WorldWideScience

Sample records for adenosine a2a receptors

  1. Receptor crosstalk: haloperidol treatment enhances A2A adenosine receptor functioning in a transfected cell model

    Trincavelli, Maria Letizia; Cuboni, Serena; Catena Dell’Osso, Mario; Maggio, Roberto; Klotz, Karl-Norbert; Novi, Francesca; Panighini, Anna; Daniele, Simona; Martini, Claudia

    2010-01-01

    A2A adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A2A adenosine receptors are regulated by D2 dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A2A adenosine receptor functional responses caused by the chronic blockade/activation of D2 dop...

  2. Cytotoxic purine nucleoside analogues bind to A1, A2A and A3 adenosine receptors

    Jensen, Kyle; Johnson, L’Aurelle A.; Jacobson, Pamala A.; Kachler, Sonja; Kirstein, Mark N.; Lamba, Jatinder; Klotz, Karl-Norbert

    2012-01-01

    Fludarabine, clofarabine and cladribine are anti-cancer agents which are analogues of the purine nucleoside adenosine. These agents have been associated with cardiac and neurological toxicities. Because these agents are analogues of adenosine, they may act through adenosine receptors to elicit their toxic effects. The objective of this study was to evaluate the ability of cytotoxic nucleoside analogues to bind and activate adenosine receptor subtypes (A1, A2A, A2B, and A3). Radioligand bindin...

  3. The role of adenosine A2A receptors on neuromuscular transmission upon ageing

    Pousinha, Paula Isabel Antunes, 1978-

    2012-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2012 Adenosine is a neuromodulator with important actions in the nervous system. The activation of adenosine A2A receptors has been shown to modulate the action of other receptors. Considering that it was observed an interaction between adenosine A2A receptors and TrkB receptors in hippocampus, I hypothesized that the activation of A2A receptors could also facilitate BDNF actions on ne...

  4. Adenosine and a selective A2a receptor agonist regadenoson used in myocardial stress test

    Adenosine pharmacological myocardial stress test has been widely used in clinic. However, the side effects related with adenosine administration has been an issue of controversy. Current Phase Ⅲ study of regadenoson, a selective A2a receptor agonist, reveals its potential to substitute adenosine as a new agent for pharmacological myocardial stress test. This review briefs adenosine and regadenoson and their clinical utilities in myocardial stress test. (authors)

  5. Anti-Inflammatory and Immunosuppressive Effects of the A2A Adenosine Receptor

    Gillian R. Milne; Palmer, Timothy M.

    2011-01-01

    The production of adenosine represents a critical endogenous mechanism for regulating immune and inflammatory responses during conditions of stress, injury, or infection. Adenosine exerts predominantly protective effects through activation of four 7-transmembrane receptor subtypes termed A1, A2A, A2B, and A3, of which the A2A adenosine receptor (A2AAR) is recognised as a major mediator of anti-inflammatory responses. The A2AAR is widely expressed on cells of the immune system and numerous in ...

  6. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs.

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2014-02-01

    Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension. PMID:24216055

  7. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  8. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  9. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  10. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  11. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Sergi eFerre

    2011-06-01

    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  12. Modulation of adenosine A(2A) receptor function by interacting proteins. New targets for Huntington’s disease

    Bakešová, Jana

    2012-01-01

    [eng] In this dissertation we studied the pharmacological and functional consequences of adenosine A2A receptor interaction with other proteins, as other neurotransmitter receptores localized in the human brain and an important enzyme regulating the extracellular concentration of adenosine, the ecto-ADA (adenosine desaminase). The first aim of this thesis was to study the molecular and functional interaction of A(2A)Rwith ADA. We found out that A(2A)Racted as a membrane anchoring protein of A...

  13. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  14. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias.

    Welihinda, Ajith A; Kaur, Manmeet; Greene, Kelly; Zhai, Yongjiao; Amento, Edward P

    2016-06-01

    Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo. PMID:26903141

  15. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  16. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar;

    2014-01-01

    Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  17. Involvement of adenosine A2A receptors in depression and anxiety.

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. PMID:25175973

  18. A2A adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE–knockout mice

    Teng, Bunyen

    2011-01-01

    Bunyen Teng, S Jamal MustafaDepartment of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV, USAAbstract: Adenosine-induced coronary vasodilation is predominantly A2A adenosine receptor (AR)-mediated, whereas A1 AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolip...

  19. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Ferré, S.; Diamond, I.; Goldberg, S. R.; Yao, L.; Hourani, S.M.O.; Huang, Z L; Urade, Y; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus a...

  20. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  1. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-01

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F2α (10−5m), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [14C]adenosine over the microdialysis membrane increased from 0.32 ± 0.02 to 0.46 ± 0.02 (n = 4, P < 0.01) during the study period. At baseline, interstitial adenosine was in the region of 10 nm which is significantly less than previously found myocardial concentrations. Hypoxia (PO2 30 mmHg for 60 min, n = 5) increased coronary diameters by 20.0 ± 2.6% (versus continuous oxygenation −3.1 ± 2.4%, n = 6, P < 0.001) but interstitial adenosine concentration fell. Blockade of adenosine deaminase (with erythro-9-(2-hydroxy-3-nonyl-)-adenine, 5 μm), adenosine kinase (with iodotubericidine, 10 μm) and adenosine transport (with n-nitrobenzylthioinosine, 1 μm) increased interstitial adenosine but the increase was unrelated to hypoxia or diameter. A coronary dilatation similar to that during hypoxia could be obtained with 30 μm of adenosine in the organ bath and the resulting interstitial adenosine concentrations (n = 5) were 20 times higher than the adenosine concentration measured during hypoxia. Adenosine concentration–response experiments showed vasodilatation to be more pronounced during hypoxia (n = 9) than during normoxia (n = 9, P < 0.001) and the A2A receptor antagonist ZM241385 (20 nm, n = 5), attenuated hypoxia-induced vasodilatation while the selective A2B receptor antagonist MRS1754 (20 nm, n = 4), had no effect. The lactate/pyruvate ratio was significantly increased in

  2. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy.

    Kumar, Sokindra; Arun, K H S; Kaul, Chaman L; Sharma, Shyam S

    2005-01-01

    This study examined the effects of chronic administration of adenosine and CGS 21680 hydrochloride (adenosine A(2A) receptor agonist) on motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and histology of sciatic nerve in animal model of diabetic neuropathy. Adenosinergic agents were administered for 2 weeks after 6 weeks of streptozotocin-induced (50 mg/kg i.p.) diabetes in male Sprague-Dawley rats. Significant reduction in sciatic MNCV and NBF were observed after 8 weeks in diabetic animals in comparison with control (non diabetic) rats. Adenosine (10 mg/kg, i.p.) significantly improved sciatic MNCV and NBF in diabetic rats. The protective effect of adenosine on MNCV and NBF was completely reversed by theophylline (50 mg/kg, i.p.), a non-selective adenosine receptor antagonist, suggesting that the adenosine effect was mediated via adenosinergic receptors. CGS 21680 (0.1 mg/kg, i.p.) significantly improved NBF; however, MNCV was not significantly improved in diabetic rats. At a dose of 1 mg/kg, neither MNCV nor NBF was improved by CGS 21680 in diabetic rats. ZM 241385 (adenosine A(2A) receptor antagonist) prevented the effect of CGS 21680 (0.1 mg/kg, i.p.). Histological changes observed in sciatic nerve were partially improved by the adenosinergic agents in diabetic rats. Results of the present study, suggest the potential of adenosinergic agents in the therapy of diabetic neuropathy. PMID:15829161

  3. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  4. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production. PMID:16023100

  5. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  6. Computational study of the binding modes of caffeine to the adenosine A2A receptor.

    Liu, Yuli; Burger, Steven K; Ayers, Paul W; Vöhringer-Martinez, Esteban

    2011-12-01

    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385. PMID:21970461

  7. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  8. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  9. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Marco Orru

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  10. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  11. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A(2A) receptors

    Andersen, Henrik; Jaff, Mohammad G; Høgh, Ditte;

    2011-01-01

    Aims:  Adenosine plays an important role in the regulation of heart rate and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, the present study investigated the effect of the nucleoside on mean...... arterial blood pressure (MAP) and heart rate (HR) in conscious mice. Methods:  Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knock-out (eNOS(-/-) ) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis involment of adenosine...... receptors was investigated in human and mouse renal blood vessels Results:  Bolus infusion of 0.5 mg/kg adenosine elicited significant transient decreases in MAP (99.3±2.3 to 70.4±4.5 mmHg) and HR (603.2±18.3 to 364.3±49.2 min(-1) ) which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation...

  12. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine.

    Konno, Takashi; Murakami, Akira; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-04-01

    The aim of the present study is to clarify the mechanism for the decrease in intraocular pressure by 2-alkynyladenosine derivatives in rabbits. The receptor binding analysis revealed that 2-(1-octyn-1-yl)adenosine (2-O-Ado) and 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) selectively bound to the A(2a) receptor with a high affinity. Ocular hypotensive responses to 2-O-Ado and 2-CN-Ado were inhibited by the adenosine A(2a)-receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), but not by the adenosine A(1)-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or the adenosine A(2b)-receptor antagonist alloxazine. In addition, 2-O-Ado and 2-CN-Ado caused an increase in outflow facility, which was inhibited by CSC, but not by DPCPX or alloxazine. Moreover, 2-O-Ado and 2-CN-Ado increased cAMP in the aqueous humor, and the 2-O-Ado-induced an increase in cAMP was inhibited by CSC. These results suggest that 2-O-Ado and 2-CN-Ado reduced intraocular pressure via an increase in outflow facility. The ocular hypotension may be mainly mediated through the activation of adenosine A(2a) receptor, although a possible involvement of adenosine A(1) receptor cannot be completely ruled out. 2-O-Ado and 2-CN-Ado are useful lead compounds for the treatment of glaucoma. PMID:15821340

  13. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  14. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  15. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia. PMID:27133030

  16. Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography

    In previous in vivo studies with mice, rats and monkeys, we have demonstrated that [11C]TMSX ([7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)- 1,3,7-trimethylxanthine) is a potential radioligand for mapping adenosine A2A receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. A suitable preparation method for [11C]TMSX injection was established. The radiation absorbed-dose by [11C]TMSX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of TMSX were not found. The striatal uptake of [11C]TMSX in mice was reduced by pretreatment with theophylline at the dose of 10 and 100 mg/kg, suggesting that the [11C]TMSX PET should be carefully performed in the patients received with theophylline. We have concluded that [11C]TMSX is suitable for mapping adenosine A2A receptors in the human brain by PET. (author)

  17. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRSSNP in contrast to no effect on BRSPE. BRSSNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRSSNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRSSNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A2A antagonist), or VUF5574 (A3 antagonist). In contrast, BRSSNP was preserved after blockade of A1 (DPCPX) or A2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRSSNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in the nicotine

  18. In vivo evaluation of [11C]preladenant positron emission tomography for quantification of adenosine A2A receptors in the rat brain

    Zhou, Xiaoyun; Khanapur, Shivashankar; de Jong, Johan R; Willemsen, Antoon T.M.; Dierckx, Rudi Ajo; Elsinga, Philip H; de Vries, Erik Fj

    2016-01-01

    [(11)C]Preladenant was developed as a novel adenosine A2A receptor positron emission tomography radioligand. The present study aims to evaluate the suitability of [(11)C]preladenant positron emission tomography for the quantification of striatal A2A receptor density and the assessment of striatal A2

  19. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. PMID:26905951

  20. Optogenetic Activation of Adenosine A2A Receptor Signaling in the Dorsomedial Striatopallidal Neurons Suppresses Goal-Directed Behavior.

    Li, Yan; He, Yan; Chen, Mozi; Pu, Zhilan; Chen, Li; Li, Ping; Li, Bo; Li, Haiyan; Huang, Zhi-Li; Li, Zhihui; Chen, Jiang-Fan

    2016-03-01

    The striatum has an essential role in neural control of instrumental behaviors by reinforcement learning. Adenosine A(2A) receptors (A(2A)Rs) are highly enriched in the striatopallidal neurons and are implicated in instrumental behavior control. However, the temporal importance of the A(2A)R signaling in relation to the reward and specific contributions of the striatopallidal A(2A)Rs in the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) to the control of instrumental learning are not defined. Here, we addressed temporal relationship and sufficiency of transient activation of optoA(2A)R signaling precisely at the time of the reward to the control of instrumental learning, using our newly developed rhodopsin-A2AR chimeras (optoA(2A)R). We demonstrated that transient light activation of optoA(2A)R signaling in the striatopallidal neurons in 'time-locked' manner with the reward delivery (but not random optoA(2A)R activation) was sufficient to change the animal's sensitivity to outcome devaluation without affecting the acquisition or extinction phases of instrumental learning. We further demonstrated that optogenetic activation of striatopallidal A(2A)R signaling in the DMS suppressed goal-directed behaviors, as focally genetic knockdown of striatopallidal A(2A)Rs in the DMS enhanced goal-directed behavior by the devaluation test. By contrast, optogenetic activation or focal AAV-Cre-mediated knockdown of striatopallidal A(2A)R in the DLS had relatively limited effects on instrumental learning. Thus, the striatopallidal A(2A)R signaling in the DMS exerts inhibitory and predominant control of goal-directed behavior by acting precisely at the time of reward, and may represent a therapeutic target to reverse abnormal habit formation that is associated with compulsive obsessive disorder and drug addiction. PMID:26216520

  1. Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABAA receptors microtransplanted to Xenopus oocytes

    Roseti, Cristina; Palma, Eleonora; Martinello, Katiuscia; Fucile, Sergio; Morace, Roberta; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonietta; Giangaspero, Felice; Aronica, Eleonora; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Cristalli, Gloria; Lambertucci, Catia; Marucci, Gabriella; Volpini, Rosaria; Limatola, Cristina; Eusebi, Fabrizio

    2009-01-01

    We previously found that the endogenous anticonvulsant adenosine, acting through A2A and A3 adenosine receptors (ARs), alters the stability of currents (IGABA) generated by GABAA receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of IGABA expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABAA receptors revealed instability, manifested by a large IGABA rundown, which in most of the oocytes (≈70%) was obviously impaired by the new A2A antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A3 receptor antagonist (ANR235) significantly improved IGABA stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered IGABA rundown on ANR94 treatment. Our findings indicate that antagonizing A2A and A3 receptors increases the IGABA stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy. PMID:19721003

  2. Attenuation of gastric mucosal inflammation induced by aspirin through activation of A2A adenosine receptor in rats

    Masaru Odashima; Reina Ohba; Sumio Watanabe; Joel Linden; Michiro Otaka; Mario Jin; Koga Komatsu; Isao Wada; Youhei Horikawa; Tamotsu Matsuhashi; Natsumi Hatakeyama; Jinko Oyake

    2006-01-01

    AIM: To determine whether a specific adenosine A2A receptor agonist (ATL-146e) can ameliorate aspirin-induced gastric mucosal lesions in rats, and reduce neutrophil accumulation and production of pro-inflammatory cytokines.METHODS: Gastric lesions were produced by oral gavage of aspirin (200 mg/kg) and HCl (0.15 mol/L,8.0 mL/kg). 4-{3-[6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL-146e,2.5-5 μg/kg, IP) was injected 30 min before the administration of aspirin. Tissue myeloperoxidase (MPO) concentration in gastric mucosa was measured as an index of neutrophil infiltration. Gastric mucosal concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined by ELISA. Also, we examined the effect of ATL-146e on tissue prostaglandin E2 (PGE2) production and gastric secretion.RESULTS: Intragastric administration of aspirin induced multiple hemorrhagic erosions in rat gastric mucosa. The total length of gastric erosions (ulcer index) in control rats was 29.8±7.75 mm and was reduced to 3.8±1.42 mm after pretreatment with 5.0 g/kg ATL-146e (P< 0.01).The gastric contents of MPO and pro-inflammatory cytokines were all increased after the administration of aspirin and reduced to nearly normal levels by ATL-146e.Gastric mucosal PGE2 concentration was not affected by intraperitoneal injection of ATL-146e.CONCLUSION: The specific adenosine A2A receptor agohist, ATL-146e, has potent anti-ulcer effects presumably mediated by its anti-inflammatory properties.

  3. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism.

    Fathalla, Ahmed M; Soliman, Amira M; Ali, Mohamed H; Moustafa, Ahmed A

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson's disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  4. Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity

    Cunha, Rodrigo A.

    2008-01-01

    Adenosine is a prototypical neuromodulator, which mainly controls excitatory transmission through the activation of widespread inhibitory A1 receptors and synaptically located A2A receptors. It was long thought that the predominant A1 receptor-meditated modulation by endogenous adenosine was a homeostatic process intrinsic to the synapse. New studies indicate that endogenous extracellular adenosine is originated as a consequence of the release of gliotransmitters, namely ATP, which sets a glo...

  5. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. PMID:27060487

  6. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  7. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  8. Chronic hypoxia reduces adenosine A2A receptor-mediated inhibition of calcium current in rat PC12 cells via downregulation of protein kinase A.

    Kobayashi, S; Beitner-Johnson, D; Conforti, L; Millhorn, D E

    1998-10-15

    1. Adenosine has been shown to decrease Ca2+ current (ICa) and attenuate the hypoxia-induced enhancement of intracellular free Ca2+ ([Ca2+]i) in oxygen-sensitive rat phaeochromocytoma (PC12) cells. These effects are mediated via the adenosine A2A receptor and protein kinase A (PKA). The current study was undertaken to determine the effects of adenosine on Ca2+ current and hypoxia-induced change in [Ca2+]i during chronic hypoxia. 2. Whole cell patch-clamp studies revealed that the effect of adenosine on ICa was significantly reduced when PC12 cells were exposed to hypoxia (10 % O2) for 24 and 48 h. 3. Ca2+ imaging studies using fura-2 revealed that the anoxia-induced increase in [Ca2+]i was significantly enhanced when PC12 cells were exposed to 10 % O2 for up to 48 h. In contrast, the inhibitory effects of adenosine on anoxia-induced elevation of [Ca2+]i was significantly blunted in PC12 cells exposed to hypoxia for 48 h. 4. Northern blot analysis revealed that mRNA for the A2A receptor, which is the only adenosine receptor subtype expressed in PC12 cells, was significantly upregulated by hypoxia. Radioligand binding analysis with [3H]CGS21680, a selective A2A receptor ligand, showed that the number of adenosine A2A receptor binding sites was similarly increased during exposure to 10% O2 for 48 h. 5. PKA enzyme activity was significantly inhibited when PC12 cells were exposed to 10% O2 for 24 and 48 h. However, we found that hypoxia failed to induce change in adenosine- and forskolin-stimulated adenylate cyclase enzyme activity. Chronic hypoxia also did not alter the immunoreactivity level of the G protein Gsalpha, an effector of the A2 signalling pathway. 6. Whole cell patch-clamp analysis showed that the effect of 8-bromo-cAMP, an activator of PKA, on ICa was significantly attenuated during 48 h exposure to 10% O2.7. We conclude therefore that the reduced effect of adenosine on ICa and [Ca2+]i in PC12 cells exposed to chronic hypoxia is due to hypoxia

  9. A1 not A2A adenosine receptors play a role in cortical epileptic afterdischarges in immature rats

    Mareš, Pavel

    2014-01-01

    Roč. 121, č. 11 (2014), s. 1329-1336. ISSN 0300-9564 R&D Projects: GA MŠk(CZ) LH11015 Institutional support: RVO:67985823 Keywords : adenosine receptors * epileptic afterdischarges * cerebral cortex * ontogeny * rat Subject RIV: FH - Neurology Impact factor: 2.402, year: 2014

  10. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study

    We examined the densities of adenosine A2A receptors in cardiac and skeletal muscles between untrained and endurance-trained subjects using positron emission tomography (PET) and [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX), a newly developed radioligand for mapping adenosine A2A receptors. Five untrained and five endurance-trained subjects participated in this study. The density of adenosine A2A receptors was evaluated as the distribution volume of [11C]TMSX in cardiac and triceps brachii muscles in the resting state using PET. The distribution volume of [11C]TMSX in the myocardium was significantly greater than in the triceps brachii muscle in both groups. Further, distribution volumes [11C]TMSX in the trained subjects were significantly grater than those in untrained subjects (myocardium, 3.6±0.3 vs. 3.1±0.4 ml g-1; triceps brachii muscle, 1.7±0.3 vs. 1.2±0.2 ml g-1, respectively). These results indicate that the densities of adenosine A2A receptors in the cardiac and skeletal muscles are greater in the endurance-trained men than in the untrained men

  11. Adenosine A2A Receptor and IL-10 in Peripheral Blood Mononuclear Cells of Patients with Mild Cognitive Impairment

    Beatrice Arosio

    2011-01-01

    Full Text Available Adenosine suppresses immune responses through the A2A receptor (A2AR. This study investigated the interleukin 10 (IL-10 genetic profile and the expression of A2AR in peripheral blood mononuclear cells (PBMCs of patients with mild cognitive impairment (MCI, Alzheimer disease (AD, and age-matched controls to verify, if they may help distinguish different forms of cognitive decline. We analyzed the IL-10 genotype and the expression of A2AR in 41 subjects with AD, 10 with amnestic MCI (a-MCI, 49 with multiple cognitive domain MCI (mcd-MCI, and 46 controls. There was a significant linear increase in A2AR mRNA levels and A2AR density from mcd-MCI to a-MCI, with intermediate levels being found in AD. The IL-10 AA genotype frequency was 67% in a-MCI, 46% in AD, 35% in mcd-MCI, and 20% in controls. These data suggest that the assessment of the IL-10 genotype and the expression of A2AR in PBMCs may be a valuable means of differentiating between a-MCI and mcd-MCI.

  12. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  13. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  14. Adenosine A(2A receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients.

    Masahiro Mishina

    Full Text Available Adenosine A(2A receptors (A2ARs are thought to interact negatively with the dopamine D(2 receptor (D2R, so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD. However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET with [7-methyl-(11C]-(E-8-(3,4,5-trimethoxystyryl-1,3,7-trimethylxanthine ([(11C]TMSX in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test. In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test. In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an

  15. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice.

    Bao, Rui; Shui, Xianqi; Hou, Jiong; Li, Jinbao; Deng, Xiaoming; Zhu, Xiaoyan; Yang, Tao

    2016-09-01

    The number of regulatory T cells (Treg cells) and the expression of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1; also known as CD39) and 5'-ectonucleotidase (NT5E; also known as CD73) on the Treg cell surface are increased during sepsis. In this study, to determine the factors leading to the high expression of CD39 and CD73, and the regulation of the CD39/CD73/adenosine pathway in Treg cells under septic conditions, we constructed a mouse model of sepsis and separated the Treg cells using a flow cytometer. The Treg cells isolated from the peritoneal lavage and splenocytes of the mice were treated with adenosine or the specific adenosine A2A receptor agonist, CGS21680, and were transfected with specific siRNA targeting E2F transcription factor 1 (E2F-1) or cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), which are predicted transcription regulatory factors of CD39 or CD73. The regulatory relationships among these factors were then determined by western blot analysis and dual-luciferase reporter assay. In addition, changes in adenosine metabolism were measured in the treated cells. The results revealed that adenosine and CGS21680 significantly upregulated CD39 and CD73 expression (PTreg cell surface during sepsis. Adenosine and its A2A receptor agonist served as the signal transducer factors of the CD39/CD73/adenosine pathway, accelerating adenosine generation. Our study may benefit further research on adenosine metabolism for the treatment of sepsis. PMID:27430240

  16. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles.

    Oliveira, L; Costa, A C; Noronha-Matos, J B; Silva, I; Cavalcante, W L G; Timóteo, M A; Corrado, A P; Dal Belo, C A; Ambiel, C R; Alves-do-Prado, W; Correia-de-Sá, P

    2015-02-01

    The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic

  17. Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment

    Li Yuesheng

    2012-12-01

    Full Text Available Abstract Background Activation of the A2A adenosine receptor (A2AAR decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463 infection (CDI. Methods C57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT mice were similarly infected, and IFNγ and TNFα were measured at peak of and recovery from infection. Results Infected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNγ and blood TNFα were pronounced in the absence of A2AARs. Conclusion In a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease.

  18. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A2A Receptors

    Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin

    2015-01-01

    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory. PMID:26649059

  19. Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography. A first human study

    In previous in vivo studies with mice, rats, cats and monkeys, we have demonstrated that [7-methyl-11C]-(E)-8-(3,4,5-trimethoxy styryl)-1,3,7-trimethylxanthine ([11C]TMSX) is a potential radioligand for mapping adenosine A2A receptors of the brain by positron emission tomography (PET). In the present study, we studied the potential of [11C]TMSX for myocardial imaging. Uptake of radioactivity by the heart was high and gradually decreased after an intravenous injection of [11C]TMSX into mice. In metabolite analysis, 54% and 76% of the radioactivity in plasma and heart, respectively, were present as the unchanged form of [11C]TMSX 60 min postinjection. The myocardial uptake was reduced by carrier-loading and by co-injection of an adenosine A2A antagonist CSC, but not by co-injection of an adenosine A1 antagonist DPCPX. Pretreatment with a high dose of a non-selective antagonist theophylline also reduced the myocardial uptake of [11C]TMSX. These findings demonstrate the specific binding of [11C]TMSX to adenosine A2A receptors in the heart. Finally we successfully performed the myocardial imaging by PET with [11C]TMSX in a normal volunteer. A graphical analysis by Logan plot supported the receptor-mediated uptake of [11C]TMSX. Peripherally [11C]TMSX was very stable in human: >90% of the radioactivity in plasma was detected as the unchanged form in a 60-min study. We concluded that [11C]TMSX PET has the potential for myocardial imaging. (author)

  20. The Length and Flexibility of the 2-Substituent of 9-Ethyladenine Derivatives Modulate Affinity and Selectivity for the Human A2A Adenosine Receptor.

    Thomas, Ajiroghene; Buccioni, Michela; Dal Ben, Diego; Lambertucci, Catia; Marucci, Gabriella; Santinelli, Claudia; Spinaci, Andrea; Kachler, Sonja; Klotz, Karl-Norbert; Volpini, Rosaria

    2016-08-19

    The A2A adenosine receptor (A2A AR) is a key target for the development of pharmacological tools for the treatment of central nervous system disorders. Previous works have demonstrated that the insertion of substituents at various positions on adenine leads to A2A AR antagonists with affinity in the micromolar to nanomolar range. In this work, a series of 9-ethyladenine derivatives bearing phenylalkylamino, phenylakyloxy or phenylakylthio groups of different lengths at the 2-position were synthesised and tested against the human adenosine receptors. The derivatives showed sub-micromolar affinity for these membrane proteins. The further introduction of a bromine atom at the 8-position has the effect of improving the affinity and selectivity for all ARs and led to compounds that are able bind to the A2A AR subtype at low nanomolar levels. Functional studies confirmed that the new adenine derivatives behave as A2A AR antagonists with half-maximal inhibitory concentration values in the nanomolar range. Molecular modelling studies provide a description of the possible binding mode of these compounds at the A2A AR and an interpretation of the affinity data at this AR subtype. PMID:27037522

  1. Homology modeling of adenosine A2A receptor and molecular docking for exploration of appropriate potent antagonists for treatment of Parkinson's disease.

    Singh, Vijai; Somvanshi, Pallavi

    2009-07-01

    Parkinson's disease (PD) is a neurodegenerative disorder of central nervous system (CNS) that impaired the patient motor skills, speech and other functions. Adenosine A2A receptors have a unique cellular distribution in the neuron, which is used as a potential target for PD. Homology modeling was used to construct the 3-D structure of A2A using the known template (PDB: 2VT4), and the stereochemical quality was validated. Several effective antagonist drugs were selected and active amino acid residues in A2A were targeted on the basis of robust binding affinity between protein-drug interactions in molecular docking. Six antagonists, Bromocriptine, Cabergoline, Etilevodopa, Lysuride, Melevodopa and Pramipexole, were found more potent for binding and the active amino acids residues were identified (http://www.rcsb.org/pdb/) in A2A receptor. It could be used as the basis for rationale designing of novel antagonist drugs against Parkinson's disease. PMID:20021407

  2. Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists.

    Zhang, Lihui; Liu, Tianjun; Wang, Xia; Wang, Jinan; Li, Guohui; Li, Yan; Yang, Ling; Wang, Yonghua

    2014-01-01

    The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A2A adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A2A AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A2A AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A2A adenosine receptor antagonist for treatment of Parkinson's disease. PMID:23665268

  3. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures

    Strange Philip G

    2008-10-01

    Full Text Available Abstract Background The large-scale production of G-protein coupled receptors (GPCRs for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml with moderate cell densities (OD600 ~15. The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75 compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.

  4. BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A2A receptors.

    Colino-Oliveira, Mariana; Rombo, Diogo M; Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10-100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75(NTR) blockade (anti-p75(NTR) IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation. PMID:26897393

  5. The Role of Adenosine A1 and A2A Receptors in the Caffeine Effect on MDMA-Induced DA and 5-HT Release in the Mouse Striatum

    Górska, A. M.; Gołembiowska, K.

    2014-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a ro...

  6. Potential of [11C]TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography

    We examined the potential of [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) for the assessment of adenosine A2A receptors in muscle. In rodents, specific binding of [11C]TMSX was observed in muscle and heart by blockade with A2A-selective CSC and non-selective theophylline, but not with A1-selective DPCPX. Swimming exercise fluctuated radioligand-receptor binding in these tissues. In a PET study of two subjects, theophylline-infusion slightly deceased the distribution volume of [11C]TMSX in the heart (20% reduction) and muscle (10% reduction), which suggested the specific binding

  7. SCH58261 the selective adenosine A(2A) receptor blocker modulates ischemia reperfusion injury following bilateral carotid occlusion: role of inflammatory mediators.

    Mohamed, R A; Agha, A M; Nassar, N N

    2012-03-01

    In the present study, the effects of SCH58261, a selective adenosine A(2A) receptor antagonist that crosses the blood brain barrier (BBB) and 8-(4-sulfophenyl) theophylline (8-SPT), a non-selective adenosine receptor antagonist that acts peripherally, were investigated on cerebral ischemia reperfusion injury (IR). Male Wistar rats (200-250 g) were divided into four groups: (1) sham-operated (SO), IR pretreated with either (2) vehicle (DMSO); (3) SCH58261 (0.01 mg/kg); (4) 8-SPT (2.5 mg/kg). Animals were anesthetized and submitted to occlusion of both carotid arteries for 45 min. All treatments were administered intraperitoneally (i.p.) post carotid occlusion prior to exposure to a 24 h reperfusion period. Ischemic rats showed increased infarct size compared to their control counterparts that corroborated with histopathological changes as well as increased lactate dehydrogenase (LDH) activity in the hippocampus. Moreover, ischemic animals showed habituation deficit, increased anxiety and locomotor activity. IR increased hippocampal glutamate (Glu), GABA, glycine (Gly) and aspartate (ASP). SCH58261 significantly reversed these effects while 8-SPT elicited minimal change. IR raised myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), prostaglandin E₂ (PGE₂) accompanied by a decrease in interleukin-10 (IL-10), effects that were again reversed by SCH58261, but 8-SPT elicited less changes. Results from the present study point towards the importance of central blockade of adenosine A(2A) receptor in ameliorating hippocampal damage following IR injury by halting inflammatory cascades as well as modulating excitotoxicity. PMID:22071908

  8. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function.

    Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Valadas, Jorge S; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E; Hamdane, Malika; Outeiro, Tiago F; Bader, Michael; Meijsing, Sebastiaan H; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  9. Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease.

    Frau, Lucia; Borsini, Franco; Wardas, Jadwiga; Khairnar, Amit S; Schintu, Nicoletta; Morelli, Micaela

    2011-03-01

    Adenosine A(2A) receptor antagonists are one of the most attractive classes of drug for the treatment of Parkinson's disease (PD) as they are effective in counteracting motor dysfunctions and display neuroprotective and anti-inflammatory effects in animal models of PD. In this study, we evaluated the neuroprotective and anti-inflammatory properties of the adenosine A(2A) receptor antagonist ST1535 in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. C57BL/6J mice were repeatedly administered with vehicle, MPTP (20 mg/kg), or MPTP + ST1535 (2 mg/kg). Mice were sacrificed three days after the last administration of MPTP. Immunohistochemistry for tyrosine hydroxylase (TH) and cresyl violet staining were employed to evaluate dopaminergic neuron degeneration in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu). CD11b and glial fibrillary acidic protein (GFAP) immunoreactivity were, respectively, evaluated as markers of microglial and astroglial response in the SNc and CPu. Stereological analysis for TH revealed a 32% loss of dopaminergic neurons in the SNc after repeated MPTP administration, which was completely prevented by ST1535 coadministration. Similarly, CPu decrease in TH (25%) was prevented by ST1535. MPTP treatment induced an intense gliosis in both the SNc and CPu. ST1535 totally prevented CD11b immunoreactivity in both analyzed areas, but only partially blocked GFAP increase in the SNc and CPu. A(2A) receptor antagonism is a new opportunity for improving symptomatic PD treatment. With its neuroprotective effect on dopaminergic neuron toxicity induced by MPTP and its antagonism on glial activation, ST1535 represents a new prospect for a disease-modifying drug. PMID:20665698

  10. Neuroprotection of Persea major extract against oxygen and glucose deprivation in hippocampal slices involves increased glutamate uptake and modulation of A1 and A2A adenosine receptors

    Marielli Letícia Fedalto

    2013-10-01

    Full Text Available Ischemic stroke is characterised by a lack of oxygen and glucose in the brain, leading to excessive glutamate release and neuronal cell death. Adenosine is produced in response to ATP depletion and acts as an endogenous neuromodulator that reduces excitotoxicity. Persea major (Meins. L.E. Kopp (Lauraceae is a medical plant that is indigenous to South Brazil, and the rural population has used it medicinally due to its anti-inflammatory properties. The aim of this study was to evaluate the neuroprotective effect of Persea major methanolic extract against oxygen and glucose deprivation and re-oxygenation as well as to determine its underlying mechanism of action in hippocampal brain slices. Persea major methanolic extract (0.5 mg/ml has a neuroprotective effect on hippocampal slices when added before or during 15 min of oxygen and glucose deprivation or 2 h of re-oxygenation. Hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation showed significantly reduced glutamate uptake, and the addition of Persea major methanolic extract in the re-oxygenation period counteracted the reduction of glutamate uptake. The presence of A1 or A2A, but not A2B or A3 receptor antagonists, abolished the neuroprotective effect of Persea major methanolic extract. In conclusion, the neuroprotective effect of Persea majormethanolic extract involves augmentation of glutamate uptake and modulation of A1 and A2B adenosine receptors.

  11. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Gomes Catarina

    2013-01-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM, as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF.

  12. Effects of adenosine A2a receptor agonist and antagonist on cerebellar nuclear factor-kB expression preceded by MDMA toxicity

    Kermanian, Fatemeh; Soleimani, Mansoureh; Pourheydar, Bagher; Samzadeh-Kermani, Alireza; Mohammadzadeh, Farzaneh; Mehdizadeh, Mehdi

    2014-01-01

    Background: Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliated emotional response. MDMA is a potent monoaminergic neurotoxin with the potential of damage to brain neurons. The NF-kB family of proteins are ubiquitously expressed and are inducible transcription factors that regulate the expression of genes involved in disparate processes such as immunity and ingrowth, development and cell-death regulation. In this study we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Methods: Sixty three male Sprague–Dawley rats were injected to MDMA (10 and 20mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03mg/kg) injection. The cerebellum were then removed forcresylviolet staining, western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results showed that MDMA increased the number of cerebellar dark neurons. Results: We observed that administration of CGS following MDMA, significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. Conclusion: These results indicated that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users. PMID:25678999

  13. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway. PMID:27066978

  14. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors. PMID:23583933

  15. Antagonism of the adenosine A2A receptor attenuates akathisia-like behavior induced with MP-10 or aripiprazole in a novel non-human primate model.

    Bleickardt, Carina J; Kazdoba, Tatiana M; Jones, Nicholas T; Hunter, John C; Hodgson, Robert A

    2014-03-01

    Akathisia is a subset of the larger antipsychotic side effect profile known as extrapyramidal syndrome (EPS). It is associated with antipsychotic treatment and is characterized as a feeling of inner restlessness that results in a compulsion to move. There are currently no primate models available to assess drug-induced akathisia; the present research was designed to address this shortcoming. We developed a novel rating scale based on both the Barnes Akathisia Rating Scale (BARS) and the Hillside Akathisia Scale (HAS) to measure the objective, observable incidence of antipsychotic-induced akathisia-like behavior in Cebus apella non-human primates (NHPs). To induce akathisia, we administered the atypical antipsychotic aripiprazole (1 mg/kg) or the selective phosphodiesterase 10A (PDE10A) inhibitor MP-10 (1-3 mg/kg). Treatment with both compounds produced significantly greater akathisia scores on the rating scale than vehicle treatment. Characteristic behaviors observed included vocalizations, stereotypies, teeth grinding, restless limb movements, and hyperlocomotion. Adenosine A2A receptor antagonists have previously been shown to be effective in blocking antipsychotic-induced EPS in primates. The selective A2A receptor antagonist, SCH 412348 (10-30 mg/kg), effectively reduced or reversed akathisia-like behavior induced by both aripiprazole and MP-10. This work represents the first NHP measurement scale of akathisia and demonstrates that NHPs are responsive to akathisia-inducing agents. As such, it provides a useful tool for the preclinical assessment of putative antipsychotics. In addition, these results provide further evidence of the utility of A2A receptor antagonists for the treatment of antipsychotic-induced movement disorders. PMID:24211858

  16. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical. PMID:21830163

  17. Internalization and desensitization of adenosine receptors.

    Klaasse, E.C.; IJzerman, A.P.; Grip, W.J. de; Beukers, M.W.

    2008-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A(1), A(2A), A(2B) and A(3) receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein clas

  18. Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. A potential role in cell protection.

    Kobayashi, S; Millhorn, D E

    1999-07-16

    The purpose of this study was to examine the regulation of adenosine A2A receptor (A2AR) gene expression during hypoxia in pheochromocytoma (PC12) cells. Northern blot analysis revealed that the A2AR mRNA level was substantially increased after a 3-h exposure to hypoxia (5% O2), which reached a peak at 12 h. Immunoblot analysis showed that the A2AR protein level was also increased during hypoxia. Inhibition of de novo protein synthesis blocked A2AR induction by hypoxia. In addition, removal of extracellular free Ca2+, chelation of intracellular free Ca2+, and pretreatment with protein kinase C inhibitors prevented A2AR induction by hypoxia. Moreover, depletion of protein kinase C activity by prolonged treatment with phorbol 12-myristate 13-acetate significantly inhibited the hypoxic induction of A2AR. A2AR antagonists led to a significant enhancement of A2AR mRNA levels during hypoxia, whereas A2AR agonists caused down-regulation of A2AR expression during hypoxia. This suggests that A2AR regulates its own expression during hypoxia by feedback mechanisms. We further found that activation of A2AR enhances cell viability during hypoxia and also inhibits vascular endothelial growth factor expression in PC12 cells. Thus, increased expression of A2AR during hypoxia might protect cells against hypoxia and may act to inhibit hypoxia-induced angiogenic activity mediated by vascular endothelial growth factor. PMID:10400659

  19. Stimulation of adenosine A2A receptors reduces intracellular cholesterol accumulation and rescues mitochondrial abnormalities in human neural cell models of Niemann-Pick C1.

    Ferrante, A; De Nuccio, C; Pepponi, R; Visentin, S; Martire, A; Bernardo, A; Minghetti, L; Popoli, P

    2016-04-01

    Niemann Pick C 1 (NPC1) disease is an incurable, devastating lysosomal-lipid storage disorder characterized by hepatosplenomegaly, progressive neurological impairment and early death. Current treatments are very limited and the research of new therapeutic targets is thus mandatory. We recently showed that the stimulation of adenosine A2A receptors (A2ARs) rescues the abnormal phenotype of fibroblasts from NPC1 patients suggesting that A2AR agonists could represent a therapeutic option for this disease. However, since all NPC1 patients develop severe neurological symptoms which can be ascribed to the complex pathology occurring in both neurons and oligodendrocytes, in the present paper we tested the effects of the A2AR agonist CGS21680 in human neuronal and oligodendroglial NPC1 cell lines (i.e. neuroblastoma SH-SY5Y and oligodendroglial MO3.13 transiently transfected with NPC1 small interfering RNA). The down-regulation of the NPC1 protein effectively resulted in intracellular cholesterol accumulation and altered mitochondrial membrane potential. Both effects were significantly attenuated by CGS21680 (500 nM). The protective effects of CGS were prevented by the selective A2AR antagonist ZM241385 (500 nM). The involvement of calcium modulation was demonstrated by the ability of Bapta-AM (5-7 μM) in reverting the effect of CGS. The A2A-dependent activity was prevented by the PKA-inhibitor KT5720, thus showing the involvement of the cAMP/PKA signaling. These findings provide a clear in vitro proof of concept that A2AR agonists are promising potential drugs for NPC disease. PMID:26631535

  20. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  1. Internalization and desensitization of adenosine receptors

    Klaasse, Elisabeth C.; IJzerman, Adriaan P.; de Grip, Willem J.; Beukers, Margot W.

    2007-01-01

    Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are re...

  2. Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs.

    Chiu, Feng-Lan; Lin, Jun-Tasi; Chuang, Ching-Yu; Chien, Ting; Chen, Chiung-Mei; Chen, Kai-Hsiang; Hsiao, Han-Yun; Lin, Yow-Sien; Chern, Yijuang; Kuo, Hung-Chih

    2015-11-01

    Huntington's disease (HD) is an autosomal-dominant degenerative disease caused by a cytosine-adenine-guanine trinucleotide expansion in the Huntingtin (htt) gene. The most vulnerable brain areas to mutant HTT-evoked toxicity are the striatum and cortex. In spite of the extensive efforts that have been devoted to the characterization of HD pathogenesis, no disease-modifying therapy for HD is currently available. The A2A adenosine receptor (A2AR) is widely distributed in the brain, with the highest level observed in the striatum. We previously reported that stimulation of the A2AR triggers an anti-apoptotic effect in a rat neuron-like cell line (PC12). Using a transgenic mouse model (R6/2) of HD, we demonstrated that A2AR-selective agonists effectively ameliorate several major symptoms of HD. In the present study, we show that human iPSCs can be successfully induced to differentiate into DARPP32-positive, GABAergic neurons which express the A2AR in a similar manner to striatal medium spiny neurons. When compared with those derived from control subjects (CON-iPSCs), these HD-iPSC-derived neurons exhibited a higher DNA damage response, based on the observed expression of γH2AX and elevated oxidative stress. This is a critical observation, because oxidative damage and abnormal DNA damage/repair have been reported in HD patients. Most importantly, stimulation of the A2AR using selective agonists reduced DNA damage and oxidative stress-induced apoptosis in HD-iPSC-derived neurons through a cAMP/PKA-dependent pathway. These findings support our hypothesis that human neurons derived from diseased iPSCs might serve as an important platform to investigate the beneficial effects and underlying mechanisms of A2AR drugs. PMID:26264576

  3. Adenosine Receptors and Asthma

    Wilson, Constance N; Nadeem, Ahmed; Spina, Domenico; Brown, Rachel; Page, Clive P.; Jamal Mustafa, S.

