid was studied with different Escherichia coli plasmid replicons viz. pMB1 and p15A. It was observed that pCR2 was able to coexist with these E.coli plasmids for 60 generations in the absence of selection pressure. Soluble intracellular production was checked by expressing GFP under the lac promoter in an expression plasmid pCR2GFP. Also high level production of human IFNγ was obtained by cloning the h-IFNγ under a T7 promoter in the expression plasmid pCR2-IFNγ and using a dual plasmid heat shock system for expression. Repeated sub-culturing in the absence of selection pressure for six days did not lead to any fall in the production levels post induction, for both GFP and h-IFNγ, demonstrating that pCR2 is a useful plasmid in terms of stability and compatibility. Conclusion We have constructed a series of expression vectors based on the pCR2 replicon and demonstrated its high stability and sustained expression capacity, in the absence of selection pressure which will make it an efficient tool for metabolic engineering and co-expression studies, as well as for scale up of expression.

  2. pT7MT, a metallothionein 2A-tagged novel prokaryotic fusion expression vector.

    Marikar, Faiz M M T; Fang, Lei; Jiang, Shu-Han; Hua, Zi-Chun

    2007-05-01

    In the present article, a novel fusion expression vector for Escherichia coli was developed based on the pTORG plasmid, a derivative of pET32a. This vector, named pT7MT (GenBank Accession No DQ504436), carries a T7 promoter and it drives the downstream gene encoding Metallothionein 2A (MT2A). There are in-framed multiple cloning sites (MCS) downstream of the MT2A gene. A target gene can be cloned into the MCS and fused to the C-terminal of the MT2A gene in a compatible open reading frame (ORF) to achieve fusion expression. The metal-binding capability of MT2A allows the purification of fusion proteins by metal chelating affinity chromatogralhy, known as Ni2+-affinity chromatography. Using this expression vector, we successfully got the stable and high-yield expression of MT2A-GST and MT2A-Troponin I fusion proteins. These two proteins were easily purified from the supernatant of cell lysates by one-step Ni2+ -affinity chromatography. The final yields of MT2A-GST and MT2A-Troponin I were 30 mg/l and 28 mg/l in LB culture, respectively. Taken together, our data suggest that pT7MT can be applied as a useful expression vector for stable and high-yield production of fusion proteins. PMID:18051292

  3. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    Javier López-Vidal

    Full Text Available Vaccines based on virus-like particles (VLPs have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60 were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  4. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  5. A versatile bacterial expression vector based on the synthetic biology plasmid pSB1.

    Skrlj, Nives; Erculj, Nina; Dolinar, Marko

    2009-04-01

    We have developed an Escherichia coli expression vector that is particularly useful for construction and production of fusion proteins. Based on the synthetic biology pSB1C3 platform, the resulting vector offers a combination of useful features: the strong T7 promoter combined with lac operator, OmpA signal sequence, a selection of cloning sites located at convenient positions and a 3'-terminal His-10 tag. Each of these regions is flanked by a restriction site that allows for easy vector modification, including removal of the signal sequence without perturbation of the reading frame. All the elements were assembled by stepwise addition of three cassettes for which the design was made de novo. To prove the efficiency of the new vector, named pMD204, we successfully produced a cysteine proteinase inhibitor variant in the periplasm and in the cytoplasm of E. coli, in both cases as a soluble and active protein. PMID:19027858

  6. In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence

    Torsteinsdóttir Sigurbjörg

    2008-11-01

    Full Text Available Abstract One of the prerequisite for developing DNA vaccines for horses are vectors that are efficiently expressed in horse cells. We have analysed the ectopic expression of the human serum albumin gene in primary horse cells from different tissues. The vectors used are of pcDNA and pUC origin and include the cytomegalovirus (CMV promoter. The pUC vectors contain CMV intron A whereas the pcDNA vectors do not. Insertion of intron A diminished the expression from the pcDNA vectors whereas insertion of a Kozak sequence upstream of the gene in two types of pUC vectors increased significantly the in vitro expression in primary horse cells derived from skin, lung, duodenum and kidney. We report for the first time the significance of full consensus Kozak sequences for protein expression in horse cells in vitro.

