WorldWideScience

Sample records for adenosine triphosphate-based chemotherapy

  1. In Vitro Adenosine Triphosphate-Based Chemotherapy Response Assay as a Predictor of Clinical Response to Fluorouracil-Based Adjuvant Chemotherapy in Stage II Colorectal Cancer

    Kwon, Hye Youn; Kim, Im-kyung; Kang, Jeonghyun; Sohn, Seung-Kook; Lee, Kang Young

    2016-01-01

    Purpose We evaluated the usefulness of the in vitro adenosine triphosphate-based chemotherapy response assay (ATP-CRA) for prediction of clinical response to fluorouracil-based adjuvant chemotherapy in stage II colorectal cancer. Materials and Methods Tumor specimens of 86 patients with pathologically confirmed stage II colorectal adenocarcinoma were tested for chemosensitivity to fluorouracil. Chemosensitivity was determined by cell death rate (CDR) of drug-exposed cells, calculated by comparing the intracellular ATP level with that of untreated controls. Results Among the 86 enrolled patients who underwent radical surgery followed by fluorouracil-based adjuvant chemotherapy, recurrence was found in 11 patients (12.7%). The CDR ≥ 20% group was associated with better disease-free survival than the CDR < 20% group (89.4% vs. 70.1%, p=0.027). Multivariate analysis showed that CDR < 20% and T4 stage were poor prognostic factors for disease-free survival after fluorouracil-based adjuvant chemotherapy. Conclusion In stage II colorectal cancer, the in vitro ATP-CRA may be useful in identifying patients likely to benefit from fluorouracil-based adjuvant chemotherapy. PMID:26511802

  2. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.

    Huo, Yuan; Qi, Liang; Lv, Xiao-Jun; Lai, Ting; Zhang, Jing; Zhang, Zhi-Qi

    2016-04-15

    Adenosine triphosphate (ATP) is the most direct source of energy in organisms. This study is the first to demonstrate that ATP-aptamer complexes provide greater protection for unmodified gold nanoparticles (AuNPs) against salt-induced aggregation than either aptamer or ATP alone. This protective effect was confirmed using transmission electron microscopy, dynamic light scattering, Zeta potential measurement, and fluorescence polarization techniques. Utilizing controlled particle aggregation/dispersion as a gauge, a sensitive and selective aptasensor for colorimetric detection of ATP was developed using ATP-binding aptamers as the identification element and unmodified AuNPs as the probe. This aptasensor exhibited a good linear relationship between the absorbance and the logarithm concentration of ATP within a 50-1000 nM range. ATP analogs such as guanosine triphosphate, uridine triphosphate and cytidine triphosphate resulted in little or no interference in the determination of ATP. PMID:26638040

  3. Non-selective and selective adenosine receptor agonists in the treatment of radiation- and chemotherapy-induced myelosuppression

    Hofer, Michal; Pospíšil, Milan

    Nurnberg, 2008. A-127. [EHRLICH II - 2nd World Conference on Magic Bullets, Celebrating the 100th Anniversary of the Nobel Prize Award to Paul Ehrlich. 03.10.2008-05.10.2008, Nurnberg] R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptor agonists * hematopoiesis * treatment of myelosuppression Subject RIV: BO - Biophysics

  4. Chemotherapy

    ... whose cancer is being treated with chemotherapy, your doctors, nurses, and other members of the cancer treatment team ... takes to follow their dreams. Talk with your doctors, nurses, family, and friends if you have any questions ...

  5. Adenosine in exercise adaptation.

    Simpson, R E; Phillis, J. W.

    1992-01-01

    By influencing the regulation of the mechanisms of angiogenesis, erythropoietin production, blood flow, myocardial glucose uptake, glycogenolysis, systolic blood pressure, respiration, plasma norepinephrine and epinephrine levels, adenosine may exert a significant effect on the body's adaptation response to exercise. However, adenosine's possible influence over the vasodilatory response to exercise in skeletal muscle is controversial and more research is required to resolve this issue. Variou...

  6. Adenosine Receptors and Asthma

    Wilson, Constance N; Nadeem, Ahmed; Spina, Domenico; Brown, Rachel; Page, Clive P.; Jamal Mustafa, S.

    2009-01-01

    The pathophysiological processes underlying respiratory diseases like asthma are complex, resulting in an overwhelming choice of potential targets for the novel treatment of this disease. Despite this complexity, asthmatic subjects are uniquely sensitive to a range of substances like adenosine, thought to act indirectly to evoke changes in respiratory mechanics and in the underlying pathology, and thereby to offer novel insights into the pathophysiology of this disease. Adenosine is of partic...

  7. Chemotherapy Effects

    ... saved articles window. My Saved Articles » My ACS » Chemotherapy Side Effects Chemotherapy drugs are powerful medicines that can cause side ... on the side effects most commonly caused by chemotherapy, this is a good place to start. Managing ...

  8. Understanding Chemotherapy

    N ational C ancer I nstitute Understanding Chemotherapy What is chemotherapy? Chemotherapy is a cancer treatment that uses drugs to destroy cancer cells. It is also called “chemo.” Today, there are ...

  9. Adenosine and sleep

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A1 receptors, 3H-L-PIA binding was measured. The Bmax values for 3H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in 3H-L-PIA binding resulted from REM sleep deprivation and not from stress

  10. Adenosine and sleep

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  11. Adenosine and Sleep

    Bjorness, Theresa E.; Greene, Robert W.

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity t...

  12. Cancer Chemotherapy

    ... cells grow and die in a controlled way. Cancer cells keep forming without control. Chemotherapy is drug ... Your course of therapy will depend on the cancer type, the chemotherapy drugs used, the treatment goal ...

  13. Cancer Chemotherapy

    ... controlled way. Cancer cells keep growing without control. Chemotherapy is drug therapy for cancer. It works by killing the cancer ... It depends on the type and amount of chemotherapy you get and how your body reacts. Some ...

  14. Stimulation of adenosine receptors: approach to enhancement of hematopoiesis suppressed by chemoradiotherapy

    Elevated extracellular adenosine has been found to stimulate hematopoiesis in experimental mice exposed to radiotherapy (gamma-rays), chemotherapy (5-fluorouracil), or combined action of both these modalities (gamma-rays + carboplatin). These findings have been obtained after treatment of the animals with the combination of dipyridamole (DP), preventing the cellular uptake of adenosine, and adenosine monophosphate (AMP), acting as adenosine prodrug. Increased cycling of hematopoietic progenitor cells following the administration of DP + AMP has been shown to represent an important mechanism of acceleration of regeneration of suppressed hematopoiesis. In recent experiments, non-degradable synthetic adenosine receptor agonists, more or less specific for individual subtypes of adenosine receptors (A1, A2A, A2B, and A3 subtypes) have been studied. These studies have included 5'-(N-ethylcarboxamido)adenosine (NECA, rather non-selective agonist with relatively high affinity to A2B receptor subtype), N6-cyclopentyladenosine (CPA, agonist specific for A1 receptor subtype), 2-p-(carboxyethyl)phene thylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680, agonist specific for A2A receptor subtype), and 1-deoxy-1-([((3- iodophenyl)methyl)-amino]-9H-purin-9-yl)-N-methyl-beta-D-ribofuranoamide (IB-MECA, agonist specific for A3 receptor subtype). Results from these studies have stressed the potential significance of stimulation of various adenosine receptor subtypes for modulation of functional status of hematopoietic progenitor cells. These findings may find important practical implications in the treatment of side effects of chemoradiotherapy

  15. Adenosine-Associated Delivery Systems

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  16. Anticancer chemotherapy

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  17. Chemotherapy and Your Mouth

    ... Health > Chemotherapy and Your Mouth Chemotherapy and Your Mouth Main Content Are You Being Treated With Chemotherapy ... Back to Top How Does Chemotherapy Affect the Mouth? Chemotherapy is the use of drugs to treat ...

  18. Chemotherapy (For Parents)

    ... Story" 5 Things to Know About Zika & Pregnancy Chemotherapy KidsHealth > For Parents > Chemotherapy Print A A A ... have many questions and concerns about it. About Chemotherapy Chemotherapy (often just called "chemo") refers to medications ...

  19. Adenosine-induced activation of esophageal nociceptors.

    Ru, F; Surdenikova, L; Brozmanova, M; Kollarik, M

    2011-03-01

    Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes

  20. Adenosine in inflammatory joint diseases

    Chan, E. S. L.; Fernandez, P.; Cronstein, B. N.

    2007-01-01

    Inflammatory joint diseases are a group of heterogeneous disorders with a variety of different etiologies and disease manifestations. However, there are features that are common to all of them: first, the recruitment of various inflammatory cell types that are attracted to involved tissues over the course of the disease process. Second, the treatments used in many of these diseases are commonly medications that suppress or alter immune function. The demonstration that adenosine has endogenous...

  1. Role of extracellular adenosine in Drosophila

    FENCKOVÁ, Michaela

    2011-01-01

    This thesis describes several aspects of the role for extracellular adenosine in Drosophila. Reverse genetic, molecular and microscopic methods together with the most forefront Drosophila research techniques have been applied to elucidate the role of adenosine signaling in the regulation of development, physiology and metabolism of Drosophila larvae. The thesis helps to establish the model for extracellular adenosine as a stress-signal for the release of energy stores. It also describes the e...

  2. Chemotherapy for Testicular Cancer

    ... chemotherapy and stem cell transplant for testicular cancer Chemotherapy for testicular cancer Chemotherapy (chemo) is the use ... Symptoms of Cancer Treatments & Side Effects Cancer Facts & Statistics News About Cancer Expert Voices Blog Programs & Services ...

  3. Types of chemotherapy

    Chemotherapy is the use of medicine to treat cancer. Chemotherapy kills cancer cells. It may be used to ... people are treated with a single type of chemotherapy. But often, people get more than one type ...

  4. Types of chemotherapy

    ... medlineplus.gov/ency/patientinstructions/000910.htm Types of chemotherapy To use the sharing features on this page, ... or on cancer cells. How Doctors Choose Your Chemotherapy The type and dose of chemotherapy your doctor ...

  5. Chemotherapy for Thyroid Cancer

    ... cancer Next Topic Targeted therapy for thyroid cancer Chemotherapy for thyroid cancer Chemotherapy (chemo) uses anti-cancer drugs that are injected ... vein or muscle, or are taken by mouth. Chemotherapy is systemic therapy, which means that the drug ...

  6. chemotherapy patients

    Katarzyna Augustyniuk

    2016-02-01

    Full Text Available Background . Complementary and alternative medicine (CAM practices for cancer have become popular among oncology patients. An increasing interest in alternative medicine can be explained by the inefficiency of conventional treatment, dissatisfaction with treating patients like objects, and the will to use all available treatment methods. Objectives . The authors assessed how often patients use CAM methods, and which of them are most popular. Material and methods . The study was conducted in Military Hospital no. 109 and the Independent Public Clinical Hospital no. 1 in Szczecin among 100 chemotherapy patients. This survey-based study was performed using an original questionnaire. Results. Most respondents (68% did not use alternative methods to fight the disease. The most popular treatment methods were: herbal medicine (50%, alternative medicine preparations (38% and diet (25%, and the least common: hypnosis (3% and aromatherapy (3%. Analyzed sociodemographic factors had no effects on a choice of a CAM method. Patients obtained information about CAM methods mainly from the Internet (40%, medical staff (37% and literature (31%. Conclusions . 1. Using CAM by patients receiving chemotherapy for neoplasms is quite a common phenomenon. 2. CAM were more often chosen by women. Neither the duration of the disease nor sociodemographic data had effects on making the decision to use CAM methods. 3. The most popular CAM were: herbal medicine, alternative medicine preparations, and diet. 4. Cancer patients should receive special support from nurses and doctors as well as other members of the therapeutic team. Oncology patients should never be left on their own so that they were forced to seek help and support in therapies unconfirmed by scientific investigation.

  7. Effect of adenosine and adenosine analogs on [14C]aminopyrine accumulation by rabbit parietal cells

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on [14C]aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. [14C]Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated [14C]aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on [14C]aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated [14C]aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated [14C]aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased [14C]aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on [14C]aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion

  8. Optical Aptasensors for Adenosine Triphosphate

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  9. Adenosine regulation of alveolar fluid clearance

    Factor, Phillip; Mutlu, Göskhan M.; Chen, Lan; Mohameed, Jameel; Akhmedov, Alexander T.; Meng, Fan Jing; Jilling, Tamas; Lewis, Erin Rachel; Johnson, Meshell D.; Xu, Anna; Kass, Daniel; Martino, Janice M.; Bellmeyer, Amy; Albazi, John S.; Emala, Charles

    2007-01-01

    Adenosine is a purine nucleoside that regulates cell function through G protein-coupled receptors that activate or inhibit adenylyl cyclase. Based on the understanding that cAMP regulates alveolar epithelial active Na+ transport, we hypothesized that adenosine and its receptors have the potential to regulate alveolar ion transport and airspace fluid content. Herein, we report that type 1 (A1R), 2a (A2aR), 2b (A2bR), and 3 (A3R) adenosine receptors are present in rat and mouse lungs and alveol...

  10. Adenosine triphosphate inhibition of yeast trehalase.

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  11. Role of adenosine receptors in caffeine tolerance

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  12. Electrocardiographic profile of adenosine pharmacological stress testing

    Sun, Hao; TIAN, YUEQIN; ZHENG, LIHUI; Pan, Qingrong; XIE, BOQIA

    2015-01-01

    Adenosine stress testing in conjunction with radionuclide myocardial perfusion imaging has become a common approach for the detection of coronary artery diseases in patients who are unable to perform adequate levels of exercise. However, specific electrocardiographic alterations during the test have been rarely described. Using a Chinese population, the aim of the present study was to provide a detailed electrocardiographic profile of adenosine stress testing. The study population included 1,...

  13. Adenosine stress protocols for myocardial perfusion imaging

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  14. Side Effects of Chemotherapy

    ... Men Living with Prostate Cancer Side Effects of Chemotherapy Side Effects Urinary Dysfunction Bowel Dysfunction Erectile Dysfunction ... Side Effects of Hormone Therapy Side Effects of Chemotherapy Side Effects: When to Seek Help PSA Rising ...

  15. Internalization and desensitization of adenosine receptors

    Klaasse, Elisabeth C.; IJzerman, Adriaan P.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are re...

  16. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is...

  17. Study of Ectonucleotidases and Adenosine Deaminases in Drosophila

    PREUER, Kristina

    2013-01-01

    Extracellular adenosine triphosphate and extracellular adenosine are important regulatory molecules in the human immune system. The concentrations of these molecules are in turn regulated by ectonucleotidases and adenosine deaminases. In this thesis I attempt to test the gene silencing efficiency of RNA interference for three different genes coding for such enzymes in the model organism Drosophila melanogaster.

  18. Internalization and desensitization of adenosine receptors.

    Klaasse, E.C.; IJzerman, A.P.; Grip, W.J. de; Beukers, M.W.

    2008-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A(1), A(2A), A(2B) and A(3) receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein clas

  19. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, [3H]NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine

  20. Adenosine: An immune modulator of inflammatory bowel diseases

    Jeff Huaqing Ye; Vazhaikkurichi M Rajendran

    2009-01-01

    Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.

