WorldWideScience

Sample records for adducts biological effects

  1. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  2. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs

  3. Chemistry and Biology of Aflatoxin-DNA Adducts

    Stone, Michael P.; Banerjee, Surajit; Brown, Kyle L.; Egli, Martin (Vanderbilt)

    2012-03-27

    Aspergillus flavus is a fungal contaminant of stored rice, wheat, corn, and other grainstuffs, and peanuts. This is of concern to human health because it produces the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}), which is genotoxic and is implicated in the etiology of liver cancer. AFB{sub 1} is oxidized in vivo by cytochrome P450 to form aflatoxin B{sub 1} epoxide, which forms an N7-dG adduct (AFB{sub 1}-N7-dG) in DNA. The latter rearranges to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative that equilibrates between {alpha} and {beta} anomers of the deoxyribose. In DNA, both the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts intercalate above the 5'-face of the damaged guanine. Each produces G {yields} T transversions in Escherichia coli, but the AFB{sub 1}-{beta}-FAPY adduct is more mutagenic. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) provides a model for understanding error-prone bypass of the AFB{sub 1}-N7-dG and AFB{sub 1}-{beta}-FAPY adducts. It bypasses the AFB{sub 1}-N7-dG adduct, but it conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including mis-insertion of dATP, consistent with the G {yields} T mutations characteristic of AFB{sub 1} mutagenesis in E. coli. Crystallographic analyses of a series of binary and ternary complexes with the Dpo4 polymerase revealed differing orientations of the N7-C8 bond of the AFB{sub 1}-N7-dG adduct as compared to the N{sup 5}-C8 bond in the AFB{sub 1}-{beta}-FAPY adduct, and differential accommodation of the intercalated AFB{sub 1} moieties within the active site. These may modulate AFB{sub 1} lesion bypass by this polymerase.

  4. Effect of the diaminocyclohexane carrier ligand on platinum adduct formation, repair, and lethality

    Platinum compounds with the diaminocyclohexane (dach) carrier ligand are of particular interest because cell lines that have developed resistance to platinum compounds in general often retain sensitivity to dach-platinum compounds, suggesting that the dach carrier ligand affects the formation, repair, or lethality of platinum-DNA adducts. The effect of the dach ligand on platinum adduct formation was assessed by using the (HaeIII-HindIII)146 fragment of pBR322 treated to give equal amounts of dach- or ethylene-diamine-platinum adducts. The sites of adduct formation were mapped by digestion with Escherichia coli ABC excinuclease. There were no significant effects of the dach carrier ligand on the types or sites of platinum adduct formation. The effect of the dach ligand on platinum adduct repair was determined by using synthetic oligomers designed to have single, specific platinum adducts. These data suggest that if the carrier ligand has any effect on the repair of platinum adducts, it is more likely to exert that effect on the repair of platinum monoadducts or GNG diadducts rather than on the more abundant AG or GG diadducts. [14C]Thiourea incorporation was used to quantitate the rate of monoadduct to diadduct conversion. Finally, the effect of the dach ligand on platinum adduct lethality was assessed by determining the effect of dach- and en-platinum adducts on the transformation efficiency of pBR322 into a repair-deficient (recA- uvrA-) strain of E. coli. These data suggest that the dach carrier ligand can significantly affect the ability of platinum-DNA adducts to block essential processes such as replication and transcription

  5. Environmental air pollution and DNA adducts in Copenhagen bus drivers - effect of GSTM1 and NAT2 genotypes on adduct level

    Nielsen, Per Sabro; de Pater, Nettie; Okkels, Henrik; Autrup, Herman

    1996-01-01

    rural controls (0.074 fmol/microg DNA, n = 60, P < 0.001). No significant influence on adduct levels was demonstrated from potential confounders, including smoking and diet. The effect of the metabolizing enzymes, GSTM1 and NAT2, on adduct levels was investigated. No statistically significant effects...... levels of exposure to urban air pollution and indicated that these adducts might be helpful as a means of classifying better different exposure groups for epidemiological studies. Furthermore, it demonstrated the ability of 32P-postlabelling to discern small differences in low exposure to ambient air...

  6. Tracking matrix effects in the analysis of DNA adducts of polycyclic aromatic hydrocarbons.

    Klaene, Joshua J; Flarakos, Caroline; Glick, James; Barret, Jennifer T; Zarbl, Helmut; Vouros, Paul

    2016-03-25

    LC-MS using electrospray ionization is currently the method of choice in bio-organic analysis covering a wide range of applications in a broad spectrum of biological media. The technique is noted for its high sensitivity but one major limitation that hinders achievement of its optimal sensitivity is the signal suppression due to matrix inferences introduced by the presence of co-extracted compounds during the sample preparation procedure. The analysis of DNA adducts of common environmental carcinogens is particularly sensitive to such matrix effects as sample preparation is a multistep process which involves "contamination" of the sample due to the addition of enzymes and other reagents for digestion of the DNA in order to isolate the analyte(s). This problem is further exacerbated by the need to reach low levels of quantitation (LOQ in the ppb level) while also working with limited (2-5μg) quantities of sample. We report here on the systematic investigation of ion signal suppression contributed by each individual step involved in the sample preparation associated with the analysis of DNA adducts of polycyclic aromatic hydrocarbon (PAH) using as model analyte BaP-dG, the deoxyguanosine (dG) adduct of benzo[a]pyrene (BaP). The individual matrix contribution of each one of these sources to analyte signal was systematically addressed as were any interactive effects. The information was used to develop a validated analytical protocol for the target biomarker at levels typically encountered in vivo using as little as 2μg of DNA and applied to a dose response study using a metabolically competent cell line. PMID:26607319

  7. Biological effects

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH)

  8. Proceedings of a workshop on DNA adducts: Biological significance and applications to risk assessment Washington, DC, April 13-14, 2004

    In April 2004, the Health and Environmental Sciences Institute, a branch of the International Life Sciences Institute, with support from the National Institute of Environmental Health Sciences, organized a workshop to discuss the biological significance of DNA adducts. Workshop speakers and attendees included leading international experts from government, academia, and industry in the field of adduct detection and interpretation. The workshop initially examined the relationship between measured adduct levels in the context of exposure and dose. This was followed by a discussion on the complex response of cells to deal with genotoxic insult in complex, interconnected, and interdependent repair pathways. One of the major objectives of the workshop was to address the recurring question about the mechanistic and toxicological relevance of low-concentration measured adducts and the presentations in the session entitled 'Can low levels of DNA adducts predict adverse outcomes?' served as catalysts for further discussions on this subject during the course of the workshop. Speakers representing the regulatory community and industry reviewed the value, current practices, and limitations of utilizing DNA adduct data in risk assessment and addressed a number of practical questions pertaining to these issues. While no consensus statement emerged on the biological significance of low levels of DNA adducts, the workshop concluded by identifying the need for more experimental data to address this important question. One of the recommendations stemming from this workshop was the need to develop an interim 'decision-logic' or framework to guide the integration of DNA adduct data in the risk assessment process. HESI has recently formed a subcommittee consisting of experts in the field and other key stakeholders to address this recommendation as well as to identify specific research projects that could help advance the understanding of the biological significance of low levels of DNA

  9. Effect of external electric field on Cyclodextrin-Alcohol adducts: A DFT study

    Kundan Baruah; Pradip Kr Bhattacharyya

    2015-06-01

    Effect of external electric fields on the interaction energy between cyclodextrin and alcohol was analyzed in the light of density functional theory (DFT) and density functional reactivity theory (DFRT). Stability of the cyclodextrin-alcohol adducts was measured in terms of DFT based reactivity descriptor, global hardness, electrophilicity, and energy of the HOMO. Stability of adducts was observed to be sensitive towards the strength as well as direction of the applied external electric field. In addition, reactivity pattern follows the maximum hardness and minimum electrophilicity principles.

  10. GSTM1 and XRCC3 Polymorphisms: Effects on Levels of Aflatoxin B1-DNA Adducts

    Xi-dai Long; Yun Ma; Zhou-lin Deng

    2009-01-01

    Objective: Aflatoxin B1 (AFB1), which can cause the formation of AFB1-DNA adducts, is a known human carcinogen. AFB1-exposure individuals with inherited susceptible carcinogen-metabolizing or repairing genotypes may experience an increased risk of genotoxicity. This study was designed to investigate whether the polymorphisms of two genes, the metabolic gene Glutathione S-transferase M1 (GSTM1) and DNA repair gene x-ray repair cross-complementing group 3 (XRCC3), can affect the levels of AFB1-DNA adducts in Guangxi Population (n= 966) from an AFB1-exposure area.Methods: AFB1-DNA adducts were measured by ELISA, and GSTM1 and XRCC3 codon 241 genotypes were identified by PCR-RFLP.Results: The GSTM1-null genotype [adjusted odds ratio (OR) = 2.09; 95% confidence interval (CI) = 1.61(2.71] and XRCC3 genotypes with 241 Met alleles [i.e., XRCC3-TM and -MM, adjusted ORs (95% CI) were 1.43 (1.08(1.89) and 2.42 (1.13(5.22), respectively] were significantly associated with higher levels of AFB1-DNA adducts. Compared with those individuals who did not express any putative risk genotypes as reference (OR = 1), individuals featuring all of the putative risk genotypes did experience a significantly higher DNA-adduct levels (adjusted ORs were 2.87 for GSTM1-null and XRCC3-TM; 5.83 for GSTM1-null and XRCC3-MM). Additionally, there was a positive joint effect between XRCC3 genotypes and long-term AFB1 exposure in the formation of AFB1-DNA adducts.Conclusion: These results suggest that individuals with susceptible genotypes GSTM1-null, XRCC3-TM, or XRCC3-MM may experience an increased risk of DNA damage elicited by AFB1 exposure.

  11. Modulation of the Effect of Prenatal PAH Exposure on PAH-DNA Adducts in Cord Blood by Plasma Antioxidants

    Kelvin, Elizabeth A.; Edwards, Susan; Jedrychowski, Wieslaw; Schleicher, Rosemary L.; Camann, David; Tang, Deliang; Perera, Frederica P.

    2009-01-01

    The fetus is more susceptible than the adult to the effects of certain carcinogens, such as polycyclic aromatic hydrocarbons (PAH). Nutritional factors, including antioxidants, have been shown to have a protective effect on carcinogen-DNA adducts and cancer risk in adults. We investigated whether the effect of prenatal airborne PAH exposure, measured by personal air monitoring during pregnancy, on the level of PAH-DNA adducts in a baby's cord blood is modified by the concentration of micronut...

  12. Biological effects of radiation

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  13. Isolation, identification, and assay of [3H]-porfiromycin adducts of EMT6 mouse mammary tumor cell DNA: effects of hypoxia and dicumarol on adduct patterns.

    Tomasz, M; Hughes, C S; Chowdary, D; Keyes, S R; Lipman, R; Sartorelli, A C; Rockwell, S

    1991-07-01

    [3H]-(N-la-methyl) Porfiromycin (POR) was employed to detect and identify the radiolabeled mono- and bis-adducts formed in living EMT6 mouse mammary tumor cells under different conditions. To provide authentic standard adducts, calf-thymus DNA was treated with POR under reductive activation, then digested to nucleosides and POR-nucleoside adducts. The three major adducts formed were isolated by HPLC and authenticated. Two were mono-adducts, composed of deoxyguanosine linked at its N2-position to C-1 of POR and of 10-decarbamoyl POR. The third was a bis-adduct, in which POR was crosslinked to two deoxyguanosines at their N2-positions. DNA from [3H]-POR treated EMT6 cells was digested an analyzed by HPLC. DNA-associated label was located in thymidine and in two mono-adducts and one bis-adduct identical to those described above. Label in thymidine resulted from N-demethylation of POR and reincorporation of label into new thymidylate residues. Adducts were formed more abundantly in hypoxia than in air. In addition, the mono-adduct to crosslink ratios were different, approximately 1:1 and 2:1 for hypoxic and aerobic cells, respectively. The different patterns of alkylation in air and hypoxia may be related to the greater toxicity of POR in hypoxia. When cells were treated simultaneously with POR and dicumarol, adduct levels were lower, and a new, unknown adduct was observed primarily under hypoxia; these changes may be related to the altered toxicity of POR in the presence of dicumarol. The HPLC assay detected simultaneously the full array of stable mono- and bis-adducts in DNA with good sensitivity (greater than or equal to 2 x 10(6) adducts/nucleotide) and excellent reproducibility. This assay should be generally applicable to all cells and tissues when MC or POR with high specific radioactivity can be employed. PMID:1714285

  14. Crystalline guanine adducts of natural and synthetic trioxacarcins suggest a common biological mechanism and reveal a basis for the instability of trioxacarcin A.

    Pröpper, Kevin; Dittrich, Birger; Smaltz, Daniel J; Magauer, Thomas; Myers, Andrew G

    2014-09-15

    X-ray crystallographic characterization of products derived from natural and fully synthetic trioxacarcins, molecules with potent antiproliferative effects, illuminates aspects of their reactivity and mechanism of action. Incubation of the fully synthetic trioxacarcin analog 3, which lacks one of the carbohydrate residues present in the natural product trioxacarcin A (1) as well as oxygenation at C2 and C4 yet retains potent antiproliferative effects, with the self-complimentary duplex oligonucleotide d(AACCGGTT) led to production of a crystalline covalent guanine adduct (6). Adduct 6 is closely analogous to gutingimycin (2), the previously reported guanine adduct derived from incubation of natural trioxacarcin A (1) with duplex DNA, suggesting that 3 and 1 likely share a common basis of cytotoxicity. In addition, we isolated a novel, dark-red crystalline guanine adduct (7) from incubation of trioxacarcin A itself with the self-complimentary duplex oligonucleotide d(CGTATACG). Crystallographic analysis suggests that 7 is an anthraquinone derivative, which we propose arises by a sequence of guanosine alkylation within duplex DNA, depurination, base-catalyzed elimination of the trioxacarcinose A carbohydrate residue, and oxidative rearrangement to form an anthraquinone. We believe that this heretofore unrecognized chemical instability of natural trioxacarcins may explain why trioxacarcin analogs lacking C4 oxygenation exhibit superior chemical stabilities yet, as evidenced by structure 3, retain a capacity to form lesions with duplex DNA. PMID:25176186

  15. Acute and sub-acute effects of repetitive kicking on hip adduction torque in injury-free elite youth soccer players

    Jensen, Jesper; Bandholm, Thomas; Hölmich, Per;

    2014-01-01

    Hip adduction strength is important for kicking and acceleration in soccer players. Changes in hip adduction strength may therefore have an effect on soccer players' athletic performance. The purpose of this study was to investigate the acute and sub-acute effects of a kicking drill session on hi...

  16. SYNTHESIS AND PHARMACOLOGICAL EFFECTS OF BUTADIENE AND CYCLOPENTADIENE ADDUCTS OF METHANDROSTENOLONE IN RATS

    FAZEL SHAMSA

    2006-06-01

    Full Text Available In this study the reactivity of methandrostenolone or [(17b-17-hydroxy-17-methylandrosta-1, 4-diene-3-one], as a dienophil in a Diels-Alder type cycloaddition reaction was investigated. The purpose of this approach was to investigate whether the 1-dehydro position of methandrostenolone 1 undergoes a cycloaddition reaction with dienes, such as 1, 3 butadiene or cyclopentadiene, and to investigate the biological behavior of the reaction adducts, i.e, compound 3 {(17b-17-hydroxy-17-methyl androsta [1a, 2a] cyclohex 3’, 4-diene-3-one} and compound 4 {(17b-17-hydroxy-17-methyl androsta [1a, 2a] cyclohex (2’,5’ methylene 3’, 4-diene-3-one}, relative to compound 1. The results indicated that thedDiels-Alder reactionddid notpproceed under the usual circumstances of high pressure and temperature, but could proceed in the presence of a Lewis acid (AlCl3. The structures of compounds 3 and 4 were confirmed by spectroscopic methods. The androgenic behavior of compounds 3 and 4 in comparison to compound 1 in the apomorphine test indicated that both compounds were almost devoid of androgenic activity, but prevented apomorphine mediated penile erection in male rats in a similar manner as cyproterone acetate.

  17. Effects of Metal Ion Adduction on the Gas-Phase Conformations of Protein Ions

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2013-01-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion bindi...

  18. Hyphenating the curtius rearrangement with Morita-Baylis-Hillman adducts: synthesis of biologically active acyloins and vicinal aminoalcohols

    Amarante, Giovanni W.; Cavallaro, Mayra; Coelho, Fernando, E-mail: coelho@iqm.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Lab. de Sintese de Produtos Naturais e Farmacos

    2011-07-01

    Using Morita-Baylis-Hillman adducts as substrates, the Curtius rearrangement was performed in a sequence that allowed the synthesis of several hydroxy-ketones (acyloins) with great structural diversity and in good overall yields. These acyloins in turn were easily transformed into 1,2-anti aminoalcohols through a highly diastereoselective reductive amination step. The synthetic utility of these approaches was exemplified by performing the syntheses of (+-)-bupropion, a drug used to treat the abstinence syndrome of smoker and (+-)-spisulosine, a potent anti-tumoral compound originally isolated from a marine source. (author)

  19. Hyphenating the curtius rearrangement with Morita-Baylis-Hillman adducts: synthesis of biologically active acyloins and vicinal aminoalcohols

    Using Morita-Baylis-Hillman adducts as substrates, the Curtius rearrangement was performed in a sequence that allowed the synthesis of several hydroxy-ketones (acyloins) with great structural diversity and in good overall yields. These acyloins in turn were easily transformed into 1,2-anti aminoalcohols through a highly diastereoselective reductive amination step. The synthetic utility of these approaches was exemplified by performing the syntheses of (+-)-bupropion, a drug used to treat the abstinence syndrome of smoker and (+-)-spisulosine, a potent anti-tumoral compound originally isolated from a marine source. (author)

  20. Effects of Push-up Exercise with Hip Adduction on the COP Deviation and the Serratus Anterior and L1 Paraspinal Muscles

    Kim, Min-Hee; Yoo, Won-Gyu

    2013-01-01

    [Purpose] This study investigated the effect of push-up exercise with hip adduction on the COP deviation and SA and L1 spinal muscle activation. [Subjects] Twelve males aged 20–30 years were recruited. [Methods] We measured the COP deviation and SA and L1 spinal muscle activities during push-up exercise with and without hip adduction [Results] The COP deviation significantly decreased and the SA and L1 spinal muscles were significantly increased during push-ups with hip adduction when compare...

  1. Effect of Increased Water Intake on Urinary DNA Adduct Levels and Mutagenicity in Smokers: A Randomized Study

    Inmaculada Buendia Jimenez

    2015-01-01

    Full Text Available The association between fluid intake and bladder cancer risk remains controversial. Very little is known about to which extent the amount of water intake influences the action of excreting toxics upon the urinary system. This proof of concept trial investigates the effect of water intake on mutagenesis in smokers, a high risk population for bladder cancer. Methods. Monocentric randomized controlled trial. Inclusion Criteria. Male subjects aged 2045–45 y/o, smokers, and small drinkers (24-hour urinary volume 700 mOsmol/kg. Outcomes. 4-ABP DNA adducts formation in exfoliated bladder cells in 24-hour urine collection and urinary mutagenicity in 24-hour urine. Test Group. Subjects consumed 1.5 L daily of the study product (EVIAN on top of their usual water intake for 50 days. Control Group. Subjects continued their usual lifestyle habits. Results. 65 subjects were randomized. Mean age was 30 y/o and mean cigarettes per day were 20. A slight decrease in adducts formation was observed between baseline and last visit but no statistically significant difference was demonstrated between the groups. Urinary mutagenicity significantly decreased. The study shows that increasing water intake decreases urinary mutagenicity. It is not confirmed by urinary adducts formation. Further research would be necessary.