    2009-01-01

    The pathophysiological processes underlying respiratory diseases like asthma are complex, resulting in an overwhelming choice of potential targets for the novel treatment of this disease. Despite this complexity, asthmatic subjects are uniquely sensitive to a range of substances like adenosine, thought to act indirectly to evoke changes in respiratory mechanics and in the underlying pathology, and thereby to offer novel insights into the pathophysiology of this disease. Adenosine is of partic...

  4. Striatal adenosine A2A receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [18F]-MRS5425

    Introduction: A2A receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an 18F-labeled A2A analog radiotracer ([18F]-MRS5425) for A2A receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A2A receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [18F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D2 agonist quinpirole (1.0 mg/kg) or D2 antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A2A receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  5. Systemic administration of the adenosine A2A agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake

    Mingote, Susana; Pereira, Mariana; Farrar, Andrew M.; McLaughlin, Peter J.; Salamone, John D.

    2008-01-01

    Adenosine A2A receptors are involved in the regulation of several behavioral functions. Adenosine A2A antagonists exert antiparkinsonian effects in animal models, and adenosine A2A agonists suppress locomotion and impair various aspects of motor control. The present experiments were conducted to study the effects of low doses of the adenosine A2A agonist CGS 21680 on lever pressing, specific parameters of food intake, and sedation. In the first experiment, the effects of CGS 21680 on fixed ra...

  6. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease.

    D'Alimonte, Iolanda; D'Auro, Mariagrazia; Citraro, Rita; Biagioni, Francesca; Jiang, Shucui; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Giuliani, Patricia; Ballerini, Patrizia; Caciagli, Francesco; Russo, Emilio; De Sarro, Giovambattista; Ciccarelli, Renata

    2009-09-01

    The involvement of excitatory adenosine A(2A) receptors (A(2A)Rs), which probably contribute to the pathophysiology of convulsive seizures, has never been investigated in absence epilepsy. Here, we examined the distribution and function of A(2A)Rs in the brain of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a model of human absence epilepsy in which disease onset occurs 2-3 months after birth. In the cerebral areas that are mostly involved in the generation of absence seizures (somatosensory cortex, reticular and ventrobasal thalamic nuclei), A(2A)R density was lower in presymptomatic WAG/Rij rats than in control rats, as evaluated by immunohistochemistry and western blotting. Accordingly, in cortical/thalamic slices prepared from the brain of these rats, A(2A)R stimulation with the agonist 2-[4-(-2-carboxyethyl)-phenylamino]-5'-N-ethylcarboxamido-adenosine failed to modulate either cAMP formation, mitogen-activated protein kinase system, or K(+)-evoked glutamate release. In contrast, A(2A)R expression, signalling and function were significantly enhanced in brain slices from epileptic WAG/Rij rats as compared with matched control animals. Additionally, the in vivo injection of the A(2A)R agonist CGS21680, or the antagonist 5-amino-7-(2-phenylethyl)-2-(2-fuyl)-pyrazolo-(4,3-c)1,2,4-triazolo(1,5-c)-pyrimidine, in the examined brain areas of epileptic rats, increased and decreased, respectively, the number/duration of recorded spontaneous spike-wave discharges in a dose-dependent manner during a 1-5 h post-treatment period. Our results support the hypothesis that alteration of excitatory A(2A)R is involved in the pathogenesis of absence seizures and might represent a new interesting target for the therapeutic management of this disease. PMID:19723291

  7. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists.

    Robinson, Sarel J; Petzer, Jacobus P; Terre'Blanche, Gisella; Petzer, Anél; van der Walt, Mietha M; Bergh, Jacobus J; Lourens, Anna C U

    2015-11-01

    In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists. PMID:26462195

  8. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum

    Trifilieff, Pierre; Rives, Marie-Laure; Urizar, Eneko; Piskorowski, Rebecca A.; Vishwasrao, Harshad D.; Castrillon, John; Schmauss, Claudia; Slättman, Maria; Gullberg, Mats; Javitch, Jonathan A.

    2011-01-01

    The existence of G protein-coupled receptor (GPCR) dimers and/or oligomers has been demonstrated in heterologous systems using a variety of biochemical and biophysical assays. While these interactions are the subject of intense research because of their potential role in modulating signaling and altering pharmacology, evidence for the existence of receptor interactions in vivo is still elusive because of a lack of appropriate methods to detect them. Here, we adapted and optimized a proximity ...

  9. Modulation of bladder function by luminal adenosine turnover and A1 receptor activation

    Prakasam, H. Sandeep; Herrington, Heather; Roppolo, James R.; Jackson, Edwin K.; Apodaca, Gerard

    2012-01-01

    The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A1, A2A, A2B, and A3), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed ...

  10. Role of adenosine receptors in caffeine tolerance

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  11. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity

    Kubilay Oransay; Nil Hocaoglu; Mujgan Buyukdeligoz; Yesim Tuncok; Sule Kalkan

    2014-01-01

    Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist), 8-(-3-chlorostyryl)-caffeine (CSC; A 2a receptor antagonist), or dimethyl sulfoxide (DMSO) administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour...

  12. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dop...

  13. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  14. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  15. Increased orbitofrontal brain activation after administration of a selective adenosine A2A antagonist in cocaine dependent subjects

    F. Gerard eMoeller

    2012-05-01

    Full Text Available Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115 while performing a working memory task with 3 levels of difficulty (3, 5, and 7 digits. fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use.

  16. Adenosine receptors and stress : Studies using methylmercury, caffeine and hypoxia

    Björklund, Olga

    2008-01-01

    Brain development is a precisely organized process that can be disturbed by various stress factors present in the diet (e.g. exposure to xenobiotics) as well as insults such as decreased oxygen supply. The consequent adverse changes in nervous system function may not necessarily be apparent until a critical age when neurodevelopmental defects may be unmasked by a subsequent challenge. Adenosine and its receptors (AR) (A1, A2A, A2B and A3) which participate in the brain stres...

  17. Stimulation of adenosine receptors: approach to enhancement of hematopoiesis suppressed by chemoradiotherapy

    Elevated extracellular adenosine has been found to stimulate hematopoiesis in experimental mice exposed to radiotherapy (gamma-rays), chemotherapy (5-fluorouracil), or combined action of both these modalities (gamma-rays + carboplatin). These findings have been obtained after treatment of the animals with the combination of dipyridamole (DP), preventing the cellular uptake of adenosine, and adenosine monophosphate (AMP), acting as adenosine prodrug. Increased cycling of hematopoietic progenitor cells following the administration of DP + AMP has been shown to represent an important mechanism of acceleration of regeneration of suppressed hematopoiesis. In recent experiments, non-degradable synthetic adenosine receptor agonists, more or less specific for individual subtypes of adenosine receptors (A1, A2A, A2B, and A3 subtypes) have been studied. These studies have included 5'-(N-ethylcarboxamido)adenosine (NECA, rather non-selective agonist with relatively high affinity to A2B receptor subtype), N6-cyclopentyladenosine (CPA, agonist specific for A1 receptor subtype), 2-p-(carboxyethyl)phene thylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680, agonist specific for A2A receptor subtype), and 1-deoxy-1-([((3- iodophenyl)methyl)-amino]-9H-purin-9-yl)-N-methyl-beta-D-ribofuranoamide (IB-MECA, agonist specific for A3 receptor subtype). Results from these studies have stressed the potential significance of stimulation of various adenosine receptor subtypes for modulation of functional status of hematopoietic progenitor cells. These findings may find important practical implications in the treatment of side effects of chemoradiotherapy

  18. Adenosine and its receptors as therapeutic targets: An overview

    Sachdeva, Sakshi; Gupta, Monika

    2012-01-01

    The main goal of the authors is to present an overview of adenosine and its receptors, which are G-protein coupled receptors. The four known adenosine receptor subtypes are discussed along with the therapeutic potential indicating that these receptors can serve as targets for various dreadful diseases.

  19. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission

    Goadsby, P J; Hoskin, K L; Storer, R J;

    2002-01-01

    There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg/kg, intraperit......There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg...

  20. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  1. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors.

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S; Scislo, Tadeusz J

    2014-09-15

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as the exogenous agonists do. Our previous study showed that adenosine is released into the NTS during severe hemorrhage and contributes to reciprocal changes of renal (decreases) and adrenal (increases) sympathetic nerve activity observed in this setting. Both A1 and A2a adenosine receptors are involved. Therefore, we tested the hypothesis that, during severe hemorrhage, CCR control of the two sympathetic outputs is attenuated by adenosine naturally released into the NTS. We compared renal and adrenal sympathoinhibitory responses evoked by right atrial injections of 5HT3 receptor agonist phenylbiguanide (2-8 μg/kg) under control conditions, during hemorrhage, and during hemorrhage preceded by blockade of NTS adenosine receptors with bilateral microinjections of 8-(p-sulfophenyl) theophylline (1 nmol/100 nl) in urethane/chloralose anesthetized rats. CCR-mediated inhibition of renal and adrenal sympathetic activity was significantly attenuated during severe hemorrhage despite reciprocal changes in the baseline activity levels, and this attenuation was removed by bilateral blockade of adenosine receptors in the caudal NTS. This confirmed that adenosine endogenously released into the NTS has a similar modulatory effect on integration of cardiovascular reflexes as stimulation of NTS adenosine receptors with exogenous agonists. PMID:25063794

  2. Severe hemorrhage attenuates cardiopulmonary chemoreflex control of regional sympathetic outputs via NTS adenosine receptors

    Minic, Zeljka; Li, Cailian; O'Leary, Donal S.; Scislo, Tadeusz J.

    2014-01-01

    Selective stimulation of inhibitory A1 and facilitatory A2a adenosine receptor subtypes located in the nucleus of the solitary tract (NTS) powerfully inhibits cardiopulmonary chemoreflex (CCR) control of regional sympathetic outputs via different mechanisms: direct inhibition of glutamate release and facilitation of an inhibitory neurotransmitter release, respectively. However, it remains unknown whether adenosine naturally released into the NTS has similar inhibitory effects on the CCR as th...

  3. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines.

    Hajiahmadi, S; Panjehpour, M; Aghaei, M; Mousavi, S

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  4. Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines

    Hajiahmadi, S.; Panjehpour, M.; Aghaei, M.; Mousavi, S.

    2015-01-01

    Adenosine receptors (A1, A2a, A2b and A3) have several physiological and pathological roles in cancer cell lines. The present study was carried out to evaluate the mRNA and protein expression profile and functional role of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 ovarian cancer cell lines. The levels of mRNA and protein expression of A1, A2a, A2b and A3 adenosine receptors in the ovarian cancer cell lines were measured by Real-time PCR and western blotting. The functional roles of adenosine receptors were investigated through measurement of cAMP levels after agonist treatment. The mRNA and protein of all adenosine receptors subtypes were expressed in the ovarian cancer cell lines. Our findings demonstrated that A2b and A3 had the most mRNA and protein expression. Moreover, cAMP assay confirmed the functional role of A2b and A3 adenosine receptors. This findings demonstrated that A2b and A3 subtypes are most important adenosine receptors in humn ovarian cancer cell lines. This information provide a strong possibility into the relationship of A2b and A3 adenosine receptor and ovarian cancer. PMID:26430456

  5. Distribution of adenosine receptors in human sclera fibroblasts

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin; Ge, Jian

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines...

  6. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  7. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  8. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  9. Pharmacophore Distance Mapping and Docking Study of Some Benzimidazole Analogs as A2A Receptor Antagonists

    Santosh P. Ghatol

    2010-01-01

    Full Text Available Extracellular adenosine regulates a wide range of functions in higher organisms, in which the effects are mediated by a family of four class A (rhodopsin-like GPCRs, a, adenosine receptors known as A1, A2A, A2B, and A3. A2A antagonists, either alone or in combination with dopamine agonists, can have a role in the treatment of neurodegenerative movement disorders such as Parkinson’s disease and Huntington’s disease. The concept of a pharmacophore is widely used in modern drug design and it is generally defined as the 3D arrangement of certain features in the ligand that are responsible for its activity against a particular protein target. Docking involves, the process of fitting the ligand into receptor, and the compounds which fit in them properly are assumed to be active for that receptor and it gives corresponding docking scores.

  10. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  11. The efficacy of oral adenosine A(2A) antagonist istradefylline for the treatment of moderate to severe Parkinson's disease.

    Vorovenci, Ruxandra Julia; Antonini, Angelo

    2015-01-01

    The moderate and severe stages of Parkinson's disease (PD) are marked by motor and non-motor complications that still remain difficult to control with the currently available therapy. Adenosine A(2A) receptor antagonists target non-dopaminergic systems, and have emerged as promising add-on therapy in the management of PD, a little more than a decade ago. While the development of this new drug class was slower than initially expected, istradefylline was recently registered in Japan, because it provides reduction of the off-time, when given in association with levodopa. Effects on some non-motor features have also been suggested, and preliminary studies further suggest a potential neuroprotective effect. Associations of A(2A) receptor antagonists with dopaminergic agents, as well as enzyme blockers like catechol-O-methyltransferase (COMT) and monoamine oxidase-B (MAO-B) inhibitors, should provide even greater benefit in advanced PD patients, and, thus, a more individualized treatment approach would be at hand. PMID:26630457

  12. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko G, Pacher...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Hasko G, Pacher

  13. Brain stem adenosine receptors modulate centrally mediated hypotensive responses in conscious rats: A review

    Noha N. Nassar

    2015-05-01

    Full Text Available Adenosine is implicated in the modulation of cardiovascular responses either at the peripheral or at central level in experimental animals. However, there are no dedicated reviews on the involvement of adenosine in mediating the hypotensive response of centrally administered clonidine in general and specifically in aortically barodenervated rats (ABD. The conscious ABD rat model exhibits surgically induced baroreflex dysfunction and exaggerated hypotensive response, compared with conscious sham-operated (SO rats. The current review focuses on, the role of adenosine receptors in blood pressure (BP regulation and their possible crosstalk with other receptors e.g. imidazoline (I1 and alpha (α2A adrenergic receptor (AR. The former receptor is a molecular target for clonidine, whose hypotensive effect is enhanced approx. 3-fold in conscious ABD rats. We also discussed how the balance between the brain stem adenosine A1 and A2A receptors is regulated by baroreceptors and how such balance influences the centrally mediated hypotensive responses. The use of the ABD rat model yielded insight into the downstream signaling cascades following clonidine-evoked hypotension in a surgical model of baroreflex dysfunction.

  14. Adenosine receptors and asthma in humans

    Wilson, C N

    2008-01-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine...

  15. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  16. The Effects of Nucleus Accumbens μ-opioid and Adenosine 2A Receptor Stimulation and Blockade on Instrumental Learning

    Clissold, Kara A.; Pratt, Wayne E.

    2014-01-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained ...

  17. Anxiolytic activity of adenosine receptor activation in mice.

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P; Stone, T W

    1995-10-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  18. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor.

    Johansson, B; Halldner, L; Dunwiddie, T V; Masino, S A; Poelchen, W; Giménez-Llort, L; Escorihuela, R M; Fernández-Teruel, A; Wiesenfeld-Hallin, Z; Xu, X J; Hårdemark, A; Betsholtz, C; Herlenius, E; Fredholm, B B

    2001-07-31

    Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A(1)R(+/+) mice, but A(1)R(-/-) mice showed signs of increased anxiety. Electrophysiological recordings from hippocampal slices revealed that both adenosine-mediated inhibition and theophylline-mediated augmentation of excitatory glutamatergic neurotransmission were abolished in A(1)R(-/-) mice. In A(1)R(+/-) mice the potency of adenosine was halved, as was the number of A(1)R. In A(1)R(-/-) mice, the analgesic effect of intrathecal adenosine was lost, and thermal hyperalgesia was observed, but the analgesic effect of morphine was intact. The decrease in neuronal activity upon hypoxia was reduced both in hippocampal slices and in brainstem, and functional recovery after hypoxia was attenuated. Thus A(1)Rs do not play an essential role during development, and although they significantly influence synaptic activity, they play a nonessential role in normal physiology. However, under pathophysiological conditions, including noxious stimulation and oxygen deficiency, they are important. PMID:11470917

  19. Adenosine receptor modulation of seizure susceptibility in rats

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A1 adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of 3H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A1 adenosine receptors in the cerebral cortex

  20. Effect of adenosine A2A receptor on stress response of pituitary-adrenal axis in acute phase of craniocerebral trauma in mice%小鼠颅脑创伤急性期腺苷A2A受体对垂体-肾上腺轴应激反应的影响

    杨楠; 宁亚蕾; 陈惺; 张岫竹; 代维; 赵艳; 周元国

    2013-01-01

    Objective To investigate the effect of adenosine A2A receptor on pituitary-adrenal axis response in acute phase of moderate craniocerebral trauma.Methods Eighteen adenosine A2A receptor knock-out mice in a C57BL/6 background and another eighteen their wild-type littermates were divided into normal control group and craniocerebral trauma for 4 hours group,and craniocerebral trauma for 24 hours group according to random number table,with siμ mice per group.Plasma levels of adrenocorticotropic-hormone (ACTH) and corticosterone at hours 4 and 24 postinjury were determined using ELISA method.Results At 4 and 24 hours,brain water content in wild-type mice [(80.950 ± 0.184) %,(82.178 ± 0.255)% respectively] was higher than that in gene knock-out mice [(80.006 ± 0.199)%,(81.091 ± 0.295)% respectively,P < 0.01].Besides,brain water content in both wild-type and gene knock-out mice increased after injury (P < 0.01).Plasma levels of ACTH and corticosterone were higher in geneknock-out sham mice than in wild-type sham mice [(120.214 ± 2.472) ng/L vs (91.767 ±7.395) ng/L,(27.814 ±0.888) μg/L vs (11.430 ±0.644) μg/L respectively,P <0.0l].At 4 and 24 hours,plasma levels of ACTH [(174.776-± 5.040) ng/L,(189.613 ± 4.802) ng/L respectively] in geneknock-out mice showed a higher increase than those in wild-type mice [(119.594 ± 6.945) ng/L,(124.93-± 11.001 7) ng/L respectively,P < 0.05].Moreover,plasma levels of corticosterone [(40.138 ±-0.805) μg/L] at 4 hours and [(37.440-0.485)μg/L] at 24 hours in gene knock-out mice showed a same result as compared with that in wild-type mice [(19.702 ± 0.804) μg/L,(17.602 ± 0.743) μg/L respectively,P < 0.05].Conclusions Knock-out of adenosine A2A receptor increases the release of ACTH and corticosterone in acute stage of moderate craniocerebral trauma and promotes pituitary-adrenal stress response.This may provide a novel explanation for the neuroprotective effect of A2A receptor deficiency.%目的

  1. Combined Contribution of Endothelial Relaxing Autacoides in the Rat Femoral Artery Response to CPCA: An Adenosine A2 Receptor Agonist

    Miroslav Radenković; Marko Stojanović; Radmila Janković; Mirko Topalović; Milica Stojiljković

    2012-01-01

    We examined the contribution of endothelial relaxing factors and potassium channels in actions of CPCA, potent adenosine A2 receptor agonist, on isolated intact male rat femoral artery (FA). CPCA produced concentration-dependent relaxation of FA, which was notably, but not completely, reduced after endothelial denudation. DPCPX, A1 receptor antagonist, had no significant effect, while SCH 58261 (A2A receptor antagonist) notably reduced CPCA-evoked effect. Pharmacological inhibition of nitric ...

  2. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor

    Johansson, Björn; Halldner, Linda; Dunwiddie, Thomas V.; Masino, Susan A.; Poelchen, Wolfgang; Giménez-Llort, Lydia; Escorihuela, Rosa M.; Fernández-Teruel, Alberto; Wiesenfeld-Hallin, Zsuzsanna; Xu, Xiao-Jun; Hårdemark, Anna; Betsholtz, Christer; Herlenius, Eric; Fredholm, Bertil B

    2001-01-01

    Caffeine is believed to act by blocking adenosine A1 and A2A receptors (A1R, A2AR), indicating that some A1 receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A1R (A1R−/−). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A1R+/+ mice, but A1R−/− mice showed signs of increased anxiety. Electrophysiological recordings from hi...

  3. Anxiolytic activity of adenosine receptor activation in mice.

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P.; Stone, T W

    1995-01-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked ...

  4. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    Hayashi, M.; Inagaki, A.; Novak, Ivana;

    2016-01-01

    by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased Isc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B...... cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion....

  5. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats

    Víctor Fernández-Dueñas

    2015-01-01

    Full Text Available Parkinson’s disease (PD is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R with adenosine A2A receptor (A2AR (forming D2R-A2AR oligomers – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a long-standing question concerning whether D2R-A2AR assembly occurs in native tissue: by means of different complementary experimental approaches (i.e. immunoelectron microscopy, proximity ligation assay and TR-FRET, we unambiguously identified native D2R-A2AR oligomers in rat striatum. Subsequently, we determined that, under pathological conditions (i.e. in a rat PD model, D2R-A2AR interaction was impaired. Collectively, these results provide definitive evidence for alteration of native D2R-A2AR oligomers in experimental parkinsonism, thus conferring the rationale for appropriate oligomer-based PD treatments.

  6. Adenosine A1 Receptor Antagonist Versus Montelukast on Airway Reactivity and Inflammation

    Nadeem, Ahmed; Obiefuna, Peter C.M.; Wilson, Constance N.; Mustafa, S. Jamal

    2006-01-01

    Adenosine produces bronchoconstriction in allergic rabbits, primates, and humans by activating adenosine A1 receptors. Previously, it is reported that a high dose of L-97-1, a water-soluble, small molecule adenosine A1 receptor antagonist, blocks early and late allergic responses, and bronchial hyper-responsiveness to histamine in a hyper-responsive rabbit model of allergic asthma. Effects of a lower dose of L-97-1 are compared to montelukast, a cysteinyl leukotriene-1 receptor antagonist on ...

  7. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders.

    Hodgson, Robert A; Bedard, Paul J; Varty, Geoffrey B; Kazdoba, Tatiana M; Di Paolo, Therese; Grzelak, Michael E; Pond, Annamarie J; Hadjtahar, Abdallah; Belanger, Nancy; Gregoire, Laurent; Dare, Aurelie; Neustadt, Bernard R; Stamford, Andrew W; Hunter, John C

    2010-10-01

    Parkinson's Disease (PD) and Extrapyramidal Syndrome (EPS) are movement disorders that result from degeneration of the dopaminergic input to the striatum and chronic inhibition of striatal dopamine D(2) receptors by antipsychotics, respectively. Adenosine A(2A) receptors are selectively localized in the basal ganglia, primarily in the striatopallidal ("indirect") pathway, where they appear to operate in concert with D(2) receptors and have been suggested to drive striatopallidal output balance. In cases of dopaminergic hypofunction, A(2A) receptor activation contributes to the overdrive of the indirect pathway. A(2A) receptor antagonists, therefore, have the potential to restore this inhibitor imbalance. Consequently, A(2A) receptor antagonists have therapeutic potential in diseases of dopaminergic hypofunction such as PD and EPS. Targeting the A(2A) receptor may also be a way to avoid the issues associated with direct dopamine agonists. Recently, preladenant was identified as a potent and highly selective A(2A) receptor antagonist, and has produced a significant improvement in motor function in rodent models of PD. Here we investigate the effects of preladenant in two primate movement disorder models. In MPTP-treated cynomolgus monkeys, preladenant (1 or 3 mg/kg; PO) improved motor ability and did not evoke any dopaminergic-mediated dyskinetic or motor complications. In Cebus apella monkeys with a history of chronic haloperidol treatment, preladenant (0.3-3.0 mg/kg; PO) delayed the onset of EPS symptoms evoked by an acute haloperidol challenge. Collectively, these data support the use of preladenant for the treatment of PD and antipsychotic-induced movement disorders. PMID:20655910

  8. Recent developments in A2B adenosine receptor ligands.

    Kalla, Rao V; Zablocki, Jeff; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni

    2009-01-01

    A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1

  9. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning.

    Clissold, Kara A; Pratt, Wayne E

    2014-11-01

    Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained to lever press following daily intra-accumbens injections of the A2A receptor agonist CGS 21680 (at 0.0, 6.0, or 24.0ng/side), the A2A antagonist pro-drug MSX-3 (at 0.0, 1.0, or 3.0μg/side), the μ-opioid agonist DAMGO (at 0.0, 0.025, or 0.025μg/side), or the opioid receptor antagonist naltrexone (at 0.0, 2.0 or 20.0μg/side). After five days, rats continued training without drug injections until lever pressing rates stabilized, and were then tested with a final drug test to assess potential performance effects. Stimulation, but not inhibition, of NAcc adenosine A2A receptors depressed lever pressing during learning and performance tests, but did not impact lever pressing on non-drug days. Both μ-opioid receptor stimulation and blockade inhibited learning of the lever-press response, though only naltrexone treatment caused impairments in lever-pressing after the task had been learned. The effect of A2A receptor stimulation on learning and performance were consistent with known effects of adenosine on effort-related processes, whereas the pattern of lever presses, magazine approaches, and pellet consumption following opioid receptor manipulations suggested that their effects may have been driven by drug-induced shifts in the incentive value of the sugar reinforcer. PMID:25101542

  10. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    could be involved in secretory processes, which involve cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels or Ca(2+)-activated Cl(-) channels and [Formula: see text] transporters. Reverse transcriptase polymerase chain reaction analysis on rat pancreatic ducts and human duct cell...... pancreatic ducts, plasma membrane of many PANC-1 cells, but only a few CFPAC-1 cells. Taken together, our data indicate that A(2A) receptors open Cl(-) channels in pancreatic ducts cells with functional CFTR. We propose that adenosine can stimulate pancreatic secretion and, thereby, is an active player in...

  11. Distribution of adenosine receptors in human sclera fibroblasts

    Cui, Dongmei; Trier, Klaus; Chen, Xiang; Zeng, Junwen; Yang, Xiao; Hu, Jianmin

    2008-01-01

    Purpose Systemic treatment with adenosine receptor antagonists has been reported to affect the biochemistry and ultrastructure of rabbit sclera. This study was conducted to determine whether adenosine receptors (ADORs) are present in human scleral fibroblasts (HSF). Methods Primary HSF were cultured in vitro and identified with anti-vimentin, anti-keratin, anti-desmin, and anti-S-100 antibodies. Confocal fluorescence microscopy was used to study the distribution of ADORs in the HSF cell lines and in the frozen human scleral sections. ADOR protein expression in HSF and human sclera was confirmed by western blot analysis of cell lysates. Results ADORs were expressed in both HSF and human sclera. This was confirmed by western blot. ADORA1 expression was concentrated in the nucleus. ADORA2A was concentrated mainly in one side of the cytoplasm, and ADORA2B was found both in the nucleus and the cytoplasm. ADORA3 was expressed weakly in the cytoplasm. Conclusions All four subtypes of ADOR were found in HSF and may play a role in scleral remodeling. PMID:18385786

  12. Lack of adenosine A(3) receptors causes defects in mouse peripheral blood parameters

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 10, č. 3 (2014), s. 509-514. ISSN 1573-9538 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor * Adenosine A(3) receptor knockout mice * Hematopoiesis Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  13. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  14. The Role of The A2A Receptor in Cell Apoptosis Caused by MDMA

    Mansooreh Soleimani

    2012-01-01

    Full Text Available Objective: Ecstasy, also known as 3, 4-methylenedioxymethamphetamine (MDMA, is a psychoactive recreational hallucinogenic substance and a major worldwide recreational drug. There are neurotoxic effects observed in laboratory animals and humans following MDMA use. MDMA causes apoptosis in neurons of the central nervous system (CNS. Withdrawal signs are attenuated by treatment with the adenosine receptor (A2A receptor. This study reports the effects of glutamyl cysteine synthetase (GCS, as an A2A receptor agonist, and succinylcholine (SCH, as an A2A receptor antagonist, on Sprague Dawley rats, both in the presence and absence of MDMA.Materials and Methods: In this experimental study, we used seven groups of Sprague Dawley rats (200-250 g each. Each group was treated with daily intraperitoneal (IP injections for a period of one week, as follows: i. MDMA (10 mg/kg; ii. GCS (0.3 mg/kg; iii. SCH (0.3 mg/kg; iv. GCS + SCH (0.3 mg/kg each; v. MDMA (10 mg/kg + GCS (0.3 mg/kg; vi. MDMA (10 mg/kg + SCH (0.3 mg/kg; and vi. normal saline (1 cc/kg as the sham group. Bax (apoptotic protein and Bcl-2 (anti-apoptotic protein expressions were evaluated by striatum using RT-PCR and Western blot analysis.Results: There was a significant increase in Bax protein expression in the MDMA+SCH group and a significant decrease in Bcl-2 protein expression in the MDMA+SCH group (p<0.05.Conclusion: A2A receptors have a role in the apoptotic effects of MDMA via the Bax and Bcl-2 pathways. An agonist of this receptor (GCS decreases the cytotoxcity of MDMA, while the antagonist of this receptor (SCH increases its cytotoxcity.

  15. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  16. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  17. Graft versus host disease: New insights into A2A receptor agonist therapy

    Karlie R. Jones

    2015-01-01

    Full Text Available Allogeneic transplantation can cure many disorders, including sickle cell disease, chronic granulomatous disease (CGD, severe combined immunodeficiency (SCID and many types of cancers. However, there are several associated risks that can result in severe immunological reactions and, in some cases, death. Much of this morbidity is related to graft versus host disease (GVHD [1]. GVHD is an immune mediated reaction in which donor T cells recognize the host as antigenically foreign, causing donor T cells to expand and attack host tissues. The current method of treating recent transplant patients with immunosuppressants to prevent this reaction has met with only partial success, emphasizing a need for new methods of GVHD treatment and prevention. Recently, a novel strategy has emerged targeting adenosine A2A receptors (A2AR through the use of adenosine agonists. These agonists have been shown in vitro to increase the TGFβ-induced generation of FoxP3+ regulatory T cells (Tregs and in vivo to improve weight gain and mortality as well as inhibit the release of pro-inflammatory cytokines in GVHD murine models [2,3]. Positive results involving A2AR agonists in vitro and in vivo are promising, suggesting that A2AR agonists should be a part of the management of clinical GvHD.

  18. Adenosine-induced activation of esophageal nociceptors.

    Ru, F; Surdenikova, L; Brozmanova, M; Kollarik, M

    2011-03-01

    Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes

  19. The role of muscarinic receptors in the beneficial effects of adenosine against myocardial reperfusion injury in rats.

    Lei Sun

    Full Text Available Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2 muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1 adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX and the nitric oxide synthase inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME. These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine

  20. Distinct Roles for the A2B Adenosine Receptor in Acute and Chronic Stages of Bleomycin-Induced Lung Injury

    Yang ZHOU; Schneider, Daniel J.; Morschl, Eva; Song, Ling; Pedroza, Mesias; Karmouty-Quintana, Harry; Le, Thuy.; Sun, Chun-Xiao; Blackburn, Michael R.

    2010-01-01

    Adenosine is an extracellular signaling molecule that is generated in response to cell injury where it orchestrates tissue protection and repair. Whereas adenosine is best known for promoting anti-inflammatory activities during acute injury responses, prolonged elevations can enhance destructive tissue remodeling processes associated with chronic disease states. The generation of adenosine and the subsequent activation of the adenosine 2B receptor (A2BR) is an important processes in the regul...

  1. Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery.

    Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-03-01

    Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction. PMID:26718241

  2. Local adenosine receptor blockade accentuates the sympathetic responses to fatiguing exercise

    Cui, Jian; Leuenberger, Urs A.; Blaha, Cheryl; Yoder, Jonathan; Gao, Zhaohui; Sinoway, Lawrence I.

    2010-01-01

    The role adenosine plays in evoking the exercise pressor reflex in humans remains controversial. We hypothesized that localized forearm adenosine receptor blockade would attenuate muscle sympathetic nerve activity (MSNA) responses to fatiguing handgrip exercise in humans. Blood pressure (Finometer), heart rate, and MSNA from the peroneal nerve were assessed in 11 healthy young volunteers during fatiguing isometric handgrip, postexercise circulatory occlusion (PECO), and passive muscle stretch...

  3. Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species

    Gérard Jean-Louis

    2010-07-01

    Full Text Available Abstract Background Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. Methods We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz. After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyltheophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation between the groups by a variance analysis and post hoc test. Results Desflurane 6% (84 ± 6% of baseline enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P N-mercaptopropionylglycine (54 ± 3% of baseline, 8-(p-Sulfophenyltheophylline (62 ± 9% of baseline, HOE140 (58 ± 6% of baseline abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline and bradykinin (83 ± 4% of baseline induced postconditioning (P vs control, N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively. Conclusions In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B2 receptors. And, the cardioprotective effect of adenosine and bradykinin

  4. Pharmacological Characterization of Novel A3 Adenosine Receptor-selective Antagonists

    Jacobson, Kenneth A.; Park, Kyung-Sun; JIANG, JI-LONG; KIM, YONG-CHUL; Olah, Mark E.; Stiles, Gary L.; Ji, Xiao-duo

    1997-01-01

    The effects of putative A3 adenosine receptor antagonists of three diverse chemical classes (the flavonoid MRS 1067, the 6-phenyl-1,4-dihydropyridines MRS 1097 and MRS 1191, and the triazoloquinazo-line MRS 1220) were characterized in receptor binding and functional assays. MRS1067, MRS 1191 and MRS 1220 were found to be competitive in saturation binding studies using the agonist radioligand [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide) at cloned human brain A3 recep...

  5. Modulation of A2a receptor antagonist on D2 receptor internalization and ERK phosphorylation

    Huang, Li; Wu, Dong-Dong; Zhang, Lei; Feng, Lin-yin

    2013-01-01

    Aim: To explore the effects of heterodimerization of D2 receptor/A2a receptor (D2R/A2aR) on D2R internalization and D2R downstream signaling in primary cultured striatal neurons and HEK293 cells co-expressing A2aR and D2R in vitro. Methods: Primary cultured rat striatal neurons and HEK293 cells co-expressing A2aR and D2R were treated with A2aR- or D2R-specific agonists. D2R internalization was detected using a biotinylation assay and confocal microscopy. ERK, Src kinase and β-arrestin were me...

  6. Adenosine Receptor Stimulation by Polydeoxyribonucleotide Improves Tissue Repair and Symptomology in Experimental Colitis.

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Squadrito, Francesco; Squadrito, Giovanni; Pallio, Socrate; Anastasi, Giuseppe P; Cutroneo, Giuseppina; Macrì, Antonio; Altavilla, Domenica

    2016-01-01

    Activation of the adenosine receptor pathway has been demonstrated to be effective in improving tissue remodeling and blunting the inflammatory response. Active colitis is characterized by an intense inflammatory reaction resulting in extensive tissue damage. Symptomatic improvement requires both control of the inflammatory process and repair and remodeling of damaged tissues. We investigated the ability of an A2A receptor agonist, polydeoxyribonucleotide (PDRN), to restore tissue structural integrity in two experimental colitis models using male Sprague-Dawley rats. In the first model, colitis was induced with a single intra-colonic instillation of dinitrobenzenesulfonic acid (DNBS), 25 mg diluted in 0.8 ml 50% ethanol. After 6 h, animals were randomized to receive either PDRN (8 mg/kg/i.p.), or PDRN + the A2A antagonist [3,7-dimethyl-1-propargylxanthine (DMPX); 10 mg/kg/i.p.], or vehicle (0.8 ml saline solution) daily. In the second model, dextran sulfate sodium (DSS) was dissolved in drinking water at a concentration of 8%. Control animals received standard drinking water. After 24 h animals were randomized to receive PDRN or PDRN+DMPX as described above. Rats were sacrificed 7 days after receiving DNBS or 5 days after DSS. In both experimental models of colitis, PDRN ameliorated the clinical symptoms and weight loss associated with disease as well as promoted the histological repair of damaged tissues. Moreover, PDRN reduced expression of inflammatory cytokines, myeloperoxidase activity, and malondialdehyde. All these effects were abolished by the concomitant administration of the A2A antagonist DMPX. Our study suggests that PDRN may represent a promising treatment for improving tissue repair during inflammatory bowel diseases. PMID:27601997

  7. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  8. Differential Expression of Adenosine P1 Receptor ADORA1 and ADORA2A Associated with Glioma Development and Tumor-Associated Epilepsy.

    Huang, Jun; Chen, Ming-Na; Du, Juan; Liu, Hao; He, Yu-Jiao; Li, Guo-Liang; Li, Shu-Yu; Liu, Wei-Ping; Long, Xiao-Yan

    2016-07-01

    Level of adenosine, an endogenous astrocyte-based neuromodulator, is primarily regulated by adenosine P1 receptors. This study assessed expression of adenosine P1 receptors, ADORA1 (adenosine A1 receptor) and ADORA2A (adenosine A2a receptor) and their association with glioma development and epilepsy in glioma patients. Expression of ADORA1/ADORA2A was assessed immunohistochemically in 65 surgically removed glioma tissue and 21 peri-tumor tissues and 8 cases of normal brain tissues obtained from hematoma patients with cerebral trauma. Immunofluorescence, Western blot, and qRT-PCR were also used to verify immunohistochemical data. Adenosine P1 receptor ADORA1 and ADORA2A proteins were localized in the cell membrane and cytoplasm and ADORA1/ADORA2A immunoreactivity was significantly stronger in glioma and peri-tumor tissues that contained infiltrating tumor cells than in normal brain tissues (p < 0.05). The World Health Organization (WHO) grade III gliomas expressed even higher level of ADORA1 and ADORA2A. Western blot and qRT-PCR confirmed immunohistochemical data. Moreover, higher levels of ADORA1 and ADORA2A expression occurred in high-grade gliomas, in which incidence of epilepsy were lower (p < 0.05). In contrast, a lower level of ADORA1/ADORA2A expression was found in peri-tumor tissues with tumor cell presence from patients with epilepsy compared to patients without epilepsy (p < 0.05). The data from the current study indicates that dysregulation in ADORA1/ADORA2A expression was associated with glioma development, whereas low level of ADORA1/ADORA2A expression could increase susceptibility of tumor-associated epilepsy. PMID:27038930

  9. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-[3H]adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system

  10. Hematopoiesis in 5-Fluorouracil-Treated Adenosine A(3) Receptor Knock-Out Mice

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 64, č. 2 (2015), s. 255-262. ISSN 0862-8408 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor knock-out mice * Hematopoiesis * 5-fluorouracil-induced hematotoxicity Subject RIV: BO - Biophysics Impact factor: 1.293, year: 2014

  11. Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats

    Zhao, Xin; Sun, X Y; Erlinge, D;

    2000-01-01

    degradation product adenosine, experiments were performed in a rat model of ischaemic CHF. In this model, ischaemia was induced in rats by ligation of the left coronary artery. Our results demonstrate that there is a selective downregulation of P2X receptor-mediated pressor effects, while the hypotensive...

  12. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.

    Ledent, C; Dumont, J E; Vassart, G.; Parmentier, M

    1992-01-01

    Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo ...

  13. Wound Healing Is Accelerated by Agonists of Adenosine A2 (Gα s-linked) Receptors

    Montesinos, M. Carmen; Gadangi, Pratap; Longaker, Michael; Sung, Joanne; Levine, Jamie; Nilsen, Diana; Reibman, Joan; Min LI; Jiang, Chuan-Kui; Hirschhorn, Rochelle; Recht, Phoebe A.; Ostad, Edward; Levin, Richard I.; Cronstein, Bruce N.

    1997-01-01

    The complete healing of wounds is the final step in a highly regulated response to injury. Although many of the molecular mediators and cellular events of healing are known, their manipulation for the enhancement and acceleration of wound closure has not proven practical as yet. We and others have established that adenosine is a potent regulator of the inflammatory response, which is a component of wound healing. We now report that ligation of the Gαs-linked adenosine receptors on the cells o...

  14. Adenosine A1 Receptor Mediates Delayed Cardioprotective Effect of Sildenafil in Mouse

    Salloum, Fadi N.; Das, Anindita; Thomas, Christopher S; Yin, Chang; Kukreja, Rakesh C.

    2007-01-01

    Sildenafil induces powerful cardioprotection against ischemia/reperfusion (I/R) injury. Since adenosine is known to be major trigger of ischemic preconditioning, we hypothesized that A1 adenosine receptor (A1AR) activation plays a role in sildenafil-induced cardioprotective signaling. Adult male C57BL-wild type (WT) mice or their corresponding A1AR knockout (A1AR-KO) mice were treated intraperitoneally (i.p.) with either sildenafil (0.71 mg/kg, equivalent to 50 mg dose for a 70 kg patient) or...

  15. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  16. Rescuing the Corticostriatal Synaptic Disconnection in the R6/2 Mouse Model of Huntington’s Disease: Exercise, Adenosine Receptors and Ampakines

    Cepeda, C.; Cummings, D. M.; Hickey, M. A.; Kleiman-Weiner, M.; Chen, J. Y.; Watson, J B; Levine, M.S.

    2010-01-01

    In the R6/2 mouse model of Huntington's disease (HD) we examined the effects of a number of behavioral and pharmacological manipulations aimed at rescuing the progressive loss of synaptic communication between cerebral cortex and striatum. Two cohorts of transgenic mice with ~110 and 210 CAG repeats were utilized. Exercise prevented the reduction in striatal medium-sized spiny neuron membrane capacitance but did not reestablish synaptic communication. Activation of adenosine A2A type receptor...

  17. Adenosine A1 receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A1 and A2A adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A1 receptor (A1AR) in the modulation of vigilance states. The A1AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A1AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A2A adenosine receptor (A2AAR) is also assumed. The distinct functions of the A1 and A2A receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A1 receptor antagonist, 8-cyclopentyl-3-(3-18Ffluoropropyl)- 1-propylxanthine (18F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A1AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A1 receptors in human sleep regulation, combining 18F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A1AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered 18F-CPFPX binding. Moreover, it was investigated whether radioligand uptake might be influenced by caffeine, since caffeine is known to bind to

  18. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus

    de Mendonça, Alexandre; Ribeiro, J. A.

    1997-01-01

    Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of ...