  1. Chemotherapy in Prostate Cancer.

    Hurwitz, Michael

    2015-10-01

    For approximately a decade, chemotherapy has been shown to prolong life in patients with metastatic castration-resistant prostate cancer (mCRPC). Since that time, however, only two agents have proven to prolong life (docetaxel and cabazitaxel). However, in the last year, the addition of chemotherapy to primary hormonal therapy became a standard of care for high-volume castration-sensitive metastatic disease. Here I will review current prostate cancer chemotherapies, mechanisms of resistance to those therapies, and ongoing clinical studies of chemotherapy combinations and novel chemotherapeutics. PMID:26216506

  2. Chemotherapy for Soft Tissue Sarcomas

    ... Next Topic Targeted therapy for soft tissue sarcoma Chemotherapy for soft tissue sarcomas Chemotherapy (chemo) is the use of drugs given into ... Depending on the type and stage of sarcoma, chemotherapy may be given as the main treatment or ...

  3. Extravasation of chemotherapy

    Langer, Seppo W

    2010-01-01

    Extravasation of chemotherapy is a feared complication of anticancer therapy. The accidental leakage of cytostatic agents into the perivascular tissues may have devastating short-term and long-term consequences for patients. In recent years, the increased focus on chemotherapy extravasation has led...

  4. Chemotherapy-Related Neurotoxicity.

    Taillibert, Sophie; Le Rhun, Emilie; Chamberlain, Marc C

    2016-09-01

    Chemotherapy may have detrimental effects on either the central or peripheral nervous system. Central nervous system neurotoxicity resulting from chemotherapy manifests as a wide range of clinical syndromes including acute, subacute, and chronic encephalopathies, posterior reversible encephalopathy, acute cerebellar dysfunction, chronic cognitive impairment, myelopathy, meningitis, and neurovascular syndromes. These clinical entities vary by causative agent, degree of severity, evolution, and timing of occurrence. In the peripheral nervous system, chemotherapy-induced peripheral neuropathy (CIPN) and myopathy are the two main complications of chemotherapy. CIPN is the most common complication, and the majority manifest as a dose-dependent length-dependent sensory axonopathy. In severe cases of CIPN, the dose of chemotherapy is reduced, the administration delayed, or the treatment discontinued. Few treatments are available for CIPN and based on meta-analysis, duloxetine is the preferred symptomatic treatment. Myopathy due to corticosteroid use is the most frequent cause of muscle disorders in patients with cancer. PMID:27443648

  5. Adenosine receptors and asthma in humans

    Wilson, C N

    2008-01-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine...

  6. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

    Kleynhans, Janke

    2013-01-01

    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  7. Role of adenosine in oligodendrocyte precursor maturation

    Elisabetta Coppi

    2015-04-01

    Full Text Available Differentiation and maturation of oligodendroglial cells are postnatal processes involving specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognised. As evaluated on OPC cultures, adenosine by stimulating A1 receptors, promotes oligodendrocyte maturation and inhibits their proliferation; on the contrary by stimulating A2A receptors, it inhibits oligodendrocyte maturation. A1 and A2A receptor-mediated effects are related to opposite modifications of outward delayed rectifying membrane K+ currents (IK that are involved in regulation of oligodendrocyte differentiation. Brain A1 and A2A receptors might represent new molecular targets for drugs useful in demyelinating pathologies, such as multiple sclerosis (MS, stroke and brain trauma.

  8. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. (Univ. of Tokyo (Japan))

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  9. Turnover of adenosine in plasma of human and dog blood

    To determine half-life and turnover of plasma adenosine, heparinized blood from healthy volunteers was incubated with radiolabeled adenosine in the physiological concentration range of 0.1-1 microM. Plasma levels of adenosine in vitro were 82 +/- 14 nM and were similar to those determined immediately after blood collection with a ''stopping solution.'' Dipyridamole (83 microM) and erythro-9(2-hydroxynon-3yl)-adenine (EHNA) (8 microM) did not measurably alter basal adenosine levels but completely blocked the uptake of added adenosine. Inhibition of ecto-5'-nucleotidase with 100 microM alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP) reduced plasma adenosine to 22 +/- 6 nM. For the determination of adenosine turnover, the decrease in specific radioactivity of added [3H]adenosine was measured using a dipyridamole-containing stopping solution. Without altering basal adenosine levels, the half-life was estimated to be 0.6 s. Similar experiments were carried out with washed erythrocytes or in the presence of AOPCP, yielding half-lives of 0.7 and 0.9 s, respectively. When the initial adenosine concentration was 1 microM, its specific activity decreased by only 11% within 5 s, whereas total plasma adenosine exponentially decreased with a half-life of 1.5 s. Venous plasma concentrations were measured after relief of a 3-min forearm ischemia. Changes in plasma adenosine did not correlate well with changes in blood flow but were augmented in the presence of dipyridamole

  10. Silk Fibroin Encapsulated Powder Reservoirs for Sustained Release of Adenosine

    Pritchard, Eleanor M.; Szybala, Cory; Boison, Detlev; Kaplan, David L.

    2010-01-01

    Due to its unique properties, silk fibroin was studied as a biodegradable polymer vehicle for sustained, local delivery of the anticonvulsant adenosine from encapsulated reservoirs. Silk is a biologically derived protein polymer that is biocompatible, mechanically strong and degrades to non-toxic products in vivo. To achieve local, sustained, controlled adenosine release from fully degradable implants, solid adenosine powder reservoirs were coated with silk fibroin. Material properties of the...

  11. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission

    Goadsby, P J; Hoskin, K L; Storer, R J;

    2002-01-01

    There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg/kg, intraperit......There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg...

  12. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  13. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  14. After chemotherapy - discharge

    ... sugar-free popsicles or sugar-free hard candies. Take care of your dentures, braces, or other dental products. ... Take care not to get infections for up to 1 year or more after your chemotherapy. Practice safe ...

  15. Chemotherapy of lung cancer.

    Papac, R J

    1981-01-01

    The potential for substantial improvement in the outcome of patients with carcinoma of the lung seem most likely to develop in the field of chemotherapy. In the past decade, striking advances in the management of small cell carcinoma have yielded response rates and longer survival. While the greatest improvement can be predicted for patients whose disease is limited in extent, combination chemotherapy and combined modality therapy generally are effective in causing tumor regression for the ma...

  16. Chemotherapy induced Hyponatraemia

    Yeoh, Kheng-Wei; Camilleri, Philip; Patel, Kinnari

    2010-01-01

    We present a case report of chemotherapy induced renal salt wasting syndrome (RSWS) that was initially diagnosed and managed as syndrome of inappropriate secretion of antidiuretic hormone (SIADH), based on osmolality values as well as hydration status. The patient was receiving chemotherapy for metastatic testicular cancer. Progressive deterioration of electrolyte balance prompted the diagnosis of RSWS. This was confirmed by a high urinary sodium concentration, a simple but important investig...

  17. Neurotoxicity of cancer chemotherapy

    Miyoung Yang; Changjong Moon

    2013-01-01

    There is accumulating clinical evidence that chemotherapeutic agents induce neurological side effects, including memory deficits and mood disorders, in cancer patients who have undergone chemotherapeutic treatments. This review focuses on chemotherapy-induced neurodegeneration and hippocampal dysfunctions and related mechanisms as measured by in vivo and in vitro approaches. These investigations are helpful in determining how best to further explore the causal mechanisms of chemotherapy-induced neurological side effects and in providing direction for the future development of novel optimized chemotherapeutic agents.

  18. Intravenous adenosine and radiopharmaceutical injection in the same line was feasible in adenosine stress myocardial perfusion imaging

    Adenosine stress myocardial perfusion imaging was performed with an intravenous adenosine and radiopharmaceutical injection in the same line. A syringe containing 720 μ/kg of adenosine in 40 ml of saline was prepared and injected at the constant infusion rate of 400 ml/h. Adenosine was temporarily stopped by the stopcock when 1.5 ml of thallium was injected for 0.5 second from the three-way stopcock with two ways opened. Thereafter, the stopcock was returned to the original position in 0.5 second, and adenosine flow returned to the constant flow rate again. In this method, 0.75% of adenosine total dose was injected at a rate of 3.0 ml/s and adenosine was stopped for 3.6 second. There were no significant differences in either effects and adverse events of adenosine between this method and two intravenous injection line methods. Adenosine stress in one venous line method would be an easy method maintaining the dose effect and safety. (author)

  19. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  20. Characterization of adenosine binding proteins in human placental membranes

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with [3H] -N-ethylcarboxamidoadenosine ([3H]NECA). This site is similar to the adenosine A2 receptor. We call this site the adenosine A2-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A1 receptor. The soluble adenosine A2-like binding site cannot be detected without a rapid assay. Binding to the adenosine A1 receptor with [3H]-2-chloroadenosine and [3H]NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A1 specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5'-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands [3H]-cyclohexyladenosine [3H] cylopentylxanthine revealed adenosine A1 agonist and antagonist potency orders. We have purified the adenosine A2-like binding site. The adenosine A2-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 Angstrom. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A2-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine

  1. Characterization of adenosine binding proteins in human placental membranes

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  2. High-dose adenosine overcomes the attenuation of myocardial perfusion reserve caused by caffeine.

    Reyes, E.; Loong, C Y; Harbinson, Mark; Donovan, J; Anagnostopoulos, C.; Underwood, S. R.

    2008-01-01

    Objectives:We studied whether an increase in adenosine dose overcomes caffeine antagonism on adenosine-mediated coronary vasodilation.Background:Caffeine is a competitive antagonist at the adenosine receptors, but it is unclear whether caffeine in coffee alters the actions of exogenous adenosine, and whether the antagonism can be surmounted by increasing the adenosine dose.Methods:Myocardial perfusion scintigraphy (MPS) was used to assess adenosine-induced hyperemia in 30 patients before (bas...

  3. Adenosine and its receptors as therapeutic targets: An overview

    Sachdeva, Sakshi; Gupta, Monika

    2012-01-01

    The main goal of the authors is to present an overview of adenosine and its receptors, which are G-protein coupled receptors. The four known adenosine receptor subtypes are discussed along with the therapeutic potential indicating that these receptors can serve as targets for various dreadful diseases.

  4. Effect of theophylline on adenosine production in the canine myocardium

    Adenosine is thought to participate in local regulation of coronary blood flow. However, competitive antagonists of adenosine fail to block myocardial active hyperemia. The authors examined the effect of locally administered theophylline on active hyperemia and myocardial adenosine production during intracoronary isoproterenol infusion in the dog heart. Isoproterenol decreased coronary resistance and increased myocardial adenosine production. Infusion of theophylline at a rate that attenuated the vasodilator response to exogenously administered adenosine failed to attenuate the increase in coronary blood flow produced by isoproterenol. However, theophylline plus isoproterenol production greater increases in myocardial adensine production than isoproterenol alone. The curves relating resistance and adenosine in the presence of theophylline fell to the right of those in the absence of theophylline. These findings suggest that the failure of theophylline to attenuate isoproterenol hyperemia in the dog heart results at least in part from an increase in adenosine concentration at the arteriole to a level beyond that blocked by this competitive antagonist and that adenosine may in fact play a role in isoproterenol-induced active hyperemia

  5. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  6. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters.

    Lynge, J; Juel, C; Hellsten, Y

    2001-12-01

    1. The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. 2. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km = 177 +/- 36 microM and Vmax = 1.9 +/- 0.2 nmol x ml(-1) x s(-1) (0.7 nmol (mg protein)(-1) x s(-1)). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72% inhibition) or dipyridamol (64% inhibition; P electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells during contraction. PMID:11731589

  7. Combination Chemotherapy for Influenza

    Robert G. Webster

    2010-07-01

    Full Text Available The emergence of pandemic H1N1 influenza viruses in April 2009 and the continuous evolution of highly pathogenic H5N1 influenza viruses underscore the urgency of novel approaches to chemotherapy for human influenza infection. Anti-influenza drugs are currently limited to the neuraminidase inhibitors (oseltamivir and zanamivir and to M2 ion channel blockers (amantadine and rimantadine, although resistance to the latter class develops rapidly. Potential targets for the development of new anti-influenza agents include the viral polymerase (and endonuclease, the hemagglutinin, and the non-structural protein NS1. The limitations of monotherapy and the emergence of drug-resistant variants make combination chemotherapy the logical therapeutic option. Here we review the experimental data on combination chemotherapy with currently available agents and the development of new agents and therapy targets.

  8. Hyperthermia and chemotherapy agent

    The use of chemotherapeutic agents for the treatment of cancer dates back to the late 19th century, but the modern era of chemotherapy drugs was ushered in during the 1940's with the development of the polyfunctional alkylating agent. Since then, numerous classes of drugs have evolved and the combined use of antineoplastic agents with other treatment modalities such as radiation or heat, remains a large relatively unexplored area. This approach, combining local hyperthermia with chemotherapy agents affords a measure of targeting and selective toxicity not previously available for drugs. In this paper, the effects of adriamycin, bleomycin and cis-platinum are examined. The adjuvant use of heat may also reverse the resistance of hypoxic cells noted for some chemotherapy agents

  9. Chemotherapy-induced polyneuropathy

    Zedan, Ahmed; Vilholm, Ole Jakob

    2014-01-01

    Chemotherapy-induced polyneuropathy (CIPN) is a common, but underestimated, clinical challenge. Incidence varies depending on many factors that are equally as important as the type of chemotherapeutic agent itself. Moreover, the assessment of CIPN is still uncertain, as several of the most...... frequently used scales do not rely on a formal neurological evaluation and depend on patients' reports and examiners' interpretations. Therefore, the aim of this MiniReview was to introduce the most common chemotherapies that cause neuropathy, and in addition to this, highlight the most significant...

  10. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    Kubilay Oransay; Nil Hocaoglu; Mujgan Buyukdeligoz; Yesim Tuncok; Sule Kalkan

    2014-01-01

    Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist), 8-(-3-chlorostyryl)-caffeine (CSC; A 2a receptor antagonist), or dimethyl sulfoxide (DMSO) administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour...

  11. Chemotherapy for gastric cancer

    Javier Sastre; Jose Angel García-Saenz; Eduardo Díaz-Rubio

    2006-01-01

    Metastatic gastric cancer remains a non-curative disease.Palliative chemotherapy has been demonstrated to prolong survival without quality of life compromise. Many single-agents and combinations have been confirmed to be active in the treatment of metastatic disease. Objective response rates ranged from 10-30% for single-agent therapy and 30-60% for polychemotherapy. Results of phase Ⅱ and Ⅲ studies are reviewed in this paper as well as the potential efficacy of new drugs. For patients with localized disease, the role of adjuvant and neoadjuvant chemotherapy and radiation therapy is discussed.Most studies on adjuvant chemotherapy failed to demonstrate a survival advantage, and therefore, it is not considered as standard treatment in most centres. Adjuvant immunochemotherapy has been developed fundamentally in Korea and Japan. A meta-analysis of phase Ⅲ trials with OK-432 suggested that immunochemotherapy may improve survival of patients with curatively resected gastric cancer. Based on the results of US Intergroup 0116study, postoperative chemoradiation has been Accepted as standard care in patients with resected gastric cancer in North America. However, the results are somewhat confounded by the fact that patients underwent less than a recommended D1 lymph node dissection and the pattern of recurrence suggested a positive effect derived from local radiotherapy without any effect on micrometastatic disease.Neoadjuvant chemotherapy or chemoradiation therapy remains experimental, but several phase Ⅱstudies are showing promising results. Phase Ⅲ trials are needed.