  2. Effect of Increased Water Intake on Urinary DNA Adduct Levels and Mutagenicity in Smokers: A Randomized Study

    Buendia Jimenez, Inmaculada; Richardot, Pascaline; Picard, Pascaline; Lepicard, Eve M.; De Meo, Michel; Talaska, Glenn

    2015-01-01

    The association between fluid intake and bladder cancer risk remains controversial. Very little is known about to which extent the amount of water intake influences the action of excreting toxics upon the urinary system. This proof of concept trial investigates the effect of water intake on mutagenesis in smokers, a high risk population for bladder cancer. Methods. Monocentric randomized controlled trial. Inclusion Criteria. Male subjects aged 2045–45 y/o, smokers, and small drinkers (24-hour urinary volume 700 mOsmol/kg). Outcomes. 4-ABP DNA adducts formation in exfoliated bladder cells in 24-hour urine collection and urinary mutagenicity in 24-hour urine. Test Group. Subjects consumed 1.5 L daily of the study product (EVIAN) on top of their usual water intake for 50 days. Control Group. Subjects continued their usual lifestyle habits. Results. 65 subjects were randomized. Mean age was 30 y/o and mean cigarettes per day were 20. A slight decrease in adducts formation was observed between baseline and last visit but no statistically significant difference was demonstrated between the groups. Urinary mutagenicity significantly decreased. The study shows that increasing water intake decreases urinary mutagenicity. It is not confirmed by urinary adducts formation. Further research would be necessary. PMID:26357419

  3. Cisplatin-DNA adduct formation in rat spermatozoa and its effect on fetal development

    Hooser, S.T.; Dijk-Knijnenburg, C.M. van; Waalkens-Berendsen, I.D.H.; Smits-van Prooije, A.E.; Snoeij, N.J.; Baan, R.A.; Fichtinger-Schepman, M.J.

    2000-01-01

    Exposure of males to some genotoxic chemicals causes DNA damage in spermatozoa resulting in embryotoxicity and developmental defects in their offspring. This study demonstrates that cisplatin-DNA adducts could be measured in spermatozoa following treatment with the antineoplastic drug, cisplatin. Th

  4. Biological Effects of Ionizing Radiation

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  5. Quantum Effects in Biology

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  6. Reduction of cisplatin-induced nephrotoxicity in vivo by selenomethionine: the effect on cisplatin-DNA adducts.

    García Sar, Daniel; Montes-Bayón, Maria; Blanco González, Elisa; Sierra Zapico, Luisa M; Sanz-Medel, Alfredo

    2011-06-20

    Cisplatin is one of the most effective chemotherapeutic agents, although its clinical use is limited by severe renal toxicity. This toxicity seems to be related to the accumulation of the drug in kidney tissues, leading to renal failure. For this reason, several compounds have been evaluated to ameliorate the nephrotoxicity induced by cisplatin. In the present investigation, we report the effect of the oral administration of selenomethionine before intraperitoneal cisplatin treatment. The preadministration of this Se species has been shown to have an important effect in reducing renal damage induced by cisplatin by increasing the excreted urea and improving creatinine clearance. Quantification of the level of DNA--cisplatin adducts in kidney and liver tissues was carried out by postcolumn isotope dilution analysis using liquid chromatography-inductively coupled plasma (LC-ICP-MS) as speciation set up. The level of DNA--cisplatin adducts in rats given Se-methionine in the drinking water before cisplatin administration was considerably lower in kidney tissues with respect to the animals drinking only water. Such effects were not observed in liver tissue. Initial speciation studies of Pt and Se conducted in kidney tissues of exposed animals by HPLC-ICP-MS have revealed the presence of cisplatin as part of a complex with Se-methionine, which can be eventually excreted into urine. This Pt--Se complex could explain the observed reduction of the kidney damage in Se-methionine-treated animals. PMID:21491944

  7. Biological radiation effects

    The book covers all aspects of biological radiation effects and provides the fundamental basis for understanding the necessity of radiation protection as well as applications in radiotherapy. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are thoroughly discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects). It can be used by graduate students as an introduction and as a source book for all who want to become acquainted with this important field. It is an extended version of the original German book containing updated information and new material. (orig.) With 273 figs

  8. The effect of plant phenolics on the formation of 7,12-dimethylbenz[a]anthracene-DNA adducts and TPA-stimulated polymorphonuclear neutrophils chemiluminescence in vitro

    Phenolics, common plant constituents, form up an important part of human diet and are considered potential chemopreventive agents. In the present study, structurally diverse phenolics, such as tannic acid, protocatechuic acid, chlorogenic acid and resveratrol, were investigated for their inhibitory effects on covalent binding of 7,12-dimethylbenz[a]anthracene (DMBA) to DNA in vitro and the suppression of oxidative burst in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated human polymorphonuclear neutrophils (PMNs). 32P-postlabeling analysis of DNA incubated with DMBA in the presence of 3-methylcholanthrene (3-MC)-induced microsomes produced three major adducts derived from anti-, syn- and anti-dihydrodiol epoxides through reactions with dGuo and dAdo, respectively. Phenolic compounds at the concentration of 150 μM reduced the levels of all DMBA-DNA adducts by 55-98%. The most dramatic effect was observed in case of tannic acid, which completely inhibited the formation of DMBA-dAdo adducts. Chlorogenic acid was the least effective inhibitor of DMBA-DNA adducts formation particularly syn-DMBADE-dAdo (20%). Human neutrophils showed a significant dose-related decrease of TPA-induced chemiluminescence after pretreatment with phenolic compounds. The most effective inhibitors were tannic acid and resveratrol with IC50=5.19 and 5.76 μM, respectively. These results suggest that the suppression of reactive oxygen species (ROS) and carcinogen-DNA adducts formation may be important for anticarcinogenic activity of the examined phenolics

  9. Biological effects of neutrons

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  10. Quantitative strategies to determine cisplatin adducts with DNA nucleotides in drosofila larvae and tumoral cell cultures

    Full text: The antitumoral effect of cisplatin [cis-diamminodichloroplatinum(II)] in mammals is related to its binding to DNA components. A novel sensitive and selective method is proposed to quantify cisplatin-DNA adducts induced in vivo in somatic cells of Drosophila melanogaster at biologically relevant concentrations. The method uses HPLC-ICPMS in combination with species-specific isotope dilution analysis (cisplatin enriched in 194Pt). For the first time, a cisplatin-DNA adduct is quantified by this approach. The obtained results show the great potential of this system to advance our molecular understanding of the biological effects of cisplatin. (author)

  11. Biological radiation effects

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man

  12. Quantum Effects in Biological Systems

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  13. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    Samad, Ubair Abdus [Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Center of excellence for research in engineering materials (CEREM), Advance Manufacturing Institute, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Khan, Rawaiz [Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Alam, Mohammad Asif [Center of excellence for research in engineering materials (CEREM), Advance Manufacturing Institute, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Al-Othman, Othman Y. [Department of Chemical Engineering, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); Deanship of Graduate Studies, The Saudi Electric University, P. O. Box 93499, Riyadh 11673 (Saudi Arabia); Al-Zahrani, Saeed M. [Center of excellence for research in engineering materials (CEREM), Advance Manufacturing Institute, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia); SABIC Polymer Research Center (SPRC) and department of chemical engineering, college of engineering, King Saud University, P. O. Box 800, Riyadh 11421 (Saudi Arabia)

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  14. Biological radiation effects

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed

  15. Effect of acetylator genotype on the levels of carcinogen-DNA adducts in inbred hamsters treated with 2-aminofluorene

    A genetic polymorphism in N-acetyltransferase has been described previously in humans and in animal models that is known to affect an individual's susceptibility to certain drug toxicities and diseases including bladder cancer. In hamsters, the polymorphism is known to regulate the conversion of carcinogenic 2-aminofluorene to its amide and of N-hydroxy-2-aminofluorene to a reactive electrophile that forms a covalently-bound adduct with DNA; an event thought to initiate the tumorigenic process. A single dose of 2-aminofluorene (60 mg/kg body wt., i.p) was administered to homozygous rapid- (rr) and homozygous slow-acetylator (ss) hamsters, and the levels of aminofluorene-DNA adducts in bladder and liver were evaluated by a 32P-postlabeling assay. Only a non-acetylated aminofluorene-DNA adduct was detected in the DNA samples. In this study, no differences were detected between the levels of hepatic 2-aminofluorene-DNA adducts in males or females or between the rr or ss hamsters. In contrast, the levels of 2-amino-fluorene-adducts in bladder DNA were 5-fold higher in the male rr than in the ss hamsters, and were 2-fold higher in the male rr than in the female rr animals

  16. Climatic and biological effects

    The ozone-climate problem has received considerable attention since concern was raised regarding possible threats to stratospheric ozone. Early climatic assessments of reduced ozone focused on the direct solar and longwave effects. Now a number of important feedback mechanisms are recognized as contributing significantly to indirect climatic effects. Although the focus in this chapter is on the climatic effect of reduced ozone, the discussion must include other trace gases as well. Many of the trace gases that interact photochemically to reduce ozone also have important radiative properties. Examples are chlorofluorocarbons (CFCl3 and CF2Cl2), nitrous oxide (N2O), and methane (CH4). Other gases, such as CO2, affect the temperature profile in the atmosphere, which can have an indirect effect on ozone through temperature-dependent reaction rates. The change in ozone, in turn, alters the change in temperature. The direct radiative effect of gases comes about through absorption of solar radiation and absorption and emission of longwave radiation (also referred to as thermal, terrestrial, or infrared radiation). The spectral distribution of solar and longwave radiation is shown. The principal gaseous absorbers of solar radiation are O2 and O3 in the stratosphere and H2O in the troposphere. As discussed in Chapter 2, ozone has absorption bands in the ultraviolet (uv) and visible regions of the solar spectrum. Water vapor absorbs primarily in the near-infrared spectral region

  17. Acetaldehyde adducts with hemoglobin.

    Stevens, V.J.; Fantl, W J; Newman, C B; Sims, R V; Cerami, A.; Peterson, C M

    1981-01-01

    Clinical studies on the minor hemoglobins (hemoglobin A1a-c) have suggested that a novel adduct may form in people abusing alcohol. Such patients were found to have an elevated concentration of minor hemoglobins, but normal or subnormal amounts of glycosylated hemoglobin (hemoglobin A1c) as determined by radioimmunoassay, Acetaldehyde, a reactive metabolite of ethanol, was postulated to form adducts with hemoglobin A that change its chromatographic properties. At physiological concentrations,...

  18. Biological effects of inhaled radionuclides

    This report focuses on various types of radionuclides that may be inhaled and deposited in the respiratory tract. One of the primary goals of this ICRP Task Group is to assess specifically the biological implications of inhaled plutonium. Because other transuranics are becoming more abundant, information on americium, curium and einsteinium is included. Data are also included from studies of polonium and of several beta-gamma emitting isotopes. The Task Group evaluated most of the data on the biological effects of inhaled radionuclides in experimental animals to identify the tissues at risk and to assess possible dose-response relationships. Few data from human cases of inhaled radionuclides are available for this assessment. The biological effects of nonradioactive air pollutants were also considered to provide the perspective that all air pollutants can have a deleterious effect on human life and to emphasize the possibility for combined or synergistic effects of nonradioactive and radioactive substances on the respiratory tract. (orig./HP)

  19. Characterization of model peptide adducts with reactive metabolites of naphthalene by mass spectrometry.

    Nathalie T Pham

    Full Text Available Naphthalene is a volatile polycyclic aromatic hydrocarbon generated during combustion and is a ubiquitous chemical in the environment. Short term exposures of rodents to air concentrations less than the current OSHA standard yielded necrotic lesions in the airways and nasal epithelium of the mouse, and in the nasal epithelium of the rat. The cytotoxic effects of naphthalene have been correlated with the formation of covalent protein adducts after the generation of reactive metabolites, but there is little information about the specific sites of adduction or on the amino acid targets of these metabolites. To better understand the chemical species produced when naphthalene metabolites react with proteins and peptides, we studied the formation and structure of the resulting adducts from the incubation of model peptides with naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-naphthoquinone using high resolution mass spectrometry. Identification of the binding sites, relative rates of depletion of the unadducted peptide, and selectivity of binding to amino acid residues were determined. Adduction occurred on the cysteine, lysine, and histidine residues, and on the N-terminus. Monoadduct formation occurred in 39 of the 48 reactions. In reactions with the naphthoquinones, diadducts were observed, and in one case, a triadduct was detected. The results from this model peptide study will assist in data interpretation from ongoing work to detect peptide adducts in vivo as markers of biologic effect.

  20. Biological radiation effects

    Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to these EMF are increasing significantly as technology advances unabated and new applications are found. Technological progress in the broadest sense of the word has always been associated with various hazards and risks, both perceived and real. The industrial, commercial and household application on EMF is no exception. Throughout the world, the general public is concerned that exposure to EMF from such sources as high voltage power lines, broadcasting networks, mobile telephones and their base stations could lead to adverse health consequences, especially in children. As a result, the construction of new power lines and broadcasting and mobile telephone network has met with considerable opposition in many countries. Public exposure to EMF is regulated by a variety of voluntary and legal limits, together with various national safety standards. Guidelines are designed to avoid all identified hazards, from short and long term exposure, recommended limits. The aim of this paper is to report the summary of the actual scientific knowledge about the potential health effects and hazards due to man made EMF and the new tendencies of the social and political choices

  1. Biological effects of mutagenic agents

    There is an increasing body of evidence that mutagenic agents (biological, chemical and physical) play an important role in the etiology of human diseases. Mutations may occur in the germinal as well as in the somatic cells. Mutations of the germ cells may result on infertility or fertilization of damaged cells, the later leading to abortion or birth of a malformed fetus. Somatic-cells mutations may have various biological effects, depending on the period of the human life at which the mutation occurs. If it occurs during the prenatal life, a teratogenic or carcinogenic effect will be observed. If the somatic cell is damaged during the postnatal life, this will lead to neoplastic transformation. Therefore it is extremely important to know the mutagenic, teratogenic and carcinogenic effects of various biological, chemical and physical agents in order to eliminate them from our environment. (author). 13 refs, 4 figs, 1 tab

  2. The boron trifluoride nitromethane adduct

    Ownby, P. Darrell

    2004-02-01

    The separation of the boron isotopes using boron trifluoride·organic-donor, Lewis acid·base adducts is an essential first step in preparing 10B enriched and depleted crystalline solids so vital to nuclear studies and reactor applications such as enriched MgB 2, boron carbide, ZrB 2, HfB 2, aluminum boron alloys, and depleted silicon circuits for radiation hardening and neutron diffraction crystal structure studies. The appearance of this new adduct with such superior properties demands attention in the continuing search for more effective and efficient means of separation. An evaluation of the boron trifluoride nitromethane adduct, its thermodynamic and physical properties related to large-scale isotopic separation is presented. Its remarkably high separation factor was confirmed to be higher than the expected theoretical value. However, the reportedly high acid/donor ratio was proven to be an order of magnitude lower. On-going research is determining the crystal structure of deuterated and 11B enriched 11BF 3·CD 3NO 2 by X-ray and neutron diffraction.

  3. Biological effectiveness of antiproton annihilation

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  4. Biological effects of ionizing radiation

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  5. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    Vogel, Ulla; Daneshvar, Bahram; Autrup, Herman;

    2003-01-01

    The effect of high dietary intake of animal fat and an increased fat energy intake on colon and liver genotoxicity and on markers of oxidative damage and antioxidative defence in colon, liver and plasma was investigated in Big Blue rats. The rats were fed ad libitum with semi-synthetic feed...... DNA-adduct level measured by 32P-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  6. Quantum Effects in Biological Systems

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  7. Mutagenesis by site-specific arylamine adducts in plasmid DNA: Enhancing replication of the adducted strand alters mutation frequency

    Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by >7-fold to 2.9% and of the AAF adduct by >12-fold to 0.75%. The AF adduct produced primarily single-base deletions in the absence of uracil but only base substitutions in the uracil-containing constructs. The AAF adduct produced mutations only in the uracil-containing DNA, which included both frame shifts and base substitutions. Mutations produced by both adducts were SOS dependent

  8. DNA adducts as molecular dosimeters

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  9. Deuterium effects in cancer biology

    Since its discovery many experiments were conducted for explaining the effects of deuterium on biological systems. It was observed, in many studies, that by increasing the deuterium concentration, structural, metabolic and functional alterations at different extents are produced, which can lead to organism's death. On the other hand effects of concentration reduction are much less studied. Existing data in literature, with regard to intrinsic deuterium reduction effects on different carcinomas are rather scarce. In vitro studies of deuterium level reduction has evidenced an inhibiting effect upon the cellular proliferation in different tumoral cellular lines: M14 cellular lines (human melanoma), PC3 (prostate cancer) and MCF7 (breast cancer). In vivo researches made on experimental tumours, have shown that the deuterium level reduction determines partial or complete regressions in xenotransplanted tumours, while in veterinary oncological clinic, partial or total tumoral regression were observed in different spontaneous tumours in dogs and cats. (authors)

  10. Biological effects of electromagnetic fields

    The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)

  11. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  12. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    Gábelová, Alena, E-mail: alena.gabelova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Poláková, Veronika [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Prochazka, Gabriela [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Segerbäck, Dan [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden)

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  13. Biological studies of radiation effects

    Lawrence, J.H.

    1949-11-16

    This paper discusses procedures for research on biological effects of radiation, using mouse tissue: activation trace analysis including methods and proceedures for handling samples before during and after irradiation; methods and procedures for ion exchange study; method of separation and recovery of copper, iron, zinc, cobalt, pubidium and cesium. Also included are studies of trace elements with radioactive isotopes: the distribution of cobalt 60, zinc 65, and copper 64 in the cytoplasm and nuclei of normal mice and those with tumors. 16 figs., 2 tabs.

  14. Low level radiation: biological effects

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  15. Effects of one 150R x-ray exposure on DMBA-DNA adduct formation in Syrian hamster cheek pouch epithelium in vivo

    The authors' prior studies showed enhancement of DMBA carcinogenesis in hamster buccal pouch epithelium by repeated 20R head and neck x-ray exposures. Possible mechanisms included radiation-induced increases in covalent binding of DMBA to epithelial cell DNA. This pilot study assessed, at one time period, the effect of a single modest x-ray exposure on in vivo DMBA-DNA adduct formation in the cheek pouch. Hamsters received one 0.05ml topical application of 5.0μg 3H-DMBA (900μCi) in DMSO to the right pouch. Two hours later, 1/2 of the hamsters received a single 150R head and neck x-ray exposure. 24 hours after DMBA treatments, pouches were exercised and epithelium was isolated. Epithelial DNA was extracted and purified using homogenization, phenol-chloroform-isoamyl alcohol extraction, and spermine precipitation. DMBA-DNA adducts were calculated via scintillation spectrometry of radioactivity and fluorometry of DNA, and were expressed as μg DMBA bound / mg DNA. There was no significant difference between irradiated and non-irradiated groups in DMBA bound. This may reflect a true lack of radiation effect on DMBA binding, a temporal displacement of increased binding not detectable at 24 hours, or too small a binding increase from one x-ray exposure to detect. Ongoing studies are addressing these possibilities

  16. Biological effects of ionizing radiation

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  17. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    Yu, Shuangying, E-mail: shuangying.yu@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Tang, Song, E-mail: song.tang@usask.ca [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Cobb, George P., E-mail: george_cobb@baylor.edu [Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798 (United States); Maul, Jonathan D., E-mail: jonathan.maul@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States)

    2015-02-15

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  18. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  19. Noni juice reduces lipid peroxidation-derived DNA adducts in heavy smokers.