  19. Activation of adenosine receptors and inhibition of cyclooxygenases: two recent pharmacological approaches to modulation of radiation suppressed hematopoiesis

    Searching for drugs conforming to requirements for protection and/or treatment of radiation-induced damage belongs to the most important tasks of current radiobiology. In the Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic, two original approaches for stimulation of radiation-suppressed hematopoiesis have been tested in recent years, namely activation of adenosine receptors and inhibition of cyclooxygenases. Non-selective activation of adenosine receptors, induced by combined administration of dipyridamole, a drug preventing adenosine uptake and supporting thus its extracellular receptor-mediated action, and adenosine monophosphate, an adenosine prodrug, has been found to stimulate hematopoiesis when the drugs were given either pre- or post-irradiation. When synthetic adenosine receptor agonists selective for individual adenosine receptor subtypes were tested, stimulatory effects in myelosuppressed mice have been found after administration of IB-MECA, a selective adenosine A3 receptor agonist. Non-selective cyclooxygenase inhibitors, inhibiting both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), indomethacin, diclofenac, or flurbiprofen, have been observed to act positively on radiation-perturbed hematopoiesis in sublethally irradiated mice. However, their undesirable gastrointestinal side effects have been found to negatively influence survival of lethally irradiated animals. Recently tested selective COX-2 inhibitor meloxicam, preserving protective action of COX-1-synthesized prostaglandins in the gastrointestinal tissues, has been observed to retain the hematopoiesis-stimulating effects of non-selective cyclooxygenase inhibitors and to improve the survival of animals exposed to lethal radiation doses. These findings bear evidence for the possibility to use selective adenosine A3 receptor agonists and selective COX-2 inhibitors in human practice for treatment of

  20. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.

    Ledent, C; Dumont, J E; Vassart, G; Parmentier, M

    1992-02-01

    Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo and to investigate the possible consequences of permanent adenylyl cyclase activation in thyroid cells, lines of transgenic mice were generated expressing the canine A2 adenosine receptor under control of the bovine thyroglobulin gene promoter. Thyroid-specific expression of the A2 adenosine receptor transgene promoted gland hyperplasia and severe hyperthyroidism causing premature death of the animals. The resulting goitre represents a model of hyperfunctioning adenomas: it demonstrates that constitutive activation of the cAMP cascade in such differentiated epithelial cells is sufficient to stimulate autonomous and uncontrolled function and growth. PMID:1371462

  1. Adenosine: An immune modulator of inflammatory bowel diseases

    Jeff Huaqing Ye; Vazhaikkurichi M Rajendran

    2009-01-01

    Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.

  2. Adenosine regulation of alveolar fluid clearance

    Factor, Phillip; Mutlu, Göskhan M.; Chen, Lan; Mohameed, Jameel; Akhmedov, Alexander T.; Meng, Fan Jing; Jilling, Tamas; Lewis, Erin Rachel; Johnson, Meshell D.; Xu, Anna; Kass, Daniel; Martino, Janice M.; Bellmeyer, Amy; Albazi, John S.; Emala, Charles

    2007-01-01

    Adenosine is a purine nucleoside that regulates cell function through G protein-coupled receptors that activate or inhibit adenylyl cyclase. Based on the understanding that cAMP regulates alveolar epithelial active Na+ transport, we hypothesized that adenosine and its receptors have the potential to regulate alveolar ion transport and airspace fluid content. Herein, we report that type 1 (A1R), 2a (A2aR), 2b (A2bR), and 3 (A3R) adenosine receptors are present in rat and mouse lungs and alveol...

  3. Role of adenosine receptor agonists in pharmacological modulation of myelosuppression induced by ionizing radiation

    Hofer, Michal; Pospíšil, Milan; Holá, Jiřina; Vacek, Antonín; Štreitová, Denisa

    Buenos Aires, 2008. s. 1-7. [IRPA 12 - 12th International Congress of the International Radiation Protection Association - Strengthening Radiation Protection Worldwide. 19.10.2008-24.10.2008, Buenos Aires] R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptors * hematopoiesis * radiation-induced myelosuppression Subject RIV: BO - Biophysics

  4. The in vivo respiratory phenotype of the adenosine A1 receptor knockout mouse.

    Heitzmann, Dirk; Buehler, Philipp; Schweda, Frank; Georgieff, Michael; Warth, Richard; Thomas, Joerg

    2016-02-01

    The nucleoside adenosine has been implicated in the regulation of respiration, especially during hypoxia in the newborn. In this study the role of adenosine A1 receptors for the control of respiration was investigated in vivo. To this end, respiration of unrestrained adult and neonatal adenosine A1 receptor knockout mice (A1R(-/-)) was measured in a plethysmographic device. Under control conditions (21% O2) and mild hypoxia (12-15% O2) no difference of respiratory parameters was observed between adult wildtype (A1R(+/+)) and A1R(-/-) mice. Under more severe hypoxia (6-10% O2) A1R(+/+) mice showed, after a transient increase of respiration, a decrease of respiration frequency (fR) and tidal volume (VT) leading to a decrease of minute volume (MV). This depression of respiration during severe hypoxia was absent in A1R(-/-) mice which displayed a stimulated respiration as indicated by the enhancement of MV by some 50-60%. During hypercapnia-hyperoxia (3-10% CO2/97-90 % O2), no obvious differences in respiration of A1R(-/-) and A1R(+/+) was observed. In neonatal mice, the respiratory response to hypoxia was surprisingly similar in both genotypes. However, neonatal A1R(-/-) mice appeared to have more frequently periods of apnea during hypoxia and in the post-hypoxic control period. In conclusion, these data indicate that the adenosine A1 receptor is an important molecular component mediating hypoxic depression in adult mice and it appears to stabilize respiration of neonatal mice. PMID:26593641

  5. Progress in the discovery of selective, high affinity A2B adenosine receptor antagonists as clinical candidates

    Kalla, Rao V.; Zablocki, Jeff

    2008-01-01

    The selective, high affinity A2B adenosine receptor (AdoR) antagonists that were synthesized by several research groups should aid in determining the role of the A2B AdoR in inflammatory diseases like asthma or rheumatoid arthritis (RA) and angiogenic diseases like diabetic retinopathy or cancer. CV Therapeutics scientists discovered the selective, high affinity A2B AdoR antagonist 10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883, Ki(hA2B) = 22 nM; Ki(hA1) = 1,940 nM; Ki(hA2A) = 3,280; and...

  6. Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat

    Renal vasoconstriction with resultant tissue hypoxia, especially in the renal medulla, has been suggested to play a role in contrast media (CM)-induced nephropathy. In this study we investigated the effects of injection of the non-ionic low-osmolar CM iopromide with and without pretreatment with the selective adenosine A1-receptor antagonist DPCPX. The effects were evaluated on regional renal blood flow, outer medullary oxygen tension (PO2) and urine output in normal anaesthetised rats. A laser-Doppler technique was used for recording haemodynamic changes while oxygen microelectrodes were used for oxygen measurements. The A1-receptor antagonist per se elevated glomerular filtration rate (+44%), cortical blood flow (+15%) and urine output (threefold) while reducing outer medullary PO2 (-24%). Administration of CM reduced outer medullary blood flow (OMBF; -26%) and PO2 (-80%) but did not affect cortical blood flow. Urine output increased 28-fold by CM while arterial blood pressure was reduced. The CM-mediated effect on haemodynamics, PO2, urine output and blood pressure was unaffected by the A1-receptor antagonist. Adenosine A1-receptors are not important mediators of the depression of outer medullary blood flow and PO2 caused by the CM iopromide in the normal rat; however, A1-receptors are tonically active to regulate renal haemodynamics, PO2 and urine production during normal physiological conditions. (orig.)

  7. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin; Bangsbo, Jens; Hellsten, Ylva

    2010-01-01

    and during knee extensor exercise. The dialysate was analyzed for content of VEGF protein and adenosine. The mechanism of VEGF secretion from muscle cells in culture was examined in resting and electro stimulated cells, and in response to the adenosine analogue NECA, and the adenosine A(2A) receptor...

  8. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A1 adenosine receptors (A1AR), is likely to be involved. The present study investigates changes of cerebral A1AR binding in cirrhotic patients by means of positron emission tomography (PET) and [18F]CPFPX, a novel selective A1AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to Bmax/KD). Cortical and subcortical regions showed lower A1AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p 1AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A1AR density or affinity, as well as blockade of the A1AR by endogenous adenosine or exogenous xanthines. (orig.)

  9. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging

    Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A.

    2011-01-01

    Adenosine is a neuromodulator with several functions in the central nervous system (CNS), such as inhibition of neuronal activity in many signaling pathways. Most of the sedating, anxiolytic, seizure-inhibiting and protective actions of adenosine are mediated by adenosine A(1) receptors (A(1)R) on t

  10. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder

    Silva-Ramos, M.; Silva, I; Faria, M.; Magalhães-Cardoso, M. T.; Correia, J.; Ferreirinha, F; Correia-de-Sá, P.

    2015-01-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [3H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n...

  11. Nucleoside-Derived Antagonists to A3 Adenosine Receptors Lower Mouse Intraocular Pressure and Act across Species

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y.; Peterson-Yantorno, Kim; Stone, Richard A.; Gao, Zhan-Guo; Joshi, Bhalchandra; Besada, Pedro; Jeong, Lak Shin; Jacobson, Kenneth A.; Civan, Mortimer M.

    2009-01-01

    The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine n...

  12. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects

  13. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat.

    Cheuvront, Samuel N; Ely, Brett R; Kenefick, Robert W; Michniak-Kohn, Bozena B; Rood, Jennifer C; Sawka, Michael N

    2009-02-01

    Nutritional adenosine receptor antagonists can enhance endurance exercise performance in temperate environments, but their efficacy during heat stress is not well understood. This double-blinded, placebo-controlled study compared the effects of an acute dose of caffeine or quercetin on endurance exercise performance during compensable heat stress (40 degrees C, 20-30% rh). On each of three occasions, 10 healthy men each performed 30-min of cycle ergometry at 50% Vo2peak followed by a 15-min performance time trial after receiving either placebo (Group P), caffeine (Group C; 9 mg/kg), or quercetin (Group Q; 2,000 mg). Serial blood samples, physiological (heart rate, rectal, and mean skin body temperatures), perceptual (ratings of perceived exertion, pain, thermal comfort, motivation), and exercise performance measures (total work and pacing strategy) were made. Supplementation with caffeine and quercetin increased preexercise blood concentrations of caffeine (55.62 +/- 4.77 microM) and quercetin (4.76 +/- 2.56 microM) above their in vitro inhibition constants for adenosine receptors. No treatment effects were observed for any physiological or perceptual measures, with the exception of elevated rectal body temperatures (0.20-0.30 degrees C; P affect total work performed (Groups P: 153.5 +/- 28.3, C: 157.3 +/- 28.9, and Q: 151.1 +/- 31.6 kJ; P > 0.05) or the self-selected pacing strategy employed. These findings indicate that the nutritional adenosine receptor antagonists caffeine and quercetin do not enhance endurance exercise performance during compensable heat stress. PMID:19020291

  14. Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation.

    D'Alimonte, Iolanda; Ballerini, Patrizia; Nargi, Eleonora; Buccella, Silvana; Giuliani, Patricia; Di Iorio, Patrizia; Caciagli, Francesco; Ciccarelli, Renata

    2007-05-11

    Astrocyte apoptosis occurs in acute and chronic pathological processes at the central nervous system and the prevention of astrocyte death may represent an efficacious intervention in protecting neurons against degeneration. Our research shows that rat astrocyte exposure to 100 nM staurosporine for 3h caused apoptotic death accompanied by caspase-3, p38 mitogen-ed protein kinase (MAPK) and glycogen synthase kinase-3beta (GSK3beta) activation. N(6)-chlorocyclopentyladenosine (CCPA, 2.5-75 nM), a selective agonist of A(1) adenosine receptors, added to the cultures 1h prior to staurosporine, induced a dose-dependent anti-apoptotic effect, which was inhibited by the A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. CCPA also caused a dose- and time-dependent phosphorylation/activation of Akt, a downstream effector of cell survival promoting phosphatidylinositol 3-kinase (PI3K) pathway, which in turn led to inhibition of staurosporine-induced GSK3beta and p38 MAPK activity. Accordingly, the anti-apoptotic effect of CCPA was abolished by culture pre-treatment with LY294002, a selective PI3K inhibitor, pointing out the prevailing role played by PI3K pathway in the protective effect exerted by A(1) receptor activation. Since an abnormal p38 and GSK3beta activity is implicated in acute (stroke) and chronic (Alzheimer's disease) neurodegenerative diseases, the results of the present study provide a hint to better understand adenosine relevance in these disorders. PMID:17400382

  15. 腺苷及其受体参与外周痛觉信息调控的机制%Mechanisms of adenosine and its receptors in pain modulation in the peripheral system

    赵静; 米文丽; 毛应启梁

    2011-01-01

    Adenosine is an endogenous nucleoside that widely exists in the human body cells. Through activating different subgroups of adenosine receptors (A1, A2A, A2B, and A3 receptors), adenosine produces various effects in a broad spectrum of tissues, especially in the central nervous systems, which includes modulating physiological and pathological processes such as sleep, learning and memory, depression as well as anxiety. With the research development in the agonists and antagonists of adenosine receptors, the roles of adenosine and its receptors in the peripheral nervous system have been widely revealed. The researches reported that adenosine and its receptors are closely related to transmission and modulation of nociception in peripheral signals.%腺苷是一种遍布人体细胞的内源性核苷,通过其不同类型的受体(A1,A2A,A2B和A3受体)对机体的许多系统(特别是中枢神经系统)及组织发挥着重要的作用,参与调控睡眠、学习记忆、抑郁和焦虑等多种生理和病理过程.随着腺苷对受体亚型选择性激动剂和拮抗剂的开发,人们对腺苷及其受体在外周神经系统中的作用研究越来越深入,并逐步认识到腺苷及其受体与外周痛党信息的传递和调控密切相关.

  16. Cerebral A{sub 1} adenosine receptors (A{sub 1}AR) in liver cirrhosis

    Boy, Christian [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Meyer, Philipp T. [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Kircheis, Gerald; Haussinger, Dieter [University of Duesseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Duesseldorf (Germany); Holschbach, Marcus H.; Coenen, Heinz H. [Research Centre Juelich, Institute of Nuclear Chemistry, Juelich (Germany); Herzog, Hans; Elmenhorst, David [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); Kaiser, Hans J. [University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Zilles, Karl [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); C. and O. Vogt Institute of Brain Research, Duesseldorf (Germany); Bauer, Andreas [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University of Duesseldorf, Department of Neurology, Duesseldorf (Germany)

    2008-03-15

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A{sub 1} adenosine receptors (A{sub 1}AR), is likely to be involved. The present study investigates changes of cerebral A{sub 1}AR binding in cirrhotic patients by means of positron emission tomography (PET) and [{sup 18}F]CPFPX, a novel selective A{sub 1}AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B{sub max}/K{sub D}). Cortical and subcortical regions showed lower A{sub 1}AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (-50.0%), precentral gyrus (-40.9%), postcentral gyrus (-38.6%), insular cortex (-38.6%), thalamus (-32.9%), parietal cortex (-31.7%), frontal cortex (-28.6), lateral temporal cortex (-28.2%), orbitofrontal cortex (-27.9%), occipital cortex (-24.6), putamen (-22.7%) and mesial temporal lobe (-22.4%). Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A{sub 1}AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A{sub 1}AR density or affinity, as well as blockade of the A{sub 1}AR by endogenous adenosine or exogenous xanthines. (orig.)

  17. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors.

    Carlin, Jesse Lea; Tosh, Dilip K; Xiao, Cuiying; Piñol, Ramón A; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A; Reitman, Marc L

    2016-02-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  18. Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington's disease

    To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington's disease (HD). We quantified the cerebral binding potential (BPND) of the A1AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [18 F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36). Cerebral A1AR values of preHD-A subjects were generally higher than those of controls (by up to 31 %, p 1AR BPND was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25 %, p 1AR BPND and years to onset. Before onset of HD, the assumed annual rates of change of A1AR density were -1.2 % in the caudatus, -1.7 % in the thalamus and -3.4 % in the amygdala, while the corresponding volume losses amounted to 0.6 %, 0.1 % and 0.2 %, respectively. Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism. (orig.)

  19. CF102 an A3 Adenosine Receptor Agonist Mediates Anti-Tumor and Anti-Inflammatory Effects in the Liver

    Cohen, S.; Stemmer, S M; ZOZULYA, G.; Ochaion, A.; PATOKA, R.; Barer, F.; BAR-YEHUDA, S.; RATH-WOLFSON, L.; Jacobson, K. A.; Fishman, P

    2011-01-01

    The Gi protein-associated A3 adenosine receptor (A3AR) is a member of the adenosine receptor family. Selective agonists at the A3AR, such as CF101 and CF102 were found to induce anti-inflammatory and anti-cancer effects. In this study, we examined the differential effect of CF102 in pathological conditions of the liver. The anti-inflammatory protective effect of CF101 was tested in a model of liver inflammation induced by Concanavalin A (Con. A) and the anti-cancer effect of CF102 was examine...

  20. A2B Adenosine Receptor Agonist Improves Erectile Function in Diabetic Rats.

    Wen, Jiaming; Wang, Bohan; Du, Chuanjun; Xu, Gang; Zhang, Zhewei; Li, Yi; Zhang, Nan

    2015-01-01

    Diabetes is an important risk factor for erectile dysfunction (ED). Recent studies have indicated that A2B adenosine receptor (ADORA2B) signaling is essential for penile erection. Thus, we hypothesize that diabetic ED may be attributed to impaired A2B adenosine signaling. To test this hypothesis, we generated diabetic rats by injecting streptozocin as animal model. After 12 weeks, immunohistochemistry staining was used to localize the expression of ADORA2B. Western Blot and quantitative PCR were employed to determine ADORA2B expression level. Intracavernosal pressure (ICP) measurement was used to evaluate erectile function. Diabetic rats received a single intravenous injection of BAY 60-6583, an ADORA2B agonist, or vehicle solution, at 60 min before the ICP measurement. The results showed that ADORA2B expressed in the nerve bundle, smooth muscle, and endothelium in penile tissue of control mice. Western Blot and quantitative PCR results indicated that the expression levels of ADORA2B protein and mRNA were significantly reduced in penile tissues of diabetic rats. Functional studies showed that the erectile response induced by electrical stimulation was remarkably decreased in diabetic rats, compared with age-matched control rats. However, at 60 min after BAY 60-6583 treatment, the erectile function was improved in diabetic rats, suggesting that enhancement of ADORA2B signaling may improve erectile function in diabetic ED. This preclinical study has revealed a previously unrecognized therapeutic possibility of BAY 60-6583 as an effective and mechanism-based drug to treat diabetic ED. In conclusion, we propose that impaired A2B adenosine signaling is one of the pathological mechanisms of diabetic ED. PMID:26447087

  1. John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors

    Kenneth A. Jacobson

    2015-01-01

    Full Text Available We establish structure activity relationships of extracellular nucleosides and nucleotides at G protein-coupled receptors (GPCRs, e.g. adenosine receptors (ARs and P2Y receptors (P2YRs, respectively. We synthesize selective agents for use as pharmacological probes and potential therapeutic agents (e.g. A3AR agonists for neuropathic pain. Detailed structural information derived from the X-ray crystallographic structures within these families enables the design of novel ligands, guides modification of known agonists and antagonists, and helps predict polypharmacology. Structures were recently reported for the P2Y12 receptor (P2Y12R, an anti-thrombotic target. Comparison of agonist-bound and antagonist-bound P2Y12R indicates unprecedented structural plasticity in the outer portions of the transmembrane (TM domains and the extracellular loops. Nonphosphate-containing ligands of the P2YRs, such as the selective P2Y14R antagonist PPTN, are desired for bioavailability and increased stability. Also, A2AAR structures are effectively applied to homology modeling of closely related A1AR and A3AR, which are not yet crystallized. Conformational constraint of normally flexible ribose with bicyclic analogues increased the ligand selectivity. Comparison of rigid A3AR agonist congeners allows the exploration of interaction of specific regions of the nucleoside analogues with the target and off-target GPCRs, such as biogenic amine receptors. Molecular modeling predicts plasticity of the A3AR at TM2 to accommodate highly rigidified ligands. Novel fluorescent derivatives of high affinity GPCR ligands are useful tool compounds for characterization of receptors and their oligomeric assemblies. Fluorescent probes are useful for characterization of GPCRs in living cells by flow cytometry and other methods. Thus, 3D knowledge of receptor binding and activation facilitates drug discovery.

  2. Effects of adenosine A3 receptor agonist on bone marrow granulocytic system in 5-fluorouracil-treated mice

    Hofer, Michal; Pospíšil, Milan; Vacek, Antonín; Holá, Jiřina; Znojil, V.; Weiterová, Lenka; Štreitová, Denisa

    2006-01-01

    Roč. 538, - (2006), s. 163-167. ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA305/06/0015 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z5004920 Keywords : adenosine A3 receptor * granulopoiesis * mouse Subject RIV: BO - Biophysics Impact factor: 2.522, year: 2006

  3. Combined pharmacological therapy of the acute radiation disease using a cyclooxygenase-2 inhibitor and an adenosine A(3) receptor agonist

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 9, č. 6 (2014), s. 642-646. ISSN 1895-104X R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Hematopoiesis * Cyclooxygenase inhibition * Adenosine receptor agonist Subject RIV: BO - Biophysics Impact factor: 0.710, year: 2014

  4. IB-MECA, an Adenosine A(3) Receptor Agonist, Does Not Influence Survival of Lethally gamma-Irradiated Mice

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2012-01-01

    Roč. 61, č. 6 (2012), s. 649-654. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/08/0158; GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Mouse * IB-MECA * Adenosine A(3) receptor agonist Subject RIV: BO - Biophysics Impact factor: 1.531, year: 2012

  5. The pharmacological activation of adenosine A1 and A3 receptors does not modulate the long- or short-term repopulating ability of hematopoietic stem and multipotent progenitor cells in mice

    Hofer, Michal; Pospíšil, Milan; Hoferová, Zuzana; Komůrková, Denisa; Páral, Petr; Savvulidi, Filipp; Šefc, Luděk

    2012-01-01

    This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was ...

  6. Triazoloquinazolines as Human A3 Adenosine Receptor Antagonists: A QSAR Study

    Dae-Sil Lee

    2006-11-01

    Full Text Available Multiple linear regression analysis was performed on the quantitative structure-activity relationships (QSAR of the triazoloquinazoline adenosine antagonists for human A3receptors. The data set used for the QSAR analysis encompassed the activities of 33triazoloquinazoline derivatives and 72 physicochemical descriptors. A template moleculewas derived using the known molecular structure for one of the compounds when bound tothe human A2B receptor, in which the amide bond was in a cis-conformation. All the testcompounds were aligned to the template molecule. In order to identify a reasonable QSARequation to describe the data set, we developed a multiple linear regression program thatexamined every possible combination of descriptors. The QSAR equation derived from thisanalysis indicates that the spatial and electronic effects is greater than that of hydrophobiceffects in binding of the antagonists to the human A3 receptor. It also predicts that a largesterimol length parameter is advantageous to activity, whereas large sterimol widthparameters and fractional positive partial surface areas are nonadvatageous.

  7. Mapping adenosine A1 receptors in the cat brain by positron emission tomography with [11C]MPDX

    We evaluated the potential of [11C]MPDX as a radioligand for mapping adenosine A1 receptors in comparison with previously proposed [11C]KF15372 in cat brain by PET. Two tracers showed the same brain distribution. Brain uptake of [11C]MPDX (Ki=4.2 nM) was much higher and washed out faster than that of [11C]KF15372 (Ki=3.0 nM), and was blocked by carrier-loading or displaced with an A1 antagonist. The regional A1 receptor distribution evaluated with kinetic analysis is consistent with that previously measured in vitro. [11C]MPDX PET has a potential for mapping adenosine A1 receptors in brain

  8. The Quintiles Prize Lecture 2004: The identification of the adenosine A2B receptor as a novel therapeutic target in asthma

    Holgate, Stephen T

    2005-01-01

    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A2 receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A2 receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A2B subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A2B receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A2B receptor antagonists as a new therapeutic approach to this disease. PMID:15980878

  9. The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma.

    Holgate, Stephen T

    2005-08-01

    Adenosine is a powerful bronchoconstrictor of asthmatic, but not normal, airways. In vitro studies on isolated human mast cells and basophils revealed that adenosine and selective analogues augmented inflammatory mediator release from mast cells by stimulating A(2) receptors. Pharmacological blockade of mast cell mediator release in vivo also attenuated adenosine-induced bronchoconstriction, as did theophylline, by adenosine A(2) receptor antagonism. Further in vitro studies revealed that the asthmatic response to adenosine is likely to be mediated via the A(2B) subtype which is selectively antagonised by enprofylline. Studies in animal models, especially mice, have shown a close synergistic interaction between adenosine, Th2 and airway remodelling responses. The recent description of A(2B) receptors on human airway smooth muscle cells that mediate cytokine and chemokine release and induce differentiation of fibroblasts into myofibroblasts strengthens the view that adenosine maybe more than an inflammatory mediator in asthma but also participates in airway wall remodelling in this disease. These data have provided a firm basis for developing adenosine A(2B) receptor antagonists as a new therapeutic approach to this disease. PMID:15980878

  10. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  11. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus.

    de Mendonça, A; Ribeiro, J A

    1997-08-01

    1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12-14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe. p.s.p.) recorded extracellularly from the stratum radiatum in the CAI area. 2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2-50 nM), on the fe.p.s.p. slope (EC50 = 12.5 (9.2-17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 microM) (EC50 = 27.2 (21.4-34.5) nM, n = 4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 microM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM). DHPG (10 microM) itself had an inhibitory effect of 20.1 +/- 1.9% (n = 4) on the fe.p.s.p. slope. 3. The concentration-response curves for the inhibitory effects of CPA (2-20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I; 1 microM), or in the presence of

  12. Adenosine AA Receptor Antagonists Do Not Disrupt Rodent Prepulse Inhibition: An Improved Side Effect Profile in the Treatment of Parkinson's Disease

    Carina J. Bleickardt

    2012-01-01

    Full Text Available Parkinson's disease (PD is characterized by loss of dopaminergic neurons in the substantia nigra. Current treatments for PD focus on dopaminergic therapies, including L-dopa and dopamine receptor agonists. However, these treatments induce neuropsychiatric side effects. Psychosis, characterized by delusions and hallucinations, is one of the most serious such side effects. Adenosine A2A receptor antagonism is a nondopaminergic treatment for PD with clinical and preclinical efficacy. The present studies assessed A2A antagonists SCH 412348 and istradefylline in rodent prepulse inhibition (PPI, a model of psychosis. Dopamine receptor agonists pramipexole (0.3–3 mg/kg, pergolide (0.3–3 mg/kg, and apomorphine (0.3–3 mg/kg significantly disrupted PPI; ropinirole (1–30 mg/kg had no effect; L-dopa (100–300 mg/kg disrupted rat but not mouse PPI. SCH 412348 (0.3–3 mg/kg did not disrupt rodent PPI; istradefylline (0.1–1 mg/kg marginally disrupted mouse but not rat PPI. These results suggest that A2A antagonists, unlike dopamine agonists, have an improved neuropsychiatric side effect profile.

  13. Selective detection of adenosine A1 receptor-dependent G-protein activity in basal and stimulated conditions of rat brain [35S]guanosine 5minutes or feet-(γ-thio)triphosphate autoradiography

    -specific differences in the magnitude of A1 receptor-stimulated G-protein activation, with the highest response (nine-fold over basal) detectable in the hippocampus. No response to the A2A-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5minutes or feet-N-ethylcarboxamidoadenosine or the A3-selective agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5minutes or feet-N-methyluronamide was detected in any region.These data reveal that a significant amount of noise inherent to [35S]guanosine 5minutes or feet-(γ-thio)triphosphate autoradiography can be eliminated by removal of the adenosine signal, a step likely facilitating detection of responses to other receptors. Furthermore, the data establish [35S]guanosine 5minutes or feet-(γ-thio)triphosphate autoradiography as a novel and selective approach to directly assess A1 receptor-G-protein coupling in anatomically defined regions of the central nervous system. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Characterization of the binding of a novel nonxanthine adenosine antagonist radioligand, ( sup 3 H)CGS 15943, to multiple affinity states of the adenosine A1 receptor in the rat cortex

    Jarvis, M.F.; Williams, M.; Do, U.H.; Sills, M.A. (CIBA-GEIGY Corp., Summit, NJ (USA))

    1991-01-01

    The triazoloquinazoline CGS 15943 is the first reported nonxanthine adenosine antagonist that has high affinity for brain adenosine receptors. In the present study, the binding of (3H) CGS 15943 to recognition sites in rat cortical membranes was characterized. Saturation experiments revealed that (3H)CGS 15943 labeled a single class of recognition sites with high affinity and limited capacity. Competition studies revealed that the binding of (3H)CGS 15943 was consistent with the labeling of brain adenosine A1 receptors. Adenosine agonists inhibited 1 nM (3H)CGS 15943 binding with the following order of activity N6-cyclopentyladenosine (IC50 = 15 nM) greater than 2-chloroadenosine greater than (R)-N6-phenylisopropyladenosine greater than 5'-N6-ethylcarboxamidoadenosine greater than (S)N6-phenylisopropyladenosine greater than CGS 21680 greater than CV 1808 (IC50 greater than 10,000 nM). The potency order for adenosine antagonists was CGS 15943 (IC50 = 5 nM) greater than 8-phenyltheophylline greater than 1,3-dipropyl-8-(4-amino-2-chloro)phenylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than theophylline = caffeine (IC50 greater than 10,000 nM). Antagonist inhibition curves were steep and best described by a one-site binding model. In contrast, adenosine A1 agonist competition curves were shallow, as indicated by Hill coefficients less than unity. Computer analysis revealed that these inhibition curves were best described by a two-site binding model. Agonist competition curves generated in the presence of 1 mM GTP resulted in a rightward shift and steepening of the inhibition-concentration curves, whereas antagonist binding was not altered in the presence of GTP. The complex binding interactions found with adenosine agonists indicate that (3H)CGS 15943 labels both high and low affinity components of the adenosine A1 receptor in the rat cortex.

  15. Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor

    Since the adenosine A3 receptor (A3R) is considered to be of high clinical importance in the diagnosis and treatment of ischaemic conditions (heart and brain), glaucoma, asthma, arthritis, cancer and inflammation, a suitable and selective A3R PET tracer such as [18F]FE rate at SUPPY would be of high clinical value for clinicians as well as patients. A3R was discovered in the late 1990s, but there is still little known regarding its distribution in the CNS and periphery. Hence, in autoradiographic experiments the distribution of A3R in human brain and rat tissues was investigated and the specific binding of the A3R antagonist FE rate at SUPPY and MRS1523 compared. Immunohistochemical staining (IHC) experiments were also performed to validate the autoradiographic findings. For autoradiographic competition experiments human post-mortem brain and rat tissues were incubated with [125I]AB-MECA and highly selective compounds to block the other adenosine receptor subtypes. Additionally, IHC was performed with an A3 antibody. Specific A3R binding of MRS1523 and FE rate at SUPPY was found in all rat peripheral tissues examined with the highest amounts in the spleen (44.0 % and 46.4 %), lung (44.5 % and 45.0 %), heart (39.9 % and 42.9 %) and testes (27.4 % and 29.5 %, respectively). Low amounts of A3R were found in rat brain tissues (5.9 % and 5.6 %, respectively) and human brain tissues (thalamus 8.0 % and 9.1 %, putamen 7.8 % and 8.2 %, cerebellum 6.0 % and 7.8 %, hippocampus 5.7 % and 5.6 %, caudate nucleus 4.9 % and 6.4 %, cortex 4.9 % and 6.3 %, respectively). The outcome of the A3 antibody staining experiments complemented the results of the autoradiographic experiments. The presence of A3R protein was verified in central and peripheral tissues by autoradiography and IHC. The specificity and selectivity of FE rate at SUPPY was confirmed by direct comparison with MRS1523, providing further evidence that [18F]FE rate at SUPPY may be a suitable A3 PET tracer for use in

  16. Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor

    Haeusler, D.; Fuchshuber, F.; Girschele, F.; Hacker, M.; Wadsak, W.; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Grassinger, L. [University of Applied Sciences Wiener Neustadt, Department of Biomedical Analytics, Wiener Neustadt (Austria); Hoerleinsberger, W.J. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Vienna, Cognitive Science Research Platform, Vienna (Austria); Hoeftberger, R.; Leisser, I. [Medical University of Vienna, Institute of Neurology, Vienna (Austria); Shanab, K.; Spreitzer, H. [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria); Gerdenitsch, W. [Medical University of Vienna, Institute of Biomedicinal Research, Vienna (Austria)

    2015-05-01

    Since the adenosine A3 receptor (A3R) is considered to be of high clinical importance in the diagnosis and treatment of ischaemic conditions (heart and brain), glaucoma, asthma, arthritis, cancer and inflammation, a suitable and selective A3R PET tracer such as [{sup 18}F]FE rate at SUPPY would be of high clinical value for clinicians as well as patients. A3R was discovered in the late 1990s, but there is still little known regarding its distribution in the CNS and periphery. Hence, in autoradiographic experiments the distribution of A3R in human brain and rat tissues was investigated and the specific binding of the A3R antagonist FE rate at SUPPY and MRS1523 compared. Immunohistochemical staining (IHC) experiments were also performed to validate the autoradiographic findings. For autoradiographic competition experiments human post-mortem brain and rat tissues were incubated with [{sup 125}I]AB-MECA and highly selective compounds to block the other adenosine receptor subtypes. Additionally, IHC was performed with an A3 antibody. Specific A3R binding of MRS1523 and FE rate at SUPPY was found in all rat peripheral tissues examined with the highest amounts in the spleen (44.0 % and 46.4 %), lung (44.5 % and 45.0 %), heart (39.9 % and 42.9 %) and testes (27.4 % and 29.5 %, respectively). Low amounts of A3R were found in rat brain tissues (5.9 % and 5.6 %, respectively) and human brain tissues (thalamus 8.0 % and 9.1 %, putamen 7.8 % and 8.2 %, cerebellum 6.0 % and 7.8 %, hippocampus 5.7 % and 5.6 %, caudate nucleus 4.9 % and 6.4 %, cortex 4.9 % and 6.3 %, respectively). The outcome of the A3 antibody staining experiments complemented the results of the autoradiographic experiments. The presence of A3R protein was verified in central and peripheral tissues by autoradiography and IHC. The specificity and selectivity of FE rate at SUPPY was confirmed by direct comparison with MRS1523, providing further evidence that [{sup 18}F]FE rate at SUPPY may be a suitable A3 PET

  17. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.

    2002-09-01

    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  18. Effects of stable adenosine receptor agonists on bone marrow haematopoietic cells as inferred from the cytotoxic action of 5-fluorouracil

    Pospíšil, Milan; Hofer, Michal; Vacek, Antonín; Znojil, V.; Pipalová, I.

    2004-01-01

    Roč. 53, č. 3 (2004), s. 549-556. ISSN 0862-8408 R&D Projects: GA ČR GA305/02/0423; GA AV ČR IBS5004009; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5004920 Keywords : adenosine receptor agonists * hematopoiesis * 5-fluorouracil Subject RIV: BO - Biophysics Impact factor: 1.140, year: 2004

  19. Activation of NTS A1 adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex

    Ichinose, Tomoko K.; Minic, Zeljka; Li, Cailian; O'Leary, Donal S.; Scislo, Tadeusz J.

    2012-01-01

    Previously we have shown that adenosine operating via the A1 receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it i...

  20. Roles of Adenosine and Serotonin Receptors on the Antinociception of Sildenafil in the Spinal Cord of Rats

    Lee, Hyung Gon; Kim, Woong Mo; Park, Cheon Hee; Yoon, Myung Ha

    2010-01-01

    Purpose The phosphodiesterase 5 inhibitor sildenafil has antinociceptive effects, mediated by an increase in cGMP. This study examined the role of spinal adenosine and serotonin receptors played in the antinociceptive effects of intrathecal sildenafil. Materials and Methods Intrathecal catheters were inserted into the subarachnoid space of Sprague-Dawley male rats as a drug delivery device. Pain was induced by injecting formalin into the plantar surface of rats and observing nociceptive behav...

  1. Recombinant Mouse PAP Has pH-Dependent Ectonucleotidase Activity and Acts through A1-Adenosine Receptors to Mediate Antinociception

    Sowa, Nathaniel A.; Kunjumon I. Vadakkan; Zylka, Mark J.

    2009-01-01

    Prostatic acid phosphatase (PAP) is expressed in nociceptive neurons and functions as an ectonucleotidase. When injected intraspinally, the secretory isoforms of human and bovine PAP protein have potent and long-lasting antinociceptive effects that are dependent on A1-adenosine receptor (A1R) activation. In this study, we purified the secretory isoform of mouse (m)PAP using the baculovirus expression system to determine if recombinant mPAP also had antinociceptive properties. We found that mP...

  2. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors.

    Yan, Xiao-Feng; Zhang, Zhong-Miao; Yao, Hong-Yi; Guan, Yan; Zhu, Jian-Ping; Zhang, Lin-Hui; Jia, Yong-Liang; Wang, Ru-Wei

    2013-11-01

    Mycelia of cultured Cordyceps sinensis (CS) is one of the most common substitutes for natural CS and was approved for arrhythmia in China. However, the role of CS in ameliorating injury during ischemia-reperfusion (I/R) is still unclear. We examined effects of extracts from CS on I/R and investigated the possible mechanisms. Post-ischemic coronary perfusion pressure, ventricular function, and coronary flow were measured using the Langendorff mouse heart model. Oxidative stress of cardiac homogenates was performed using an ELISA. Our results indicate that CS affords cardioprotection possibly through enhanced adenosine receptor activation. Cardioprotection was demonstrated by reduced post-ischemic diastolic dysfunction and improved recovery of pressure development and coronary flow. Treatment with CS largely abrogates oxidative stress and damage in glucose- or pyruvate-perfused hearts. Importantly, observed reductions in oxidative stress [glutathione disulfide (GSSG)]/[GSSG + glutathione] and [malondialdehyde (MDA)]/[superoxide dismutase + MDA] ratios as well as the resultant damage upon CS treatment correlate with functional markers of post-ischemic myocardial outcome. These effects of CS were partially blocked by 8-ρ-sulfophenyltheophylline, an adenosine receptor antagonist. Our results demonstrate a suppressive role of CS in ischemic contracture. Meanwhile, the results also suggest pre-ischemic adenosine receptor activation may be involved in reducing contracture in hearts pretreated with CS. PMID:23192916

  3. Effect of adenosine receptors on 3, 4 methylene dioxy methamphetamine induced hyperthermic, neuroinflammatory and neurotoxic effects in mouse brain

    Khairnar, Amit S.

    2010-01-01

    Previous studies of ours and other groups in mice have shown that 3, 4 Methylenedioxymethamphetamine (MDMA, ecstasy) produces neurotoxic damage to dopaminergic neurons and neuroinflammation and caffeine, an adenosine A1/A2A antagonist enhances glial activation induced by MDMA, suggesting potential facilitation of neurodegenerative processes. In the present study we want to investigate effect of caffeine on MDMA induced dopaminergic neurotoxicity in adult mice, whereas selective A1 ( DPCPX ) a...

  4. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor.

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T N; Gregory, Karen J; Tosh, Dilip K; Christopoulos, Arthur; Jacobson, Kenneth A; May, Lauren T

    2016-07-01

    Biased agonism at G protein-coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias "fingerprints" for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with significant N(6) or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5'-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  5. Expression of adenosine receptors in human retinal pigment epithelium cells in vitro

    WAN Wen-juan; CUI Dong-mei; YANG Xiao; HU Jian-min; LI Chuan-xu; HU Shou-long; Klaus Trier; ZENG Jun-wen

    2011-01-01

    Background Adenosine receptors (ADORs) have been reported to play a role in experimental myopia. This study aimed to determine the distribution of ADORs in human retinal pigment epithelium (RPE) cells cultured in vitro.Methods Human RPE cells (cell line D407) were cultured in vitro. ADOR mRNA in RPE was detected by reverse transcription polymerase chain reaction. ADOR protein expression in RPE was confirmed by Western blotting analysis of cell lysates. Confocal fluorescence microscopy was used to study the subcellular distribution of ADORs.Results All four subtypes of ADORs mRNA and protein were expressed in human RPE. This was confirmed by Western blotting analysis. The ADOR subtypes were differently distributed within the cells. ADORA1 was expressed in nucleus, perinucleus and cytoplasm of RPE. ADORA2A was concentrated mainly in one side of the perinucleus and cytoplasm of RPE. ADORA2B was strongly expressed in the nucleus, perinucleus and the cytoplasm, and ADORA3 was expressed weakly in the cytoplasm of RPE.Conclusions ADORs are expressed in human RPE. The different distribution at the subcellular level suggests different functions of ADOR subtypes.

  6. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway.

  7. New Pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones Fluoroderivatives as Human A1 Adenosine Receptor Ligands.

    Graziano, Alessia; Giovannoni, Maria Paola; Cilibrizzi, Agostino; Crocetti, Letizia; Piaz, Vittorio Dal; Vergelli, Claudia; Trincavelli, Maria Letizia; Martini, Claudia; Giacomelli, Chiara

    2012-09-01

    In this paper we report the synthesis and biological evaluation of a new series of pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as human A1 adenosine receptor ligands. The tricyclic scaffold was modified at position 6 and 9 by introducing small alkyl chains and substituted phenyls. The most interesting compounds showed Ki for A1 in the submicromolar range (0.105-0.244 µM) and the most interesting term (compound 4c) combined an appreciable affinity for A1 (Ki = 0.132 µM) with a good selectivity toward A2A (43% inhibition at 10 µM) and A3 (46% inhibition at 10 µM). PMID:24061322

  8. Adenosine A{sub 1} receptors in contrast media-induced renal dysfunction in the normal rat

    Liss, Per; Palm, Fredrik [Department of Diagnostic Radiology, University Hospital, 75185, Uppsala (Sweden); Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden); Carlsson, Per-Ola [Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden); Department of Medical Sciences, University Hospital, 75185, Uppsala (Sweden); Hansell, Peter [Department of Medical Cell Biology, University Hospital, 75185, Uppsala (Sweden)

    2004-07-01

    Renal vasoconstriction with resultant tissue hypoxia, especially in the renal medulla, has been suggested to play a role in contrast media (CM)-induced nephropathy. In this study we investigated the effects of injection of the non-ionic low-osmolar CM iopromide with and without pretreatment with the selective adenosine A{sub 1}-receptor antagonist DPCPX. The effects were evaluated on regional renal blood flow, outer medullary oxygen tension (PO{sub 2}) and urine output in normal anaesthetised rats. A laser-Doppler technique was used for recording haemodynamic changes while oxygen microelectrodes were used for oxygen measurements. The A{sub 1}-receptor antagonist per se elevated glomerular filtration rate (+44%), cortical blood flow (+15%) and urine output (threefold) while reducing outer medullary PO{sub 2} (-24%). Administration of CM reduced outer medullary blood flow (OMBF; -26%) and PO{sub 2} (-80%) but did not affect cortical blood flow. Urine output increased 28-fold by CM while arterial blood pressure was reduced. The CM-mediated effect on haemodynamics, PO{sub 2}, urine output and blood pressure was unaffected by the A{sub 1}-receptor antagonist. Adenosine A{sub 1}-receptors are not important mediators of the depression of outer medullary blood flow and PO{sub 2} caused by the CM iopromide in the normal rat; however, A{sub 1}-receptors are tonically active to regulate renal haemodynamics, PO{sub 2} and urine production during normal physiological conditions. (orig.)