  12. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.; Apodaca, Gerard

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed ...

  13. Proton transfer in oxidized adenosine self-aggregates.

    Capobianco, Amedeo; Caruso, Tonino; Celentano, Maurizio; La Rocca, Mario Vincenzo; Peluso, Andrea

    2013-10-14

    The UV-vis and the IR spectra of derivativized adenosine in dichloromethane have been recorded during potentiostatic oxidation at an optically transparent thin layer electrode. Oxidized adenosine shows a broad Zundel like absorption extending from 2800 up to 3600 cm(-1), indicating that a proton transfer process is occurring. Theoretical computations predict that proton transfer is indeed favored in oxidized 1:1 self-association complexes and allow to assign all the observed transient spectroscopic signals. PMID:24116647

  14. Distribution of adenosine receptors in human sclera fibroblasts

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin; Ge, Jian

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines...

  15. Prevent Infections During Chemotherapy

    2011-10-24

    This podcast discusses the importance of preventing infections in cancer patients who are undergoing chemotherapy. Dr. Lisa Richardson, CDC oncologist, talks about a new Web site for cancer patients and their caregivers.  Created: 10/24/2011 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP), Division of Cancer Prevention and Control (DCPC).   Date Released: 10/24/2011.

  16. Combination Chemotherapy for Influenza

    Robert G. Webster; Govorkova, Elena A.

    2010-01-01

    The emergence of pandemic H1N1 influenza viruses in April 2009 and the continuous evolution of highly pathogenic H5N1 influenza viruses underscore the urgency of novel approaches to chemotherapy for human influenza infection. Anti-influenza drugs are currently limited to the neuraminidase inhibitors (oseltamivir and zanamivir) and to M2 ion channel blockers (amantadine and rimantadine), although resistance to the latter class develops rapidly. Potential targets for the development of new anti...

  17. Adult medulloblastoma: multiagent chemotherapy.

    Greenberg, H. S.; Chamberlain, M. C.; Glantz, M J; Wang, S.

    2001-01-01

    In this study, the records of 17 adult patients with medulloblastoma treated with craniospinal radiation and 1 of 2 multiagent chemotherapy protocols were reviewed for progression-free survival, overall survival, and toxicity, and the patients were compared with each other and with similarly treated children and adults. Records of patients treated at 3 institutions were reviewed. Seventeen medulloblastoma patients (11 female, 6 male) with a median age of 23 years (range, 18-47 years) were tre...

  18. Chemotherapy of osteoarticular tuberculosis

    Hazra Avijit; Laha Baisakhi

    2005-01-01

    Tuberculosis (TB) of the bones and joints is rampant in India with the dorsolumbar spine as the most common site of osseous involvement. For diagnosis, clinical suspicion needs to be confirmed through appropriate laboratory and imaging investigations, and increasingly nowadays, nucleic acid amplification techniques. Chemotherapy remains the cornerstone of management complemented by rest, nutritional support and splinting, as necessary. Operative intervention is required if response to chemoth...

  19. Chemotherapie von Hirntumoren bei Erwachsenen

    Weller, M.

    2008-01-01

    Chemotherapy has become a third major treatment option for patients with brain tumors, in addition to surgery and radiotherapy. The role of chemotherapy in the treatment of gliomas is no longer limited to recurrent disease. Temozolomide has become the standard of care in newly diagnosed glioblastoma. Several ongoing trials seek to define the role of chemotherapy in the primary care of other gliomas. Some of these studies are no longer only based on histological diagnoses, but take into consid...

  20. Chemotherapy targeting cancer stem cells

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cance...

  1. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis.

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J; Sun, Deming

    2016-03-15

    Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies. PMID:26856700

  2. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  3. [Prostate cancer and chemotherapy].

    Gravis, Gwenaelle; Salem, Naji; Bladou, Franck; Viens, Patrice

    2007-07-01

    Androgen deprivation in patients with metastatic prostate cancer produces palliation of symptoms, PSA decrease and tumoral regression in most patients. After a brief period of disease regression lasting 18 to 24 months nearly all pts will progress to androgen independence disease (HRPC) with progressive clinical deterioration and ultimately death. Chemotherapy with mitoxantrone has been shown to palliate symptoms but did not extend survival. Two large randomized trials showed a survival benefit for pts with HRPC treated with docetaxel with a reduction risk of death by 21-24%, and significant improvement in palliation of symptoms and quality of life. New agents targeting angiogenesis, apoptosis, signal transduction pathway, used alone or in combination with docetaxel currently are under trial in an attempt to provide much needed improvements in outcome. Questions remains in suspend when and who need to be treated, earlier, in high risk as in adjuvant setting? Current data have demonstrated that neoadjuvant or adjuvant chemotherapy is relatively safe and feasible. Further investigation through prospective randomize trials is critical to define the precise role of this modality in high risk populations. PMID:17845990

  4. Modification of survival of gamma irradiated mice by adenosine nucleotides

    The administration prior to irradiation of adenosine triphosphate (ATP) or other adenosine nucleotides, singly or in combination, increased the radioresistance of mice. Post-irradiation treatment with the adenosine nucleotides had no effect on the survival of the irradiated mice. Dose reduction factors of 2.32 could be obtained by pretreatment of mice with the following combination of protective agents: S-2(4-aminobutylamino)ethyl phosphorothioic aced (WR 2822), cysteamine (MEA) and ATP. Since cyclic AMP levels were unchanged in the spleen or gut by administration of cysteamine and other protectors it is unlikely that the increase in protection was due to changes in cyclic AMP levels. The calcium salt of ATP provided a higher level of protection than the ATP alone, indicating that the protective mechanism of ATP is probably not related to anoxia. (orig.)

  5. Thallium-201 scintigraphy of the myocardium in connection with adenosine

    It is shown that thallium-201 SPECT studies of the myocardium performed subsequent to intravenous infusion of adenosine provide results at least as valuable as those from exercise thallium-201 scintigraphy in the diagnosis of coronary artery disease. The infusion of adenosine offers great advantages over exercise studies in that it is a standardized procedure uninfluenced by a patient's physical fitness, which can thus be used in all cases. There are quite a number of clinically tolerable untoward reactions that may be associated with discomfort but do not warrant discontinuation of the procedure. Serious, verifiable side-effects are rare and disappear immediately on termination of the infusion. The most recent research in this field has shown that newly developed compounds of 99mTc are also suitable for radionuclide studies of the myocardium with adenosine vasodilation. (orig.)

  6. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko G, Pacher...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Hasko G, Pacher

  7. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  8. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  9. Why do premature newborn infants display elevated blood adenosine levels?

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  10. No role of interstitial adenosine in insulin-mediated vasodilation

    Dela, F; Stallknecht, B

    1999-01-01

    healthy subjects (H) and in four subjects with a complete, high (C5-C6/7) spinal cord injury (SCI) a hyperinsulinaemic (480 mU min-1 kg-1), isoglycaemic clamp was performed. SCI subjects were included as it has been proposed that adenosine and adenine nucleotides may be released from nerve endings in the...... skeletal muscle. Adenosine concentrations in the extracellular fluid (ECF) of skeletal muscle in the thigh were measured by means of the microdialysis technique. Leg blood flow (LBF) was measured by termodilution. In response to insulin infusion, LBF always increased (P < 0.05) (from 228 +/- 25 and 318...

  11. Cyclic adenosine monophosphate phosphodiesterase in brain: effect on anxiety.

    Beer, B; Chasin, M; Clody, D E; Vogel, J R

    1972-04-28

    Drugs that reduce anxiety may be mediated by cyclic adenosine monophosphate in the brain because (i) potent anxiety-reducing drugs are also potent inhibitors of brain phosphodiesterase activity; (ii) dibutyryl cyclic adenosine monophosphate has the ability to reduce anxiety; (iii) the methylxanthines show significant anxiety-reducing effects; (iv) theophylline and chlordiazepoxide produce additive anxiety-reducing activity; and (v) there is a significant correlation between the anxiety-reducing property of drugs and their ability to inhibit phosphodiesterase activity in the brain. PMID:4402069

  12. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dop...

  13. Adenosine and a selective A2a receptor agonist regadenoson used in myocardial stress test

    Adenosine pharmacological myocardial stress test has been widely used in clinic. However, the side effects related with adenosine administration has been an issue of controversy. Current Phase Ⅲ study of regadenoson, a selective A2a receptor agonist, reveals its potential to substitute adenosine as a new agent for pharmacological myocardial stress test. This review briefs adenosine and regadenoson and their clinical utilities in myocardial stress test. (authors)

  14. Cytotoxic purine nucleoside analogues bind to A1, A2A and A3 adenosine receptors

    Jensen, Kyle; Johnson, L’Aurelle A.; Jacobson, Pamala A.; Kachler, Sonja; Kirstein, Mark N.; Lamba, Jatinder; Klotz, Karl-Norbert

    2012-01-01

    Fludarabine, clofarabine and cladribine are anti-cancer agents which are analogues of the purine nucleoside adenosine. These agents have been associated with cardiac and neurological toxicities. Because these agents are analogues of adenosine, they may act through adenosine receptors to elicit their toxic effects. The objective of this study was to evaluate the ability of cytotoxic nucleoside analogues to bind and activate adenosine receptor subtypes (A1, A2A, A2B, and A3). Radioligand bindin...

  15. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    ROBERTO PAES-DE-CARVALHO

    2002-01-01

    The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activa...

  16. Chromonychia Secondary to Chemotherapy

    Marien Lopes

    2013-06-01

    Full Text Available Chemotherapy drugs can affect the skin and its appendages. Several clinical presentations can be observed, depending on the affected structure. The most common dermatological side effect is chromonychia. The main causative agents are: (1 cyclophosphamide, which can provoke a diffuse, black pigmentation, longitudinal striae and dark grey pigmentation located proximally on the nails; (2 doxorubicin, which promotes dark brown bands alternating with white striae and dark brown pigmentation in transverse bands, and (3 hydroxyurea, which produces a distal, diffuse, dark brown pigmentation. In the majority of cases, the effects are reversible after the suspension of the causative agent for a few months. We report a patient who developed chromonychia while undergoing treatment with cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate and cytarabine for acute lymphocytic leukemia.

  17. Chemotherapy of osteoarticular tuberculosis

    Hazra Avijit

    2005-01-01

    Full Text Available Tuberculosis (TB of the bones and joints is rampant in India with the dorsolumbar spine as the most common site of osseous involvement. For diagnosis, clinical suspicion needs to be confirmed through appropriate laboratory and imaging investigations, and increasingly nowadays, nucleic acid amplification techniques. Chemotherapy remains the cornerstone of management complemented by rest, nutritional support and splinting, as necessary. Operative intervention is required if response to chemotherapy is unsatisfactory and for spinal stabilization. The drugs and regimens are fundamentally similar to those for pulmonary TB. However, there is lack of consensus on the appropriate duration of treatment. The prevailing practice of extending treatment till radiological evidence of healing is complete, may be unnecessary in view of recent reports that 6-9 months of therapy is sufficient for the majority of cases. Relapse rates are not drastically improved by extending treatment to 12 months or even longer, except perhaps in pediatric cases. However, prolonged treatment may be required if surgical debridement is indicated but cannot be done. Multidrug-resistant TB should be suspected if disease activity shows no signs of abating after 4-6 months of uninterrupted therapy. These cases are therapeutically challenging and will require second line or experimental antiTB drugs, supported by resistance testing where feasible. Coexistent HIV/AIDS may also necessitate prolonged treatment. Interactions between first line antiTB drugs and antiretroviral medication can complicate matters. Close monitoring is essential in all cases, with dechallenge and cautious reinstitution of drugs in the event of toxicity. While awaiting the arrival of long overdue new antiTB medication, existing drugs and regimens must be used in an informed manner with emphasis on patient compliance.

  18. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  19. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin; Bangsbo, Jens; Hellsten, Ylva

    2010-01-01

    and during knee extensor exercise. The dialysate was analyzed for content of VEGF protein and adenosine. The mechanism of VEGF secretion from muscle cells in culture was examined in resting and electro stimulated cells, and in response to the adenosine analogue NECA, and the adenosine A(2A) receptor...

  20. Searching Inhibitors of Adenosine Kinase by Simulation Methods

    ZHU Rui-Xin; ZHANG Xing-Long; DONG Xi-Cheng; CHEN Min-Bo

    2006-01-01

    Searching new inhibitors of adenosine kinase (AK) is still drawing attention of experimental scientists. A better and solid model is here proposed by means of simulation methods from different ways, the direct analysis of receptor itself, the conventional 3D-QSAR methods and the integration of docking method and the conventional QSAR analysis.

  1. Adenosine receptor modulation of seizure susceptibility in rats

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A1 adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of 3H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A1 adenosine receptors in the cerebral cortex

  2. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  3. Chemotherapy for bladder cancer: treatment guidelines for neoadjuvant chemotherapy, bladder preservation, adjuvant chemotherapy, and metastatic cancer

    Sternberg, Cora N; Donat, S Machele; Bellmunt, Joaquim;

    2007-01-01

    To determine the optimal use of chemotherapy in the neoadjuvant, adjuvant, and metastatic setting in patients with advanced urothelial cell carcinoma, a consensus conference was convened by the World Health Organization (WHO) and the Société Internationale d'Urologie (SIU) to critically review the...... published literature on chemotherapy for patients with locally advanced bladder cancer. This article reports the development of international guidelines for the treatment of patients with locally advanced bladder cancer with neoadjuvant and adjuvant chemotherapy. Bladder preservation is also discussed, as...

  4. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  5. Enhanced Antitumor Effects of Adenoviral-Mediated siRNA against GRP78 Gene on Adenosine-Induced Apoptosis in Human Hepatoma HepG2 Cells

    Ling-Fei Wu

    2014-01-01

    Full Text Available Our previous studies show that adenosine-induced apoptosis is involved in endoplasmic reticulum stress in HepG2 cells. In this study, we have investigated whether knockdown of GRP78 by short hairpin RNA (shRNA increases the cytotoxic effects of adenosine in HepG2 cells. The adenovirus vector-delivered shRNA targeting GRP78 (Ad-shGRP78 was constructed and transfected into HepG2 cells. RT-PCR assay was used to determine RNA interference efficiency. Effects of knockdown of GRP78 on adenosine-induced cell viabilities, cell-cycle distribution and apoptosis, as well as relative protein expressions were determined by flow cytometry and/or Western blot analysis. The intracellular Ca2+ concentration was detected by laser scanning confocal microscope. Mitochondrial membrane potential (ΔΨm was measured by a fluorospectrophotometer. The results revealed that GRP78 mRNA was significantly downregulated by Ad-shGRP78 transfection. Knockdown of GRP78 enhanced HepG2 cell sensitivity to adenosine by modulating G0/G1 arrest and stimulating Bax, Bak, m-calpain, caspase-4 and CHOP protein levels. Knockdown of GRP78 worsened cytosolic Ca2+ overload and ΔΨm loss. Knockdown of caspase-4 by shRNA decreased caspase-3 mRNA expression and cell apoptosis. These findings indicate that GRP 78 plays a protective role in ER stress-induced apoptosis and show that the combination of chemotherapy drug and RNA interference adenoviruses provides a new treatment strategy against malignant tumors.