    Wang, Mian-Ying; Peng, Lin; Jensen, Claude J; Deng, Shixin; West, Brett J

    2013-03-01

    Food plants provide important phytochemicals which help improve or maintain health through various biological activities, including antioxidant effects. Cigarette smoke-induced oxidative stress leads to the formation of lipid hydroperoxides (LOOHs) and their decomposition product malondialdehyde (MDA), both of which cause oxidative damage to DNA. Two hundred forty-five heavy cigarette smokers completed a randomized, double-blind, placebo-controlled clinical trial designed to investigate the effect of noni juice on LOOH- and MDA-DNA adducts in peripheral blood lymphocytes (PBLs). Volunteers drank noni juice or a fruit juice placebo every day for 1 month. DNA adducts were measured by (32)P postlabeling analysis. Drinking 29.5-118 mL of noni juice significantly reduced adducts by 44.6-57.4%. The placebo, which was devoid of iridoid glycosides, did not significantly influence LOOH- and MDA-DNA adduct levels in current smokers. Noni juice was able to mitigate oxidative damage of DNA in current heavy smokers, an activity associated with the presence of iridoids. PMID:24804023

  20. Biological effect of fast neutrons

    The efficiency of fast neutrons of the energy range from 1.7 to 5 MeV in reducing the reticulocyte count and in diminishing the spleen weight was studied in male NMRI mice and compared with the effects of 250 kV X-rays. The neutron induced decrease of reticulocyte number in the peripheral blood is complete two days after irradiation. At this time even low doses cause a maximal effect. The relation between the rise of effect and the increase of exposure is great in the range of low doses and small in high doses. The relative biological effectiveness of neutrons in reducing the reticulocyte count is 2.5 after low doses and 1.2 after high doses. The spleen of irradiated mice shows a marked loss of weight, the lowest weight values are observed at the second day after irradiation. The relative effectiveness of neutrons in diminishing the spleen weight is 2.1 at low doses, the RBE decreases to 1.4 and rises again to 1.9 at higher doses. These results are compared with previous findings on mortality response and leucocyte and lymphocyte decrease in mice after neutron irradiation. Reticulocyte and lymphocyte count are found to be useful indicators for the detection and evaluation of neutron damage in the sublethal dose range. (orig.)

  1. Biological Effects after Prenatal Irradiation

    A Task Group of the International Commission on Radiological Protection (ICRP) has finished a report Biological Effects after Prenatal Irradiation (Embryo and Fetus) which has been approved by the Main Commission and Will be Published. Some new important scientific data shall be discussed in this contribution. During the preimplantation period lethality of the mammalian embryo is the dominating radiation effect. However, in mouse strains with genetic predispositions it has been shown that also malformations can be caused. This effect is genetically determined and its mechanisms is different from the induction of malformations during major organogenesis. Radiation exposures during this prenatal period leads ato an increase of genomic instability of cells in the normal appearing fetuses. These radiation effects can be transmitted to the next generation. A renewed analysis of individuals with severe mental retardation after exposures during the 8th to 15th week post conception in Hiroshima and Nagasaki gives evidence that a threshold dose exists for this effect around 300 mGy. This is supported by a number of experimental animal data which have been obtained from cellular and molecular investigations during the brain development. The data show the high radiosensitivity of the developing brain but also the various compensatory mechanisms and the enormous plasticity of these processes. The radiosensitivity varies strongly during the prenatal development. The highest sensitivity is found during the early and mid fetal period which is coinciding with weeks 8-15 post conception in humans. The lowest doses causing persistent damage are in the range of 100 to 300 mGy. For intelligence quotient scores a linear dose response model provides a satisfactory fit. From the experimental data it can be concluded that the fetal stage is most sensitive to the carcinogenic effect in comparison to the other prenatal stages. Such as clear situation cannot be obtained from the

  2. Synthesis and Biological Evaluation of Iodoglucoazomycin (I-GAZ), an Azomycin-Glucose Adduct with Putative Applications in Diagnostic Imaging and Radiotherapy of Hypoxic Tumors.

    Kumar, Piyush; Elsaidi, Hassan R H; Zorniak, Bohdarianna; Laurens, Evelyn; Yang, Jennifer; Bacchu, Veena; Wang, Monica; Wiebe, Leonard I

    2016-08-01

    Iodoglucoazomycin (I-GAZ; N-(2-iodo-3-(6-O-glucosyl)propyl)-2-nitroimidazole), a non-glycosidic nitroimidazole-6-O-glucose adduct, was synthesized, radioiodinated, and evaluated as a substrate of glucose transporter 1 (GLUT1) for radiotheranostic (therapy+diagnostic) management of hypoxic tumors. Nucleophilic iodination of the nosylate synthon of I-GAZ followed by deprotection afforded I-GAZ in 74 % overall yield. I-GAZ was radioiodinated via 'exchange' labeling using [(123/131) I]iodide (50-70 % RCY) and then purified by Sep-Pak™ (>96 % RCP). [(131) I]I-GAZ was stable in 2 % ethanolic solution in sterile water for 14 days when stored at 5 °C. In cell culture, I-GAZ was found to be nontoxic to EMT-6 cells at concentrations <0.5 mm, and weakly radiosensitizing (SER 1.1 at 10 % survival of EMT-6 cells; 1.2 at 0.1 % survival in MCF-7 cells). The hypoxic/normoxic uptake ratio of [(123) I]I-GAZ in EMT-6 cells was 1.46 at 2 h, and under normoxic conditions the uptake of [(123) I]I-GAZ by EMT-6 cells was unaltered in the presence of 5 mm glucose. The biodistribution of [(131) I]I-GAZ in EMT-6 tumor-bearing Balb/c mice demonstrated rapid clearance from blood and extensive renal and hepatic excretion. Tumor/blood and tumor/muscle ratios reached ∼3 and 8, respectively, at 4 h post-injection. Regression analysis of the first order polynomial plots of the blood and tumor radioactivity concentrations supported a perfusion-excretion model with low hypoxia-dependent binding. [(131) I]I-GAZ was found to be stable in vivo, and did not deiodinate. PMID:27377671

  3. Biological transformation, kinetics and dose-response assessments of bound musk ketone hemoglobin adducts in rainbow trout as biomarkers of environmental exposure

    M A Mottaleb; J H Zimmerman; T W Moy

    2008-01-01

    Low levels (ng/g) of musk ketone (MK), used as a fragrance additive in the formulation of personal care products, are frequently detected in the water and other environment. Thus, aquatic organisms can be continuously exposed to MK. In this study, kinetics and dose-response assessments of 2-amino-MK (AMK) metabolite, bound to cysteine-hemoglobin (Hb) in rainbow trout, formed by enzymatic nitro-reduction of MK have been demonstrated. Trout were exposed to a single exposure of 0.010, 0.030, 0.10, and or 0.30 mg MK/g of fish. Twenty-six Hb samples were collected from exposed- and control fish subsequent to exposure intervals of 1 d (24 h), 3 d (72 h), and 7 d (168 h). Basic hydrolysis released bound AMK metabolite was extracted into n-hexane and then concentrated and analyzed by gas chromatography (GC) electron capture negative ion chemical ionization (NICI) mass spectrometry (MS) using selected ion monitoring (SIM). The presence of the AMK metabolite in Hb extracts was confirmed by agreement of similar mass spectral features and retention time with a standard. In the dose-response study, maximum adduct formation was obtained at the 0.10 mg/g dose with an average AMK metabolite concentration of 2.2 ng/g. For kinetics, the highest concentration of the AMK metabolite was found to be 32.0 ng/g at 0.03 mg/g dose in 3-d sample. Further elimination of the metabolite showed kinetics with a half-life estimated to be 2 d, assuming first-order kinetics. The metabolite was not detected in the control samples, non-hydrolyzed Hb, and reagent blank extracts. The detection limit for AMK in the Hb was approximately 0.30 (g/L, based on a signal to noise ratio of 3 (S/N = 3).

  4. Protein adduct formation as a molecular mechanism in neurotoxicity.

    Lopachin, Richard M; Decaprio, Anthony P

    2005-08-01

    Chemicals that cause nerve injury and neurological deficits are a structurally diverse group. For the majority, the corresponding molecular mechanisms of neurotoxicity are poorly understood. Many toxicants (e.g., hepatotoxicants) of other organ systems and/or their oxidative metabolites have been identified as electrophiles and will react with cellular proteins by covalently binding nucleophilic amino acid residues. Cellular toxicity occurs when adduct formation disrupts protein structure and/or function, which secondarily causes damage to submembrane organelles, metabolic pathways, or cytological processes. Since many neurotoxicants are also electrophiles, the corresponding pathophysiological mechanism might involve protein adduction. In this review, we will summarize the principles of covalent bond formation that govern reactions between xenobiotic electrophiles and biological nucleophiles. Because a neurotoxicant can form adducts with multiple nucleophilic residues on proteins, the challenge is to identify the mechanistically important adduct. In this regard, it is now recognized that despite widespread chemical adduction of tissue proteins, neurotoxicity can be mediated through binding of specific target nucleophiles in key neuronal proteins. Acrylamide and 2,5-hexanedione are prototypical neurotoxicants that presumably act through the formation of protein adducts. To illustrate both the promise and the difficulty of adduct research, these electrophilic chemicals will be discussed with respect to covalent bond formation, suspected protein sites of adduction, and proposed mechanisms of neurotoxicity. The goals of future investigations are to identify and quantify specific protein adducts that play a causal role in the generation of neurotoxicity induced by electrophilic neurotoxicants. This is a challenging but critical objective that will be facilitated by recent advances in proteomic methodologies. PMID:15901921

  5. Biological effectiveness of fission neutrons

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  6. Biological effects of ionizing radiation

    The efficient dose of ionizing radiation (I.R.), expressed in sievert is a weighting of the deposited energy (absorbed dose in grays) by factors that take into account the radiation hazard and tissues radiosensitivity. it is useful in radiation protection because it allows to add exposures to ionizing radiation of different nature. for low doses, it has no probabilistic value. The determinist effects of ionizing radiation are observed from thresholds of several hundred of milli sievert. The seriousness grows with the dose. The whole-body doses exceeding 8 Sv are always lethal. The radio-induced cancers are observed only for doses exceeding 100 to 200 mSv for adults, delivered at a self important dose rate. Their seriousness does not depend on the dose. Their appear fortuity (stochastic effect) with a various individual susceptibility, genetically determined. The number of eventual radio-induced cancers coming from the exposure of a high number of persons to low dose of ionizing radiation (<100 mSv) cannot be evaluated with a linear without threshold model. these models, however usually used, do not take into account the biological reality of cell defense mechanisms, tissues or whole body defense mechanisms, these one being different against low or high doses of ionizing radiation. Against low doses, the preponderant mechanism is the elimination of potentially dangerous damaged cells. Against high doses, the repair of damaged cells is imperative to preserve the tissue functions. It can lead to DNA repair errors (radio-induced mutations) and canceration. The radio-induced congenital malformations are effects with threshold. The radio-induced carcinogenesis in utero is a stochastic effect. The radio-induced hereditary congenital malformations have never been highlighted for man. (N.C.)

  7. Binary PAH mixtures cause additive or antagonistic effects on gene expression but synergistic effects on DNA adduct formation

    Staal, Y.C.M.; Hebels, D.G.A.J.; Herwijnen, M.H.M. van; Gottschalk, R.W.H.; Schooten, F.J. van; Delft, J.H.M. van

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) cover a wide range of structurally related compounds which differ greatly in their carcinogenic potency. PAH exposure usually occurs through mixtures rather than individual compounds. Therefore, we assessed whether the effects of binary PAH mixtures on gene ex

  8. Biological effectiveness of antiproton annihilation

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels;

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...

  9. Biological effects of high LET radiations

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  10. Association between plasma BPDE‐Alb adduct concentrations and DNA damage of peripheral blood lymphocytes among coke oven workers

    Wang, Hong; Chen, Weihong; Zheng, Hongyan; Guo, Liang; Liang, Huashan; Yang, Xiaobo; Bai, Yun; Sun, Jianya; Su, Yougong; Chen, Yongwen; Yuan, Jing; Bi, Yongyi; Wei, Qingyi; Wu, Tangchun

    2007-01-01

    Objectives Coke oven emissions (COE) containing polycyclic aromatic hydrocarbons (PAHs) can induce both benzo[a]pyrene‐r‐7, t‐8, t‐9,c‐10‐tetrahydotetrol‐albumin (BPDE‐Alb) adducts and DNA damage. However, the relation between these biomarkers for early biological effects is not well documented in coke oven workers. Methods In this study, the authors recruited 207 male workers exposed to COE and 102 controls not exposed to COE in the same steel plant in northern China. They measured BPDE‐Alb adduct concentrations in plasma with reverse‐phase high performance liquid chromatography and DNA damage in peripheral blood lymphocytes with alkaline comet assay. Results The results showed that the median concentration of BPDE‐Alb adducts in the exposed group (34.36 fmol/mg albumin) was significantly higher than that in the control group (21.90 fmol/mg albumin, p = 0.012). The mean Olive tail moment (Olive TM) of DNA damage in the exposed and control groups were 1.20 and 0.63, respectively (p = 0.000). Multivariate logistic regression analysis revealed that the odds ratio (OR) for BPDE‐Alb adduct and Olive TM associated with the exposure were 1.72 (95% CI 1.06 to 2.81) and 1.96 (95% CI 1.20 to 3.19), respectively. These results show significant correlations between the concentrations of BPDE‐Alb adduct and Olive TM levels in exposed group (r = 0.235, p = 0.001) but not in control group (r = 0.093, p = 0.353). Conclusion The results suggest that occupational exposure to COE may induce both BPDE–Alb adducts and DNA damage in the lymphocytes of coke oven workers and that these two markers are useful for monitoring exposure to COE in the workplace. PMID:17449561

  11. Covalent thiol adducts arising from reactive intermediates of cocaine biotransformation.

    Schneider, Kevin J; DeCaprio, Anthony P

    2013-11-18

    Exposure to cocaine results in the depletion of hepatocellular glutathione and macromolecular protein binding in humans. Such cocaine-induced responses have generally been attributed to oxidative stress and reactive metabolites resulting from oxidative activation of the cocaine tropane nitrogen. However, little conclusive data exists on the mechanistic pathways leading to protein modification or the structure and specificity of cocaine-derived adduction products. We now report a previously uncharacterized route of cocaine bioactivation leading to the covalent adduction of biological thiols, including cysteine and glutathione. Incubation of cocaine with biological nucleophiles in an in vitro biotransformation system containing human liver microsomes identified a monooxygenase-mediated event leading to the oxidation of, and subsequent sulfhydryl addition to, the cocaine aryl moiety. Adduct structures were confirmed using ultra-high performance liquid chromatography coupled to high resolution, high mass accuracy mass spectrometry. Examination of assays containing transgenic bactosomes expressing single human cytochrome P450 isoforms determined the role of P450s 1A2, 2C19, and 2D6 in the oxidation process resulting in adduct formation. P450-catalyzed aryl epoxide formation and subsequent attack by free nucleophilic moieties is consistent with the resulting adduct structures, mechanisms of formation, and the empirical observation of multiple structural and stereo isomers. Analogous adduction mechanisms were maintained across all sulfhydryl-containing nucleophile models examined; N-acetylcysteine, glutathione, and a synthetic cysteine-containing hexapeptide. Predictive in silico calculations of molecular reactivity and electrophilicity/nucleophilicity were compared to the results of in vitro assay incubations in order to better understand the adduction process using the principles of hard and soft acid and base (HSAB) theory. This study elucidated a novel metabolic

  12. Acetaldehyde Adducts in Alcoholic Liver Disease

    Mashiko Setshedi

    2010-01-01

    Full Text Available Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD, with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC. Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2–15% versus cirrhosis (15–20% is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.

  13. Doses and biological effect of ionizing radiation

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  14. Formation and persistence of DNA adducts of anticancer drug ellipticine in rats

    Ellipticine is an antineoplastic agent, whose mode of antitumor and/or toxic side effects is based on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochromes P450 and peroxidases. We investigated the formation and persistence of DNA adducts generated in rat, the animal model mimicking the bioactivation of ellipticine in human. Using 32P-postlabeling, ellipticine-DNA adducts were found in liver, kidney, lung, spleen, heart and brain of female and male rats exposed to ellipticine (4, 40 and 80 mg/kg body weight, i.p.). The two major adducts were identical to the deoxyguanosine adducts generated in DNA by 13-hydroxy- and 12-hydroxyellipticine in vitro as confirmed by HPLC of the isolated adducts. At four post-treatment times (2 days, 2, 10 and 32 weeks) DNA adducts in rats treated with 80 mg/kg of ellipticine were analyzed in each tissue to study their long-term persistence. In all organs maximal adduct levels were found 2 days after administration. At all time points highest total adduct levels were in liver (402 adducts/108 nucleotides after 2 days and 3.6 adducts/108 nucleotides after 32 weeks), kidney and lung followed by spleen, heart and brain. Total adduct levels decreased over time to 0.8-8.3% of the initial levels till the latest time point and showed a biphasic profile, a rapid loss during the first 2 weeks was followed by a much slower decline till 32 weeks. These results, the first characterization of persistence of ellipticine-DNA adducts in vivo, are necessary to evaluate genotoxic side effects of ellipticine

  15. Biological effect of radioprotectors. 2. Biological effect of aminothiol radioprotectors

    The section describes about radio-protective effects on cells and animals, and suppressive effects of mutagenesis and carcinogenesis of aminothiols. Amifostine, NH2-(CH2)3-NH-(CH2)2-SPO3H2 (WR-2721, prodrug), WR-1065 (amifostine-SH form, active principle of WR-2721) and WR-33278 (S-S oxidized form of WR-1065) are mainly discussed. In cells exposed in vitro to 4 mM WR-1065, their survival rates are usually elevated regardless of their types after radiation treatment. In vivo, the author employs the administration dose of 400 mg/kg, which is 2/3 LD50 of amifostine. The prodrug is less toxic than the active form in vivo and reduces the mortality by radiation. Amifostine is an FDA-registered medical for reduction of xerostomia during radiotherapy of head and neck cancer, and of renal toxicity of cisplatin during chemotherapy of advanced ovarian cancer. Hypoxanthine phosphoribosyl transferase (HPRT) mutagenic assay in vitro has revealed anti-mutagenic effect of WR-1065 at 40 M, and also in vivo, the effect is seen in mice after irradiation of X-ray and neutron beam at lower administration doses than that used for lethality test mentioned above. WR-2721 at 400 mg/kg and another aminothiol (WR-151327) have anti-caricinogenic effects in mice against lymphoreticular tumors induced by γ-ray or neutron beam and in rats, at 100 mg/kg WR-2721, against hepatoma development and at 50 mg/kg, against mammary cancer. The compounds are shown to suppress the tumor metastasis in animal models. In vitro, WR-1065 has been shown to reduce the frequency of cell transformation after X-ray or neutron exposure. (T.I.)

  16. Biological Effects of Ionizing Radiation

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  17. Biological effects of proton radiation: an update

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  18. Effects of dietary fish oil on the depletion of carcinogenic PAH-DNA adduct levels in the liver of B6C3F1 mouse.

    Guo-Dong Zhou

    Full Text Available Many carcinogenic polycyclic aromatic hydrocarbons (PAHs and their metabolites can bind covalently to DNA. Carcinogen-DNA adducts may lead to mutations in critical genes, eventually leading to cancer. In this study we report that fish oil (FO blocks the formation of DNA adducts by detoxification of PAHs. B6C3F1 male mice were fed a FO or corn oil (CO diet for 30 days. The animals were then treated with seven carcinogenic PAHs including benzo(apyrene (BaP with one of two doses via a single intraperitoneal injection. Animals were terminated at 1, 3, or 7 d after treatment. The levels of DNA adducts were analyzed by the (32P-postlabeling assay. Our results showed that the levels of total hepatic DNA adducts were significantly decreased in FO groups compared to CO groups with an exception of low PAH dose at 3 d (P = 0.067. Total adduct levels in the high dose PAH groups were 41.36±6.48 (Mean±SEM and 78.72±8.03 in 10(9 nucleotides (P = 0.011, respectively, for the FO and CO groups at 7 d. Animals treated with the low dose (2.5 fold lower PAHs displayed similar trends. Total adduct levels were 12.21±2.33 in the FO group and 24.07±1.99 in the CO group, P = 0.008. BPDE-dG adduct values at 7 d after treatment of high dose PAHs were 32.34±1.94 (CO group and 21.82±3.37 (FO group in 10(9 nucleotides with P value being 0.035. Low dose groups showed similar trends for BPDE-dG adduct in the two diet groups. FO significantly enhanced gene expression of Cyp1a1 in both the high and low dose PAH groups. Gstt1 at low dose of PAHs showed high levels in FO compared to CO groups with P values being 0.014. Histological observations indicated that FO played a hepatoprotective role during the early stages. Our results suggest that FO has a potential to be developed as a cancer chemopreventive agent.