  7. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells

  8. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    Min, Jung Joon; Le, Uyenchi N.; Moon, Sung Min; Heo, Young Jun; Song, Ho Chun; Bom, Hee Seung [School of Medicine, Chonnam National University, Gwangju (Korea, Republic of); Kim, Yeon Soo [Schoole of Medicine, Inje University, Seoul (Korea, Republic of)

    2004-07-01

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells.

  9. Efficient construction of recombinant adenovirus expression vector of the Qinchuan cattle LYRM1 gene.

    Li, Y K; Fu, C Z; Zhang, Y R; Zan, L S

    2015-01-01

    In this study, we cloned the coding DNA sequence (CDS) region of Qinchuan cattle LYR motif-containing 1 (LYRM1) and constructed a recombinant adenovirus expression vector to examine the function of LYRM1 on the cellular level. Total RNA was extracted from the adipose tissue of Qinchuan cattle, cDNA was obtained by reverse transcription, and polymerase chain reaction was used to amplify the CDS region of the LYRM1 gene. The CDS-containing fragment was inserted into the shuttle vector pAdTrack-CMV to construct pAdTrack-CMV-LYRM1 vector. After linearization of pAdTrack-CMV-LYRM1 and the negative control vector pAdTrack-CMV by restriction endonuclease PmeI, the vectors were transformed into Escherichia coli BJ5183 containing pAdEasy-1 to obtain the recombinant adenovirus vector pAd-LYRM1 and pAd-CMV through homologous recombination. pAd-LYRM1 and pAd-CMV were then digested by PacI and transfected into the 293A cell line. The recombinant adenovirus Ad-LYRM1 and Ad-CMV was obtained at a concentration of 7 x 108 and 1.3 x 109 green fluorescent units/mL, respectively. Preadipocytes derived from Qinchuan cattle were separately infected with Ad-LYRM1 and Ad- CMV. Quantitative real-time polymerase chain reaction demonstrated that the expression of LYRM1 was increased by approximate 28,000-folds after the infection with recombinant adenovirus for 48 h. In conclusion, we successfully cloned the CDS region of the Qinchuan cattle LYRM1 gene, constructed the recombinant adenovirus expression vector, and obtained the adenovirus with high titer, providing valuable materials for studying the function of LYRM1 at the cellular level. PMID:26345880

  10. Successful vaccination with a polyvalent live vector despite existing immunity to an expressed antigen.

    Flexner, C; Murphy, B R; Rooney, J F; Wohlenberg, C; Yuferov, V; Notkins, A L; Moss, B

    1988-09-15

    A global vaccination strategy must take into account production and delivery costs as well as efficacy and safety. A heat-stable, polyvalent vaccine that requires only one inoculation and induces a high level of humoral and cellular immunity against several diseases is therefore desirable. A new approach is to use live microorganisms such as mycobacteria, enteric bacteria, adenoviruses, herpesviruses and poxviruses as vaccine vectors. A potential limitation of live polyvalent vaccines, however, is existing immunity within the target population not only to the vector, but to any of the expressed antigens. This could restrict replication of the vector, curtail expression of antigens, and reduce the total immune response to the vaccine. Recently acquired immunity to vaccinia virus can severely limit the efficacy of a live recombinant vaccinia-based vaccine, so a strategy involving closely spaced inoculations with the same vector expressing different antigens may present difficulties. We have constructed a recombinant vaccinia virus that expresses surface proteins from two diverse pathogens, influenza A virus haemagglutinin and herpes simplex virus type 1 (HSV-1) glycoprotein D. Mice that had recently recovered from infection with either HSV-1 or influenza A virus could still be effectively immunized with the double recombinant. PMID:2842693

  11. Gene expression in midgut tissues of Diaphorina citri: Application to biology and vector control

    We produced a gene expression dataset from the midgut tissues of the Asian citrus psyllid (AsCP), Diaphorina citri (Hemiptera: Psyllidae). The AsCP is the primary vector associated with the spread of a devastating citrus trees disease, huanglongbing (HLB). The occurrence and spread of the AsCP and H...