  6. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia;

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act in...

  7. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  8. Abiotic regioselective phosphorylation of adenosine with borate in formamide.

    Furukawa, Yoshihiro; Kim, Hyo-Joong; Hutter, Daniel; Benner, Steven A

    2015-04-01

    Nearly 40 years ago, Schoffstall and his coworkers used formamide as a solvent to permit the phosphorylation of nucleosides by inorganic phosphate to give nucleoside phosphates, which (due to their thermodynamic instability with respect to hydrolysis) cannot be easily created in water by an analogous phosphorylation (the "water problem" in prebiotic chemistry). More recently, we showed that borate could stabilize certain carbohydrates against degradation (the "asphalt problem"). Here, we combine the two concepts to show that borate can work in formamide to guide the reactivity of nucleosides under conditions where they are phosphorylated. Specifically, reaction of adenosine in formamide with inorganic phosphate and pyrophosphate in the presence of borate gives adenosine-5'-phosphate as the only detectable phosphorylated product, with formylation (as opposed to hydrolysis) being the competing reaction. PMID:25826074

  9. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  10. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia

    Björklund, Olga

    2008-01-01

    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  11. Adenosine Signaling in Striatal Circuits and Alcohol Use Disorders

    Nam, Hyung Wook; Bruner, Robert C.; Choi, Doo-Sup

    2013-01-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, ...

  12. The emerging role of adenosine deaminases in insects

    Doleželová, Eva; Žurovec, Michal; Doležal, T.; Šimek, Petr; Bryant, P. J.

    2005-01-01

    Roč. 35, č. 5 (2005), s. 381-389. ISSN 0965-1748 R&D Projects: GA ČR(CZ) GA204/04/1205; GA AV ČR(CZ) IAA5007107 Grant ostatní: United States National Science Foundation(US) 440860-21565 Institutional research plan: CEZ:AV0Z50070508 Keywords : adenosine deaminase * ADA * growth factor Subject RIV: ED - Physiology Impact factor: 2.733, year: 2005

  13. Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

    Kavianipour, Mohammad

    2002-01-01

    Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an...

  14. Adenosine signaling in striatal circuits and alcohol use disorders.

    Nam, Hyung Wook; Bruner, Robert C; Choi, Doo-Sup

    2013-09-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction. PMID:23912595

  15. Anxiolytic activity of adenosine receptor activation in mice.

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P; Stone, T W

    1995-10-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  16. Adjuvant chemotherapy and cancer cure

    The use of chemotherapy as an adjuvant to surgery and/or radiotherapy is well founded in experimental tumor systems and appears to be effective in patients in some circumstances. It is clear from both clinical and experimental studies that (1) the dose is important, (2) the earlier chemotherapy is started after primary therapy the better, and (3) combination chemotherapy may be more effective than single-agent treatment. The better the estimation of risk of recurrence, the better the assessment of the risk-benefit ratio with adjuvant therapy. Salvage therapy as well as relative risk of recurrence are considerations in the choice of patients to be treated. Finally, some evidence is presented to indicate that alkylating agents may not be necessary in combination regimens for adjuvant therapy if effective antimetabolite combinations are available

  17. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene;

    2007-01-01

    calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas the...... protein kinase C inhibitor calphostin C had no effect. The calcium-activated chloride channel inhibitor IAA-94 (30 microM) inhibited the adenosine-mediated constriction. Patch clamp experiments showed that adenosine treatment induced a depolarizing current in preglomerular smooth muscle cells which was....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release of...

  18. Adenosine A1 Receptor Antagonist Versus Montelukast on Airway Reactivity and Inflammation

    Nadeem, Ahmed; Obiefuna, Peter C.M.; Wilson, Constance N.; Mustafa, S. Jamal

    2006-01-01

    Adenosine produces bronchoconstriction in allergic rabbits, primates, and humans by activating adenosine A1 receptors. Previously, it is reported that a high dose of L-97-1, a water-soluble, small molecule adenosine A1 receptor antagonist, blocks early and late allergic responses, and bronchial hyper-responsiveness to histamine in a hyper-responsive rabbit model of allergic asthma. Effects of a lower dose of L-97-1 are compared to montelukast, a cysteinyl leukotriene-1 receptor antagonist on ...

  19. Traditional Acupuncture Triggers a Local Increase in Adenosine in Human Subjects

    Takano, Takahiro; Chen, Xiaolin; Luo, Fang; Fujita, Takumi; Ren, Zeguang; Goldman, Nanna; Zhao, Yuanli; Markman, John D.; Nedergaard, Maiken

    2012-01-01

    Acupuncture is a form of Eastern medicine that has been practiced for centuries. Despite its long history and worldwide application, the biological mechanisms of acupuncture in relieving pain have been poorly defined. Recent studies in mice, however, demonstrate that acupuncture triggers increases in interstitial adenosine, which reduces the severity of chronic pain through adenosine A1 receptors, suggesting that adenosine-mediated antinociception contributes to the clinical benefits of acupu...

  20. Respiratory stimulant effects of adenosine in man after caffeine and enprofylline.

    Smits, P; Schouten, J; Thien, T.

    1987-01-01

    In a double-blind and randomized study the respiratory stimulant effect of continuous intravenous adenosine infusion was studied after previous administration of caffeine, placebo and enprofylline in 10 healthy young volunteers. After placebo, adenosine induced an increase of minute ventilation (from 6.3 to 12.5 l min-1), tidal volume (from 0.60 to 0.96 l), and breathing rate (from 11.0 to 14.8 min-1). Venous pCO2 fell and pH rose after adenosine. Caffeine significantly reduced the adenosine-...

  1. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy.

    Kumar, Sokindra; Arun, K H S; Kaul, Chaman L; Sharma, Shyam S

    2005-01-01

    This study examined the effects of chronic administration of adenosine and CGS 21680 hydrochloride (adenosine A(2A) receptor agonist) on motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and histology of sciatic nerve in animal model of diabetic neuropathy. Adenosinergic agents were administered for 2 weeks after 6 weeks of streptozotocin-induced (50 mg/kg i.p.) diabetes in male Sprague-Dawley rats. Significant reduction in sciatic MNCV and NBF were observed after 8 weeks in diabetic animals in comparison with control (non diabetic) rats. Adenosine (10 mg/kg, i.p.) significantly improved sciatic MNCV and NBF in diabetic rats. The protective effect of adenosine on MNCV and NBF was completely reversed by theophylline (50 mg/kg, i.p.), a non-selective adenosine receptor antagonist, suggesting that the adenosine effect was mediated via adenosinergic receptors. CGS 21680 (0.1 mg/kg, i.p.) significantly improved NBF; however, MNCV was not significantly improved in diabetic rats. At a dose of 1 mg/kg, neither MNCV nor NBF was improved by CGS 21680 in diabetic rats. ZM 241385 (adenosine A(2A) receptor antagonist) prevented the effect of CGS 21680 (0.1 mg/kg, i.p.). Histological changes observed in sciatic nerve were partially improved by the adenosinergic agents in diabetic rats. Results of the present study, suggest the potential of adenosinergic agents in the therapy of diabetic neuropathy. PMID:15829161

  2. Dilated cardiomyopathy following trastuzumab chemotherapy

    Saurabh Karmakar

    2012-01-01

    Cardiotoxicity manifesting as dilated cardiomyopathy is a rarely reported adverse effect of trastuzumab. We hereby report a case of dilated cardiomyopathy, which occurred following trastuzumab chemotherapy in a 32-year-old female. The patient responded to discontinuation of trastuzumab and standard medical treatment. Extensive search of Indian literature revealed no reported case of dilated cardiomyopathy occurring due to trastuzumab.

  3. Chemotherapy-associated recurrent pneumothoraces in lymphangioleiomyomatosis.

    Kelly, Emer

    2012-02-01

    Lymphangioleiomyomatosis is a rare cause of pneumothorax in women. We present the case of a 48-year-old woman with lymphangioleiomyomatosis, who had never had a pneumothorax prior to commencing chemotherapy for breast cancer. During chemotherapy she developed 3 pneumothoraces and 2 episodes of pneumomediastinum. We suggest that the pneumothoraces were caused by the chemotherapy. To our knowledge, this is the first reported case of chemotherapy triggering pneumothoraces in a woman with lymphangioleiomyomatosis.

  4. Chemotherapy and You: Support for People with Cancer

    ... Terms Blogs and Newsletters Health Communications Publications Reports Chemotherapy and You: Support for People With Cancer Chemotherapy ... ePub This booklet covers: Questions and answers about chemotherapy. Answers common questions, such as what chemotherapy is ...

  5. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

    Michael D Nguyen

    Full Text Available Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV. Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p. increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6-cyclopentyladenosine, 1 mg/kg i.p. decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.

  6. Is adenosine a modulator of peripheral vasoconstrictor responses?

    Dayan, Lior; Brill, Silviu; Hochberg, Uri; Jacob, Giris

    2016-01-01

    Background Local vasoconstrictor reflexes, the vascular myogenic response (VMR) and the veno-arterial reflex (VAR) are necessary for the maintenance of regional blood flow and systemic arterial blood pressure during orthostatic stress. Their molecular mechanism is unknown. We postulated that adenosine is involved in the activation of these local reflexes. Methods This hypothesis was tested in 10 healthy male volunteers (age 29 ± 3 years, BMI 24 ± 1 kg/m2). We used veno-occlusive plethysmograp...

  7. Differential response of Drosophila cell lines to extracellular adenosine

    Fleischmannová, J.; Kučerová, Lucie; Šandová, Kateřina; Steinbauerová, Veronika; Brož, Václav; Šimek, Petr; Žurovec, Michal

    2012-01-01

    Roč. 42, č. 5 (2012), s. 321-331. ISSN 0965-1748 R&D Projects: GA MŠk(CZ) LC06077 Grant ostatní: AV ČR(CZ) KJB501410801; European Community´s Seventh Framwork Programme (FP7/2007-2013)(CZ) 229518 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : adenosine recycling * nucleoside transport * Mbn2 Subject RIV: CE - Biochemistry Impact factor: 3.234, year: 2012 http://www.sciencedirect.com/science/article/pii/S0965174812000033

  8. Anxiolytic activity of adenosine receptor activation in mice.

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P.; Stone, T W

    1995-01-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked ...

  9. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in hum...

  10. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  11. Role of adenosine in the sympathetic activation produced by isometric exercise in humans.

    Costa, F.; Biaggioni, I

    1994-01-01

    Isometric exercise increases sympathetic nerve activity and blood pressure. This exercise pressor reflex is partly mediated by metabolic products activating muscle afferents (metaboreceptors). Whereas adenosine is a known inhibitory neuromodulator, there is increasing evidence that it activates afferent nerves. We, therefore, examined the hypothesis that adenosine stimulates muscle afferents and participates in the exercise pressor reflex in healthy volunteers. Intraarterial administration of...

  12. Lack of adenosine A(3) receptors causes defects in mouse peripheral blood parameters

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 10, č. 3 (2014), s. 509-514. ISSN 1573-9538 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor * Adenosine A(3) receptor knockout mice * Hematopoiesis Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  13. Immunology of Photo(chemotherapy

    Ekin Şavk

    2010-12-01

    Full Text Available Perhaps the oldest empirical therapeutic modality in the history of medicine, photo(chemotherapy has well documented benefits but its mode of action is not fully elucidated. Today, thanks to advances in photoimmunology and molecular biology we are provided with important clues as to how photo(chemotherapy works. Initial research on UV light and skin cancer has brought about the groundbreaking discovery of the immunological effects UV. UVB is the UV light most frequently used for therapeutic purposes and its mechanisms of action are best demonstrated. UV light has several distinct effects on various components of the innate and acquired immune systems, especially T lymphocyte functions the common endpoint of which is immune supression. The antiproliferative and antifibrotic therapeutic effects of UVA and UVB have so far not been directly associated with immunological mechanisms.

  14. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Cátia Vieira; Maria Teresa Magalhães-Cardoso; Fátima Ferreirinha; Isabel Silva; Ana Sofia Dias; Julie Pelletier; Jean Sévigny; Paulo Correia-de-Sá

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis ...

  15. Chemotherapy-induced cognitive changes

    Lindner, Oana

    2015-01-01

    The present thesis, entitled Chemotherapy-induced cognitive changes, is being submitted in the alternative format, by Oana Calina Lindner to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences, School of Psychological Sciences. The thesis consists of five empirical studies, written in article formats and three connecting chapters. The General introduction in Chapter 1, places the thesis in the context of late effects research in can...

  16. Polymer conjugates for combination chemotherapy

    Etrych, Tomáš; Kostková, Hana; Šírová, Milada; Říhová, Blanka; Ulbrich, Karel

    Salt Lake City : University of Utah, 2010. s. 57-58. [Symposium on Biomedical Polymers for Drug Delivery. 26.03.2010-27.03.2010, Salt Lake City] R&D Projects: GA MŠk 1M0505; GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer * combination chemotherapy * doxorubicin Subject RIV: EI - Biotechnology ; Bionics

  17. Pulmonary blastoma: remission with chemotherapy

    Nissen, Mogens Holst; Jacobsen, M; Vindeløv, L;

    1984-01-01

    A 59-year-old man with pulmonary blastoma, who had undergone right-sided pneumonectomy, had a relapse of the tumour 7 months later. Light-microscopic and ultrastructural studies were consistent with recurrence from the primary tumour. Cell kinetic studies revealed a high fraction of tumour cells ...... the S-phase. Complete remission of the recurrence was obtained within 16 days after initiation of combination chemotherapy consisting of CCNU, vincristine, VP-16 and cyclophosphamide....

  18. Adenosine signaling and the energetic costs of induced immunity.

    Lazzaro, Brian P

    2015-04-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  19. Adenosine signaling and the energetic costs of induced immunity.

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  20. Adenosine Amine Congener as a Cochlear Rescue Agent

    Srdjan M. Vlajkovic

    2014-01-01

    Full Text Available We have previously shown that adenosine amine congener (ADAC, a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg was administered intraperitoneally to Wistar rats (8–10 weeks old at intervals (6–72 hours after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours. Hearing sensitivity was assessed using auditory brainstem responses (ABR before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz. Pharmacokinetic studies demonstrated a short (5 min half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.