  19. Knee adduction moment and medial contact force - facts about their correlation during gait

    Kutzner, Ines; Trepczynski, Adam; Heller, Markus O.; Bergmann, Georg

    2013-01-01

    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented kn...

  20. Biological Effects of Irradiated Fats

    Rats were fed with a diet containing 20% of irradiated oils. If the oils were irradiated with 2.5 Mrad, there was no indication of detrimental effects during the course of 80 weeks. Oils irradiated with 10 Mrad, however, caused an increase in lethality after a lag period of 9 to 12 months. Irradiation with 50 Mrad caused weight losses after 24 weeks, disturbed liver function, and hypoproteinaemia, with a relative increase in gamma globulins. No animal of this group exceeded a life-span of 75 weeks. Irradiation with 100 Mrad caused immediate toxic symptoms and a high lethality. There is no indication that peroxides are responsible for the toxicity of the irradiated oils. Because of the high content of dimeric products in the irradiated oils, it is assumed that dimerization of fatty acids is the cause of damage. (author)

  1. Hafnium tetrachloride adducts with aminophenols

    Adducts of hafnium tetrachloride with aminophenols of a general composition of HfCl4x4L have been obtained by addition of ethyl acetate solutions of hafnium tetrachloride with solutions of o-aminophenol in dioxan, m-aminophenol in ethyl acetate and n-aminophenol in dioxan at a ratio Hf/L=1/2. In the investigated adducts, aminophenols are connected to hafnium both through an oxygen atom and a nitrogen atom, the latter's coordination being preferable. A thermal investigation of synthesized complexes has determined the quantity of heat evolving on addition of 4 moles of aminophenol to 1 mole of crystalline hafnium tetrachloride

  2. Biological effects of prenatal irradiation

    After large releases of radionuclides, exposure of the embryo or fetus can take place by external irradiation or uptake of radionuclies. The embryo and fetus are radiosensitive throughout prenatal development. The quality and extent of radiation effects depend on the development stage. During the preimplantation period (one to 10 days postconception, p.c.) a radiation exposure of at least 0.2 Gy can cause the death of the embryo. Malformations are only observed in rare cases when genetic predisposition exist. Macroscopic, anatomical malformations are induced only after irradiation during the major organogenesis (two to eight weeks p.c.). A radiation dose of about 0.2 Gy is a doubling dose for the malformation risks as extrapolated from experiments with rodents. The human embryo may be more radioresistant. During early fetogenesis (8-15 weeks p.c.) a high radiosensitivity exists for the developmental of the brain. Radiation doses of 1.0 Gy cause severe mental retardation in about 40% of the exposed fetuses. It must be taken into account that a radiation exposure during the fetal period can also induce cancer. It is generally assumed that the risk exists at about the same level as for children. (Author)

  3. Biological Effects Of Artificial Illumination

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  4. The biological effectiveness of antiproton irradiation

    Holzscheiter, Michael H.; Bassler, Niels; Agazaryan, Nzhde;

    2006-01-01

    Background and purpose: Antiprotons travel through tissue in a manner similar to that for protons until they reach the end of their range where they annihilate and deposit additional energy. This makes them potentially interesting for radiotherapy. The aim of this study was to conduct the first...... ever measurements of the biological effectiveness of antiprotons. Materials and methods: V79 cells were suspended in a semi-solid matrix and irradiated with 46.7 MeV antiprotons, 48 MeV protons, or 60Co c-rays. Clonogenic survival was determined as a function of depth along the particle beams. Dose and...... particle fluence response relationships were constructed from data in the plateau and Bragg peak regions of the beams and used to assess the biological effectiveness. Results: Due to uncertainties in antiproton dosimetry we defined a new term, called the biologically effective dose ratio (BEDR), which...

  5. Biological Effect of Magnetic Field in Mice

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  6. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal.

    Shireman, Laura M; Kripps, Kimberly A; Balogh, Larissa M; Conner, Kip P; Whittington, Dale; Atkins, William M

    2010-12-15

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  7. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal☆

    Shireman, Laura M.; Kripps, Kimberly A.; Balogh, Larissa M.; Conner, Kip P.; Whittington, Dale; Atkins, William M.

    2010-01-01

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro- 2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  8. Biological effectiveness of neutrons: Research needs

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  9. Biological effectiveness of neutrons: Research needs

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  10. Phosphoryl chloride-methanol adducts: Matrix isolation infrared and DFT studies

    Ramanathan, N.; Sankaran, K.

    2013-12-01

    The adducts of phosphoryl chloride (POCl3) and methanol (CH3OH) were studied using matrix isolation infrared spectroscopy and DFT calculations. The 1:1 POCl3:CH3OH binary adduct was generated in a nitrogen matrix at low temperatures and studied using infrared spectroscopy. Formation of the adduct was evidenced by the shifts in the vibrational frequencies of the modes involving POCl3 and CH3OH sub-molecules. The structures, vibrational frequencies and stabilization energies of the adducts were computed at B3LYP/aug-cc-pVDZ level of theory. Our computations located two minima for POCl3:CH3OH adducts on the potential energy surface. However, only one adduct was experimentally identified in the matrix at low temperatures, which was the structure corresponding to the global minimum. The computed vibrational frequencies of the adduct agreed well with the observed experimental frequencies. Atoms In Molecules (AIM) analysis was performed to understand the nature of the interactions in these adducts. Natural Bond Orbital (NBO) analysis was performed to understand the effect of charge-transfer interactions on the stability of adducts.

  11. Biological radiation effects and radioprotection standards

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  12. Exploiting Allee effects for managing biological invasions

    Tobin, P. C.; Berec, Luděk; Liebhold, A. M.

    2011-01-01

    Roč. 14, č. 6 (2011), s. 615-624. ISSN 1461-023X Grant ostatní: National Centre for Ecological Analysis and Synthesis(US) EF-0553768 Institutional research plan: CEZ:AV0Z50070508 Keywords : Allee dynamics * biological invasions * component Allee effect Subject RIV: EH - Ecology, Behaviour Impact factor: 17.557, year: 2011

  13. RELATIVE BIOLOGICAL EFFECTIVENESS IN A PROTON SOBP

    Vachelová, Jana; Michaelidesová, Anna; Litvinchuk, Alexandra; Vondráček, V.; Davídková, Marie

    Vol. 34. Bratislava : SMU - Faculty of Public Health, 2014. s. 121-121. ISBN 978-80-89384-08-2. [XXXVI.Dny radiační ochrany. 10.11.2014-14.11.2014, Poprad] Institutional support: RVO:61389005 Keywords : relative biological effectiveness * Spread-Out Bragg Peak * linear energy transfer Subject RIV: BO - Biophysics

  14. Nuclear energy: biological effects and environmental impact

    This thesis is concerned with the large development of nuclear power plants and the recent nuclear catastrophe which has made clear how the hazards resulting from radioactivity affect public health and the environment. Environmental effects of nuclear power plants operating in normal conditions are small, but to obtain nuclear power plants of reduced radioactivity, optimization of their design, construction, operation and waste processing plays a decisive role. Biological effects of ionizing radiations and environmental impacts of Nuclear Power plants are developed

  15. II. Biological studies of radiation effects

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  16. DNA-nicotine adduction of lung and liver of mice exposed to passive smoking studied by AMS

    The author presents the measurement of adduction of mice lung or liver DNA with nicotine by accelerator mass spectrometry (AMS). Mice were exposed in a toxicity infecting chamber filled up with cigarette smoke for a period of time of simulate the exposure of mice to passive smoking. The dose of nicotine inhaled by mice was determined. The results of AMS showed, when the dose of inhaled nicotine ranged from 33 μg/kg to 330 μg/kg, the adducts number of lung DNA was 103-104 adducts/1012 nucleotides, and the adducts increased linearly with increasing dose of nicotine; the adducts number of liver DNA reached to 104-105 adducts/1012 nucleotides, when the dose of nicotine ranged from 99 μg/kg to 330 μg/kg, and the adducts increased vigorously as dose of nicotine increased. Comparing the DNA adducts levels of the same nicotine dose, liver DNA adducts were more than lung DNA adducts. This study also suggested that the other components of cigarette smoke have synergic effect on the formation of nicotine derived DNA adducts

  17. Lunar biological effects and the magnetosphere.

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual electromagnetic radiation are known to affect animals and 10-20% of the human population. There is now evidence for mechanisms such as calcium flux, melatonin disruption, magnetite and cryptochromes. Both environmental and receptor variations explain confounding factors and inconsistencies in the evidence. Electromagnetic effects might also account for some evolutionary changes. Further research on lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. PMID:26462435

  18. DNA adducts as a measure of lung cancer risk in humans exposed to polycyclic aromatic hydrocarbons.

    Kriek, E; van Schooten, F.J.; Hillebrand, M J; van Leeuwen, F E; Den Engelse, L; De Looff, A J; Dijkmans, A P

    1993-01-01

    Workers in the coking, foundry, and aluminum industry can be exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and are at increased risk for lung cancer, as are cigarette smokers. In recent years several studies on workers in the foundry and coking industries have been reported. In these studies, white blood cell(WBC) DNA was used for analysis of PAH-DNA adducts. Theoretically, DNA adduct formation is a more relevant biological parameter for assessing exposure risk tha...

  19. Mechanistic Effects of Calcitriol in Cancer Biology

    Lorenza Díaz

    2015-06-01

    Full Text Available Besides its classical biological effects on calcium and phosphorus homeostasis, calcitriol, the active vitamin D metabolite, has a broad variety of actions including anticancer effects that are mediated either transcriptionally and/or via non-genomic pathways. In the context of cancer, calcitriol regulates the cell cycle, induces apoptosis, promotes cell differentiation and acts as anti-inflammatory factor within the tumor microenvironment. In this review, we address the different mechanisms of action involved in the antineoplastic effects of calcitriol.

  20. DNA adducts-chemical addons

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  1. DNA adducts-chemical addons.

    Rajalakshmi, T R; AravindhaBabu, N; Shanmugam, K T; Masthan, K M K

    2015-04-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers. PMID:26015708

  2. Tunable degradation of maleimide-thiol adducts in reducing environments

    Baldwin, Aaron D.; Kiick, Kristi L.

    2011-01-01

    Addition chemistries are widely used in preparing biological conjugates, and in particular, maleimide-thiol adducts have been widely employed. Here we show that the resulting succinimide thioether formed by a Michael type addition of a thiol to N-ethylmaleimide (NEM), generally accepted as stable, can in fact undergo retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature, offering a novel strategy for controlled release. Model studies (1H NMR...

  3. THz waves: biological effects, industrial and medical

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  4. Microwave radiation - Biological effects and exposure standards

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  5. Biological effect of low dose radiation

    This document describes the recent findings in studies of low dose radiation effect with those by authors' group. The low dose radiation must be considered in assessment of radiation effects because it induces the biological influence unexpected hitherto; i.e., the bystander effect and genetic instability. The former is a non-targeted effect that non-irradiated cells undergo the influence of directly irradiated cells nearby, which involves cell death, chromosome aberration, micronucleus formation, mutation and carcinogenesis through cellular gap junction and/or by signal factors released. Authors' group has found the radical(s) possessing as long life time as >20 hr released from the targeted cells, a possible mediator of the effect; the generation of aneuploid cells as an early carcinogenetic change; and at dose level <10 Gy, activation of MAPK signal pathway leading to relaxation of chromatin structure. The genetic instability means the loss of stability where replication and conservation of genome are normally maintained, and is also a cause of the late radiation effect. The group has revealed that active oxygen molecules can affect the late effect like delayed cell death, giant cell formation and chromosome aberration, all of which lead to the instability, and is investigating the hypothesis that the telomere instability resulted from the abnormal post-exposure interaction with its nuclear membrane or between chromatin and nuclear matrix, is enhanced by structural distortion of nuclear genes. As well, shown is the possible suppression of carcinogenesis by p53. The group, to elucidate the mechanism underlying the low dose radiation effect, is conducting their studies in consideration of the sequential bases of physical, chemical and biological processes. (R.T.)

  6. DNA-adduct formation in lungs, nasal mucosa, and livers of rats exposed to urban roadside air in Kawasaki City, Japan

    The potency of ambient air for DNA-adduct formation was estimated using Wistar rats. The animals were maintained in a small-animal facility located beside a main highway intersection in Kawasaki City, Japan, for up to 60 weeks and were exposed to roadside air contaminated mainly with automobile emission (exposure group, EG) or to clean air (control group, CG). Compared to CG, the relative adduct levels (RAL) were increased significantly in EG lungs (17.1-fold (P<0.05)), nasal mucosa, and livers after exposure for 4 weeks. However, there were no significant differences in RAL between EG and CG after exposure for 12 weeks, but they were elevated again in EG after exposure for 48 or 60 weeks. These results suggest that roadside air in this region can cause the generation of DNA adducts. This activity of ambient roadside air can be estimated using experimental animals, indicating that biological monitoring of DNA-adduct formation may be a powerful tool to assess the effect of ambient air on human health

  7. Formation of adduct of cerium (4) thenoyltrifluoroacetonate

    Adduct formation of thenoyltrifluoroacetonate of Ce(4) [Ce(TTFA)4] with seven nitrogen- and oxygen-containing donor additional ligands is studied using the methods of IR-spectroscopy, derivatography, X-ray phase analysis. The presence of formation of Ce(TTFA)4 adducts with phosphorus-containing additional ligands tributyl phosphate (TBP), trioctylphosphine oxide (TOPO), triphenylphosphine oxide (TPPO); α, α'-dipyridyl (Dipy) and o-phenanthroline (Phen) is established. The adduct Ce(TTFA)4 stable to reduction is formed with Dipy, and in the case of Phen, TBP, TOPO, TPPO in the process of adduct formation the reduction of Ce(4) to Ce(3) takes place

  8. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  9. Biological Effects of Yeast β-Glucans

    Vlatka Petravić-tominac

    2010-12-01

    Full Text Available β-Glucans are glucose polymers that naturally occur in yeasts, molds, algae, mushrooms, bacteria, oats and barley. Immunostimulation is one of the most important properties of β-glucans. They are classified as biological response modifiers and because of their biological activities they can be used in human and veterinary medicine and pharmacy. Additionally, β-glucans show interesting physicochemical properties and therefore could be applied in food and feed production as well as in cosmetic and chemical industries. Immunomodulation by β-glucan, both in vitro and in vivo, inhibits cancer cell growth and metastasis and prevents or reduces bacterial infection. In humans, dietary β-glucan lowers blood cholesterol, improves glucose utilization by body cells and also helps wound healing. β-Glucans work, in part, by stimulating the innate immune mechanism to fight a range of foreign challenges and could be used as an adjuvant, in combination with anti infective or antineoplastic agents, radiotherapy, and a range of topical agents and nutrients. The structure of β-glucans depends on the source they are isolated from. Native β-glucan molecules can be linked and branched in several ways. Biological properties of different β-glucan molecules are dependent on their molecular structure. Some authors claim that the β-(1→3, (1→6-glucan derived from yeast Saccharomyces cerevisiae produce the highest biological effects. Thus, in this review the β-glucans and their metabolic activity are discussed, with the special accent on those isolated from yeast. Other possible β-glucan applications, directed to cosmetic production, non-medical application in pharmaceutical and chemical industry, are also discussed.

  10. Effects of Pesticides on Biological Systems

    Ergul Belge Kurutas

    2003-06-01

    Full Text Available The use of pesticid both in Turkey and other contries is widespread in order to combat against many pests which cause economical damages. However, pesticides in human pass through skin, respiratory or digestive systems and is metabolized by monooxygenase system dependent upon cytocrome P450 in liver. They also give rise to severe decreases cytochrome P450 and amount of "hem" enzyme activites of glucose-6-phosphatase, pyrophosphatase by stimulating lipid peroxidation on hepatic microsomes. In this study effects of pesticides on biological systems will be presented in genaral terms. [Archives Medical Review Journal 2003; 12(3.000: 215-228

  11. Biological effects of synchrotron radiation on crops

    唐掌雄; 董保中; 等

    1996-01-01

    The sensitivity of germinating seeds of barley,winter wheat and spring one to synchrotron ultraviolet radiation is barley>winter wheat and spring one.But when dry seeds of the three crops are irradiated by 3.5-22keV X-rays,the sequence of their sensitivity to radiation can be changed.for irradiation of 0.6-3keV ultra soft X-rays,0.40-0.90 of the seedlings of the first generation appear mutation of striped chlorophyll defect.This biological effect has never been found for irradiation of other rays.

  12. Biological effects data: Fluoride and sulfur dioxide

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  13. Ionizing radiation effects on biological macromolecules

    Ionizing radiation is one of the main environmental factors for life, particularly for human beings. The primary effects of ionizing radiation produce the perturbation of biomacromolecules functionality (DNA and proteins). This effect occurs by direct action and by the indirect way of water molecules radiolysis. These primary effects result in a cascade of biochemical and biological consequences that may finally influence the general functions of the organism. In the last five decades the research activity in this field was focused on the detailed description of the effects on DNA molecules and their biochemical and biological consequences. The reason for this is the importance of the integrity of DNA for the cell life evolution, especially for the cell recovery processes or for the programmed cell death after irradiation. These aspects have main applications in very important fields as radioprotection and radiotherapy. In the present paper the mechanisms of ionizing radiation action at the molecular level will be reviewed, with focus on the protein level effects. Although comparatively a lower number of results was reported concerning the effects of ionizing radiation on the proteins, during the last years this field was reconsidered in the context of a new research trend in the field of genomics and proteomics. The structural changes which occur most often in the proteins are the breaks of chemical links, the chemical moieties ionization (for instance, the oxidation of the proteins) and the inter - protein new links (cross-linking). These changes result in a gradual loss of protein functionality, influencing particularly the ionic transport, the signal transduction across the membrane or intermolecular recognition processes of antibody-antigen type. Some studies on the ion artificial channels (as gramicidin and amphotericin) incorporated in model membranes (BLM-s or liposomes) describe structural and functional changes of the peptides after the exposure to

  14. DNA adducts-chemical addons

    T. R. Rajalakshmi; N AravindhaBabu; Shanmugam, K. T.; Masthan, K. M. K.

    2015-01-01

    DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde). This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could b...

  15. The biological effects of ozone depletion.

    Young, A R

    1997-05-01

    Thinning of the ozone layer is predicted to result in increased levels of ultraviolet (UV) B radiation at the earth's surface. This effect has been confirmed by measurements made in relatively unpolluted areas such as Antarctica, the southern part of South America and at mid-to-high latitudes in the northern hemisphere. It has been harder to show in populated northern latitudes because of a number of confounding factors, notably weather systems and low level ozone pollution. Although UVB forms only a small proportion of the UV spectrum it has potent biological effects so that a small increase in penetration of UVB to the earth's surface has profound effects on a wide range of life forms. Most attention has been paid to the effects of an increase in UVB on human health, particularly the effects on skin cancer, resistance to infectious diseases and cataract formation. However, the effects of increased levels of UVB on other parts of the ecosystem, particularly on the primary producers in aquatic and terrestrial food chains, may be of even. PMID:9519507

  16. Bilateral failure of adduction following orbital decompression.

    Kinsella, F; Kyle, P.; Stansfield, A

    1990-01-01

    We report a case of bilateral complete failure of adduction following bilateral translid antralethmoidal orbital decompression. We believe the probable mechanism is neuropraxia (temporary dysfunction) of the third cranial nerves' supply to the medial recti, owing to these nerves' occupying an anatomically abnormal position. Partial recovery of adduction occurred over the ensuing six months.