  9. Progress in the discovery of selective, high affinity A(2B) adenosine receptor antagonists as clinical candidates.

    Kalla, Rao V; Zablocki, Jeff

    2009-03-01

    The selective, high affinity A(2B) adenosine receptor (AdoR) antagonists that were synthesized by several research groups should aid in determining the role of the A(2B) AdoR in inflammatory diseases like asthma or rheumatoid arthritis (RA) and angiogenic diseases like diabetic retinopathy or cancer. CV Therapeutics scientists discovered the selective, high affinity A(2B) AdoR antagonist 10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM] that has favorable pharmacokinetic (PK) properties (t (1/2) = 4 h and F > 35% rat). Compound 10 demonstrated functional antagonism at the A(2B) AdoR (K(B) = 6 nM) and efficacy in a mouse model of asthma. In two phase 1 clinical trials, CVT-6883 was found to be safe, well tolerated, and suitable for once daily dosing. A second compound 20, 8-(5-pyrazolyl)-xanthine, has been nominated for development from Baraldi's group in conjunction with King Pharmaceuticals that has favorable A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 1,000; and K(i)(hA(3)) > 1,000 nM], and it has been demonstrated to be a functional antagonist. A third compound 32, a 2-aminopyrimidine, from the Almirall group has high A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM], and 32 has been moved into preclinical safety testing. Since three highly selective, high affinity A(2B) AdoR antagonists have been nominated for development with 10 (CVT-6883) being the furthest along in the development process, the role of the A(2B) AdoR in various disease states will soon be established. PMID:18568423

  10. Possible involvement of A1 receptors in the inhibition of gonadotropin secretion induced by adenosine in rat hemipituitaries in vitro

    D.L.W. Picanço-Diniz

    1999-09-01

    Full Text Available We investigated the participation of A1 or A2 receptors in the gonadotrope and their role in the regulation of LH and FSH secretion in adult rat hemipituitary preparations, using adenosine analogues. A dose-dependent inhibition of LH and FSH secretion was observed after the administration of graded doses of the R-isomer of phenylisopropyladenosine (R-PIA; 1 nM, 10 nM, 100 nM, 1 µM and 10 µM. The effect of R-PIA (10 nM was blocked by the addition of 8-cyclopentyltheophylline (CPT, a selective A1 adenosine receptor antagonist, at the dose of 1 µM. The addition of an A2 receptor-specific agonist, 5-N-methylcarboxamidoadenosine (MECA, at the doses of 1 nM to 1 µM had no significant effect on LH or FSH secretion, suggesting the absence of this receptor subtype in the gonadotrope. However, a sharp inhibition of the basal secretion of these gonadotropins was observed after the administration of 10 µM MECA. This effect mimicked the inhibition induced by R-PIA, supporting the hypothesis of the presence of A1 receptors in the gonadotrope. R-PIA (1 nM to 1 µM also inhibited the secretion of LH and FSH induced by phospholipase C (0.5 IU/ml in a dose-dependent manner. These results suggest the presence of A1 receptors and the absence of A2 receptors in the gonadotrope. It is possible that the inhibition of LH and FSH secretion resulting from the activation of A1 receptors may have occurred independently of the increase in membrane phosphoinositide synthesis.

  11. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Zhenzhen Hu; Chung-Il Lee; Vikash Kumar Shah; Eun-Hye Oh; Jin-Yi Han; Jae-Ryong Bae; Kinam Lee; Myong-Soo Chong; Jin Tae Hong; Ki-Wan Oh

    2013-01-01

    Cordycepin (3′-deoxyadenosine) is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs), like sleep regulation. Therefore, this study was undertaken ...

  12. Perinatal caffeine, acting on maternal adenosine A(1 receptors, causes long-lasting behavioral changes in mouse offspring.

    Olga Björklund

    Full Text Available BACKGROUND: There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period, partly because there may be long-lasting behavioral changes after caffeine exposure early in life. METHODOLOGY/PRINCIPAL FINDINGS: We show that pregnant wild type (WT mice given modest doses of caffeine (0.3 g/l in drinking water gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We performed the same behavioral experiments on mice heterozygous for adenosine A(1 receptor gene (A(1RHz. In these mice signaling via adenosine A(1 receptors is reduced to about the same degree as after modest consumption of caffeine. A(1RHz mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother's genotype, not offspring's, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A(1 receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A(1R Hz grandmother preserved higher locomotor response to cocaine. CONCLUSIONS/SIGNIFICANCE: We suggest that perinatal caffeine, by acting on adenosine A(1 receptors in the mother, causes long-lasting behavioral changes in the offspring that even manifest themselves in the second generation.

  13. Adenosine A₂A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation.

    Hai-Ying Shen

    Full Text Available Adenosine A2A receptors (A2AR are located postsynaptically in striatopallidal GABAergic neurons, antagonizing dopamine D2 receptor functions, and are also located presynaptically at corticostriatal terminals, facilitating glutamate release. To address the hypothesis that these two A2AR populations differently control the action of psychostimulants, we characterized A2AR modulation of cocaine-induced effects at the level of DARPP-32 phosphorylation at Thr-34 and Thr-75, c-Fos expression, and psychomotor activity using two lines of cell-type selective A2AR knockout (KO mice with selective A2AR deletion in GABAergic neurons (striatum-A2AR-KO mice, or with A2AR deletion in both striatal GABAergic neurons and projecting cortical glutamatergic neurons (forebrain-A2AR-KO mice. We demonstrated that striatum-A2AR KO mice lacked A2ARs exclusively in striatal GABAergic terminals whereas forebrain-A2AR KO mice lacked A2ARs in both striatal GABAergic and glutamatergic terminals leading to a blunted A2AR-mediated facilitation of synaptosomal glutamate release. The inactivation of A2ARs in GABAergic neurons reduced striatal DARPP-32 phosphorylation at Thr-34 and increased its phosphorylation at Thr-75. Conversely, the additional deletion of corticostriatal glutamatergic A2ARs produced opposite effects on DARPP-32 phosphorylation at Thr-34 and Thr-75. This distinct modulation of DARPP-32 phosphorylation was associated with opposite responses to cocaine-induced striatal c-Fos expression and psychomotor activity in striatum-A2AR KO (enhanced and forebrain-A2AR KO mice (reduced. Thus, A2ARs in glutamatergic corticostriatal terminals and in GABAergic striatal neurons modulate the action of psychostimulants and DARPP-32 phosphorylation in opposite ways. We conclude that A2ARs in glutamatergic terminals prominently control the action of psychostimulants and define a novel mechanism by which A2ARs fine-tune striatal activity by integrating GABAergic, dopaminergic and

  14. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Gomes Catarina; Ferreira Raquel; George Jimmy; Sanches Rui; Rodrigues Diana I; Gonçalves Nélio; Cunha Rodrigo A

    2013-01-01

    Abstract Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the...

  15. Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: Pre- and postsynaptic components

    Alzheimer, Christian; Sutor, Bernd; Ten Bruggencate, Gerrit

    1993-01-01

    Intracellular recordings were performed on hippocampal CA3 neuronsin vitro to investigate the inhibitory tonus generated by endogenously produced adenosine in this brain region. Bath application of the highly selective adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine at concentrations up to 100 nM induced both spontaneous and stimulus-evoked epileptiform burst discharges. Once induced, the 1,3-dipropyl-8-cyclopentylxanthine-evoked epileptiform activity was apparently irreve...

  16. Presynaptic adenosine receptor-mediated regulation of diverse thalamocortical short-term plasticity in the mouse whisker pathway

    Giovanni eFerrati

    2016-02-01

    Full Text Available Short-term synaptic plasticity (STP sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In driver thalamocortical (TC synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors, modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  17. Role of adenosine in oligodendrocyte precursor maturation

    Elisabetta Coppi

    2015-04-01

    Full Text Available Differentiation and maturation of oligodendroglial cells are postnatal processes involving specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognised. As evaluated on OPC cultures, adenosine by stimulating A1 receptors, promotes oligodendrocyte maturation and inhibits their proliferation; on the contrary by stimulating A2A receptors, it inhibits oligodendrocyte maturation. A1 and A2A receptor-mediated effects are related to opposite modifications of outward delayed rectifying membrane K+ currents (IK that are involved in regulation of oligodendrocyte differentiation. Brain A1 and A2A receptors might represent new molecular targets for drugs useful in demyelinating pathologies, such as multiple sclerosis (MS, stroke and brain trauma.

  18. Non-selective and selective adenosine receptor agonists in the treatment of radiation- and chemotherapy-induced myelosuppression

    Hofer, Michal; Pospíšil, Milan

    Nurnberg, 2008. A-127. [EHRLICH II - 2nd World Conference on Magic Bullets, Celebrating the 100th Anniversary of the Nobel Prize Award to Paul Ehrlich. 03.10.2008-05.10.2008, Nurnberg] R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptor agonists * hematopoiesis * treatment of myelosuppression Subject RIV: BO - Biophysics

  19. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum.

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2015-06-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  20. Autoradiographic visualization of A 1-adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125I-HPIA

    A 1-adenosine receptors were identified in sections of rat brain and guinea pig kidney with the radioiodinated agonist 125I-N6-p-hydroxyphenylisopropyladenosine (125I-HPIA) using in vitro autoradiography. The affinities of adenosine receptor ligands in competing with 125I-HPIA binding to tissue sections were in good agreement with those found in membranes and indicate that the binding site represents an A 1 pattern of [3H]N6-cyclohexyladenosine ([3H]CHA) binding sites determined previously, with highest densities in the hippocampus and dentate gyrus, the cerebellar cortex, some thalamic nuclei and certain layers of the cerebral cortex. In the guinea pig kidney 125I-HPIA labelled longitudinal structures in the medulla. This study demonstrates that 125I-HPIA allows the autoradiographic detection of A-1 adenosine receptors in the brain and peripheral organs and has the advantage of short exposure times (author)

  1. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors.

    Mecha, M; Feliú, A; Iñigo, P M; Mestre, L; Carrillo-Salinas, F J; Guaza, C

    2013-11-01

    Inflammation in the central nervous system (CNS) is a complex process that involves a multitude of molecules and effectors, and it requires the transmigration of blood leukocytes across the blood-brain barrier (BBB) and the activation of resident immune cells. Cannabidiol (CBD), a non-psychotropic cannabinoid constituent of Cannabis sativa, has potent anti-inflammatory and immunosuppressive properties. Yet, how this compound modifies the deleterious effects of inflammation in TMEV-induced demyelinating disease (TMEV-IDD) remains unknown. Using this viral model of multiple sclerosis (MS), we demonstrate that CBD decreases the transmigration of blood leukocytes by downregulating the expression of vascular cell adhesion molecule-1 (VCAM-1), chemokines (CCL2 and CCL5) and the proinflammatory cytokine IL-1β, as well as by attenuating the activation of microglia. Moreover, CBD administration at the time of viral infection exerts long-lasting effects, ameliorating motor deficits in the chronic phase of the disease in conjunction with reduced microglial activation and pro-inflammatory cytokine production. Adenosine A2A receptors participate in some of the anti-inflammatory effects of CBD, as the A2A antagonist ZM241385 partially blocks the protective effects of CBD in the initial stages of inflammation. Together, our findings highlight the anti-inflammatory effects of CBD in this viral model of MS and demonstrate the significant therapeutic potential of this compound for the treatment of pathologies with an inflammatory component. PMID:23851307

  2. A1 and A2A Adenosine receptors expression in ALS transgenic mice for the human gene SOD1

    Ramos, Gonçalo Luis Monteiro, 1988-

    2012-01-01

    Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2012 A Esclerose Lateral Amiotrópica (ELA) é uma doença progressiva e fatal caracterizada pela degeneração selectiva dos neurónios motores do córtex motor, tronco cerebral e medula espinal, que provoca atrofia muscular, paralesia e morte por falha respiratória. A etiologia da doença continua desconhecida, mas com um consenso de que o dano dos neurónios motores é causado por uma rede d...

  3. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. PMID:27005940

  4. Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A(3) Receptor Knock-Out Mice

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Weiterová, Lenka

    2013-01-01

    Roč. 62, č. 3 (2013), s. 305-311. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : ELEVATING EXTRACELLULAR ADENOSINE * COLONY-STIMULATING FACTOR * HEMATOPOIETIC PROGENITOR CELLS Subject RIV: BO - Biophysics Impact factor: 1.487, year: 2013

  5. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  6. Mice Lacking the Adenosine A1 Receptor Have Normal Spatial Learning and Plasticity in the CA1 Region of the Hippocampus, But They Habituate More Slowly

    Giménez-Llort, Lydia; Masino, Susan A.; Diao, Lihong; Fernández-Teruel, Alberto; Tobeña, Adolf; Halldner-Henriksson, Linda; Fredholm, Bertil B

    2005-01-01

    Using mice with a targeted disruption of the adenosine A1 receptor (A1R), we examined the role of A1Rs in hippocampal long-term potentiation (LTP), long-term depression (LTD), and memory formation. Recordings from the Shaffer collateral–CA1 pathway of hippocampal slices from adult mice showed no differences between theta burst and tetanic stimulation-induced LTP in adenosine A1 receptor knockout (A1R−/−), heterozygote (A1R+/−), and wildtype (A1R+/+) mice. However, paired pulse facilitation wa...

  7. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type A (GABA(A)) receptor.

    Daniel, Chammiran; Wahlstedt, Helene; Ohlson, Johan; Björk, Petra; Ohman, Marie

    2011-01-21

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABA(A) receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABA(A) receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain. PMID:21030585

  8. Adenosine-to-Inosine RNA Editing Affects Trafficking of the γ-Aminobutyric Acid Type A (GABAA) Receptor*

    Daniel, Chammiran; Wahlstedt, Helene; Ohlson, Johan; Björk, Petra; Öhman, Marie

    2011-01-01

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABAA receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABAA receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain. PMID:21030585

  9. Adenosine receptors in the immature brain : with special reference to their role in hypoxic ischemia

    Ådén, Ulrika

    2001-01-01

    Although the newborn brain tolerates a much longer period of oxygen deprivation and ischemia than does the adult brain, perinatal hypoxic ischemia probably is an important cause of neurological dysfunction, cerebral palsy and epilepsy later in life. Hence it is important to investigate the mechanisms that modulate the extent of perinatal ischernic brain damage. There is good evidence that endogenous adenosine acts as a neuroprotective agent in models of ischemia in the m...

  10. Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species.

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y; Peterson-Yantorno, Kim; Stone, Richard A; Gao, Zhan-Guo; Joshi, Bhalchandra; Besada, Pedro; Jeong, Lak Shin; Jacobson, Kenneth A; Civan, Mortimer M

    2010-01-01

    The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine nonpigmented ciliary epithelial (NPE) cells. Five agonist-based A3AR antagonists lowered mouse IOP measured with SNMS tonometry by 3-5 mm Hg within minutes of topical application. Of the five agonist derivatives, LJ 1251 was the only antagonist to lower IOP measured by pneumotonometry. No effect was detected pneumotonometrically over 30 min following application of the other four compounds, consonant with slower, smaller responses previously measured non-invasively following topical application of A3AR agonists and the dihydropyridine A3AR antagonist MRS 1191. Latanoprost similarly lowered SNMS-measured IOP, but not IOP measured non-invasively over 30 min. Like MRS 1191, agonist-based A3AR antagonists applied to native bovine NPE cells inhibited adenosine-triggered shrinkage. In summary, the results indicate that antagonists of human A3ARs derived from the potent, selective A3 agonist Cl-IB-MECA display efficacy in mouse and bovine cells, as well. When intraocular delivery was enhanced by measuring mouse IOP invasively, five derivatives of the A3AR agonist Cl-IB-MECA lowered IOP but only one rapidly reduced IOP measured non-invasively after topical application. We conclude that derivatives of the highly-selective A3AR agonist Cl-IB-MECA can reduce IOP upon reaching their intraocular target, and that nucleoside-based derivatives are promising A3 antagonists for study in multiple animal models. PMID:19878673

  11. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)-dependent activation by blocking A1 adenosine receptors.

    Klishin, A; Tsintsadze, T.; Lozovaya, N.; Krishtal, O

    1995-01-01

    When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurri...

  12. CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver.

    Cohen, S; Stemmer, S M; Zozulya, G; Ochaion, A; Patoka, R; Barer, F; Bar-Yehuda, S; Rath-Wolfson, L; Jacobson, K A; Fishman, P

    2011-09-01

    The Gi protein-associated A(3) adenosine receptor (A(3) AR) is a member of the adenosine receptor family. Selective agonists at the A(3) AR, such as CF101 and CF102 were found to induce anti-inflammatory and anti-cancer effects. In this study, we examined the differential effect of CF102 in pathological conditions of the liver. The anti-inflammatory protective effect of CF101 was tested in a model of liver inflammation induced by Concanavalin A (Con. A) and the anti-cancer effect of CF102 was examined in vitro and in a xenograft animal model utilizing Hep-3B hepatocellular carcinoma (HCC) cells. The mechanism of action was explored by following the expression levels of key signaling proteins in the inflamed and tumor liver tissues, utilizing Western blot (WB) analysis. In the liver inflammation model, CF102 (100 µg/kg) markedly reduced the secretion of serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase in comparison to the vehicle-treated group. Mechanistically, CF102 treatment decreased the expression level of phosphorylated glycogen synthase kinase-3β, NF-κB, and TNF-α and prevented apoptosis in the liver. This was demonstrated by decreased expression levels of Fas receptor (FasR) and of the pro-apoptotic proteins Bax and Bad in liver tissues. In addition, CF102-induced apoptosis of Hep-3B cells both in vitro and in vivo via de-regulation of the PI3K-NF-κB signaling pathway, resulting in up-regulation of pro-apoptotic proteins. Taken together, CF102 acts as a protective agent in liver inflammation and inhibits HCC tumor growth. These results suggest that CF102 through its differential effect is a potential drug candidate to treat various pathological liver conditions. PMID:21660967

  13. Aminopyrimidine derivatives as adenosine antagonists / Janke Kleynhans

    Kleynhans, Janke

    2013-01-01

    Aims of this project - The aim of this study was to design and synthesise novel 2-aminopyrimidine derivatives as potential adenosine A1 and A2A receptor antagonists. Background and rationale - Parkinson’s disease is the second most common neurodegenerative disorder (after Alzheimer’s disease) and is characterised by the selective death of the dopaminergic neurons of the nigro-striatal pathway. Distinctive motor symptoms include bradykinesia, muscle rigidity and tremor, while non-m...

  14. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice

    Hofer, Michal; Pospíšil, Milan; Šefc, L.; Dušek, L.; Vacek, Antonín; Holá, Jiřina; Hoferová, Zuzana; Štreitová, Denisa

    2010-01-01

    Roč. 86, č. 8 (2010), s. 649-656. ISSN 0955-3002 R&D Projects: GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : ionising radiation * hematopoiesis * adenosine A3 receptors Subject RIV: BO - Biophysics Impact factor: 1.861, year: 2010

  15. Dopamine/adenosine interactions involved in effort-related aspects of food motivation

    Salamone, John D.; Correa, Merce

    2009-01-01

    Nucleus accumbens dopamine (DA) is involved in effort-related aspects of food motivation. Accumbens DA depletions reduce the tendency of rats to work for food, and alter effort-related choice, but leave other aspects of food motivation and appetite intact. DA and adenosine receptors interact to regulate effort-related processes. Adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and intra-accumbens injections of a adenosine A2A agonist produce eff...

  16. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids; Saltin, Bengt; Pilegaard, Henriette; Hellsten, Ylva

    2009-01-01

    -arterial infusion of ATP (0.45-2.45 micromol/min; mean+/-SEM) in 19 healthy, male subjects with and without co-infusion of NG-mono-methyl-L-arginine (L-NMMA; NO formation inhibitor; 12.3+/-0.3 mg/min), indomethacin (INDO; prostaglandin formation blocker; 613+/-12 microg/min) and/or theophylline (adenosine receptor...... was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus...

  17. Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol.

    Gordon, A S; Collier, K; Diamond, I.

    1986-01-01

    The acute and chronic neurologic effects of ethanol appear to be due to its interaction with neural cell membranes. Chronic exposure to ethanol induces changes in the membrane that lead to tolerance to the effects of ethanol. However, the actual membrane changes that account for tolerance to ethanol are not understood. We have developed a model cell culture system, using NG108-15 neuroblastoma-glioma hybrid cells, to study cellular tolerance to ethanol. We have found that adenosine receptor-s...

  18. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Cátia Vieira; Maria Teresa Magalhães-Cardoso; Fátima Ferreirinha; Isabel Silva; Ana Sofia Dias; Julie Pelletier; Jean Sévigny; Paulo Correia-de-Sá

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis ...

  19. Ion fluxes through KCa2 (SK) and Cav1 (L-type) channels contribute to chronoselectivity of adenosine A1 receptor-mediated actions in spontaneously beating rat atria

    Paulo eCorreia-De-Sá

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Ca...

  20. The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn's disease.

    Ochaion, A; Bar-Yehuda, S; Cohen, S; Barer, F; Patoka, R; Amital, H; Reitblat, T; Reitblat, A; Ophir, J; Konfino, I; Chowers, Y; Ben-Horin, S; Fishman, P

    2009-01-01

    The Gi protein associated A(3) adenosine receptor (A(3)AR) was recently defined as a novel anti-inflammatory target. The aim of this study was to look at A(3)AR expression levels in peripheral blood mononuclear cells (PBMCs) of patients with autoimmune inflammatory diseases and to explore transcription factors involved receptor expression. Over-expression of A(3)AR was found in PBMCs derived from patients with rheumatoid arthritis (RA), psoriasis and Crohn's disease compared with PBMCs from healthy subjects. Bioinformatics analysis demonstrated the presence of DNA binding sites for nuclear factor-kappaB (NF-kappaB) and cyclic AMP-responsive element binding protein (CREB) in the A(3)AR gene promoter. Up-regulation of NF-kappaB and CREB was found in the PBMCs from patients with RA, psoriasis and Crohn's disease. The PI3K-PKB/Akt signaling pathway, known to regulate both the NF-kappaB and CREB, was also up-regulated in the patients' PBMCs. Taken together, NF-kappaB and CREB are involved with the over-expression of A(3)AR in patients with autoimmune inflammatory diseases. The receptor may be considered as a specific target to combat inflammation. PMID:19426966

  1. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway

    Ferrati, Giovanni; Martini, Francisco J.; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  2. Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression

    Ilie, A; Ciocan, D; Constantinescu, A O; Zagrean, A-M; Nita, D A; Zagrean, L; Moldovan, M

    2009-01-01

    -vessel occlusion" model under chloral hydrate anesthesia. Quantification of BS recovery was carried out using BS ratio. During GCI full electrocortical suppression was attained (BS ratio reached 100%). During the following reperfusion the BS ratio returned to 0. The time course of the decay was exponential after 1...... and 5-min GCI and bi-exponential after 10-min GCI. The BS recovery was progressively delayed with the duration of ischemia. Administration of the A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 1.25 mg/kg i.p.) accelerated the post-ischemic BS recovery for all GCI durations. Following the 10......-min GCI the effect of DPCPX was only apparent on the initial fast decay of the BS ratio. These data suggest that endogenous adenosine release promotes BS patterns during reperfusion following transient cerebral ischemia. Furthermore, the endogenous A1R activation may be the primary underlying cause of...

  3. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  4. Adenosine Signaling in Striatal Circuits and Alcohol Use Disorders

    Nam, Hyung Wook; Bruner, Robert C.; Choi, Doo-Sup

    2013-01-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, ...

  5. Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy.

    Min, Hye Sook; Cha, Jin Joo; Kim, Kitae; Kim, Jung Eun; Ghee, Jung Yeon; Kim, Hyunwook; Lee, Ji Eun; Han, Jee Young; Jeong, Lak Shin; Cha, Dae Ryong; Kang, Young Sun

    2016-09-01

    The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria. PMID:27510383

  6. The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis.

    Fishman, Pnina; Cohen, Shira

    2016-09-01

    The Gi protein-associated A3 adenosine receptor (A3AR) is over-expressed in inflammatory cells, and this high expression is also reflected in the peripheral blood mononuclear cells of patients with autoimmune inflammatory diseases such as rheumatoid arthritis, psoriasis, and Crohn's disease. CF101, a selective agonist with high affinity to the A3AR, is known to induce robust anti-inflammatory effect in experimental animal models of adjuvant-, collagen-, and tropomyosin-induced arthritis. The effect is mediated via a definitive molecular mechanism entailing deregulation of the nuclear factor-κB (NF-κB) and the Wnt signal transduction pathways resulting in apoptosis of inflammatory cells. CF101 was found to be safe and well tolerated in all preclinical, phase I, and phase II human clinical studies. In two phase II clinical studies where CF101 was administered to rheumatoid arthritis (RA) patients as a stand-alone drug, a significant anti-rheumatic effect and a direct significant correlation were found between receptor expression at baseline and patients' response to the drug, suggesting that A3AR may be utilized as a predictive biomarker. The A3AR is a promising therapeutic target in rheumatoid arthritis and can be used also as a biological marker to predict patients' response to CF101. This is a unique type of a personalized medicine approach which may pave the way for a safe and efficacious treatment for this patient population. PMID:26886128

  7. Differential role of the carboxy-terminus of the A2B adenosine receptor in stimulation of adenylate cyclase, phospholipase Cβ, and interleukin-8

    Ryzhov, Sergey; Zaynagetdinov, Rinat; Goldstein, Anna E.; Matafonov, Anton; Biaggioni, Italo; Feoktistov, Igor

    2009-01-01

    In human mast cells and microvascular endothelial cells, the A2B adenosine receptor controls at least three independent signaling pathways, i.e., Gs-mediated stimulation of adenylate cyclase, Gq-mediated stimulation of phospholipase Cβ, and Gs/Gq-independent upregulation of IL-8. Functional analysis of cells transfected with full-length and truncated receptor constructs revealed that the A2B receptor C-terminus is important for coupling to Gs and Gq proteins. Removal of the entire cytoplasmic...

  8. The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

    Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.; Cherezov, Vadim; Chien, Ellen Y.T.; Lane, J. Robert; IJzerman, Adriaan P.; Stevens, Raymond C. (Scripps); (Leiden/Amsterdam)

    2009-01-15

    The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.

  9. Modulation of glutamat AMPA receptors by adenosine, in physiological and hypoxic/ischemic conditions

    Dias, Raquel Alice da Silva Baptista, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2011 Most of the fast excitatory transmission in the brain is conveyed by ionotropic glutamate a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors, formed by tetrameric assemblies of different subunit (GluR1-GluR4) composition. Modulation of AMPA receptors enables profound changes in synaptic efficiency, underlying the maturation of neuronal networks t...

  10. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production.

    Clayton, Aled; Al-Taei, Saly; Webber, Jason; Mason, Malcolm D; Tabi, Zsuzsanna

    2011-07-15

    Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment. PMID:21677139

  11. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy

    Robert D. Leone

    2015-01-01

    Full Text Available The last several years have witnessed exciting progress in the development of immunotherapy for the treatment of cancer. This has been due in great part to the development of so-called checkpoint blockade. That is, antibodies that block inhibitory receptors such as CTLA-4 and PD-1 and thus unleash antigen-specific immune responses against tumors. It is clear that tumors evade the immune response by usurping pathways that play a role in negatively regulating normal immune responses. In this regard, adenosine in the immune microenvironment leading to the activation of the A2a receptor has been shown to represent one such negative feedback loop. Indeed, the tumor microenvironment has relatively high concentrations of adenosine. To this end, blocking A2a receptor activation has the potential to markedly enhance anti-tumor immunity in mouse models. This review will present data demonstrating the ability of A2a receptor blockade to enhance tumor vaccines, checkpoint blockade and adoptive T cell therapy. Also, as several recent studies have demonstrated that under certain conditions A2a receptor blockade can enhance tumor progression, we will also explore the complexities of adenosine signaling in the immune response. Despite important nuances to the A2a receptor pathway that require further elucidation, studies to date strongly support the development of A2a receptor antagonists (some of which have already been tested in phase III clinical trials for Parkinson Disease as novel modalities in the immunotherapy armamentarium.

  12. Polyamidoamine (PAMAM) Dendrimer Conjugates of Clickable Agonists of the A3 Adenosine Receptor and Coactivation of the P2Y14 Receptor by a Tethered Nucleotide

    Tosh, Dilip, K. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Yoo, Lena S. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Chinn, Moshe [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hong, Kunlun [ORNL; Kilbey, II, S Michael [ORNL; Barrett, Matthew O. [University of North Carolina School of Medicine; Fricks, Ingrid P. [University of North Carolina School of Medicine; Harden, T. Kendall [University of North Carolina School of Medicine; Jacobson, Kenneth A. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

    2010-01-01

    We previously synthesized a series of potent and selective A{sub 3} adenosine receptor (AR) agonists (North-methanocarba nucleoside 5{prime}-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed 'click' chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A{sub 3}AR activation was preserved in these multivalent conjugates, which bound with apparent Ki of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A{sub 3}AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A{sub 3} and P2Y{sub 14} receptors (via amide-linked uridine-5{prime}-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.

  13. Vasopressin is a major vasoconstrictor involved in hindlimb vascular responses to stimulation of adenosine A1 receptors in the nucleus of the solitary tract

    McClure, Joseph M.; Rossi, Noreen F.; Chen, Haiping; O'Leary, Donal S.; Scislo, Tadeusz J.

    2009-01-01

    Our previous study showed that stimulation of adenosine A1 receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation versus vasoconstriction mediated by neural and unknown humoral factors. In the present study we investigated the relative contribution of three major potential humoral vasoconstrictors: vasopressin, angiotensin II, and norepinephrine in this response. In ur...

  14. [18F]FE@SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents

    Haeusler, Daniela; Kuntner, Claudia; Nics, Lukas; Savli, Markus; Zeilinger, Markus; Wanek, Thomas; Karagiannis, Panagiotis; Lanzenberger, Rupert R.; Langer, Oliver; Shanab, Karem; Spreitzer, Helmut; Wadsak, Wolfgang; Hacker, Marcus; Mitterhauser, Markus

    2015-01-01

    Purpose The adenosine A3 receptor (A3R) is involved in cardiovascular, neurological and tumour-related pathologies and serves as an exceptional pharmaceutical target in the clinical setting. A3R antagonists are considered antiinflammatory, antiallergic and anticancer agents, and to have potential for the treatment of asthma, COPD, glaucoma and stroke. Hence, an appropriate A3R PET tracer would be highly beneficial for the diagnosis and therapy monitoring of these diseases. Therefore, in this ...

  15. Effect of 2-(6-cyano-1-hexyn-1-yl)adenosine on ocular blood flow in rabbits.

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2007-02-27

    Previously, we reported that a relatively selective adenosine A(2A) receptor agonist 2-(6-cyano-1-hexyn-1-yl)adenosine (2-CN-Ado) elicited ocular hypotension in rabbits (Journal of Pharmacological Sciences 2005;97:501-509). In the present study, we investigated the effect of 2-CN-Ado on ocular blood flow in rabbit eyes. An intravitreal injection of 2-CN-Ado increased ocular blood flow, measured by a non-contact laser flowmeter. 2-CN-Ado-induced increase in ocular blood flow was accompanied with the retinal vasodilation. The increase in ocular blood flow was inhibited by an adenosine A(2A) receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, but not by an adenosine A(2B) receptor antagonist alloxazine or an adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The repetitive applications of topical 2-CN-Ado twice a day for 7 days produced a persistent increase in ocular blood flow with ocular hypotension. These results suggest that 2-CN-Ado increases the ocular blood flow mainly via adenosine A(2A) receptor, and that the topical application of 2-CN-Ado for several days not only increases the ocular blood flow but also prolong ocular hypotension, indicating that 2-CN-Ado may be a useful lead compound for the treatment of ischemic retinal diseases such as glaucoma. PMID:17239401

  16. Comparison of the Effects of Adenosine A1 Receptors Activity in CA1 Region of the Hippocampus on Entorhinal Cortex and Amygdala Kindled Seizures in Rats

    A. Heidarianpour

    2008-10-01

    Full Text Available Introduction & Objective: In the CNS, adenosine is known to suppress repetitive neuronal Firing, suggesting a role as an endogenous modifier of seizures. Indeed, intracerebral adenosine concentrations rise acutely during seizure activity and are thought to be responsible for terminating seizures and establishing a period of post-ictal refractoriness. However, it is unclear whether this suppression results from a general depression of brain excitability or through action on particular sites critical for the control of after discharge generation and/or seizure development and propagation. In this regard, comparison of the effects of adenosine A1 receptors of CA1 (region of the ‎hippocampus on entorhinal cortex and amygdala kindled seizures was ‎investigated in this study. Materials & Methods: In this experimental study, Animals were kindled by daily electrical stimulation of amygdale (group A or entorhinal cortex (group B. In the fully kindled animals, N6-‎cyclohexyladenosine (CHA;1 and 10 M; a selective adenosine A1 receptor ‎agonist and 1,3-dimethyl-8-cyclohexylxanthine(CPT;1 ‎µ‎M; a selective ‎adenosine A1 receptors antagonist were microinfused bilaterally into the CA1 ‎region of hippocampus (1l/2min and animals were stimulated at 5 and 15 minutes after drug ‎injection. All animals were received artificial cerebrospinal fluid, 24 h before ‎each drug injection and this result were used as control. Results: The seizure parameters were measured at 5 and 15min post injection. Obtained data showed that CHA at concentrations of 10 ‎µ‎M reduced ‎entorhinal cortex and amygdala after discharge and stage5 seizure durations and ‎increased stage4 latency. CHA at concentration 1‎µ‎M significantly alters ‎seizure parameters of group A but not effect on group B. Intrahippocampal (CA1 region pretreatment of CPT (1 ‎µ‎M before CHA abolished the effects of CHA on seizure parameters.Conclusion: It ‎may be

  17. Intracellular adenosine 3',5'-phosphate formation is essential for down-regulation of surface adenosine 3',5'-phosphate receptors in Dictyostelium

    Van Haastert, Peter J. M.

    1994-01-01

    Dictyostelium discoideum cells contain cell surface cyclic AMP (cAMP) receptors that bind cAMP as a first messenger and intracellular cAMP receptors that bind cAMP as a second messenger. Prolonged incubation of Dictyostelium cells with cAMP induces a sequential process of phosphorylation, sequestration and down-regulation of the surface receptors. The role of intracellular cAMP in down-regulation of surface receptors was investigated. Down-regulation of receptors does not occur under conditio...

  18. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2.

    Peng, Shuang; Gerasimenko, Julia V; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Petersen, Ole H; Gerasimenko, Oleg V

    2016-08-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca(2+) signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca(2+) elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca(2+) signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5-10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca(2+) release followed by Ca(2+) entry and also substantially reduced Ca(2+) extrusion because of decreased intracellular ATP levels. The toxic Ca(2+) signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca(2+) signals and necrosis. We tested the effects of inhibiting the Ca(2+) release-activated Ca(2+) entry by the Ca(2+) channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca(2+) entry and also protected effectively against the development of necrosis.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377732

  19. Preparation and first evaluation of [18F]FE-SUPPY: a new PET tracer for the adenosine A3 receptor

    Introduction: Changes of the adenosine A3 receptor subtype (A3AR) expression have been shown in a variety of pathologies, especially neurological and affective disorders, cardiac diseases and oncological and inflammation processes. Recently, 5-(2-fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate (FE-SUPPY) was presented as a high-affinity ligand for the A3AR with good selectivity. Our aims were the development of a suitable labeling precursor, the establishment of a reliable radiosynthesis for the fluorine-18-labeled analogue [18F]FE-SUPPY and a first evaluation of [18F]FE-SUPPY in rats. Methods: [18F]FE-SUPPY was prepared in a feasible and reliable manner by radiofluorination of the corresponding tosylated precursor. Biodistribution was carried out in rats, and organs were removed and counted. Autoradiography was performed on rat brain slices in the presence or absence of 2-Cl-IB-MECA. Results: Overall yields and radiochemical purity were sufficient for further preclinical and clinical applications. The uptake pattern of [18F]FE-SUPPY found in rats mainly followed the described mRNA distribution pattern of the A3AR. Specific uptake in brain was demonstrated by blocking with a selective A3AR agonist. Conclusion: We conclude that [18F]FE-SUPPY has the potential to serve as the first positron emission tomography tracer for the A3AR

  20. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.

    2016-01-01

    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732

  1. Adenosine A1 Receptors and Microglial Cells Mediate CX3CL1-Induced Protection of Hippocampal Neurons Against Glu-Induced Death

    Lauro, Clotilde; Cipriani, Raffela; Catalano, Myriam; Trettel, Flavia; Chece, Giuseppina; Brusadin, Valentina; Antonilli, Letizia; Van Roijen, Nico; Euebi, Fabrizio; Fredholm, Bertil B.; Limatola, Cristina

    2010-01-01

    Abstract Fractalkine/CX3CL1 is a neuron-associated chemokine, which modulates microglia-induced neurotoxicity activating the specific and unique receptor CX3CR1. CX3CL1/CX3CR1 interaction modulates the release of cytokines from microglia, reducing the level of tumor necrosis factor-? (TNF-?), interleukin-1? (IL1-?) and nitric oxide and induces the production of neurotrophic substances, both in vivo and in vitro. We have recently shown that blocking adenosine A1 receptors (A1R) with...

  2. Preclinical tools in PET-tracer development : automatisation and biopharmaceutical evaluation with special emphasis on the adenosine A3 receptor

    Positron Emission Tomography (PET) is the first choice technology for the visualization and quantification of receptors and transporters, enabling examination of e.g. neurological, psychiatric and oncological diseases on a molecular level. Therefore, new and innovative PET-radiopharmaceuticals need to be developed to get further insights into the biochemical mechanisms involved in pathological changes. PET-tracer development starts with the idea or modelling of the chemical structure of a (new) molecule with (hopefully) good binding characteristics to the desired target site. As next steps, the compound needs to be synthesized and radiolabelled with a suitable PET-nuclide. Then it has to be evaluated regarding its parameters in various preclinical experimental settings. Hence, two major tools are crucial in the development-process of new PET-tracers: 1) a fast and reliable production method, most desirable and optimal in an automated set-up, and 2) proof of tracer suitability (high affinity, high selectivity and specificity, beside low unspecific binding) through preclinical evaluation in an animal model, prior to human application. Both aspects, the radiochemical preparation and automatisation, as well as the biopharmaceutical evaluation are presented in the thesis in 5 different manuscripts. In detail, the development and preclinical evaluation of 4 different PET-tracers ([11C]DASB, [18F]FE SUPPY, [18F]FE SUPPY:2, and [18F]FE CIT) for 3 targets, the serotonin transporter (SERT), the adenosine A3 receptor (A3R) and the dopamine transporter (DAT), respectively, are covered in the present thesis. The first manuscript presents a method for a fast, reliable and fully-automated radiosynthesis of [11C]DASB (a tracer for the imaging of the SERT in human brain in e.g. depression patients) will facilitate further clinical investigations (e.g. for the department of psychiatry and psychotherapy of the medical university of Vienna) with this tracer. [18F]FE SUPPY was

  3. Adenosine A1 receptor-mediated inhibition of in vitro prolactin secretion from the rat anterior pituitary

    D.L.W. Picanço-Diniz

    2006-11-01

    Full Text Available In previous studies, we demonstrated biphasic purinergic effects on prolactin (PRL secretion stimulated by an adenosine A2 agonist. In the present study, we investigated the role of the activation of adenosine A1 receptors by (R-N6-(2-phenylisopropyladenosine (R-PIA at the pituitary level in in vitro PRL secretion. Hemipituitaries (one per cuvette in five replicates from adult male rats were incubated. Administration of R-PIA (0.001, 0.01, 0.1, 1, and 10 µM induced a reduction of PRL secretion into the medium in a U-shaped dose-response curve. The maximal reduction was obtained with 0.1 µM R-PIA (mean ± SEM, 36.01 ± 5.53 ng/mg tissue weight (t.w. treatment compared to control (264.56 ± 15.46 ng/mg t.w.. R-PIA inhibition (0.01 µM = 141.97 ± 15.79 vs control = 244.77 ± 13.79 ng/mg t.w. of PRL release was blocked by 1 µM cyclopentyltheophylline, a specific A1 receptor antagonist (1 µM = 212.360 ± 26.560 ng/mg t.w., whereas cyclopentyltheophylline alone (0.01, 0.1, 1 µM had no effect. R-PIA (0.001, 0.01, 0.1, 1 µM produced inhibition of PRL secretion stimulated by both phospholipase C (0.5 IU/mL; 977.44 ± 76.17 ng/mg t.w. and dibutyryl cAMP (1 mM; 415.93 ± 37.66 ng/mg t.w. with nadir established at the dose of 0.1 µM (225.55 ± 71.42 and 201.9 ± 19.08 ng/mg t.w., respectively. Similarly, R-PIA (0.01 µM decreased (242.00 ± 24.00 ng/mg t.w. the PRL secretion stimulated by cholera toxin (0.5 mg/mL; 1050.00 ± 70.00 ng/mg t.w.. In contrast, R-PIA had no effect (468.00 ± 34.00 ng/mg t.w. on PRL secretion stimulation by pertussis toxin (0.5 mg/mL; 430.00 ± 26.00 ng/mg t.w.. These results suggest that inhibition of PRL secretion after A1 receptor activation by R-PIA is mediated by a Gi protein-dependent mechanism.

  4. Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes

    Alloisio, Susanna; Cugnoli, Carlo; Ferroni, Stefano; Nobile, Mario

    2004-01-01

    Despite the accumulating evidence that under various pathological conditions the extracellular elevation of adenine-based nucleotides and nucleosides plays a key role in the control of astroglial reactivity, how these signalling molecules interact in the regulation of astrocyte function is still largely elusive.The action of the nucleoside adenosine in the modulation of the intracellular calcium signalling ([Ca2+]i) elicited by adenosine 5′-triphosphate (ATP)-induced activation of P2 purinoce...