  12. CONSTRUCTION AND IDENTIFICATION OF EUKARYOTIC VECTOR EXPRESSING SIRNA SPECIFIC FOR BACE

    2005-01-01

    Objective To generate eukaryotic expression vector of siRNA specific for β-site APP cleaving enzyme(BACE),and detect the interfering effect to the expression of BACE. Methods To clone the BACE targeting siRNA gene by PCR, the PCR products was inserted into the pUC19/EGFP-U6 plasmid. Then it was sub-cloned into the vector named pLXSN. The resultant plasmid was named pLXSN/EGFP-U6-siBACE, it was packaged into AmphoPack-293 cells by calcium phosphate transfection and collected the virus supernatant. The neuroblastoma cells SK-N-SH was infected with the pLXSN/EGFP-U6-siBACE retroviral vector, immunohistochemistry method was used to detect whether the pLXSN/EGFP-U6-siBACE infection can inhibit the expression of BACE of the neuroblastoma cells. Results The pLXSN/EGFP-U6-siBACE retroviral vector was constructed successfully and the siBACE can inhibit the BACE of the neuroblastma effectively. Conclusion The siRNA can inhibit the expression of the BACE gene, the endogenous production of BACE protein was decreased. It will lay the important foundation for using RNA technology to prevent the Alzheimer's disease.

  13. A high-throughput protein expression system in Pichia pastoris using a newly developed episomal vector

    We describe here the construction of a Gateway-compatible vector, pBGP1-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. pBGP1-DEST directs the synthesis of a fusion protein consisting of the N-terminal signal and pro-sequence...

  14. Vector design for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells

    Schambach, Axel; Baum, Christopher

    2007-01-01

    Enhancing DNA repair activity of hematopoietic cells by stably integrating gene vectors that express O(6)-methylguanine-DNA-methyltransferase (MGMT) is of major interest for innovative approaches in tumor chemotherapy and for the control of hematopoietic chimerism in the treatment of multiple other acquired or inherited disorders. Crucial determinants of this selection principle are the stringency of treatment with O(6)-alkylating agents and the level of transgenic MGMT expression. Attempts t...

  15. An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum

    Wagner, Jeffrey C; Goldfless, Stephen J.; Ganesan, Suresh M; Lee, Marcus CS; Fidock, David A; Niles, Jacquin C.

    2013-01-01

    Background: The construction of plasmid vectors for transgene expression in the malaria parasite, Plasmodium falciparum, presents major technical hurdles. Traditional molecular cloning by restriction and ligation often yields deletions and re-arrangements when assembling low-complexity (A + T)-rich parasite DNA. Furthermore, the use of large 5'- and 3'- untranslated regions of DNA sequence (UTRs) to drive transgene transcription limits the number of expression cassettes that can be incorpo...

  16. A transient three-plasmid expression system for the production of high titer retroviral vectors.

    Soneoka, Y; Cannon, P M; Ramsdale, E E; Griffiths, J C; Romano, G.; Kingsman, S M; Kingsman, A J

    1995-01-01

    We have constructed a series of MLV-based retroviral vectors and packaging components expressed from the CMV promoter and carried on plasmids containing SV40 origins of replication. These two features greatly enhanced retroviral gene expression when introduced into cell lines carrying the SV40 large T antigen. The two packaging components, gag-pol and env, were placed on separate plasmids to reduce helper virus formation. Using a highly transfectable human cell line and sodium butyrate to fur...

  17. pHUSH: a single vector system for conditional gene expression

    Eby Mike

    2007-09-01

    Full Text Available Abstract Background Conditional expression vectors have become a valuable research tool to avoid artefacts that may result from traditional gene expression studies. However, most systems require multiple plasmids that must be independently engineered into the target system, resulting in experimental delay and an increased potential for selection of a cell subpopulation that differs significantly from the parental line. We have therefore developed pHUSH, an inducible expression system that allows regulated expression of shRNA, miRNA or cDNA cassettes on a single viral vector. Results Both Pol II and Pol III promoters have been successfully combined with a second expression cassette containing a codon-optimized tetracycline repressor and selectable marker. We provide examples of how pHUSH has been successfully employed to study the function of target genes in a number of cell types within in vitro and in vivo assays, including conditional gene knockdown in a murine model of brain cancer. Conclusion We have successfully developed and employed a single vector system that enables Doxycycline regulated RNAi or transgene expression in a variety of in vitro and in vivo model systems. These studies demonstrate the broad application potential of pHUSH for conditional genetic engineering in mammalian cells.

  18. Testing gene therapy vectors in human primary nasal epithelial cultures.

    Cao, Huibi; Ouyang, Hong; Ip, Wan; Du, Kai; Duan, Wenming; Avolio, Julie; Wu, Jing; Duan, Cathleen; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Hu, Jim; Moraes, Theo J

    2015-01-01

    Cystic fibrosis (CF) results from mutations in the CF transmembrane conductance regulator (CFTR) gene, which codes for a chloride/bicarbonate channel in the apical epithelial membranes. CFTR dysfunction results in a multisystem disease including the development of life limiting lung disease. The possibility of a cure for CF by replacing defective CFTR has led to different approaches for CF gene therapy; all of which ultimately have to be tested in preclinical model systems. Primary human nasal epithelial cultures (HNECs) derived from nasal turbinate brushing were used to test the efficiency of a helper-dependent adenoviral (HD-Ad) vector expressing CFTR. HD-Ad-CFTR transduction resulted in functional expression of CFTR at the apical membrane in nasal epithelial cells obtained from CF patients. These results suggest that HNECs can be used for preclinical testing of gene therapy vectors in CF. PMID:26730394

  19. Construction of permanently inducible miRNA-based expression vectors using site-specific recombinases

    Garwick-Coppens Sara E

    2011-11-01

    Full Text Available Abstract Background RNA interference (RNAi is a conserved gene silencing mechanism mediated by small inhibitory microRNAs (miRNAs. Promoter-driven miRNA expression vectors have emerged as important tools for delivering natural or artificially designed miRNAs to eukaryotic cells and organisms. Such systems can be used to query the normal or pathogenic functions of natural miRNAs or messenger RNAs, or to therapeutically silence disease genes. Results As with any molecular cloning procedure, building miRNA-based expression constructs requires a time investment and some molecular biology skills. To improve efficiency and accelerate the construction process, we developed a method to rapidly generate miRNA expression vectors using recombinases instead of more traditional cut-and-paste molecular cloning techniques. In addition to streamlining the construction process, our cloning strategy provides vectors with added versatility. In our system, miRNAs can be constitutively expressed from the U6 promoter, or inducibly expressed by Cre recombinase. We also engineered a built-in mechanism to destroy the vector with Flp recombinase, if desired. Finally, to further simplify the construction process, we developed a software package that automates the prediction and design of optimal miRNA sequences using our system. Conclusions We designed and tested a modular system to rapidly clone miRNA expression cassettes. Our strategy reduces the hands-on time required to successfully generate effective constructs, and can be implemented in labs with minimal molecular cloning expertise. This versatile system provides options that permit constitutive or inducible miRNA expression, depending upon the needs of the end user. As such, it has utility for basic or translational applications.

  20. Treatment of canine leukocyte adhesion deficiency by foamy virus vectors expressing CD18 from a PGK promoter

    Bauer, Thomas R; Olson, Erik M.; Huo, Yunwen; Tuschong, Laura M; Allen, James M; Li, Yi; Burkholder, Tanya H; Russell, David W.

    2011-01-01

    Proto-oncogene activation caused by retroviral vector integration can cause malignancies in gene therapy trials. This has led investigators to search for less genotoxic vectors with minimal enhancer activity and a decreased risk of influencing neighboring chromosomal gene expression after integration. We previously showed that foamy virus vectors expressing the canine CD18 gene from an internal murine stem cell virus promoter could cure canine leukocyte adhesion deficiency. Here we have repea...

  1. Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection

    Frey Daniel; Edmondson Sonia; Crone Stephanie; Sauter Marion; Wagen Sandro; Kuchen Melanie; Olieric Natacha; Ostermeier Christian; Steinmetz Michel O; Jaussi Rolf

    2010-01-01

    Abstract Background Molecular DNA cloning is crucial to many experiments and with the trend to higher throughput of modern approaches automated techniques are urgently required. We have established an automated, fast and flexible low-cost expression cloning approach requiring only vector and insert amplification by PCR and co-transformation of the products. Results Our vectors apply positive selection for the insert or negative selection against empty vector molecules and drive strong express...

  2. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF)

    Jamal Mohammadian; Sima Mansoori-Derakhshan; Masood Mohammadian; Mahmoud Shekari-Khaniani

    2013-01-01

    Purpose: The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. Methods: EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. Results: PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vec...

  3. Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

    Jespersen, Thomas; Duch, Mogens R.; Carrasco, M L;

    1999-01-01

    of neo or the enhanced green fluorescence protein gene (EGFP). Akv-MLV's with IRES-neo and IRES-EGFP cassettes replicated with titers of about 10(6) infectious units/ml while SL3-3-MLV with IRES-neo gave about 10(3)-fold lower titers. Interestingly, RNA analysis showed a drastic reduction in the amount...... of spliced env mRNA for the SL3-3 derived vector relative to the Akv derived vectors, seemingly contributing to its low replication capacity. The EGFP expressing Akv-MLV was genetically stable for multiple rounds of infection; marker-cassette deletion revertants appeared after several replication rounds...

  4. Radiosensitization effect of recombinant adenoviral-mediated PUMA gene on pancreatic carcinoma cells

    Objective: To study the effect of PUMA gene mediated by recombinant adenovirus vector combined with radiation on the pancreatic carcinoma. Methods: The PANC-1 cells were infected with Ad- PUMA (MOI=10, 50 and 100, respectively) for 48 h. The expression of PUMA mRNA and protein was detected by RT-PCR and Western blot, respectively. PANC-1 cells were divided into 4 groups: control group, transfection group, irradiation group and combined treatment group. The cell growth inhibition rate and apoptotic rate of PANC-1 cells were assessed by MTT assay and flow cytometry. Human pancreatic carcinomas were transplanted subcutaneously in nude mice, which were randomized into 4 groups: control group, transfection group, irradiation group and combined treatment group. Tumor growth rate and apoptotic index at different time points were recorded in 35 days. Results: The expression of PUMA mRNA and protein was increased with the increase of MOI of Ad-PUMA, which was does-dependant (MOI=10, mRNA=0.46± 0.02, protein=0.75± 0.09; MOI=50, mRNA=1.12±0.09, protein=1.01±0.18; MOI=100, mRNA=1.50±0.08, protein= 1.80±0.15; P3, (39.5±9.23)mm3, (33.6±10.3)mm3 and (52.0±11.43)mm3, respectively, P<0.05]. And the apoptotic index was increased in the same manner (AI=0.43±0.05, 0.29±0.10, 0.24±0.05 and 0.00±0.00, respectively, P<0.05). Conclusions: Recombinant adenoviral-mediated PUMA gene combined with irradiation could increase the cell-killing effect on pancreatic carcinoma. It is better than that of either one kind of therapy. (authors)

  5. A novel prokaryotic vector for identification and selection of recombinants: Direct use of the vector for expression studies in E. coli

    Apte-Deshpande Anjali

    2010-05-01

    Full Text Available Abstract Background The selection of bacterial recombinants that harbour a desired insert, has been a key factor in molecular cloning and a series of screening procedures need to be performed for selection of clones carrying the genes of interest. The conventional cloning techniques are reported to have problems such as screening high number of colonies, generation of false positives, setting up of control ligation mix with vector alone etc. Results We describe the development of a novel dual cloning/expression vector, which enables to screen the recombinants directly and expression of the gene of interest. The vector contains Green fluorescence protein (GFP as the reporter gene and is constructed in such a way that the E. coli cells upon transformation with this vector does not show any fluorescence, but readily fluoresce upon insertion of a foreign gene of interest. The same construct could be easily used for screening of the clones and expression studies by mere switching to specific hosts. Conclusions This is the first vector reported that takes the property of colour or fluorescence to be achieved only upon cloning while all the other vectors available commercially show loss of colour or loss of fluorescence upon cloning. As the fluorescence of GFP depends on the solubility of the protein, the intensity of the fluorescence would also indicate the extent of solubility of the expressed target protein.

  6. Construction and identification of eukaryotic expression vector of pcDNA3-UHRF1

    Objective: To generate eukaryotic expression vector of pcDNA3-UHRF1(ubiquitin-like, containing PHD and RING finger domains 1, UHRF1) and testify its expression in breast cancer cells MDA-MB-231. Methods: A 2.3 kb cDNA fragment was amplified from the total RNA of the human breast cancer cells MCF-7 by the RT-PCR method and was cloned into the plasmid pcDNA3. The vector was identified by the double digestion with restriction enzymes Kpn I and Xho I and was sequenced. The cDNA of UHRF1 was transfected into human breast cancer cells MDA-MB-231 by Lipofactamin2000. The positive clones were selected by G418. The expression of the UHRF1 was detected by RT-PCR and Western blot analysis. Results: The recombinant eukaryotic expression vector pcDNA3-UHRF1 was digested with Kpn I and BamH I, and the electrophoresis of the digested products showed two fragments; 2.3kb fragment of UHRF1 and 5.4 kb fragment of pcDNA3, and the sequence inserted was identical to the published sequence. The MDA-MB-231 cells transfected with the pcDNA3-UHRF1 plasmid expressed a high level of the UHRF1 mRNA and protein. Conclusion: The recombinant eukaryotic cell expression vector of pcDNA3-UHRF1 is constructed successfully. The recombinant plasmid pcDNA3-UHRF1 can provide a very useful tool and lay an important foundation for the research on the function of UHRF1. (authors)

  7. Labeling of human insulin-like growth factor-I eukaryotic expression vector with green fluorescent protein

    LIU Yi; ZHANG Shao-kun; WU Hong; SHAN Yu-xing; WANG Gang; XU Xin-xiang

    2005-01-01

    Objective: To label human insulin-like growth factor-I (hIGF-I) eukaryotic expression vector with green fluorescent protein (GFP) for the repair of articular cartilage defects. Methods: GFP cDNA was inserted into pcDNA3.1-hIGF-1 to construct the co-expression vector with two multiple cloning sites mammalian expression vector under two cytomegalovirus promoters/enhancers respectively. Recombinant pcGI was transfected into NIH 3T3 cells with the help of lipofectamine. Results: Enzyme digestion and agarose gel electrophoresis analysis revealed that pcGI vector contained correct GFP and hIGF-I cDNA. Expression of hIGF-1 and GFP was confirmed in transfected NIH 3T3 cells by immunocytochemical analysis and fluorescence microscopy. Conclusions: hIGF-I eukaryotic expression vector has been successfully labeled with GFP.

  8. MGMT enrichment and second gene co-expression in hematopoietic progenitor cells using separate or dual-gene lentiviral vectors.

    Roth, Justin C; Alberti, Michael O; Ismail, Mourad; Lingas, Karen T; Reese, Jane S; Gerson, Stanton L

    2015-01-22

    The DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT) allows efficient in vivo enrichment of transduced hematopoietic stem cells (HSC). Thus, linking this selection strategy to therapeutic gene expression offers the potential to reconstitute diseased hematopoietic tissue with gene-corrected cells. However, different dual-gene expression vector strategies are limited by poor expression of one or both transgenes. To evaluate different co-expression strategies in the context of MGMT-mediated HSC enrichment, we compared selection and expression efficacies in cells cotransduced with separate single-gene MGMT and GFP lentivectors to those obtained with dual-gene vectors employing either encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) or foot and mouth disease virus (FMDV) 2A elements for co-expression strategies. Each strategy was evaluated in vitro and in vivo using equivalent multiplicities of infection (MOI) to transduce 5-fluorouracil (5-FU) or Lin(-)Sca-1(+)c-kit(+) (LSK)-enriched murine bone marrow cells (BMCs). The highest dual-gene expression (MGMT(+)GFP(+)) percentages were obtained with the FMDV-2A dual-gene vector, but half of the resulting gene products existed as fusion proteins. Following selection, dual-gene expression percentages in single-gene vector cotransduced and dual-gene vector transduced populations were similar. Equivalent MGMT expression levels were obtained with each strategy, but GFP expression levels derived from the IRES dual-gene vector were significantly lower. In mice, vector-insertion averages were similar among cells enriched after dual-gene vectors and those cotransduced with single-gene vectors. These data demonstrate the limitations and advantages of each strategy in the context of MGMT-mediated selection, and may provide insights into vector design with respect to a particular therapeutic gene or hematologic defect. PMID:25479595

  9. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway.

    Nagai, Y; Limberis, M P; Zhang, H

    2014-02-01

    Virus vector-mediated gene transfer has been developed as a treatment for cystic fibrosis (CF) airway disease, a lethal inherited disorder caused by somatic mutations in the cystic fibrosis transmembrane conductance regulator gene. The pathological proinflammatory environment of CF as well as the naïve and adaptive immunity induced by the virus vector itself limits the effectiveness of gene therapy for CF airway. Here, we report the use of an HDAC inhibitor, valproic acid (VPA), to enhance the activity of the regulatory T cells (T(reg)) and to improve the expression of virus vector-mediated gene transfer to the respiratory epithelium. Our study demonstrates the potential utility of VPA, a drug used for over 50 years in humans as an anticonvulsant and mood-stabilizer, in controlling inflammation and improving the efficacy of gene transfer in CF airway. PMID:24385144

  10. Inhibition of apoptosis reduces immunogeneic potential of adenoviral-treated syngeneic liver grafts.

    Puellmann, Kerstin; Beham, Alexander; Kienle, Klaus; Vogel, Mandy; Schlitt, Hans Juergen; Jauch, Karl Walter; Rentsch, Markus

    2006-11-27

    Effects of adenoviral therapy and reduced apoptosis on immune response were investigated in a rat liver transplantation model after prolonged ischemia-reperfusion. Liver donors were treated i.v. either with an adenoviral construct, expressing bcl-2, green-fluorescent-protein, or doxycyclin. Intrahepatic apoptosis was assessed by terminal transferase dUTP nick end labeling assay. The intrahepatic presence of CD4, CD8a, CD163, immunoglobulin (Ig)beta, tumor necrosis factor (TNF)-alpha and myeloperoxidase (MPO) was quantified by realtime polymerase chain reaction at 24 hours and seven days after transplantation. Bcl-2 expression abrogated the TNF-alpha elevation and reduced apoptosis of hepatocytes and sinusoidal endothelial cells as compared to advCMV green fluorescent protein. No effects on CD4, CD8a, CD163 and MPO expression were noticed in bcl-2 pretreated livers, whereas Igbeta was slightly enhanced compared to controls. Adenoviral infected liver grafts trigger an immune response but reduced apoptosis resulted in down-regulation of TNF-alpha. Thus, bcl-2 transfer might simultaneously reduce graft ischemia reperfusion injury and immunogenicity. PMID:17130789