  17. Biological radiation effects of Radon in Drosophila

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m3, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  18. Biological Effects of Yeast β-Glucans

    Vlatka Petravić-Tominac

    2014-02-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0pt 5.4pt 0pt 5.4pt; mso-para-margin:0pt; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} β-Glucans are glucose polymers that naturally occur in yeasts, molds, algae, mushrooms, bacteria, oats and barley. Immunostimulation is one of the most important properties of β-glucans. They are classified as biological response modifiers and because of their biological activities they can be used in human and veterinary medicine and pharmacy. Additionally, β-glucans show interesting physicochemical properties and therefore could be applied in food and feed production as well as in cosmetic and chemical industries. Immunomodulation by β-glucan, both in vitro and in vivo, inhibits cancer cell growth and metastasis and prevents or reduces bacterial infection. In humans, dietary β-glucan lowers blood cholesterol, improves glucose utilization by body cells and also helps wound healing. β-Glucans work, in part, by stimulating the innate immune mechanism to fight a range of foreign challenges and could be used as an adjuvant, in combination with anti infective or antineoplastic agents, radiotherapy, and a range of topical agents and nutrients. The structure of β-glucans depends on the source they are isolated from. Native β-glucan molecules can be linked and branched in several ways. Biological properties of different β-glucan molecules are dependent on their molecular structure. Some authors claim that the β-(1→3, (1→6-glucan derived from yeast Saccharomyces cerevisiae produce the highest biological effects. Thus, in this review the β-glucans and their metabolic

  19. Biological effects of space radiation and development of effective countermeasures

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  20. Inhibition of nitrobenzene-induced DNA and hemoglobin adductions by dietary constituents

    Li Hongli; Cheng Yan; Wang Haifang; Sun Hongfang; Liu Yuanfang E-mail: yliu@pku.edu.cn; Liu Kexin; Peng Shixiang

    2003-03-01

    Nitrobenzene (NB), a widely used industrial chemical, is a likely human carcinogen. Many dietary constituents can suppress the DNA-adduction, acting as the inhibitors of cancer. In this study, we investigated the inhibitory effects of vitamin C (VC), vitamin E (VE), tea polyphenols (TP), garlic squeeze, curcumin, and grapestone extract on NB-DNA and NB-hemoglobin (Hb) adductions in mice using an ultrasensitive method of accelerator mass spectrometry (AMS) with {sup 14}C-labelled nitrobenzene. All of these dietary constituents showed their inhibitory effects on DNA or Hb adduction. VC, VE, TP and grapestone extract could efficaciously inhibit the adductions by 33-50%, and all of these six agents could inhibit Hb adduction by 30-64%. We also investigated resveratrol, curcumin, VC and VE as inhibitors of NB-DNA adduction in vitro using liquid scintillation counting technique. These agents in the presence of NADPH and S9 components also pronouncedly blocked DNA adduction in a dose-dependent profile. Our study suggests that these seven constituents may interrupt the process of NB-induced chemical carcinogenesis.

  1. Microwave radiation: biological effects and exposure standards

    Lindsay, I.R.

    1981-01-01

    The thermal effects of microwave radiation are well recognized and are discussed with particular reference to cataractogenesis; the possibility of an association cannot be questioned. Postulated nonthermal effects comprise an asthenic syndrome, and for the most part the disturbances lie within clinical norms and tolerances, and are reversible. World opinion on safe exposure levels for microwave radiation is varied, and this had led to national standards disparate by three to four orders of magnitude. The US and UK exposure standard of 10 mW/cm/sup 2/ was determined over two decades ago; the possibility of a change to a more restrictive level, in line with other countries, in the near future is examined. It is concluded that such a change, without scientific rationale, is not justified. Some biological implications of the microwave radiation from the solar power satellite are considered in terms of precautions to be taken by personnel working in the vicinity of the rectenna, effects on cardiac pacemakers, and any potential effects on birds. 14 references.

  2. Biological effects of progestins in breast cancer.

    Pasqualini, J R; Ebert, C; Chetrite, G S

    2001-12-01

    The action of progestins is derived from many factors: structure, affinity for the progesterone receptor or for other steroid receptors, the target tissue considered, the biological response, the experimental conditions, the dose and metabolic transformation. The proliferative response to progestins in human breast cancer cells is contradictory: some progestins inhibit, others stimulate, have no effect at all, or have a dual action. For instance, medroxyprogesterone acetate has a stimulatory effect on breast cancer cells after a short period of treatment, but this effect becomes inhibitory when treatment is prolonged. It has been demonstrated that, in hormone-dependent breast cancer cells, various progestins (nomegestrol acetate, medrogestone, promegestone) are potent sulfatase inhibitory agents. The progestins can also involve the inhibition of the mRNA expression of this enzyme. In another series of studies it was also demonstrated that some progestins are very active in inhibiting 17beta-hydroxysteroid dehydrogenase for the conversion of estrone to estradiol. More recently it was observed that the progestins promegestone and medrogestone stimulate sulfotransferase for the formation of estrogen sulfates. Consequently, the action of progestins in blocking estradiol formation via sulfatase, or in stimulating the effect on sulfotransferase activity, can open interesting and new possibilities in clinical applications in breast cancer. PMID:12227886

  3. Contrast media: Biologic effects and clinical application

    An overview is presented of the recent developments in contrast media and their clinical applications, plus the current state-of-the-art in computerized tomography, digital subtraction angiography, ultrasound and magnetic resonance imaging (MRI). Contents of these volumes include: an in-depth review of the historical development, modern perspectives in structure-function relationships, biologic effects on hemostats, gastrointestinal, cardiovascular systems and drug interactions. Critical and basic issues, including cellular toxicity, mutagenesis, synergism between radiation and contrast agents, mechanisms in contrast-induced reactions, and the management of such reactions in high-risk patients are also presented. Specific applications of paramagnetic compounds in MRI and the recent concept of liposome-encapsulated and particulate suspension of contrast materials in diagnostic imaging are thoroughly discussed

  4. Contrast media: Biologic effects and clinical application

    Parvez, Z.; Moncada, R.; Sovak, M.

    1987-01-01

    An overview is presented of the recent developments in contrast media and their clinical applications, plus the current state-of-the-art in computerized tomography, digital subtraction angiography, ultrasound and magnetic resonance imaging (MRI). Contents of these volumes include: an in-depth review of the historical development, modern perspectives in structure-function relationships, biologic effects on hemostats, gastrointestinal, cardiovascular systems and drug interactions. Critical and basic issues, including cellular toxicity, mutagenesis, synergism between radiation and contrast agents, mechanisms in contrast-induced reactions, and the management of such reactions in high-risk patients are also presented. Specific applications of paramagnetic compounds in MRI and the recent concept of liposome-encapsulated and particulate suspension of contrast materials in diagnostic imaging are thoroughly discussed.

  5. Inhaled cigarette smoke induces the formation of DNA adducts in lungs of rats

    Cigarette smoking causes a variety of adverse human health effects, including lung cancer. The molecular events associated with smoke-induced carcinogenesis are thought to be related in part to the genotoxic activities of the chemicals associated with smoke. The purpose of this investigation was to determine the molecular dosimetry of compounds in cigarette smoke in lungs of rats exposed by inhalation. These studies investigated the effects of exposure mode, sex, and time (adduct persistence) on the level of DNA adducts. Male and female F344/N rats were exposed 6 hr/day, 5 days/week for 22 days to cigarette smoke by nose-only intermittent (NOI), nose-only continuous (NOC), or whole-body continuous (WBC) exposures. Separate groups of rats were sham-exposed nose-only (NOS) or whole-body (WBS) to filtered air. All smoke exposure modes yielded daily smoke exposure concentration X time products of 600 mg particulate.hr/m3 for the first week and 1200 mg particulate.hour/m3 thereafter. Groups of rats were killed at 18 hr and 3 weeks after the 22-day exposure period and DNA adducts in lung tissues were quantified by the 32P-postlabeling method. There were significant (p less than 0.05) increases in levels of clearly resolved lung DNA adducts in male and female rats exposed to smoke compared to sham-exposed rats. There were no significant effects of exposure mode or sex on lung DNA adducts. Mean levels (+/- SE) of clearly resolved lung DNA adducts for both sexes combined in NOI, NOC, WBC, NOS, and WBS groups were 50 +/- 4, 52 +/- 6, 52 +/- 7, 21 +/- 6, and 22 +/- 4 adducts per 10(9) bases, respectively. Levels of clearly resolved DNA adducts were significantly less in lungs of rats killed 3 weeks after exposure and had declined to near control levels, suggesting that smoke-induced adducts are repaired by lung DNA repair enzymes

  6. Biological effects of deuterium - depleted water

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  7. Food irradiation and its biological effects

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  8. Biological effects of radon in Drosophila

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  9. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk. PMID:25427902

  10. Calf thymus DNA binding/bonding properties of CC-1065 and analogs as related to their biological activities and toxicities.

    Krueger, W C; Prairie, M D

    1992-03-01

    CC-1065 is a potent natural antitumor antibiotic that binds non-covalently and covalently (N-3 adenine adduct) in the minor groove of B-form DNA. Synthetic analogs of CC-1065 do not exhibit the delayed death toxicity of CC-1065 and are efficacious anticancer agents, some of them curative in murine tumor models. In an attempt to understand the different biological properties of CC-1065 and analogs, we have determined the following quantities for CC-1065, enantiomeric CC-1065, and three biologically active analogs and their enantiomers: the calf thymus DNA (CT-DNA) induced molar ellipticity of the adduct (or how rigidly the adduct is held in the right-hand conformation of the minor groove); the stability of the adduct with respect to long incubation times and to digestion by snake venom phosphodiesterase I (SVPD); the stabilizing effect on the CT-DNA helix of the covalently and non-covalently bound species with respect to thermal melting; and the CT-DNA binding/bonding (non-covalent/covalent) profiles at a low molar ratio of nucleotide to drug. The major observations from these studies are as follows: (i) molecules which show large DNA interaction parameters, stable adducts, and significant non-covalent binding exhibit delayed death toxicity; (ii) molecules which show intermediate DNA interaction parameters and stable adducts, but do not show significant non-covalent binding, do not exhibit delayed death toxicity and are biologically active; (iii) molecules which show small DNA interaction parameters and unstable DNA adducts are biologically inactive. The results suggest that a window exists in the affinity for the minor groove of DNA wherein an analog may possess the correct balance of toxicity and activity to make a useful anticancer agent. Outside of this window, the analog causes delayed deaths or has no significant biological activity. PMID:1312395

  11. Hydrogen abstraction reactions by amide electron adducts

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O-)ND2. In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  12. Dosimetry and biological effects of fast neutrons

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  13. [DNA adducts in human female genital organs].

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Monist, Marta; Baranowski, Włodzimierz

    2007-12-01

    DNA adducts, one of genetic damages markers, precede and finally can lead to oncogenic mutations. They appear in genome as a result of DNA bases damages caused by various and numerous environmental factors eg. ultraviolet light, ionic radiation, toxins and also endogenic substances, for example estrogens. It is believed that the creation of DNA adducts is a necessary but insufficient process for the neoplastic transformation of the cell. The following review presents concise knowledge about the DNA adducts creation and their sequels served in healthy and cancerous tissues of the female genital organs, on the base of the available data. PMID:18411923

  14. E. Biological effects of radiation on man

    This report firstly summarises information on the biological hazards of radiation and their relation to radiation dose, and hence estimates the biological risks associated with nuclear power production. Secondly, it describes the basis and present status of radiation protection standards in the nuclear power industry

  15. What Makes Biology Learning Difficult and Effective: Students' Views

    Cimer, Atilla

    2012-01-01

    The present study aims to determine the biological topics that students have difficulties learning, the reasons why secondary school students have difficulties in learning biology, and ways to improve the effectiveness of students' biology learning. For these purposes, a self-administered questionnaire including three open-ended questions was…

  16. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Lennart Balk

    Full Text Available BACKGROUND: Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. METHODS AND PRINCIPAL FINDINGS: Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. CONCLUSION: It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  17. The late biological effects of ionizing radiation

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  18. Accounting for biological effectiveness in radiological protection

    Relative biological effectiveness (RBE) presents a practical problem to radiological protection when attempts are made to ensure that the assessed risks from different types of radiation and different modes of exposure to radiation are commensurate with one another. Unfortunately, the theoretical understanding of RBE is still in the stage of competing explanations and hypotheses. Furthermore, the division of the concept of dose equivalent into a set of concepts for risk assessment and another set for measurement and control has introduced conflicting requirements of a practical nature that are difficult to resolve. Many of those working in radiobiology and radiation protection have perceived the need to increase the quality factors for photon and neutron radiations. It may be more reasonable to change the quality factors for neutrons than for other radiations. The advantages and disadvantages of different methods for accommodating such changes within the dose-equivalent concepts are to be examined. The method of accommodating such a change that has the least practical disadvantages is to increase the quality factors for all secondary particles produced in tissue by neutron radiations by a constant factor. The only disadvantage would be the perception that the quality factors for these secondary particles were not treated in a consistent fashion for all types of ionising radiation. (author)

  19. 2.3.1 Biological Effects of Ionizing Radiations

    Kaul, A.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.1 Biological Effects of Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the comtents:

  20. Biologically based multistage modeling of radiation effects

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  1. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C61-butyric acid methyl ester and its bis-adduct

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C60-backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM

  2. Surgical treatment of thumb adduction contracture in children with infantile cerebral palsy

    Vladimir Alexandrovich Novikov; Valery Vladimirovich Umnov

    2015-01-01

    The purpose of the work is to evaluate the effectiveness of different methods of surgical treatment of thumb adduction contracture in children with infantile cerebral palsy.Materials and methods.The present study is based on diagnostic results of children with infantile cerebral palsy with affected upper limb. The main criterion for selection of patients was the presence of thumb adduction contracture, the absence of significant positive outcome in a patient after conservative treatment, the ...

  3. 32P-adduct assay: Comparative recoveries of structurally diverse DNA adducts in the various enhancement procedures

    A (32)P-adduct assay for the measurement of low levels (1 adduct per 10(sup 7) nucleotides) of binding of carcinogens to DNA has been reported previously. In this procedure, DNA is enzymatically hydrolyzed to 3'-monophosphates of normal nucleosides and adducts, which are 5'-(32)P-labeled by T4 polynucleotide kinase and (lambda(32)P)ATP. Labeled adducts are resolved by TLC. Enrichment of adducts by extraction in 1-butanol or digestion with nuclease P1 prior to (32)P-labeling, however, increased the sensitivity of detection for many adducts to a level of 1 per 10(sup 9-10) nucleotides, although adduct recovery particularly in the latter assay depended on the chemical nature of adducts. The observation that chemical structure of an adduct may be detrimental in its recovery in the enzyme- and extraction-mediated enrichment procedures may serve as a probe in the structural characterization of adducts of unknown carcinogens

  4. SIX2 Effects on Wilms Tumor Biology

    Janene Pierce

    2014-12-01

    Full Text Available Wilms tumor (WT blastema retains gene expression profiles characteristic of the multipotent nephron progenitor pool, or cap mesenchyme (CM, in the developing kidney. As a result, WT blastema and the CM are believed to represent contextual analogues of one another. Sine oculis homeobox 2 (SIX2 is a transcription factor expressed specifically in the CM, provides a critical mechanism for CM self-renewal, and remains persistently active in WT blastema, although its purpose in this childhood malignancy remains unclear. We hypothesized that SIX2, analogous to its function in development, confers a survival pathway to blastema, the putative WT stem cell. To test its functional significance in WT biology, wild-type SIX2 was overexpressed in the human WT cell line, WiT49. After validating this model, SIX2 effects on anchorage-independent growth, proliferation, invasiveness, canonical WNT pathway signaling, and gene expression of specific WNT pathway participants were evaluated. Relative to controls, WiT49 cells overexpressing SIX2 showed significantly enhanced anchorage-independent growth and early-passage proliferation representing surrogates of cell survival. Interestingly, overexpression of SIX2 generally repressed TCF/LEF-dependent canonical WNT signaling, which activates and coordinates both differentiation and stem pathways, but significantly heightened canonical WNT signaling through the survivin promoter, a mechanism that exclusively maintains the stem state. In summary, when overexpressed in a human WT cell line, SIX2 enhances cell survival and appears to shift the balance in WNT/β-catenin signaling away from a differentiation path and toward a stem cell survival path.

  5. Biological effects of low-dose ionizing radiation exposure

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  6. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  7. Studying of ion implantation effect on the biology in China

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  8. Ion irradiation and the biological effect of immune system

    Ion irradiation exists broadly in the people's life. It can induce a series of the biological effect in body depending on the different type and dose of ionization. This article expound the effect of ion irradiation on the biological function of immune system, affording the theorial guide in the appreciation, precaution and treatment of irradiation injury. (authors)

  9. Technology Rich Biology Labs: Effects of Misconceptions.

    Kuech, Robert; Zogg, Gregory; Zeeman, Stephan; Johnson, Mark

    This paper describes a study conducted on the lab sections of the general biology course for non-science majors at the University of New England, and reports findings of student misconceptions about photosynthesis and the mass/carbon uptake during plant growth. The current study placed high technology analytic tools in the hands of introductory…

  10. In vitro studies of the genotoxic effects of bitumen and coal-tar fume condensates: comparison of data obtained by mutagenicity testing and DNA adduct analysis by 32P-postlabelling.