  5. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  6. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  7. Adenosine A{sub 2A} receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    Ahmad, Aftab, E-mail: Aftab.Ahmad@UCDenver.edu [Pediatric Airway Research Center, Department of Pediatrics, Aurora, CO (United States); Schaack, Jerome B. [Department of Microbiology, University of Colorado Denver, Aurora, CO (United States); White, Carl W.; Ahmad, Shama [Pediatric Airway Research Center, Department of Pediatrics, Aurora, CO (United States)

    2013-05-10

    Highlights: •A{sub 2A} receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A{sub 2A} receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A{sub 2A} receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A{sub 2A} receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A{sub 2A} receptor. A{sub 2A} receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A{sub 2A} receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A{sub 2A} receptor-overexpressing HLMVECs. Adenoviral-mediated A{sub 2A} receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A{sub 2A} receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A{sub 2A} receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A{sub 2A} receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A{sub 2A}-mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A{sub 2A} receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways.

  8. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine.

    Faingold, Carl L; Randall, Marc; Kommajosyula, Srinivasa P

    2016-08-01

    Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism. Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. PMID:27259068

  9. The A3 Adenosine Receptor Agonist CF502 Inhibits the PI3K, PKB/Akt and NF-κB Signaling Pathway in Synoviocytes from Rheumatoid Arthritis Patients and in Adjuvant Induced Arthritis Rats

    Ochaion, A.; BAR-YEHUDA, S.; Cohen, S.; Amital, H; Jacobson, K. A.; Joshi, B.V.; Gao, Z. G.; Barer, F.; PATOKA, R.; Del Valle, L; Perez-Liz, G.; Fishman, P

    2008-01-01

    The A3 adenosine receptor (A3AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant and collagen induced arthritis.

  10. Adenosine and sleep

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A1 receptors, 3H-L-PIA binding was measured. The Bmax values for 3H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in 3H-L-PIA binding resulted from REM sleep deprivation and not from stress

  11. Adenosine and sleep

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A/sub 1/ receptors, /sup 3/H-L-PIA binding was measured. The Bmax values for /sup 3/H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in /sup 3/H-L-PIA binding resulted from REM sleep deprivation and not from stress.

  12. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release. PMID:26604076

  13. Synthesis and characterisation of new 4-oxo-N-(substituted-thiazol-2-yl)-4H-chromene-2-carboxamides as potential adenosine receptor ligands

    Cagide, Fernando; Borges, Fernanda; Gomes, Ligia R.; Low, John Nicolson

    2015-06-01

    Chromones are 4H-benzopyran-4-one heterocycles that have been thoroughly studied due to their interesting biological activities. Thiazole based compounds have been used in therapeutics as antimicrobial, antiviral and as antifungal agents for a long time but, in the past decades, they have been identified as potent and selective ligands for adenosine receptor. In continuation of our project related to the syntheses of pharmacologically important heterocycles, a new series of chromone-thiazole hybrids have been designed as potential ligands for human adenosine receptors. In this context, new 4-oxo-N-(substituted-thiazol-2-yl)-4H-chromene-2-carboxamides were synthesized from chromone-2-carboxylic acid by two different amidation methods. The development of dissimilar synthetic approaches provided the possibility of working with diverse reaction conditions, namely with conventional heating and/or microwave irradiation. The structure of the compounds has been established on the basis of NMR and MS spectroscopy and X-ray crystallography. Relevant data related to the molecular geometry and conformation of the chromone-thiazole hybrids has been acquired which can be of the utmost importance to understand ligand-receptor binding.

  14. Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro.

    Hajjawi, Mark O R; Patel, Jessal J; Corcelli, Michelangelo; Arnett, Timothy R; Orriss, Isabel R

    2016-06-01

    Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30-50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone. PMID:26861849

  15. Potential of [{sup 11}C]TMSX for the evaluation of adenosine A{sub 2A} receptors in the skeletal muscle by positron emission tomography

    Ishiwata, Kiichi E-mail: ishiwata@pet.tmig.or.jp; Mizuno, Masaki; Kimura, Yuichi; Kawamura, Kazunori; Oda, Keiichi; Sasaki, Toru; Nakamura, Yoshio; Muraoka, Isao; Ishii, Kenji

    2004-10-01

    We examined the potential of [7-methyl-{sup 11}C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([{sup 11}C]TMSX) for the assessment of adenosine A{sub 2A} receptors in muscle. In rodents, specific binding of [{sup 11}C]TMSX was observed in muscle and heart by blockade with A{sub 2A}-selective CSC and non-selective theophylline, but not with A{sub 1}-selective DPCPX. Swimming exercise fluctuated radioligand-receptor binding in these tissues. In a PET study of two subjects, theophylline-infusion slightly deceased the distribution volume of [{sup 11}C]TMSX in the heart (20% reduction) and muscle (10% reduction), which suggested the specific binding.

  16. Effect of adenosine and adenosine analogs on [14C]aminopyrine accumulation by rabbit parietal cells

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on [14C]aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. [14C]Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated [14C]aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on [14C]aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated [14C]aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated [14C]aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased [14C]aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on [14C]aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion

  17. Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts.

    Fabrizio Vincenzi

    Full Text Available Adenosine receptors (ARs have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2, an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint

  18. 腺苷A1受体新配体YZG-404的镇静催眠作用%Sedative and hypnotic effects of a novel ligand YZG-404for adenosine A1 receptor

    李伟; 王亚芳; 李敏; 岳正刚; 石建功; 张建军

    2011-01-01

    目的 研究新化合物YZG-404与腺苷A1受体(A1R)和腺苷A2A受体(A2AR)的亲和力及其镇静催眠作用.方法 采用放射性配体受体竞争结合实验分别测定YZG-404与腺苷A1R和腺苷A2AR的亲和力;采用开阔场实验测定其对小鼠自发活动的影响:采用协同戊巴比妥钠睡眠实验评价其镇静催眠作用.结果 YZG-404对腺苷A1R亲和力较高,K值为98.8 nmol/L,而对腺苷A2AR的亲和力较低,K值约为9828.8 nmol/L.与溶剂对照组比较,YZG-404(1.25、2,5和5 mg/kg,ig)明显抑制小鼠的自发活动,抑制率分别为26.0%、59.7%和67.1%.另外,YZG-404(1.25、2.5和5 mg/kg,ig)可以明显延长戊巴比妥钠诱导小鼠睡眠时间,延长率分别为49.7%、129.5%和126.0%,并缩短入睡潜伏期,最高缩短率为19.8%.YZG-404能提高阈下剂量戊巴比妥钠诱导小鼠入睡率,最高入睡率达80%,效果与阳性对照药地西泮相当.结论 新化合物YZG-404与腺苷A1R亲和力强,并具有强效的镇静催眠作用.%Objective To examine the affinities of YZG-404 , a novel compound, to adenosine A1 receptor (A1R) and adenosine A2A receptor (A2AR) and its sedative and hypnotic effects. Methods Radioligand binding tests were carried out for the affinity property of YZG-404 to adenosine A1R and adenosine A2AR. The influence of YZG-404 on mice spontaneous locomotor activity was investigated by open field test, and sedative and hypnotic effect of YZG-404 on sodium pentobarbital-treated mice was also evaluated. Results YZG-404 had a higher affinity to adenosine A1R than to adenosine A2AR. The values of Ki to adenosine A1R and A2AR were 98.8 and 9828.8 nmol/L, respectively. The spontaneous locomotor activity was significantly decreased by YZG-404 at test doses (1.25 , 2.5 and 5 mg/kg, ig) , and the decreasing rate was 26.0% , 59.7% and 67.1%, respectively. The duration of sleeping in sodium pentobarbital-treated mice was dose-dependently prolonged by YZG-404, which was 49.7% , 129.5% and

  19. Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a.

    Serchov, Tsvetan; Clement, Hans-Willi; Schwarz, Martin K; Iasevoli, Felice; Tosh, Dilip K; Idzko, Marco; Jacobson, Kenneth A; de Bartolomeis, Andrea; Normann, Claus; Biber, Knut; van Calker, Dietrich

    2015-08-01

    Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments. PMID:26247862

  20. Adenosine A{sub 1} receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)[Dissertation 17227

    Geissler, E

    2007-07-01

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A{sub 1} and A{sub 2A} adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A{sub 1} receptor (A{sub 1}AR) in the modulation of vigilance states. The A{sub 1}AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A{sub 1}AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A{sub 2A} adenosine receptor (A{sub 2A}AR) is also assumed. The distinct functions of the A{sub 1} and A{sub 2A} receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A{sub 1} receptor antagonist, 8-cyclopentyl-3-(3-{sup 18}Ffluoropropyl)- 1-propylxanthine ({sup 18}F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A{sub 1}AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A{sub 1} receptors in human sleep regulation, combining {sup 18}F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A{sub 1}AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered {sup 18}F-CPFPX binding. Moreover, it was

  1. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder.

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell

    2016-05-01

    In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-likeR heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-likeR heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. PMID:26987369

  2. High-dose adenosine overcomes the attenuation of myocardial perfusion reserve caused by caffeine.

    Reyes, E.; Loong, C Y; Harbinson, Mark; Donovan, J; Anagnostopoulos, C.; Underwood, S. R.

    2008-01-01

    Objectives:We studied whether an increase in adenosine dose overcomes caffeine antagonism on adenosine-mediated coronary vasodilation.Background:Caffeine is a competitive antagonist at the adenosine receptors, but it is unclear whether caffeine in coffee alters the actions of exogenous adenosine, and whether the antagonism can be surmounted by increasing the adenosine dose.Methods:Myocardial perfusion scintigraphy (MPS) was used to assess adenosine-induced hyperemia in 30 patients before (bas...

  3. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal Adenosine A1 receptor function

    Moidunny, S.; Dias, R.; Van Calker, D.; Boddeke, H.; Sebastiao, A.; Biber, K.

    2010-01-01

    Objective: Adenosine is a neuromodulator in the central nervous system exhibiting anticonvulsive, neuroprotective and sedating/sleep regulating properties. A pathophysiological importance of adenosine in various neuropsychiatric diseases (e.g. epilepsy, neurodegenerative disorders, apoplexia and moo

  4. Enantiomeric 4-Acylamino-6-alkyloxy-2 Alkylthiopyrimidines As Potential A3 Adenosine Receptor Antagonists: HPLC Chiral Resolution and Absolute Configuration Assignment by a Full Set of Chiroptical Spectroscopy.

    Rossi, Daniela; Nasti, Rita; Marra, Annamaria; Meneghini, Silvia; Mazzeo, Giuseppe; Longhi, Giovanna; Memo, Maurizio; Cosimelli, Barbara; Greco, Giovanni; Novellino, Ettore; Da Settimo, Federico; Martini, Claudia; Taliani, Sabrina; Abbate, Sergio; Collina, Simona

    2016-05-01

    The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)-N-(6-(1-phenylethoxy)-2-(propylthio)pyrimidin-4-yl)acetamide (), (R/S)-N-(2-(1-phenylethylthio)-6-propoxypyrimidin-4-yl)acetamide (), and (R/S)-N-(2-(benzylthio)-6-sec-butoxypyrimidin-4-yl)acetamide () was achieved by high-performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434-440, 2016. © 2016 Wiley Periodicals, Inc. PMID:27095007

  5. Cross sectional PET study of cerebral adenosine A{sub 1} receptors in premanifest and manifest Huntington's disease

    Matusch, Andreas; Elmenhorst, David [Institute of Neuroscience and Medicine (INM-2), Juelich (Germany); Saft, Carsten; Kraus, Peter H.; Gold, Ralf [St. Josef Hospital, Ruhr University Bochum, Department of Neurology, Huntington Centre NRW, Bochum (Germany); Hartung, Hans-Peter [Heinrich Heine University Duesseldorf, Department of Neurology, Medical Faculty, Duesseldorf (Germany); Bauer, Andreas [Institute of Neuroscience and Medicine (INM-2), Juelich (Germany); Heinrich Heine University Duesseldorf, Department of Neurology, Medical Faculty, Duesseldorf (Germany)

    2014-06-15

    To study cerebral adenosine receptors (AR) in premanifest and manifest stages of Huntington's disease (HD). We quantified the cerebral binding potential (BP{sub ND}) of the A{sub 1}AR in carriers of the HD CAG trinucleotide repeat expansion using the radioligand [{sup 18} F]CPFPX and PET. Four groups were investigated: (i) premanifest individuals far (preHD-A; n = 7) or (ii) near (preHD-B; n = 6) to the predicted symptom onset, (iii) manifest HD patients (n = 8), and (iv) controls (n = 36). Cerebral A{sub 1}AR values of preHD-A subjects were generally higher than those of controls (by up to 31 %, p <.01, in the thalamus on average). Across stages a successive reduction of A{sub 1}AR BP{sub ND} was observed to the levels of controls in preHD-B and undercutting controls in manifest HD by down to 25 %, p <.01, in the caudatus and amygdala. There was a strong correlation between A{sub 1}AR BP{sub ND} and years to onset. Before onset of HD, the assumed annual rates of change of A{sub 1}AR density were -1.2 % in the caudatus, -1.7 % in the thalamus and -3.4 % in the amygdala, while the corresponding volume losses amounted to 0.6 %, 0.1 % and 0.2 %, respectively. Adenosine receptors switch from supra to subnormal levels during phenoconversion of HD. This differential regulation may play a role in the pathophysiology of altered energy metabolism. (orig.)

  6. Metabolism of the A{sub 1} adenosine receptor PET ligand [{sup 18}F]CPFPX by CYP1A2: implications for bolus/infusion PET studies

    Matusch, Andreas [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Meyer, Philipp T. [Department of Neurology, University Hospital Aachen, D-52074 Aachen (Germany); Bier, Dirk [Institute for Neuroscience and Biophysics (INB4)-Nuclear Chemistry, Research Center Juelich GmbH, D-52425 Juelich (Germany); Holschbach, Marcus H. [Institute for Neuroscience and Biophysics (INB4)-Nuclear Chemistry, Research Center Juelich GmbH, D-52425 Juelich (Germany); Woitalla, Dirk [Neurological Department, Ruhr-University Bochum, D-44791 Bochum (Germany); Elmenhorst, David [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Winz, Oliver H. [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Zilles, Karl [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany); Bauer, Andreas [Institute of Medicine, Research Center Juelich GmbH, D-52425 Juelich (Germany)]. E-mail: an.bauer@fz-juelich.de

    2006-10-15

    The A{sub 1} adenosine receptor positron emission tomography (PET) ligand 8-cyclopentyl-3-(3-[{sup 18}F]fluoropropyl)-1-propylxanthine ([{sup 18}F]CPFPX, ) undergoes a fast hepatic metabolism. An optimal design of PET quantitation approaches (e.g., bolus/infusion studies) necessitates the knowledge of factors that influence this metabolism. Metabolites of were separated by radio thin-layer chromatography. Metabolism in vivo, in pooled human liver microsomes and in recombinant human cytochrome isoenzyme preparations was studied. Dynamic PET studies using were performed on three controls and two patients, one treated with the antidepressant and inhibitor of cytochrome CYP1A2 fluvoxamine, the other suffering from liver cirrhosis. CPFPX is metabolized by cytochrome CYP1A2 with high selectivity [K {sub M}=1.1 {mu}M (95% confidence interval, or CI, 0.6-2.0 {mu}M) and V {sub max}=243 pmol min{sup -1} mg{sup -1} (95% CI, 112-373 pmol min{sup -1} mg{sup -1}) corresponding to 2.4 pmol min{sup -1} pmol{sup -1} cytochrome P-450]. This metabolism can competitively be inhibited by fluvoxamine with K {sub I}=68 nM (95% CI, 34-138 nM). At least eight compounds found in human plasma and in the CYP1A2 in vitro preparations have an identical migration pattern and account together for >90% and >80% of the respective metabolite yield. Metabolism was considerably delayed in the two patients. In conclusion, is metabolized by cytochrome CYP1A2. Its metabolism is therefore subdued to disease-related or xenobiotic-induced changes of CYP1A2 activity. The identification of the metabolic pathway of 1 allows to optimize image quantification in A{sub 1} adenosine receptor PET studies.

  7. Ion fluxes through KCa2 (SK and Cav1 (L-type channels contribute to chronoselectivity of adenosine A1 receptor-mediated actions in spontaneously beating rat atria

    Paulo eCorreia-De-Sá

    2016-03-01

    Full Text Available Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3 and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type channels.

  8. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria.

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A; Faria, Miguel; Fontes-Sousa, Ana P; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca(2+)-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca(2+) influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca(2+) influx through Cav1 (L-type) channels. PMID:27014060

  9. Adenosine signaling in striatal circuits and alcohol use disorders.

    Nam, Hyung Wook; Bruner, Robert C; Choi, Doo-Sup

    2013-09-01

    Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction. PMID:23912595

  10. ( sup 3 H)CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M. (CIBA-GEIGY Corporation, Summit, NJ (USA))

    1989-12-01

    In the present study, the binding of a highly A2-selective agonist radioligand, (3H)CGS 21680 (2-(p-(2-carboxyethyl)-phenethylamino)-5'-N-ethylcarboxamido adenosine) is described. (3H)CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that (3H)CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. (3H)CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM (3H)CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of (3H)CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine.

  11. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina.

    Li, Hongyan; Chuang, Alice Z; O'Brien, John

    2014-05-01

    Electrical coupling of photoreceptors through gap junctions suppresses voltage noise, routes rod signals into cone pathways, expands the dynamic range of rod photoreceptors in high scotopic and mesopic illumination, and improves detection of contrast and small stimuli. In essentially all vertebrates, connexin 35/36 (gene homologs Cx36 in mammals, Cx35 in other vertebrates) is the major gap junction protein observed in photoreceptors, mediating rod-cone, cone-cone, and possibly rod-rod communication. Photoreceptor coupling is dynamically controlled by the day/night cycle and light/dark adaptation, and is directly correlated with phosphorylation of Cx35/36 at two sites, serine110 and serine 276/293 (homologous sites in teleost fish and mammals, respectively). Activity of protein kinase A (PKA) plays a key role during this process. Previous studies have shown that activation of dopamine D4 receptors on photoreceptors inhibits adenylyl cyclase, down-regulates cAMP and PKA activity, and leads to photoreceptor uncoupling, imposing the daytime/light condition. In this study, we explored the role of adenosine, a nighttime signal with a high extracellular concentration at night and a low concentration in the day, in regulating photoreceptor coupling by examining photoreceptor Cx35 phosphorylation in zebrafish retina. Adenosine enhanced photoreceptor Cx35 phosphorylation in daytime, but with a complex dose-response curve. Selective pharmacological manipulations revealed that adenosine A2a receptors provide a potent positive drive to phosphorylate photoreceptor Cx35 under the influence of endogenous adenosine at night. A2a receptors can be activated in the daytime as well by micromolar exogenous adenosine. However, the higher affinity adenosine A1 receptors are also present and have an antagonistic though less potent effect. Thus, the nighttime/darkness signal adenosine provides a net positive drive on Cx35 phosphorylation at night, working in opposition to dopamine to

  12. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies

    Ray, Clare J; Abbas, Mark R; Coney, Andrew M; Marshall, Janice M

    2002-01-01

    Adenosine, prostaglandins (PG) and nitric oxide (NO) have all been implicated in hypoxia-evoked vasodilatation. We investigated whether their actions are interdependent. In anaesthetised rats, the PG synthesis inhibitors diclofenac or indomethacin reduced muscle vasodilatation evoked by systemic hypoxia or adenosine, but not that evoked by iloprost, a stable analogue of prostacyclin (PGI2), or by an NO donor. After diclofenac, the A1 receptor agonist CCPA evoked no vasodilatation: we previously showed that A1, but not A2A, receptors mediate the hypoxia-induced muscle vasodilatation. Further, in freshly excised rat aorta, adenosine evoked a release of NO, detected with an NO-sensitive electrode, that was abolished by NO synthesis inhibition, or endothelium removal, and reduced by ≈50 % by the A1 antagonist DPCPX, the remainder being attenuated by the A2A antagonist ZM241385. Diclofenac reduced adenosine-evoked NO release by ≈50 % under control conditions, abolished that evoked in the presence of ZM241385, but did not affect that evoked in the presence of DPCPX. Adenosine-evoked NO release was also abolished by the adenyl cyclase inhibitor 2′,5′-dideoxyadenosine, while dose-dependent NO release was evoked by iloprost. Finally, stimulation of A1, but not A2A, receptors caused a release of PGI2 from rat aorta, assessed by radioimmunoassay of its stable metabolite, 6-keto PGF1α, that was abolished by diclofenac. These results suggest that during systemic hypoxia, adenosine acts on endothelial A1 receptors to increase PG synthesis, thereby generating cAMP, which increases the synthesis and release of NO and causes muscle vasodilatation. This pathway may be important in other situations involving these autocoids. PMID:12356892

  13. Effect of fluoxetine and adenosine receptor NECA agonist on G alpha q/11 protein of C6 glioma cells

    Kovářů, H.; Kovářů, F.; Lisá, Věra

    2012-01-01

    Roč. 33, č. 6 (2012), s. 614-618. ISSN 0172-780X Institutional support: RVO:67985823 Keywords : C6 glioma cells * SSRI antidepressant * G alpha q/11 signalling * G protein coupled receptor Subject RIV: ED - Physiology Impact factor: 0.932, year: 2012

  14. Cordycepin induces apoptosis of C6 glioma cells through the adenosine 2A receptor-p53-caspase-7-PARP pathway.

    Chen, Ying; Yang, Shih-Hung; Hueng, Dueng-Yuan; Syu, Jhih-Pu; Liao, Chih-Chen; Wu, Ya-Chieh

    2014-06-01

    Cordycepin, 3'-deoxyadenosine from Cordyceps sinensis, has been shown to exert anti-tumor effects in several cancer cell lines. This study investigated the effect of cordycepin on a rat glioma cell line. Cordycepin caused apoptosis in C6 glioma cells in a time- and concentration-dependent manner, but did not affect the survival of primary cultured rat astrocytes. Cordycepin increased the total protein levels of p53 and phosphorylated p53 in the C6 cells. Levels of cleaved caspase-7 and poly (ADP-ribose) polymerase (PARP), but not cleaved caspase-3, were also increased after cordycepin treatment. Specific inhibitors for p53 and caspases abrogated cordycepin-induced caspase-7 and PARP cleavage, and prevented cordycepin-induced apoptosis. Moreover, siRNA knockdown of p53 blocked cordycepin-induced cleavage of caspase-7 and PARP. Both adenosine 2A receptor (A2AR) antagonist and small interference RNA (siRNA) knockdown of A2AR blocked cordycepin-induced apoptosis, p53 activation, and caspase-7 and PARP cleavage. These may provide a new strategy of cordycepin for glioma therapy in the future. PMID:24704558

  15. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia.

    Pamenter, Matthew E; Dzal, Yvonne A; Milsom, William K

    2015-02-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O₂ for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O₂ min(-1) kg(-1), and 1412 ± 244 to 417 ± 62 ml min(-1) kg(-1), respectively; p tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR. PMID:25520355

  16. Preparation and first evaluation of [{sup 18}F]FE-SUPPY: a new PET tracer for the adenosine A{sub 3} receptor

    Wadsak, Wolfgang [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Mien, Leonhard-Key [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna, A-1090 Vienna (Austria); Shanab, Karem [Dept. of Drug and Natural Product Synthesis, Faculty of Life Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Ettlinger, Dagmar E. [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Haeusler, Daniela [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Sindelar, Karoline [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Lanzenberger, Rupert R. [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna, A-1090 Vienna (Austria); Spreitzer, Helmut [Dept. of Drug and Natural Product Synthesis, Faculty of Life Sciences, Univ. of Vienna, A-1090 Vienna (Austria); Viernstein, Helmut [Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria); Keppler, Bernhard K. [Dept. of Inorganic Chemistry, Univ. of Vienna, A-1090 Vienna (Austria); Dudczak, Robert; Kletter, Kurt [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus [Dept. of Nuclear Medicine, Medical Univ. of Vienna, A-1090 Vienna (Austria)]|[Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna, A-1090 Vienna (Austria)]|[Hospital Pharmacy of the General Hospital of Vienna, A-1090 Vienna (Austria)], E-mail: markus.mitterhouser@meduniwien.ac.at

    2008-01-15

    Introduction: Changes of the adenosine A{sub 3} receptor subtype (A3AR) expression have been shown in a variety of pathologies, especially neurological and affective disorders, cardiac diseases and oncological and inflammation processes. Recently, 5-(2-fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate (FE-SUPPY) was presented as a high-affinity ligand for the A3AR with good selectivity. Our aims were the development of a suitable labeling precursor, the establishment of a reliable radiosynthesis for the fluorine-18-labeled analogue [{sup 18}F]FE-SUPPY and a first evaluation of [{sup 18}F]FE-SUPPY in rats. Methods: [{sup 18}F]FE-SUPPY was prepared in a feasible and reliable manner by radiofluorination of the corresponding tosylated precursor. Biodistribution was carried out in rats, and organs were removed and counted. Autoradiography was performed on rat brain slices in the presence or absence of 2-Cl-IB-MECA. Results: Overall yields and radiochemical purity were sufficient for further preclinical and clinical applications. The uptake pattern of [{sup 18}F]FE-SUPPY found in rats mainly followed the described mRNA distribution pattern of the A3AR. Specific uptake in brain was demonstrated by blocking with a selective A3AR agonist. Conclusion: We conclude that [{sup 18}F]FE-SUPPY has the potential to serve as the first positron emission tomography tracer for the A3AR.

  17. CF101, An Agonist to the A3 Adenosine Receptor, Enhances the Chemotherapeutic Effect of 5-Fluorouracil in a Colon Carcinoma Murine Model

    Sara Bar-Yehuda

    2005-01-01

    Full Text Available NF-κB and the upstream kinase PKB/Akt are highly expressed in chemoresistance tumor cells and may hamper the apoptotic pathway. CF101, a specific agonist to the A3 adenosine receptor, inhibits the development of colon carcinoma growth in cell cultures and xenograft murine models. Because CF101 has been shown to downregulate PKB/Akt and NF-κB protein expression level, we presumed that its combination with chemotherapy will enhance the antitumor effect of the cytotoxic drug. In this study, we utilized 3-[4,5Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT and colony formation assays and a colon carcinoma xenograft model. It has been shown that a combined treatment of CF101 and 5-fluorouracil (5-FU enhanced the cytotoxic effect of the latter on HCT-116 human colon carcinoma growth. Downregulation of PKB/Akt, NF-κB, and cyclin D1, and upregulation of caspase-3 protein expression level were observed in cells and tumor lesions on treatment with a combination of CF101 and 5-FU. Moreover, in mice treated with the combined therapy, myelotoxicity was prevented as was evidenced by normal white blood cell and neutrophil counts. These results show that CF101 potentiates the cytotoxic effect of 5-FU, thus preventing drug resistance. The myeloprotective effect of CF101 suggests its development as an add-on treatment to 5-FU.

  18. Effect of adenosine and adenosine analogs on ( sup 14 C)aminopyrine accumulation by rabbit parietal cells

    Ota, S.; Hiraishi, H.; Terano, A.; Mutoh, H.; Kurachi, Y.; Shimada, T.; Ivey, K.J.; Sugimoto, T. (Univ. of Tokyo (Japan))

    1989-12-01

    Adenosine receptors that modulate adenylate cyclase activity have been identified recently in a number of tissues. Adenosine A2 receptor is stimulatory to adenylate cyclase, whereas adenosine A1 receptor is inhibitory to adenylate cyclase. We investigated the effect of adenosine and its analogs on (14C)aminopyrine accumulation by rabbit parietal cells. Rabbit gastric mucosal cells were isolated by enzyme digestion. Parietal cells were enriched by nonlinear percoll gradients. (14C)Aminopyrine accumulation was used as an indicator of acid secretion. The effect of 2-chloroadenosine on histamine-stimulated (14C)aminopyrine accumulation was studied. The effects of N-ethylcarboxamideadenosine, 2-chloroadenosine, stable analogs of adenosine, and adenosine on (14C)aminopyrine accumulation were assessed. Cyclic AMP content of parietal cells was determined by radioimmunoassay. Histamine and carbachol, known secretagogues, stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine did not suppress histamine-stimulated (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine dose dependently increased (14C)aminopyrine accumulation. The order of potency was N-ethylcarboxamideadenosine greater than 2-chloroadenosine greater than adenosine. 8-Phenyltheophylline and theophylline, adenosine-receptor antagonists, or cimetidine did not have significant effects on the increase of AP uptake induced by 2-chloroadenosine. Coadministration of dipyridamole, and adenosine uptake inhibitor, augmented the effect of adenosine on (14C)aminopyrine accumulation. 2-Chloroadenosine, N-ethylcarboxamideadenosine, and adenosine each induced a significant increase in cellular cyclic AMP. We conclude that there may be adenosine A2 receptors on rabbit parietal cells which modulate gastric acid secretion.

  19. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart

    Yong-Cheol Lee

    2016-01-01

    Full Text Available The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs and adenosine receptors (ADRs in remifentanil preconditioning (R-Pre and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP,velocity of contraction (+dP/dtmax, and coronary flow (CF were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia. These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk.

  20. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression

    Deaglio, Silvia; Dwyer, Karen M.; GAO, WENDA; Friedman, David; Usheva, Anny; Erat, Anna; Chen, Jiang-Fan; Enjyoji, Keiichii; Linden, Joel; Oukka, Mohamed; Kuchroo, Vijay K.; Strom, Terry B.; Robson, Simon C.

    2007-01-01

    The study of T regulatory cells (T reg cells) has been limited by the lack of specific surface markers and an inability to define mechanisms of suppression. We show that the expression of CD39/ENTPD1 in concert with CD73/ecto-5′-nucleotidase distinguishes CD4+/CD25+/Foxp3+ T reg cells from other T cells. These ectoenzymes generate pericellular adenosine from extracellular nucleotides. The coordinated expression of CD39/CD73 on T reg cells and the adenosine A2A receptor on activated T effector...

  1. Regulation of cessation of respiration and killing by cyclic 3',5'-adenosine monophosphate and its receptor protein after far-ultraviolet irradiation of Escherichia coli

    When Escherichia coli B/r cultures are irradiated with ultraviolet light (UV) (254 nm), those cells that are killed stop respiring by 60 min after irradiation. Post-UV treatment with cyclic adenosine 3',5'-adenosine monophosphate (cAMP) causes more cells to stop respiring and to die. We have studied these effects at a UV fluence of 52 I/m2 in a a wild-type E. coli K 12 strain and in mutants defective in cAMP metabolism. Strain CA 8,000 has crp+ and cya+ genes for the cAMP receptor protein (CRP) (required for transcription of operons regulated by cAMP) and for adenylate cyclase, respectively; CA 7901 is crp-; and CA 8306 is a cya deletion (Δ). The wild-type culture showed a small transient cessation of respiration, and addition of cAMP caused cessation to be nearly complete. The crp- culture showed no evidence of cessation of respiration, and cAMP had no effect. The Δ cya mutant also showed no cessation of respiration, but cAMP (5 mM) caused as complete inhibition as in the wild type. cAMP caused a 10-fold loss in viability of UV-irradiated wild-type and Δ cya liquid cultures but had no effect on the cpr- culture. Respiration and viability changes were also studied in a double mutant, CA8404 Δ cya crp*, which has an altered CRP that is, with respect to the lac operon, independent of cAMP. The respiration response to UV was similar to that of the wild-type culture, and both respiration and viability of cells in liquid culture were sensitive to cAMP. The survival data, obtained by plating immediately after irradiation, show the wild type, Δ cya strains, and Δ cya crp* to be equally sensitive and the crp- strain to be more resistant. We conclude that cessation of respiration and cell killing after UV irradiation are regulated by cAMP and the CRP. (orig.)

  2. Thermostabilisation of the neurotensin receptor NTS1

    Shibata, Yoko; White, Jim F.; Serrano-Vega, Maria J.; Magnani, Francesca; Aloia, Amanda L.; Grisshammer, Reinhard; Tate, Christopher G.

    2009-01-01

    Structural studies on G protein-coupled receptors (GPCRs) have been hampered for many years by their instability in detergent solution and by the number of potential conformations that receptors can adopt. Recently, the structures of the β1 and β2 adrenergic receptors and the adenosine A2a receptor were determined with antagonist bound, a receptor conformation that is thought to be more stable than the agonist-bound state. In contrast to these receptors, the neurotensin receptor NTS1 is much ...

  3. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine.

    David Acton

    Full Text Available Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1, an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to

  4. Involvement of adenosinergic receptors in anxiety related behaviours.

    Kulkarni, Shrinivas K; Singh, Kulwinder; Bishnoi, Mahendra

    2007-05-01

    In the present study, the effect of adenosine (A1 and A2 receptor agonist), caffeine (A2A receptor antagonist), theophylline (A2A receptor antagonist) and their combination was studied in anxiety related behaviours using elevated zero maze and elevated plus maze paradigms and compared their various behavioural profiles. Adenosine (10, 25, 50,100 mg/kg) significantly showed anxiolytic effect at all the doses, whereas caffeine (8, 15, 30, 60 mg/kg) and theophylline (30, 60 mg/kg) showed psychostimulatory action at lower doses and anxiogenic effect at higher doses. Pretreatment with caffeine (8, 15, 30 mg/kg) and theophylline (30 mg/kg) reversed the anxiolytic effect of adenosine. The study suggested the involvement of adenosinergic receptor system in anxiety related behaviours. PMID:17569285

  5. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    ROBERTO PAES-DE-CARVALHO

    2002-01-01

    The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activa...

  6. Role of the Peroxisome Proliferator-Activated Receptors, Adenosine Monophosphate-Activated Kinase, and Adiponectin in the Ovary

    Joëlle Dupont

    2008-01-01

    Full Text Available The mechanisms controlling the interaction between energy balance and reproduction are the subject of intensive investigations. The integrated control of these systems is probably a multifaceted phenomenon involving an array of signals governing energy homeostasis, metabolism, and fertility. Two fuel sensors, PPARs, a superfamily of nuclear receptors and the kinase AMPK, integrate energy control and lipid and glucose homeostasis. Adiponectin, one of the adipocyte-derived factors mediate its actions through the AMPK or PPARs pathway. These three molecules are expressed in the ovary, raising questions about the biological actions of fuel sensors in fertility and the use of these molecules to treat fertility problems. This review will highlight the expression and putative role of PPARs, AMPK, and adiponectin in the ovary, particularly during folliculogenesis, steroidogenesis, and oocyte maturation.

  7. Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3.

    Hajiahmadi, Sima; Panjehpour, Mojtaba; Aghaei, Mahmoud; Shabani, Mahdi

    2015-08-01

    A2b adenosine receptor (A2bAR) acts as a potent regulator of cell growth in various cell lines. The present study was designed to understand the controlling mechanism of A2bAR agonist (NECA)-induced apoptosis in ovarian cancer cells. Real-time PCR and western blotting assays were used to evaluate the gene and protein expression profiles of A2bAR, respectively. MTT assay was used to study the cell proliferation effect of A2bAR agonist (NECA). Detection of apoptosis was conducted using annexin V-FITC/PI staining, caspase-3 activation assay, and the expression of Bax and Bcl-2 proteins analysis. The mitochondrial membrane potential (ΔΨM) was analyzed by employing JC-1 prob. The mRNA and protein expression levels of A2bAR in ovarian cancer cells were detected. NECA significantly reduced cell viability in a dose-dependent manner in OVCAR-3 and Caov-4 cell lines. The growth inhibition effect of NECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by NECA were also observed. These findings demonstrated that NECA induces apoptosis via the mitochondrial signaling pathway. Thus, A2bAR agonists may be a potential agent for induction of apoptosis in ovarian cancer cells. PMID:25877700

  8. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Kim, Min-Su; So, Young-In; Lee, Kong-Joo; Garred, Peter; Lee, Bok-Luel

    2011-01-01

    adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  9. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, [3H]NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine

  10. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  11. Sleep Disturbance Induced by Cocaine Abstinence Involving in A2A Receptor over-Expression in Rat Hypothalamus%可卡因戒断致大鼠睡眠结构失调涉及下丘脑腺苷A2A受体

    洪芬芳; 刘晓军; 贺长生; 杨树龙

    2012-01-01

    本实验于大鼠体内植入无线发射器,在可卡因用药前、停药第1(急性戒断)、第8(亚急性戒断)和第14 d(亚慢性戒断)记录自由活动大鼠脑电活动24 h.Western blot法检测腺苷受体在下丘脑和小脑组织表达水平,初步探索可卡因戒断致睡眠失调与腺苷受体之间的关系.结果发现可卡因停药第8d夜晚和白天,非快眼动(NREM)睡眠增加(P<0.05),快眼动(REM)睡眠下降(P<0.01);停药第14 d,NREM睡眠夜晚显著增加(P<0.01)而白天仅略加强,但白天和夜间REM睡眠均明显下降(P<0.01).可卡因戒断第8d和第14d下丘脑腺苷A2A受体表达明显增高(P<0.05),而腺苷A1受体在可卡因戒断仅第14 d降低(P<0.05),停药第1、第8和第14d腺苷A2B亚基表达变化不明显(P>0.05).而小脑腺苷A1、A2A和A2B受体表达均未见明显改变.这些证据提示亚急性和亚慢性可卡因戒断导致睡眠失调可能部分涉及大鼠下丘脑腺苷A2A受体过表达.%Adult rats were implanted with sleep-wake recording electrodes in our experiments. Polygraphic signs of undisturbed sleep-wake activities were recorded for 24 h before cocaine administration, cocaine withdrawal day 1 (a-cute), day 8 (subacute), and day 14 (subchronic). Western blot method was performed to examine the expression levels of adenosine receptor subtypes in hypothalamus and cerebellum. Non rapid eye movement (NREM) sleep was significantly increased during nighttime (P<0. 01) and daytime (P<0. 05) on withdrawal day 8. The increase of NREM sleep was significant during nighttime (P<0. 01) and slight during daytime on withdrawal day 14, whereas both daytime and nighttime rapid eye movement (REM) sleeps were reduced markedly (P<0. 01) on withdrawal day 8 and 14. In addition, A2A receptor level was significantly enhanced on cocaine withdrawal day 8 and day 14 (P< 0. 05), whereas A1 receptor level reduced markedly on withdrawal day 14 (P<0. 05). However, compared with that in the

  12. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  13. Purinergic Receptors in Ocular Inflammation

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  14. Characterization of adenosine binding proteins in human placental membranes

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with [3H] -N-ethylcarboxamidoadenosine ([3H]NECA). This site is similar to the adenosine A2 receptor. We call this site the adenosine A2-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A1 receptor. The soluble adenosine A2-like binding site cannot be detected without a rapid assay. Binding to the adenosine A1 receptor with [3H]-2-chloroadenosine and [3H]NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A1 specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5'-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands [3H]-cyclohexyladenosine [3H] cylopentylxanthine revealed adenosine A1 agonist and antagonist potency orders. We have purified the adenosine A2-like binding site. The adenosine A2-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 Angstrom. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A2-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine

  15. Characterization of adenosine binding proteins in human placental membranes

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  16. Adenosine in exercise adaptation.

    Simpson, R E; Phillis, J. W.

    1992-01-01

    By influencing the regulation of the mechanisms of angiogenesis, erythropoietin production, blood flow, myocardial glucose uptake, glycogenolysis, systolic blood pressure, respiration, plasma norepinephrine and epinephrine levels, adenosine may exert a significant effect on the body's adaptation response to exercise. However, adenosine's possible influence over the vasodilatory response to exercise in skeletal muscle is controversial and more research is required to resolve this issue. Variou...

  17. Purinergic receptors in psychiatric disorders.

    Krügel, Ute

    2016-05-01

    Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26518371

  18. [18F]FE rate at SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents

    The adenosine A3 receptor (A3R) is involved in cardiovascular, neurological and tumour-related pathologies and serves as an exceptional pharmaceutical target in the clinical setting. A3R antagonists are considered antiinflammatory, antiallergic and anticancer agents, and to have potential for the treatment of asthma, COPD, glaucoma and stroke. Hence, an appropriate A3R PET tracer would be highly beneficial for the diagnosis and therapy monitoring of these diseases. Therefore, in this preclinical in vivo study we evaluated the potential as a PET tracer of the A3R antagonist [18F]FE rate at SUPPY. Rats were injected with [18F]FE rate at SUPPY for baseline scans and blocking scans (A3R with MRS1523 or FE rate at SUPPY, P-gp with tariquidar; three animals each). Additionally, metabolism was studied in plasma and brain. In a preliminary experiment in a mouse xenograft model (mice injected with cells expressing the human A3R; three animals), the animals received [18F]FE rate at SUPPY and [18F]FDG. Dynamic PET imaging was performed (60 min in rats, 90 min in xenografted mice). In vitro stability of [18F]FE rate at SUPPY in human and rat plasma was also evaluated. [18F]FE rate at SUPPY showed high uptake in fat-rich regions and low uptake in the brain. Pretreatment with MRS1523 led to a decrease in [18F]FE rate at SUPPY uptake (p = 0.03), and pretreatment with the P-gp inhibitor tariquidar led to a 1.24-fold increase in [18F]FE rate at SUPPY uptake (p = 0.09) in rat brain. There was no significant difference in metabolites in plasma and brain in the treatment groups. However, plasma concentrations of [18F]FE rate at SUPPY were reduced to levels similar to those in rat brain after blocking. In contrast to [18F]FDG uptake (p = 0.12), the xenograft model showed significantly increased uptake of [18F]FE rate at SUPPY in the tissue masses from CHO cells expressing the human A3R (p = 0.03). [18F]FE rate at SUPPY was stable in human plasma. Selective and significant tracer uptake

  19. [{sup 18}F]FE rate at SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents

    Haeusler, Daniela; Zeilinger, Markus; Wadsak, Wolfgang; Hacker, Marcus; Mitterhauser, Markus [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Kuntner, Claudia; Wanek, Thomas; Langer, Oliver [AIT Austrian Institute of Technology GmbH, Biomedical Systems, Health and Environment Department, Seibersdorf (Austria); Nics, Lukas [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Nutritional Sciences, Vienna (Austria); Savli, Markus; Lanzenberger, Rupert R. [Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna (Austria); Karagiannis, Panagiotis [King' s College London, Cutaneous Medicine and Immunotherapy, St. John' s Institute of Dermatology, Division of Genetics and Molecular Medicine King' s College London School of Medicine, Guy' s Hospital, London (United Kingdom); Shanab, Karem; Spreitzer, Helmut [University of Vienna, Department of Drug and Natural Product Synthesis, Vienna (Austria)

    2015-04-01

    The adenosine A{sub 3} receptor (A3R) is involved in cardiovascular, neurological and tumour-related pathologies and serves as an exceptional pharmaceutical target in the clinical setting. A3R antagonists are considered antiinflammatory, antiallergic and anticancer agents, and to have potential for the treatment of asthma, COPD, glaucoma and stroke. Hence, an appropriate A3R PET tracer would be highly beneficial for the diagnosis and therapy monitoring of these diseases. Therefore, in this preclinical in vivo study we evaluated the potential as a PET tracer of the A3R antagonist [{sup 18}F]FE rate at SUPPY. Rats were injected with [{sup 18}F]FE rate at SUPPY for baseline scans and blocking scans (A3R with MRS1523 or FE rate at SUPPY, P-gp with tariquidar; three animals each). Additionally, metabolism was studied in plasma and brain. In a preliminary experiment in a mouse xenograft model (mice injected with cells expressing the human A3R; three animals), the animals received [{sup 18}F]FE rate at SUPPY and [{sup 18}F]FDG. Dynamic PET imaging was performed (60 min in rats, 90 min in xenografted mice). In vitro stability of [{sup 18}F]FE rate at SUPPY in human and rat plasma was also evaluated. [{sup 18}F]FE rate at SUPPY showed high uptake in fat-rich regions and low uptake in the brain. Pretreatment with MRS1523 led to a decrease in [{sup 18}F]FE rate at SUPPY uptake (p = 0.03), and pretreatment with the P-gp inhibitor tariquidar led to a 1.24-fold increase in [{sup 18}F]FE rate at SUPPY uptake (p = 0.09) in rat brain. There was no significant difference in metabolites in plasma and brain in the treatment groups. However, plasma concentrations of [{sup 18}F]FE rate at SUPPY were reduced to levels similar to those in rat brain after blocking. In contrast to [{sup 18}F]FDG uptake (p = 0.12), the xenograft model showed significantly increased uptake of [{sup 18}F]FE rate at SUPPY in the tissue masses from CHO cells expressing the human A3R (p = 0.03). [{sup 18}F

  20. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei(Helmholtz-Institut für Strahlen- und Kernphysik, Bethe Center for Theoretical Physics, Universität Bonn, Bonn, D-53115, Germany); Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K.; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2014-01-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ...

  1. Highly expressed adenosine receptor A2B in mucosa dendritic cells is associated with enhanced pathogenicity of Crohn's disease%腺苷受体A2B亚型增加肠黏膜树突状细胞对Crohn's病的致病性

    赵嵘; 周树民; 左爱军

    2014-01-01

    目的 研究Crohn's病存在时其肠黏膜树突状细胞(dendritic cell,DC)中腺苷受体(ADOR) A2A及A2B的表达是否发生了变化,及对DC的功能产生了何种影响.方法 自不同来源的肠组织中分离肠黏膜DC(mucosa DC,mDC),real-time PCR测定ador-a2a及a2b基因的表达;放射性配体结合实验测定腺苷与mDC的结合能力及受体选择性.选择性激活mDC中的ADOR-A2A及A2B通路,以此DC刺激分离的CD4+细胞,ELISA测定细胞因子的分泌,荧光抗体染色及流式细胞仪分析检测CD4+细胞的分化.分离外周血单个核细胞(PBMC)诱导分化为树突状细胞(Mo-DC),以不同Toll样受体(TLR)的配体进行干预,测定ador-a2a及a2b基因的表达;选择性激活Mo-DC中的ADOR-A2B通路,检测其对CD4+细胞的刺激作用.结果 Crohn's病患者肠黏膜DC中ador-a2b基因的表达显著升高,该受体被激活后可刺激mDC分泌IL-1、IL-6及IL-12,并可促进CD4+细胞向Th1、Th17细胞的分化.TLR2的配体pam3csk4或TLR4的配体LPS可促进Mo-DC中ador-a2b基因的表达;该受体与LPS相协同显著增加Mo-DC的致病性.结论 Crohn's病肠黏膜DC中存在腺苷受体A2B亚型的高表达,该受体可增加mDC的致病功能且其在DC中的表达会受到某些Toll样受体通路的调节.%Objective To investigate the expression of adenosine receptor (ADOR) subtypes (A2A and A2B subtypes) in the mucosal dendritic cells (DCs) from patients with Crohn's disease and their pathogenic roles.Methods Mucosal DCs (mDCs) were isolated from resected intestine of patients with or without Crohn's disease.Some of the mDCs were cultured in vitro and others were used to extract RNA.The expression of ador-a2a and ador-a2b were detected by real-time qPCR.mDCs in culture were treated with selective ADOR-A2A and ADOR-A2B agonists (CGS 21680 and BAY 60-6583) and then the concentration of IL-1,IL-6 and IL-12 in the medium were measured by ELISA.The binding affinities of ADOR-A2A and ADOR-A2B to adenosine

  2. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes.

    Ciccarelli, Renata; D'Alimonte, Iolanda; Ballerini, Patrizia; D'Auro, Mariagrazia; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Bruno, Valeria; Nicoletti, Ferdinando; Caciagli, Francesco

    2007-05-01

    Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and (-)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-X(L), and were highly protective against apoptotic death, as shown by nuclear 4'-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A(1) and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways. PMID:17293559

  3. Alterações dos receptores A1 e A2a da adenosina num modelo animal da doença de Parkinson : função neuroprotectora?

    Rebelo, Patricia Celeste Soares

    2010-01-01

    Os receptores A2a da adenosina são actualmente considerados um alvo terapêutico na doença de Parkinson pois, devido à co-localização e interacção funcional com os receptores D2 da dopamina nos neurónios do estriado, a modulação com antagonistas A2a tem um efeito compensatório do défice de dopamina causado pela degeneração dos neurónios dopaminérgicos que projectam da substantia nigra para o estriado, melhorando a disfunção motora. Por outro lado, os antagonistas dos receptores A2a também most...

  4. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output. PMID:26311185

  5. Traditional Acupuncture Triggers a Local Increase in Adenosine in Human Subjects

    Takano, Takahiro; Chen, Xiaolin; Luo, Fang; Fujita, Takumi; Ren, Zeguang; Goldman, Nanna; Zhao, Yuanli; Markman, John D.; Nedergaard, Maiken

    2012-01-01

    Acupuncture is a form of Eastern medicine that has been practiced for centuries. Despite its long history and worldwide application, the biological mechanisms of acupuncture in relieving pain have been poorly defined. Recent studies in mice, however, demonstrate that acupuncture triggers increases in interstitial adenosine, which reduces the severity of chronic pain through adenosine A1 receptors, suggesting that adenosine-mediated antinociception contributes to the clinical benefits of acupu...

  6. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats.

    Ochaion, A; Bar-Yehuda, S; Cohen, S; Amital, H; Jacobson, K A; Joshi, B V; Gao, Z G; Barer, F; Patoka, R; Del Valle, L; Perez-Liz, G; Fishman, P

    2008-08-15

    The A(3) adenosine receptor (A(3)AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant- and collagen-induced arthritis. In this study we present a novel A(3)AR agonist, CF502, with high affinity and selectivity at the human A(3)AR. CF502 induced a dose dependent inhibitory effect on the proliferation of fibroblast-like synoviocytes (FLS) via de-regulation of the nuclear factor-kappa B (NF-kappaB) signaling pathway. Furthermore, CF502 markedly suppressed the clinical and pathological manifestations of adjuvant-induced arthritis (AIA) in a rat experimental model when given orally at a low dose (100 microg/kg). As is typical of other G-protein coupled receptors, the A(3)AR expression level was down-regulated shortly after treatment with agonist CF502 in paw and in peripheral blood mononuclear cells (PBMCs) derived from treated AIA animals. Subsequently, a decrease in the expression levels of protein kinase B/Akt (PKB/Akt), IkappaB kinase (IKK), I kappa B (IkappaB), NF-kappaB and tumor necrosis factor-alpha (TNF-alpha) took place. In addition, the expression levels of glycogen synthase kinase-3 beta (GSK-3beta), beta-catenin, and poly(ADP-ribose)polymerase (PARP), known to control the level and activity of NF-kappaB, were down-regulated upon treatment with CF502. Taken together, CF502 inhibits FLS growth and the inflammatory manifestations of arthritis, supporting the development of A(3)AR agonists for the treatment of rheumatoid arthritis. PMID:18602896

  7. The A3 Adenosine Receptor Agonist CF502 Inhibits the PI3K, PKB/Akt and NF-κB Signaling Pathway in Synoviocytes from Rheumatoid Arthritis Patients and in Adjuvant Induced Arthritis Rats

    Ochaion, A.; Bar-Yehuda, S.; Cohen, S.; Amital, H.; Jacobson, K.A.; Joshi, B.V.; Gao, Z.G.; Barer, F.; Patoka, R.; Del Valle, L.; Perez-Liz, G.; Fishman, P.

    2009-01-01

    The A3 adenosine receptor (A3AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant and collagen induced arthritis. In this study we present a novel A3AR agonist, CF502, with high affinity and selectivity at the human A3AR. CF502 induced a dose dependent inhibitory effect on the proliferation of fibroblast-like synoviocytes (FLS) via de-regulation of the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, CF502 markedly suppressed the clinical and pathological manifestations of Adjuvant Induced Arthritis (AIA) in a rat experimental model when given orally at a low dose (100 μg/kg). As is typical of other G-protein coupled receptors, the A3AR expression level was down-regulated shortly after treatment with agonist CF502 in paw and in peripheral blood mononuclear cells (PBMCs) derived from treated AIA animals. Subsequently, a decrease in the expression levels of Protein Kinase B/Akt (PKB/Akt), IκB kinase (IKK), (I kappa B) IκB, NF-κB and tumor necrosis factor-alpha (TNF-α) took place. In addition, the expression levels of Glycogen synthase kinase-3 beta (GSK-3β), β-catenin, and Poly (ADP-ribose) polymerase (PARP), known to control the level and activity of NF-κB, were down-regulated upon treatment with CF502. Taken together, CF502 inhibits FLS growth and the inflammatory manifestations of arthritis, supporting the development of A3AR agonists for the treatment of rheumatoid arthritis. PMID:18602896

  8. Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats.

    Scaramuzzi, R J; Baker, D J

    2003-10-01

    Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age. PMID:14633184

  9. Adenosine and Sleep

    Bjorness, Theresa E.; Greene, Robert W.

    2009-01-01

    Over the last several decades the idea that adenosine (Ado) plays a role in sleep control was postulated due in large part to pharmacological studies that showed the ability of Ado agonists to induce sleep and Ado antagonists to decrease sleep. A second wave of research involving in vitro cellular analytic approaches and subsequently, the use of neurochemical tools such as microdialysis, identified a population of cells within the brainstem and basal forebrain arousal centers, with activity t...

  10. CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells.

    Flores-Santibáñez, Felipe; Fernández, Dominique; Meza, Daniel; Tejón, Gabriela; Vargas, Leonardo; Varela-Nallar, Lorena; Arredondo, Sebastián; Guixé, Victoria; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela

    2015-12-01

    The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells. PMID:26331349

  11. Radiosynthesis of the adenosine A3 receptor ligand 5-(2-[18F]fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate ([18F]FE rate at SUPPY)

    Since to date very limited information on the distribution and function of the adenosine A3 receptor is available, the development of a suitable radioligand is needed. Such a selective radioligand can then be used for quantitative autoradiography, preclinical studies in animals and subsequent human PET applications. Recently, a promising candidate compound, 5-(2-fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate (FE rate at SUPPY), has been presented. The successful preparation of a suitable labelling precursor and the evaluation and optimization of the radiosynthesis of [18F]FE rate at SUPPY is presented herewith. For satisfactory yields, a reaction temperature of 75 C has to be applied for at least 20 min using 8-10 mg of precursor. Until now, 15 complete high-scale radiosyntheses were performed. Starting from an average of 51 ± 12 GBq (average ±SD; range: 30-67 GBq) [18F]fluoride, 9.4 ± 3.6 GBq of formulated [18F]FE rate at SUPPY (32.3 ± 12.4%, based on [18F]fluoride, corrected for decay) were prepared in < 105 min. (orig.)

  12. Radiosynthesis of a novel potential adenosine A3 receptor ligand, 5-ethyl 2,4-diethyl-3-((2-[18F]fluoroethyl)sulfanylcarbonyl) -6-phenylpyridine-5-carbox ylate ([18F]FE rate at SUPPY:2)

    Since, to date very limited information on the distribution and function of the adenosine A3 receptor is available, the development of suitable radioligands is needed. Recently, we introduced [18F]FE rate at SUPPY (5-(2-[18F]fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate) as the first PET-ligand for the A3R. Regarding the metabolic profile - this class of dialkylpyridines comprises two ester functions within one molecule, one carboxylic and one thiocarboxylic - one could expect carboxylesterases significantly contributing to cleavage and degradation. Therefore, our aim was the development of [18F]FE rate at SUPPY:2 (5-ethyl 2,4-diethyl-3-((2-[18F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine -5-carbox ylate), the functional isomer containing the label at the thiocarboxylic moiety. For satisfactory yields in high scale radiosyntheses, a reaction temperature of 75 C has to be applied for at least 20 min using 20 mg/mL of precursor. So far, 6 complete high-scale radiosyntheses were performed. Starting from an average of 51.2 ± 21.8 GBq (mean±SD) [18F]fluoride, 5.8 ± 4.1 GBq of formulated [18F]FE rate at SUPPY:2 (12.0±5.4%, based on [18F]fluoride, not corrected for decay) were prepared in 75 ± 8 min. (orig.)

  13. Radiosynthesis of the adenosine A{sub 3} receptor ligand 5-(2-[{sup 18}F]fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate ([{sup 18}F]FE rate at SUPPY)

    Wadsak, W. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna (Austria); Mien, L.K. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna (Austria); Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna (Austria); Shanab, K.; Spreitzer, H. [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna (Austria); Weber, K.; Schmidt, B.; Haeusler, D. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna (Austria); Sindelar, K.M.; Ettlinger, D.E.; Dudczak, R.; Kletter, K. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Keppler, B.K.; Viernstein, H. [Dept. of Inorganic Chemistry, Univ. of Vienna (Austria); Mitterhauser, M. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Technology and Biopharmaceutics, Univ. of Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna (Austria)

    2008-07-01

    Since to date very limited information on the distribution and function of the adenosine A{sub 3} receptor is available, the development of a suitable radioligand is needed. Such a selective radioligand can then be used for quantitative autoradiography, preclinical studies in animals and subsequent human PET applications. Recently, a promising candidate compound, 5-(2-fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate (FE rate at SUPPY), has been presented. The successful preparation of a suitable labelling precursor and the evaluation and optimization of the radiosynthesis of [{sup 18}F]FE rate at SUPPY is presented herewith. For satisfactory yields, a reaction temperature of 75 C has to be applied for at least 20 min using 8-10 mg of precursor. Until now, 15 complete high-scale radiosyntheses were performed. Starting from an average of 51 {+-} 12 GBq (average {+-}SD; range: 30-67 GBq) [{sup 18}F]fluoride, 9.4 {+-} 3.6 GBq of formulated [{sup 18}F]FE rate at SUPPY (32.3 {+-} 12.4%, based on [{sup 18}F]fluoride, corrected for decay) were prepared in < 105 min. (orig.)

  14. Radiosynthesis of a novel potential adenosine A{sub 3} receptor ligand, 5-ethyl 2,4-diethyl-3-((2-[{sup 18}F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate ([{sup 18}F]FE rate at SUPPY:2)

    Haeusler, D. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Mitterhauser, M. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Hospital Pharmacy of the General Hospital of Vienna (Austria); Mien, L.K. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna (Austria); Shanab, K.; Spreitzer, H. [Dept. of Drug and Natural Product Synthesis, Univ. of Vienna (Austria); Lanzenberger, R.R [Dept. of Psychiatry and Psychotherapy, Medical Univ. of Vienna (Austria); Schirmer, E. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Drug and Natural Product Synthesis, Univ. of Vienna (Austria); Ungersboeck, J.; Wadsak, W. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Inorganic Chemistry, Univ. of Vienna (Austria); Nics, L. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria); Dept. of Nutritional Sciences, Univ. of Vienna (Austria); Viernstein, H. [Dept. of Pharmaceutical Tech. and Biopharmaceutics, Univ. of Vienna (Austria); Dudezak, R.; Kletter, K. [Dept. of Nuclear Medicine, Medical Univ. of Vienna (Austria)

    2009-07-01

    Since, to date very limited information on the distribution and function of the adenosine A{sub 3} receptor is available, the development of suitable radioligands is needed. Recently, we introduced [{sup 18}F]FE rate at SUPPY (5-(2-[{sup 18}F]fluoroethyl) 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate) as the first PET-ligand for the A3R. Regarding the metabolic profile - this class of dialkylpyridines comprises two ester functions within one molecule, one carboxylic and one thiocarboxylic - one could expect carboxylesterases significantly contributing to cleavage and degradation. Therefore, our aim was the development of [{sup 18}F]FE rate at SUPPY:2 (5-ethyl 2,4-diethyl-3-((2-[{sup 18}F]fluoroethyl)sulfanylcarbonyl)-6-phenylpyridine-5-carboxylate), the functional isomer containing the label at the thiocarboxylic moiety. For satisfactory yields in high scale radiosyntheses, a reaction temperature of 75 C has to be applied for at least 20 min using 20 mg/mL of precursor. So far, 6 complete high-scale radiosyntheses were performed. Starting from an average of 51.2 {+-} 21.8 GBq (mean{+-}SD) [{sup 18}F]fluoride, 5.8 {+-} 4.1 GBq of formulated [{sup 18}F]FE rate at SUPPY:2 (12.0{+-}5.4%, based on [{sup 18}F]fluoride, not corrected for decay) were prepared in 75 {+-} 8 min. (orig.)

  15. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial

    Cannon, Christopher P; Husted, Steen; Harrington, Robert A;

    2007-01-01

    OBJECTIVES: Our goal was to compare the safety and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, with clopidogrel in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS). BACKGROUND: AZD6140 achieves higher mean levels of...... platelet inhibition than clopidogrel in patients with stable coronary artery disease. METHODS: A total of 990 patients with NSTE-ACS, treated with aspirin and standard therapy for ACS, were randomized in a 1:1:1 double-blind fashion to receive either twice-daily AZD6140 90 mg, AZD6140 180 mg, or...... clopidogrel 300-mg loading dose plus 75 mg once daily for up to 12 weeks. RESULTS: The primary end point, the Kaplan-Meier rate of major or minor bleeding through 4 weeks, was 8.1% in the clopidogrel group, 9.8% in the AZD6140 90-mg group, and 8.0% in the AZD6140 180-mg group (p = 0.43 and p = 0...

  16. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells

    Nobles, M.; Benians, A.; Tinker, A

    2005-01-01

    Using fluorescence resonance energy transfer (FRET) microscopy, we investigate how heterotrimeric G proteins interact with G protein-coupled receptors (GPCRs). In the absence of receptor activation, the alpha 2A adrenergic and muscarinic M4 receptors are present on the cell membrane as dimers. Furthermore, there is an interaction between the G protein subunits alpha o, beta 1, and gamma 2 and a number of GPCRs including M4, a2A, the adenosine All receptor, and the dopamine D2 receptor under r...

  17. Striatal adenosine A{sub 2A} receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [{sup 18}F]-MRS5425

    Bhattacharjee, Abesh Kumar; Lang Lixin; Jacobson, Orit [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Shinkre, Bidhan [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Ma Ying [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Niu Gang [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Department of Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Trenkle, William C. [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jacobson, Kenneth A. [Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Chen Xiaoyuan [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Kiesewetter, Dale O., E-mail: dk7k@nih.gov [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-08-15

    Introduction: A{sub 2A} receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an {sup 18}F-labeled A{sub 2A} analog radiotracer ([{sup 18}F]-MRS5425) for A{sub 2A} receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A{sub 2A} receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [{sup 18}F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D{sub 2} agonist quinpirole (1.0 mg/kg) or D{sub 2} antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A{sub 2A} receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  18. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes. PMID:27270123

  19. Effects of adenosine metabolism in astrocytes on central nervous system oxygen toxicity.

    Chen, Yu-liang; Zhang, Ya-nan; Wang, Zhong-zhuang; Xu, Wei-gang; Li, Run-ping; Zhang, Jun-dong

    2016-03-15

    Hyperbaric oxygen (HBO) is widely used in military operations, especially underwater missions. However, prolonged and continuous inhalation of HBO can cause central nervous system oxygen toxicity (CNS-OT), which greatly limits HBO's application. The regulation of astrocytes to the metabolism of adenosine is involved in epilepsy. In our study, we aimed to observe the effects of HBO exposure on the metabolism of adenosine in the brain. Furthermore, we aimed to confirm the possible mechanism underlying adenosine's mediation of the CNS-OT. Firstly, anesthetized rats exposed to 5 atm absolute HBO for 80 min. The concentrations of extracellular adenosine, ATP, ADP, and AMP were detected. Secondly, free-moving rats were exposed to HBO at the same pressure for 20 min, and the activities of 5'-nucleotidase and ADK in brain tissues were measured. For the mechanism studies, we observed the effects of a series of different doses of drugs related to adenosine metabolism on the latency of CNS-OT. Results showed HBO exposure could increase adenosine content by inhibiting ADK activity and improving 5'-nucleotidase activity. And adenosine metabolism during HBO exposure may be a protective response against HBO-induced CNS-OT. Moreover, the improvement of adenosine concentration, activation of adenosine A1R, or suppression of ADK and adenosine A2AR, which are involved in the prevention of HBO-induced CNS-OT. This is the first study to demonstrate HBO exposure regulated adenosine metabolism in the brain. Adenosine metabolism and adenosine receptors are related to HBO-induced CNS-OT development. These results will provide new potential targets for the termination or the attenuation of CNS-OT. PMID:26806404

  20. Searching Inhibitors of Adenosine Kinase by Simulation Methods

    ZHU Rui-Xin; ZHANG Xing-Long; DONG Xi-Cheng; CHEN Min-Bo

    2006-01-01

    Searching new inhibitors of adenosine kinase (AK) is still drawing attention of experimental scientists. A better and solid model is here proposed by means of simulation methods from different ways, the direct analysis of receptor itself, the conventional 3D-QSAR methods and the integration of docking method and the conventional QSAR analysis.

  1. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis.

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J; Sun, Deming

    2016-03-15

    Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies. PMID:26856700

  2. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice

    Li, Ke; Gong, Xia; Kuang, Ge; Jiang, Rong; Wan, Jingyuan; Wang, Bin

    2016-01-01

    Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. Here, we examine whether sesamin attenuates renal IRI in an animal model and explore the underlying mechanisms. Male mice were subjected to right renal ischemia for 30 min followed by reperfusion for 24 h with sesamin (100 mg/kg) during which the left kidney was removed. Renal damage and function were assessed subsequently. The results showed that sesamin reduced kidney ischemia reperfusion injury, as assessed by decreased serum creatinine (Scr) and Blood urea nitrogen (BUN), alleviated tubular damage and apoptosis. In addition, sesamin inhibited neutrophils infiltration and pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in IR-preformed kidney. Notably, sesamin promoted the expression of CD39, A2A adenosine receptor (A2AAR), and A2BAR mRNA and protein as well as adenosine production. Furthermore, CD39 inhibitor or A2AR antagonist abolished partly the protection of sesamin in kidney IRI. In conclusion, sesamin could effectively protect kidney from IRI by inhibiting inflammatory responses, which might be associated with promoting the adenosine-CD39-A2AR signaling pathway. PMID:27347331

  3. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  4. Adenosine-Associated Delivery Systems

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  5. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms.

    Szondy, Z

    1994-12-15

    Incubation of human thymocytes with an optimum concentration of adenosine and its receptor site agonist, 2-chloroadenosine, induced increases in intracellular cyclic AMP (cAMP) (from a resting 0.6 +/- 0.1 to 4.1 +/- 0.2 pmol/10(7) cells within 5 min) and Ca2+ (from the resting 85 +/- 7 nM to a peak of 210 +/- 25 nM) levels and resulted in internucleosomal DNA fragmentation and cell death (apoptosis). Other adenosine analogues were also effective at inducing DNA fragmentation, the order of potency being 2-p-(carboxyethylphenylethylamino)-5'-carboxyamidoadenosine 13399-13402], at 60 ng/ml concentration also prevented adenosine-induced DNA fragmentation when added prior to adenosine. This suggested a complex cross-talk between the adenosine-triggered signal transduction cascade and the activation state of protein kinase C in regulating apoptosis of human thymocytes. PMID:7818494

  6. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.

    Michael D Nguyen

    Full Text Available Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV. Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p. increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6-cyclopentyladenosine, 1 mg/kg i.p. decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.

  7. Adenosine and ATP Receptors in the Brain

    Burnstock, G.; Fredholm, B. B.; Verkhratsky, Alexei

    2011-01-01

    Roč. 11, č. 8 (2011), s. 973-1011. ISSN 1568-0266 R&D Projects: GA ČR GA309/08/1381; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Ischaemia * CNS * glia Subject RIV: FH - Neurology Impact factor: 4.174, year: 2011

  8. Effect of Acupuncture Anti -Inflammatory Effects on Adenosine Receptor Antagonist - Caffeine in CIA Rats%腺苷受体拮抗剂—咖啡因对CIA大鼠针刺抗炎作用的影响

    柳国英; 李晓佩; 李方; 谢文霞; 叶天申

    2012-01-01

    weight of the CIA rats were recorded before and after intervention;protein levels of blood serum macrophage migration inhibitory factor( MIF),tumor necrosis factor factor-α(TNF -α)and knee joint synovial TNF -α were tested after the intervention to evaluate the inflammation situation of the rats. Results ;1 Paw swelling,protein levels of the serum MIF,TNF - a and knee joint synovial TNF - α of the acupuncture group rats were significantly lower than other groups, the difference was statistically signifieant( P < 0.05 ) ;body weight was significantly higher than other groups (P <0. 05). There were obvious differences among caffeine - acupuncture group, caffeine group and physiological saline - control group (P < 0.05) ;MIF,TNF — α and knee synovial TNF — α of caffeine — acupuncture group were obviously higher than other two groups. Conclusion:Nonspecific adenosine receptor antagonist - caffeine can increase inflammation of CIA rats and inhibit the effect of acupuncture. Presumably, there are adjustment mechanism of anti — inflammatory related with the adenosine.

  9. Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the “adenosine hypothesis”

    Aliagas, Elisabet; Villar-Menéndez, Izaskun; Sévigny, Jean; Roca, Mercedes; Romeu, Miriam; Ferrer, Isidre; Martín-Satué, Mireia; Barrachina, Marta

    2013-01-01

    Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5′-nucleotidase, and alkaline phosphatase) in the postmortem putame...

  10. Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1.

    Naval-Macabuhay, Isaac; Casanova, Víctor; Navarro, Gemma; García, Felipe; León, Agathe; Miralles, Laia; Rovira, Cristina; Martinez-Navio, José M; Gallart, Teresa; Mallol, Josefa; Gatell, José M; Lluís, Carme; Franco, Rafael; McCormick, Peter J; Climent, Núria

    2016-02-01

    Regulatory T cells have an important role in immune suppression during HIV-1 infection. As regulatory T cells produce the immunomodulatory molecule adenosine, our aim here was to assess the potential of adenosine removal to revert the suppression of anti-HIV responses exerted by regulatory T cells. The experimental setup consisted of ex vivo cocultures of T and dendritic cells, to which adenosine deaminase, an enzyme that hydrolyzes adenosine, was added. In cells from healthy individuals, adenosine hydrolysis decreased CD4(+)CD25(hi) regulatory T cells. Addition of 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, significantly decreased CD4(+)CD25(lo) cells, confirming a modulatory role of adenosine acting via adenosine receptors. In autologous cocultures of T cells with HIV-1-pulsed dendritic cells, addition of adenosine deaminase led to a significant decrease of HIV-1-induced CD4(+)CD25(hi) forkhead box p3(+) cells and to a significant enhancement of the HIV-1-specific CD4(+) responder T cells. An increase in the effector response was confirmed by the enhanced production of CD4(+) and CD8(+) CD25(-)CD45RO(+) memory cell generation and secretion of Th1 cytokines, including IFN-γ and IL-15 and chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. These ex vivo results show, in a physiologically relevant model, that adenosine deaminase is able to enhance HIV-1 effector responses markedly. The possibility to revert regulatory T cell-mediated inhibition of immune responses by use of adenosine deaminase, an enzyme that hydrolyzes adenosine, merits attention for restoring T lymphocyte function in HIV-1 infection. PMID:26310829

  11. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.)

  12. Role of adenosine signalling and metabolism in β-cell regeneration

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  13. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity.

    Masino, S A; Kawamura, M; Wasser, C D; Wasser, C A; Pomeroy, L T; Ruskin, D N

    2009-09-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a "retaliatory metabolite." As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor-based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  14. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  15. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  16. Adenosine in inflammatory joint diseases

    Chan, E. S. L.; Fernandez, P.; Cronstein, B. N.

    2007-01-01

    Inflammatory joint diseases are a group of heterogeneous disorders with a variety of different etiologies and disease manifestations. However, there are features that are common to all of them: first, the recruitment of various inflammatory cell types that are attracted to involved tissues over the course of the disease process. Second, the treatments used in many of these diseases are commonly medications that suppress or alter immune function. The demonstration that adenosine has endogenous...

  17. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice

    Hansen, Pernille B; Castrop, Hayo; Briggs, Josie; Schnermann, Jurgen

    2003-01-01

    Adenosine induces vasoconstriction of renal afferent arterioles through activation of A1 adenosine receptors (A1AR). A1AR are directly coupled to Gi/Go, resulting in inhibition of adenylate cyclase, but the contribution of this signaling pathway to smooth muscle cell activation is unclear. In......-induced vasoconstriction was stable for up to 30 min and was most pronounced in the most distal part of the afferent arterioles. Adenosine did not cause vasoconstriction in arterioles from A1AR-/- mice. Pretreatment with pertussis toxin (PTX) (400 ng/ml) for 2 h blocked the vasoconstricting action of adenosine or N(6......) blocked the constriction responses to both adenosine and angiotensin II. In contrast, the adenylate cyclase inhibitor SQ22536 (10 micro M) and the protein kinase A antagonist KT5720 (0.1 and 1 micro M) did not induce significant vasoconstriction of afferent arterioles. It is concluded that the...

  18. Role of extracellular adenosine in Drosophila

    FENCKOVÁ, Michaela

    2011-01-01

    This thesis describes several aspects of the role for extracellular adenosine in Drosophila. Reverse genetic, molecular and microscopic methods together with the most forefront Drosophila research techniques have been applied to elucidate the role of adenosine signaling in the regulation of development, physiology and metabolism of Drosophila larvae. The thesis helps to establish the model for extracellular adenosine as a stress-signal for the release of energy stores. It also describes the e...

  19. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    ROBERTO PAES-DE-CARVALHO

    2002-09-01

    Full Text Available The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.O nucleosídeo adenosina apresenta um importante papel como neurotransmissor ou neuromodulador no sistema nervoso central, inclusive na retina. Neste artigo apresentamos uma revisão das evidências que mostram que a adenosina é uma molécula sinalizadora na retina em desenvolvimento. Na retina de pinto, transportadores de adenosina estão presentes desde estágios precoces do desenvolvimento, antes do aparecimento dos receptores A1 que modulam a atividade adenilato ciclase dependente de dopamina ou dos receptores A2 que ativam diretamente a enzima. Experimentos usando culturas de células de retina revelaram que a adenosina é captada por populações celulares específicas que, quando estimuladas por despolarização ou por

  20. A critical role of striatal A2A R-mGlu5 R interactions in modulating the psychomotor and drug-seeking effects of methamphetamine.

    Wright, Sherie R; Zanos, Panos; Georgiou, Polymnia; Yoo, Ji-Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2016-07-01

    Addiction to psychostimulants is a major public health problem with no available treatment. Adenosine A2A receptors (A2A R) co-localize with metabotropic glutamate 5 receptors (mGlu5 R) in the striatum and functionally interact to modulate behaviours induced by addictive substances, such as alcohol. Using genetic and pharmacological antagonism of A2A R in mice, we investigated whether A2A R-mGlu5 R interaction can regulate the locomotor, stereotypic and drug-seeking effect of methamphetamine and cocaine, two drugs that exhibit distinct mechanism of action. Genetic deletion of A2A R, as well as combined administration of sub-threshold doses of the selective A2A R antagonist (SCH 58261, 0.01 mg/kg, i.p.) with the mGlu5 R antagonist, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (0.01 mg/kg, i.p.), prevented methamphetamine- but not cocaine-induced hyperactivity and stereotypic rearing behaviour. This drug combination also prevented methamphetamine-rewarding effects in a conditioned-place preference paradigm. Moreover, mGlu5 R binding was reduced in the nucleus accumbens core of A2A R knockout (KO) mice supporting an interaction between these receptors in a brain region crucial in mediating addiction processes. Chronic methamphetamine, but not cocaine administration, resulted in a significant increase in striatal mGlu5 R binding in wild-type mice, which was absent in the A2A R KO mice. These data are in support of a critical role of striatal A2A R-mGlu5 R functional interaction in mediating the ambulatory, stereotypic and reinforcing effects of methamphetamine but not cocaine-induced hyperlocomotion or stereotypy. The present study highlights a distinct and selective mechanistic role for this receptor interaction in regulating methamphetamine-induced behaviours and suggests that combined antagonism of A2A R and mGlu5 R may represent a novel therapy for methamphetamine addiction. PMID:25975203

  1. Optical Aptasensors for Adenosine Triphosphate

    Ng, Stella; Lim, Hui Si; Ma, Qian; Gao, Zhiqiang

    2016-01-01

    Nucleic acids are among the most researched and applied biomolecules. Their diverse two- and three-dimensional structures in conjunction with their robust chemistry and ease of manipulation provide a rare opportunity for sensor applications. Moreover, their high biocompatibility has seen them being used in the construction of in vivo assays. Various nucleic acid-based devices have been extensively studied as either the principal element in discrete molecule-like sensors or as the main component in the fabrication of sensing devices. The use of aptamers in sensors - aptasensors, in particular, has led to improvements in sensitivity, selectivity, and multiplexing capacity for a wide verity of analytes like proteins, nucleic acids, as well as small biomolecules such as glucose and adenosine triphosphate (ATP). This article reviews the progress in the use of aptamers as the principal component in sensors for optical detection of ATP with an emphasis on sensing mechanism, performance, and applications with some discussion on challenges and perspectives. PMID:27446501

  2. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers.

    Sylvén, C; Beermann, B; Jonzon, B; Brandt, R

    1986-07-26

    In a study to characterise the chest pain induced by adenosine this agent was given as a bolus into a peripheral vein to six healthy volunteers (five men) aged 30-44. On the first day the maximum tolerable dose was determined in each case. On the second day three doses of adenosine (one third, two thirds, and the full maximum tolerable dose) and three doses of saline were given single blind in randomised order. Thereafter aminophylline 5 mg/kg was given and the procedure repeated in a different randomised order. On the third day between two thirds and the full maximum tolerable dose was given followed by 10 mg dipyridamole intravenously and a second injection of the same dose of adenosine. Heart rate and atrioventricular blocks were recorded by electrocardiography. One minute after each dose of adenosine the chest pain was scored. The maximum tolerable dose of adenosine ranged from 10.6 to 37.1 mg. All subjects experienced uneasy central chest pain provoking anxiety. The pain radiated to the shoulders, ulnar aspect of the arms, epigastric area, back, and into the throat. The pain began about 20 seconds after the injection and lasted 10-15 seconds. Increasing the dose of adenosine increased the intensity of the pain. Administration of aminophylline reduced the pain significantly. Second degree heart block was recorded in five of the six subjects during the time that the pain was experienced. After aminophylline no block was observed. Dipyridamole increased the intensity of pain. The duration of second degree heart block increased in four of the subjects, and in two of these third degree heart block occurred. These findings suggest that adenosine released from the myocardium during ischaemia induces angina pectoris by stimulating theophylline sensitive receptors. PMID:3089465

  3. Adenosine triphosphate inhibition of yeast trehalase.

    Panek, A D

    1969-09-01

    Yeast trehalase has been found to be inhibited non-competitively by adenosine triphosphate. Such a biological control could explain the accumulation of trehalose during the stationary phase of the growth curve. PMID:5370287

  4. Electrocardiographic profile of adenosine pharmacological stress testing

    Sun, Hao; TIAN, YUEQIN; ZHENG, LIHUI; Pan, Qingrong; XIE, BOQIA

    2015-01-01

    Adenosine stress testing in conjunction with radionuclide myocardial perfusion imaging has become a common approach for the detection of coronary artery diseases in patients who are unable to perform adequate levels of exercise. However, specific electrocardiographic alterations during the test have been rarely described. Using a Chinese population, the aim of the present study was to provide a detailed electrocardiographic profile of adenosine stress testing. The study population included 1,...

  5. Adenosine stress protocols for myocardial perfusion imaging

    Baškot Branislav

    2008-01-01

    Full Text Available Background/Aim. Treadmill test combined with myocardial perfusion scintigraphy (MPS is a commonly used technique in the assessment of coronary artery disease. There are many patients, however, who may not be able to undergo treadmill test. Such patients would benefit from pharmacological stress procedures combined with MPS. The most commonly used pharmacological agents for cardiac stress are coronary vasodilatators (adenosine, dipyridamol and catecholamines. Concomitant low-level treadmill exercise with adenosine pharmacologic stress (AdenoEX during MPS has become commonly used in recent years. A number of studies have demonstrated a beneficial impact of AdenoEX protocol. The aim of the study was, besides introducing into practice the two types of protocols of pharmatological stress test with adenosine, as a preparation for MPS, to compare and monitor the frequency of their side effects to quality, acquisition, as well as to standardize the onset time of acquisition (diagnostic imaging for both protocols. Methods. A total of 130 patients underwent pharmacological stress test with adenosine (vasodilatator. In 108 of the patients we performed concomitant exercise (AdenoEX of low level (50W by a bicycle ergometar. In 28 of the patients we performed Adenosine abbreviated protocol (AdenoSCAN. Side effects of adenosine were followed and compared between the two kinds of protocols AdenoEX and AdenoSCAN. Also compared were image quality and suggested time of acquisition after the stress test. Results. Numerous side effects were found, but being short-lived they did not require any active interventions. The benefit of AdenoEX versus AdenoSCAN included decreased side effects (62% vs 87%, improved safety and patients tolerance, improved target-to-background ratios because of less subdiaphragmatic activity, earlier acquisition, and improved sensitivity. Conclusion. The safety and efficacy of adenosine pharmacological stress is even better with concomitant

  6. A novel transverse push-pull microprobe: in vitro characterization and in vivo demonstration of the enzymatic production of adenosine in the spinal cord dorsal horn.

    Patterson, S L; Sluka, K A; Arnold, M A

    2001-01-01

    Adenosine produces analgesia in the spinal cord and can be formed extracellularly through enzymatic conversion of adenine nucleotides. A transverse push-pull microprobe was developed and characterized to sample extracellular adenosine concentrations of the dorsal horn of the rat spinal cord. Samples collected via this sampling technique reveal that AMP is converted to adenosine in the dorsal horn. This conversion is decreased by the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP. Related behavioral studies demonstrate that AMP administered directly to the spinal cord can reverse the secondary mechanical hyperalgesia characteristic of the intradermal capsaicin model of inflammatory pain. The specific adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) inhibits the antihyperalgesia produced by AMP. This research introduces a novel microprobe that can be used as an adjunct sampling technique to microdialysis and push-pull cannulas. Furthermore, we conclude that AMP is converted to adenosine in the dorsal horn of the spinal cord by ecto-5'-nucleotidase and subsequently may be one source of adenosine, acting through adenosine A(1) receptors in the dorsal horn of the spinal cord, which produce antihyperalgesia. PMID:11145997

  7. Adenosine Amine Congener as a Cochlear Rescue Agent

    Srdjan M. Vlajkovic

    2014-01-01

    Full Text Available We have previously shown that adenosine amine congener (ADAC, a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg was administered intraperitoneally to Wistar rats (8–10 weeks old at intervals (6–72 hours after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours. Hearing sensitivity was assessed using auditory brainstem responses (ABR before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz. Pharmacokinetic studies demonstrated a short (5 min half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.

  8. Identification of a specific assembly of the G protein Golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum

    Denis eHervé

    2011-08-01

    Full Text Available In the principal neurons of striatum (medium spiny neurons, MSNs, cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological situations, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Galpha-olf/beta2/gamma7 in particular association with adenylate cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor-dependent cAMP signaling is modulated by the neuronal levels of Galpha-olf, indicating that Galpha-olf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1 receptor responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Galpha-olf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1 stimulation, occurring despite an unaltered D1 receptor density. In conclusion, alterations in the highly specialized assembly of Galpha-olf/beta2/gamma7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1 receptor signaling in the striatum.

  9. Effects of AMP579 and adenosine on L-type Ca2+ current in isolated rat ventricular myocytes

    Xiong WANG; Bo-wei WU; Dong-mei WU

    2005-01-01

    Aim: To compare the effects of AMP579 and adenosine on L-type Ca2+ current (ICa- L) in rat ventricular myocytes and explore the mechanism by which AMP579 acts on ICa-L. Methods: ICa-L was recorded by patch-clamp technique in whole-cell configuration. Results: Adenosine (10 nmol/L to 50 μmol/L) showed no effect on basal ICa- L, but it inhibited the ICa-L induced by isoproterenol 10 nmol/L in a concen tration-dependent manner with the IC50 of 13.06 μmol/L. Similar to adenosine,AMP579 also showed an inhibitory effect on the ICa-L induced by isoproterenol.AMP579 and adenosine (both in 10 μmol/L) suppressed isoproterenol-induced ICa-L by 11.1% and 5.2%, respectively. In addition, AMP579 had a direct inhibitory effect on basal ICa-L in a concentration-dependent manner with IC50 (1.17 μmol/L).PD116948 (30 μmol/L), an adenosine A1 receptor blocker, showed no action on the inhibitory effect of AMP579 on basal ICa-L. However, GF109203X (0.4 μmol/L), a special protein kinase C (PKC) blocker, could abolish the inhibitory effect of AMP579 on basal ICa-L. So the inhibitory effect of AMP579 on basal ICa-L was induced through activating PKC, but not linked to adenosine A1 receptor. Conclusion:AMP579 shows a stronger inhibitory effect than adenosine on the ICa-L induced by isoproterenol. AMP579 also has a strong inhibitory effect on basal ICa-L in rat ventricular myocytes. Activation of PKC is involved in the inhibitory effect of AMP579 on basal ICa-L at downstream-mechanism.

  10. Molecular Pathways of Disturbed Sleep and Depression: Studies on Adenosine and Gene Expression Patterns

    Gass, Natalia

    2010-01-01

    Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has...

  11. Impairment of skeletal muscle adenosine triphosphate–sensitive K+ channels in patients with hypokalemic periodic paralysis

    Tricarico, Domenico; Servidei, Serenella; Tonali, Pietro; Jurkat-Rott, Karin; Camerino, Diana Conte

    1999-01-01

    The adenosine triphosphate (ATP)–sensitive K+ (KATP) channel is the most abundant K+ channel active in the skeletal muscle fibers of humans and animals. In the present work, we demonstrate the involvement of the muscular KATP channel in a skeletal muscle disorder known as hypokalemic periodic paralysis (HOPP), which is caused by mutations of the dihydropyridine receptor of the Ca2+ channel. Muscle biopsies excised from three patients with HOPP carrying the R528H mutation of the dihydropyridin...

  12. 腺苷和睡眠觉醒调节%Adenosine and Sleep-Wake Regulation

    曲卫敏; 孙宇; 许奇; 黄志力

    2011-01-01

    腺苷作为神经调质,调节多种神经生物学功能.随觉醒时间延长,动物脑内腺苷水平逐渐增高,在睡眠期显著降低.因此,腺苷被认为是调节睡眠的内稳态因子之一.腺苷受体(receptor,R)有A1R、A2AR、A2BR和A3R四种亚型,其中A1R和A2AR与诱导睡眠相关.激活A1R可抑制促觉醒神经元诱导睡眠,也可抑制促眠神经元导致觉醒,其作用存在脑区依赖性.A2AR介导内源性前列素D:的促眠作用,A2AR激动剂具有最强的促眠效应,阻断A2AR引起觉醒,在睡眠觉醒调节中扮演重要角色.本文综述腺苷调节睡眠和觉醒的研究进展,讨论腺苷受体激动剂和拮抗剂在睡眠疾病治疗中的潜在价值及存在问题.%Adenosine may function as a neuromodulator in the central nervous system. The extracellular concentration of adenosine increases in the brain during prolonged wakefulness and decreases during the sleep recovery penod. Therefore, adenosine is proposed to act as one of homeostatic regulators of sleep.There are four adenosine receptor subtypes, adenosine A1 receptor (A1R), A2AR, A2BR and A3R. Both the adenosine A1R and A2AR are demonstrated to be involved in sleep induction. Inhibition of wake-promoting neurons via the A1R mediates the sleep-inducing effects of adenosine, whereas activation of A1R in sleep-promoting neurons induces wakefulness, suggesting that A1R regulates the sleep-wake cycle in a site-dependent manner. On the other hand, the A2AR mediates the somnogenic effects of endogenous PGD2.A2AR agonist induces the most potent sleep similar to physiological sleep among somnogens reported so far,whereas blockade of A2AR induces wakefulness. Among adenosine receptors responsible for sleep induction,the role of A2AR is predominant. This paper presents an overview of the current knowledge about the role of adenosine in the sleep-wake regulation and briefly discusses the potential therapeutic applications of agonists and antagonists of these

  13. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Adenosine triphosphate release assay. (a) Identification. An adenosine triphosphate release assay is...

  14. Study of Ectonucleotidases and Adenosine Deaminases in Drosophila

    PREUER, Kristina

    2013-01-01

    Extracellular adenosine triphosphate and extracellular adenosine are important regulatory molecules in the human immune system. The concentrations of these molecules are in turn regulated by ectonucleotidases and adenosine deaminases. In this thesis I attempt to test the gene silencing efficiency of RNA interference for three different genes coding for such enzymes in the model organism Drosophila melanogaster.

  15. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  16. receptores

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  17. Hyperglycemia alters E-NTPDases, ecto-5'-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio).

    Capiotti, Katiucia Marques; Siebel, Anna Maria; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2016-06-01

    Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5'-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment. PMID:26769247

  18. Role of dopamine and adenosine receptors in tumor cell recognition

    Fišerová, Anna; Vannucci, L.; Kovářů, H.; Kuldová, M.; Matějková, O.; Horváth, Ondřej; Starec, M.; Pospíšil, Miloslav

    2000-01-01

    Roč. 6, Suppl 1 (2000), s. 59. ISSN 1107-3756. [World Congress on Advances in Oncology /5./. 19.10.2000-21.10.2000, Hersonissos] R&D Projects: GA ČR GA310/98/0347; GA ČR GV312/98/K034 Subject RIV: EC - Immunology

  19. Adenosine receptor agonists for promotion of dermal wound healing

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of ch...

  20. Setting GABA levels: GABA transporters modulation by adenosine receptors

    Ferreira, Ana Sofia Cristóvão,1983-

    2012-01-01

    O ácido gama-aminobutírico (GABA) é o principal neurotransmissor inibitório do Sistema Nervoso Central (SNC). Uma vez na sinapse o GABA é rapidamente recaptado através de transportadores específicos expressos pelos neurónios mas também pelas células da glia, que envolvem a sinapse. A rápida recaptação de GABA pelos transportadores permite um controlo adequado dos níveis de GABA na sinapse, o que é fundamental para a limitação temporal e espacial da transmissão inibitór...

  1. Calcium signalling modulation in astrocytes by adenosine receptors

    Silva, Andreia Marisa Cruz e

    2011-01-01

    O modelo de sinapse actualmente aceite considera que para o processo de comunicação neuronal contribuem não só os neurónios pré- e pós-sináptico mas também um elemento peri-sináptico, os astrócitos. Estes constituem a população de células mais abundante no cérebro, formando juntamente com a micróglia e os oligodendrócitos a rede de células da glia. Presentemente, sabe-se que os astrócitos não são meros elementos passivos, comunicando activamente com as outras células através do seu mecanismo ...

  2. Turnover of adenosine in plasma of human and dog blood

    To determine half-life and turnover of plasma adenosine, heparinized blood from healthy volunteers was incubated with radiolabeled adenosine in the physiological concentration range of 0.1-1 microM. Plasma levels of adenosine in vitro were 82 +/- 14 nM and were similar to those determined immediately after blood collection with a ''stopping solution.'' Dipyridamole (83 microM) and erythro-9(2-hydroxynon-3yl)-adenine (EHNA) (8 microM) did not measurably alter basal adenosine levels but completely blocked the uptake of added adenosine. Inhibition of ecto-5'-nucleotidase with 100 microM alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP) reduced plasma adenosine to 22 +/- 6 nM. For the determination of adenosine turnover, the decrease in specific radioactivity of added [3H]adenosine was measured using a dipyridamole-containing stopping solution. Without altering basal adenosine levels, the half-life was estimated to be 0.6 s. Similar experiments were carried out with washed erythrocytes or in the presence of AOPCP, yielding half-lives of 0.7 and 0.9 s, respectively. When the initial adenosine concentration was 1 microM, its specific activity decreased by only 11% within 5 s, whereas total plasma adenosine exponentially decreased with a half-life of 1.5 s. Venous plasma concentrations were measured after relief of a 3-min forearm ischemia. Changes in plasma adenosine did not correlate well with changes in blood flow but were augmented in the presence of dipyridamole

  3. Silk Fibroin Encapsulated Powder Reservoirs for Sustained Release of Adenosine

    Pritchard, Eleanor M.; Szybala, Cory; Boison, Detlev; Kaplan, David L.

    2010-01-01

    Due to its unique properties, silk fibroin was studied as a biodegradable polymer vehicle for sustained, local delivery of the anticonvulsant adenosine from encapsulated reservoirs. Silk is a biologically derived protein polymer that is biocompatible, mechanically strong and degrades to non-toxic products in vivo. To achieve local, sustained, controlled adenosine release from fully degradable implants, solid adenosine powder reservoirs were coated with silk fibroin. Material properties of the...

  4. Intravenous adenosine and radiopharmaceutical injection in the same line was feasible in adenosine stress myocardial perfusion imaging

    Adenosine stress myocardial perfusion imaging was performed with an intravenous adenosine and radiopharmaceutical injection in the same line. A syringe containing 720 μ/kg of adenosine in 40 ml of saline was prepared and injected at the constant infusion rate of 400 ml/h. Adenosine was temporarily stopped by the stopcock when 1.5 ml of thallium was injected for 0.5 second from the three-way stopcock with two ways opened. Thereafter, the stopcock was returned to the original position in 0.5 second, and adenosine flow returned to the constant flow rate again. In this method, 0.75% of adenosine total dose was injected at a rate of 3.0 ml/s and adenosine was stopped for 3.6 second. There were no significant differences in either effects and adverse events of adenosine between this method and two intravenous injection line methods. Adenosine stress in one venous line method would be an easy method maintaining the dose effect and safety. (author)

  5. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  6. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A. [Academy of Sciences of the Czech Republic, Inst. of Biophysics, Brno (Czech Republic); Znojil, V.; Vacha, J. [Masaryk Univ., Medical Faculty, Brno (Czech Republic)

    1998-03-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of {sup 60}Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au) 43 refs.

  7. Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the "adenosine hypothesis".

    Aliagas, Elisabet; Villar-Menéndez, Izaskun; Sévigny, Jean; Roca, Mercedes; Romeu, Miriam; Ferrer, Isidre; Martín-Satué, Mireia; Barrachina, Marta

    2013-12-01

    Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5'-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5'-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness. PMID:23771238

  8. Baclofen and adenosine inhibition of synaptic transmission at CA3-CA1 synapses display differential sensitivity to K+ channel blockade.

    Skov, Jane; Andreasen, Mogens; Hablitz, John J; Nedergaard, Steen

    2011-05-01

    The metabotropic GABA(B) and adenosine A(1) receptors mediate presynaptic inhibition through regulation of voltage-dependent Ca(2+) channels, whereas K(+) channel regulation is believed to have no role at the CA3-CA1 synapse. We show here that the inhibitory effect of baclofen (20 μM) and adenosine (300 μM) on field EPSPs are differentially sensitive to Cs(+) (3.5 mM) and Ba(2+) (200 μM), but not 4-aminopyridine (100 μM). Barium had no effect on paired-pulse facilitation (PPF) in itself, but gave significant reduction (14 ± 5%) when applied in the presence of baclofen, but not adenosine, suggesting that the effect is presynaptic and selective on the GABA(B) receptor-mediated response. The effect of Ba(2+) on PPF was not mimicked by tertiapin (30 nM), indicating that the underlying mechanism does not involve GIRK channels. Barium did not affect PPF in slices from young rats (P7-P8), suggesting developmental regulation. The above effects of Ba(2+) on adult tissue were reproduced when measuring evoked whole-cell EPSCs from CA1 pyramidal neurons: PPF was reduced by 22 ± 3% in the presence of baclofen and unaltered in adenosine. In contrast, Ba(2+) caused no significant change in frequency or amplitude of miniature EPSCs. The Ba(2+)-induced reduction of PPF was antagonized by LY341495, suggesting metabotropic glutamate receptor involvement. We propose that these novel effects of Ba(2+) and Cs(+) are exerted through blockade of inwardly rectifying K(+) channels in glial cells, which are functionally interacting with the GABA(B) receptor-dependent glutamate release that generates heterosynaptic depression. PMID:21274618

  9. Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation

    Huntington's disease (HD) is a progressive neurodegenerative disorder, which is characterised by prominent neuronal cell loss in the basal ganglia with motor and cognitive disturbances. One of the most well-studied pharmacological models of HD is produced by local injection in the rat brain striatum of the excitotoxin quinolinic acid (QA), which produces many of the distinctive features of this human neurodegenerative disorder. Here, we report a detailed analysis, obtained both in vivo and in vitro of this pharmacological model of HD. By combining emission tomography (PET) with autoradiographic and immunocytochemical confocal laser techniques, we quantified in the QA-injected striatum the temporal behavior (from 1 to 60 days from the excitotoxic insult) of neuronal cell density and receptor availability (adenosine A2A and dopamine D2 receptors) together with the degree of microglia activation. Both approaches showed a loss of adenosine A2A and dopamine D2 receptors paralleled by an increase of microglial activation. This combined longitudinal analysis of the disease progression, which suggested an impairment of neurotransmission, neuronal integrity and a reversible activation of brain inflammatory processes, might represent a more quantitative approach to compare the differential effects of treatments in slowing down or reversing HD in rodent models with potential applications to human patients. (orig.)

  10. Effect of theophylline on adenosine production in the canine myocardium

    Adenosine is thought to participate in local regulation of coronary blood flow. However, competitive antagonists of adenosine fail to block myocardial active hyperemia. The authors examined the effect of locally administered theophylline on active hyperemia and myocardial adenosine production during intracoronary isoproterenol infusion in the dog heart. Isoproterenol decreased coronary resistance and increased myocardial adenosine production. Infusion of theophylline at a rate that attenuated the vasodilator response to exogenously administered adenosine failed to attenuate the increase in coronary blood flow produced by isoproterenol. However, theophylline plus isoproterenol production greater increases in myocardial adensine production than isoproterenol alone. The curves relating resistance and adenosine in the presence of theophylline fell to the right of those in the absence of theophylline. These findings suggest that the failure of theophylline to attenuate isoproterenol hyperemia in the dog heart results at least in part from an increase in adenosine concentration at the arteriole to a level beyond that blocked by this competitive antagonist and that adenosine may in fact play a role in isoproterenol-induced active hyperemia

  11. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. PMID:27374982

  12. Structure, function and regulation of the melanocortin receptors

    Yang, Yingkui

    2011-01-01

    Melanocortin receptors belong to the seven-transmembrane (TM) domain proteins that are coupled to G-proteins and signaled through intracellular cyclic adenosine monophosphate. Many structural features conserved in other G-protein coupled receptors (GPCRs) are found in the melanocortin receptors. There are five melanocortin receptor subtypes and each of the melanocortin receptor subtypes has a different pattern of tissue expression and has its own profile regarding the relative potency of diff...

  13. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  14. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters.

    Lynge, J; Juel, C; Hellsten, Y

    2001-12-01

    1. The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. 2. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km = 177 +/- 36 microM and Vmax = 1.9 +/- 0.2 nmol x ml(-1) x s(-1) (0.7 nmol (mg protein)(-1) x s(-1)). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72% inhibition) or dipyridamol (64% inhibition; P electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells during contraction. PMID:11731589

  15. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland.

    Souza-Teodoro, Luis Henrique; Dargenio-Garcia, Letícia; Petrilli-Lapa, Camila Lopes; Souza, Ewerton da Silva; Fernandes, Pedro A C M; Markus, Regina P; Ferreira, Zulma S

    2016-03-01

    Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects. PMID:26732366

  16. Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line.

    Schwiebert, E. M.; Karlson, K H; Friedman, P A; Dietl, P.; Spielman, W S; Stanton, B.A.

    1992-01-01

    We examined the regulation by adenosine of a 305-pS chloride (Cl-) channel in the apical membrane of a continuous cell line derived from rabbit cortical collecting duct (RCCT-28A) using the patch clamp technique. Stimulation of A1 adenosine receptors by N6-cyclohexyladenosine (CHA) activated the channel in cell-attached patches. Phorbol 12,13-didecanoate and 1-oleoyl 2-acetylglycerol, activators of protein kinase C (PKC), mimicked the effect of CHA, whereas the PKC inhibitor H7 blocked the ac...

  17. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures

    Recent evidence shows that cells exchange collections of signals via microvesicles (MVs) and tunneling nano-tubes (TNTs). In this paper we have investigated whether in cell cultures GPCRs can be transferred by means of MVs and TNTs from a source cell to target cells. Western blot, transmission electron microscopy and gene expression analyses demonstrate that A2A and D2 receptors are present in released MVs. In order to further demonstrate the involvement of MVs in cell-to-cell communication we created two populations of cells (HEK293T and COS-7) transiently transfected with D2R-CFP or A2AR-YFP. These two types of cells were co-cultured, and FRET analysis demonstrated simultaneously positive cells to the D2R-CFP and A2AR-YFP. Fluorescence microscopy analysis also showed that GPCRs can move from one cell to another also by means of TNTs. Finally, recipient cells pre-incubated for 24 h with A2AR positive MVs were treated with the adenosine A2A receptor agonist CGS-21680. The significant increase in cAMP accumulation clearly demonstrated that A2ARs were functionally competent in target cells. These findings demonstrate that A2A receptors capable of recognizing and decoding extracellular signals can be safely transferred via MVs from source to target cells.

  18. P2X receptors.

    North, R Alan

    2016-08-01

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377721

  19. Proton transfer in oxidized adenosine self-aggregates.

    Capobianco, Amedeo; Caruso, Tonino; Celentano, Maurizio; La Rocca, Mario Vincenzo; Peluso, Andrea

    2013-10-14

    The UV-vis and the IR spectra of derivativized adenosine in dichloromethane have been recorded during potentiostatic oxidation at an optically transparent thin layer electrode. Oxidized adenosine shows a broad Zundel like absorption extending from 2800 up to 3600 cm(-1), indicating that a proton transfer process is occurring. Theoretical computations predict that proton transfer is indeed favored in oxidized 1:1 self-association complexes and allow to assign all the observed transient spectroscopic signals. PMID:24116647

  20. Adenosine-induced coronary flow reserve in Watanabe heritable hyperlipidemic rabbits

    Shimada, Kazuhiro; Yoshida, Katsuya [Chiba Univ. (Japan). School of Medicine; Tadokoro, Hiroyuki [and others

    2000-12-01

    The Watanabe heritable hyperlipidemic (WHHL) rabbit develops coronary atherosclerosis and hypercholesterolemia because of a genetic deficiency of low-density lipoprotein receptors and is therefore a good animal model for studying the relationships of coronary atherosclerosis, hypercholesterolemia and coronary flow reserve. The aim of the present study was to assess myocardial perfusion at baseline and during adenosine infusion (0.2 mg{center_dot}kg{sup -1}{center_dot}min{sup -1}) in 8 WHHL rabbits (13.8{+-}0.5 months) with {sup 13}N-ammonia, small-animal positron emission tomography (PET) and colored microspheres. Results were compared with those from 6 age-matched Japanese white rabbits. Plaque distribution was also examined in the extramural coronary arteries. All 8 WHHL rabbits had coronary plaques, with 6 showing multiple plaques. Mean global myocardial blood flow (ml{center_dot}min{sup -1}{center_dot}g{sup -1}) did not differ significantly between control and WHHL groups both at baseline (3.67{+-}0.72 vs 4.26{+-}1.12 ml{center_dot}min{sup -1}{center_dot}g{sup -1}, p=NS) and with adenosine (7.92{+-}2.00 vs 9.27{+-}2.91 ml{center_dot}min{sup -1}{center_dot}g{sup -1}, p=NS), nor did coronary flow reserve (2.16{+-}0.37 vs 2.18{+-}0.41, p=NS). None showed evidence of regional perfusion abnormalities by visual and semiquantitative analyses of PET images. It was concluded that WHHL rabbits preserve adenosine-induced coronary flow reserve despite coronary atherosclerosis and hypercholesterolemia, suggesting that a compensatory mechanism develops in this animal model. (author)

  1. Adenosine-induced coronary flow reserve in Watanabe heritable hyperlipidemic rabbits

    The Watanabe heritable hyperlipidemic (WHHL) rabbit develops coronary atherosclerosis and hypercholesterolemia because of a genetic deficiency of low-density lipoprotein receptors and is therefore a good animal model for studying the relationships of coronary atherosclerosis, hypercholesterolemia and coronary flow reserve. The aim of the present study was to assess myocardial perfusion at baseline and during adenosine infusion (0.2 mg·kg-1·min-1) in 8 WHHL rabbits (13.8±0.5 months) with 13N-ammonia, small-animal positron emission tomography (PET) and colored microspheres. Results were compared with those from 6 age-matched Japanese white rabbits. Plaque distribution was also examined in the extramural coronary arteries. All 8 WHHL rabbits had coronary plaques, with 6 showing multiple plaques. Mean global myocardial blood flow (ml·min-1·g-1) did not differ significantly between control and WHHL groups both at baseline (3.67±0.72 vs 4.26±1.12 ml·min-1·g-1, p=NS) and with adenosine (7.92±2.00 vs 9.27±2.91 ml·min-1·g-1, p=NS), nor did coronary flow reserve (2.16±0.37 vs 2.18±0.41, p=NS). None showed evidence of regional perfusion abnormalities by visual and semiquantitative analyses of PET images. It was concluded that WHHL rabbits preserve adenosine-induced coronary flow reserve despite coronary atherosclerosis and hypercholesterolemia, suggesting that a compensatory mechanism develops in this animal model. (author)

  2. Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain.

    Seibt, Kelly Juliana; Oliveira, Renata da Luz; Bogo, Mauricio Reis; Senger, Mario Roberto; Bonan, Carla Denise

    2015-12-01

    Antipsychotic agents are used for the treatment of psychotic symptoms in patients with several brain disorders, such as schizophrenia. Atypical and typical antipsychotics differ regarding their clinical and side-effects profile. Haloperidol is a representative typical antipsychotic drug and has potent dopamine receptor antagonistic functions; however, atypical antipsychotics have been developed and characterized an important advance in the treatment of schizophrenia and other psychotic disorders. Purine nucleotides and nucleosides, such as ATP and adenosine, constitute a ubiquitous class of extracellular signaling molecules crucial for normal functioning of the nervous system. Indirect findings suggest that changes in the purinergic system, more specifically in adenosinergic activity, could be involved in the pathophysiology of schizophrenia. We investigated the effects of typical and atypical antipsychotics on ectonucleotidase and adenosine deaminase (ADA) activities, followed by an analysis of gene expression patterns in zebrafish brain. Haloperidol treatment (9 µM) was able to decrease ATP hydrolysis (35%), whereas there were no changes in hydrolysis of ADP and AMP in brain membranes after antipsychotic exposure. Adenosine deamination in membrane fractions was inhibited (38%) after haloperidol treatment when compared to the control; however, no changes were observed in ADA soluble fractions after haloperidol exposure. Sulpiride (250 µM) and olanzapine (100 µM) did not alter ectonucleotidase and ADA activities. Haloperidol also led to a decrease in entpd2_mq, entpd3 and adal mRNA transcripts. These findings demonstrate that haloperidol is an inhibitor of NTPDase and ADA activities in zebrafish brain, suggesting that purinergic signaling may also be a target of pharmacological effects promoted by this drug. PMID:26156500

  3. mGlu5 Receptor Functional Interactions and Addiction

    Robyn eBrown

    2012-05-01

    Full Text Available The idea of ‘receptor mosaics’ suggests that proteins can form complex and dynamic networks, with respect to time and protein make up, which has the potential to make significant contributions to the diversity and specificity of GPCR signalling, particularly in neuropharmacology, where a few key receptors have been implicated in multiple neurological and psychiatric disorders such as addiction. Metabotropic glutamate type 5 receptors (mGlu5 have been shown to heterodimerise and form complexes with other GPCRs including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes are found in the striatum, a region of the brain known to be critical for mediating the rewarding and incentive motivational properties of drugs of abuse. Indeed, initial studies indicate a role for mGlu5-containing complexes in rewarding and conditioned effects of drugs, as well as drug-seeking behaviour. This is consistent with the substantial influence that mGlu5 complexes appear to have on striatal function, regulating both GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-containing complexes represent a novel way in which to minimize the off-target effects and therefore provide us with an exciting therapeutic avenue for drug discovery efforts. Indeed, the therapeutic targeting of receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a ‘pathological state’ has the potential to dramatically reduce detrimental side effects that may otherwise impair vital brain function.

  4. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors

    Angel, T.; Chance, M; Palczewski, K

    2009-01-01

    G protein-coupled receptors with seven transmembrane {alpha}-helices (GPCRs) comprise the largest receptor superfamily and are involved in detecting a wide variety of extracellular stimuli. The availability of high-resolution crystal structures of five prototypical GPCRs, bovine and squid rhodopsin, engineered A2A-adenosine, {beta}1- and {beta}2-adrenergic receptors, permits comparative analysis of features common to these and likely all GPCRs. We provide an analysis of the distribution of water molecules in the transmembrane region of these GPCR structures and find conserved contacts with microdomains demonstrated to be involved in receptor activation. Colocalization of water molecules associating with highly conserved and functionally important residues in several of these GPCR crystal structures supports the notion that these waters are likely to be as important to proper receptor function as the conserved residues. Moreover, in the absence of large conformational changes in rhodopsin after photoactivation, we propose that ordered waters contribute to the functional plasticity needed to transmit activation signals from the retinal-binding pocket to the cytoplasmic face of rhodopsin and that fundamental features of the mechanism of activation, involving these conserved waters, are shared by many if not all family A receptors.

  5. The discovery of a selective and potent A2a agonist with extended lung retention

    Åstrand, Annika B. M.; Lamm Bergström, Eva; Hui ZHANG; Börjesson, Lena; Söderdahl, Therese; Wingren, Cecilia; Jansson, Anne-Helene; Smailagic, Amir; Johansson, Camilla; Bladh, Håkan; Shamovsky, Igor; Tunek, Anders; Drmota, Tomas

    2015-01-01

    Although the anti-inflammatory role of the A2a receptor is well established, controversy remains with regard to the therapeutic value for A2a agonists in treatment of inflammatory lung diseases, also as a result of unwanted A2a-mediated cardiovascular effects. In this paper, we describe the discovery and characterization of a new, potent and selective A2a agonist (compound 2) with prolonged lung retention and limited systemic exposure following local administration. To support the lead optimi...

  6. The efficacy of a novel adenosine agonist (WAG 994) in postoperative dental pain

    Seymour, R A; Hawkesford, J E; Hill, C M; Frame, J; Andrews, C

    1999-01-01

    Aims To determine the comparative efficacy of a new novel adenosine agonist (WAG 994) in postoperative pain after third molar surgery. Methods One hundred and twenty-two patients with postoperative pain after third molar surgery were randomised in a placebo double-blind trial with an active control group. In the early postoperative period patients received either a single dose of WAG 994 1 mg, ibuprofen 400 mg or matched placebos. Pain intensity score was recorded on serial visual analogue scales over a 6 h investigation period. Similarly, pain relief was completed on a 4 point categorical scale at each evaluation point. Patients had access to escape analgesic and if these were taken, the time and dosage were recorded. A sparse sampling technique was used to investigate the relationship between analgesic effects and plasma concentrations of WAG 994. Results All three treatment groups were matched for various demographic variables. For all efficacy measures, WAG 994 was not significantly different from placebo (P > 0.05), whereas ibuprofen 400 mg was significantly superior to placebo (P < 0.001). No significant relationships (P < 0.05) were found between WAG 994 pharmacokinetic variables and efficacy measures. Conclusion WAG 994, an adenosine agonist, did not show efficacy in the management of postoperative pain after third molar surgery. Although this pain responds well to nonsteroidal anti-inflammatory drugs, it appears to be resistant to compounds that interact with purinergic receptors. PMID:10383546

  7. Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery

    Eltzschig, Holger K.

    2013-01-01

    The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets. PMID:21942704

  8. Modification of survival of gamma irradiated mice by adenosine nucleotides

    The administration prior to irradiation of adenosine triphosphate (ATP) or other adenosine nucleotides, singly or in combination, increased the radioresistance of mice. Post-irradiation treatment with the adenosine nucleotides had no effect on the survival of the irradiated mice. Dose reduction factors of 2.32 could be obtained by pretreatment of mice with the following combination of protective agents: S-2(4-aminobutylamino)ethyl phosphorothioic aced (WR 2822), cysteamine (MEA) and ATP. Since cyclic AMP levels were unchanged in the spleen or gut by administration of cysteamine and other protectors it is unlikely that the increase in protection was due to changes in cyclic AMP levels. The calcium salt of ATP provided a higher level of protection than the ATP alone, indicating that the protective mechanism of ATP is probably not related to anoxia. (orig.)

  9. Thallium-201 scintigraphy of the myocardium in connection with adenosine

    It is shown that thallium-201 SPECT studies of the myocardium performed subsequent to intravenous infusion of adenosine provide results at least as valuable as those from exercise thallium-201 scintigraphy in the diagnosis of coronary artery disease. The infusion of adenosine offers great advantages over exercise studies in that it is a standardized procedure uninfluenced by a patient's physical fitness, which can thus be used in all cases. There are quite a number of clinically tolerable untoward reactions that may be associated with discomfort but do not warrant discontinuation of the procedure. Serious, verifiable side-effects are rare and disappear immediately on termination of the infusion. The most recent research in this field has shown that newly developed compounds of 99mTc are also suitable for radionuclide studies of the myocardium with adenosine vasodilation. (orig.)

  10. Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar Albino Glaxo Rijswijk rats.

    Kovács, Z; Kékesi, K A; Dobolyi, Á; Lakatos, R; Juhász, G

    2015-08-01

    Adenosine (Ado) and non-adenosine (non-Ado) nucleosides such as inosine (Ino), guanosine (Guo) and uridine (Urd) may have regionally different roles in the regulation of physiological and pathophysiological processes in the central nervous system (CNS) such as epilepsy. It was demonstrated previously that Ino and Guo decreased quinolinic acid (QA)-induced seizures and Urd reduced penicillin-, bicuculline- and pentylenetetrazole (PTZ)-induced seizures. It has also been demonstrated that Ino and Urd may exert their effects through GABAergic system by altering the function of GABA(A) type of gamma-aminobutyric acid receptors (GABAA receptors) whereas Guo decreases glutamate-induced excitability through glutamatergic system, which systems (GABAergic and glutamatergic) are involved in pathomechanisms of absence epilepsy. Thus, we hypothesized that Ino and Guo, similarly to the previously described effect of Urd, might also decrease absence epileptic activity. We investigated in the present study whether intraperitoneal (i.p.) application of Ino (500 and 1000mg/kg), Guo (20 and 50mg/kg), Urd (500 and 1000mg/kg), GABA(A) receptor agonist muscimol (1 and 3mg/kg), GABA(A) receptor antagonist bicuculline (2 and 4mg/kg), non-selective Ado receptor antagonist theophylline (5 and 10mg/kg) and non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine maleate (MK-801, 0.0625 and 0.1250mg/kg) alone and in combination have modulatory effects on absence epileptic activity in Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. We found that Guo decreased the number of spike-wave discharges (SWDs) whereas Ino increased it dose-dependently. We strengthened that Urd can decrease absence epileptic activity. Our results suggest that Guo, Urd and their analogs could be potentially effective drugs for treatment of human absence epilepsy. PMID:26037802

  11. (/sup 3/H)nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain

    Marangos, P.J.; Patel, J.; Clark-Rosenberg, R.; Martino, A.M.

    1982-07-01

    The binding of the potent adenosine uptake inhibitor (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The KD in both was 0.15 nM with Bmax values of 140-200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on (/sup 3/H)NBI binding. The inhibitory potencies of copper and zinc were IC50 . 160 microM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the (/sup 3/H)NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the (/sup 3/H)NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of (/sup 3/H)NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. (/sup 3/H)NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.

  12. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  13. No role of interstitial adenosine in insulin-mediated vasodilation

    Dela, F; Stallknecht, B

    1999-01-01

    healthy subjects (H) and in four subjects with a complete, high (C5-C6/7) spinal cord injury (SCI) a hyperinsulinaemic (480 mU min-1 kg-1), isoglycaemic clamp was performed. SCI subjects were included as it has been proposed that adenosine and adenine nucleotides may be released from nerve endings in the...... skeletal muscle. Adenosine concentrations in the extracellular fluid (ECF) of skeletal muscle in the thigh were measured by means of the microdialysis technique. Leg blood flow (LBF) was measured by termodilution. In response to insulin infusion, LBF always increased (P < 0.05) (from 228 +/- 25 and 318...

  14. Why do premature newborn infants display elevated blood adenosine levels?

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  15. Cyclic adenosine monophosphate phosphodiesterase in brain: effect on anxiety.

    Beer, B; Chasin, M; Clody, D E; Vogel, J R

    1972-04-28

    Drugs that reduce anxiety may be mediated by cyclic adenosine monophosphate in the brain because (i) potent anxiety-reducing drugs are also potent inhibitors of brain phosphodiesterase activity; (ii) dibutyryl cyclic adenosine monophosphate has the ability to reduce anxiety; (iii) the methylxanthines show significant anxiety-reducing effects; (iv) theophylline and chlordiazepoxide produce additive anxiety-reducing activity; and (v) there is a significant correlation between the anxiety-reducing property of drugs and their ability to inhibit phosphodiesterase activity in the brain. PMID:4402069

  16. Two saturable recognition sites for (-) [125I]iodo-N6-(4-hydroxyphenyl-isopropyl)-adenosine binding on purified cardiac sarcolemma

    Analysis of (-) [125]iodo-N6-(4-hydroxyphenylisopropyl)-adenosine [( 125I]HPIA) binding to purified sarcolemmal preparations of guinea pig and bovine hearts revealed two classes of binding sites when unlabeled iodo-HPIA (100 mumol/l) was used as non-specific binding marker. In the presence of 1 mmol/l theophylline, however, only the high affinity component was detected. Adenosine receptor agonists caused biphasic displacement of [125I]HPIA binding, with a high affinity potency rank order typical of interaction with A1-adenosine receptors. Biphasic competition curves were also observed with 8-phenyltheophylline and isobutylmethylxanthine, whereas the theophylline curve was monophasic up to 1 mmol/l. In brain membranes, specific binding of [125I]HPIA as well as of [3H]PIA was further reduced when unlabeled iodo-HPIA replaces theophylline as the non-specific binding marker. These results suggest the presence of two [125I]HPIA binding sites on cardiac sarcolemma and brain membranes, but receptor function can only be ascribed to the high affinity sites. The low affinity site probably represents an artefact, which is often observed when non-specific binding is defined with the unlabeled counterpart or a structurally related ligand of the radioligand used

  17. Chronic caffeine or theophylline exposure reduces gamma-aminobutyric acid/benzodiazepine receptor site interactions.

    Roca, D J; Schiller, G D; Farb, D H

    1988-05-01

    Methylxanthines, such as caffeine and theophylline, are adenosine receptor antagonists that exert dramatic effects upon the behavior of vertebrate animals by increasing attentiveness, anxiety, and convulsive activity. Benzodiazepines, such as flunitrazepam, generally exert behavioral effects that are opposite to those of methylxanthines. We report the finding that chronic exposure of embryonic brain neurons to caffeine or theophylline reduces the ability of gamma-aminobutyric acid (GABA) to potentiate the binding of [3H]flunitrazepam to the GABA/benzodiazepine receptor. This theophylline-induced "uncoupling" of GABA- and benzodiazepine-binding site allosteric interactions is blocked by chloroadenosine, an adenosine receptor agonist, indicating that the chronic effects of theophylline are mediated by a site that resembles an adenosine receptor. We speculate that adverse central nervous system effects of long-term exposure to methylxanthines such as in caffeine-containing beverages or theophylline-containing medications may be exerted by a cell-mediated modification of the GABAA receptor. PMID:2835648

  18. Labile disulfide bonds in human placental insulin receptor.

    Finn, F. M.; Ridge, K D; HOFMANN, K

    1990-01-01

    The disulfide crosslinking pattern of human placental insulin receptor was investigated using selective reduction with tributylphosphine followed by alkylation with N-[3H]ethylmaleimide. Insulin receptor contains a single sulfhydryl group in each beta subunit whose alkylation with N-[3H]ethylmaleimide inhibits receptor autophosphorylation. Alkylation is partially inhibited by ATP or the nonhydrolyzable substrate analog adenosine 5'-[beta,gamma-imido]triphosphate when the nucleotides are added...

  19. Effect of activating γ-aminobutyric acid B receptors on the expression of phosphorylated cyclic adenosine monophosphate response element binding protein and N-methyl-D-aspartate receptor subunit 2B in the spinal dorsal horn in rats with diabetic neuropathic pain%激活γ-氨基丁酸B型受体对糖尿病神经痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白和N-甲基-D-天冬氨酸受体2B亚基表达的影响

    刘朋; 郭闻亚; 赵晓南; 吕艳霞; 魏淑明; 王秀丽

    2013-01-01

    目的 利用γ-氨基丁酸B型受体(GABAR)受体激动剂(巴氯芬)和拮抗剂(CGP55845),探讨激活GABAB受体对糖尿病神经痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白(p-CREB)和N-甲基-D-天冬氨酸受体2B亚基(NMDA-2B、NR2B)表达的影响.方法 62只SD雄性大鼠随机分为两组:正常对照组(C组)和糖尿病神经痛模型组(D组),腹腔分别注射生理盐水或链脲佐菌素(STZ,60 mg/kg).50只大鼠腹腔注射STZ,4周后36只大鼠成功制备成糖尿病神经痛(DNP)模型并鞘内置管,根据鞘内给药(共20μ1)随机分为3组(n=12):DNP对照组(D1组):生理盐水10 μl+生理盐水10μ;巴氯芬组(D2组):生理盐水10 μ1+巴氯芬0.5μg;CGP55845+巴氯芬组(D3组):CGP55845 10 μg+巴氯芬0.5 μg;12只同周龄正常大鼠腹腔注射生理盐水并鞘内置管作为C组,鞘内注射生理盐水10μl+生理盐水10μl.4组大鼠两次鞘内注射间隔15 min,连续4d,每天鞘内注射前、后30 min测定大鼠50%机械缩足阈值(PWT),各时点分别为:T1、T2、T3、T4,最后1次测完后取大鼠脊髓背角,采用分子生物学方法测定p-CREB、环磷酸腺苷反应元件结合蛋白(CREB)和NR2B受体表达变化.结果 与C组比较,D1、D3两组大鼠T1-T4各时点PWT明显降低(P<0.05),p-CREB和NR2B蛋白表达及NR2B mRNA表达明显增多(P<0.05);与D1组比较,D2组大鼠各时点PWT显著升高(P<0.05);与D1组p-CREB(0.76 ±0.13)、NR2B(1.28 ±0.14)蛋白表达、NR2B mRNA表达(0.83±0.10)比较,D2组p-CREB (0.45±0.08)和NR2B(0.88 0.13)蛋白表达及NR2B mRNA表达(0.53±0.08)显著降低(P<0.05).4组间比较,CREB蛋白表达差异无统计学意义(P>0.05).结论 激活GABAB受体可使糖尿病神经痛大鼠脊髓背角p-CREB、NR2B蛋白表达下调,抑制糖尿病神经痛.%Objective To investigate the effect of activating γ-aminobutyric acid(GABAB) receptors on the expression of phosphorylated cyclic adenosine monophosphate response element

  20. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia;

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act in...

  1. P2X and P2Y receptor signaling in red blood cells

    Sluyter, Ronald

    2015-01-01

    Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology. PMID:26579528

  2. Purinergic receptors in the endocrine and exocrine pancreas

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  3. Abiotic regioselective phosphorylation of adenosine with borate in formamide.

    Furukawa, Yoshihiro; Kim, Hyo-Joong; Hutter, Daniel; Benner, Steven A

    2015-04-01

    Nearly 40 years ago, Schoffstall and his coworkers used formamide as a solvent to permit the phosphorylation of nucleosides by inorganic phosphate to give nucleoside phosphates, which (due to their thermodynamic instability with respect to hydrolysis) cannot be easily created in water by an analogous phosphorylation (the "water problem" in prebiotic chemistry). More recently, we showed that borate could stabilize certain carbohydrates against degradation (the "asphalt problem"). Here, we combine the two concepts to show that borate can work in formamide to guide the reactivity of nucleosides under conditions where they are phosphorylated. Specifically, reaction of adenosine in formamide with inorganic phosphate and pyrophosphate in the presence of borate gives adenosine-5'-phosphate as the only detectable phosphorylated product, with formylation (as opposed to hydrolysis) being the competing reaction. PMID:25826074

  4. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells.

    Cutarelli, Alessandro; Marini, Mario; Tancredi, Virginia; D'Arcangelo, Giovanna; Murdocca, Michela; Frank, Claudio; Tarantino, Umberto

    2016-05-01

    In the last years adenosine triphosphate (ATP) and subsequent purinergic system activation through P2 receptors were investigated highlighting their pivotal role in bone tissue biology. In osteoblasts ATP can regulate several activities like cell proliferation, cell death, cell differentiation and matrix mineralization. Since controversial results exist, in this study we analyzed the ATP effects on differentiation and mineralization in human osteoblast-like Saos-2 cells. We showed for the first time the altered functional activity of ATP receptors. Despite that, we found that ATP can reduce cell proliferation and stimulate osteogenic differentiation mainly in the early stages of in vitro maturation as evidenced by the enhanced expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and Osteocalcin (OC) genes and by the increased ALP activity. Moreover, we found that ATP can affect mineralization in a biphasic manner, at low concentrations ATP always increases mineral deposition while at high concentrations it always reduces mineral deposition. In conclusion, we show the osteogenic effect of ATP on both early and late stage activities like differentiation and mineralization, for the first time in human osteoblastic cells. PMID:27189526

  5. Leptin suppresses adenosine triphosphate-induced impairment of spinal cord astrocytes.

    Li, Baoman; Qi, Shuang; Sun, Guangfeng; Yang, Li; Han, Jidong; Zhu, Yue; Xia, Maosheng

    2016-10-01

    Spinal cord injury (SCI) causes long-term disability and has no clinically effective treatment. After SCI, adenosine triphosphate (ATP) may be released from neuronal cells and astrocytes in large amounts. Our previous studies have shown that the extracellular release of ATP increases the phosphorylation of cytosolic phospholipase A2 (cPLA2 ) and triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2) via the stimulation of epidermal growth factor receptor (EGFR) and the downstream phosphorylation of extracellular-regulated protein kinases 1 and 2. Leptin, a glycoprotein, induces the activation of the Janus kinase (JAK2)/signal transducers and activators of transcription-3 (Stat3) pathway via the leptin receptor. In this study, we found that 1) prolonged leptin treatment suppressed the ATP-stimulated release of AA and PGE2 from cultured spinal cord astrocytes; 2) leptin elevated the expression of caveolin-1 (Cav-1) via the JAK2/Stat3 signaling pathway; 3) Cav-1 blocked the interaction between Src and EGFR, thereby inhibiting the phosphorylation of EGFR and cPLA2 and attenuating the release of AA or PGE2; 4) pretreatment with leptin decreased ;he level of apoptosis and the release of interleukin-6 from cocultured neurons and astrocytes; and 5) leptin improved the recovery of locomotion in mice after SCI. Our results highlight leptin as a promising therapeutic agent for SCI. © 2016 Wiley Periodicals, Inc. PMID:27316329

  6. The emerging role of adenosine deaminases in insects

    Doleželová, Eva; Žurovec, Michal; Doležal, T.; Šimek, Petr; Bryant, P. J.

    2005-01-01

    Roč. 35, č. 5 (2005), s. 381-389. ISSN 0965-1748 R&D Projects: GA ČR(CZ) GA204/04/1205; GA AV ČR(CZ) IAA5007107 Grant ostatní: United States National Science Foundation(US) 440860-21565 Institutional research plan: CEZ:AV0Z50070508 Keywords : adenosine deaminase * ADA * growth factor Subject RIV: ED - Physiology Impact factor: 2.733, year: 2005

  7. Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

    Kavianipour, Mohammad

    2002-01-01

    Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an...

  8. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3.

    Jarosch, Marlene S; Gebhardt, Christine; Fano, Silvia; Huchzermeyer, Christine; Ul Haq, Rizwan; Behrens, Christoph J; Heinemann, Uwe

    2015-07-01

    We investigated the effects of hypoxia on sharp wave-ripple complex (SPW-R) activity and recurrent epileptiform discharges in rat hippocampal slices, and the mechanisms underlying block of this activity. Oxygen levels were measured using Clark-style oxygen sensor microelectrodes. In contrast to recurrent epileptiform discharges, oxygen consumption was negligible during SPW-R activity. These network activities were reversibly blocked when oxygen levels were reduced to 20% or less for 3 min. The prolongation of hypoxic periods to 6 min caused reversible block of SPW-Rs during 20% oxygen and irreversible block when 0% oxygen (anoxia) was applied. In contrast, recurrent epileptiform discharges were more resistant to prolonged anoxia and almost fully recovered after 6 min of anoxia. SPW-Rs were unaffected by the application of 1-butyl-3-(4-methylphenylsulfonyl) urea, a blocker of KATP channels, but they were blocked by activation of adenosine A1 receptors. In support of a modulatory function of adenosine, the amplitude and incidence of SPW-Rs were increased during application of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Interestingly, hypoxia decreased the frequency of miniature excitatory post-synaptic currents in CA3 pyramidal cells, an effect that was converted into increased frequency by the adenosine A1 agonist DPCPX. In addition, DPCPX also delayed the onset of hypoxia-mediated block of SPW-Rs. Our data suggest that early adenosine release during hypoxia induces a decrease in pre-synaptic glutamate release and that both might contribute to transient block of SPW-Rs during hypoxia/anoxia in area CA3. PMID:25959377

  9. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene;

    2007-01-01

    calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas the...... protein kinase C inhibitor calphostin C had no effect. The calcium-activated chloride channel inhibitor IAA-94 (30 microM) inhibited the adenosine-mediated constriction. Patch clamp experiments showed that adenosine treatment induced a depolarizing current in preglomerular smooth muscle cells which was....... METHODS AND RESULTS: Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release of...

  10. Respiratory stimulant effects of adenosine in man after caffeine and enprofylline.

    Smits, P; Schouten, J; Thien, T.

    1987-01-01

    In a double-blind and randomized study the respiratory stimulant effect of continuous intravenous adenosine infusion was studied after previous administration of caffeine, placebo and enprofylline in 10 healthy young volunteers. After placebo, adenosine induced an increase of minute ventilation (from 6.3 to 12.5 l min-1), tidal volume (from 0.60 to 0.96 l), and breathing rate (from 11.0 to 14.8 min-1). Venous pCO2 fell and pH rose after adenosine. Caffeine significantly reduced the adenosine-...

  11. P2X receptor channels in endocrine glands

    Stojilkovic, Stanko S.; Zemkova, Hana

    2013-01-01

    The endocrine system is the system of ductless glands and single cells that synthetize hormones and release them directly into the bloodstream. Regulation of endocrine system is very complex and ATP and its degradable products ADP and adenosine contribute to its regulation acting as extracellular messengers for purinergic receptors. These include P2X receptors, a family of ligand-gated ion channels which expression and roles in endocrine tissues are reviewed here. There are seven mammalian pu...

  12. Úloha A2A adenozínového receptoru v NK buněčné cytotoxicitě

    Kuldová, Markéta; Svoboda, Jan; Kovářů, H.; Kovářů, F.; Šplíchal, Igor; Fišerová, Anna

    Hradec Králové : Bibliographia medica Čechoslovaca, 2006, s. 31-31. [Kongres českých a slovenských imunologů /11./. Hradec Králové (CZ), 25.10.2006-28.10.2006] R&D Projects: GA ČR GA524/04/0102; GA AV ČR IAA5020403; GA AV ČR IAA400200503; GA AV ČR KJB500200614 Institutional research plan: CEZ:AV0Z50200510 Keywords : adenosine receptor * nk cell * cytotoxicity Subject RIV: EE - Microbiology, Virology

  13. Complex Formation of Adenosine 3',5'-Cyclic Monophosphate with β-Cyclodextrin: Kinetics and Mechanism by Ultrasonic Relaxation

    Adenosine 3',5'-cyclic monophosphate (cAMP) is a second messenger responsible for a multitude of cellular responses. In this study, we utilized β-cyclodextrin (β-CD) as an artificial receptor with a hydrophobic cavity to elucidate the inclusion kinetics of cAMP in a hydrophobic environment using the ultrasonic relaxation method. The results revealed that the interaction of cAMP with β-CD followed a single relaxation curve as a result of host-guest interactions. The inclusion of cAMP into the β-CD cavity was found to be a diffusion-controlled reaction. The dissociation of cAMP from the β-CD cavity was slower than that of adenosine 5'-monophosphate (AMP). The syn and anti glycosyl conformations of adenine nucleotides are considered to play an important role in formation of the inclusion complex. Taken together, our findings indicate that hydrophobic interactions are involved in the inclusion complex formation of cAMP with β-CD and provide insight into the interactions of cAMP with cAMP-binding proteins

  14. Non-adenosine nucleoside inosine, guanosine and uridine as promising antiepileptic drugs: a summary of current literature.

    Kovacs, Zsolt; Kekesi, Katalin A; Juhasz, Gabor; Barna, Janos; Heja, Laszlo; Lakatos, Renata; Dobolyi, Arpad

    2015-01-01

    Adenosine (Ado) and some non-adenosine (non-Ado) nucleosides including inosine (Ino), guanosine (Guo) and uridine (Urd) are modulatory molecules in the central nervous system (CNS), regulating different physiological and pathophysiological processes in the brain such as sleep and epilepsy. Indeed, different drugs effective on adenosinergic system (e.g., Ado metabolism inhibitors, agonists and antagonists of Ado receptors) are being used in drug development for the treatment of epileptic disorders. Although (i) endogenous Ino, Guo and Urd showed anticonvulsant/antiepileptic effects (e.g., in quinolinic acid - induced seizures and in different epilepsy models such as hippocampal kindling models), and (ii) there is a need to generate new and more effective antiepileptic drugs for the treatment of drug-resistant epilepsies, our knowledge about antiepileptic influence of non-Ado nucleosides is far from complete. Thus, in this review article, we give a short summary of anticonvulsant/antiepileptic effects and mechanisms evoked by Ino, Guo, and Urd. Finally, we discuss some non-Ado nucleoside derivatives and their structures, which may be candidates as potential antiepileptic agents. PMID:25382017

  15. Intra-accumbens injections of the adenosine A(2A) agonist CGS 21680 affect effort-related choice behavior in rats

    Stopper, Colin M.; WORDEN, LILA T.; Mingote, Susana; Port, Russell G.; Salamone, John D.; Font Hurtado, Laura; Pereira, Mariana; Farrar, Andrew M.

    2008-01-01

    Rationale: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements, and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating eff...

  16. Is adenosine a modulator of peripheral vasoconstrictor responses?

    Dayan, Lior; Brill, Silviu; Hochberg, Uri; Jacob, Giris

    2016-01-01

    Background Local vasoconstrictor reflexes, the vascular myogenic response (VMR) and the veno-arterial reflex (VAR) are necessary for the maintenance of regional blood flow and systemic arterial blood pressure during orthostatic stress. Their molecular mechanism is unknown. We postulated that adenosine is involved in the activation of these local reflexes. Methods This hypothesis was tested in 10 healthy male volunteers (age 29 ± 3 years, BMI 24 ± 1 kg/m2). We used veno-occlusive plethysmograp...

  17. Differential response of Drosophila cell lines to extracellular adenosine

    Fleischmannová, J.; Kučerová, Lucie; Šandová, Kateřina; Steinbauerová, Veronika; Brož, Václav; Šimek, Petr; Žurovec, Michal

    2012-01-01

    Roč. 42, č. 5 (2012), s. 321-331. ISSN 0965-1748 R&D Projects: GA MŠk(CZ) LC06077 Grant ostatní: AV ČR(CZ) KJB501410801; European Community´s Seventh Framwork Programme (FP7/2007-2013)(CZ) 229518 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : adenosine recycling * nucleoside transport * Mbn2 Subject RIV: CE - Biochemistry Impact factor: 3.234, year: 2012 http://www.sciencedirect.com/science/article/pii/S0965174812000033

  18. Characterization of histamine receptors mediating the stimulation of cyclic AMP accumulation in rabbit cerebral cortical slices.

    Al-Gadi, M.; Hill, S. J.

    1985-01-01

    The characteristics of histamine-stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation in slices of rabbit cerebral cortex have been investigated. The selective H2-receptor antagonists, cimetidine, tiotidine, metiamide and ranitidine appeared to antagonize the stimulation of cyclic AMP accumulation elicited by histamine in a competitive manner consistent with an interaction with histamine H2-receptors. The H1-receptor antagonist mepyramine (0.8 microM) produced only a weak...

  19. Variations of lipid profile in animals caused by adenosine analogs: N6 (amido-3-propyl) adenosine hydrochloride and (carboxamido-3-propylamino)-6-(triproprionyl) 2',3',5'beta (D-ribosyl)-9-purine.

    Laborit, G; Hasni, H; Baron, C; Pierrefiche, G; Laborit, H

    1992-03-01

    N6-substituted adenosine analogues are powerful inhibitors of lipolysis in the adipose tissues of animals and humans, because of their agonist effect on A1 purine receptors. Using a model of hypertriglyceridemia provoked by intravenous injection of Triton WR 1339, we observed that Agr 529 [N6(amido-3-propyl)adenosine hydrochloride] at 2 mg.kg-1 intravenous in rabbits, and intraperitoneally and orally in rats led to a return of the levels of circulating triglycerides to normal values. In addition, Agr 529 and its prodrug, Agr 540 [(carboxamido-3-propylamino)-6-(triproprionyl)2', 3',5'beta(D-ribosyl)-9-purine] administered to rats at 3 and 30 mg.kg-1, respectively, returned plasma triglyceride concentrations to normal levels. Intravenous administration of Agr 529 to normal rats led to decreased concentrations of plasma fatty acids, phospholipids, triglycerides and total cholesterol as a function of dose. The decrease began at 0.1 mg.kg-1 and was highly significant at 3 mg.kg-1. In the same conditions, the intraperitoneal administration of Agr 529 caused a dose-dependent hypolipemia. There was no apparent effect on cholesterol and on the triglycerides of high density lipoproteins. A kinetic study showed that the antilipemic effect of Agr 529 intravenously injected at 3 mg.kg-1 began 30 minutes after the injection with a maximum effect at 2 hours. The effect persisted up to 8 hours after injection. The present results show that the administration of Agr 529 and Agr 540 to normal animals causes hypolipemia (decrease in fatty acids, phospholipids, triglycerides and cholesterol) and restores induced hypertriglyceridemia. These effects may be attributed to an interaction of the molecules with A1 purinergic receptors of adipose tissue. PMID:1509199

  20. Role of adenosine in the sympathetic activation produced by isometric exercise in humans.

    Costa, F.; Biaggioni, I

    1994-01-01

    Isometric exercise increases sympathetic nerve activity and blood pressure. This exercise pressor reflex is partly mediated by metabolic products activating muscle afferents (metaboreceptors). Whereas adenosine is a known inhibitory neuromodulator, there is increasing evidence that it activates afferent nerves. We, therefore, examined the hypothesis that adenosine stimulates muscle afferents and participates in the exercise pressor reflex in healthy volunteers. Intraarterial administration of...

  1. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in hum...

  2. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka;

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...

  3. Adenosine signaling and the energetic costs of induced immunity.

    Lazzaro, Brian P

    2015-04-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  4. Adenosine signaling and the energetic costs of induced immunity.

    Brian P Lazzaro

    2015-04-01

    Full Text Available Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected.

  5. Quantitative analysis of adenosine using Liquid Chromatography/Atmospheric Pressure Chemical Ionization - tandem Mass Spectrometry (LC/APCI-MS/MS)

    Van Dycke, Annelies; Verstraete, Alain; Pil, Kristof; Raedt, Robrecht; Vonck, Kristl; Boison, Detlev; Boon, Paul

    2010-01-01

    Adenosine-secreting cellular brain implants constitute a promising therapeutic approach for the treatment of epilepsy. To engineer neural stem cells for therapeutic adenosine delivery, a reliable and fast analytical method is necessary to quantify cell-based adenosine release. Here we describe the development, optimization and validation of adenosine measurement using liquid chromatography – atmospheric pressure chemical ionization – tandem mass spectrometry (LC-APCI-MS/MS). LC-MS/MS in posit...

  6. Interaction of porphyrins with adenine and adenosine complexes. Effect of a metal nature

    Reactions of complex formation of 5,10,15,20-tetraphenylporphine (H2TPP) and tetra-tert-butylphthalocyanine (H2(t-Bu)4Pc) with adenine and adenosine complexes of d-metals (M=Cd, Co, Cu, Hg, Zn) in DMSO and ethanol are studied. It was found that H2TPP reacts with Cu(II) and Hg(II) adeninates and adenosinates in DMSO, but does not react with Zn(II), Co(II), and Cd(II) adeninates and adenosinates (with both bridging and monodentate type of the ligand coordination). H2(t-Bu)4Pc enters the complex formation reaction with adeninates and adenosinates of all studied metals in DMSO at almost equal rates. The states of adenine and adenosine complexes of different d-metals in DMSO and ethanol are proposed on the basis of kinetic data obtained

  7. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage:the neuroprotective effects of adenosine triphosphate against apoptosis

    Na Lu; Baoying Wang; Xiaohui Deng; Honggang Zhao; Yong Wang; Dongliang Li

    2014-01-01

    After hypoxia, ischemia, or inlfammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, lfow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SY5Y cells. The enhanced autophagy ifrst appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.

  8. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  9. Specificity of synergistic coronary flow enhancement by adenosine and pulsatile perfusion in the dog.

    Pagliaro, P; Senzaki, H; Paolocci, N; Isoda, T; Sunagawa, G; Recchia, F A; Kass, D A

    1999-10-01

    1. Coronary flow elevation from enhanced perfusion pulsatility is synergistically amplified by adenosine. This study determined the specificity of this interaction and its potential mechanisms. 2. Mean and phasic coronary flow responses to increasing pulsatile perfusion were assessed in anaesthetized dogs, with the anterior descending coronary artery servoperfused to regulate real-time physiological flow pulsatility at constant mean pressure. Pulsatility was varied between 40 and 100 mmHg. Hearts ejected into the native aorta whilst maintaining stable loading. 3. Increasing pulsatility elevated mean coronary flow +11.5 +/- 1.7 % under basal conditions. Co-infusion of adenosine sufficient to raise baseline flow 66 % markedly amplified this pulsatile perfusion response (+82. 6 +/- 14.3 % increase in mean flow above adenosine baseline), due to a leftward shift of the adenosine-coronary flow response curve at higher pulsatility. Flow augmentation with pulsatility was not linked to higher regional oxygen consumption, supporting direct rather than metabolically driven mechanisms. 4. Neither bradykinin, acetylcholine nor verapamil reproduced the synergistic amplification of mean flow by adenosine and higher pulsatility, despite being administered at doses matching basal flow change with adenosine. 5. ATP-sensitive potassium (KATP) activation (pinacidil) amplified the pulse-flow response 3-fold, although this remained significantly less than with adenosine. Co-administration of the phospholipase A2 inhibitor quinacrine virtually eliminated adenosine-induced vasodilatation, yet synergistic interaction between adenosine and pulse perfusion persisted, albeit at a reduced level. 6. Thus, adenosine and perfusion pulsatility specifically interact to enhance coronary flow. This synergy is partially explained by KATP agonist action and additional non-flow-dependent mechanisms, and may be important for modulating flow reserve during exercise or other high output states where

  10. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3121, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  11. Insilico study of the A(2A)R-D (2)R kinetics and interfacial contact surface for heteromerization.

    Prakash, Amresh; Luthra, Pratibha Mehta

    2012-10-01

    G-protein-coupled receptors (GPCRs) are cell surface receptors. The dynamic property of receptor-receptor interactions in GPCRs modulates the kinetics of G-protein signaling and stability. In the present work, the structural and dynamic study of A(2A)R-D(2)R interactions was carried to acquire the understanding of the A(2A)R-D(2)R receptor activation and deactivation process, facilitating the design of novel drugs and therapeutic target for Parkinson's disease. The structure-based features (Alpha, Beta, SurfAlpha, and SurfBeta; GapIndex, Leakiness and Gap Volume) and slow mode model (ENM) facilitated the prediction of kinetics (K (off), K (on), and K (d)) of A(2A)R-D(2)R interactions. The results demonstrated the correlation coefficient 0.294 for K (d) and K (on) and the correlation coefficient 0.635 for K (d) and K (off), and indicated stable interfacial contacts in the formation of heterodimer. The coulombic interaction involving the C-terminal tails of the A(2A)R and intracellular loops (ICLs) of D(2)R led to the formation of interfacial contacts between A(2A)R-D(2)R. The properties of structural dynamics, ENM and KFC server-based hot-spot analysis illustrated the stoichiometry of A(2A)R-D(2)R contact interfaces as dimer. The propensity of amino acid residues involved in A(2A)R-D(2)R interaction revealed the presence of positively (R, H and K) and negatively (E and D) charged structural motif of TMs and ICL3 of A(2A)R and D(2)R at interface of dimer contact. Essentially, in silico structural and dynamic study of A(2A)R-D(2)R interactions will provide the basic understanding of the A(2A)R-D(2)R interfacial contact surface for activation and deactivation processes, and could be used as constructive model to recognize the protein-protein interactions in receptor assimilations. PMID:22278740

  12. Constitutive phospholipid scramblase activity of a G protein-coupled receptor

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-10-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.

  13. Online cleanup of accelerated solvent extractions for determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly using high-performance liquid chromatography.

    Xue, Xiaofeng; Wang, Feng; Zhou, Jinhui; Chen, Fang; Li, Yi; Zhao, Jing

    2009-06-10

    Determination of the levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in royal jelly is important for the study of its pharmacological activities, health benefits, and adenosine phosphate degradation. In this study was developed a novel method to determine ATP, ADP, and AMP levels in royal jelly using accelerated solvent extraction (ASE) followed by online cleanup and high-performance liquid chromatography (HPLC) with diode array detection (DAD). The optimum extraction conditions were obtained using an 11 mL ASE cell, ethanol/water (5:5 v/v) as the extraction solvent, 1500 psi, 80 degrees C, a 5 min static time, and a 60% flush volume. Optimum separation of the three compounds was achieved in extraction procedures developed here were compared with the classical adenosine phosphate extraction procedures (perchloric acid). The results indicate that the two techniques are similar in terms of recovery and reproducibility, but when other factors such as extraction time, environmental protection, and worker's health are considered, ASE is preferable to the classical extraction method. With this ASE-HPLC method, a minisurvey of ATP, ADP, and AMP levels in 15 samples of royal jelly of different origins was performed. Sample results indicated that the AMP concentration was 24.2-2214.4 mg kg(-1), whereas ATP and ADP were not detectable or present only at low levels. PMID:19435312

  14. The Role of Adenosine in Pulmonary Vein Isolation: A Critical Review

    Dallaglio, Paolo D.; Betts, Timothy R.; Ginks, Matthew; Bashir, Yaver; Anguera, Ignasi; Rajappan, Kim

    2016-01-01

    The cornerstone of atrial fibrillation (AF) ablation is pulmonary vein isolation (PVI), which can be achieved in more than 95% of patients at the end of the procedure. However, AF recurrence rates remain high and are related to recovery of PV conduction. Adenosine testing is used to unmask dormant pulmonary vein conduction (DC). The aim of this study is to review the available literature addressing the role of adenosine testing and determine the impact of ablation at sites of PV reconnection on freedom from AF. Adenosine infusion, by restoring the excitability threshold, unmasks reversible injury that could lead to recovery of PV conduction. The studies included in this review suggest that adenosine is useful to unmask nontransmural lesions at risk of reconnection and that further ablation at sites of DC is associated with improvement in freedom from AF. Nevertheless it has been demonstrated that adenosine is not able to predict all veins at risk of later reconnection, which means that veins without DC are not necessarily at low risk. The role of the waiting period in the setting of adenosine testing has also been analyzed, suggesting that in the acute phase adenosine use should be accompanied by enough waiting time. PMID:26981309

  15. The Adverse Events and Hemodynamic Effects of Adenosine-Based Cardiac MRI

    We wanted to prospectively assess the adverse events and hemodynamic effects associated with an intravenous adenosine infusion in patients with suspected or known coronary artery disease and who were undergoing cardiac MRI. One hundred and sixty-eight patients (64 ± 9 years) received adenosine (140 μg/kg/min) during cardiac MRI. Before and during the administration, the heart rate, systemic blood pressure, and oxygen saturation were monitored using a MRI-compatible system. We documented any signs and symptoms of potential adverse events. In total, 47 out of 168 patients (28%) experienced adverse effects, which were mostly mild or moderate. In 13 patients (8%), the adenosine infusion was discontinued due to intolerable dyspnea or chest pain. No high grade atrioventricular block, bronchospasm or other life-threatening adverse events occurred. The hemodynamic measurements showed a significant increase in the heart rate during adenosine infusion (69.3 ± 11.7 versus 82.4 ± 13.0 beats/min, respectively; p < 0.001). A significant but clinically irrelevant increase in oxygen saturation occurred during adenosine infusion (96 ± 1.9% versus 97 ± 1.3%, respectively; p < 0.001). The blood pressure did not significantly change during adenosine infusion (systolic: 142.8 ± 24.0 versus 140.9 ± 25.7 mmHg; diastolic: 80.2 ± 12.5 mmHg versus 78.9 ± 15.6, respectively). This study confirms the safety of adenosine infusion during cardiac MRI. A considerable proportion of all patients will experience minor adverse effects and some patients will not tolerate adenosine infusion. However, all adverse events can be successfully managed by a radiologist. The increased heart rate during adenosine infusion highlights the need to individually adjust the settings according to the patient, e.g., the number of slices of myocardial perfusion imaging.

  16. New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4

    Chen Zhong; Jianping Ding

    2011-01-01

    The G protein-coupled receptor (GPCR) superfamily consists of thousands of integral membrane proteins that exert a wide variety of physiological functions and account for a large portion of the drag targets identified so far.However,structural knowledge of GPCRs is scarce, with crystal structures determined for only a few members including β1and β2 adrenergic receptors, adenosine receptor, rhodopsin,and dopamine D3 receptor [1].

  17. Intravenous infusion of adenosine but not inosine stimulates respiration in man.

    Reid, P G; Watt, A H; Routledge, P A; Smith, A P

    1987-01-01

    The effects on respiration of intravenous infusions of the endogenous nucleoside adenosine and its deaminated metabolite, inosine, administered in random order, single-blind, were compared in six healthy volunteers. The infusion rate of each nucleoside was initially 3.1 mg min-1 and was increased stepwise every 2 min, as tolerated, up to a possible maximum of 23.4 mg ml-1. The maximum dose rates received by all subjects were 8.5 mg min-1 for adenosine and 16.8 mg min-1 for inosine. Adenosine ...

  18. Adenosine-induced hyperpolarization of the membrane voltage in rat mesangial cells in primary culture.

    Pavenstädt, H. (Hermann); Ruh, J; Greger, R; Schollmeyer, P.

    1994-01-01

    1. The effect of adenosine on membrane voltage and ion currents was studied in rat mesangial cells in primary culture. Membrane voltage was measured with the patch clamp technique in the slow- or fast whole cell configuration. The resting membrane voltage of mesangial cells was -48 +/- 0.5 mV. Adenosine (10(-8)-10(-3) M) induced a sustained and concentration-dependent hyperpolarization of membrane voltage (ED50 approximately 6 x 10(-7) M). Adenosine (10(-5) M) hyperpolarized the membrane volt...

  19. Role of endogenous adenosine in the expression of opiate withdrawal in rats.

    Salem, A; Hope, W

    1999-03-12

    Samples of extracellular fluid from striatum and nucleus accumbens of anaesthetised rats undergoing opiate withdrawal were collected using microdialysis and then analysed for adenosine and its metabolites using high performance liquid chromatography (HPLC) and ultraviolet (UV) detection. Although the amount of adenosine present in the dialysate from either brain region was below the limit of detection by 90 min after probe placement, the metabolites could still be detected. Samples of dialysates collected from the nucleus accumbens contained significantly higher concentrations of hypoxanthine and inosine following naloxone challenge. The data are compatible with the hypothesis that endogenous adenosine might be involved in the expression of the opiate abstinence syndrome. PMID:10204679

  20. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.

    Robador, Pablo A; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-10-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that

  1. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase in the...... extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P < 0.05) compared with non-stimulated muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P < 0.05) in the intensely contracted, but not in the moderately contracted muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P < 0.05), whereas endothelial cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  2. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  3. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found in...... cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...... µM in brain slices. In vivo recordings showed a tendency towards increased adenosine levels in rats with hyperammonemia and systemic inflammation compared to a control group (3.7 ± 0.7 vs. 0.8 ± 0.2 µM, P = 0.06). This was associated with a significant increase in ICP and CBF. Intervention with the...

  4. Impact of aspirin dose on adenosine diphosphate-mediated platelet activities. Results of an in vitro pilot investigation.

    Tello-Montoliu, Antonio; Thano, Estela; Rollini, Fabiana; Patel, Ronakkumar; Wilson, Ryan E; Muñiz-Lozano, Ana; Franchi, Francesco; Darlington, Andrew; Desai, Bhaloo; Guzman, Luis A; Bass, Theodore A; Angiolillo, Dominick J

    2013-10-01

    Different aspirin dosing regimens have been suggested to impact outcomes when used in combination with adenosine diphosphate (ADP) P2Y12 receptor antagonists. Prior investigations have shown that not only aspirin, but also potent ADP P2Y12 receptor blockade can inhibit thromboxane A2-mediated platelet activation. The impact of aspirin dosing on ADP mediated platelet activities is unknown and represents the aim of this in vitro pilot pharmacodynamic (PD) investigation. Twenty-six patients with stable coronary artery disease on aspirin 81 mg/day and P2Y12 naïve were enrolled. PD assessments were performed at baseline, while patients were on 81 mg/day aspirin and after switching to 325 mg/day for 7 ± 2 days with and without escalating concentrations (vehicle, 1, 3, and 10 μM) of prasugrel's active metabolite (P-AM). PD assays included flow cytometric assessment of VASP to define the platelet reactivity index (PRI) and the Multiplate Analyzer (MEA) using multiple agonists [ADP, ADP + prostaglandin (PGE1), arachidonic acid (AA), and collagen]. Escalating P-AM concentrations showed incremental platelet P2Y12 inhibition measured by VASP-PRI (paspirin dosing regimen at any P-AM concentration (vehicle: p=0.899; 1 μM: p=0.888; 3 μM: p=0.524; 10 μM: p=0.548). Similar findings were observed in purinergic markers assessed by MEA (ADP and ADP+PGE1). P-AM addition significantly reduced AA and collagen induced platelet aggregation (paspirin dose. In conclusion, aspirin dosing does not appear to affect PD measures of ADP-mediated platelet reactivity irrespective of the degree of P2Y12 receptor blockade. P2Y12 receptor blockade modulates platelet reactivity mediated by alternative activators. PMID:23884248

  5. Actinides and rare earths complexation with adenosine phosphate nucleotides

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  6. Adenosine, Caffeine, and Performance: From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetics

    Urry, Emily; Landolt, Hans-Peter

    2014-01-01

    An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine adenosine , plays an important r...

  7. Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds

    Jaiswal Pundrik; Soldati Thierry; Thewes Sascha; Baskar Ramamurthy

    2012-01-01

    Abstract Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factor...

  8. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells.

    Cronstein, B. N.; Eberle, M A; Gruber, H E; Levin, R I

    1991-01-01

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, we determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts from 4 +/- 1% t...

  9. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.)

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 μM adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors)

  10. Roflumilast combined with adenosine increases mucosal hydration in human airway epithelial cultures after cigarette smoke exposure.

    Tyrrell, Jean; Qian, Xiaozhong; Freire, Jose; Tarran, Robert

    2015-05-15

    Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Recent studies have shown that cigarette smoke (CS) induces cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, which leads to airway-surface liquid (ASL) dehydration. This in turn contributes to the mucus dehydration and impaired mucociliary clearance that are seen in the chronic bronchitis form of COPD. Roflumilast is a phosphodiesterase 4 inhibitor that may improve lung function and reduce the frequency of exacerbations in patients with COPD. Although roflumilast can affect cAMP metabolism, little is known about the downstream pharmacological effects in the airways. We hypothesized that roflumilast would increase ASL rehydration in human bronchial epithelial cultures (HBECs) after chronic CS exposure. cAMP production was measured by Förster resonance energy transfer in HEK293T cells and by ELISA in HBECs. ASL height was measured by xz-confocal microscopy after air exposure or following HBEC exposure to freshly produced CS. Roflumilast had little effect on cAMP or ASL height when applied on its own; however, roflumilast significantly potentiated adenosine-induced increases in cAMP and ASL height in CS-exposed HBECs. Roflumilast increased the rate of ASL height recovery in cultures after CS exposure compared with controls. In contrast, the β2-adrenergic receptor agonists isoproterenol and salmeterol failed to increase ASL height after CS exposure. Our data suggest that roflumilast can increase ASL hydration in CS-exposed HBECs, which is predicted to be beneficial for the treatment of mucus dehydration/mucus stasis in patients with COPD chronic bronchitis. PMID:25795727

  11. Aptamer-based Electrochemical Biosensors for Highly Selective and Quantitative Detection of Adenosine

    ZHENG Fan; WU Zai-sheng; ZHANG Song-bai; GUO Meng-meng; CHEN Chen-rui; SHEN Guo-li; YU Ru-qin

    2008-01-01

    A new adenosine biosensor based on aptamer probe is introduced in this article.An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film.When adenosine is bound specifically to the aptamer probe,the interface of the biosensor is changed,resulting in the decrement of the peak current.The response current is proportional to the amount of adenosine in sample.The used electrode can be easily regenerated in hot water.The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0×10-7-1.0×10-4 mol/L with a detection limit of 1.0×10-8 mol/L.The presented biosensor exhibits a nice specificity towards adenosine.It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.

  12. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  13. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up [14C]adenine and released 14C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs

  14. Intravenous adenosine (adenoscan) versus exercise in the noninvasive assessment of coronary artery disease by SPECT

    LaManna, M.M.; Mohama, R.; Slavich, I.L. 3d.; Lumia, F.J.; Cha, S.D.; Rambaran, N.; Maranhao, V. (Deborah Heart and Lung Center, Browns Mills, NJ (USA))

    1990-11-01

    Fifteen patients at a mean age of 58 underwent adenosine and maximal exercise thallium SPECT imaging. All scans were performed 1 week apart and within 4 weeks of cardiac catheterization. SPECT imaging was performed after the infusion of 140 micrograms/kg/min of adenosine for 6 minutes. Mean heart rate increment during adenosine administration was 67 +/- 3.7 to 77 +/- 4.1. Mean blood pressure was 136 +/- 7.2 to 135 +/- 6.2 systolic and 78 +/- 1.8 to 68 +/- 2.6 diastolic. No adverse hemodynamic effects were observed. There were no changes in PR or QRS in intervals. Five stress ECGs were ischemic. No ST changes were observed with adenosine. Although 68% of the patients had symptoms of flushing, light-headedness, and dizziness during adenosine infusion, symptoms resolved within 1 minute of dosage adjustment or termination of the infusion in all but one patient, who required theophylline. Sensitivity for coronary artery detection was 77% and specificity 100%. Concordance between adenoscans and exercise thallium scintigraphy was high (13/15 = 87%). In two patients, there were minor scintigraphic differences. The authors conclude that adenosine is a sensitive, specific, and safe alternative to exercise testing in patients referred for thallium imaging and may be preferable to dipyridamole.

  15. Functional proteomics of adenosine triphosphatase system in the rat striatum during aging

    Roberto Federico Villa; Federica Ferrari; Antonella Gorini

    2012-01-01

    The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na+, K+, Mg2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg2+-ATPase); sodium-potassium adenosine triphosphatase (Na+, K+-ATPase); direct magnesium adenosine triphosphatase (Mg2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca2+, Mg2+-ATPase); and acetylcholinesterase. The results showed that Na+, K+-ATPase decreased at 18 and 24 months, Ca2+, Mg2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential.

  16. Control and Function of the Homeostatic Sleep Response by Adenosine A1 Receptors

    Bjorness, Theresa E.; Kelly, Christine L.; Gao, Tianshu; Poffenberger, Virginia; Greene, Robert W.

    2009-01-01

    During sleep, the mammalian CNS undergoes widespread, synchronized slow wave activity (SWA) that directly varies with prior waking duration (Borbely, 1982;Dijk et al., 1990a). When sleep is restricted, an enhanced SWA response follows in the next sleep period. The enhancement of SWA is associated with improved cognitive performance (Huber et al., 2004c), but it is unclear either how the SWA is enhanced or whether SWA is needed to maintain normal cognitive performance. A conditional, CNS knock...

  17. Involvement of adenosine receptors in NK cell-mediated cytotoxicity in different mammalian species

    Fišerová, Anna; Kovářů, H.; Kuldová, M.; Lukšan, O.; Vannucci, Luca; Stařec, M.; Páv, M.; Pospíšil, Miloslav; Kovářů, F.

    Scotland, 2003, s. 162. [International Congress of the International Society for Development and Comparative Immunology /9./. Scotland (GB), 29.06.2003-03.07.2003] R&D Projects: GA ČR GA304/01/0850; GA ČR GV312/98/K034 Institutional research plan: CEZ:AV0Z5020903 Keywords : nk * g-protein Subject RIV: EE - Microbiology, Virology

  18. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria;

    2006-01-01

    either 1.25 mg/kg DPCPX dissolved in 2 ml/kg dimethyl sulfoxide (DMSO) or the same volume of DMSO alone, 15 min before the third ischemic episode. Time to electrocortical suppression was estimated based on the decay of the root mean square of two-channel electrocorticographic recordings. During the first...... two ischemic episodes, electrocortical suppression appeared after approximately 12 s in both groups. After DMSO administration, ischemic suppression remained unchanged. After DPCPX administration, the time to electrocortical suppression was increased by approximately 10 s, and bursts of activity were...

  19. RESIDUAL PLATELET REACTIVITY DURING THERAPY WITH INHIBITORS OF CYCLOOXIGENASE OR ADENOSINE DIPHOSPHATE RECEPTORS

    A. A. Lomonosova

    2012-01-01

    Full Text Available Aim. To compare effects of acetylsalicylic acid (ASA and two clopidogrel drugs on residual platelet aggregative reactivity (RPAR. Material and methods. Patients (n=40 with ischemic heart disease aged under 70 years were involved into the crossover study. Clinical examination included questionnaire survey , blood pressure (BP measurement, ECG registration, 24-hour ECG and BP monitoring, determination of blood levels of total cholesterol, high density lipoproteins, triglycerides, transaminases, and creatinine, complete blood cell count, including platelets number and hemoglobin level. Besides evaluation of the platelet aggregation by optical aggregometry was performed initially , after one week ASA treatment and after every next 3 week clopidogrel treatment period.  Results. RPAR during ASA monotherapy was 56.4±0.3%. There were no significant differences in effects of original and generic clopidogrel on RPAR. Сlopidogrel therapy reduced RPAR more significantly (42.2±0.2% than ASA monotherapy did (p=0.0003. Authors proposed definition for high level of RPAR during therapy - it is platelet aggregation more than 46%. Data analysis taking into account this criterion showed that a number of patients with high RPAR was 70 and 30% among patients treated with enterosoluble ASA and clopidogrel, respectively. Conclusion. Study results show that a significant number of patients receiving antiplatelet monotherapy does not achieve the target level of RPAR(<46%. These results may be a rationale for combined therapy in patients of this type.

  20. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice

    Hansen, Pernille B; Hashimoto, Seiji; Briggs, Josie; Schnermann, Jurgen

    2003-01-01

    control conditions (450.5 +/- 60 vs. 475.2 +/- 62.5 microl/min) but fell significantly less in A1AR -/- mice during infusion of ANG II at 1.5 ng/min (A1AR +/+: 242 +/- 32.5 microl/min, A1AR -/-: 371 +/- 42 microl/min; P = 0.03). Bolus injection of 1, 10, and 100 ng of ANG II reduced renal blood flow and...

  1. Tsh receptor

    Frauman, Albert

    2013-01-01

    The TSH receptor is a member of the G protein-coupled receptor(GPCR)family. It is one of the glycoprotein hormone receptors, which also includes the FSH and LH/CG receptors. The TSH receptor mediates the action of the pituitary-derived glycoprotein, TSH (thyroid stimulating hormone, thyrotropin or thyrotrophin). TSH binds to the TSH receptor which is located on thyroid follicular cells (but is also expressed in extrathyroidal sites). Glycosylation of the TSH receptor occurs, as does cleavage ...

  2. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  3. In Vitro Functional Study of Rice Adenosine 5'-Phosphosulfate Kinase

    WANG De-zhen; CHEN Guo-guo; LU Lu-jia; JIANG Zhao-jun; RAO Yu-chun; SUN Mei-hao

    2016-01-01

    Sulfate can be activated by ATP sulfurylase and adenosine 5'-phosphosulfate kinase (APSK)in vivo. Recent studies suggested that APSK inArabidopsis thaliana regulated the partition between APS reduction and phosphorylation and its activity can be modulated by cellular redox status. In order to study regulation of APSK in rice (OsAPSK),OsAPSK1 gene was cloned and its activity was analyzed. OsAPSK1 C36 and C69 were found to be the conserved counterparts of C86 and C119, which involved in disulfide formation in AtAPSK.C36A/C69A OsAPSK1 double mutation was made by site directed mutagenesis. OsAPSK1 and its mutant were prokaryotically over-expressed and purified, and then assayed for APS phosphorylation activity. OsAPSK1 activity was depressed by oxidized glutathione, while the activity of its mutantwas not. Further studies in the case that oxidative stress will fluctuatein vivo3'-phosphoadenosine-5'-phosphosulfate content, and all APSK isoenzymes have similar regulation patterns are necessary to be performed.

  4. Adenosine preconditioning attenuates hepatic reperfusion injury in the rat by preventing the down-regulation of endothelial nitric oxide synthase

    Serracino-Inglott, Ferdinand; Virlos, Ioannis T; Habib, Nagy A; Williamson, Robin CN; Mathie, Robert T

    2002-01-01

    Background Previous work has suggested that in the liver, adenosine preconditioning is mediated by nitric oxide. Whether the endothelial isoform of nitric oxide synthase plays a part in this mechanism has however not yet been investigated. Methods Wistar rats were used (6 in each group) – Groups: (1) sham, (2) ischemia-reperfusion, (3) adenosine + ischemia-reperfusion, (4) endothelial isoform inhibitor + adenosine + ischemia-reperfusion. Results Using immunohistochemistry, this study has revealed a decrease in the expression of endothelial nitric oxide synthase following hepatic ischemia-reperfusion. This was prevented by adenosine pre-treatment. When an inhibitor of endothelial nitric oxide synthase was administered prior to adenosine pre-treatment, pre-conditioning did not occur despite normal expression of endothelial nitric oxide synthase. Conclusions These findings suggest that adenosine attenuates hepatic injury by preventing the downregulation of endothelial nitric oxide synthase that occurs during ischemia-reperfusion. PMID:12241560

  5. Sex Differences in Caffeine Neurotoxicity Following Chronic Ethanol Exposure and Withdrawal

    Butler, Tracy R.; Smith, Katherine J.; Berry, Jennifer N.; Sharrett-Field, Lynda J.; Prendergast, Mark A.

    2009-01-01

    Aims: Caffeine is a central nervous system stimulant that produces its primary effects via antagonism of the A1 and A2A adenosine receptor subtypes. Previous work demonstrated a sex difference in neurotoxicity produced by specific adenosine A1 receptor antagonism during ethanol withdrawal (EWD) in vitro that was attributable to effects downstream of A1 receptors at NMDA receptors. The current studies were designed to examine the effect of non-specific adenosine receptor antagonism with caffei...

  6. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.); Determination radiochromatographique de l'adenosine deaminase (A.D.)

    Chivot, J.J.; Depernet, D.; Caen, J. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1970-07-01

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 {mu}M adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors) [French] Nous avons pu, en utilisant une methode radiochromatographique, mesurer une activite adenosine deaminasique dans le plasma humain pauvre en plaquettes heparine qui peut degrader 0,016 {mu}M d'adenosine. Cette activite qui est supprimee par chauffage a 56 degres pendant 30 minutes, est reduite par conservation a -20 C pendant une semaine, est inhibee par d'importantes concentrations d'uree et ne l'est pas, ni par le dipyridamol, ni par le pHMB. Cette activite est proportionnelle a la quantite de plasma, source d'enzyme, mise dans les differents systemes reactifs. (auteur)

  7. Comparative study of adenosine deaminase activity, insulin resistance and lipoprotein(a) among smokers and healthy non-smokers

    Ramesh Ramasamy; Sathish Babu Murugaiyan; Arulkumaran U.; Sathiya R.; Kuzhandai Velu V.; Niranjan Gopal

    2016-01-01

    Background: Adenosine deaminase also known as adenosine aminohydrolase involved in purine metabolism. Its primary function is development and maintenance of immune system. The main objective of the study was to estimate adenosine deaminase (ADA) enzyme and find its correlation with lipoprotein(a) and insulin resistance among smokers and healthy non-smokers. Methods: Fifty smokers and fifty healthy non-smokers were selected based on WHO definition. ADA, lipid profile and glucose was estimat...

  8. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  9. Three minute versus six minute adenosine infusion in myocardial perfusion scintigraphy

    Pharmacological stress imaging techniques are used widely in clinical nuclear cardiology for evaluation of ischemic heart disease. Adenosine is often used but is expensive and causes significant side effects .The aim of this retrospective review was to study the tolerance and efficacy, of adenosine infusion of a 3 minute (min) versus the conventional 6 min stress protocol and to assess the cost efficiency of the 3 min protocol. Three hundred thirty one patients had myocardial scintigraphy using adenosine as a stressing agent. Blood pressure, heart rate and ECG were recorded at baseline and during the test. Symptoms (flushing, headache, chest pain, dyspnoea, neck pain) were recorded throughout the adenosine infusion. All the patients had had either 6 min or 3 min adenosine infusion at 140 mg/kg per minute. 169 of them had side effects. Flushing (32% at 3 min vs 50 % at 6 min, p<0.05), headache (11.5% at 3 min vs 7 % at 6 min p-not significant-ns), chest pain (8% at 3 min vs 13 % at 6 min, ns), dyspnoea (7% at 3 min vs %10 at 6 min, ns), ECG changes (10% at 3 min vs 28% at 6 min, p<0.05), neck pain (4.5% at 3 min vs 9% at 6 min, ns), abdominal discomfort (3% at 3 min vs 3% at 6 min, ns) and fall in blood pressure (6% at 3 min vs 8.5% at 6 min, ns). The change in heart rate was not significant with either protocol. The 6 min and 3 min infusions of adenosine had similar accuracy (73% vs 70%) for the detection of coronary artery disease. The patients tolerated the 3 min protocol better with only 40% of the patients having minimal side effects compared with 60% for the 6 mon protocol. The 3 min protocol is also cost effective as it uses less adenosine and therefore reduces total costs by 40 US$ per patient. (author)

  10. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at