  1. Distribution of adenosine receptors in human sclera fibroblasts

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines and in the frozen human scleral sections. ADOR protein expression in HSF and human sclera was confirmed by western blot analysis of cell lysates. Results ADORs were expressed in both HSF and human sclera. This was confirmed by western blot. ADORA1 expression was concentrated in the nucleus. ADORA2A was concentrated mainly in one side of the cytoplasm, and ADORA2B was found both in the nucleus and the cytoplasm. ADORA3 was expressed weakly in the cytoplasm. Conclusions All four subtypes of ADOR were found in HSF and may play a role in scleral remodeling. PMID:18385786

  2. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  3. Quantitative analysis of adenosine using Liquid Chromatography/Atmospheric Pressure Chemical Ionization - tandem Mass Spectrometry (LC/APCI-MS/MS)

    Van Dycke, Annelies; Verstraete, Alain; Pil, Kristof; Raedt, Robrecht; Vonck, Kristl; Boison, Detlev; Boon, Paul

    2010-01-01

    Adenosine-secreting cellular brain implants constitute a promising therapeutic approach for the treatment of epilepsy. To engineer neural stem cells for therapeutic adenosine delivery, a reliable and fast analytical method is necessary to quantify cell-based adenosine release. Here we describe the development, optimization and validation of adenosine measurement using liquid chromatography – atmospheric pressure chemical ionization – tandem mass spectrometry (LC-APCI-MS/MS). LC-MS/MS in posit...

  4. Distinct Roles for the A2B Adenosine Receptor in Acute and Chronic Stages of Bleomycin-Induced Lung Injury

    Yang ZHOU; Schneider, Daniel J.; Morschl, Eva; Song, Ling; Pedroza, Mesias; Karmouty-Quintana, Harry; Le, Thuy.; Sun, Chun-Xiao; Blackburn, Michael R.

    2010-01-01

    Adenosine is an extracellular signaling molecule that is generated in response to cell injury where it orchestrates tissue protection and repair. Whereas adenosine is best known for promoting anti-inflammatory activities during acute injury responses, prolonged elevations can enhance destructive tissue remodeling processes associated with chronic disease states. The generation of adenosine and the subsequent activation of the adenosine 2B receptor (A2BR) is an important processes in the regul...

  5. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms.

    Szondy, Z

    1994-12-15

    Incubation of human thymocytes with an optimum concentration of adenosine and its receptor site agonist, 2-chloroadenosine, induced increases in intracellular cyclic AMP (cAMP) (from a resting 0.6 +/- 0.1 to 4.1 +/- 0.2 pmol/10(7) cells within 5 min) and Ca2+ (from the resting 85 +/- 7 nM to a peak of 210 +/- 25 nM) levels and resulted in internucleosomal DNA fragmentation and cell death (apoptosis). Other adenosine analogues were also effective at inducing DNA fragmentation, the order of potency being 2-p-(carboxyethylphenylethylamino)-5'-carboxyamidoadenosine 13399-13402], at 60 ng/ml concentration also prevented adenosine-induced DNA fragmentation when added prior to adenosine. This suggested a complex cross-talk between the adenosine-triggered signal transduction cascade and the activation state of protein kinase C in regulating apoptosis of human thymocytes. PMID:7818494

  6. Interaction of porphyrins with adenine and adenosine complexes. Effect of a metal nature

    Reactions of complex formation of 5,10,15,20-tetraphenylporphine (H2TPP) and tetra-tert-butylphthalocyanine (H2(t-Bu)4Pc) with adenine and adenosine complexes of d-metals (M=Cd, Co, Cu, Hg, Zn) in DMSO and ethanol are studied. It was found that H2TPP reacts with Cu(II) and Hg(II) adeninates and adenosinates in DMSO, but does not react with Zn(II), Co(II), and Cd(II) adeninates and adenosinates (with both bridging and monodentate type of the ligand coordination). H2(t-Bu)4Pc enters the complex formation reaction with adeninates and adenosinates of all studied metals in DMSO at almost equal rates. The states of adenine and adenosine complexes of different d-metals in DMSO and ethanol are proposed on the basis of kinetic data obtained

  7. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production. PMID:16023100

  8. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis

    Na Lu; Baoying Wang; Xiaohui Deng; Honggang Zhao; Yong Wang; Dongliang Li

    2014-01-01

    After hypoxia, ischemia, or inlfammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, lfow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy ifrst appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.

  9. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma. PMID:15821340

  10. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.

    Pagliaro, P; Senzaki, H; Paolocci, N; Isoda, T; Sunagawa, G; Recchia, F A; Kass, D A

    1999-10-01

    1. Coronary flow elevation from enhanced perfusion pulsatility is synergistically amplified by adenosine. This study determined the specificity of this interaction and its potential mechanisms. 2. Mean and phasic coronary flow responses to increasing pulsatile perfusion were assessed in anaesthetized dogs, with the anterior descending coronary artery servoperfused to regulate real-time physiological flow pulsatility at constant mean pressure. Pulsatility was varied between 40 and 100 mmHg. Hearts ejected into the native aorta whilst maintaining stable loading. 3. Increasing pulsatility elevated mean coronary flow +11.5 +/- 1.7 % under basal conditions. Co-infusion of adenosine sufficient to raise baseline flow 66 % markedly amplified this pulsatile perfusion response (+82. 6 +/- 14.3 % increase in mean flow above adenosine baseline), due to a leftward shift of the adenosine-coronary flow response curve at higher pulsatility. Flow augmentation with pulsatility was not linked to higher regional oxygen consumption, supporting direct rather than metabolically driven mechanisms. 4. Neither bradykinin, acetylcholine nor verapamil reproduced the synergistic amplification of mean flow by adenosine and higher pulsatility, despite being administered at doses matching basal flow change with adenosine. 5. ATP-sensitive potassium (KATP) activation (pinacidil) amplified the pulse-flow response 3-fold, although this remained significantly less than with adenosine. Co-administration of the phospholipase A2 inhibitor quinacrine virtually eliminated adenosine-induced vasodilatation, yet synergistic interaction between adenosine and pulse perfusion persisted, albeit at a reduced level. 6. Thus, adenosine and perfusion pulsatility specifically interact to enhance coronary flow. This synergy is partially explained by KATP agonist action and additional non-flow-dependent mechanisms, and may be important for modulating flow reserve during exercise or other high output states where

  11. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  12. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3121, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  13. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in extraction procedures developed here were compared with the classical adenosine phosphate extraction procedures (perchloric acid). The results indicate that the two techniques are similar in terms of recovery and reproducibility, but when other factors such as extraction time, environmental protection, and worker's health are considered, ASE is preferable to the classical extraction method. With this ASE-HPLC method, a minisurvey of ATP, ADP, and AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels. PMID:19435312

  14. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.

    Faingold, Carl L; Randall, Marc; Kommajosyula, Srinivasa P

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. PMID:27259068

  15. Role of adenosine signalling and metabolism in β-cell regeneration

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  16. The Role of Adenosine in Pulmonary Vein Isolation: A Critical Review

    Dallaglio, Paolo D.; Betts, Timothy R.; Ginks, Matthew; Bashir, Yaver; Anguera, Ignasi; Rajappan, Kim

    2016-01-01

    The cornerstone of atrial fibrillation (AF) ablation is pulmonary vein isolation (PVI), which can be achieved in more than 95% of patients at the end of the procedure. However, AF recurrence rates remain high and are related to recovery of PV conduction. Adenosine testing is used to unmask dormant pulmonary vein conduction (DC). The aim of this study is to review the available literature addressing the role of adenosine testing and determine the impact of ablation at sites of PV reconnection on freedom from AF. Adenosine infusion, by restoring the excitability threshold, unmasks reversible injury that could lead to recovery of PV conduction. The studies included in this review suggest that adenosine is useful to unmask nontransmural lesions at risk of reconnection and that further ablation at sites of DC is associated with improvement in freedom from AF. Nevertheless it has been demonstrated that adenosine is not able to predict all veins at risk of later reconnection, which means that veins without DC are not necessarily at low risk. The role of the waiting period in the setting of adenosine testing has also been analyzed, suggesting that in the acute phase adenosine use should be accompanied by enough waiting time. PMID:26981309

  17. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  18. Chemotherapy

    ... able to change the environment around the cell. Hormones—These substances may interfere with tumor growth by blocking the production of certain proteins in the tumor cells. Mitotic inhibitors—These agents are usually plant-based, natural substances that interfere with the production ...

  19. Acute emesis: moderately emetogenic chemotherapy

    Herrstedt, Jørn; Rapoport, Bernardo; Warr, David;

    2011-01-01

    This paper is a review of the recommendations for the prophylaxis of acute emesis induced by moderately emetogenic chemotherapy as concluded at the third Perugia Consensus Conference, which took place in June 2009. The review will focus on new studies appearing since the Second consensus conference...... in April 2004. The following issues will be addressed: dose and schedule of antiemetics, different groups of antiemetics such as corticosteroids, serotonin(3) receptor antagonists, dopamine(2) receptor antagonists, and neurokinin(1) receptor antagonists. Furthermore, antiemetic prophylaxis in...

  20. Chemotherapie-induzierte Neuropathien (CIN

    Vass A

    2009-01-01

    Full Text Available Durch Chemotherapie induzierte Neuropathien manifestieren sich meist als überwiegend sensorische Neuropathien, die zu Koordinationsstörungen und neuropathischen Schmerzen führen. Da es keine kausale Therapie gibt, stellen sie eine dosislimitierende Nebenwirkung der Tumortherapie dar. Hervorgerufen werden sie durch fünf Substanzgruppen: Platinderivate, Taxane, Vinca-Alkaloide sowie Bortezomib und Thalidomid. In dieser Übersicht wird auf die kumulativen Dosen dieser Substanzen und die jeweilige Symptomatik und Häufigkeit der dadurch entstehenden Neuropathien eingegangen.

  1. [Chemotherapy for brain tumors in adult patients].

    Weller, M

    2008-02-01

    Chemotherapy has become a third major treatment option for patients with brain tumors, in addition to surgery and radiotherapy. The role of chemotherapy in the treatment of gliomas is no longer limited to recurrent disease. Temozolomide has become the standard of care in newly diagnosed glioblastoma. Several ongoing trials seek to define the role of chemotherapy in the primary care of other gliomas. Some of these studies are no longer only based on histological diagnoses, but take into consideration molecular markers such as MGMT promoter methylation and loss of genetic material on chromosomal arms 1p and 19q. Outside such clinical trials chemotherapy is used in addition to radiotherapy, e.g., in anaplastic astrocytoma, medulloblastoma or germ cell tumors, or as an alternative to radiotherapy, e.g., in anaplastic oligodendroglial tumors or low-grade gliomas. In contrast, there is no established role for chemotherapy in other tumors such as ependymomas, meningiomas or neurinomas. Primary cerebral lymphomas are probably the only brain tumors which can be cured by chemotherapy alone and only by chemotherapy. The chemotherapy of brain metastases follows the recommendations for the respective primary tumors. Further, strategies of combined radiochemotherapy using mainly temozolomide or topotecan are currently explored. Leptomeningeal metastases are treated by radiotherapy or systemic or intrathecal chemotherapy depending on their pattern of growth. PMID:18253773

  2. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  3. The Adverse Events and Hemodynamic Effects of Adenosine-Based Cardiac MRI

    We wanted to prospectively assess the adverse events and hemodynamic effects associated with an intravenous adenosine infusion in patients with suspected or known coronary artery disease and who were undergoing cardiac MRI. One hundred and sixty-eight patients (64 ± 9 years) received adenosine (140 μg/kg/min) during cardiac MRI. Before and during the administration, the heart rate, systemic blood pressure, and oxygen saturation were monitored using a MRI-compatible system. We documented any signs and symptoms of potential adverse events. In total, 47 out of 168 patients (28%) experienced adverse effects, which were mostly mild or moderate. In 13 patients (8%), the adenosine infusion was discontinued due to intolerable dyspnea or chest pain. No high grade atrioventricular block, bronchospasm or other life-threatening adverse events occurred. The hemodynamic measurements showed a significant increase in the heart rate during adenosine infusion (69.3 ± 11.7 versus 82.4 ± 13.0 beats/min, respectively; p < 0.001). A significant but clinically irrelevant increase in oxygen saturation occurred during adenosine infusion (96 ± 1.9% versus 97 ± 1.3%, respectively; p < 0.001). The blood pressure did not significantly change during adenosine infusion (systolic: 142.8 ± 24.0 versus 140.9 ± 25.7 mmHg; diastolic: 80.2 ± 12.5 mmHg versus 78.9 ± 15.6, respectively). This study confirms the safety of adenosine infusion during cardiac MRI. A considerable proportion of all patients will experience minor adverse effects and some patients will not tolerate adenosine infusion. However, all adverse events can be successfully managed by a radiologist. The increased heart rate during adenosine infusion highlights the need to individually adjust the settings according to the patient, e.g., the number of slices of myocardial perfusion imaging.

  4. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production.

    Clayton, Aled; Al-Taei, Saly; Webber, Jason; Mason, Malcolm D; Tabi, Zsuzsanna

    2011-07-15

    Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment. PMID:21677139

  5. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats.

    Scaramuzzi, R J; Baker, D J

    2003-10-01

    Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age. PMID:14633184

  6. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Kim, Min-Su; So, Young-In; Lee, Kong-Joo; Garred, Peter; Lee, Bok-Luel

    2011-01-01

    adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  7. Receptor crosstalk: haloperidol treatment enhances A2A adenosine receptor functioning in a transfected cell model

    Trincavelli, Maria Letizia; Cuboni, Serena; Catena Dell’Osso, Mario; Maggio, Roberto; Klotz, Karl-Norbert; Novi, Francesca; Panighini, Anna; Daniele, Simona; Martini, Claudia

    2010-01-01

    A2A adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A2A adenosine receptors are regulated by D2 dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A2A adenosine receptor functional responses caused by the chronic blockade/activation of D2 dop...

  8. Dopamine/adenosine interactions involved in effort-related aspects of food motivation

    Salamone, John D.; Correa, Merce

    2009-01-01

    Nucleus accumbens dopamine (DA) is involved in effort-related aspects of food motivation. Accumbens DA depletions reduce the tendency of rats to work for food, and alter effort-related choice, but leave other aspects of food motivation and appetite intact. DA and adenosine receptors interact to regulate effort-related processes. Adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and intra-accumbens injections of a adenosine A2A agonist produce eff...

  9. Adenosine-induced hyperpolarization of the membrane voltage in rat mesangial cells in primary culture.

    Pavenstädt, H. (Hermann); Ruh, J; Greger, R; Schollmeyer, P.

    1994-01-01

    1. The effect of adenosine on membrane voltage and ion currents was studied in rat mesangial cells in primary culture. Membrane voltage was measured with the patch clamp technique in the slow- or fast whole cell configuration. The resting membrane voltage of mesangial cells was -48 +/- 0.5 mV. Adenosine (10(-8)-10(-3) M) induced a sustained and concentration-dependent hyperpolarization of membrane voltage (ED50 approximately 6 x 10(-7) M). Adenosine (10(-5) M) hyperpolarized the membrane volt...

  10. Anti-Inflammatory and Immunosuppressive Effects of the A2A Adenosine Receptor

    Gillian R. Milne; Palmer, Timothy M.

    2011-01-01

    The production of adenosine represents a critical endogenous mechanism for regulating immune and inflammatory responses during conditions of stress, injury, or infection. Adenosine exerts predominantly protective effects through activation of four 7-transmembrane receptor subtypes termed A1, A2A, A2B, and A3, of which the A2A adenosine receptor (A2AAR) is recognised as a major mediator of anti-inflammatory responses. The A2AAR is widely expressed on cells of the immune system and numerous in ...

  11. Intravenous infusion of adenosine but not inosine stimulates respiration in man.

    Reid, P G; Watt, A H; Routledge, P A; Smith, A P

    1987-01-01

    The effects on respiration of intravenous infusions of the endogenous nucleoside adenosine and its deaminated metabolite, inosine, administered in random order, single-blind, were compared in six healthy volunteers. The infusion rate of each nucleoside was initially 3.1 mg min-1 and was increased stepwise every 2 min, as tolerated, up to a possible maximum of 23.4 mg ml-1. The maximum dose rates received by all subjects were 8.5 mg min-1 for adenosine and 16.8 mg min-1 for inosine. Adenosine ...

  12. Role of endogenous adenosine in the expression of opiate withdrawal in rats.

    Salem, A; Hope, W

    1999-03-12

    Samples of extracellular fluid from striatum and nucleus accumbens of anaesthetised rats undergoing opiate withdrawal were collected using microdialysis and then analysed for adenosine and its metabolites using high performance liquid chromatography (HPLC) and ultraviolet (UV) detection. Although the amount of adenosine present in the dialysate from either brain region was below the limit of detection by 90 min after probe placement, the metabolites could still be detected. Samples of dialysates collected from the nucleus accumbens contained significantly higher concentrations of hypoxanthine and inosine following naloxone challenge. The data are compatible with the hypothesis that endogenous adenosine might be involved in the expression of the opiate abstinence syndrome. PMID:10204679

  13. The role of adenosine A2A receptors on neuromuscular transmission upon ageing

    Pousinha, Paula Isabel Antunes, 1978-

    2012-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2012 Adenosine is a neuromodulator with important actions in the nervous system. The activation of adenosine A2A receptors has been shown to modulate the action of other receptors. Considering that it was observed an interaction between adenosine A2A receptors and TrkB receptors in hippocampus, I hypothesized that the activation of A2A receptors could also facilitate BDNF actions on ne...

  14. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  15. Combined chemotherapy of malignant gliomas

    A controlled study of 226 age-matched patients with histologically proven grade 3 and 4 supratentorial gliomas with maximum feasible tumour resection, postoperative Karnofsky performance over 50 and minimum survival of 8 weeks compares the results of supportive care (45 cases), high-dose irradiation of 40 to 66 Gy (59 cases), COMP protocol (CCNU, procarbazine, vincristine, methotrexate, prednisone in 15 day cycles-42 cases) and simultaneous irradiation and COMP chemotherapy (80 cases including 30 survivors). Median recurrent-free intervals in the treatment groups (7 to 11.7 months) were significantly longer than after supportive care (4.4 months). Median survival with supportive care (6.7 months) was significantly shorter than after radiation or COMP treatment (11.7 and 12.3 months) and 14.9 to over 19.9 months with combined treatment, where the two-year survival rates were 33 and 67% (for survivors), and the 3-year survival rates 13 to 30%. Toxic side effects of multimodality treatment were more frequent than after chemotherapy. In addition to space-occupying intracranial cysts often simulating tumour recurrence (12%) and rare radiation necrosis, about 15% of long-term survivors developed progressive intellectual dysfunction with brain atrophy, in the absence of tumour regrowth. Despite some promising results of multimodality approaches towards the management of malignant supratentorial gliomas, the overall results are unsatisfactory and need further optimization. (Author)

  16. Vascular Complications of Cancer Chemotherapy.

    Cameron, Alan C; Touyz, Rhian M; Lang, Ninian N

    2016-07-01

    Development of new anticancer drugs has resulted in improved mortality rates and 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increase cardiovascular risk in cancer patients, including hypertension, thrombosis, heart failure, cardiomyopathy, and arrhythmias. These limitations restrict treatment options and might negatively affect the management of cancer. The cardiotoxic effects of older chemotherapeutic drugs such as alkylating agents, antimetabolites, and anticancer antibiotics have been known for a while. The newer agents, such as the antiangiogenic drugs that inhibit vascular endothelial growth factor signalling are also associated with cardiovascular pathology, especially hypertension, thromboembolism, myocardial infarction, and proteinuria. Exact mechanisms by which vascular endothelial growth factor inhibitors cause these complications are unclear but impaired endothelial function, vascular and renal damage, oxidative stress, and thrombosis might be important. With increasing use of modern chemotherapies and prolonged survival of cancer patients, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care so that prolonged cancer survival is not at the expense of increased cardiovascular events. PMID:26968393

  17. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  18. Chemotherapy for intraperitoneal use: a review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy.

    Goodman, Martin D; McPartland, Sarah; Detelich, Danielle; Saif, Muhammad Wasif

    2016-02-01

    Peritoneal spread of tumors is a major problem in cancer management. Patients develop a marked deterioration in quality of life and shortened survival. This is in part due to bowel obstructions, marked ascites, and overall increase debilitation. Standard medical management has shown to be inadequate for the treatment of these problems. Surgery can palliate symptoms, however, it is unable to be complete at the microscopic level by a significant spillage of tumor cells throughout the abdomen. Chemotherapy can have some improvement in symptoms however it is short lived due to poor penetration into the peritoneal cavity. The role of intraperitoneal chemotherapy is to maximize tumor penetration and optimize cell death while minimizing systemic toxicity. Hyperthermic intraperitoneal chemotherapy (HIPEC) and early post-operative intraperitoneal chemotherapy (EPIC) are two treatment methods that serve this role and have been shown to improve survival. This review will discuss different chemotherapies used for both of these treatment options. PMID:26941983

  19. Treating gastrointestinal cancer by intervention, intraperitoneal hyperthermic perfusion chemotherapy, intravenous micro-pump chemotherapy

    157 cases of gastrointestinal cancer patients after resection were randomly divided into treated group and control group. The treated group (intraperitoneal hyperthermic perfusion chemotherapy combined with postoperative continuous intraarterial infusion and intravenous micro-pump chemotherapy) consisted of 72 cases, the control group (Intravenous chemotherapy), 85 cases. The peritoneal and hepatic metastasis rates and 3 a survival rate were studied. The intraperitoneal hyperthermic perfusion chemotherapy combined with the postoperative continuous intraarterial infusion and intravenous micro-pump chemotherapy is an effective way to control the recurrence on the peritoneal and hepatic metastasis of advanced gastrointestinal neoplasms after operation. (authors)

  20. Hyperthermic intraperitoneal chemotherapy: Rationale and technique

    González-Moreno, Santiago; González-Bayón, Luis A; Ortega-Pérez, Gloria

    2010-01-01

    The combination of complete cytoreductive surgery and perioperative intraperitoneal chemotherapy provides the only chance for long-term survival for selected patients diagnosed with a variety of peritoneal neoplasms, either primary or secondary to digestive or gynecologic malignancy. Hyperthermic intraperitoneal chemotherapy (HIPEC) delivered in the operating room once the cytoreductive surgical procedure is finalized, constitutes the most common form of administration of perioperative intrap...

  1. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase in the...... extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P < 0.05) compared with non-stimulated muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P < 0.05) in the intensely contracted, but not in the moderately contracted muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P < 0.05), whereas endothelial cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  2. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  3. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found in...... cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...... µM in brain slices. In vivo recordings showed a tendency towards increased adenosine levels in rats with hyperammonemia and systemic inflammation compared to a control group (3.7 ± 0.7 vs. 0.8 ± 0.2 µM, P = 0.06). This was associated with a significant increase in ICP and CBF. Intervention with the...

  4. Neoadjuvant chemotherapy in locally advanced colon cancer

    Jakobsen, Anders; Andersen, Fahimeh; Fischer, Anders;

    2015-01-01

    BACKGROUND: Neoadjuvant chemotherapy has proven valuable in several tumors, but it has not been elucidated in colon cancer. The present phase II trial addressed the issue in high-risk patients selected by computed tomography (CT) scan. MATERIAL AND METHODS: Patients with resectable colon cancer...... mutational status received three cycles of capecitabine 2000 mg/m(2) days 1-14 q3w and oxaliplatin 130 mg iv day 1 q3w. Wild-type patients received the same chemotherapy supplemented with panitumumab 9 mg/kg iv q3w. After the operation, patients fulfilling the international criteria for adjuvant chemotherapy......, i.e. high-risk stage II and III patients, received five cycles of the same chemotherapy without panitumumab. Patients not fulfilling the criteria were offered follow-up only. The primary endpoint was the fraction of patients not fulfilling the criteria for adjuvant chemotherapy (converted patients...

  5. Actinides and rare earths complexation with adenosine phosphate nucleotides

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  6. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    Jaiswal Pundrik; Soldati Thierry; Thewes Sascha; Baskar Ramamurthy

    2012-01-01

    Abstract Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factor...

  7. Local adenosine receptor blockade accentuates the sympathetic responses to fatiguing exercise

    Cui, Jian; Leuenberger, Urs A.; Blaha, Cheryl; Yoder, Jonathan; Gao, Zhaohui; Sinoway, Lawrence I.

    2010-01-01

    The role adenosine plays in evoking the exercise pressor reflex in humans remains controversial. We hypothesized that localized forearm adenosine receptor blockade would attenuate muscle sympathetic nerve activity (MSNA) responses to fatiguing handgrip exercise in humans. Blood pressure (Finometer), heart rate, and MSNA from the peroneal nerve were assessed in 11 healthy young volunteers during fatiguing isometric handgrip, postexercise circulatory occlusion (PECO), and passive muscle stretch...

  8. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S.; Scislo, Tadeusz J.

    2014-01-01

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as th...

  9. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells.

    Cronstein, B. N.; Eberle, M A; Gruber, H E; Levin, R I

    1991-01-01

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, we determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts from 4 +/- 1% t...

  10. Adenosine, Caffeine, and Performance: From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetics

    Urry, Emily; Landolt, Hans-Peter

    2014-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine adenosine , plays an important r...

  11. Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the “adenosine hypothesis”

    Aliagas, Elisabet; Villar-Menéndez, Izaskun; Sévigny, Jean; Roca, Mercedes; Romeu, Miriam; Ferrer, Isidre; Martín-Satué, Mireia; Barrachina, Marta

    2013-01-01

    Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5′-nucleotidase, and alkaline phosphatase) in the postmortem putame...

  12. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Zhenzhen Hu; Chung-Il Lee; Vikash Kumar Shah; Eun-Hye Oh; Jin-Yi Han; Jae-Ryong Bae; Kinam Lee; Myong-Soo Chong; Jin Tae Hong; Ki-Wan Oh

    2013-01-01

    Cordycepin (3′-deoxyadenosine) is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs), like sleep regulation. Therefore, this study was undertaken ...

  13. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.)

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 μM adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors)

  14. Chemotherapy of metastatic colon cancer

    M. Yu. Fedyanin

    2012-01-01

    Full Text Available Colorectal cancer is one of the leading causes of cancer incidence and mortality. In 2008 inRussian Federation55 719 new cases of colorectal cancer were diagnosed and 37 911 patients died of this disease. A significant progress was achieved in metastatic colorectal cancer treatment during the last decades. A lot of treatment options became available: from 5-fluoruracil monotherapy to combined treatment treatment schemes including surgery. A group of patients with isolated liver metastases was distinguished, who can achieve 5-year survival rate of 40 % after systemic treatment and surgery. Today, based on clinical data and molecular analysis, we come close to individualized treatment of this patient group. In this literature review results of metastatic colorectal cancer chemotherapy are being analyzed and rational treatment tactic is proposed based on therapy goals. 

  15. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy.

    Moschoi, Ruxanda; Imbert, Véronique; Nebout, Marielle; Chiche, Johanna; Mary, Didier; Prebet, Thomas; Saland, Estelle; Castellano, Rémy; Pouyet, Laurent; Collette, Yves; Vey, Norbert; Chabannon, Christian; Recher, Christian; Sarry, Jean-Emmanuel; Alcor, Damien; Peyron, Jean-François; Griessinger, Emmanuel

    2016-07-14

    Here we demonstrate that in a niche-like coculture system, cells from both primary and cultured acute myeloid leukemia (AML) sources take up functional mitochondria from murine or human bone marrow stromal cells. Using different molecular and imaging approaches, we show that AML cells can increase their mitochondrial mass up to 14%. After coculture, recipient AML cells showed a 1.5-fold increase in mitochondrial adenosine triphosphate production and were less prone to mitochondrial depolarization after chemotherapy, displaying a higher survival. This unidirectional transfer enhanced by some chemotherapeutic agents required cell-cell contacts and proceeded through an endocytic pathway. Transfer was greater in AML blasts compared with normal cord blood CD34(+) cells. Finally, we demonstrate that mitochondrial transfer was observed in vivo in an NSG immunodeficient mouse xenograft model and also occurred in human leukemia initiating cells and progenitors. As mitochondrial transfer provides a clear survival advantage following chemotherapy and a higher leukemic long-term culture initiating cell potential, targeting mitochondrial transfer could represent a future therapeutic target for AML treatment. PMID:27257182

  16. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging

    Roberto Federico Villa; Federica Ferrari; Antonella Gorini

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.

  17. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up [14C]adenine and released 14C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs

  18. Aptamer-based Electrochemical Biosensors for Highly Selective and Quantitative Detection of Adenosine

    ZHENG Fan; WU Zai-sheng; ZHANG Song-bai; GUO Meng-meng; CHEN Chen-rui; SHEN Guo-li; YU Ru-qin

    2008-01-01

    A new adenosine biosensor based on aptamer probe is introduced in this article.An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film.When adenosine is bound specifically to the aptamer probe,the interface of the biosensor is changed,resulting in the decrement of the peak current.The response current is proportional to the amount of adenosine in sample.The used electrode can be easily regenerated in hot water.The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0×10-7-1.0×10-4 mol/L with a detection limit of 1.0×10-8 mol/L.The presented biosensor exhibits a nice specificity towards adenosine.It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.

  19. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  20. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  1. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. (Deborah Heart and Lung Center, Browns Mills, NJ (USA))

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  2. Weekly chemotherapy as Induction chemotherapy in locally advanced head and neck cancer for patients ineligible for 3 weekly maximum tolerable dose chemotherapy

    Vijay Maruti Patil; Vanita Noronha; Amit Joshi; Vamshi Krishna Muddu; Sachin Dhumal; Supreeta Arya; Shashikant Juvekar; P Pai; Pankaj Chatturvedi; Arvind Chaukar Devendra; Sarbani Ghosh; Anil D′cruz; Prabhash Kumar

    2014-01-01

    Objective: To study the safety and efficacy of weekly chemotherapy as part of induction chemotherapy, in locally advanced head and neck cancer for patients, who are unfit for upfront radical treatment. Materials and Methods: It is a retrospective analysis of on-use weekly chemotherapy as Induction chemotherapy in locally advanced head and neck cancer, who are technically unresectable are unfit for upfront radical treatment. Induction chemotherapy given was a 2 drug combination of paclitaxel (...

  3. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-01

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F2α (10−5m), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [14C]adenosine over the microdialysis membrane increased from 0.32 ± 0.02 to 0.46 ± 0.02 (n = 4, P < 0.01) during the study period. At baseline, interstitial adenosine was in the region of 10 nm which is significantly less than previously found myocardial concentrations. Hypoxia (PO2 30 mmHg for 60 min, n = 5) increased coronary diameters by 20.0 ± 2.6% (versus continuous oxygenation −3.1 ± 2.4%, n = 6, P < 0.001) but interstitial adenosine concentration fell. Blockade of adenosine deaminase (with erythro-9-(2-hydroxy-3-nonyl-)-adenine, 5 μm), adenosine kinase (with iodotubericidine, 10 μm) and adenosine transport (with n-nitrobenzylthioinosine, 1 μm) increased interstitial adenosine but the increase was unrelated to hypoxia or diameter. A coronary dilatation similar to that during hypoxia could be obtained with 30 μm of adenosine in the organ bath and the resulting interstitial adenosine concentrations (n = 5) were 20 times higher than the adenosine concentration measured during hypoxia. Adenosine concentration–response experiments showed vasodilatation to be more pronounced during hypoxia (n = 9) than during normoxia (n = 9, P < 0.001) and the A2A receptor antagonist ZM241385 (20 nm, n = 5), attenuated hypoxia-induced vasodilatation while the selective A2B receptor antagonist MRS1754 (20 nm, n = 4), had no effect. The lactate/pyruvate ratio was significantly increased in

  4. In Vitro Functional Study of Rice Adenosine 5'-Phosphosulfate Kinase

    WANG De-zhen; CHEN Guo-guo; LU Lu-jia; JIANG Zhao-jun; RAO Yu-chun; SUN Mei-hao

    2016-01-01

    Sulfate can be activated by ATP sulfurylase and adenosine 5'-phosphosulfate kinase (APSK)in vivo. Recent studies suggested that APSK inArabidopsis thaliana regulated the partition between APS reduction and phosphorylation and its activity can be modulated by cellular redox status. In order to study regulation of APSK in rice (OsAPSK),OsAPSK1 gene was cloned and its activity was analyzed. OsAPSK1 C36 and C69 were found to be the conserved counterparts of C86 and C119, which involved in disulfide formation in AtAPSK.C36A/C69A OsAPSK1 double mutation was made by site directed mutagenesis. OsAPSK1 and its mutant were prokaryotically over-expressed and purified, and then assayed for APS phosphorylation activity. OsAPSK1 activity was depressed by oxidized glutathione, while the activity of its mutantwas not. Further studies in the case that oxidative stress will fluctuatein vivo3'-phosphoadenosine-5'-phosphosulfate content, and all APSK isoenzymes have similar regulation patterns are necessary to be performed.

  5. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  6. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  7. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  8. Intestinal response to myeloablative chemotherapy in piglets

    Pontoppidan, Peter Erik Lotko; Shen, René Liang; Petersen, Bodil L;

    2014-01-01

    Chemotherapy-induced myeloablation prior to allogeneic hematopoietic stem cell transplantation (HSCT) may be associated with severe toxicity. The current understanding of the pathophysiology of oral and gastrointestinal (GI) toxicity is largely derived from studies in rodents and very little is...... known from humans, especially children. We hypothesized that milk-fed piglets can be used as a clinically relevant model of GI-toxicity related to a standard conditioning chemotherapy (intravenous busulfan, Bu plus cyclophosphamide, Cy) used prior to HSCT. In study 1, dose-response relationships were...... a model for investigating chemotherapy-induced toxicity and dietary and medical interventions....

  9. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.); Determination radiochromatographique de l'adenosine deaminase (A.D.)

    Chivot, J.J.; Depernet, D.; Caen, J. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1970-07-01

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 {mu}M adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors) [French] Nous avons pu, en utilisant une methode radiochromatographique, mesurer une activite adenosine deaminasique dans le plasma humain pauvre en plaquettes heparine qui peut degrader 0,016 {mu}M d'adenosine. Cette activite qui est supprimee par chauffage a 56 degres pendant 30 minutes, est reduite par conservation a -20 C pendant une semaine, est inhibee par d'importantes concentrations d'uree et ne l'est pas, ni par le dipyridamol, ni par le pHMB. Cette activite est proportionnelle a la quantite de plasma, source d'enzyme, mise dans les differents systemes reactifs. (auteur)

  10. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;

    2011-01-01

    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  11. A2A adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE–knockout mice

    Teng, Bunyen

    2011-01-01

    Bunyen Teng, S Jamal MustafaDepartment of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV, USAAbstract: Adenosine-induced coronary vasodilation is predominantly A2A adenosine receptor (AR)-mediated, whereas A1 AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolip...

  12. Modulation of adenosine A(2A) receptor function by interacting proteins. New targets for Huntington’s disease

    Bakešová, Jana

    2012-01-01

    [eng] In this dissertation we studied the pharmacological and functional consequences of adenosine A2A receptor interaction with other proteins, as other neurotransmitter receptores localized in the human brain and an important enzyme regulating the extracellular concentration of adenosine, the ecto-ADA (adenosine desaminase). The first aim of this thesis was to study the molecular and functional interaction of A(2A)Rwith ADA. We found out that A(2A)Racted as a membrane anchoring protein of A...

  13. Comparative study of adenosine deaminase activity, insulin resistance and lipoprotein(a) among smokers and healthy non-smokers

    Ramesh Ramasamy; Sathish Babu Murugaiyan; Arulkumaran U.; Sathiya R.; Kuzhandai Velu V.; Niranjan Gopal

    2016-01-01

    Background: Adenosine deaminase also known as adenosine aminohydrolase involved in purine metabolism. Its primary function is development and maintenance of immune system. The main objective of the study was to estimate adenosine deaminase (ADA) enzyme and find its correlation with lipoprotein(a) and insulin resistance among smokers and healthy non-smokers. Methods: Fifty smokers and fifty healthy non-smokers were selected based on WHO definition. ADA, lipid profile and glucose was estimat...

  14. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  15. Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1.

    Naval-Macabuhay, Isaac; Casanova, Víctor; Navarro, Gemma; García, Felipe; León, Agathe; Miralles, Laia; Rovira, Cristina; Martinez-Navio, José M; Gallart, Teresa; Mallol, Josefa; Gatell, José M; Lluís, Carme; Franco, Rafael; McCormick, Peter J; Climent, Núria

    2016-02-01

    Regulatory T cells have an important role in immune suppression during HIV-1 infection. As regulatory T cells produce the immunomodulatory molecule adenosine, our aim here was to assess the potential of adenosine removal to revert the suppression of anti-HIV responses exerted by regulatory T cells. The experimental setup consisted of ex vivo cocultures of T and dendritic cells, to which adenosine deaminase, an enzyme that hydrolyzes adenosine, was added. In cells from healthy individuals, adenosine hydrolysis decreased CD4(+)CD25(hi) regulatory T cells. Addition of 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, significantly decreased CD4(+)CD25(lo) cells, confirming a modulatory role of adenosine acting via adenosine receptors. In autologous cocultures of T cells with HIV-1-pulsed dendritic cells, addition of adenosine deaminase led to a significant decrease of HIV-1-induced CD4(+)CD25(hi) forkhead box p3(+) cells and to a significant enhancement of the HIV-1-specific CD4(+) responder T cells. An increase in the effector response was confirmed by the enhanced production of CD4(+) and CD8(+) CD25(-)CD45RO(+) memory cell generation and secretion of Th1 cytokines, including IFN-γ and IL-15 and chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. These ex vivo results show, in a physiologically relevant model, that adenosine deaminase is able to enhance HIV-1 effector responses markedly. The possibility to revert regulatory T cell-mediated inhibition of immune responses by use of adenosine deaminase, an enzyme that hydrolyzes adenosine, merits attention for restoring T lymphocyte function in HIV-1 infection. PMID:26310829

  16. Chemotherapy alone versus chemotherapy plus radiotherapy for early stage Hodgkin lymphoma

    Herbst, Christine; Rehan, Fareed Ahmed; Skoetz, Nicole;

    2011-01-01

    questioned recently and some clinical study groups advocate chemotherapy only for this indication. OBJECTIVES: We performed a systematic review with meta-analysis of randomised controlled trials (RCTs) comparing chemotherapy alone with CMT in patients with early stage Hodgkin lymphoma with respect...... to response rate, progression-free survival (alternatively tumour control) and overall survival (OS). SEARCH STRATEGY: We searched MEDLINE, EMBASE and CENTRAL as well as conference proceedings from January 1980 to November 2010 for randomised controlled trials comparing chemotherapy alone to the same...... chemotherapy regimen plus radiotherapy. SELECTION CRITERIA: Randomised controlled trials comparing chemotherapy alone with CMT in patients with early stage HL. Trials in which the chemotherapy differed between treatment arms were excluded. Trials with more than 20% of patients in advanced stage were also...

  17. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  18. Three minute versus six minute adenosine infusion in myocardial perfusion scintigraphy

    Pharmacological stress imaging techniques are used widely in clinical nuclear cardiology for evaluation of ischemic heart disease. Adenosine is often used but is expensive and causes significant side effects .The aim of this retrospective review was to study the tolerance and efficacy, of adenosine infusion of a 3 minute (min) versus the conventional 6 min stress protocol and to assess the cost efficiency of the 3 min protocol. Three hundred thirty one patients had myocardial scintigraphy using adenosine as a stressing agent. Blood pressure, heart rate and ECG were recorded at baseline and during the test. Symptoms (flushing, headache, chest pain, dyspnoea, neck pain) were recorded throughout the adenosine infusion. All the patients had had either 6 min or 3 min adenosine infusion at 140 mg/kg per minute. 169 of them had side effects. Flushing (32% at 3 min vs 50 % at 6 min, p<0.05), headache (11.5% at 3 min vs 7 % at 6 min p-not significant-ns), chest pain (8% at 3 min vs 13 % at 6 min, ns), dyspnoea (7% at 3 min vs %10 at 6 min, ns), ECG changes (10% at 3 min vs 28% at 6 min, p<0.05), neck pain (4.5% at 3 min vs 9% at 6 min, ns), abdominal discomfort (3% at 3 min vs 3% at 6 min, ns) and fall in blood pressure (6% at 3 min vs 8.5% at 6 min, ns). The change in heart rate was not significant with either protocol. The 6 min and 3 min infusions of adenosine had similar accuracy (73% vs 70%) for the detection of coronary artery disease. The patients tolerated the 3 min protocol better with only 40% of the patients having minimal side effects compared with 60% for the 6 mon protocol. The 3 min protocol is also cost effective as it uses less adenosine and therefore reduces total costs by 40 US$ per patient. (author)

  19. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  20. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage

  1. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers.

    Sylvén, C; Beermann, B; Jonzon, B; Brandt, R

    1986-07-26

    In a study to characterise the chest pain induced by adenosine this agent was given as a bolus into a peripheral vein to six healthy volunteers (five men) aged 30-44. On the first day the maximum tolerable dose was determined in each case. On the second day three doses of adenosine (one third, two thirds, and the full maximum tolerable dose) and three doses of saline were given single blind in randomised order. Thereafter aminophylline 5 mg/kg was given and the procedure repeated in a different randomised order. On the third day between two thirds and the full maximum tolerable dose was given followed by 10 mg dipyridamole intravenously and a second injection of the same dose of adenosine. Heart rate and atrioventricular blocks were recorded by electrocardiography. One minute after each dose of adenosine the chest pain was scored. The maximum tolerable dose of adenosine ranged from 10.6 to 37.1 mg. All subjects experienced uneasy central chest pain provoking anxiety. The pain radiated to the shoulders, ulnar aspect of the arms, epigastric area, back, and into the throat. The pain began about 20 seconds after the injection and lasted 10-15 seconds. Increasing the dose of adenosine increased the intensity of the pain. Administration of aminophylline reduced the pain significantly. Second degree heart block was recorded in five of the six subjects during the time that the pain was experienced. After aminophylline no block was observed. Dipyridamole increased the intensity of pain. The duration of second degree heart block increased in four of the subjects, and in two of these third degree heart block occurred. These findings suggest that adenosine released from the myocardium during ischaemia induces angina pectoris by stimulating theophylline sensitive receptors. PMID:3089465

  2. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Gérard Jean-Louis

    2010-07-01

    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  3. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  4. Recent advances in antifungal chemotherapy.

    Petrikkos, George; Skiada, Anna

    2007-08-01

    For over 50 years, amphotericin B deoxycholate (AmBD) has been the 'gold standard' in antifungal chemotherapy, despite its frequent toxicities. However, improved treatment options for invasive fungal infections (IFIs) have been developed during the last 15 years. Newer antifungal agents, including less toxic lipid preparations of AmBD, triazoles and the echinocandins, have been added to our armamentarium against IFIs. Some of these newer drugs can now replace AmBD as primary therapy (e.g. caspofungin for candidiasis, voriconazole for aspergillosis), whilst others offer new therapeutic options for difficult-to-treat IFIs (e.g. posaconazole for zygomycosis, fusariosis and chromoblastomycosis). It is interesting that extended use of newer antifungals such as fluconazole, despite decreasing the mortality attributed to candidiasis, resulted in selection of species resistant to several antifungals (Candida krusei, Candida glabrata); whilst several publications suggest that prolonged use of voriconazole may expose severely immunocompromised patients to the risk of zygomycosis (breakthrough). On the other hand, the differences in the mode of action of newer antifungals such as echinocandins raise the question whether combination antifungal therapy is more effective than monotherapy. Finally, the availability of an oral formulation with excellent biosafety of several newer antifungals (e.g. posaconazole) makes them candidates for prophylactic or prolonged maintenance therapy. PMID:17524625

  5. Oral Chemotherapy: What You Need to Know

    ... ACS » Your Local Offices Close + - Text Size Oral Chemotherapy: What You Need to Know There are many ... Symptoms of Cancer Treatments & Side Effects Cancer Facts & Statistics News About Cancer Expert Voices Blog Programs & Services ...

  6. CHEMOTHERAPY FOR MUSCLE INVASIVE BLADDER CANCER

    I. G. Rusakov

    2014-08-01

    Full Text Available The paper considers treatment regimens for metastatic bladder cancer (MBC and gives the data of trials of the efficiency of using different chemotherapy schemes and regimens in patients with MBC.

  7. Managing Chemotherapy Side Effects: Hair Loss (Alopecia)

    ... C ancer I nstitute Managing Chemotherapy Side Effects Hair Loss (Alopecia) “Losing my hair was hard at first. Then ... and anywhere on your body may fall out. Hair loss is called alopecia. When will my hair start ...

  8. Patient expectancy and post-chemotherapy nausea

    Colagiuri, Ben; Zachariae, Robert

    2010-01-01

    BACKGROUND: Post-chemotherapy nausea remains a significant burden to cancer patients. While some studies indicate that expecting nausea is predictive of experiencing nausea, there are a number of conflicting findings. PURPOSE: The purpose of this study was to conduct a meta-analytic review to...... determine the strength of the relationship between expectancy and post-chemotherapy nausea. METHODS: The findings from 17 relevant studies (n = 2,400) identified through systematic searches of Medline, PsycInfo, and Cinhal were analyzed using a combination of meta-analytic techniques. RESULTS: Overall......, there was a robust positive association between expectancy and post-chemotherapy nausea (ESr = 0.18, equivalent to Cohen's d = 0.35), suggesting that patients with stronger expectancies experience more chemotherapy-induced nausea. Although weaker associations were found in studies employing multivariate...

  9. Novel Combination Chemotherapy for Localized Ewing Sarcoma

    In this clinical trial, researchers will test whether the addition of the drug combination vincristine, topotecan, and cyclophosphamide to a standard chemotherapy regimen improves overall survival in patients with extracranial Ewing

  10. Cancer Chemotherapy - Multiple Languages: MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Cancer Chemotherapy URL of this page: https://medlineplus.gov/languages/cancerchemotherapy.html Other topics A-Z A B ...

  11. Combined chemotherapy including platinum derivatives for medulloblastoma. The usefulness as maintenance chemotherapy

    Sasaki, Hikaru; Otani, Mitsuhiro; Yoshida, Kazunari; Kagami, Hiroshi; Shimazaki, Kenji; Toya, Shigeo; Kawase, Takeshi [Keio Univ., Tokyo (Japan). School of Medicine

    1997-02-01

    The authors reviewed 24 cerebellar medulloblastoma patients treated at Keio University to determine usefulness of combined chemotherapy including platinum derivatives (cisplatin, carboplatin) as the induction and maintenance treatment. All patients underwent radical surgery and craniospinal irradiation. Ten received adjuvant chemotherapy other than platinum derivatives (mainly with nitrosourea compounds), five were treated by induction and maintenance chemotherapy including platinum derivatives, and nine patients did not undergo chemotherapy. The progression-free survival rate of patients treated with platinum derivatives was better than that of patients treated with other modes of chemotherapy and also that of patients who did not receive chemotherapy. The results were especially good in the case of four patients treated with maintenance chemotherapy consisting of carboplatin and etoposide, two of whom had been free from relapse beyond the risk period of Collins. The occurrences of toxicity in maintenance chemotherapy with carboplatin and etoposide were limited to transient leucopenia. The present study indicates combined chemotherapy including platinum derivatives benefits patients with medulloblastoma, and could be useful, especially as maintenance treatment. (author)

  12. Echokardiographie aktuell: Kardiale Folgen einer Chemotherapie

    Kleemann L

    2007-01-01

    bVorgeschichte/bbr Der 49jährige männliche Patient war in einem Peripheriekrankenhaus im vorangegangenen Jahr wegen eines neu diagnostizierten Hodentumors (Seminom) und intraabdomineller Lymphknoten in Chemotherapie insgesamt 4 Zyklen Gemcitabin, ein Hoden (Semikastratio) wurde entfernt. Im September war die letzte Chemotherapie erfolgt, in dieser Phase kam es zu einer chemotherapieinduzierten Sepsis, welche der Patient primär unbeschadet überstanden zu haben schien. Es wurde in dieser Z...

  13. Repopulation of Ovarian Cancer Cells After Chemotherapy

    Telleria, Carlos M.

    2013-01-01

    The high mortality rate caused by ovarian cancer has not changed for the past thirty years. Although most patients diagnosed with this disease respond to cytoreductive surgery and platinum-based chemotherapy and undergo remission, foci of cells almost always escape therapy, manage to survive, and acquire the capacity to repopulate the tumor. Repopulation of ovarian cancer cells that escape front-line chemotherapy, however, is a poorly understood phenomenon. Here I analyze cancer-initiating ce...

  14. Metronomic palliative chemotherapy in maxillary sinus tumor

    Vijay M Patil; Vanita Noronh; Amit Joshi; Ashay Karpe; Vikas Talreja; Arun Chandrasekharan; Sachin Dhumal; Kumar Prabhash

    2016-01-01

    Background: Metronomic chemotherapy consisting of methotrexate and celecoxib recently has shown promising results in multiple studies in head and neck cancers. However, these studies have not included patients with maxillary sinus primaries. Hence, the role of palliative metronomic chemotherapy in patients with maxillary sinus carcinoma that is not amenable to radical therapy is unknown. Methods: This was a retrospective analysis of carcinoma maxillary sinus patients who received palliative m...

  15. Short-course chemotherapy for mycobacteriosis kansasii?

    Schraufnagel, D. E.; Leech, J A; Schraufnagel, M. N.; Pollak, B.

    1984-01-01

    The success of short-course chemotherapy for tuberculosis, the similarity between Mycobacterium tuberculosis and M. kansasii and the effectiveness of rifampin against the latter organism prompted a comparison of the diseases due to these organisms to assess the feasibility of a prospective trial of short-course chemotherapy in patients with mycobacteriosis kansasii. The two groups of patients were matched for age, sex and time of diagnosis. The patients with mycobacteriosis kansasii more freq...

  16. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. PMID:26732366

  17. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. PMID:27295623

  18. Metronomic palliative chemotherapy in maxillary sinus tumor

    Vijay M Patil

    2016-01-01

    Full Text Available Background: Metronomic chemotherapy consisting of methotrexate and celecoxib recently has shown promising results in multiple studies in head and neck cancers. However, these studies have not included patients with maxillary sinus primaries. Hence, the role of palliative metronomic chemotherapy in patients with maxillary sinus carcinoma that is not amenable to radical therapy is unknown. Methods: This was a retrospective analysis of carcinoma maxillary sinus patients who received palliative metronomic chemotherapy between August 2011 and August 2014. The demographic details, symptomatology, previous treatment details, indication for palliative chemotherapy, response to therapy, and overall survival (OS details were extracted. SPSS version 16 was used for analysis. Descriptive statistics have been performed. Survival analysis was done by Kaplan-Meier method. Results: Five patients had received metronomic chemotherapy. The median age was 60 years (range 37-64 years. The proportion of patients surviving at 6 months, 12 months, and 18 months were 40%, 40%, and 20%, respectively. The estimated median OS was 126 days (95% confidence interval 0-299.9 days. The estimated median survival in patients with an event-free period after the last therapy of <6 months was 45 days, whereas it was 409 days in patients with an event-free period postlast therapy above 6 months (P = 0.063. Conclusion: Metronomic chemotherapy in carcinoma maxillary sinus holds promise. It has activity similar to that seen in head and neck cancers and needs to be evaluated further in a larger cohort of patients.

  19. Impact of adjuvant chemotherapy for gliomatosis cerebri

    Gliomatosis cerebri (GC) is characterized by a diffuse infiltration of tumor cells throughout CNS, however, few details are available about the chemotherapeutic effect on GC. The aim of this study was to investigate its clinical course and to determine the efficacy of chemotherapy for GC. Between Jan. 1999 and Dec. 2004, 37 GC patients were diagnosed by biopsy and treated with radiotherapy in a single institution. To determine the efficacy of chemotherapy for GC, we retrospectively reviewed their clinical courses. The study cohort was divided into 2 groups, those with and without receiving post-radiotherapy adjuvant chemotherapy such as temozolomide or nitrosourea-based chemotherapy. Nineteen patients with adjuvant chemotherapy were assigned to the chemotreatment group and 18 with radiotherapy alone were assigned to the control group. Mean survival for chemotreatment group and control group were 24.2 and 13.1 months, respectively (p = 0.045). Time to progression for these groups were 16.0 and 6.0 months, respectively (p = 0.007). Overall review of the clinical course of patients with GC provided that early appearance of new contrast-enhancing lesions within 6 months from the initial diagnosis and higher histological grade were closely associated with poor survival (p < 0.001 and p = 0.008). Adjuvant chemotherapy following radiotherapy could prolong the survival in patients with GC. In addition, newly developed contrast-enhanced lesions on the follow-up MR images indicate the progression of GC

  20. Neoadjuvant Chemotherapy for Advanced Epithelial Ovarian Cancer

    Objective: To describe the experience at the National Cancer Institute (NCI) on the use of neoadjuvant chemotherapy as primary treatment for epithelial ovarian cancer among patients in stages IIIC and IV. Methods: We conducted a descriptive retrospective study (case series type) of patients diagnosed with epithelial ovarian cancer in stages IIIC and IV, treated at the NCI from January 1, 2003 to December 31,2006, who underwent neoadjuvant chemotherapy as primary treatment. Demographic characteristics and clinical outcomes are described. Results: Seventeen patients who fulfilled the above mentioned criteria were selected. Once neoadjuvant chemotherapy ended, 5 patients (29.4%) achieved complete or partial clinical response; 4 (23.8%) remained in stable condition, and 8 (47.6%) showed signs of progressive illness. Interval debulking surgery was performed on objective response patients. Maximum cytoreduction was achieved in 5 patients (100%); first relapse was reported at month 18 of follow-up; 2 disease-free survivors were identified in December, 2007; 8 (49%) reported some degree of non-severe chemotherapy-related toxicity. No mortality was related to chemotherapy, no post surgical complications were observed and no patient required advanced support management. Conclusions: Neoadjuvant chemotherapy, followed by optimal interval debulking surgery among selected patients, can be an alternative treatment for advanced epithelial ovarian cancer among women with irresecability or the critically ill. Further studies with improved design are required to confirm these findings.

  1. Chemotherapy induced nausea AND vomiting (CINV

    Bannur R. Nandeesh

    2012-06-01

    Full Text Available Chemotherapy is the first line treatment in management of many cancers, both for cure and palliation; hence it’s crucial to minimize the unpleasant side effects of chemotherapy to increase tolerability to chemotherapy. Most of the conventional anti cancer drugs are emetogenic. Patients receiving chemotherapy experience different degrees of nausea and vomiting depending on the emetogenic potential of the anti cancer drugs given and the patient characteristics. With a better understanding of the pathophysiology, distinct phases of chemotherapy-induced nausea and vomiting (CINV i.e., acute emesis, delayed emesis and anticipatory emesis have been identified. Identification of various mediators has led to the development of different drugs acting through different mechanisms which are useful in the prevention and treatment of CINV. Serotonin receptor three (5-HT3 antagonists, corticosteroids and neurokinin type one receptor (NK-1 antagonists are of proven usefulness and have wide therapeutic indexes in the prevention of CINV. Other drugs like dopamine receptor antagonists & benzodiazepines are not routinely used because of their narrow therapeutic index. Practice guidelines for prevention of CINV will not only improve patient’s tolerability to chemotherapy & wellbeing, but also decrease hospital stay and overall cost of treatment of the patient. [Int J Basic Clin Pharmacol 2012; 1(3.000: 125-131

  2. Adjuvant Bidirectional Chemotherapy Using an Intraperitoneal Port

    Paul H. Sugarbaker

    2012-01-01

    Full Text Available Cytoreductive surgery (CRS and hyperthermic intraperitoneal chemotherapy (HIPEC have been established as treatment options for patients with peritoneal metastases or peritoneal mesothelioma. However, this novel treatment strategy remains associated with a large percentage of local-regional treatment failures. These treatment failures are attributed to the inadequacy of HIPEC to maintain a surgical complete response. Management strategies to supplement CRS and HIPEC are indicated. A simplified approach to the intraoperative placement of an intraperitoneal port for adjuvant bidirectional chemotherapy (ABC was devised. Four different chemotherapy treatment plans were utilized depending upon the primary site of the malignancy. Thirty-one consecutive patients with an intraoperative placement of the intraperitoneal port were available for study. The incidence of adverse events that caused an early discontinuation of the bidirectional chemotherapy occurred in 75% of the 8 patients who had an incomplete cytoreduction and in 0% of patients who had a complete cytoreduction. All of the patients who had complete cytoreduction completed at least 5 of the scheduled 6 bidirectional chemotherapy treatments. Adjuvant bidirectional chemotherapy is possible following a major cytoreductive surgical procedure using a simplified method of intraoperative intraperitoneal port placement.

  3. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  4. The Three Possible 2-(Pyrenylethynyl) Adenosines: Rotameric Energy Barriers Govern the Photodynamics of These Structural Isomers.

    Reuss, Andreas J; Grünewald, Christian; Braun, Markus; Engels, Joachim W; Wachtveitl, Josef

    2016-05-01

    This article presents a comprehensive study of the photophysics of 2-(2-pyrenylethynyl) adenosine and 2-(4-pyrenylethynyl) adenosine, which are structural isomers of the well-established fluorescent RNA label 2-(1-pyrenylethynyl) adenosine. We performed steady-state and ultrafast transient absorption spectroscopy studies along with time-resolved fluorescence emission experiments in different solvents to work out the interplay of locally excited and charge-transfer states. We found the ultrafast photodynamics to be crucial for the fluorescence decay behavior, which extends up to tens of nanoseconds and is partially multi-exponential. These features in the ultrafast dynamics are indicative of the rotational energy barriers in the first excited state. PMID:26635201

  5. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-[3H]adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system

  6. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    Hellsten, Ylva; Maclean, D.; Rådegran, G.;

    1998-01-01

    effect remain unanswered. METHODS AND RESULTS: The interstitial adenosine concentration was determined in the vastus lateralis muscle of healthy humans via dialysis probes inserted in the muscle. The probes were perfused with buffer, and the dialysate samples were collected at rest and during graded knee...... extensor exercise. At rest, the interstitial concentration of adenosine was 220+/-100 nmol/L and femoral arterial blood flow (FaBF) was 0.19+/-0.02 L/min. When the subjects exercised lightly, at a work rate of 10 W, there was a markedly higher (1140+/-540 nmol/L; P... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  7. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  8. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  9. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  10. Magnetically assisted fluorescence ratiometric assays for adenosine deaminase using water-soluble conjusated polymers

    HE Fang; YU MingHui; WANG Shu

    2009-01-01

    A magnetically assisted fluorescence ratiometric technique has been developed for adenosine deami-nase assays with high sensitivity using water-soluble cationic conjugated polymers (CCPs).The assay contains three elements:a biotin-labeled aptamer of adenosine (biotin-aptamer),a signaling probe single-stranded DNA-tagged fiuorescein at terminus (ssDNA-FI) and a CCP.The specific binding of adenosine to biotin-aptamer makes biotin-aptamer and ssDNA-FI unhybridized,and the ssDNA-FI is washed out after streptavidin-coated magnetic beads are added and separated from the assay solution under magnetic field.In this case,after the addition of CCP to the magnetic beads solution,the fluo-rescence resonance energy transfer (FRET) from CCP to fluorescein is inefficient.Upon adding adenosine deaminase,the adenosine is converted into inosine,and the biotin-aptamer is hybridized with ssDNA-FI to form doubled stranded DNA (biotin-dsDNA-FI).The ssONA-FI is attached to the mag-netic beads at the separation step,and the addition of CCP to the magnetic beads solution leads to efficient FRET from CCP to fluorescein.Thus the adenosine deaminase activity can be monitored by fluorescence spectra in view of the intensity decrease of CCP emission or the increase of fluorescein emission in aqueous solutions.The assay integrates surface-functionalized magnetic particles with significant amplification of detection signal of water-soluble cationic conjugated polymers.