    De Méo, M; Genevois, C; Brandt, H; Laget, M; Bartsch, H; Castegnaro, M

    1996-08-14

    Bitumens contain traces of polycyclic aromatic compounds (PACs), a part of which will end up in the fumes emitted during hot handling of bitumen-containing products, e.g. during roadpaving. Although exposure of workers to these fumes is low, it might lead to health problems. Studies on bitumen fume condensates (BFCs) showed weak to moderate mutagenic activities, but studies on DNA adduct formation have not been reported. Therefore, a study was initiated in which fumes were generated from two road grade bitumens, in such a way that they were representative of the fumes produced in the field. The combined vapour/particulates were tested in vitro for their ability to produce DNA adducts and in modified Ames mutation assays, using a number of different strains. An attempt was made to relate the results to chemical data, such as the content of a number of individual polycyclic aromatic hydrocarbons (PAHs) and with a measure for the total PAC content. As a reference material fume condensate from coal-tar (coal-tar pitch volatiles; CTPV) were subjected to the same tests. All fume condensates tested were mutagenic to all strains and induced the formation of DNA adducts. The patterns of DNA adducts, obtained by 32P-postlabelling, arising from the BFCs were qualitatively different from the patterns of adducts obtained from the CTPVs, implying qualitative differences in the nature of the compounds responsible for the formation of these adducts. This is corroborated by the observation that for BFCs quantitative adduct levels are higher than would be expected based on the PAH content. These data thus indicate that the PAHs analysed are not the sole components responsible for adduct formation from BFCs, but that an important contribution comes from other (hetero- and/or substituted-) PACs. PMID:8760390

  11. Adducts of Amine with Dimeric Rhodium(II) Tetracarboxylates - Formation of Nitrogenous Chiral Center

    Rhodium(II) tetracarboksylates Rh2(RCO2)4 (1a) are able to produce various complexes with organic ligands, like the 1:1 and 2:1 adducts containing axially bonded ligands (1b), or the compounds with rearranged dirhodium core (1c). The solution of dirhodium(II) tetracarboxylate and a ligand usually contains a mixture of adducts, due to ligand exchange and different equilibriums between species. However, application of nuclear magnetic resonance measurements at reduced temperature allows often observing the signals of all species in the solution. Ligands containing nitrogen atom were the subject of our previous investigation. It was found that dirhodium salts are able to form both 1:1 and 2:1 adducts with an amine, depending on reagents ratio. The present investigations are devoted to the amines with general formula NRR'R', is the amines having potential nitrogenous chiral center. An amine with three various substituents NRR'R' is formally a chiral molecule, but in the solution the molecule forms racemic mixture due to fast pyramidal inversion at the nitrogen atom. However, dirhodium(II) tetracarboxylates bonding the amine acts as an agent freezing pyramidal inversion at nitrogen atom, and results in formation of a new, nitrogenous chiral center in the adduct. Thus, the chiral dirhodium salt (4R)-Rh2[(CF3)(OCH3)(Ph)CO2]4 forms with benzyl-ethyl-methylamine five adducts: (4R)/(S), (4R)/(R) (1:1 adducts) and (R)/(4R)/(R), (R)/(4R)/(S), (S)/(4R)/(S) (2:1 adducts). All these diastereoisomers were detected by means of low temperature NMR (253 K). Similar effect was observed for the adducts with methyl-(1-phenylethyl)- amine, PhCH(NHCH3)CH3, having both nitrogenous and carbon chiral centers. (author)

  12. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  13. Adduct formation in LC-ESI-MS of nonylphenol ethoxylates: mass spectrometrical, theoretical and quantitative analytical aspects

    The analysis of nonylphenol ethoxylate (A9PEOn) surfactants with LC-ESI-MS was investigated in a detailed study of the formation of different types of adducts. Part of the observations was explained by calculating their relative stabilities using molecular dynamics techniques. Strong differences in adduct formation behaviour were found for different oligomers. Beside the common sodium adducts, surfactant dimer adducts [2 x A9PEO1,2 + Na]+, adducts including a solvent molecule [A9PEO1,2 + MeOH + Na]+ and doubly charged adducts [A9PEO>11 + 2 x Na]2+ were found. Molecular dynamics calculations showed that the A9PEOn molecule wraps itself around the complexing sodium ion in a way that negative electronic charges on oxygen have optimum electrostatic interaction with this ion. van der Waals interactions between alkyl chains are of less importance for the stability of these adducts. Both [2 x A9PEO2,5 + Na]+ dimer and [A9PEO2,5 + Na]+ monomer adducts turned out to be stable from an energetic point of view with adducts of A9PEO5 being more stable than adducts of A9PEO2. Only for the monomer adduct the latter is in accordance with experimental observations. Consequences of the formation of several adducts per A9PEOn oligomer for the quantitative analysis of environmental samples were evaluated. In clean samples, it was found that the presence of short-chain A9PEO1,2 can cause an overestimation of long-chain A9PEO>2. In real environmental extracts, other processes like matrix effects have a stronger influence on the quantitative result, and therefore no significant influence of adduct formation processes could be observed. However, inclusion of [A9PEO1,2 + MeOH + Na]+ adduct signals does improve the detection limits of the two short-chain oligomers. Correct quantitative results are obtained when A9PEO1 and A9PEO2 are quantified separately, and longer oligomers with a molar calibration followed by correction of the average molar weight of the A9PEO>2 in the sample

  14. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    Pablo Szekely; Hila Sheftel; Avi Mayo; Uri Alon

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach ...

  15. Non-Thermal Effects Mobile Phones at Biological Objects

    Ladislav Balogh

    2003-01-01

    The article deals with non-thermal effects of mobile phones on biological objects. Even though these effects are observed for longer period, there are not so far unequivocal results on obtained biological and biophysical results in this field. Biologicaleffects of electromagnetic field (EMF) depend on its character, its duration as well as on features of organism. As the receptors offield are not known (e.g. inputs of EMF into organism), its effects are judged only by non-specific reaction of...

  16. In vitro studies of the genotoxic effects of bitumen and coal-tar fume condensates: comparison of data obtained by mutagenicity testing and DNA adduct analysis by {sup 32}P-postlabelling

    De Meo, M.; Genevois, C.; Brandt, H.; Laget, M.; Bartsch, H.; Castegnaro, M. [Laboratoire de Biogenotoxicologie et Mutagenese Environnementale, Marseille (France). Faculte de Pharmcie

    1996-08-14

    Bitumens contain traces of polycyclic aromatic compounds (PACs), a part of which will end up in fumes emitted during hot handling of bitumen-containing products, e.g. during road paving. Exposure of workers to these fumes might lead to health problems. Studies on bitumen fume condensates (BFCs) showed mutagenic activities, but studies on DNA adduct formation have not been reported. Thus a study was initiated in which fumes were generated from two road grade bitumens which were representative of the fumes produced in the field. The combined vapour/particulates were tested in vitro for their ability to produce DNA adducts and in modified Ames mutation assays. Results were related to chemical data, such as the content of a number of individual polycyclic aromatic hydrocarbons (PAHs) and with a measure for total PAC content. As a reference material fume condensate from coal tar (coal-tar pitch volatiles; CTPV) were subjected to the same tests. All fume condensates were tested were mutagenic to all strains and induced the formation of DNA adducts. The patterns of DNA adducts arising from the BFCs were qualitatively different from the patterns of adducts obtained from the CTPVs, implying qualitative differences in the nature of the compounds responsible for their formation. This is corroborated by the observation that for BFCs quantitative adduct levels are higher than would be expected based on the PAH content. These data thus indicate that the PAHs analysed are not the sole components responsible for adduct formation from BFCs, but that an important contribution comes from other (hetero- and/or substituted-) PACs. 32 refs., 2 figs., 3 tabs.

  17. Sperm DNA oxidative damage and DNA adducts.

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  18. Topical Day on Biological Effects of Radiation

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  19. Topical Day on Biological Effects of Radiation

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  20. SWEET CORN CULTIVAR INFLUENCES BIOLOGICALLY EFFECTIVE HERBICIDE DOSE [ABSTRACT

    Competitive crop cultivars are considered a component of integrated weed management systems; however specific knowledge of interactions among crop cultivars and other management tactics, such as biologically effective herbicide dose, is limited. Observed variation in crop tolerance and weed supp...

  1. Influence of the 192Ir source decay on biological effect

    Biological effect of the 192Ir high activity source on LA795 tumor of mice and HCT-8 cells have been investigated when decay of the source power from 340.4 GBq to 81.4 GBq no marked difference was found between the two cell survival curves of HCT-8 cells and both of them compared with that of the X-ray irradiation the value of relative biological effect (0.1 survival) was 0.43. On the experiment of tumor LA795 of mice, when the source power was 293.3 GBq and 96.2 GBq, no different biological effect can be seen between the two series of figures. The relative biological effect was 0.55-0.60 (tumor growth delay) comparing with those of X-ray irradiation

  2. Hip adduction and abduction strength profiles in elite soccer players

    Serner, Andreas; Petersen, Jesper; Madsen, Thomas Moller;

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain....

  3. Biological Effects of the Great Oxidation Event

    Schopf, J.

    2012-12-01

    Fossil evidence of photoautotrophy, documented in Precambrian sediments by stromatolites, stromatolitic microfossils, and carbon isotopic data consistent with autotrophic CO2-fixation, extends to ~3,500 Ma. Such data, however, are insufficient to establish the time of origin of O2-producing (cyanobacterial) photosynthesis from its anoxygenic, photosynthetic bacterial, evolutionary precursor. The oldest (Paleoarchean) stromatolites may have been formed by anoxygenic photoautotrophs, rather than the cyanobacteria that dominate Proterozoic and modern stromatolites. Unlike the cyanobacteria of Proterozoic microbial assemblages, the filamentous and coccoidal microfossils of Archean deposits may represent remnants of non-O2-producing prokaryotes. And although the chemistry of Archean organic matter shows it to be biogenic, its carbon isotopic composition is insufficient to differentiate between oxygenic and anoxygenic sources. Though it is well established that Earth's ecosystem has been based on autotrophy since its early stages and that O2-producing photosynthesis evolved earlier, perhaps much earlier, than the increase of atmospheric oxygen in the ~2,450 and ~2,320 Ma Great Oxidation Event (GOE), the time of origin of oxygenic photoautotrophy has yet to be established. Recent findings suggest that Earth's ecosystem responded more or less immediately to the GOE. The increase of atmospheric oxygen markedly affected ocean water chemistry, most notably by increasing the availability of biologically usable oxygen (which enabled the development of obligate aerobes, such as eukaryotes), and of nitrate, sulfate and hydrogen sulfide (the increase of H2S being a result of microbial reduction of sulfate), the three reactants that power the anaerobic basis of sulfur-cycling microbial sulfuretums. Fossil evidence of the earliest eukaryotes (widely accepted to date from ~1800 Ma and, arguably, ~2200 Ma) fit this scenario, but the most telling example of life's response to the GOE

  4. Hip adduction and abduction strength profiles in elite soccer players

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper;

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-...

  5. Current research in Canada on biological effects of ionizing radiation

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  6. New adducts of Lapachol with primary amines

    Santos, Mirelly D.F.; Litivack-Junior, Jose T.; Antunes, Roberto V.; Silva, Tania M.S.; Camara, Celso A., E-mail: ccelso@dq.ufrpe.b [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Quimica

    2011-07-01

    New adducts of lapachol with neat primary aliphatic amines were obtained in a solvent-free reaction in good to reasonable yields (52 to 88%), at room temperature. The new compounds containing a phenazine moiety were obtained from suitable functionalized aminoalkyl compounds, including ethanolamine, 3-propanolamine, 2-methoxy-ethylamine, 3-methoxy-propylamine, n-butylamine and 2-phenetylamine. (author)

  7. Transplatin-conjugated triplex-forming oligonucleotides form adducts with both strands of DNA.

    Campbell, Meghan A; Miller, Paul S

    2009-12-01

    Triplex-forming oligonucleotides (TFOs) can bind to polypurine x polypyrimidine tracts in DNA and, as a consequence, perturb the normal functioning of a targeted gene. The effectiveness of such antigene TFOs can potentially be enhanced by covalent attachment of the TFO to its DNA target. Here, we report that attachment of N-7-platinated guanine nucleosides to the 3'- and/or 5'-ends of oligopyrimidine TFOs enables these TFOs to form highly stable adducts with target DNA deoxyguanosines or deoxyadenosines that are adjacent to the TFO binding site. Such adduct formation stably anchors the TFO to its target. Depending on the sequences adjacent to the TFO binding site, adduct formation can occur on either strand of the DNA. Adduct formation by 3',5'-bis-platinated TFOs can result in the formation of an interstrand cross-link between both strands of the DNA duplex. Formation of the adducts, which could be reversed by treatment with sodium cyanide, was dependent upon the ability of the TFO to bind to DNA and appeared to occur at a rate slower than that at which the TFO bound to the DNA duplex. The extent of adduct formation at 37 degrees C by platinated deoxyribo-TFOs diminished as the pH was increased from 6.5 to 7.4. In contrast, high levels (approximately 86%) of adduct formation by platinated 2'-O-methylribo-TFOs were observed at both pH 6.5 and pH 7.4. Platinated 2'-O-methylribo-TFOs were also shown to bind to plasmid DNA and inhibit transcription in vitro, and to inhibit plasmid replication in E. coli cells. These results suggest that platinum-conjugated TFOs may be good candidates for use as antigene agents. PMID:19950917

  8. Elimination technique for alkali metal ion adducts from an electrospray ionization process using an on-line ion suppressor

    NOZAKI, Kazuyoshi; TARUI, Akira; OSAKA, Issey; Kawasaki, Hideya; ARAKAWA, Ryuichi; 荒川, 隆一

    2010-01-01

    The effects of an on-line ion suppressor device on alkali metal ion adduct formations of the model compound tacrolimus were investigated. The base peak ion in the positive ion ESI-MS spectrum of tacrolimus was a sodium ion adduct, [M+Na]+. On the other hand, an ammonium ion adduct, [M+NH4]+, was the base peak ion in the full-scan mass spectrum of tacrolimus with a cation-exchange suppressor resin, and both [M+Na]+ and [M+K]+ were eliminated. These results indicate that the combination of an o...

  9. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs.

    Zhang, Minli; Resuello, Christina M; Guo, Jian; Powell, Mark E; Elmore, Charles S; Hu, Jun; Vishwanathan, Karthick

    2013-05-01

    In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo. PMID:23431111

  10. Biological effects at low irradiation doses

    Full text: The best scientific evidence of radiation effects in humans initially came from epidemiological studies of atomic bomb survivors in Hiroshima and Nagasaki. While no evidence of genetic effects has been found, these studies showed a roughly linear relationship between the induction of cancer and extremely high dose-rate of atomic bomb radiation. This was consistent with the knowledge that ionizing radiation can damage DNA in linear proportion to high-dose exposures and so produces gene mutations known to be associated with cancer. In the absence of comparable low dose effects it was prudent to propose tentatively the no-threshold hypothesis (LNT) that extrapolates linearly from effects observed at very high doses to the same effects at very low doses. It was accepted by the International Commission on Radiological Protection (ICRP) and afterwards adopted by national radiation protection organizations to guide regulations for the protection of occupationally exposed workers and the public. This hypothesis that all radiation is harmful in linear proportion to the dose is the principle used for collective dose calculations of the number of deaths produced by any radiation, natural of generated, no matter how small (BEIR-2000). The National Council of Radiation Protection and Measurements Report 121, summarizes the basis for adherence to linearity of radiation health effects. Confidence in LNT at low doses is based on our understanding of the basic mechanisms involved. Genetic effects may result from a gene mutation or a chromosome aberration. The activation of a dominant acting oncogene is frequently associated with leukemia and lymphomas, while the loss of suppressor genes appears to be more frequently associated with solid tumors. It is conceptually possible, but with a vanishing small probability, that any of these effects could result from the passage of a single charged particle, causing damage to DNA that could be expressed as a mutation or small

  11. Biological effects and hazards of radiation exposure

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 106 person-years at risk per WLM (range 5-15 x 10-6 PYR-1 WLM-1). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  12. STUDY ON GMA-DNA ADDUCTS

    1999-01-01

    Objective. DNA modification fixed as mutations in the cells may be an essential factor in the initiation step of chemical carcinogenesis. In order to explore the mechanism of gene mutation and cell transformation induced by glycidyl methacrylate (GMA), the current test studied the characteristics of GMA-DNA adducts formation in vitro.Methods. In vitro test, dAMP, dCMP, dGMP, dTMP and calf thymus DNA were allowed to react with GMA (Glycidyl Methacrylate). After the reaction, the mixtures were detected by UV and subjected to reversed-phase HPLC on ultrasphere ODS reversed-phase column, the reaction products were eluted with a linear gradients of methanol (solvent A) and 10mmol/L ammonium formate, pH5.0 (solvent B). The synthesized adducts were then characterized by UV spectroscopy in acid (pH1.0), neutral (pH7.2), alkaline (pH11.0) and by mass spectroscopy.Results. The results showed that GMA could bind with dAMP, dCMP, dGMP and calf thymus DNA by covalent bond, and the binding sites were specific (N6 of adenine, N3 of cytosine). Meanwhile, a main GMA-DNA adduct in the reaction of GMA with calf thymus DNA was confirmed as N3-methacrylate-2-hydroxypropy1-dCMP.Conclusions. GMA can react with DNA and /or deoxynucleotide monophosphate and generate some adducts such as N6-methacrylate-2-hydroxypropyl-dAMP and N3-methacrylate-2-hydroxypropyl-dCMP, ets. Formation of GMA-DNA adducts is an important molecular event in gene mutation and cell transformation induced by GMA.

  13. Titanium dioxide nanoparticles – Biological effects

    Anna Maria Świdwińska-Gajewska; Sławomir Czerczak

    2014-01-01

    Titanium dioxide occurs as particles of various sizes. Particles of up to 100 nm, corresponding to nanoparticles, and in the size range of 0.1–3 mm are the most frequently used. Titanium dioxide in a bulk form is not classified as dangerous substance, nevertheless nanoparticles may cause adverse health effects. Inhalation exposure to nano-TiO2 causes pulmonary inflammation that may lead to fibrotic and proliferative changes in the lungs. Many studies confirm the genotoxic effect of TiO2, espe...

  14. Fluorescence spectroscopy in the analysis of deoxyribonucleic acid (DNA) adducts

    An important first step in the initiation of carcinogenesis by polycyclic aromatic hydrocarbons (PAH), is the formation of a covalently bound adduct between the metabolized PAH and one or more deoxyribonucleic acid bases. In vivo concentrations of these adducts are typically ∼1 adducted base per 108 normal DNA base pairs. In this paper methods of generating high resolution fluorescence spectra of adducts at these levels are described. Methods of overcoming factors such as photochemistry and nonphotochemical hole burning which limit detection limits are described. By generating line narrowed fluorescence spectra, it is possible to spectrally distinguish between various adduct possibilities

  15. Biological Effects of Neutron and Proton Irradiations. Vol. I. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  16. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  17. Predictive modeling of nanomaterial exposure effects in biological systems

    Liu X; Tang K.; Harper S.; Harper B; Steevens JA; Xu R

    2013-01-01

    Xiong Liu,1 Kaizhi Tang,1 Stacey Harper,2 Bryan Harper,2 Jeffery A Steevens,3 Roger Xu1 1Intelligent Automation, Inc., Rockville, MD, USA; 2Department of Environmental and Molecular Toxicology, School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA; 3ERDC Environmental Laboratory, Vicksburg, MS, USA Background: Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential ha...

  18. Biological and therapeutical effects of Radon

    Deetjen, P. [Institute of Physiologie and Balneologie, University of Innsbruck (Austria)

    1998-12-31

    In spas with a somewhat elevated Radon{sup 222} (Rn) activity (between 300 and 3000 Bq/l), the empirical medicine ended - in all parts of the world - with the same list of indications. It mainly includes the more painful rheumatic diseases such as deformation or degeneration of the joints and non bacterial inflammation of muscles, tendons or joints; Morbus Bechterew and other diseases of the vertebral column like spondylosis, spondylarthrosis or osteochondrosis. While informer times these effects were seldom documented in an objective manner, in recent years several prospective randomized double-blind studies proved the pain reducing efficacy of Radon therapy in patients with cervical pain syndromes, with chronic polyarthritis or with Morbus Bechterew. Studies in experimental animal models have accumulated remarkable data in organs, tissue and cultured cells that provide a rationale to explain the observed effects of Radon therapy in patients. (author)

  19. Biological and therapeutical effects of Radon

    In spas with a somewhat elevated Radon222 (Rn) activity (between 300 and 3000 Bq/l), the empirical medicine ended - in all parts of the world - with the same list of indications. It mainly includes the more painful rheumatic diseases such as deformation or degeneration of the joints and non bacterial inflammation of muscles, tendons or joints; Morbus Bechterew and other diseases of the vertebral column like spondylosis, spondylarthrosis or osteochondrosis. While informer times these effects were seldom documented in an objective manner, in recent years several prospective randomized double-blind studies proved the pain reducing efficacy of Radon therapy in patients with cervical pain syndromes, with chronic polyarthritis or with Morbus Bechterew. Studies in experimental animal models have accumulated remarkable data in organs, tissue and cultured cells that provide a rationale to explain the observed effects of Radon therapy in patients. (author)

  20. Biological Effects of Low Level Laser Therapy

    Farivar, Shirin; Malekshahabi, Talieh; Shiari, Reza

    2014-01-01

    The use of low level laser to reduce pain, inflammation and edema, to promote wound, deeper tissues and nerves healing, and to prevent tissue damage has been known for almost forty years since the invention of lasers. This review will cover some of the proposed cellular mechanisms responsible for the effect of visible light on mammalian cells, including cytochrome c oxidase (with absorption peaks in the Near Infrared (NIR)). Mitochondria are thought to be a likely site for the initia...

  1. 32P-postlabelling methods for cyclic DNA adducts.

    Watson, W P; Crane, A E; Steiner, S

    1993-01-01

    32P-Postlabelling procedures coupled with HPLC have been developed to detect and measure a range of cyclic DNA adducts formed by bifunctional genotoxic agents. The methods are based on reverse-phase HPLC, particularly column-switching HPLC, to enrich adduct 3'-monophosphates before labelling. Following 3'-dephosphorylation of the 3'5'-[5'-32P]bisphosphates with nuclease P1, the resulting 5'-[32P]monophosphate adducts are resolved, identified and characterized by co-chromatography with synthetic reference standards. The procedures have been applied to a number of cyclic adducts including those formed by chloroacetaldehyde, glycidaldehyde and malonaldehyde. In general, labelling efficiencies measured as chromatographed 5'-[32P]monophosphates were in the range 30-40%. However, the values for the malonaldehyde deoxyguanosine adduct were much lower. The techniques have been applied to studies on the formation of DNA adducts in the skin of male C3H mice treated cutaneously with glycidaldehyde. The HPLC-32P-postlabelling analysis of epidermal DNA hydrolysates indicated that a single major cyclic adduct was formed by reaction with deoxyadenosine residues in mouse skin DNA. The adduct was identified as a hydroxymethyl ethenodeoxyadenosine adduct by comparison with a synthetic standard. This adduct was highly fluorescent and it was possible to make quantitative comparisons of the amounts of adduct determined by either HPLC-32P-postlabelling or HPLC-fluorescence detection. PMID:8225493

  2. Palytoxin and Analogs: Biological and Ecological Effects

    Vítor Ramos

    2010-06-01

    Full Text Available Palytoxin (PTX is a potent marine toxin that was originally found in soft corals from tropical areas of the Pacific Ocean. Soon after, its occurrence was observed in numerous other marine organisms from the same ecological region. More recently, several analogs of PTX were discovered, remarkably all from species of the dinoflagellate genus Ostreopsis. Since these dinoflagellates are also found in other tropical and even in temperate regions, the formerly unsuspected broad distribution of these toxins was revealed. Toxicological studies with these compounds shows repeatedly low LD50 values in different mammals, revealing an acute toxic effect on several organs, as demonstrated by different routes of exposure. Bioassays tested for some marine invertebrates and evidences from environmental populations exposed to the toxins also give indications of the high impact that these compounds may have on natural food webs. The recognition of its wide distribution coupled with the poisoning effects that these toxins can have on animals and especially on humans have concerned the scientific community. In this paper, we review the current knowledge on the effects of PTX and its analogs on different organisms, exposing the impact that these toxins may have in coastal ecosystems.

  3. Linking exposure to environmental pollutants with biological effects

    Sørensen, Mette; Autrup, Herman; Møller, Peter;

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual...... setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based...

  4. Biological effects of fruit and vegetables

    Dragsted, L. O.; Krath, B.; Ravn-Haren, Gitte;

    2006-01-01

    A strong and persistent effect of plant-derived foods on the prevention of lifestyle diseases has emerged from observational studies. Several groups of constituents in plants have been identified as potentially health promoting in animal studies, including cholesterol-lowering factors, antioxidants......-cholesterol, but does not affect sex hormones. In conclusion, it has been shown that total cholesterol and LDL-cholesterol, markers of peripheral lipid oxidation, and erythrocyte GPX1 activity are affected by high intakes of fruit and vegetables. This finding provides support for a protective role of dietary fruit...

  5. Nanosilver – Harmful effects of biological activity

    Anna Maria Świdwińska-Gajewska

    2014-12-01

    Full Text Available Nanosilver, also identified as colloidal silver, has been known and used for ages to combat diseases or prolong food freshness. It usually occurs in the form of a suspension consisting of particles of size < 100 nm. Due to its specific properties, silver nanoparticles are used in many technologies to produce medical devices, textiles, conductive materials or photovoltaic cells. The growing popularity of nanosilver applications increases the number of people occupationally exposed to this substance. Potential exposure routes for silver nanoparticles are through dermal, oral and inhalation pathways. Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen. Inhalation of silver nanoparticles mainly affects the lungs and liver. It has been demonstrated that silver nanoparticles may be genotoxic to mammalian cells. There are some alarming reports on the adverse effects of silver nanoparticles on reproduction of experimental animals. Exposure to silver nanoparticles may exert a neurotoxic effect and affect cognitive functions, causing the impairment of short-term and working memory. Maximum admissible concentration (MAC for the inhalable fraction of silver of 0.05 mg/m3 is currently binding in Poland. In light of toxicological studies of silver nanoparticles it seems reasonable to update the hygiene standards for silver with nanoparticles as a separate fraction. Med Pr 2014;65(6:831–845

  6. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    Nicotine[3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. The authors may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine. (authors)

  7. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    CHENG Yan; WANG Hai-Fang; SUN Hong-Fang; LI Hong-Li

    2004-01-01

    Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.

  8. Effects of saltcedar invasion and biological control on small mammals

    Effects of invasive saltcedars (Tamarix spp.) on bird populations and communities have received considerable interest, but impacts on other vertebrate taxa have received less attention. Moreover, only one published study examined effects on vertebrates of biological control efforts directed at saltc...

  9. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  10. Electromagnetic field induced biological effects in humans.

    Kaszuba-Zwolińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  11. Rifaximin: An Antibiotic with Important Biologic Effects.

    DuPont, H L

    2015-01-01

    Rifaximin is a poorly absorbed rifamycin drug with unique pharmacokinetic properties: bile solubility making it highly active against pathogenic and non-pathogenic bacterial flora in the bile-rich small bowel and low water solubility making it active only against highly susceptible bacteria, primarily anaerobes, in the aqueous colon. The drug has anti-inflammatory gut mucosal stabilization properties that are important to its sustained effects in non-infectious diseases. Rifaximin is used chronically or recurrently for hepatic encephalopathy and diarrhea-predominant irritable bowel syndrome. Monitoring of long-term use of rifaximin for development of resistance and then determining whether developed resistance is associated with reduced efficacy are needed. Studies of changes of intestinal flora during therapy and the health implications of these changes are also needed. PMID:26202192

  12. Biological effect of radiation on human

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  13. Biological effect of radiation on human

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  14. Biological monitoring the exposure to polycyclic aromatic hydrocarbons of coke oven workers in relation to smoking and genetic polymorphisms for GSTM1 GSTT1

    Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Asten, J.G. van; Vogel, N. de; Bruijntjes-Rozier, T.C.D.M.; Schouten, T.; Cramers, P.; Maas, L.; Herwijnen, M.H. van; Schooten, F.-J. van; Hopmans, P.M.J.

    2001-01-01

    Occupational exposure to polycyclic aromatic hydrocarbons (PAH) increases the risk of developing lung cancer. Human exposure is often demonstrated by increased internal levels of PAH metabolites and of markers for early biological effects, like DNA adducts and cytogenetic aberrations. Objective: Thi

  15. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    Yang, Zhen-zhen; He, Liang-Nian

    2014-01-01

    Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs) and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well ...

  16. Third eye, the biological effects; 3. oeil, les effets biologiques

    Anon.

    2004-02-01

    The discovery of a third kind of photo-receptor cell in the human eye has permitted to better understand the biological effects of lighting, not only on the vision, but also on some nervous processes, like emotion, mood, stress, biological clock, etc.. This additional dimension has led the engineers of Philips Lighting company to launch a new indoor lighting concept named 'Carpe Diem'. This concept adapts both the illuminance and the color of a lighting system according to the type of work and to the expected stimulating effect. (J.S.)

  17. Biological effect of penetration controlled irradiation with ion beams

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  18. Polyamines stimulate the formation of mutagenic 1,N 2-propanodeoxyguanosine adducts from acetaldehyde

    Theruvathu, Jacob A.; Jaruga, Pawel; Nath, Raghu G.; Dizdaroglu, Miral; Brooks, P. J.

    2005-01-01

    Alcoholic beverage consumption is associated with an increased risk of upper gastrointestinal cancer. Acetaldehyde (AA), the first metabolite of ethanol, is a suspected human carcinogen, but the molecular mechanisms underlying AA carcinogenicity are unclear. In this work, we tested the hypothesis that polyamines could facilitate the formation of mutagenic α-methyl-γ-hydroxy-1,N 2-propano-2′-deoxyguanosine (Cr-PdG) adducts from biologically relevant AA concentrations. We found that Cr-PdG addu...

  19. 32P-Postlabelling/HPLC analysis of various styrene-induced DNA adducts in mice

    Koskinen, M.; Vodička, Pavel; Vodičková, L.; Hemminki, K.

    2001-01-01

    Roč. 6, č. 3 (2001), s. 175-189. ISSN 1354-750X R&D Projects: GA ČR GA313/99/1460 Grant ostatní: GA-(EU) QLK4-1999-01368 Institutional research plan: CEZ:AV0Z5039906 Keywords : DNA adducts Subject RIV: EA - Cell Biology Impact factor: 1.118, year: 2001

  20. Kinetics of formation of specific styrene oxide adducts in double-stranded DNA

    Koskinen, M.; Vodičková, L.; Vodička, Pavel; Warner, S. C.; Hemminki, K.

    2001-01-01

    Roč. 138, č. 2 (2001), s. 111-124. ISSN 0009-2797 R&D Projects: GA ČR GA313/99/1460 Grant ostatní: EU(XC) QLK4-1999-01368 Institutional research plan: CEZ:AV0Z5039906 Keywords : biomonitoring * DNA adducts Subject RIV: EA - Cell Biology Impact factor: 1.706, year: 2001

  1. Biologic

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  2. Covalent adduction of nitrogen mustards to model protein nucleophiles.

    Thompson, Vanessa R; DeCaprio, Anthony P

    2013-08-19

    Protein adducts have the potential to serve as unique biomarkers of exposure to compounds of interest. Many xenobiotics (or their metabolites) are electrophilic and therefore reactive with nucleophilic amino acid residues on proteins. Nitrogen mustards are reactive xenobiotics with potential use as chemical warfare agents (CWA) or agents of terrorist attack, in addition to being employed as chemotherapeutic agents. The present study utilized cysteine-, lysine-, and histidine-containing model peptides to characterize in vitro adduction of the nitrogen mustards mechloroethamine (HN-2) and tris-(2-chlorethyl)amine (HN-3) to these nucleophilic amino acid residues by means of liquid chromatography-tandem mass spectrometry. The study assessed the structure of adducts formed, the time course of adduct formation, concentration-response relationships, and temporal stability of adducts. Adduction was hypothesized to occur on all three model peptides via initial formation of a reactive aziridinium intermediate for both mechloroethamine and tris-(2-chlorethyl)amine, followed by covalent adduction to nucleophilic residues. While adduction was found to occur most readily with cysteine, it was also observed at lysine and histidine, demonstrating that adduction by mechloroethamine and tris-(2-chlorethyl)amine is possible at multiple nucleophilic sites. Following solid phase extraction cleanup, adducts formed with mechloroethamine were stable for up to three weeks. Adducts formed with tris-(2-chlorethyl)amine were less stable; however, hydrolyzed secondary adducts were observed throughout the three week period. This study demonstrates that the nitrogen mustards mechloroethamine and tris-(2-chlorethyl)amine form stable adducts with reactive protein nucleophiles other than cysteine. PMID:23859065

  3. Biological isotopy. Introduction to the isotopic effects and to their applications in biology

    Since their discovery in the beginning of the 20. century, the study of stable isotopes has considerably developed. This domain, which remained limited in its applications until the 1990's, has become particularly important thereafter thanks to its practical applications and in particular to its economical impacts. Many techniques used in fraud control, in drugs use control, in selection of high-yield plants etc are based on isotopic abundance measurements. This reference book gives a synthesis of our actual knowledge on the use of stable isotopes and of isotope fractionation in biology. It presents the basic notions of isotopic biochemistry and explains the origin of the isotopic effects. The application principles of these effects to metabolism, to organisms physiology, to environmental biology etc are explained and detailed using examples and exercises. The first chapters present the basic knowledge which defines, from a mathematical point-of-view, the isotopic effects of chemical reactions or of physical processes taking place in biology. The measurements principle of natural isotopes abundance is then synthesised. Finally, all these notions are applied at different scales: enzymes, physiology, metabolism, environment, ecosystems and fraud crackdown. (J.S.)

  4. Physical and biological factors determining the effective proton range

    Grün, Rebecca [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)

    2013-11-15

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam.

  5. The relevance and significance of O6-, N7-Alkylguanines and N3-Alkyladenine DNA adducts from tobacco smoke.

    Chadt, Jiří; Koskinen, M.; Vodička, Pavel

    Vídeň, 2006. [Tobacco Herm Reduction and Perception of Risk. 08.03.2006-11.03.2006, Vídeň] R&D Projects: GA ČR GA310/05/2626 Institutional research plan: CEZ:AV0Z50390512 Keywords : DNA Adduct Subject RIV: EB - Genetics ; Molecular Biology

  6. Biological effects in intramuscular 239Pu administration during chelatotherapy

    Durable (up to 64 days) application of complexones (Ca and Zn DTPA) in the case of intramuscular administration of 239Pu large amounts in rats is studied. The results of studying the biological effect proving considerable decrease of the average lifespan of rats are given

  7. Thermal effects of laser radiation in biological tissue.

    Cummins, L; Nauenberg, M.

    1983-01-01

    A theoretical model is presented that simulates the thermal effects of laser radiation incident on biological tissue. The multiple scattering and absorption of the laser beam and the thermal diffusion process in the tissue are evaluated by a numerical technique that is well suited for microcomputers. Results are compared with recent empirical observations.

  8. Biological Effects and Chemical Measurements in Irish Marine Waters

    Giltrap, Michelle, (Thesis); McHugh, Brendan; Ronan, Jenny; Wilson, James; MCGOVERN Evin

    2014-01-01

    The overall aim of this project was to increase Ireland’s capacity for the generation of integrated monitoring of biological effects and chemical measurement data and for the completion of a pilot scale assessment of the quality of the Irish marine environment at a number of selected locations.

  9. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    Vogel, Ulla Birgitte; Danesvar, B.; Autrup, H.;

    2003-01-01

    liver, colon, or urine. Thus, lard intake at the expense of other nutrients and a large increase in the fat energy consumption affects the redox state locally in the liver cytosol, but does not induce DNA-damage, systemic oxidative stress or a dose-dependent increase in mutation frequency in rat colon...... was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in...

  10. Biological potential of extraterrestrial materials - 1. Nutrients in carbonaceous meteorites, and effects on biological growth

    Mautner, Michael N.

    1997-06-01

    Soil nutrient analysis of the Murchison C2 carbonaceous chondrite shows biologically available S, P, Ca, Mg, Na, K and Fe and cation exchange capacity (CEC) at levels comparable with terrestrial agricultural soils. Weathering, and aqueous, hydrothermal (121°C, 15 min) and high-temperature (550°C, 3 h) processing increase the extractable nutrients. Extractable phosphorus (by 0.3 M NH 4F + 0.1 M HCl) content, which may be growth-limiting, is 6.3 μg g -1 in the unprocessed meteorite, but increases to 81 μg g -1 by hydrothermal processing and weathering, and to 130 μg g -1 by high temperature processing. The cation exchange capacity (CEC), attributed mainly to the organic fraction, corresponds responds to 345 meq per 100 g of the polymer, suggesting one ionizable COOH or OH group per 3-4 aromatic rings. The Allende C3(V) meteorite has low extractable Ca, Mg and K, in parallel to its low organic content and CEC, but high extractable P levels (160 μg g -1). Biological effects are observed on growth of the soil microorganisms Flavobacterium oryzihabitans and Nocardia asteroides in meteorite extracts, and the population levels suggest that P is the limiting nutrient. Effects on plant growth are examined on Solanum tuberosum (potato), where extracts of the Murchison meteorite lead to enhanced growth and pigmentation. The biologically available organic and inorganic nutrients in carbonaceous chondrites can provide concentrated solutions for prebiotic and early life processes, and serve as soils and fertilizers for future space-based biological expansion.

  11. Effects of weak magnetic fields on biological systems: physical aspects

    The effect of weak magnetic fields on biosystems is the subject matter of the science of magnetobiology. There are objective factors, due to theory lagging far behind experiment, that are hindering the development of this science. Academic interest in the subject is restrained by the fact that experimental data lack a clear physical explanation. Besides, there is a strong imbalance in how physics and biology are involved in magnetobiology, the former being still in infancy in this respect. It is this imbalance which is currently the driving force for the development of the theory of magnetobiology. This brief analytical review focuses on the physical aspects of magnetobiological research. The task of magnetobiology is to explore the biological effects of weak magnetic fields and to understand mechanisms behind these effects. Magnetobiology is part of a more general issue of the biological impact of weak and hyperweak physico-chemical factors. It is believed that such factors operate even below the trigger threshold for protective biological mechanisms and are therefore capable of accumulating at the subcellular level. The so-called 'kT-problem' is discussed in detail, and the interference mechanisms of the molecular gyroscope and of molecular states in an idealized protein cavity are suggested as candidate solutions. (reviews of topical problems)

  12. Effect of biologic agents on radiographic progression of rheumatoid arthritis

    Gabriel J Tobón

    2010-08-01

    Full Text Available Gabriel J Tobón1, Alain Saraux1,2, Valérie Devauchelle-Pensec1,21Immunology Laboratory, Morvan Hospital, Université de Bretagne Occidentale, Brest, France; 2Rheumatology Unit, Hôpital de la Cavale Blanche, CHU Brest, FranceAbstract: The treatment of rheumatoid arthritis (RA has benefited over the last few years from the introduction of biologic agents whose development was based on new insights into the immunological factors involved in the pathogenesis of RA and the development of joint damage. These biological agents have been proven effective in RA patients with inadequate responses to synthetic disease-modifying antirheumatic drugs (DMARDs. Preventing joint damage is now the primary goal of RA treatment, and guidelines exist for the follow-up of joint abnormalities. Most biologic agents produced high clinical and radiological response rates in patients with established or recent-onset RA. Thus, for the first time, obtaining a remission is a reasonable treatment goal in RA patients. Factors that are crucial to joint damage control are: early initiation of DMARDs, use of intensive treatments including biological agents, and close monitoring of clinical disease activity and radiographic progression. However, some patients remain unresponsive to all available treatments and continue to experience joint damage progression. A major objective now is to identify patients at high risk for severe joint damage, in order to tailor the treatment regimen to their specific needs.Keywords: rheumatoid arthritis, radiographic progression, biologics

  13. Predictive modeling of nanomaterial exposure effects in biological systems

    Liu X

    2013-09-01

    Full Text Available Xiong Liu,1 Kaizhi Tang,1 Stacey Harper,2 Bryan Harper,2 Jeffery A Steevens,3 Roger Xu1 1Intelligent Automation, Inc., Rockville, MD, USA; 2Department of Environmental and Molecular Toxicology, School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA; 3ERDC Environmental Laboratory, Vicksburg, MS, USA Background: Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods: We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results: We found several important attributes that contribute to the 24 hours post-fertilization (hpf mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of

  14. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-01

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts. PMID:25772403

  15. Evaluation of radiobiological effects in 3 distinct biological models

    Full text of publication follows. The present work aims at sharing the process of development of advanced biological models to study radiobiological effects. Recognizing several known limitations and difficulties of the current monolayer cellular models, as well as the increasing difficulties to use advanced biological models, our group has been developing advanced biological alternative models, namely three-dimensional cell cultures and a less explored animal model (the Zebra fish - Danio rerio - which allows the access to inter-generational data, while characterized by a great genetic homology towards the humans). These 3 models (monolayer cellular model, three-dimensional cell cultures and zebra fish) were externally irradiated with 100 mGy, 500 mGy or 1 Gy. The consequences of that irradiation were studied using cellular and molecular tests. Our previous experimental studies with 100 mGy external gamma irradiation of HepG2 monolayer cells showed a slight increase in the proliferation rate 24 h, 48 h and 72 h post irradiation. These results also pointed into the presence of certain bystander effects 72 h post irradiation, constituting the starting point for the need of a more accurate analysis realized with this work. At this stage, we continue focused on the acute biological effects. Obtained results, namely MTT and clonogenic assays for evaluating cellular metabolic activity and proliferation in the in vitro models, as well as proteomics for the evaluation of in vivo effects will be presented, discussed and explained. Several hypotheses will be presented and defended based on the facts previously demonstrated. This work aims at sharing the actual state and the results already available from this medium-term project, building the proof of the added value on applying these advanced models, while demonstrating the strongest and weakest points from all of them (so allowing the comparison between them and to base the subsequent choice for research groups starting

  16. NanoLC/ESI+ HRMS3 quantitation of DNA adducts induced by 1,3-butadiene.

    Sangaraju, Dewakar; Villalta, Peter W; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI(+)-HRMS(3) analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 10(8) nucleotides in HT1080 cells treated with 0.5-10 μM EB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 10(8) nucleotides, respectively [corrected]. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI(+)-HRMS(3) Orbitrap methodology to quantitative analysis of DNA adducts in vivo. PMID:24867429

  17. Radiolabelled substrates for studying biological effects of trace contaminants

    A programme of coordinated isotopic tracer-aided investigations of the biological side-effects of foreign chemical residues in food and agriculture, initiated in 1973, was reviewed. The current status of representative investigations from the point of view of techniques and priorities was assessed. Such investigations involved radioactive substrates for studying DNA injury and its repair; 14C-labelled acetylcholine as substrate for measuring enzyme inhibition due to the presence of, or exposure to, anticholinesteratic contaminants; radioactive substrates as indication of side-effects in non-target organisms and of their comparative susceptibilities; radioactive substrates as indicators of persistence or biodegradability of trace contaminants of soil or water; and labelled pools for studying the biological side-effects of trace contaminants. Priorities were identified

  18. Biological effects of exposure to magnetic resonance imaging: an overview

    Formica Domenico

    2004-04-01

    Full Text Available Abstract The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.

  19. Properties of ferrocene derivative C60 adduct

    Properties of ferrocene derivative C60 adduct were investigated by thermal analyses, x-ray diffraction, 57Fe Moessbauer spectroscopy in order to examine interaction of iron with fullerene. Thermal treatment may be applied to remove organic groups to obtain sample containing C60Fe with C60 arranged in the fcc lattice and iron dispersed between fullerenes. We performed calculations based on the semi-empirical quantum chemistry model P M3 for a few exohedral complexes with Fe at various sites relatively to C60

  20. Biological effects of low doses of ionizing radiation

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  1. Biological effect of nitrogen ion implantation on stevia

    Dry seed of stevia were implanted by 35∼150 keV nitrogen ions with various doses. The biological effect in M1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam energy and dose added, but there was on significant linear regression relationship between ion dose and aberration rate. The results indicated the seedling height reduced with the increasing of dose for ion beam. The biological effect of nitrogen ion beam on M1 stevia was lower than that of γ-rays. (6 refs., 1 fig., 4 tabs.)

  2. Advances in the biological effects of terahertz wave radiation.

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed. PMID:25722878

  3. Advances in the biological effects of terahertz wave radiation

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  4. Biological effects of space loading on salvia miltiorrhiza

    To study the SP1 biological effects of space loading on Salvia miltiorrhiza seeds. Dry seeds were carried by breeding satellite-Shijian 8, and seeds were sowed in the field after returning the ground. Some parameters were measured, such as growth stage, seed vigor, plant traits above ground, root feature and seeding characteristics. Variation of DNA was tested by SRAP. The results showed that DNA variation happened, the rate of germination and emergence in SP1 generation increased significantly, the blooming date was advanced, rachis length and flower number of SP1 generation also increased compared with CK. At the same time, the root features and seeding characteristics were improved, the CV was increased in the relative traits, but leaf growth was inhibited significantly. The biological effects of space loading on dry seed of Salvia miltiorrhiza might be an important index for germplasm improvement and breeding. (authors)

  5. Effects of UV and microwave radiation on biological material

    For the present study, ten publications on the effect of UV radiation were analyzed. In vitro tests were carried out with one biological substance and seven different human or animal organs and biocytocultures. In vivo, three bacterial strains were irradiated and four irradiation experiments were carried out on mice. As to the effect of microwave radiation, eleven publications were analyzed. In vitro tests were carried out with one biological substance and three animal organs. In vivo, one bacterial strain was irradiated and eight irradiation experiments were carried out on different types of animals. The study's aim was to obtain a survey on biochemical changes of the organisms. Phenomenological changes were given only when the corresponding articles contained further investigation results. Behavioral changes were not taken into account. The results published by the authors of the original papers were compiled in a kind of dictionary. All relevant data are listed in a defined order. (orig.)

  6. Oxygen effect in radiation biology: caffeine and serendipity

    The 'hit theory' developed in 1920s to explain the actions of ionizing radiation on cells and organisms was purely physical, and its limitation was its inadequacy to address the contemporary findings such as the oxygen enhancement of radiobiological damage, and the increased radio- sensitivity of dividing compared to non-dividing cells. The textbooks written prior to 1970s did not either refer at all to oxygen as a radiosensitizer, or had mentioned it only in a passing manner; yet 'oxygen effect' was emerging as the central dogma in radiation biology. The oxygen effect in radiation biology is highly interdisciplinary encompassing atomic physics (i.e. interaction of photon with matter), radiation chemistry (formation of reactive oxygen species), molecular signalling, gene expression and genetic alterations in cells (mutation, cancer) or the cell death (apoptosis, necrosis, mitotic catastrophe, etc.). Cell death in higher organisms is now recognized as the precursor of possible error-free cell replacement repair. (author)

  7. Metabolism and biological effects of alpha-emitting radionuclides

    The emphasis of much of the current and planned research on the toxicity of alpha-emitting radionuclides is directed toward the complexities of actual and potential conditions of occupational environmental exposures of human beings. These, as well as the more limited studies on mechanisms of biological transport and effects, should increase our ability to predict health risks more accurately and to deal more confidently with human exposures, if and when they occur

  8. Biological effects of the ionizing radiation. Press breakfast

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  9. Biological Effects of Phosphate on Fibroblast-Like Synoviocytes

    Yubo Sun; Mauerhan, David R.; Deepthi Chaturvedi; Hanley, Edward N; Gruber, Helen E.

    2012-01-01

    This study sought to examine the expression of genes implicated in phosphate transport and pathological calcification in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and investigate the biological effects of phosphate. Results revealed that several genes, which were implicated in phosphate transport and pathological calcification, were differentially expressed in OA FLS and RA FLS. Phosphate stimulated the expression of matrix metalloproteinse-1, matrix...

  10. Biological effects of low-intensity millimetric radiation

    Betskiy, O.V.; Putvinskiy, A.V.

    1986-10-01

    The authors discuss a possible role of strong absorption of millimetric (MM) waves by water molecules in the primary mechanism of the reaction of biological systems to MM irradiation. Data are given on the interaction of MM radiation with simple aqueous systems. Primary attention is given to the phenomenon of convective mixing of aqueous solutions under the effect of low-intensity MM waves (1 ... 10 mW/cm/sup 2/). 12 references, 6 figures.

  11. On Quantum Effects in a Theory of Biological Evolution

    Martin-Delgado M.A.

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more...

  12. BIOLOGICAL EFFECTS OF PULSED SHORT WAVE TREATMENT. AN EXPERIMENTAL STUDY

    Dogaru Gabriela; Crăciun Constantin

    2015-01-01

    Pulsed short waves are short electromagnetic waves emitted as intermittent trains with a fixed duration, separated by free intervals of variable duration. The biological effects of pulsed short waves could be explained according to most of the authors by an activation of cellular enzymatic reactions, a stimulation of energy metabolism, a stimulation of liver function, of adrenal gland function and of the reticulocyte system, changes in cell permeability, by an increase of peripheral blood flo...

  13. Effects of biological sex on the pathophysiology of the heart

    Fazal, Loubina; Azibani, Feriel; Vodovar, Nicolas; Cohen Solal, Alain; Delcayre, Claude; Samuel, Jane-Lise

    2014-01-01

    Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of th...

  14. Effect of Ceramic Scaffold Architectural Parameters on Biological Response

    Maria Isabella eGariboldi

    2015-10-01

    Full Text Available Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1 surface topography, (2 pore size and geometry, (3 porous networks and (4 macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way, as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  15. Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.

    Pablo Szekely

    Full Text Available Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals.

  16. Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls

    Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.

    2000-01-01

    OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession.
METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B).
RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in

  17. The effect of biological cohesion on current ripple development

    Malarkey, Jonathan; Baas, Jaco H.; Hope, Julie

    2014-05-01

    Results are presented from laboratory experiments examining the role of biological cohesion, associated with Extra Polymeric Substances, on the development of current ripples. The results demonstrate the importance of biological cohesion compared to the effect of physical cohesion associated with clays in an otherwise sandy bed. FURTHER INFORMATION In fluvial and marine environments sediment transport is mainly dependent on the nature of the bed surface (rippled or flat) and the nature of cohesion in the bed. Cohesion can be either physical, as a result of the presence of clays, or biological as a result of the presence of organisms. In the case of the latter, biological cohesion occurs as a result of the presence of Extra Polymeric Substances (EPS) secreted by microorganisms. While it is known that EPS can dramatically increase the threshold of motion (Grant and Gust, 1987), comparatively little is known about the effect of EPS on ripple formation and development. The experiments described here seek to fill this gap. They also allow the effect of biological cohesion to be compared with that of physical cohesion from previous experiments (Baas et al., 2013). The experiments, which were conducted in a 10m flume at Bangor University, involved a current over a bed made of fine sand, with a median diameter of 0.148mm, and various amounts of xanthan gum, a proxy for naturally occurring EPS (Vardy et al., 2007). The hydrodynamic experimental conditions were matched very closely to those of Baas et al. (2013). The ripple dimensions were recorded through the glass side wall of the tank using time lapse photography. In the physical cohesion experiments of Baas et al. (2013) for clay contents up to 12%, the clay was very quickly winnowed out of the bed, leaving essentially clay-free ripples that developed at more or less the same rate as clean sand ripples. The resulting equilibrium ripples were essentially the same length as the clean sand ripples but reduced in height. By

  18. 18. Adduct detection in human monitoring for carcinogen exposure

    2001-01-01

    @@Determination of the covalently bound products (adducts) of carcinogens with DNA or proteins may be used for the monitoring of exposure to these compounds. Protein adducts are generally stable and are not enzymatically repaired, and the use of these for cxposure monitoring is normally carried out with globin or albumin, because

  19. DNA adduct formation by alachlor metabolites

    The extent of DNA adduct formation by alachlor [ArN(CH2OCH3)C(O)CH2Cl wherein Ar is 2,6-diethylphenyl] and its metabolites is used as a guide to deduce the causal agent(s) in the carcinogenicity of this major herbicide. [14C-phenyl]Alachlor is compared to its two metabolic cleavage products, [14C-phenyl] 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) [ArNHC(O)CH2Cl] and [14C-phenyl]2,6-diethylaniline (DEA) (ArNH2), and to [14C-methoxy]alachlor in various in vitro and in vivo systems. Horseradish peroxidase and hydrogen peroxide activate DEA, but not CEDPA or alachlor, for formation of adducts with calf thymus DNA, which probably involves 2,6-diethylnitrosobenzene (ArNO) as an intermediate. Mouse liver microsomes and NADPH are both required to enhance the binding from each labeled preparation to calf thymus DNA; 4-fold higher labeling is observed from [14C-methoxy]- than from [14C-phenyl]alachlor. This 4-fold preferential DNA labeling from the 14C-methoxy compound is likewise found in the liver of mice treated intraperitoneally. Mouse liver protein and hemoglobin are also labeled, in vivo, with [14C-phenyl]alachlor, -CDEPA and -DEA, and, as with the DNA, the labeling of these proteins is 1.5- to 2-fold higher with [14C-methoxy]alachlor

  20. Intramolecular Tetrylene Lewis Adducts: Synthesis and Reactivity.

    Schneider, Julia; Krebs, Kilian M; Freitag, Sarah; Eichele, Klaus; Schubert, Hartmut; Wesemann, Lars

    2016-07-01

    A series of benzyl(diphenylphosphino) and o-phenyl(diphenlyphosphino) substituted germylenes and plumbylenes were synthesized by nucleophilic substitution between the respective lithium reagent and tetrylene halide. The Lewis pairs were characterized by X-ray crystallography and NMR spectroscopy. The reactivity of the tetrylenes was investigated with respect to azide addition. In the germylene case, the germaniumimide was formed as the kinetically controlled product, which rearranges upon heating to give the phosphinimide. The stannylene and plumbylene derivatives react with adamantylazide to give the azide adducts. 1-Pentene reacts diastereoselectively with the phosphagermirane to give a cyclic addition product. Trimethysilylacetylene shows an addition with the benzylphosphino-substituted germylene and plumbylene to give the cycloheteropentene molecules. The addition product between phenylacetylene and the four membered Ge-P adduct shows after addition at room temperature a 1,4-phenylmigration to give a cyclic phosphine. Alkylnitrene insertion into a Ge-C bond of the alkyne addition product of the phosphagermirane was found in reaction with adamantylazide. PMID:27273819

  1. Cytogenetic measurements of the relative biological effectiveness of tritium

    Chromosome aberrations in peripheral blood lymphocytes, which are used to estimate radiation dose biologically, were induced by tritium 1.14 times as effectively as X-rays (95% confidence limits: 0.8 - 1.5). Chromosome translocations in spermatogonia, which are one component of genetic risk, were induced by tritium 1.21 times as effectively as X-rays (95% confidence limits: 0.8 -1.9). All experimental measurements were made in CBA/H mice injected with tritiated water or exposed to X-rays at a comparable dose rate

  2. Biological effects of low level exposures to chemicals and radiation

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on 'Effects of low-dose radiation on the immune response' was presented as well as 'Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies

  3. Effective biological dose from occupational exposure during nanoparticle synthesis

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  4. Effective biological dose from occupational exposure during nanoparticle synthesis

    Demou, Evangelia; Tran, Lang; Housiadas, Christos

    2009-02-01

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08#/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  5. Sodium selenite and cancer related lymphedema: Biological and pharmacological effects.

    Pfister, Christina; Dawzcynski, Horst; Schingale, Franz-Josef

    2016-09-01

    A significant percentage of cancer patients develop secondary lymphedema after surgery or radiotherapy. The preferred treatment of secondary lymphedema is complex physical therapy. Pharmacotherapy, for example with diuretics, has received little attention, because they were not effective and only offered short-term solutions. Sodium selenite showed promise as a cost-effective, nontoxic anti-inflammatory agent. Treatment with sodium selenite lowers reactive oxygen species (ROS) production, causes a spontaneous reduction in lymphedema volume, increases the efficacy of physical therapy for lymphedema, and reduces the incidence of erysipelas infections in patients with chronic lymphedema. Besides biological effects in reducing excessive production of ROS, sodium selenite also displays various pharmacological effects. So far the exact mechanisms of these pharmacological effects are mostly unknown, but probably include inhibition of adhesion protein expression. PMID:27267968

  6. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe, E-mail: uk@uni-muenster.de [University of Muenster, Institute of Inorganic and Analytical Chemistry (Germany)

    2013-09-15

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag{sup +} and the reaction partners (X) including [Ag{sub n}X{sub m} - (n + 1)H]{sup -} (n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag{sub (a+1)}GSH{sub a} - (a + 3)H]{sup 2-} (a = 5-7) and [Ag{sub b}GSH{sub b} - (b + 2)H]{sup 2-} (b = 4-8) ions. {sup 1}H NMR data of free GSH compared to that after treatment with Ag{sup +} confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  7. The N(2)-Furfuryl-deoxyguanosine Adduct Does Not Alter the Structure of B-DNA.

    Ghodke, Pratibha P; Gore, Kiran R; Harikrishna, S; Samanta, Biswajit; Kottur, Jithesh; Nair, Deepak T; Pradeepkumar, P I

    2016-01-15

    N(2)-Furfuryl-deoxyguanosine (fdG) is carcinogenic DNA adduct that originates from furfuryl alcohol. It is also a stable structural mimic of the damage induced by the nitrofurazone family of antibiotics. For the structural and functional studies of this model N(2)-dG adduct, reliable and rapid access to fdG-modified DNAs are warranted. Toward this end, here we report the synthesis of fdG-modified DNAs using phosphoramidite chemistry involving only three steps. The functional integrity of the modified DNA has been verified by primer extension studies with DNA polymerases I and IV from E. coli. Introduction of fdG into a DNA duplex decreases the Tm by ∼1.6 °C/modification. Molecular dynamics simulations of a DNA duplex bearing the fdG adduct revealed that though the overall B-DNA structure is maintained, this lesion can disrupt W-C H-bonding, stacking interactions, and minor groove hydrations to some extent at the modified site, and these effects lead to slight variations in the local base pair parameters. Overall, our studies show that fdG is tolerated at the minor groove of the DNA to a better extent compared with other bulky DNA damages, and this property will make it difficult for the DNA repair pathways to detect this adduct. PMID:26650891

  8. The use of innate immune responses as biomarkers in a programme of integrated biological effects monitoring on flounder (Platichthys flesus) from the southern North Sea

    Skouras, Andreas; Broeg, Katja; Dizer, Halim; von Westernhagen, Hein; Hansen, Peter-Diedrich; Steinhagen, Dieter

    2003-10-01

    Immunological biomarkers that reflect the effects of exposure to environmental contaminants in coastal marine habitats were sought in European flounder (Platichthys flesus) from five locations in the German Bight with different anthropogenic impacts. During a 2-year period of sampling, innate immune responses were monitored from a total of 331 individual flounder of a body length of 18 to 25 cm. From the fish, plasma lysozyme, phagocytosis and respiratory burst activity of head kidney leucocytes were analysed and implemented as part of an integrated biological effects monitoring programme. As the measurements of the parameters applied here varied within wide ranges at some locations, spatial differences could not always be established, but some general trends could be drawn: plasma lysozyme activity was decreased in flounder contaminated with DDT adducts and some PCBs, while cellular functions such as phagocytosis and respiratory burst were stimulated by some chlorinated hydrocarbons. Correlation analysis also revealed connections not only between the parameters applied here and some contaminants but also with some biochemical parameters used as biomarkers in pollution monitoring: in flounder with decreased integrity of hepatocyte lysosomal membranes, immune functions also were impaired, and plasma lysozyme as well as phagocytosis activity of head kidney cells were impaired when the activity of cytochrome P450 1A was induced. The data presented here indicate that innate immune responses may be useful parameters to monitor cellular functions in a battery of biomarkers of different levels of biological organisation.

  9. Biological effects of pulsating magnetic fields: role of solitons

    Brizhik, Larissa

    2014-01-01

    In this paper, we analyze biological effects produced by magnetic fields in order to elucidate the physical mechanisms, which can produce them. We show that there is a chierarchy of such mechanisms and that the mutual interplay between them can result in the synergetic outcome. In particular, we analyze the biological effects of magnetic fields on soliton mediated charge transport in the redox processes in living organisms. Such solitons are described by nonlinear systems of equations and represent electrons that are self-trapped in alpha-helical polypeptides due to the moderately strong electron-lattice interaction. They represent a particular type of disssipativeless large polarons in low-dimensional systems. We show that the effective mass of solitons in the is different from the mass of free electrons, and that there is a resonant effect of the magnetic fields on the dynamics of solitons, and, hence, on charge transport that accompanies photosynthesis and respiration. These effects can result in non-therm...

  10. The Effects Of Physical And Biological Cohesion On Bedforms

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield