A flexible additive multiplicative hazard model
Martinussen, Torben; Scheike, Thomas H.
2002-01-01
Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect......Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect...
Coordinate descent methods for the penalized semiprarametric additive hazard model
Gorst-Rasmussen, Anders; Scheike, Thomas
2012-01-01
. The semiparametric additive hazards model is a flexible alternative which is a natural survival analogue of the standard linear regression model. Building on this analogy, we develop a cyclic coordinate descent algorithm for fitting the lasso and elastic net penalized additive hazards model. The...
Additive Hazard Regression Models: An Application to the Natural History of Human Papillomavirus
Xianhong Xie; STRICKLER, Howard D.; Xiaonan Xue
2013-01-01
There are several statistical methods for time-to-event analysis, among which is the Cox proportional hazards model that is most commonly used. However, when the absolute change in risk, instead of the risk ratio, is of primary interest or when the proportional hazard assumption for the Cox proportional hazards model is violated, an additive hazard regression model may be more appropriate. In this paper, we give an overview of this approach and then apply a semiparametric as well as a nonpara...
Coordinate descent methods for the penalized semiparametric additive hazards model
Gorst-Rasmussen, Anders; Scheike, Thomas
For survival data with a large number of explanatory variables, lasso penalized Cox regression is a popular regularization strategy. However, a penalized Cox model may not always provide the best fit to data and can be difficult to estimate in high dimension because of its intrinsic nonlinearity....... algorithm requires no nonlinear optimization steps and offers excellent performance and stability. An implementation is available in the R-package ahaz and we demonstrate this package in a small timing study and in an application to real data....
Additive Hazard Regression Models: An Application to the Natural History of Human Papillomavirus
Xianhong Xie
2013-01-01
Full Text Available There are several statistical methods for time-to-event analysis, among which is the Cox proportional hazards model that is most commonly used. However, when the absolute change in risk, instead of the risk ratio, is of primary interest or when the proportional hazard assumption for the Cox proportional hazards model is violated, an additive hazard regression model may be more appropriate. In this paper, we give an overview of this approach and then apply a semiparametric as well as a nonparametric additive model to a data set from a study of the natural history of human papillomavirus (HPV in HIV-positive and HIV-negative women. The results from the semiparametric model indicated on average an additional 14 oncogenic HPV infections per 100 woman-years related to CD4 count < 200 relative to HIV-negative women, and those from the nonparametric additive model showed an additional 40 oncogenic HPV infections per 100 women over 5 years of followup, while the estimated hazard ratio in the Cox model was 3.82. Although the Cox model can provide a better understanding of the exposure disease association, the additive model is often more useful for public health planning and intervention.
Huan-bin Liu; Liu-quan Sun; Li-xing Zhu
2005-01-01
Many survival studies record the times to two or more distinct failures on each subject. The failures may be events of different natures or may be repetitions of the same kind of event. In this article, we consider the regression analysis of such multivariate failure time data under the additive hazards model. Simple weighted estimating functions for the regression parameters are proposed, and asymptotic distribution theory of the resulting estimators are derived. In addition, a class of generalized Wald and generalized score statistics for hypothesis testing and model selection are presented, and the asymptotic properties of these statistics are examined.
Estimation of direct effects for survival data by using the Aalen additive hazards model
Martinussen, T.; Vansteelandt, S.; Gerster, M.;
2011-01-01
We extend the definition of the controlled direct effect of a point exposure on a survival outcome, other than through some given, time-fixed intermediate variable, to the additive hazard scale. We propose two-stage estimators for this effect when the exposure is dichotomous and randomly assigned...
Ravikumar, Pradeep; Lafferty, John; Liu, Han; Wasserman, Larry
2007-01-01
We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use...
Additive Hazards Regression with Random Eff ects for Clustered Failure Times
Deng PAN; Yan Yan LIU; Yuan Shan WU
2015-01-01
Additive hazards model with random eff ects is proposed for modelling the correlated failure time data when focus is on comparing the failure times within clusters and on estimating the correlation between failure times from the same cluster, as well as the marginal regression parameters. Our model features that, when marginalized over the random eff ect variable, it still enjoys the structure of the additive hazards model. We develop the estimating equations for inferring the regression parameters. The proposed estimators are shown to be consistent and asymptotically normal under appropriate regularity conditions. Furthermore, the estimator of the baseline hazards function is proposed and its asymptotic properties are also established. We propose a class of diagnostic methods to assess the overall fitting adequacy of the additive hazards model with random eff ects. We conduct simulation studies to evaluate the finite sample behaviors of the proposed estimators in various scenarios. Analysis of the Diabetic Retinopathy Study is provided as an illustration for the proposed method.
Since the end of the cold war a series of events has changed the circumstances and requirements of the safeguards system. The discovery of a clandestine nuclear weapons program in Iraq, the continuing difficulty in verifying the initial report of Democratic People's Republic of Korea upon entry into force of their safeguards agreement, and the decision of the South African Government to give up its nuclear weapons program and join the Treaty on the Non-Proliferation of Nuclear Weapons have all played a role in an ambitious effort by IAEA Member States and the Secretariat to strengthen the safeguards system. A major milestone in this effort was reached in May 1997 when the IAEA Board of Governors approved a Model Protocol Additional to Safeguards Agreements. The Model Additional Protocol was negotiated over a period of less than a year by an open-ended committee of the Board involving some 70 Member States and two regional inspectorates. The IAEA is now in the process of negotiating additional protocols, State by State, and implementing them. These additional protocols will provide the IAEA with rights of access to information about all activities related to the use of nuclear material in States with comprehensive safeguards agreements and greatly expanded physical access for IAEA inspectors to confirm or verify this information. In conjunction with this, the IAEA is working on the integration of these measures with those provided for in comprehensive safeguards agreements, with a view to maximizing the effectiveness and efficiency, within available resources, the implementation of safeguards. Details concerning the Model Additional Protocol are given. (author)
Computer Model Locates Environmental Hazards
2008-01-01
Catherine Huybrechts Burton founded San Francisco-based Endpoint Environmental (2E) LLC in 2005 while she was a student intern and project manager at Ames Research Center with NASA's DEVELOP program. The 2E team created the Tire Identification from Reflectance model, which algorithmically processes satellite images using turnkey technology to retain only the darkest parts of an image. This model allows 2E to locate piles of rubber tires, which often are stockpiled illegally and cause hazardous environmental conditions and fires.
Comparative Distributions of Hazard Modeling Analysis
Rana Abdul Wajid
2006-07-01
Full Text Available In this paper we present the comparison among the distributions used in hazard analysis. Simulation technique has been used to study the behavior of hazard distribution modules. The fundamentals of Hazard issues are discussed using failure criteria. We present the flexibility of the hazard modeling distribution that approaches to different distributions.
Satellite image collection modeling for large area hazard emergency response
Liu, Shufan; Hodgson, Michael E.
2016-08-01
Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.
Modeling and Hazard Analysis Using STPA
Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka
2010-09-01
A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis
Validation of a heteroscedastic hazards regression model.
Wu, Hong-Dar Isaac; Hsieh, Fushing; Chen, Chen-Hsin
2002-03-01
A Cox-type regression model accommodating heteroscedasticity, with a power factor of the baseline cumulative hazard, is investigated for analyzing data with crossing hazards behavior. Since the approach of partial likelihood cannot eliminate the baseline hazard, an overidentified estimating equation (OEE) approach is introduced in the estimation procedure. It by-product, a model checking statistic, is presented to test for the overall adequacy of the heteroscedastic model. Further, under the heteroscedastic model setting, we propose two statistics to test the proportional hazards assumption. Implementation of this model is illustrated in a data analysis of a cancer clinical trial. PMID:11878222
POTENTIAL HAZARDS DUE TO FOOD ADDITIVES IN ORAL HYGIENE PRODUCTS
Damla TUNCER-BUDANUR; Murat Cengizhan YAŞ; SEPET, Elif
2016-01-01
Food additives used to preserve flavor or to enhance the taste and appearance of foods are also available in oral hygiene products. The aim of this review is to provide information concerning food additives in oral hygiene products and their adverse effects. A great many of food additives in oral hygiene products are potential allergens and they may lead to allergic reactions such as urticaria, contact dermatitis, rhinitis, and angioedema. Dental practitioners, as w...
POTENTIAL HAZARDS DUE TO FOOD ADDITIVES IN ORAL HYGIENE PRODUCTS
Damla TUNCER-BUDANUR
2016-04-01
Full Text Available Food additives used to preserve flavor or to enhance the taste and appearance of foods are also available in oral hygiene products. The aim of this review is to provide information concerning food additives in oral hygiene products and their adverse effects. A great many of food additives in oral hygiene products are potential allergens and they may lead to allergic reactions such as urticaria, contact dermatitis, rhinitis, and angioedema. Dental practitioners, as well as health care providers, must be aware of the possibility of allergic reactions due to food additives in oral hygiene products. Proper dosage levels, delivery vehicles, frequency, potential benefits, and adverse effects of oral health products should be explained completely to the patients. There is a necessity to raise the awareness among dental professionals on this subject and to develop a data gathering system for possible adverse reactions.
Accelerated Hazards Mixture Cure Model
Zhang, Jiajia; Peng, Yingwei
2009-01-01
We propose a new cure model for survival data with a surviving or cure fraction. The new model is a mixture cure model where the covariate effects on the proportion of cure and the distribution of the failure time of uncured patients are separately modeled. Unlike the existing mixture cure models, the new model allows covariate effects on the failure time distribution of uncured patients to be negligible at time zero and to increase as time goes by. Such a model is particularly useful in some...
Hazard Warning: model misuse ahead
Dickey-Collas, M.; Payne, Mark; Trenkel, V.;
2014-01-01
The use of modelling approaches in marine science, and in particular fisheries science, is explored. We highlight that the choice of model used for an analysis should account for the question being posed or the context of the management problem. We examine a model-classification scheme based on R...
A conflict model for the international hazardous waste disposal dispute
A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.
Spatial extended hazard model with application to prostate cancer survival.
Li, Li; Hanson, Timothy; Zhang, Jiajia
2015-06-01
This article develops a Bayesian semiparametric approach to the extended hazard model, with generalization to high-dimensional spatially grouped data. County-level spatial correlation is accommodated marginally through the normal transformation model of Li and Lin (2006, Journal of the American Statistical Association 101, 591-603), using a correlation structure implied by an intrinsic conditionally autoregressive prior. Efficient Markov chain Monte Carlo algorithms are developed, especially applicable to fitting very large, highly censored areal survival data sets. Per-variable tests for proportional hazards, accelerated failure time, and accelerated hazards are efficiently carried out with and without spatial correlation through Bayes factors. The resulting reduced, interpretable spatial models can fit significantly better than a standard additive Cox model with spatial frailties. PMID:25521422
Business models for additive manufacturing
Hadar, Ronen; Bilberg, Arne; Bogers, Marcel
2015-01-01
Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic of c...... effectively takes over the productive activities of the manufacturer. We discuss some of the main implications for research and practice of consumer-centric business models and the changing decoupling point in consumer goods’ manufacturing supply chains....... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...
On multiple agent models of moral hazard
Andrea Attar; Eloisa Campioni; Gwena�l Piaser; Uday Rajan
2006-01-01
In multiple principal, multiple agent models of moral hazard, we provide conditions under which the outcomes of equilibria in direct mechanisms are preserved when principals can offer indirect communication schemes. We discuss the role of random allocations and recommendations and relate the result to the existing literature.
Hazard identification based on plant functional modelling
A major objective of the present work is to provide means for representing a process plant as a socio-technical system, so as to allow hazard identification at a high level. The method includes technical, human and organisational aspects and is intended to be used for plant level hazard identification so as to identify critical areas and the need for further analysis using existing methods. The first part of the method is the preparation of a plant functional model where a set of plant functions link together hardware, software, operations, work organisation and other safety related aspects of the plant. The basic principle of the functional modelling is that any aspect of the plant can be represented by an object (in the sense that this term is used in computer science) based upon an Intent (or goal); associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. The Methods and Constraints can themselves be treated as objects and decomposed into lower-level Intents (hence the procedure is known as functional decomposition) so giving rise to a hierarchical, object-oriented structure. The plant level hazard identification is carried out on the plant functional model using the Concept Hazard Analysis method. In this, the user will be supported by checklists and keywords and the analysis is structured by pre-defined worksheets. The preparation of the plant functional model and the performance of the hazard identification can be carried out manually or with computer support. (au) (4 tabs., 10 ills., 7 refs.)
Thomas, Brian C; Goracke, Byron D
2016-01-01
Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events. PMID:26745353
Thomas, Brian C
2015-01-01
Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to-date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling we have examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and find that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supe...
Application of a hazard-based visual predictive check to evaluate parametric hazard models.
Huh, Yeamin; Hutmacher, Matthew M
2016-02-01
Parametric models used in time to event analyses are evaluated typically by survival-based visual predictive checks (VPC). Kaplan-Meier survival curves for the observed data are compared with those estimated using model-simulated data. Because the derivative of the log of the survival curve is related to the hazard--the typical quantity modeled in parametric analysis--isolation, interpretation and correction of deficiencies in the hazard model determined by inspection of survival-based VPC's is indirect and thus more difficult. The purpose of this study is to assess the performance of nonparametric hazard estimators of hazard functions to evaluate their viability as VPC diagnostics. Histogram-based and kernel-smoothing estimators were evaluated in terms of bias of estimating the hazard for Weibull and bathtub-shape hazard scenarios. After the evaluation of bias, these nonparametric estimators were assessed as a method for VPC evaluation of the hazard model. The results showed that nonparametric hazard estimators performed reasonably at the sample sizes studied with greater bias near the boundaries (time equal to 0 and last observation) as expected. Flexible bandwidth and boundary correction methods reduced these biases. All the nonparametric estimators indicated a misfit of the Weibull model when the true hazard was a bathtub shape. Overall, hazard-based VPC plots enabled more direct interpretation of the VPC results compared to survival-based VPC plots. PMID:26563504
Integrated Modeling for Flood Hazard Mapping Using Watershed Modeling System
Seyedeh S. Sadrolashrafi
2008-01-01
Full Text Available In this stduy, a new framework which integrates the Geographic Information System (GIS with the Watershed Modeling System (WMS for flood modeling is developed. It also interconnects the terrain models and the GIS software, with commercial standard hydrological and hydraulic models, including HEC-1, HEC-RAS, etc. The Dez River Basin (about 16213 km2 in Khuzestan province, IRAN, is domain of study because of occuring frequent severe flash flooding. As a case of study, a major flood in autumn of 2001 is chosen to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-1 that converts excess precipitation to overland flow and channel runoff and a hydraulic model (HEC-RAS that simulates steady state flow through the river channel network based on the HEC-1, peak hydrographs. In addition, it delineates the maps of potential flood zonation for the Dez River Basin. These are achieved based on the state of the art GIS with using WMS software. Watershed parameters are calibrated manually to perform a good simulation of discharge at three sub-basins. With the calibrated discharge, WMS is capable of producing flood hazard map. The modeling framework presented in this study demonstrates the accuracy and usefulness of the WMS software for flash flooding control. The results of this research will benefit future modeling efforts by providing validate hydrological software to forecast flooding on a regional scale. This model designed for the Dez River Basin, while this regional scale model may be used as a prototype for model applications in other areas.
Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification
Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150 degrees C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150 degrees C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150 degrees C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs
Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification
Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.
1993-07-01
Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150{degrees}C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150{degrees}C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150{degrees}C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs.
Lahar Hazard Modeling at Tungurahua Volcano, Ecuador
Sorensen, O. E.; Rose, W. I.; Jaya, D.
2003-04-01
lahar-hazard-zones using a digital elevation model (DEM), was used to construct a hazard map for the volcano. The 10 meter resolution DEM was constructed for Tungurahua Volcano using scanned topographic lines obtained from the GIS Department at the Escuela Politécnica Nacional, Quito, Ecuador. The steep topographic gradients and rapid downcutting of most rivers draining the edifice prevents the deposition of lahars on the lower flanks of Tungurahua. Modeling confirms the high degree of flow channelization in the deep Tungurahua canyons. Inundation zones observed and shown by LAHARZ at Baños yield identification of safe zones within the city which would provide safety from even the largest magnitude lahar expected.
Incident duration modeling using flexible parametric hazard-based models.
Li, Ruimin; Shang, Pan
2014-01-01
Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time. PMID:25530753
Incident Duration Modeling Using Flexible Parametric Hazard-Based Models
Ruimin Li
2014-01-01
Full Text Available Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time.
Incorporation of all hazard categories into U.S. NRC PRA models
Over the last two decades, the U.S. Nuclear Regulatory Commission (NRC) has maintained independent probabilistic risk assessment (PRA) models to calculate nuclear power plant (NPP) core damage frequency (CDF) from internal events at power. These models are known as Standardized Plan Analysis Risk (SPAR) models. There are 79 such models representing 104 domestic nuclear plants; with some SPAR models representing more than one unit on the site. These models allow the NRC risk analysts to perform independent quantitative risk estimates of operational events and degraded plant conditions. It is well recognized that using only the internal events contribution to overall plant risk estimates provides a useful, but limited, assessment of the complete plant risk profile. Inclusion, of all hazard categories applicable to a plant in the plant PRA model would provide a more comprehensive assessment of a plant risk. However, implementation of a more comprehensive treatment of additional hazard categories (e.g., fire, flooding, high winds, seismic) presents a number of challenges, including technical considerations. The U.S. NRC has been incorporating additional hazard categories into its set of nuclear power plant PRA models since 2004. Currently, 18 SPAR models include additional hazard categories such as internal flooding, internal fire, seismic, and wind events. In most cases, these external hazard models were derived from Generic Letter 88-20 Individual Plant Examination of External Events (IPEEE) reports. Recently, NRC started incorporating detailed Fire PRA (FPRA) information based on the current licensing effort that allows licensees to transition into a risk-informed fire protection framework, as well as additional external hazards developed by some licensees into enhanced SPAR models. These updated external hazards SPAR models are referred to as SPAR All-Hazard (SPAR-AHZ) models (i.e., they incorporate additional risk contributors beyond internal events). This paper
Nonparametric and semiparametric dynamic additive regression models
Scheike, Thomas Harder; Martinussen, Torben
Dynamic additive regression models provide a flexible class of models for analysis of longitudinal data. The approach suggested in this work is suited for measurements obtained at random time points and aims at estimating time-varying effects. Both fully nonparametric and semiparametric models can...
a model based on crowsourcing for detecting natural hazards
Duan, J.; Ma, C.; Zhang, J.; Liu, S.; Liu, J.
2015-12-01
Remote Sensing Technology provides a new method for the detecting,early warning,mitigation and relief of natural hazards. Given the suddenness and the unpredictability of the location of natural hazards as well as the actual demands for hazards work, this article proposes an evaluation model for remote sensing detecting of natural hazards based on crowdsourcing. Firstly, using crowdsourcing model and with the help of the Internet and the power of hundreds of millions of Internet users, this evaluation model provides visual interpretation of high-resolution remote sensing images of hazards area and collects massive valuable disaster data; secondly, this evaluation model adopts the strategy of dynamic voting consistency to evaluate the disaster data provided by the crowdsourcing workers; thirdly, this evaluation model pre-estimates the disaster severity with the disaster pre-evaluation model based on regional buffers; lastly, the evaluation model actuates the corresponding expert system work according to the forecast results. The idea of this model breaks the boundaries between geographic information professionals and the public, makes the public participation and the citizen science eventually be realized, and improves the accuracy and timeliness of hazards assessment results.
A Moral Hazard Model of Parental Care
Baomin Dong; Tianpeng Zhou
2013-01-01
One perplexing observation is that although men and women have different comparative advantages, cooperation is often only seen during child-bearing and rearing periods. One interpretation is that the juvenile offspring serves as an indivisible public goods to facilitate cooperation between opposite sexes of adults. We show that moral hazard in maternal parental care will either force the father to pay the mother a rent in order to induce optimal care (when the child is of intrinsic high qual...
2015 USGS Seismic Hazard Model for Induced Seismicity
Petersen, M. D.; Mueller, C. S.; Moschetti, M. P.; Hoover, S. M.; Ellsworth, W. L.; Llenos, A. L.; Michael, A. J.
2015-12-01
Over the past several years, the seismicity rate has increased markedly in multiple areas of the central U.S. Studies have tied the majority of this increased activity to wastewater injection in deep wells and hydrocarbon production. These earthquakes are induced by human activities that change rapidly based on economic and policy decisions, making them difficult to forecast. Our 2014 USGS National Seismic Hazard Model and previous models are intended to provide the long-term hazard (2% probability of exceedance in 50 years) and are based on seismicity rates and patterns observed mostly from tectonic earthquakes. However, potentially induced earthquakes were identified in 14 regions that were not included in the earthquake catalog used for constructing the 2014 model. We recognized the importance of considering these induced earthquakes in a separate hazard analysis, and as a result in April 2015 we released preliminary models that explored the impact of this induced seismicity on the hazard. Several factors are important in determining the hazard from induced seismicity: period of the catalog that optimally forecasts the next year's activity, earthquake magnitude-rate distribution, earthquake location statistics, maximum magnitude, ground motion models, and industrial drivers such as injection rates. The industrial drivers are not currently available in a form that we can implement in a 1-year model. Hazard model inputs have been evaluated by a broad group of scientists and engineers to assess the range of acceptable models. Results indicate that next year's hazard is significantly higher by more than a factor of three in Oklahoma, Texas, and Colorado compared to the long-term 2014 hazard model. These results have raised concern about the impacts of induced earthquakes on the built environment and have led to many engineering and policy discussions about how to mitigate these effects for the more than 7 million people that live near areas of induced seismicity.
Flood hazard maps from SAR data and global hydrodynamic models
Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe
2015-04-01
With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single
Optimal design for additive partially nonlinear models
Biedermann, Stefanie; Dette, Holger; Woods, David C.
2010-01-01
We develop optimal design theory for additive partially nonlinear regression models, and show that D-optimal designs can be found as the products of the corresponding D-optimal designs in one dimension. For partially nonlinear models, D-optimal designs depend on the unknown nonlinear model parameters, and misspecifications of these parameters can lead to poor designs. Hence we generalise our results to parameter robust optimality criteria, namely Bayesian and standardised maximin D-optimality...
Modeling seismic hazard in the Lower Rhine Graben using a fault-based source model
Vanneste, Kris; Vleminckx, Bart; Verbeeck, Koen; Camelbeeck, Thierry
2013-04-01
Earthquake Model (GEM). Compared to other commonly-used, non-commercial hazard engines, OpenQuake offers better support for fault sources with simple or complex geometries. We compute hazard maps for return periods of 475, 2375, and 10,000 yr, and compare the results with hazard maps based on area sources. In addition, we conduct sensitivity tests to determine the impact of various parameter choices, e.g. maximum magnitude, inclusion of a background zone to account for lower magnitudes, and GMPE distance metric.
Optimal design for additive partially nonlinear models
Biedermann, S.; Dette, H.; Woods, D.C.
2011-01-01
We develop optimal design theory for additive partially nonlinear regression models, showing that Bayesian and standardized maximin D-optimal designs can be found as the products of the corresponding optimal designs in one dimension. A sufficient condition under which analogous results hold for Ds-optimality is derived to accommodate situations in which only a subset of the model parameters is of interest. To facilitate prediction of the response at unobserved locations, we prove similar resu...
Automated economic analysis model for hazardous waste minimization
The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States
RELIABILITY AND HAZARD RATE ESTIMATION OF A LIFE TESTING MODEL
Vinod Kumar
2010-01-01
Full Text Available The present paper deals with the reliability and hazard rate estimation of a Weibulltype life testing model. Its use as a life testing model has also been illustrated. The proposedmodel has been found better then exponential for several sets of lifetime data. Somecharacteristics of the model have also been investigated.
A high-resolution global flood hazard model
Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.
2015-09-01
Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.
Generalized Additive Models for Nowcasting Cloud Shading
Brabec, Marek; Paulescu, M.; Badescu, V.
2014-01-01
Roč. 101, March (2014), s. 272-282. ISSN 0038-092X R&D Projects: GA MŠk LD12009 Grant ostatní: European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : sunshine number * nowcasting * generalized additive model * Markov chain Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014
A generalized additive regression model for survival times
Scheike, Thomas H.
2001-01-01
Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...
Regional landslide hazard assessment based on Distance Evaluation Model
Jiacun LI; Yan QIN; Jing LI
2008-01-01
There are many factors influencing landslide occurrence. The key for landslide control is to confirm the regional landslide hazard factors. The Cameron Highlands of Malaysia was selected as the study area. By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology, geomorphy, elevation, road and land use. Distance Evaluation Model was developed with Landslide Density(LD). And the assessment of landslide hazard of Cameron Highlands was performed. The result shows that the model has higher prediction precision.
Analysis of time to event outcomes in randomized controlled trials by generalized additive models.
Christos Argyropoulos
Full Text Available Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a Cox proportional hazard model as a treatment efficacy measure. Despite the widespread adoption of HRs, these provide a limited understanding of the treatment effect and may even provide a biased estimate when the assumption of proportional hazards in the Cox model is not verified by the trial data. Additional treatment effect measures on the survival probability or the time scale may be used to supplement HRs but a framework for the simultaneous generation of these measures is lacking.By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, techniques for Poisson Generalized Additive Models (PGAM can be adopted for flexible hazard modeling. Straightforward simulation post-estimation transforms PGAM estimates for the log hazard into estimates of the survival function. These in turn were used to calculate relative and absolute risks or even differences in restricted mean survival time between treatment arms. We illustrate our approach with extensive simulations and in two trials: IPASS (in which the proportionality of hazards was violated and HEMO a long duration study conducted under evolving standards of care on a heterogeneous patient population.PGAM can generate estimates of the survival function and the hazard ratio that are essentially identical to those obtained by Kaplan Meier curve analysis and the Cox model. PGAMs can simultaneously provide multiple measures of treatment efficacy after a single data pass. Furthermore, supported unadjusted (overall treatment effect but also subgroup and adjusted analyses, while incorporating multiple time scales and accounting for non-proportional hazards in survival data.By augmenting the HR conventionally reported, PGAMs have the potential to support the inferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical trial results under proportional and
Agent-based Modeling with MATSim for Hazards Evacuation Planning
Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.
2015-12-01
Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.
Generalized Additive Models in Business and Economics
Sunil K Sapra
2013-06-01
Full Text Available The paper presents applications of a class of semi-parametric models called generalized additive models (GAMs to several business and economic datasets. Applications include analysis of wage-education relationship, brand choice, and number of trips to a doctor’s office. The dependent variable may be continuous, categorical or count. These semi-parametric models are flexible and robust extensions of Logit, Poisson, Negative Binomial and other generalized linear models. The GAMs are represented using penalized regression splines and are estimated by penalized regression methods. The degree of smoothness for the unknown functions in the linear predictor part of the GAM is estimated using cross validation. The GAMs allow us to build a regression surface as a sum of lower-dimensional nonparametric terms circumventing the curse of dimensionality: the slow convergence of an estimator to the true value in high dimensions. For each application studied in the paper, several GAMs are compared and the best model is selected using AIC, UBRE score, deviances, and R-sq (adjusted. The econometric techniques utilized in the paper are widely applicable to the analysis of count, binary response and duration types of data encountered in business and economics.
Liu, Y.; Guo, H. C.; Zou, R.; Wang, L. J.
2006-04-01
This paper presents a neural network (NN) based model to assess the regional hazard degree of debris flows in Lake Qionghai Watershed, China. The NN model was used as an alternative for the more conventional linear model MFCAM (multi-factor composite assessment model) in order to effectively handle the nonlinearity and uncertainty inherent in the debris flow hazard analysis. The NN model was configured using a three layer structure with eight input nodes and one output node, and the number of nodes in the hidden layer was determined through an iterative process of varying the number of nodes in the hidden layer until an optimal performance was achieved. The eight variables used to represent the eight input nodes include density of debris flow gully, degree of weathering of rocks, active fault density, area percentage of slope land greater than 25° of the total land (APL25), frequency of flooding hazards, average covariance of monthly precipitation by 10 years (ACMP10), average days with rainfall >25 mm by 10 years (25D10Y), and percentage of cultivated land with slope land greater than 25° of the total cultivated land (PCL25). The output node represents the hazard-degree ranks (HDR). The model was trained with the 35 sets of data obtained from previous researches reported in literatures, and an explicit uncertainty analysis was undertaken to address the uncertainty in model training and prediction. Before the NN model is extrapolated to Lake Qionghai Watershed, a validation case, different from the above data, is conducted. In addition, the performances of the NN model and the MFCAM were compared. The NN model predicted that the HDRs of the five sub-watersheds in the Lake Qionghai Watershed were IV, IV, III, III, and IV V, indicating that the study area covers normal hazard and severe hazard areas. Based on the NN model results, debris flow management and economic development strategies in the study are proposed for each sub-watershed.
Probabilistic modelling of rainfall induced landslide hazard assessment
Kawagoe, S.; Kazama, S.; P. R. Sarukkalige
2010-01-01
To evaluate the frequency and distribution of landslides hazards over Japan, this study uses a probabilistic model based on multiple logistic regression analysis. Study particular concerns several important physical parameters such as hydraulic parameters, geographical parameters and the geological parameters which are considered to be influential in the occurrence of landslides. Sensitivity analysis confirmed that hydrological parameter (hydraulic gradient) is the most influential facto...
Toward Building a New Seismic Hazard Model for Mainland China
Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.
2015-12-01
At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.
Computational Process Modeling for Additive Manufacturing (OSU)
Bagg, Stacey; Zhang, Wei
2015-01-01
Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.
Session Clustering Using Mixtures of Proportional Hazards Models
Mair, Patrick; Hudec, Marcus
2008-01-01
Emanating from classical Weibull mixture models we propose a framework for clustering survival data with various proportionality restrictions imposed. By introducing mixtures of Weibull proportional hazards models on a multivariate data set a parametric cluster approach based on the EM-algorithm is carried out. The problem of non-response in the data is considered. The application example is a real life data set stemming from the analysis of a world-wide operating eCommerce application. Sessi...
Probabilistic modelling of rainfall induced landslide hazard assessment
S. Kawagoe
2010-01-01
Full Text Available To evaluate the frequency and distribution of landslides hazards over Japan, this study uses a probabilistic model based on multiple logistic regression analysis. Study particular concerns several important physical parameters such as hydraulic parameters, geographical parameters and the geological parameters which are considered to be influential in the occurrence of landslides. Sensitivity analysis confirmed that hydrological parameter (hydraulic gradient is the most influential factor in the occurrence of landslides. Therefore, the hydraulic gradient is used as the main hydraulic parameter; dynamic factor which includes the effect of heavy rainfall and their return period. Using the constructed spatial data-sets, a multiple logistic regression model is applied and landslide susceptibility maps are produced showing the spatial-temporal distribution of landslide hazard susceptibility over Japan. To represent the susceptibility in different temporal scales, extreme precipitation in 5 years, 30 years, and 100 years return periods are used for the evaluation. The results show that the highest landslide hazard susceptibility exists in the mountain ranges on the western side of Japan (Japan Sea side, including the Hida and Kiso, Iide and the Asahi mountainous range, the south side of Chugoku mountainous range, the south side of Kyusu mountainous and the Dewa mountainous range and the Hokuriku region. The developed landslide hazard susceptibility maps in this study will assist authorities, policy makers and decision makers, who are responsible for infrastructural planning and development, as they can identify landslide-susceptible areas and thus decrease landslide damage through proper preparation.
Rockfall hazard analysis using LiDAR and spatial modeling
Lan, Hengxing; Martin, C. Derek; Zhou, Chenghu; Lim, Chang Ho
2010-05-01
Rockfalls have been significant geohazards along the Canadian Class 1 Railways (CN Rail and CP Rail) since their construction in the late 1800s. These rockfalls cause damage to infrastructure, interruption of business, and environmental impacts, and their occurrence varies both spatially and temporally. The proactive management of these rockfall hazards requires enabling technologies. This paper discusses a hazard assessment strategy for rockfalls along a section of a Canadian railway using LiDAR and spatial modeling. LiDAR provides accurate topographical information of the source area of rockfalls and along their paths. Spatial modeling was conducted using Rockfall Analyst, a three dimensional extension to GIS, to determine the characteristics of the rockfalls in terms of travel distance, velocity and energy. Historical rockfall records were used to calibrate the physical characteristics of the rockfall processes. The results based on a high-resolution digital elevation model from a LiDAR dataset were compared with those based on a coarse digital elevation model. A comprehensive methodology for rockfall hazard assessment is proposed which takes into account the characteristics of source areas, the physical processes of rockfalls and the spatial attribution of their frequency and energy.
Estimation of the 2-sample hazard ratio function using a semiparametric model
Yang, Song; Prentice, Ross L.
2010-01-01
The hazard ratio provides a natural target for assessing a treatment effect with survival data, with the Cox proportional hazards model providing a widely used special case. In general, the hazard ratio is a function of time and provides a visual display of the temporal pattern of the treatment effect. A variety of nonproportional hazards models have been proposed in the literature. However, available methods for flexibly estimating a possibly time-dependent hazard ratio are limited. Here, we...
Random weighting method for Cox’s proportional hazards model
2008-01-01
Variance of parameter estimate in Cox’s proportional hazards model is based on asymptotic variance. When sample size is small, variance can be estimated by bootstrap method. However, if censoring rate in a survival data set is high, bootstrap method may fail to work properly. This is because bootstrap samples may be even more heavily censored due to repeated sampling of the censored observations. This paper proposes a random weighting method for variance estimation and confidence interval estimation for proportional hazards model. This method, unlike the bootstrap method, does not lead to more severe censoring than the original sample does. Its large sample properties are studied and the consistency and asymptotic normality are proved under mild conditions. Simulation studies show that the random weighting method is not as sensitive to heavy censoring as bootstrap method is and can produce good variance estimates or confidence intervals.
Random weighting method for Cox's proportional hazards model
CUI WenQuan; LI Kai; YANG YaNing; WU YueHua
2008-01-01
Variance of parameter estimate in Cox's proportional hazards model is based on asymptotic variance.When sample size is small,variance can be estimated by bootstrap method.However,if censoring rate in a survival data set is high,bootstrap method may fail to work properly.This is because bootstrap samples may be even more heavily censored due to repeated sampling of the censored observations.This paper proposes a random weighting method for variance estimation and confidence interval estimation for proportional hazards model.This method,unlike the bootstrap method,does not lead to more severe censoring than the original sample does.Its large sample properties are studied and the consistency and asymptotic normality are proved under mild conditions.Simulation studies show that the random weighting method is not as sensitive to heavy censoring as bootstrap method is and can produce good variance estimates or confidence intervals.
Defaultable Game Options in a Hazard Process Model
Tomasz R. Bielecki
2009-01-01
Full Text Available The valuation and hedging of defaultable game options is studied in a hazard process model of credit risk. A convenient pricing formula with respect to a reference filteration is derived. A connection of arbitrage prices with a suitable notion of hedging is obtained. The main result shows that the arbitrage prices are the minimal superhedging prices with sigma martingale cost under a risk neutral measure.
An Additive-Multiplicative Cox-Aalen Regression Model
Scheike, Thomas H.; Zhang, Mei-Jie
2002-01-01
Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...
Modelling public risk evaluation of natural hazards: a conceptual approach
Th. Plattner
2005-01-01
Full Text Available In recent years, the dealing with natural hazards in Switzerland has shifted away from being hazard-oriented towards a risk-based approach. Decreasing societal acceptance of risk, accompanied by increasing marginal costs of protective measures and decreasing financial resources cause an optimization problem. Therefore, the new focus lies on the mitigation of the hazard's risk in accordance with economical, ecological and social considerations. This modern proceeding requires an approach in which not only technological, engineering or scientific aspects of the definition of the hazard or the computation of the risk are considered, but also the public concerns about the acceptance of these risks. These aspects of a modern risk approach enable a comprehensive assessment of the (risk situation and, thus, sound risk management decisions. In Switzerland, however, the competent authorities suffer from a lack of decision criteria, as they don't know what risk level the public is willing to accept. Consequently, there exists a need for the authorities to know what the society thinks about risks. A formalized model that allows at least a crude simulation of the public risk evaluation could therefore be a useful tool to support effective and efficient risk mitigation measures. This paper presents a conceptual approach of such an evaluation model using perception affecting factors PAF, evaluation criteria EC and several factors without any immediate relation to the risk itself, but to the evaluating person. Finally, the decision about the acceptance Acc of a certain risk i is made by a comparison of the perceived risk Ri,perc with the acceptable risk Ri,acc.
Modelling public risk evaluation of natural hazards: a conceptual approach
Plattner, Th.
2005-04-01
In recent years, the dealing with natural hazards in Switzerland has shifted away from being hazard-oriented towards a risk-based approach. Decreasing societal acceptance of risk, accompanied by increasing marginal costs of protective measures and decreasing financial resources cause an optimization problem. Therefore, the new focus lies on the mitigation of the hazard's risk in accordance with economical, ecological and social considerations. This modern proceeding requires an approach in which not only technological, engineering or scientific aspects of the definition of the hazard or the computation of the risk are considered, but also the public concerns about the acceptance of these risks. These aspects of a modern risk approach enable a comprehensive assessment of the (risk) situation and, thus, sound risk management decisions. In Switzerland, however, the competent authorities suffer from a lack of decision criteria, as they don't know what risk level the public is willing to accept. Consequently, there exists a need for the authorities to know what the society thinks about risks. A formalized model that allows at least a crude simulation of the public risk evaluation could therefore be a useful tool to support effective and efficient risk mitigation measures. This paper presents a conceptual approach of such an evaluation model using perception affecting factors PAF, evaluation criteria EC and several factors without any immediate relation to the risk itself, but to the evaluating person. Finally, the decision about the acceptance Acc of a certain risk i is made by a comparison of the perceived risk Ri,perc with the acceptable risk Ri,acc.
Development of hazard-compatible building fragility and vulnerability models
Karaca, E.; Luco, N.
2008-01-01
We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.
Model averaging for semiparametric additive partial linear models
无
2010-01-01
To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations.
A DNA based model for addition computation
GAO Lin; YANG Xiao; LIU Wenbin; XU Jin
2004-01-01
Much effort has been made to solve computing problems by using DNA-an organic simulating method, which in some cases is preferable to the current electronic computer. However, No one at present has proposed an effective and applicable method to solve addition problem with molecular algorithm due to the difficulty in solving the carry problem which can be easily solved by hardware of an electronic computer. In this article, we solved this problem by employing two kinds of DNA strings, one is called result and operation string while the other is named carrier. The result and operation string contains some carry information by its own and denotes the ultimate result while the carrier is just for carrying use. The significance of this algorithm is the original code, the fairly easy steps to follow and the feasibility under current molecular biological technology.
On penalized likelihood estimation for a non-proportional hazards regression model
Devarajan, Karthik; Ebrahimi, Nader
2013-01-01
In this paper, a semi-parametric generalization of the Cox model that permits crossing hazard curves is described. A theoretical framework for estimation in this model is developed based on penalized likelihood methods. It is shown that the optimal solution to the baseline hazard, baseline cumulative hazard and their ratio are hyperbolic splines with knots at the distinct failure times.
A decision model for the risk management of hazardous processes
A decision model for risk management of hazardous processes as an optimisation problem of a point process is formulated in the study. In the approach, the decisions made by the management are divided into three categories: (1) planned process lifetime, (2) selection of the design and, (3) operational decisions. These three controlling methods play quite different roles in the practical risk management, which is also reflected in our approach. The optimisation of the process lifetime is related to the licensing problem of the process. It provides a boundary condition for a feasible utility function that is used as the actual objective function, i.e., maximizing the process lifetime utility. By design modifications, the management can affect the inherent accident hazard rate of the process. This is usually a discrete optimisation task. The study particularly concentrates upon the optimisation of the operational strategies given a certain design and licensing time. This is done by a dynamic risk model (marked point process model) representing the stochastic process of events observable or unobservable to the decision maker. An optimal long term control variable guiding the selection of operational alternatives in short term problems is studied. The optimisation problem is solved by the stochastic quasi-gradient procedure. The approach is illustrated by a case study. (23 refs.)
Uncertainties in modeling hazardous gas releases for emergency response
Baumann-Stanzer, Kathrin; Stenzel, Sirma [Zentralanstalt fuer Meteorologie und Geodynamik, Vienna (Austria)
2011-02-15
In case of an accidental release of toxic gases the emergency responders need fast information about the affected area and the maximum impact. Hazard distances calculated with the models MET, ALOHA, BREEZE, TRACE and SAMS for scenarios with chlorine, ammoniac and butane releases are compared in this study. The variations of the model results are measures for uncertainties in source estimation and dispersion calculation. Model runs for different wind speeds, atmospheric stability and roughness lengths indicate the model sensitivity to these input parameters. In-situ measurements at two urban near-traffic sites are compared to results of the Integrated Nowcasting through Comprehensive Analysis (INCA) in order to quantify uncertainties in the meteorological input. The hazard zone estimates from the models vary up to a factor of 4 due to different input requirements as well as due to different internal model assumptions. None of the models is found to be 'more conservative' than the others in all scenarios. INCA wind-speeds are correlated to in-situ observations at two urban sites in Vienna with a factor of 0.89. The standard deviations of the normal error distribution are 0.8 ms{sup -1} in wind speed, on the scale of 50 degrees in wind direction, up to 4 C in air temperature and up to 10 % in relative humidity. The observed air temperature and humidity are well reproduced by INCA with correlation coefficients of 0.96 to 0.99. INCA is therefore found to give a good representation of the local meteorological conditions. Besides of real-time data, the INCA-short range forecast for the following hours may support the action planning of the first responders. (orig.)
Modeling techniques for gaining additional urban space
Thunig, Holger; Naumann, Simone; Siegmund, Alexander
2009-09-01
One of the major accompaniments of the globalization is the rapid growing of urban areas. Urban sprawl is the main environmental problem affecting those cities across different characteristics and continents. Various reasons for the increase in urban sprawl in the last 10 to 30 years have been proposed [1], and often depend on the socio-economic situation of cities. The quantitative reduction and the sustainable handling of land should be performed by inner urban development instead of expanding urban regions. Following the principal "spare the urban fringe, develop the inner suburbs first" requires differentiated tools allowing for quantitative and qualitative appraisals of current building potentials. Using spatial high resolution remote sensing data within an object-based approach enables the detection of potential areas while GIS-data provides information for the quantitative valuation. This paper presents techniques for modeling urban environment and opportunities of utilization of the retrieved information for urban planners and their special needs.
Conveying Lava Flow Hazards Through Interactive Computer Models
Thomas, D.; Edwards, H. K.; Harnish, E. P.
2007-12-01
As part of an Information Sciences senior class project, a software package of an interactive version of the FLOWGO model was developed for the Island of Hawaii. The software is intended for use in an ongoing public outreach and hazards awareness program that educates the public about lava flow hazards on the island. The design parameters for the model allow an unsophisticated user to initiate a lava flow anywhere on the island and allow it to flow down-slope to the shoreline while displaying a timer to show the rate of advance of the flow. The user is also able to modify a range of input parameters including eruption rate, the temperature of the lava at the vent, and crystal fraction present in the lava at the source. The flow trajectories are computed using a 30 m digital elevation model for the island and the rate of advance of the flow is estimated using the average slope angle and the computed viscosity of the lava as it cools in either a channel (high heat loss) or lava tube (low heat loss). Even though the FLOWGO model is not intended to, and cannot, accurately predict the rate of advance of a tube- fed or channel-fed flow, the relative rates of flow advance for steep or flat-lying terrain convey critically important hazard information to the public: communities located on the steeply sloping western flanks of Mauna Loa may have no more than a few hours to evacuate in the face of a threatened flow from Mauna Loa's southwest rift whereas communities on the more gently sloping eastern flanks of Mauna Loa and Kilauea may have weeks to months to prepare for evacuation. Further, the model also can show the effects of loss of critical infrastructure with consequent impacts on access into and out of communities, loss of electrical supply, and communications as a result of lava flow implacement. The interactive model has been well received in an outreach setting and typically generates greater involvement by the participants than has been the case with static maps
Modeling of seismic hazards for dynamic reliability analysis
This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)
Hazard identification by extended multilevel flow modelling with function roles
Wu, Jing; Zhang, Laibin; Jørgensen, Sten Bay;
2014-01-01
HAZOP studies are widely accepted in chemical and petroleum industries as the method for conducting process hazard analysis related to design, maintenance and operation of th e systems. In this paper, a HAZOP reasoning method based on function-oriented modelling, multilevel flow modelling (MFM) is...... extended with functi on roles to complete HAZOP studies in principle. A graphical MFM editor, which is combined with the reasoning engine (MFM Workbench) developed by DTU is applied to automate HAZOP studies. The method is proposed to suppor t the ‘brain-storming’ sessions in traditional HAZOP analysis. As...... a case study, the extended MFM-based HAZOP methodology is applied to an o ffshore three-phase separation process. The results show that the cause-consequence analysis in MFM can infer the cause and effect of a deviation used in HAZOP and used to fill HAZOP worksheet. This paper is the first pa per...
Integrated Modeling for Flood Hazard Mapping Using Watershed Modeling System
Seyedeh S. Sadrolashrafi; Thamer A. Mohamed; Ahmad R.B. Mahmud; Majid K. Kholghi; Amir Samadi
2008-01-01
In this stduy, a new framework which integrates the Geographic Information System (GIS) with the Watershed Modeling System (WMS) for flood modeling is developed. It also interconnects the terrain models and the GIS software, with commercial standard hydrological and hydraulic models, including HEC-1, HEC-RAS, etc. The Dez River Basin (about 16213 km2) in Khuzestan province, IRAN, is domain of study because of occuring frequent severe flash flooding. As a case of study, a major flood in autumn...
Hazard based models for freeway traffic incident duration.
Tavassoli Hojati, Ahmad; Ferreira, Luis; Washington, Simon; Charles, Phil
2013-03-01
Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses. PMID:23333698
Modeling and mitigating natural hazards: Stationarity is immortal!
Montanari, Alberto; Koutsoyiannis, Demetris
2014-12-01
Environmental change is a reason of relevant concern as it is occurring at an unprecedented pace and might increase natural hazards. Moreover, it is deemed to imply a reduced representativity of past experience and data on extreme hydroclimatic events. The latter concern has been epitomized by the statement that "stationarity is dead." Setting up policies for mitigating natural hazards, including those triggered by floods and droughts, is an urgent priority in many countries, which implies practical activities of management, engineering design, and construction. These latter necessarily need to be properly informed, and therefore, the research question on the value of past data is extremely important. We herein argue that there are mechanisms in hydrological systems that are time invariant, which may need to be interpreted through data inference. In particular, hydrological predictions are based on assumptions which should include stationarity. In fact, any hydrological model, including deterministic and nonstationary approaches, is affected by uncertainty and therefore should include a random component that is stationary. Given that an unnecessary resort to nonstationarity may imply a reduction of predictive capabilities, a pragmatic approach, based on the exploitation of past experience and data is a necessary prerequisite for setting up mitigation policies for environmental risk.
Extenics Model for Evaluating Vulnerable Degree of Regional Sustaining Hazard Body
Fan Yunxiao; Luo Yun; Chen Qingshou
2004-01-01
The effect of hazard was determined by the dangerous degree of hazard factor-environment and the vulnerable degree of sustaining body. The research into the latter is of importance for the hazard theory and the formation of laws on the mitigation of natural hazards. The way to evaluate the vulnerable degree is the foundation of and the key to the research. In this paper, the extenics model is established to do this job.
A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem
Boyer, Omid; Sai Hong, Tang; Pedram, Ali; Mohd Yusuff, Rosnah Bt; Zulkifli, Norzima
2013-01-01
Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including tra...
The transport exponent in percolation models with additional loops
Babalievski, F.
1994-10-01
Several percolation models with additional loops were studied. The transport exponents for these models were estimated numerically by means of a transfer-matrix approach. It was found that the transport exponent has a drastically changed value for some of the models. This result supports some previous numerical studies on the vibrational properties of similar models (with additional loops).
Practical aspects of modelling of repairable systems data using proportional hazards models
Cox's Proportional Hazards Model (PHM) has been widely applied in the analysis of lifetime data. The model is semi-parametric, so that weak assumptions are made about form of the hazard function. There have been medical developments of this model which have aided studies of repairable systems. A review of the practical use of this PHM model is given and particular attention is paid to the used of diagnostics statistics and graphs. Illustrations are given using field data from the semiconductor and electrical industries, and repairable data will be illustrated by data from the hydrocarbon industry
Preliminary deformation model for National Seismic Hazard map of Indonesia
Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year
Preliminary deformation model for National Seismic Hazard map of Indonesia
Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)
2015-04-24
Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.
Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael
2013-09-01
Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research&Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorist's actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.
Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne
2014-01-01
The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.
XU Jing; YANG Chi; ZHANG Guoping
2007-01-01
Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards.
On Model Specification and Selection of the Cox Proportional Hazards Model*
Lin, Chen-Yen; Halabi, Susan
2013-01-01
Prognosis plays a pivotal role in patient management and trial design. A useful prognostic model should correctly identify important risk factors and estimate their effects. In this article, we discuss several challenges in selecting prognostic factors and estimating their effects using the Cox proportional hazards model. Although a flexible semiparametric form, the Cox’s model is not entirely exempt from model misspecification. To minimize possible misspecification, instead of imposing tradi...
Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report
'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'
CyberShake: A Physics-Based Seismic Hazard Model for Southern California
Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.
2011-01-01
CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and
A mental models approach to exploring perceptions of hazardous processes
Based on mental models theory, a decision-analytic methodology is developed to elicit and represent perceptions of hazardous processes. An application to indoor radon illustrates the methodology. Open-ended interviews were used to elicit non-experts' perceptions of indoor radon, with explicit prompts for knowledge about health effects, exposure processes, and mitigation. Subjects then sorted photographs into radon-related and unrelated piles, explaining their rationale aloud as they sorted. Subjects demonstrated a small body of correct but often unspecific knowledge about exposure and effects processes. Most did not mention radon-decay processes, and seemed to rely on general knowledge about gases, radioactivity, or pollution to make inferences about radon. Some held misconceptions about contamination and health effects resulting from exposure to radon. In two experiments, subjects reading brochures designed according to the author's guidelines outperformed subjects reading a brochure distributed by the EPA on a diagnostic test, and did at least as well on an independently designed quiz. In both experiments, subjects who read any one of the brochures had more complete and correct knowledge about indoor radon than subjects who did not, whose knowledge resembled the radon-interview subjects'
Hidden Markov models for estimating animal mortality from anthropogenic hazards
Carcasses searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. ...
A spatio-temporal model for probabilistic seismic hazard zonation of Tehran
Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza
2013-08-01
A precondition for all disaster management steps, building damage prediction, and construction code developments is a hazard assessment that shows the exceedance probabilities of different ground motion levels at a site considering different near- and far-field earthquake sources. The seismic sources are usually categorized as time-independent area sources and time-dependent fault sources. While the earlier incorporates the small and medium events, the later takes into account only the large characteristic earthquakes. In this article, a probabilistic approach is proposed to aggregate the effects of time-dependent and time-independent sources on seismic hazard. The methodology is then applied to generate three probabilistic seismic hazard maps of Tehran for 10%, 5%, and 2% exceedance probabilities in 50 years. The results indicate an increase in peak ground acceleration (PGA) values toward the southeastern part of the study area and the PGA variations are mostly controlled by the shear wave velocities across the city. In addition, the implementation of the methodology takes advantage of GIS capabilities especially raster-based analyses and representations. During the estimation of the PGA exceedance rates, the emphasis has been placed on incorporating the effects of different attenuation relationships and seismic source models by using a logic tree.
Statistical modeling of ground motion relations for seismic hazard analysis
Raschke, Mathias
2012-01-01
We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GM...
The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures
Conceptual geoinformation model of natural hazards risk assessment
Kulygin, Valerii
2016-04-01
Natural hazards are the major threat to safe interactions between nature and society. The assessment of the natural hazards impacts and their consequences is important in spatial planning and resource management. Today there is a challenge to advance our understanding of how socio-economical and climate changes will affect the frequency and magnitude of hydro-meteorological hazards and associated risks. However, the impacts from different types of natural hazards on various marine and coastal economic activities are not of the same type. In this study, the conceptual geomodel of risk assessment is presented to highlight the differentiation by the type of economic activities in extreme events risk assessment. The marine and coastal ecosystems are considered as the objects of management, on the one hand, and as the place of natural hazards' origin, on the other hand. One of the key elements in describing of such systems is the spatial characterization of their components. Assessment of ecosystem state is based on ecosystem indicators (indexes). They are used to identify the changes in time. The scenario approach is utilized to account for the spatio-temporal dynamics and uncertainty factors. Two types of scenarios are considered: scenarios of using ecosystem services by economic activities and scenarios of extreme events and related hazards. The reported study was funded by RFBR, according to the research project No. 16-35-60043 mol_a_dk.
Grasso, S.; Maugeri, M.
rigorous complex methods of analysis or qualitative procedures. A semi quantitative procedure based on the definition of the geotechnical hazard index has been applied for the zonation of the seismic geotechnical hazard of the city of Catania. In particular this procedure has been applied to define the influence of geotechnical properties of soil in a central area of the city of Catania, where some historical buildings of great importance are sited. It was also performed an investigation based on the inspection of more than one hundred historical ecclesiastical buildings of great importance, located in the city. Then, in order to identify the amplification effects due to the site conditions, a geotechnical survey form was prepared, to allow a semi quantitative evaluation of the seismic geotechnical hazard for all these historical buildings. In addition, to evaluate the foundation soil time -history response, a 1-D dynamic soil model was employed for all these buildings, considering the non linearity of soil behaviour. Using a GIS, a map of the seismic geotechnical hazard, of the liquefaction hazard and a preliminary map of the seismic hazard for the city of Catania have been obtained. From the analysis of obtained results it may be noticed that high hazard zones are mainly clayey sites
Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation
Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.
2006-12-01
An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes
Modelling the costs of natural hazards in games
Bostenaru-Dan, M.
2012-04-01
City are looked for today, including a development at the University of Torino called SimTorino, which simulates the development of the city in the next 20 years. The connection to another games genre as video games, the board games, will be investigated, since there are games on construction and reconstruction of a cathedral and its tower and a bridge in an urban environment of the middle ages based on the two novels of Ken Follett, "Pillars of the Earth" and "World Without End" and also more recent games, such as "Urban Sprawl" or the Romanian game "Habitat", dealing with the man-made hazard of demolition. A review of these games will be provided based on first hand playing experience. In games like "World without End" or "Pillars of the Earth", just like in the recently popular games of Zynga on social networks, construction management is done through providing "building" an item out of stylised materials, such as "stone", "sand" or more specific ones as "nail". Such approach could be used also for retrofitting buildings for earthquakes, in the series of "upgrade", not just for extension as it is currently in games, and this is what our research is about. "World without End" includes a natural disaster not so analysed today but which was judged by the author as the worst of manhood: the Black Death. The Black Death has effects and costs as well, not only modelled through action cards, but also on the built environment, by buildings remaining empty. On the other hand, games such as "Habitat" rely on role playing, which has been recently recognised as a way to bring games theory to decision making through the so-called contribution of drama, a way to solve conflicts through balancing instead of weighting, and thus related to Analytic Hierarchy Process. The presentation aims to also give hints on how to design a game for the problem of earthquake retrofit, translating the aims of the actors in such a process into role playing. Games are also employed in teaching of urban
Complex Modelling Scheme Of An Additive Manufacturing Centre
Popescu, Liliana Georgeta
2015-09-01
This paper presents a modelling scheme sustaining the development of an additive manufacturing research centre model and its processes. This modelling is performed using IDEF0, the resulting model process representing the basic processes required in developing such a centre in any university. While the activities presented in this study are those recommended in general, changes may occur in specific existing situations in a research centre.
Marginal integration $M-$estimators for additive models
Boente, Graciela; Martinez, Alejandra
2015-01-01
Additive regression models have a long history in multivariate nonparametric regression. They provide a model in which each regression function depends only on a single explanatory variable allowing to obtain estimators at the optimal univariate rate. Beyond backfitting, marginal integration is a common procedure to estimate each component. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated and marginal int...
Process chain modeling and selection in an additive manufacturing context
Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael
2016-01-01
This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... can compete with traditional process chains for small production runs. Combining both types of technology added cost but no benefit in this case. The new process chain model can be used to explain the results and support process selection, but process chain prototyping is still important for rapidly...... evolving fields like additive manufacturing....
Zhong, Q.; Shi, B.; Meng, L.
2010-12-01
The North China is one of the most seismically active regions in the mainland China. The moderate to large earthquakes have occurred here throughout history, resulting in huge losses of human life and properties. With the probabilistic seismic hazard analysis (PSHA) approach, we investigate the influence of different seismic environments, incorporating both near surface soil properties and distributed historical and modern seismicity. A simplified seismic source model, derived with the consideration of regional active fault distributions, is presented for the North China region. The spatial distributed seismicity model of PSHA is used to calculate the level of ground motion likely to be exceeded in a given time period. Following Frankel (1995) approach of circular Gaussian smoothing procedure, in the PSHA’s calculation, we proposed the fault-rupture-oriented elliptical Gaussian smoothing with the assumptions that earthquakes occur on faults or fault zones of past earthquakes to delineate the potential seismic zones (Lapajine et al., 2003). This is combined with regional active fault strike directions and the seismicity distribution patterns. Next Generation Attenuation model ((NGA), Boore et al., 2007) is used in generating hazard map for PGA with 2%, 5%, and 10 % probability of being exceeded in 50 years, and the resultant hazard map is compared with the result given by Global Seismic Hazard Assessment Project (GSHAP). There is general agreement for PGA distribution patterns between the results of this study and the GSHAP map that used the same seismic source zones. However, peak ground accelerations predicted in this study are typically 10-20% less than those of the GSHAP, and the seismic source models, such as fault distributions and regional seismicity used in the GSHAP seem to be oversimplified. We believe this study represents an improvement on prior seismic hazard evaluations for the region. In addition to the updated input data, we believe that, by
Computer models used to support cleanup decision-making at hazardous and radioactive waste sites
Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study
Seismic hazard methodology for nuclear facilities: modeling input interpretations
Recently developments of probabilistic seismic hazard methodology specifically to assess hazard at low probabilities of (-3 per year) at locations in the central and eastern US have been based on input interpretations by multiple experts. In these studies, a number of individual scientists or teams of scientists provide interpretations of seismic sources and their associated seismicity parameters. To express uncertainty, multiple alternative interpretations are provided. Uncertainty about seismic wave attenuation is treated similarly by assigning weights to potentially applicable attenuation relationships. A seismic hazard methodology developed at the Electric Power Research Institute (EPRI) follows this general approach. However, a number of modifications have been incorporated to provide fully trackable interpretations of input parameters based on state-of-the-art earth science practice, to specifically distinguish scientific and information uncertainty, and to make maximum use of historic earthquake data to assess seismicity parameters. The goal of the program has been to develop a procedure that is consistent with earth science practice, that facilitates expressions of uncertainty in seismic hazard input interpretations, and that is generally applicable
Additive Intensity Regression Models in Corporate Default Analysis
Lando, David; Medhat, Mamdouh; Nielsen, Mads Stenbo;
2013-01-01
We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models for analyzing the default risk of a sample of rated, nonfinancial U.S. firms. The setting allows for estimating and testing the significance of time-varying effects. We use a variety of mo...
Koga-Vicente, A.; Friedel, M. J.
2010-12-01
Every year thousands of people are affected by floods and landslide hazards caused by rainstorms. The problem is more serious in tropical developing countries because of the susceptibility as a result of the high amount of available energy to form storms, and the high vulnerability due to poor economic and social conditions. Predictive models of hazards are important tools to manage this kind of risk. In this study, a comparison of two different modeling approaches was made for predicting hydrometeorological hazards in 12 cities on the coast of São Paulo, Brazil, from 1994 to 2003. In the first approach, an empirical multiple linear regression (MLR) model was developed and used; the second approach used a type of unsupervised nonlinear artificial neural network called a self-organized map (SOM). By using twenty three independent variables of susceptibility (precipitation, soil type, slope, elevation, and regional atmospheric system scale) and vulnerability (distribution and total population, income and educational characteristics, poverty intensity, human development index), binary hazard responses were obtained. Model performance by cross-validation indicated that the respective MLR and SOM model accuracy was about 67% and 80%. Prediction accuracy can be improved by the addition of information, but the SOM approach is preferred because of sparse data and highly nonlinear relations among the independent variables.
A nonparametric dynamic additive regression model for longitudinal data
Martinussen, Torben; Thomas H. Scheike
2000-01-01
In this work we study additive dynamic regression models for longitudinal data. These models provide a flexible and nonparametric method for investigating the time-dynamics of longitudinal data. The methodology is aimed at data where measurements are recorded at random time points. We model the conditional mean of responses given the full internal history and possibly time-varying covariates. We derive the asymptotic distribution for a new nonparametric least squares estimat...
Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy
Blahut, J.; Horton, P.; Sterlacchini, S.; Jaboyedoff, M.
2010-11-01
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from
Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy
J. Blahut
2010-11-01
Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise
Linear non-threshold radiation hazards (LNT) model and the evaluation of the current model
To introduce linear non-threshold (LNT) model used in study of the dose effect of radiation hazards and to evaluate current application of the model. The comprehensive analysis of the literatures, presents an objective points of view. Results: LNT model describes the biological effects induced by high dose is better than description of the biological effects induced by low doses m accuracy; repairable-conditionally repairable model in study of cell radiation effects can well take into account on cell survival curve on the conditions of high, medium and low radiation dose range; assessment model of effective dose of internal radiation based on the LNT assumptions and individual mean organ equivalent dose still exists many uncertainties, taking gender differences into account it is necessary to establish gender-specific voxel human model. Conclusion: The advantages and disadvantages of various models coexist. Before the birth of the new theory and new model following the current theories and assessment of radiation hazards LNT model is still the most scientific attitude and a wise choice. (authors)
Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco
2016-04-01
hanging wall and directivity effects) within modern ground motion prediction equations, can have an influence on the seismic hazard at a site. Yet we also illustrate the conditions under which these effects may be partially tempered when considering the full uncertainty in rupture behaviour within the fault system. The third challenge is the development of efficient means for representing both aleatory and epistemic uncertainties from active fault models in PSHA. In implementing state-of-the-art seismic hazard models into OpenQuake, such as those recently undertaken in California and Japan, new modeling techniques are needed that redefine how we treat interdependence of ruptures within the model (such as mutual exclusivity), and the propagation of uncertainties emerging from geology. Finally, we illustrate how OpenQuake, and GEM's additional toolkits for model preparation, can be applied to address long-standing issues in active fault modeling in PSHA. These include constraining the seismogenic coupling of a fault and the partitioning of seismic moment between the active fault surfaces and the surrounding seismogenic crust. We illustrate some of the possible roles that geodesy can play in the process, but highlight where this may introduce new uncertainties and potential biases into the seismic hazard process, and how these can be addressed.
Investigation of the Effect of Traffic Parameters on Road Hazard Using Classification Tree Model
Md. Mahmud Hasan
2012-09-01
Full Text Available This paper presents a method for the identification of hazardous situations on the freeways. For this study, about 18 km long section of Eastern Freeway in Melbourne, Australia was selected as a test bed. Three categories of data i.e. traffic, weather and accident record data were used for the analysis and modelling. In developing the crash risk probability model, classification tree based model was developed in this study. In formulating the models, it was found that weather conditions did not have significant impact on accident occurrence so the classification tree was built using two traffic indices; traffic flow and vehicle speed only. The formulated classification tree is able to identify the possible hazard and non-hazard situations on freeway. The outcome of the study will aid the hazard mitigation strategies.
Using Set Model for Learning Addition of Integers
Umi Puji Lestari
2015-07-01
Full Text Available This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the use of set models that is packaged in activity of recording of financial transactions in two color chips and card game can help students to understand the concept of zero pair, addition with the same colored chips, and cancellation strategy.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
M. Barbolini; Keylock, C. J.
2002-01-01
The purpose of the present paper is to propose a new method for avalanche hazard mapping using a combination of statistical and deterministic modelling tools. The methodology is based on frequency-weighted impact pressure, and uses an avalanche dynamics model embedded within a statistical framework. The outlined procedure provides a useful way for avalanche experts to produce hazard maps for the typical case of avalanche sites where histor...
Scalable audio separation with light kernel additive modelling
Liutkus, Antoine; Fitzgerald, Derry; Rafii, Zafar
2015-01-01
Recently, Kernel Additive Modelling (KAM) was proposed as a unified framework to achieve multichannel audio source separation. Its main feature is to use kernel models for locally describing the spectrograms of the sources. Such kernels can capture source features such as repetitivity, stability over time and/or frequency, self-similarity, etc. KAM notably subsumes many popular and effective methods from the state of the art, including REPET and harmonic/percussive separation with median filt...
A-optimal designs for an additive quadratic mixture model
Chan, LY; Guan, YN; Zhang, CQ
1998-01-01
Quadratic models are widely used in the analysis of experiments involving mixtures. This paper gives A-optimal designs for an additive quadratic mixture model for q ≥ 3 mixture components. It is proved that in these A-optimal designs, vertices of the simplex S q-1 are support points, and other support points shift gradually from barycentres of depth 1 to barycentres of depth 3 as q increases. A-optimal designs with minimal support are also discussed.
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
Dube, F.; Nhapi, I.; Murwira, A.; Gumindoga, W.; Goldin, J.; Mashauri, D. A.
Gully erosion is an environmental concern particularly in areas where landcover has been modified by human activities. This study assessed the extent to which the potential of gully erosion could be successfully modelled as a function of seven environmental factors (landcover, soil type, distance from river, distance from road, Sediment Transport Index (STI), Stream Power Index (SPI) and Wetness Index (WI) using a GIS-based Weight of Evidence Modelling (WEM) in the Mbire District of Zimbabwe. Results show that out of the studied seven factors affecting gully erosion, five were significantly correlated (p 0.05). A gully erosion hazard map showed that 78% of the very high hazard class area is within a distance of 250 m from rivers. Model validation indicated that 70% of the validation set of gullies were in the high hazard and very high hazard class. The resulting map of areas susceptible to gully erosion has a prediction accuracy of 67.8%. The predictive capability of the weight of evidence model in this study suggests that landcover, soil type, distance from river, STI and SPI are useful in creating a gully erosion hazard map but may not be sufficient to produce a valid map of gully erosion hazard.
Traffic Incident Clearance Time and Arrival Time Prediction Based on Hazard Models
Yang beibei Ji
2014-01-01
Full Text Available Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an effective input for travel time prediction. In this paper, the hazard based prediction models are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.
Bhattacharjee, Arnab; Bhattacharjee, Madhuchhanda
2007-01-01
We propose Bayesian inference in hazard regression models where the baseline hazard is unknown, covariate effects are possibly age-varying (non-proportional), and there is multiplicative frailty with arbitrary distribution. Our framework incorporates a wide variety of order restrictions on covariate dependence and duration dependence (ageing). We propose estimation and evaluation of age-varying covariate effects when covariate dependence is monotone rather than proportional. In particular, we...
An approach for flood hazard modelling and mapping in the medium Valtellina
Poretti, I; Amicis, M.
2011-01-01
In the Lombardy Region, as in many other contexts all over the world, hazard maps do not have a precise legislative confirmation. Despite this, they are necessary to support several institutional activities, and among these, local urban planning. An approach to hazard analysis and mapping that fits the Lombardy Region legislative framework is presented here that introduces a level of experimental modelling, making use of SOBEK 1-D–2-D as a tool for hydrodynamic simulations. A stretch of 17 km...
24/7 population modelling for enhanced assessment of exposure to natural hazards
Smith, Alan; Martin, David; Cockings, Samantha
2013-01-01
There is a growing need for accurate spatio-temporal population estimates free from arbitrary administrative boundaries and temporal divisions to make enhanced assessments of population exposure to natural hazards. The approach proposed here combines the use of a spatio-temporal gridded population model to estimate temporary variations in population with natural hazard exposure estimations. It has been exemplified through a Southampton (UK) centred application using Environment Agency flood m...
Additive modelling reveals spatiotemporal PCBs trends in marine sediments
G. EVERAERT; De Laender, F.; Deneudt, K.; Roose, P.; Mees, J.; Goethals, P.L.M.; Janssen, C.R.
2014-01-01
We developed generalised additive mixed models (GAMMs) to infer spatiotemporal trends of environmental PCB concentrations from an extensive dataset (n = 1219) of PCB concentrations measured between 1991 and 2010 in sediments of the Belgian Coastal Zone (BCZ) and the Western Scheldt estuary. A GAMM with time, geographical zone, periodicity and the organic carbon - water partition coefficient as covariates explained 49% of the variability in the log transformed PCB sediment concentrations. The ...
Teamwork tools and activities within the hazard component of the Global Earthquake Model
Pagani, M.; Weatherill, G.; Monelli, D.; Danciu, L.
2013-05-01
The Global Earthquake Model (GEM) is a public-private partnership aimed at supporting and fostering a global community of scientists and engineers working in the fields of seismic hazard and risk assessment. In the hazard sector, in particular, GEM recognizes the importance of local ownership and leadership in the creation of seismic hazard models. For this reason, over the last few years, GEM has been promoting different activities in the context of seismic hazard analysis ranging, for example, from regional projects targeted at the creation of updated seismic hazard studies to the development of a new open-source seismic hazard and risk calculation software called OpenQuake-engine (http://globalquakemodel.org). In this communication we'll provide a tour of the various activities completed, such as the new ISC-GEM Global Instrumental Catalogue, and of currently on-going initiatives like the creation of a suite of tools for the creation of PSHA input models. Discussion, comments and criticism by the colleagues in the audience will be highly appreciated.
Ground water flow modeling at a hazardous waste site for regulatory compliance
The Pacific Northwest Laboratory has developed a model of an unconfined ground water flow system that is located beneath a hazardous waste facility and is subject to regulations outlined in the Resource Conservation and Recovery Act (RCRA). This facility is located on the Hanford Site in southeastern Washington State near the Columbia River. Characterization of the ground water flow system is complicated by continuous river-stage fluctuations. Water-table elevation changes of several feet per day are observed in monitoring wells near the facility because of changes in the river stage that are controlled by discharges from Priest Rapids Dam located upstream. A two-dimensional, finite difference, ground water flow model was calibrated with 6 months of continuous water-level measurements from three wells and continuous river-stage data. Two-hour time steps were used in transient simulations. Measured river elevations were used during each time step as a constant-head boundary. The modeled responses at well locations showed an acceptable match with ground water levels recorded in the field and hydraulic gradients in the vicinity of the facility. Simulations of the unconfined aquifer were made to estimate the probable paths of any transport from the facility, and recommendations were made for the placement of additional monitoring wells for regulatory compliance. The flow model and a planned solute transport model will be used to site and limit the number of wells required later. Ultimately, modeling will assist in additional site characterization and will be used to support the evaluation of future actions
Karabatsos, George
2001-01-01
Describes similarities and differences between additive conjoint measurement and the Rasch model, and formalizes some new nonparametric item response models that are, in a sense, probabilistic measurement theory models. Applies these new models to published and simulated data. (SLD)
LNG fires: A review of experimental results, models and hazard prediction challenges
A number of experimental investigations of LNG fires (of sizes 35 m diameter and smaller) were undertaken, world wide, during the 1970s and 1980s to study their physical and radiative characteristics. This paper reviews the published data from several of these tests including from the largest test to date, the 35 m, Montoir tests. Also reviewed in this paper is the state of the art in modeling LNG pool and vapor fires, including thermal radiation hazard modeling. The review is limited to considering the integral and semi-empirical models (solid flame and point source); CFD models are not reviewed. Several aspects of modeling LNG fires are reviewed including, the physical characteristics, such as the (visible) fire size and shape, tilt and drag in windy conditions, smoke production, radiant thermal output, etc., and the consideration of experimental data in the models. Comparisons of model results with experimental data are indicated and current deficiencies in modeling are discussed. The requirements in the US and European regulations related to LNG fire hazard assessment are reviewed, in brief, in the light of model inaccuracies, criteria for hazards to people and structures, and the effects of mitigating circumstances. The paper identifies: (i) critical parameters for which there exist no data, (ii) uncertainties and unknowns in modeling and (iii) deficiencies and gaps in current regulatory recipes for predicting hazards
Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials
Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar
2015-01-01
The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition
Applying the Land Use Portfolio Model with Hazus to analyse risk from natural hazard events
Dinitz, Laura B.; Taketa, Richard A.
2013-01-01
This paper describes and demonstrates the integration of two geospatial decision-support systems for natural-hazard risk assessment and management. Hazus is a risk-assessment tool developed by the Federal Emergency Management Agency to identify risks and estimate the severity of risk from natural hazards. The Land Use Portfolio Model (LUPM) is a risk-management tool developed by the U.S. Geological Survey to evaluate plans or actions intended to reduce risk from natural hazards. We analysed three mitigation policies for one earthquake scenario in the San Francisco Bay area to demonstrate the added value of using Hazus and the LUPM together. The demonstration showed that Hazus loss estimates can be input to the LUPM to obtain estimates of losses avoided through mitigation, rates of return on mitigation investment, and measures of uncertainty. Together, they offer a more comprehensive approach to help with decisions for reducing risk from natural hazards.
Checking Fine and Gray subdistribution hazards model with cumulative sums of residuals
Li, Jianing; Scheike, Thomas; Zhang, Mei Jie
2015-01-01
of residuals, which validate the model in three aspects: (1) proportionality of hazard ratio, (2) the linear functional form and (3) the link function. For each assumption testing, we provide a p-values and a visualized plot against the null hypothesis using a simulation-based approach. We also consider......Recently, Fine and Gray (J Am Stat Assoc 94:496–509, 1999) proposed a semi-parametric proportional regression model for the subdistribution hazard function which has been used extensively for analyzing competing risks data. However, failure of model adequacy could lead to severe bias in parameter...
Two-stage local M-estimation of additive models
2008-01-01
This paper studies local M-estimation of the nonparametric components of additive models.A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives.Under very mild conditions,the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known.The established asymptotic results also hold for two particular local M-estimations:the local least squares and least absolute deviation estimations.However,for general two-stage local M-estimation with continuous and nonlinear ψ-functions,its implementation is time-consuming.To reduce the computational burden,one-step approximations to the two-stage local M-estimators are developed.The one-step estimators are shown to achieve the same effciency as the fully iterative two-stage local M-estimators,which makes the two-stage local M-estimation more feasible in practice.The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers.In addition,the practical implementation of the proposed estimation is considered in details.Simulations demonstrate the merits of the two-stage local M-estimation,and a real example illustrates the performance of the methodology.
Two-stage local M-estimation of additive models
JIANG JianCheng; LI JianTao
2008-01-01
This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However,for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.
Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.
2010-05-01
the outburst of landslide-dammed lakes) remains a challenge: • The knowledge about the onset of the process is often limited (bathymetry of the lakes, subsurface water, properties of dam (content of ice), type of dam breach, understanding of process chains and interactions). • The size of glacial lakes may change rapidly but continuously, and many lakes break out within a short time after their development. Continuous monitoring is therefore required to keep updated on the existing hazards. • Also the outburst of small glacial lakes may lead to significant debris floods or even debris flows if there is plenty of erodible material available. • The available modeling software packages are of limited suitability for lake outburst floods: e.g. software developed by the hydrological community is specialized to simulate (debris) floods with input hydrographs on moderately steep flow channels and with lower sediment loads. In contrast to this, programs for rapid mass movements are better suited on steeper slopes and sudden onset of the movement. The typical characteristics of GLOFs are in between and vary for different channel sections. In summary, the major bottlenecks remain in deriving realistic or worst case scenarios and predicting their magnitude and area of impact. This mainly concerns uncertainties in the dam break process, involved volumes, erosion rates, changing rheologies, and the limited capabilities of available software packages to simulate process interactions and transformations such as the development of a hyperconcentrated flow into a debris flow. In addition, many areas prone to lake outburst floods are located in developing countries with a limited scope of the threatened population for decision-making and limited resources for mitigation.
Mota, A. R.; Lopes dos Santos, J. M. B.
2014-01-01
Students' misconceptions concerning colour phenomena and the apparent complexity of the underlying concepts--due to the different domains of knowledge involved--make its teaching very difficult. We have developed and tested a teaching device, the addition table of colours (ATC), that encompasses additive and subtractive mixtures in a single…
Three multimedia models used at hazardous and radioactive waste sites
Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers
Three multimedia models used at hazardous and radioactive waste sites
Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C. [Brookhaven National Lab., Upton, NY (United States); Rambaugh, J.O.; Potter, S. [Geraghty and Miller, Inc., Plainview, NY (United States)
1996-02-01
Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
High energy pp scattering in the additive eikonal quark model
Our additive eikonal quark model is generalized and applied to the elastic pp scattering in the energy range 50 - 2050 GeV. A new long-range interaction term was called for, in particular by the sharp change of the slope of dsigma/dt at the very small values of /t/. An alternative mechanism to geometrical scaling, in which the radii are almost fixed and the core strength is mainly responsible for the shift of the dip position in dsigma/dt, leads to an equally good agreement with experiment. (orig.)
Multiscale Modeling of Powder Bed–Based Additive Manufacturing
Markl, Matthias; Körner, Carolin
2016-07-01
Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of highly complex geometries hardly machinable with conventional technologies. However, the underlying physical phenomena are sparsely understood and difficult to observe during processing. Therefore, an intensive and expensive trial-and-error principle is applied to produce components with the desired dimensional accuracy, material characteristics, and mechanical properties. This review presents numerical modeling approaches on multiple length scales and timescales to describe different aspects of powder bed fusion processes. In combination with tailored experiments, the numerical results enlarge the process understanding of the underlying physical mechanisms and support the development of suitable process strategies and component topologies.
Hazardous Concentrations for Ecosystems (HCE): calculation with CATS models
Traas TP; Aldenberg T; Janse JH; Brock TCM; Roghair CJ; Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Winand Staring Centrum (SC-DLO); LWD
1995-01-01
Dose-response functions were fitted on data from laboratory toxicity tests and were used to predict the response of functional groups in food webs. Direct effects of Chlorpyrifos (CPF), as observed in microcosm experiments, could be modelled adequately by incorporating dose-response functions in a CATS model. Indirect effects of CPF on functional groups, resulting from direct toxicity, could be predicted with the model too. The ecosystem response to toxicants was used to propose a quality sta...
Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment
Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank
2008-11-01
Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application
Modeling exposure to persistent chemicals in hazard and risk assessment.
Cowan-Ellsberry, Christina E; McLachlan, Michael S; Arnot, Jon A; Macleod, Matthew; McKone, Thomas E; Wania, Frank
2009-10-01
Fate and exposure modeling has not, thus far, been explicitly used in the risk profile documents prepared for evaluating the significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of persistent organic pollutants (POP) and persistent, bioaccumulative, and toxic (PBT) chemicals in the environment. The goal of this publication is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include 1) benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk; 2) directly estimating the exposure of the environment, biota, and humans to provide information to complement measurements or where measurements are not available or are limited; 3) to identify the key processes and chemical or environmental parameters that determine the exposure, thereby allowing the effective prioritization of research or measurements to improve the risk profile; and 4) forecasting future time trends, including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and
Vidar Vangelsten, Bjørn; Fornes, Petter; Cepeda, Jose Mauricio; Ekseth, Kristine Helene; Eidsvig, Unni; Ormukov, Cholponbek
2015-04-01
Landslides are a significant threat to human life and the built environment in many parts of Central Asia. To improve understanding of the magnitude of the threat and propose appropriate risk mitigation measures, landslide hazard mapping is needed both at regional and local level. Many different approaches for landslide hazard mapping exist depending on the scale and purpose of the analysis and what input data are available. This paper presents a probabilistic local scale landslide hazard mapping methodology for rainfall triggered landslides, adapted to the relatively dry climate found in South-Western Kyrgyzstan. The GIS based approach makes use of data on topography, geology, land use and soil characteristics to assess landslide susceptibility. Together with a selected rainfall scenario, these data are inserted into a triggering model based on an infinite slope formulation considering pore pressure and suction effects for unsaturated soils. A statistical model based on local landslide data has been developed to estimate landslide run-out. The model links the spatial extension of the landslide to land use and geological features. The model is tested and validated for the town of Suluktu in the Ferghana Valley in South-West Kyrgyzstan. Landslide hazard is estimated for the urban area and the surrounding hillsides. The case makes use of a range of data from different sources, both remote sensing data and in-situ data. Public global data sources are mixed with case specific data obtained from field work. The different data and models have various degrees of uncertainty. To account for this, the hazard model has been inserted into a Monte Carlo simulation framework to produce a probabilistic landslide hazard map identifying areas with high landslide exposure. The research leading to these results has received funding from the European Commission's Seventh Framework Programme [FP7/2007-2013], under grant agreement n° 312972 "Framework to integrate Space-based and in
Modeling contractor and company employee behavior in high hazard operation
Lin, P.H.; Hanea, D.; Ale, B.J.M.
2013-01-01
The recent blow-out and subsequent environmental disaster in the Gulf of Mexico have highlighted a number of serious problems in scientific thinking about safety. Risk models have generally concentrated on technical failures, which are easier to model and for which there are more concrete data. Howe
Modeling and Testing Landslide Hazard Using Decision Tree
Mutasem Sh. Alkhasawneh
2014-01-01
Full Text Available This paper proposes a decision tree model for specifying the importance of 21 factors causing the landslides in a wide area of Penang Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like structure. Four models were created using Chi-square Automatic Interaction Detector (CHAID, Exhaustive CHAID, Classification and Regression Tree (CRT, and Quick-Unbiased-Efficient Statistical Tree (QUEST. Twenty-one factors were extracted using digital elevation models (DEMs and then used as input variables for the models. A data set of 137570 samples was selected for each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-validation was employed for testing the models. The highest accuracy was achieved using Exhaustive CHAID (82.0% compared to CHAID (81.9%, CRT (75.6%, and QUEST (74.0% model. Across the four models, five factors were identified as most important factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.
Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia
Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime
2015-04-01
Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.
Additive manufacturing for consumer-centric business models
Bogers, Marcel; Hadar, Ronen; Bilberg, Arne
2016-01-01
Digital fabrication—including additive manufacturing (AM), rapid prototyping and 3D printing—has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model—describing the logic of creatin...... the productive activities of the manufacturer. We discuss some of the main implications for research and practice of consumer-centric business models and the changing decoupling point in consumer goods' manufacturing supply chains....... and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from a manufacturer......-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer effectively takes over...
WATEQ3 geochemical model: thermodynamic data for several additional solids
Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG0/sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs
Checking Fine and Gray Subdistribution Hazards Model with Cumulative Sums of Residuals
Li, Jianing; Scheike, Thomas H.; Zhang, Mei-Jie
2014-01-01
Recently, Fine and Gray (1999) proposed a semi-parametric proportional regression model for the subdistribution hazard function which has been used extensively for analyzing competing risks data. However, failure of model adequacy could lead to severe bias in parameter estimation, and only a limited contribution has been made to check the model assumptions. In this paper, we present a class of analytical methods and graphical approaches for checking the assumptions of Fine and Gray’s model. T...
Probabilistic Modelling of the Seismic Hazard using the Romanian Earthquake Catalogue
Bogdan F. Popa; Gabriela-Maria Atanasiu
2005-01-01
The actual trend of performance based modelling of the seismic action is to adopt probabilistic models of the seismic hazard. In the first part of the paper are presented theoretical aspects of the seismic hazard definition from the probabilistic point of view as „a function P(Y > y) that describes the probability that in a given region (M) and for a time interval (T), the value of a parameter, Y (for example: macroseismic intensity, acceleration, velocity and displacement of the soil) to ove...
Modeling contractor and company employee behavior in high hazard operation
Lin, P. H.; Hanea, D.; Ale, B.J.M.
2013-01-01
The recent blow-out and subsequent environmental disaster in the Gulf of Mexico have highlighted a number of serious problems in scientific thinking about safety. Risk models have generally concentrated on technical failures, which are easier to model and for which there are more concrete data. However, many primary cause of the disasters, such as BP’s Texas City and Deepwater Horizon, are rooted in management decisions and organizational. Therefore, there is a strong need to develop a risk m...
Comparing the European (SHARE) and the reference Italian seismic hazard models
Visini, Francesco; Meletti, Carlo; D'Amico, Vera; Rovida, Andrea; Stucchi, Massimiliano
2016-04-01
A probabilistic seismic hazard evaluation for Europe has been recently released by the SHARE project (www.share-eu.org, Giardini et al., 2013; Woessner et al., 2015). A comparison between SHARE results for Italy and the official Italian seismic hazard model (MPS04, Stucchi et al., 2011), currently adopted by the building code, has been carried on to identify the main input elements that produce the differences between the two models. The SHARE model shows increased expected values (up to 70%) with respect to the MPS04 model for PGA with 10% probability of exceedance in 50 years. However, looking in detail at all output parameters of both the models, we observe that for spectral periods greater than 0.3 s, the reference PSHA for Italy proposes higher values than the SHARE model for many and large areas. This behaviour is mainly guided by the adoption of recent ground-motion prediction equations (GMPEs) that estimate higher values for PGA and for accelerations with periods lower than 0.3 s and lower values for higher periods with respect to older GMPEs used in MPS04. Another important set of tests consisted in analyzing separately the PSHA results obtained by the three source models adopted in SHARE (i.e., area sources, fault sources with background, and a refined smoothed seismicity model), whereas MPS04 only used area sources. Results show that, besides the strong impact of the GMPEs, the differences on the seismic hazard estimates among the three source models are relevant and, in particular, for some selected test sites, the fault-based model returns lowest estimates of seismic hazard. This result arises questions on the completeness of the fault database, their parameterization and assessment of activity rates as well as on the impact of the threshold magnitude between faults and background. Giardini D. et al., 2013. Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:10.12686/SED-00000001-SHARE. Stucchi M. et al., 2011. Seismic Hazard
Geo-additive modelling of malaria in Burundi
Gebhardt Albrecht
2011-08-01
Full Text Available Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007. Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated and unstructured (uncorrelated components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified
Contribution of physical modelling to climate-driven landslide hazard mapping: an alpine test site
Vandromme, R.; Desramaut, N.; Baills, A.; Hohmann, A.; Grandjean, G.; Sedan, O.; Mallet, J. P.
2012-04-01
The aim of this work is to develop a methodology for integrating climate change scenarios into quantitative hazard assessment and especially their precipitation component. The effects of climate change will be different depending on both the location of the site and the type of landslide considered. Indeed, mass movements can be triggered by different factors. This paper describes a methodology to address this issue and shows an application on an alpine test site. Mechanical approaches represent a solution for quantitative landslide susceptibility and hazard modeling. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account the uncertainty in the analysis. In this perspective, a new hazard modeling method is developed and integrated in a program named ALICE. This program integrates mechanical stability analysis through a GIS software taking into account data uncertainty. This method proposes a quantitative classification of landslide hazard and offers a useful tool to gain time and efficiency in hazard mapping. However, an expertise approach is still necessary to finalize the maps. Indeed it is the only way to take into account some influent factors in slope stability such as heterogeneity of the geological formations or effects of anthropic interventions. To go further, the alpine test site (Barcelonnette area, France) is being used to integrate climate change scenarios into ALICE program, and especially their precipitation component with the help of a hydrological model (GARDENIA) and the regional climate model REMO (Jacob, 2001). From a DEM, land-cover map, geology, geotechnical data and so forth the program classifies hazard zones depending on geotechnics and different hydrological contexts varying in time. This communication, realized within the framework of Safeland project, is supported by the European Commission under the 7th Framework Programme for Research and Technological
Hazardous Concentrations for Ecosystems (HCE): calculation with CATS models
Traas TP; Aldenberg T; Janse JH; Brock TCM; Roghair CJ; Rijksinstituut voor; LWD
1995-01-01
Dose-response functions were fitted on data from laboratory toxicity tests and were used to predict the response of functional groups in food webs. Direct effects of Chlorpyrifos (CPF), as observed in microcosm experiments, could be modelled adequately by incorporating dose-response functions in a C
Bayesian nonparametric estimation of hazard rate in monotone Aalen model
Timková, Jana
2014-01-01
Roč. 50, č. 6 (2014), s. 849-868. ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : Aalen model * Bayesian estimation * MCMC Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/timkova-0438210.pdf
A NOVEL SOFT COMPUTING MODEL ON LANDSLIDE HAZARD ZONE MAPPING
Iqbal Quraishi
2012-11-01
Full Text Available The effect of landslide is very prominent in India as well as world over. In India North-East region and all the areas beneath the Himalayan range is prone to landslide. As state wise Uttrakhand, Himachal Pradesh and northern part of West Bengal are identified as a risk zone for landslide. In West Bengal, Darjeeling area is identified as our focus zone. There are several types of landslides depending upon various conditions. Most contributing factor of landslide is Earthquakes. Both field and the GIS data are very versatile and large in amount. Creating a proper data warehouse includes both Remote and field studies. Our proposed soft computing model merge the field and remote sensing data and create an optimized landslide susceptible map of the zone and also provide a broad risk assessment. It takes into account census and economic survey data as an input to calculate and predict the probable number of damaged houses, roads, other amenities including the effect on GDP. The model is highly customizable and tends to provide situation specific results. A fuzzy logic based approach has been considered to partially implement the model in terms of different parameter data sets to show the effectiveness of the proposed model.
Combining multiple nondestructive inspection images with a generalized additive model
In this paper, multiple nondestructive inspection (NDI) images are combined with a generalized additive model to achieve a more precise and reliable assessment of hidden corrosion in aircraft lap joints. Two inspection techniques are considered in this study. One is the conventional multi-frequency eddy current testing technique and the other is the pulsed eddy current technique. To characterize the thickness loss or equivalently to achieve a quantitative measure of corrosion, multiple NDI images are fused to produce a thickness map that reflected the amount of corrosion damage. These results are further compared with corresponding digital x-ray thickness maps, which are obtained by mapping the remaining thickness after the specimen is dissembled and all the corrosion products are cleaned. Experimental results demonstrate that the proposed algorithms outperform the traditional calibration method aligned with a single testing approach
Keith, A. M.; Weigel, A. M.; Rivas, J.
2014-12-01
Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.
Flood Hazard Mapping Combining Hydrodynamic Modeling and Multi Annual Remote Sensing data
Laura Giustarini; Marco Chini; Renaud Hostache; Florian Pappenberger; Patrick Matgen
2015-01-01
This paper explores a method to combine the time and space continuity of a large-scale inundation model with discontinuous satellite microwave observations, for high-resolution flood hazard mapping. The assumption behind this approach is that hydraulic variables computed from continuous spatially-distributed hydrodynamic modeling and observed as discrete satellite-derived flood extents are correlated in time, so that probabilities can be transferred from the model series to the observations...
Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.
2015-12-01
Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.
Nielsen, Jan; Parner, Erik
2010-01-01
In this paper, we model multivariate time-to-event data by composite likelihood of pairwise frailty likelihoods and marginal hazards using natural cubic splines. Both right- and interval-censored data are considered. The suggested approach is applied on two types of family studies using the gamma...
Evaluation and hydrological modelization in the natural hazard prevention
Soil degradation affects negatively his functions as a base to produce food, to regulate the hydrological cycle and the environmental quality. All over the world soil degradation is increasing partly due to lacks or deficiencies in the evaluations of the processes and causes of this degradation on each specific situation. The processes of soil physical degradation are manifested through several problems as compaction, runoff, hydric and Eolic erosion, landslides with collateral effects in situ and in the distance, often with disastrous consequences as foods, landslides, sedimentations, droughts, etc. These processes are frequently associated to unfavorable changes into the hydrologic processes responsible of the water balance and soil hydric regimes, mainly derived to soil use changes and different management practices and climatic changes. The evaluation of these processes using simple simulation models; under several scenarios of climatic change, soil properties and land use and management; would allow to predict the occurrence of this disastrous processes and consequently to select and apply the appropriate practices of soil conservation to eliminate or reduce their effects. This simulation models require, as base, detailed climatic information and hydrologic soil properties data. Despite of the existence of methodologies and commercial equipment (each time more sophisticated and precise) to measure the different physical and hydrological soil properties related with degradation processes, most of them are only applicable under really specific or laboratory conditions. Often indirect methodologies are used, based on relations or empiric indexes without an adequate validation, that often lead to expensive mistakes on the evaluation of soil degradation processes and their effects on natural disasters. It could be preferred simple field methodologies, direct and adaptable to different soil types and climates and to the sample size and the spatial variability of the
Global river flood hazard maps: hydraulic modelling methods and appropriate uses
Townend, Samuel; Smith, Helen; Molloy, James
2014-05-01
Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some
Flood Hazard Mapping Combining Hydrodynamic Modeling and Multi Annual Remote Sensing data
Laura Giustarini
2015-10-01
Full Text Available This paper explores a method to combine the time and space continuity of a large-scale inundation model with discontinuous satellite microwave observations, for high-resolution flood hazard mapping. The assumption behind this approach is that hydraulic variables computed from continuous spatially-distributed hydrodynamic modeling and observed as discrete satellite-derived flood extents are correlated in time, so that probabilities can be transferred from the model series to the observations. A prerequisite is, therefore, the existence of a significant correlation between a modeled variable (i.e., flood extent or volume and the synchronously-observed flood extent. If this is the case, the availability of model simulations over a long time period allows for a robust estimate of non-exceedance probabilities that can be attributed to corresponding synchronously-available satellite observations. The generated flood hazard map has a spatial resolution equal to that of the satellite images, which is higher than that of currently available large scale inundation models. The method was applied on the Severn River (UK, using the outputs of a global inundation model provided by the European Centre for Medium-range Weather Forecasts and a large collection of ENVISAT ASAR imagery. A comparison between the hazard map obtained with the proposed method and with a more traditional numerical modeling approach supports the hypothesis that combining model results and satellite observations could provide advantages for high-resolution flood hazard mapping, provided that a sufficient number of remote sensing images is available and that a time correlation is present between variables derived from a global model and obtained from satellite observations.
Rainfall Hazards Prevention based on a Local Model Forecasting System
Buendia, F.; Ojeda, B.; Buendia Moya, G.; Tarquis, A. M.; Andina, D.
2009-04-01
Rainfall is one of the most important events of human life and society. Some rainfall phenomena like floods or hailstone are a threat to the agriculture, business and even life. However in the meteorological observatories there are methods to detect and alarm about this kind of events, nowadays the prediction techniques based on synoptic measurements need to be improved to achieve medium term feasible forecasts. Any deviation in the measurements or in the model description makes the forecast to diverge in time from the real atmosphere evolution. In this paper the advances in a local rainfall forecasting system based on time series estimation with General Regression Neural Networks are presented. The system is introduced, explaining the measurements, methodology and the current state of the development. The aim of the work is to provide a complementary criteria to the current forecast systems, based on the daily atmosphere observation and tracking over a certain place.
Building a risk-targeted regional seismic hazard model for South-East Asia
Woessner, J.; Nyst, M.; Seyhan, E.
2015-12-01
The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.
Mortality and socio-economic differences in Denmark: a competing risks proportional hazard model.
Munch, Jakob Roland; Svarer, Michael
2005-03-01
This paper explores how mortality is related to such socio-economic factors as education, occupation, skill level and income for the years 1992-1997 using an extensive sample of the Danish population. We employ a competing risks proportional hazard model to allow for different causes of death. This method is important as some factors have unequal (and sometimes opposite) influence on the cause-specific mortality rates. We find that the often-found inverse correlation between socio-economic status and mortality is to a large degree absent among Danish women who die of cancer. In addition, for men the negative correlation between socio-economic status and mortality prevails for some diseases, but for women we find that factors such as being married, income, wealth and education are not significantly associated with higher life expectancy. Marriage increases the likelihood of dying from cancer for women, early retirement prolongs survival for men, and homeownership increases life expectancy in general. PMID:15722260
Harbi, Assia; Meghraoui, Mustapha; Belabbes, Samir; Maouche, Said
2010-05-01
The western Mediterranean region was the site of numerous large earthquakes in the past. Most of these earthquakes are located at the East-West trending Africa-Eurasia plate boundary and along the coastline of North Africa. The most recent recorded tsunamigenic earthquake occurred in 2003 at Zemmouri-Boumerdes (Mw 6.8) and generated ~ 2-m-high tsunami wave. The destructive wave affected the Balearic Islands and Almeria in southern Spain and Carloforte in southern Sardinia (Italy). The earthquake provided a unique opportunity to gather instrumental records of seismic waves and tide gauges in the western Mediterranean. A database that includes a historical catalogue of main events, seismic sources and related fault parameters was prepared in order to assess the tsunami hazard of this region. In addition to the analysis of the 2003 records, we study the 1790 Oran and 1856 Jijel historical tsunamigenic earthquakes (Io = IX and X, respectively) that provide detailed observations on the heights and extension of past tsunamis and damage in coastal zones. We performed the modelling of wave propagation using NAMI-DANCE code and tested different fault sources from synthetic tide gauges. We observe that the characteristics of seismic sources control the size and directivity of tsunami wave propagation on both northern and southern coasts of the western Mediterranean.
A nonparametric dynamic additive regression model for longitudinal data
Martinussen, Torben; Scheike, Thomas H.
2000-01-01
dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...
Mass movement hazard assessment model in the slope profile
Colangelo, A. C.
2003-04-01
The central aim of this work is to assess the spatial behaviour of critical depths for slope stability and the behaviour of their correlated variables in the soil-regolith transition along slope profiles over granite, migmatite and mica-schist parent materials in an humid tropical environment. In this way, we had making measures of shear strength for residual soils and regolith materials with soil "Cohron Sheargraph" apparatus and evaluated the shear stress tension behaviour at soil-regolith boundary along slope profiles, in each referred lithology. In the limit equilibrium approach applied here we adapt the infinite slope model for slope analysis in whole slope profile by means of finite element solution like in Fellenius or Bishop methods. In our case, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. For each slice, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, slope gradient, top of subsurface flow gradient, apparent soil bulk density. The correlations showed the relative weight of cohesion, internal friction angle, apparent bulk density of soil materials and slope gradient variables with respect to the evaluation of critical depth behaviour for different simulated soil moisture content levels at slope profile scale. Some important results refer to the central role of behaviour of soil bulk-density variable along slope profile during soil evolution and in present day, because the intense clay production, mainly Kaolinite and Gibbsite at B and C-horizons, in the humid tropical environment. A increase in soil clay content produce a fall of friction angle and bulk density of material, specially when some montmorillonite or illite clay are present. We have observed too at threshold conditions, that a slight change in soil bulk-density value may disturb drastically the equilibrium of
Time-aggregation effects on the baseline of continuous-time and discrete-time hazard models
ter Hofstede, F.; Wedel, M.
1999-01-01
In this study we reinvestigate the effect of time-aggregation for discrete- and continuous-time hazard models. We reanalyze the results of a previous Monte Carlo study by ter Hofstede and Wedel (1998), in which the effects of time-aggregation on the parameter estimates of hazard models were investig
Advances in National Capabilities for Consequence Assessment Modeling of Airborne Hazards
Nasstrom, J; Sugiyama, G; Foster, K; Larsen, S; Kosovic, B; Eme, B; Walker, H; Goldstein, P; Lundquist, J; Pobanz, B; Fulton, J
2007-11-26
This paper describes ongoing advancement of airborne hazard modeling capabilities in support of multiple agencies through the National Atmospheric Release Advisory Center (NARAC) and the Interagency Atmospheric Modeling and Atmospheric Assessment Center (IMAAC). A suite of software tools developed by Lawrence Livermore National Laboratory (LLNL) and collaborating organizations includes simple stand-alone, local-scale plume modeling tools for end user's computers, Web- and Internet-based software to access advanced 3-D flow and atmospheric dispersion modeling tools and expert analysis from the national center at LLNL, and state-of-the-science high-resolution urban models and event reconstruction capabilities.
Hyndman, R. J.; Grunwald, G. K.
1999-01-01
We consider modelling time series using a generalized additive model with first- order Markov structure and mixed transition density having a discrete component at zero and a continuous component with positive sample space. Such models have application, for example, in modelling daily occurrence and intensity of rainfall, and in modelling the number and size of insurance claims. We show how these methods extend the usual sinusoidal seasonal assumption in standard chain- dependent models by as...
A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem
Omid Boyer
2013-01-01
Full Text Available Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including transportation cost, operation cost, initial investment cost, and cost saving from selling recycled waste. Second objective is minimization of transportation risk. Risk of population exposure within bandwidth along route is used to measure transportation risk. This model can help decision makers to locate treatment, recycling, and disposal centers simultaneously and also to route waste between these facilities considering risk and cost criteria. The results of the solved problem prove conflict between two objectives. Hence, it is possible to decrease the cost value by marginally increasing the transportation risk value and vice versa. A weighted sum method is utilized to combine two objectives function into one objective function. To solve the problem GAMS software with CPLEX solver is used. The problem is applied in Markazi province in Iran.
K. THULUKKANAM; R.VASUKI
2015-01-01
In this paper we use the Specially Merged Linked Fuzzy Cognitive Maps (SMLFCMs) model to study all problems faced by the Kodungaiyur locals like poverty, ecological imbalance, soil water pollution, problems faced by local rag pickers, literacy rate, health hazards suffered by locals so on.
Percolation model with an additional source of disorder
Kundu, Sumanta; Manna, S. S.
2016-06-01
The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.
Proportional-hazards models for improving the analysis of light-water-reactor-component failure data
The reliability of a power plant component may depend on a variety of factors (or covariates). If a single regression model can be specified to relate these factors to the failure rate, then all available data can be used to estimate and test for the effects of these covariates. One such model is a proportional hazards function that is specified as a product of two terms: a nominal hazard rate that is a function of time and a second term that is a function of the covariates. The purpose of this paper is to adapt two such models to LWR valve failure rate analysis, to compare the results, and to discuss the strengths and weaknesses of these applications
An Uncertain Wage Contract Model with Adverse Selection and Moral Hazard
Xiulan Wang
2014-01-01
it can be characterized as an uncertain variable. Moreover, the employee's effort is unobservable to the employer, and the employee can select her effort level to maximize her utility. Thus, an uncertain wage contract model with adverse selection and moral hazard is established to maximize the employer's expected profit. And the model analysis mainly focuses on the equivalent form of the proposed wage contract model and the optimal solution to this form. The optimal solution indicates that both the employee's effort level and the wage increase with the employee's ability. Lastly, a numerical example is given to illustrate the effectiveness of the proposed model.
Data Model for Multi Hazard Risk Assessment Spatial Support Decision System
Andrejchenko, Vera; Bakker, Wim; van Westen, Cees
2014-05-01
The goal of the CHANGES Spatial Decision Support System is to support end-users in making decisions related to risk reduction measures for areas at risk from multiple hydro-meteorological hazards. The crucial parts in the design of the system are the user requirements, the data model, the data storage and management, and the relationships between the objects in the system. The implementation of the data model is carried out entirely with an open source database management system with a spatial extension. The web application is implemented using open source geospatial technologies with PostGIS as the database, Python for scripting, and Geoserver and javascript libraries for visualization and the client-side user-interface. The model can handle information from different study areas (currently, study areas from France, Romania, Italia and Poland are considered). Furthermore, the data model handles information about administrative units, projects accessible by different types of users, user-defined hazard types (floods, snow avalanches, debris flows, etc.), hazard intensity maps of different return periods, spatial probability maps, elements at risk maps (buildings, land parcels, linear features etc.), economic and population vulnerability information dependent on the hazard type and the type of the element at risk, in the form of vulnerability curves. The system has an inbuilt database of vulnerability curves, but users can also add their own ones. Included in the model is the management of a combination of different scenarios (e.g. related to climate change, land use change or population change) and alternatives (possible risk-reduction measures), as well as data-structures for saving the calculated economic or population loss or exposure per element at risk, aggregation of the loss and exposure using the administrative unit maps, and finally, producing the risk maps. The risk data can be used for cost-benefit analysis (CBA) and multi-criteria evaluation (SMCE). The
Hagemann, Kit; Scholderer, Joachim
Novel foods have been the object of intense public debate in recent years. Despite efforts to communicate the outcomes of risk assessments to consumers, public confidence in the management of potential risks associated has been low. Various reasons behind this has identified, chiefly a disagreement...... between technical experts and consumers e.g. over the nature of the hazards on which risk assessments should focus and perceptions of insufficient openness about uncertainties in risk assessment. The consumers part of the EU-project, NOFORISK, investigate the disagreement by comparing laypeople...... and experts understanding of benefits and risks associated with three Novel foods (a potato, rice and functional food ingredients) using a relatively new methodology for the study of risk perception called Mental models. Mental models focus on the way people conceptualise hazardous processes and allows...
Flood and erosion hazard maps based on 2D hydraulic model
Lovšin, Gregor
2014-01-01
In 2007, the European Union adopted the Flood Directive with the aim of better regulation in case of flood. The European Union member states are required to create flood hazard maps and flood risk maps. To achieve these objectives, Rules on Methodology to Define Flood Risk Areas and Erosion Areas Connected to Floods and Classification of Plots into Risk Classes were adopted in Slovenia. The two-dimensional hydraulic models, which are increasingly in use, represent an irreplaceable tool in pre...
The timing of disability insurance application: a choice-based semiparametric hazard model
Richard V. Burkhauser; Butler, J. S.; Yang-Woo Kim
1996-01-01
We use a choice-based subsample of Social Security Disability Insurance applicants from the 1978 Social Security Survey of Disability and Work to test the importance of policy variables on the timing of application for disability insurance benefits following the onset of a work limiting health condition. We correct for choice-based sampling by extending the Manski-Lerman (1977) correction to the likelihood function of our continuous time hazard model defined with semiparametric unmeasured het...
R. M. W. Musson; Winter, P.W.
2012-01-01
Up to now, the search for increased reliability in probabilistic seismic hazard analysis (PSHA) has concentrated on ways of assessing expert opinion and subjective judgement. Although in some areas of PSHA subjective opinion is unavoidable, there is a danger that assessment procedures and review methods contribute further subjective judgements on top of those already elicited. It is helpful to find techniques for objectively assessing seismic source models that show what the interpretations p...
Combining computational models for landslide hazard assessment of Guantánamo province, Cuba
Castellanos Abella, E.A.
2009-01-01
As part of the Cuban system for landslide disaster management, a methodology was developed for regional scale landslide hazard assessment, which is a combination of different models. The method was applied in Guantánamo province at 1:100 000 scale. The analysis started with an extensive aerial photointerpretation to produce a landslide inventory map. Five main types of landslide movements were identified: slides (186), rockfalls (22), debrisflows (26), topples (18), and large rockslides (29)....
Vahdettin Demir; Ozgur Kisi
2016-01-01
In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1) digitization of topographical data and preparation of digital elevation model using ArcGIS, (2) simulation of flood lows...
Álvarez-Gómez, J. A.; Í. Aniel-Quiroga; O. Q. Gutiérrez-Gutiérrez; J. Larreynaga; González, M.; M. Castro; F. Gavidia; Aguirre-Ayerbe, I.; P. González-Riancho; Carreño, E
2013-01-01
El Salvador is the smallest and most densely populated country in Central America; its coast has approximately a length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there have been 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and hundreds of victims. The hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached from both Probabilistic and D...
Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; O. Q. Gutiérrez-Gutiérrez; J. Larreynaga; González, M.; M. Castro; F. Gavidia; Aguirre-Ayerbe, I.; P. González-Riancho; Carreño, E
2013-01-01
El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and determinis...
A new approach for deriving Flood hazard maps from SAR data and global hydrodynamic models
Matgen, P.; Hostache, R.; Chini, M.; Giustarini, L.; Pappenberger, F.; Bally, P.
2014-12-01
With the flood consequences likely to amplify because of the growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method that integrates global flood inundation modeling and microwave remote sensing is presented. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers opportunities for estimating flood non-exceedance probabilities in a robust way. These probabilities can be attributed to historical satellite observations. Time series of SAR-derived flood extent maps and associated non-exceedance probabilities can then be combined generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. In principle, this can be done for any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. As a test case we applied the method on the Severn River (UK) and the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. The first results confirm the potentiality of the method. However, further developments on two aspects are required to improve the quality of the hazard map and to ensure the acceptability of the product by potential end user organizations. On the one hand, it is of paramount importance to
Linear non-threshold (LNT) radiation hazards model and its evaluation
In order to introduce linear non-threshold (LNT) model used in study on the dose effect of radiation hazards and to evaluate its application, the analysis of comprehensive literatures was made. The results show that LNT model is more suitable to describe the biological effects in accuracy for high dose than that for low dose. Repairable-conditionally repairable model of cell radiation effects can be well taken into account on cell survival curve in the all conditions of high, medium and low absorbed dose range. There are still many uncertainties in assessment model of effective dose of internal radiation based on the LNT assumptions and individual mean organ equivalent, and it is necessary to establish gender-specific voxel human model, taking gender differences into account. From above, the advantages and disadvantages of various models coexist. Before the setting of the new theory and new model, LNT model is still the most scientific attitude. (author)
A seismic source zone model for the seismic hazard assessment of the Italian territory
Meletti, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia; Galadini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia; Valensise, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Stucchi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia; Basili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Barba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Vannucci, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Boschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia
2008-01-01
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map. We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning. The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical eart...
Avalanche Hazard Mapping with Satellite Data and a Digital Elevation Model
Urs Gruber
1995-04-01
Full Text Available Today avalanche hazard mapping is a very time-consuming affair. To map large remote areas, a method based on satellite imagery and digital elevation model has been developed. For this purpose, two test-sites in the Swiss Apls were selected. To simulate the avalanche hazard, the existing Salm-Voellmy model was modified to the computer environment and extended to the characteristics of avalanches within forested terrain. The forests were classified with Landsat-TM data. So far, only a single forest-class was established. The separation of forest, shrub, and non-forested area along the timberline poses a problem. On the other hand, a classification of small openings and avalanche tracks within the forest could be achieved. A comparison with the existing avalanche cadastral map revealed that 85 per cent of the risk areas were correctly classified. On the other hand, the separation into the defined red and blue danger zones was not satisfactory. For the model's application to become operational, further improvements are needed. However, the general approach is very promising, and should lead to more reliable hazard maps for planning purposes, as well as to new and better insights into the mutual effects between snow and forest.
Hadrup, Niels; Taxvig, Camilla; Pedersen, Mikael;
2013-01-01
of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated...... and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast...
The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)
An Additive-Multiplicative Restricted Mean Residual Life Model
Mansourvar, Zahra; Martinussen, Torben; Scheike, Thomas H.
2016-01-01
The mean residual life measures the expected remaining life of a subject who has survived up to a particular time. When survival time distribution is highly skewed or heavy tailed, the restricted mean residual life must be considered. In this paper, we propose an additive-multiplicative restricte...
Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling
G. Delmonaco
2003-01-01
Full Text Available A deterministic distributed model has been developed for large-scale debris-flow hazard analysis in the basin of River Vezza (Tuscany Region – Italy. This area (51.6 km 2 was affected by over 250 landslides. These were classified as debris/earth flow mainly involving the metamorphic geological formations outcropping in the area, triggered by the pluviometric event of 19 June 1996. In the last decades landslide hazard and risk analysis have been favoured by the development of GIS techniques permitting the generalisation, synthesis and modelling of stability conditions on a large scale investigation (>1:10 000. In this work, the main results derived by the application of a geotechnical model coupled with a hydrological model for the assessment of debris flows hazard analysis, are reported. This analysis has been developed starting by the following steps: landslide inventory map derived by aerial photo interpretation, direct field survey, generation of a database and digital maps, elaboration of a DTM and derived themes (i.e. slope angle map, definition of a superficial soil thickness map, geotechnical soil characterisation through implementation of a backanalysis on test slopes, laboratory test analysis, inference of the influence of precipitation, for distinct return times, on ponding time and pore pressure generation, implementation of a slope stability model (infinite slope model and generalisation of the safety factor for estimated rainfall events with different return times. Such an approach has allowed the identification of potential source areas of debris flow triggering. This is used to detected precipitation events with estimated return time of 10, 50, 75 and 100 years. The model shows a dramatic decrease of safety conditions for the simulation when is related to a 75 years return time rainfall event. It corresponds to an estimated cumulated daily intensity of 280–330 mm. This value can be considered the hydrological triggering
Christopher Charles Sampson
2016-01-01
Full Text Available Global flood hazard models have recently become a reality thanks to the release of open access global digital elevation models, the development of simplified and highly efficient flow algorithms, and the steady increase in computational power. In this commentary we argue that although the availability of open access global terrain data has been critical in enabling the development of such models, the relatively poor resolution and precision of these data now limit significantly our ability to estimate flood inundation and risk for the majority of the planet’s surface. The difficulty of deriving an accurate ‘bare-earth’ terrain model due to the interaction of vegetation and urban structures with the satellite-based remote sensors means that global terrain data are often poorest in the areas where people, property (and thus vulnerability are most concentrated. Furthermore, the current generation of open access global terrain models are over a decade old and many large floodplains, particularly those in developing countries, have undergone significant change in this time. There is therefore a pressing need for a new generation of high resolution and high vertical precision open access global digital elevation models to allow significantly improved global flood hazard models to be developed.
Geological complexity and performance assessment: Volcanic hazards modeling at Yucca Mountain
Quantitative performance assessments (PA) are often used by regulatory agencies to evaluate the ability of a designed structure to accomplish its objectives. For various reasons, the physics of failure is sometimes 'abstracted' in these analyses. Because there is no general model for magmatic processes, this approach has some appeal for volcanic hazards assessment. Alternatively, the author has used a simple physical model loosely coupled to a consequence simulator to study the intrusion of a basaltic dike into to a presumed high-level radioactive waste repository at Yucca Mountain, NV. The model uses a simplified dike-intrusion model and Monte Carlo-style parameter variation with distributions taken from analogous volcanic systems. Dike contamination follows (1) hydrologic transport of radionuclides and entrainment of lithic fragments of wall rock and (2) direct interaction of waste and magma. The physical model gave average dikes of 0.25 to 1.5 m width, mean = 0.5 m, and 750 to 3,000 m length, mean = 1,500 m. The volume of contaminated dike rock is 100 m3. Under current assumptions, releases due to magmatic activity should not exceed the regulatory limit set by EPA. This work shows that magma physics can constrain volcanic hazards in PA modeling. Stochastically varied input parameters, however, may violate the physical plausibility of the model. The parameter distributions should be categorically biased by the geological and tectonic context, detailed in the PA scenarios
Modelling dissimilarity: generalizing ultrametric and additive tree representations.
Hubert, L; Arabie, P; Meulman, J
2001-05-01
Methods for the hierarchical clustering of an object set produce a sequence of nested partitions such that object classes within each successive partition are constructed from the union of object classes present at the previous level. Any such sequence of nested partitions can in turn be characterized by an ultrametric. An approach to generalizing an (ultrametric) representation is proposed in which the nested character of the partition sequence is relaxed and replaced by the weaker requirement that the classes within each partition contain objects consecutive with respect to a fixed ordering of the objects. A method for fitting such a structure to a given proximity matrix is discussed, along with several alternative strategies for graphical representation. Using this same ultrametric extension, additive tree representations can also be generalized by replacing the ultrametric component in the decomposition of an additive tree (into an ultrametric and a centroid metric). A common numerical illustration is developed and maintained throughout the paper. PMID:11393895
Primary circuit iodine model addition to IMPAIR-3
Osetek, D.J.; Louie, D.L.Y. [Los Alamos Technical Associates, Inc., Albuquerque, NM (United States); Guntay, S.; Cripps, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-12-01
As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs.
Primary circuit iodine model addition to IMPAIR-3
As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs
Energy consumption model of Binder-jetting additive manufacturing processes
Xu, Xin; METEYER, Simon; PERRY, Nicolas; ZHAO, Yaoyao Fiona
2014-01-01
Considering the potential for new product design possibilities and the reduction of environmental impacts, Additive Manufacturing (AM) processes are considered to possess significant advantages for automotive, aerospace and medical equipment industries. One of the commercial AM techniques is Binder-Jetting (BJ). This technique can be used to process a variety of materials including stainless steel, ceramic, polymer and glass. However, there is very limited research about this AM technology on...
Additional Research Needs to Support the GENII Biosphere Models
Napier, Bruce A.; Snyder, Sandra F.; Arimescu, Carmen
2013-11-30
In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models. It is recommended that priorities be set by NRC staff to guide selection of the most useful improvements in a cost-effective manner. Suggestions are made based on relatively easy and inexpensive changes, and longer-term more costly studies. In the short term, there are several improved model formulations that could be applied to the GENII suite of codes to make them more generally useful. • Implementation of the separation of the translocation and weathering processes • Implementation of an improved model for carbon-14 from non-atmospheric sources • Implementation of radon exposure pathways models • Development of a KML processor for the output report generator module data that are calculated on a grid that could be superimposed upon digital maps for easier presentation and display • Implementation of marine mammal models (manatees, seals, walrus, whales, etc.). Data needs in the longer term require extensive (and potentially expensive) research. Before picking any one radionuclide or food type, NRC staff should perform an in-house review of current and anticipated environmental analyses to select “dominant” radionuclides of interest to allow setting of cost-effective priorities for radionuclide- and pathway-specific research. These include • soil-to-plant uptake studies for oranges and other citrus fruits, and • Development of models for evaluation of radionuclide concentration in highly-processed foods such as oils and sugars. Finally, renewed
Additive gamma frailty models with applications to competing risks in related individuals
Eriksson, Frank; Scheike, Thomas
2015-01-01
Epidemiological studies of related individuals are often complicated by the fact that follow-up on the event type of interest is incomplete due to the occurrence of other events. We suggest a class of frailty models with cause-specific hazards for correlated competing events in related individual...
Detailed Flood Modeling and Hazard Assessment from Storm Tides, Rainfall and Sea Level Rise
Orton, P. M.; Hall, T. M.; Georgas, N.; Conticello, F.; Cioffi, F.; Lall, U.; Vinogradov, S. V.; Blumberg, A. F.
2014-12-01
A flood hazard assessment has been conducted for the Hudson River from New York City to Troy at the head of tide, using a three-dimensional hydrodynamic model and merging hydrologic inputs and storm tides from tropical and extra-tropical cyclones, as well as spring freshet floods. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. The hazard assessment framework utilizes a representative climatology of over 1000 synthetic tropical cyclones (TCs) derived from a statistical-stochastic TC model, and historical extra-tropical cyclones and freshets from 1950-present. Hydrodynamic modeling is applied with seasonal variations in mean sea level and ocean and estuary stratification. The model is the Stevens ECOM model and is separately used for operational ocean forecasts on the NYHOPS domain (http://stevens.edu/NYHOPS). For the synthetic TCs, an Artificial Neural Network/ Bayesian multivariate approach is used for rainfall-driven freshwater inputs to the Hudson, translating the TC attributes (e.g. track, SST, wind speed) directly into tributary stream flows (see separate presentation by Cioffi for details). Rainfall intensity has been rising in recent decades in this region, and here we will also examine the sensitivity of Hudson flooding to future climate warming-driven increases in storm precipitation. The hazard assessment is being repeated for several values of sea level, as projected for future decades by the New York City Panel on Climate Change. Recent studies have given widely varying estimates of the present-day 100-year flood at New York City, from 2.0 m to 3.5 m, and special emphasis will be placed on quantifying our study's uncertainty.
This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs
Anton, Jose M.; Grau, Juan B.; Tarquis, Ana M.; Sanchez, Elena; Andina, Diego
2014-05-01
The authors were involved in the use of some Mathematical Decision Models, MDM, to improve knowledge and planning about some large natural or administrative areas for which natural soils, climate, and agro and forest uses where main factors, but human resources and results were important, natural hazards being relevant. In one line they have contributed about qualification of lands of the Community of Madrid, CM, administrative area in centre of Spain containing at North a band of mountains, in centre part of Iberian plateau and river terraces, and also Madrid metropolis, from an official study of UPM for CM qualifying lands using a FAO model from requiring minimums of a whole set of Soil Science criteria. The authors set first from these criteria a complementary additive qualification, and tried later an intermediate qualification from both using fuzzy logic. The authors were also involved, together with colleagues from Argentina et al. that are in relation with local planners, for the consideration of regions and of election of management entities for them. At these general levels they have adopted multi-criteria MDM, used a weighted PROMETHEE, and also an ELECTRE-I with the same elicited weights for the criteria and data, and at side AHP using Expert Choice from parallel comparisons among similar criteria structured in two levels. The alternatives depend on the case study, and these areas with monsoon climates have natural hazards that are decisive for their election and qualification with an initial matrix used for ELECTRE and PROMETHEE. For the natural area of Arroyos Menores at South of Rio Cuarto town, with at North the subarea of La Colacha, the loess lands are rich but suffer now from water erosions forming regressive ditches that are spoiling them, and use of soils alternatives must consider Soil Conservation and Hydraulic Management actions. The use of soils may be in diverse non compatible ways, as autochthonous forest, high value forest, traditional
Technical Work Plan for: Additional Multiscale Thermohydrologic Modeling
The primary objective of Revision 04 of the MSTHM report is to provide TSPA with revised repository-wide MSTHM analyses that incorporate updated percolation flux distributions, revised hydrologic properties, updated IEDs, and information pertaining to the emplacement of transport, aging, and disposal (TAD) canisters. The updated design information is primarily related to the incorporation of TAD canisters, but also includes updates related to superseded IEDs describing emplacement drift cross-sectional geometry and layout. The intended use of the results of Revision 04 of the MSTHM report, as described in this TWP, is to predict the evolution of TH conditions (temperature, relative humidity, liquid-phase saturation, and liquid-phase flux) at specified locations within emplacement drifts and in the adjoining near-field host rock along all emplacement drifts throughout the repository. This information directly supports the TSPA for the nominal and seismic scenarios. The revised repository-wide analyses are required to incorporate updated parameters and design information and to extend those analyses out to 1,000,000 years. Note that the previous MSTHM analyses reported in Revision 03 of Multiscale Thermohydrologic Model (BSC 2005 [DIRS 173944]) only extend out to 20,000 years. The updated parameters are the percolation flux distributions, including incorporation of post-10,000-year distributions, and updated calibrated hydrologic property values for the host-rock units. The applied calibrated hydrologic properties will be an updated version of those available in Calibrated Properties Model (BSC 2004 [DIRS 169857]). These updated properties will be documented in an Appendix of Revision 03 of UZ Flow Models and Submodels (BSC 2004 [DIRS 169861]). The updated calibrated properties are applied because they represent the latest available information. The reasonableness of applying the updated calibrated' properties to the prediction of near-fieldin-drift TH conditions
Sensitivity of earthquake risk models to uncertainties in hazard, exposure and vulnerability components has been investigated. The study is conducted for two test beds with distinctive socio-economic characteristics; Zeytinburnu and Los Angeles. Results are evaluated in terms of overall damage estimates as well as damage estimates of individual building typologies relative to one another. The distribution of damage estimates shows that the respective earthquake risk models are significantly affected by the vulnerability model. Further, the vulnerability model used in the earthquake risk model also influences the ranking of the building typologies according to their damage estimates. In comparison to that, the quality and the level of details of the building exposure database and the selected ground motion prediction equation seem to have less effect on the damage estimates. (author)
Sapunov, Valentin; Dikinis, Alexandr; Voronov, Nikolai
2014-05-01
Russian Federation having giant area has low concentration of land meteorological check points. Net of monitoring is not enough for effective forecast and prediction of weather dynamics and extremely situations. Under increase of extremely situations and incidents - hurricanes et al (two times from begin of XXI century) reconstruction and "perestroika" of monitoring net is needful and necessary. The basis of such a progress is distant monitoring using planes and satellites adding land contact monitoring base on efforts of existed points and stations. Interaction of contact and distant views may make hydro meteorological data and prediction more fine and significant. Tradition physical methods must be added by new biological methods of modern study. According to gotten researches animal are able to predict extremely hazards of natural and anthropogenic nature basing of interaction between biological matter and probable physical field that is under primary study. For example it was animals which forecasted dropping of Chelyabinsk meteorite of 2013. Adding of biological indication with complex of meteorological data may increase significance of hazard prediction. The uniting of all data and approaches may become basis of proposed mathematical hydro meteorological weather models. Introduction to practice reported complex methods may decrease of loss from hydro meteorological risks and hazards and increase stability of country economics.
Landslide hazard zonation using AHP model and GIS technique in Khoram Abad City
R. Hatamifar
2012-01-01
Full Text Available Extended abstract1- Introduction The increasing growth of urban and rural development has caused some natural anomalies in the Earth's inhabitants. Mass movements, especially landslides, are one of the most damages of them that have had the increasing momentum together human manipulation in natural systems in recent decades. So that it is one of the principal geomorphic processes in the mountainous areas. Landslide phenomenon occurring in many parts of the world and Iran in the favorable conditions causes the destruction of vegetation, orchards, farmlands, and even human casualties. According to estimates, landslides have imposed much financial damages about 500 milliard Rials to Iran, annually. Burying of Abikar village of Charmahal-o-Bakhtiari Province in spring 1997 year is one of the clear samples of landslide human damage. Among these, the Lorestan Province is one of the most susceptible sites of landslide occurrence in Iran. The occurrence about 274 landslides in Lorestan Province, with extent 1400km2 equivalent %4.8 of its area confirm this claim. Since the exact predication of landslides occurrence isn’t possible by human sciences, thus, we can prevent from the damages of this phenomenon by identification of landslide susceptible areas and prioritizing them. Landslide hazard zonation maps can help the environmental designers and engineers to select a suitable place for development projects implementation. The results of these studies can be used as fundamental information by environmental managers and planners.The purposes of this study are the recognition of effective factors in landslide and the zonation of Khoram Abad City in terms of the occurrence of this phenomenon using the AHP model and GIS technique. Therefore, selection of criteria and standards, providing of factors raster layers, determining of relative and final weight of factors, overlaying of layers and preparing landslide hazard zonation map are the major objectives of
Web-based Services for Earth Observing and Model Data in National Applications and Hazards
Kafatos, M.; Boybeyi, Z.; Cervone, G.; di, L.; Sun, D.; Yang, C.; Yang, R.
2005-12-01
The ever-growing large volumes of Earth system science data, collected by Earth observing platforms, in situ stations and as model output data, are increasingly being used by discipline scientists and by wider classes of users. In particular, applications of Earth system science data to environmental and hazards as well as other national applications, require tailored or specialized data, as well as web-based tools and infrastructure. The latter are driven by applications and usage drivers which include ease of access, visualization of complex data, ease of producing value-added data, GIS and open source analysis usage, metadata, etc. Here we present different aspects of such web-based services and access, and discuss several applications in the hazards and environmental areas, including earthquake signatures and observations and model runs of hurricanes. Examples and lessons learned from the consortium Mid-Atlantic Geospatial Information Consortium will be presented. We discuss a NASA-funded, open source on-line data analysis system that is being applied to climate studies for the ESIP Federation. Since enhanced, this project and the next-generation Metadata Integrated Data Analysis System allow users not only to identify data but also to generate new data products on-the-fly. The functionalities extend from limited predefined functions, to sophisticated functions described by general-purposed GrADS (Grid Analysis and Display System) commands. The Federation system also allows third party data products to be combined with local data. Software component are available for converting the output from MIDAS (OPenDAP) into OGC compatible software. The on-going Grid efforts at CEOSR and LAITS in the School of Computational Sciences (SCS) include enhancing the functions of Globus to provide support for a geospatial system so the system can share the computing power to handle problems with different peak access times and improve the stability and flexibility of a rapid
Lifetime cancer risk estimates depend on risk projection models. While the increasing lengths of follow-up observation periods of atomic bomb survivors in Hiroshima and Nagasaki bring about changes in cancer risk estimates, the validity of the two risk projection models, the additive risk projection model (AR) and multiplicative risk projection model (MR), comes into question. This paper compares the lifetime risk or loss of life-expectancy between the two projection models on the basis of BEIR-III report or recently published RERF report. With Japanese cancer statistics the estimates of MR were greater than those of AR, but a reversal of these results was seen when the cancer hazard function for India was used. When we investigated the validity of the two projection models using epidemiological human data and animal data, the results suggested that MR was superior to AR with respect to temporal change, but there was little evidence to support its validity. (author)
Söderberg, Daniel
2014-01-01
Time-to-event data is used in this thesis to analyze private cars’ longevity in Sweden. Thedataset is provided by Trafikanalys and contains all registered, deregistered or temporary deregisteredcars in Sweden during the time period 2000 - 2012.A Cox proportional hazards model is fitted, including variables such as car manufacturer andcar body. The results show that directly imported cars have a much shorter median survivalcompared to non-imported cars. The convertible cars have the longest me...
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an
A model of the holographic principle: Randomness and additional dimension
In recent years an idea has emerged that a system in a 3-dimensional space can be described from an information point of view by a system on its 2-dimensional boundary. This mysterious correspondence is called the Holographic Principle and has had profound effects in string theory and our perception of space-time. In this note we describe a purely mathematical model of the Holographic Principle using ideas from nonlinear dynamical systems theory. We show that a random map on the surface S2 of a 3-dimensional open ball B has a natural counterpart in B, and the two maps acting in different dimensional spaces have the same entropy. We can reverse this construction if we start with a special 3-dimensional map in B called a skew product. The key idea is to use the randomness, as imbedded in the parameter of the 2-dimensional random map, to define a third dimension. The main result shows that if we start with an arbitrary dynamical system in B with entropy E we can construct a random map on S2 whose entropy is arbitrarily close to E.
Timing of Effort and Reward: Three-Sided Moral Hazard in a Continuous-Time Model
Jun Yang
2010-01-01
This paper studies a three-sided moral hazard problem with one agent exerting up-front effort and two agents exerting ongoing effort in a continuous-time model. The agents' efforts jointly affect the probability of survival and thus the expected cash flow of the project. In the optimal contract, the timing of payments reflects the timing of effort: payments for up-front effort precede payments for ongoing effort. Several patterns are possible for the cash allocation between the two agents wit...
Abdul Salam Soomro
2012-10-01
Full Text Available The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region.
Tsunami hazard preventing based land use planing model using GIS technique in Muang Krabi, Thailand
The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems) based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region. (author)
Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; van Ewijk, Karin Y.
2016-07-01
To effectively assess and mitigate risk of permafrost disturbance, disturbance-prone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape characteristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Peninsula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed locations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) > 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Additionally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results indicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of disturbances were
Models of magma-aquifer interactions and their implications for hazard assessment
Strehlow, Karen; Gottsmann, Jo; Tumi Gudmundsson, Magnús
2014-05-01
Kverkfjöll and in October on White Island, New Zealand. The latter is only one example of these natural attractions that are visited by thousands of tourists every year. Additionally, these systems are increasingly used for energy generation. Phreatic explosions pose a serious risk to people and infrastructure nearby, and they are hard to predict. To improve risk assessment in hydrothermal areas, we assessed historical records and literature with regard to the frequency and mechanisms of hydrothermal explosions. Complemented by numerical models this study wants to answer the question: What determines the change of a safe to a dangerous behaviour of the system, i.e. the change from silent degassing to explosions? Our project aims to widen our knowledge base on the complex coupling of magmatic and hydrological systems, which provides further insight into the subsurface processes at volcanic systems and will aid future risk assessment and eruption forecasting.
Additive interaction in survival analysis
Rod, Naja Hulvej; Lange, Theis; Andersen, Ingelise;
2012-01-01
It is a widely held belief in public health and clinical decision-making that interventions or preventive strategies should be aimed at patients or population subgroups where most cases could potentially be prevented. To identify such subgroups, deviation from additivity of absolute effects is the...... relevant measure of interest. Multiplicative survival models, such as the Cox proportional hazards model, are often used to estimate the association between exposure and risk of disease in prospective studies. In Cox models, deviations from additivity have usually been assessed by surrogate measures of...... additive interaction derived from multiplicative models-an approach that is both counter-intuitive and sometimes invalid. This paper presents a straightforward and intuitive way of assessing deviation from additivity of effects in survival analysis by use of the additive hazards model. The model directly...
A statistical model for seismic hazard assessment of hydraulic-fracturing-induced seismicity
Hajati, T.; Langenbruch, C.; Shapiro, S. A.
2015-12-01
We analyze the interevent time distribution of hydraulic-fracturing-induced seismicity collected during 18 stages at four different regions. We identify a universal statistical process describing the distribution of hydraulic-fracturing-induced events in time. The distribution of waiting times between subsequently occurring events is given by the exponential probability density function of the homogeneous Poisson process. Our findings suggest that hydraulic-fracturing-induced seismicity is directly triggered by the relaxation of stress and pore pressure perturbation initially created by the injection. Therefore, compared to this relaxation, the stress transfer caused by the occurrence of preceding seismic events is mainly insignificant for the seismogenesis of subsequently occurring events. We develop a statistical model to compute the occurrence probability of hydraulic-fracturing-induced seismicity. This model can be used to assess the seismic hazard associated with hydraulic fracturing operations. No aftershock triggering has to be included in the statistical model.
CalTOX, a multimedia total exposure model for hazardous-waste sites
CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population
"Developing a multi hazard air quality forecasting model for Santiago, Chile"
Mena, M. A.; Delgado, R.; Hernandez, R.; Saide, P. E.; Cienfuegos, R.; Pinochet, J. I.; Molina, L. T.; Carmichael, G. R.
2013-05-01
Santiago, Chile has reduced annual particulate matter from 69ug/m3 (in 1989) to 25ug/m3 (in 2012), mostly by forcing industry, the transport sector, and the residential heating sector to adopt stringent emission standards to be able to operate under bad air days. Statistical forecasting has been used to predict bad air days, and pollution control measures in Santiago, Chile, for almost two decades. Recently an operational PM2.5 deterministic model has been implemented using WRF-Chem. The model was developed by the University of Iowa and is run at the Chilean Meteorological Office. Model configuration includes high resolution emissions gridding (2km) and updated population distribution using 2008 data from LANDSCAN. The model is run using a 2 day spinup with a 5 day forecast. This model has allowed a preventive approach in pollution control measures, as episodes are the results of multiple days of bad dispersion. Decreeing air pollution control measures in advance of bad air days resulted in a reduction of 40% of alert days (80ug/m3 mean 24h PM2.5) and 66% of "preemergency days" (110ug/m3 mean 24h PM2.5) from 2011 to 2012, despite similar meteorological conditions. This model will be deployed under a recently funded Center for Natural Disaster Management, and include other meteorological hazards such as flooding, high temperature, storm waves, landslides, UV radiation, among other parameters. This paper will present the results of operational air quality forecasting, and the methodology that will be used to transform WRF-Chem into a multi hazard forecasting system.
Giancarlo Carosso
2012-01-01
Full Text Available The expression âthe transboundary movement of hazardous wasteâ refers, from the technical point of view, to a series of phases that begin with the creation of a hazardous waste and includes its identification according to international, regional and national standards, its delivery to specialized companies and its movement from the exporting country to the importing country; these phases end with the final destination of the waste (disposal or recovery. From the judicial point of view, this same expression means a set of international regulations, at the UN level, a judicial model constituted by various Multilateral Environmental Agreements-MEAs and in particular the Basel, Rotterdam and Stockholm Conventions. In spite of this model, an international market, dominated in certain strategic points by a chain of organized crime, has become established over the last 30 years, with consequent adverse effects on human health and the environment as well as on trade and competition. The illegal movement and transport of hazardous goods and waste undermine international policies and enforcement efforts and put law-abiding businesses at an economic disadvantage. It is here taken into account that there are in fact two judicial models that have to be referred to. Apart from the previously mentioned one, it is necessary to take into consideration the international judicial hazardous goods and waste transport model. The former model is examined (1 from a general point of view and during the various phases; (2 as far as the controls that the international regulations foresee along the chain are concerned; (3 with a case study concerning the PCB category, a category which is very vast and whose contents are sometimes considered as hazardous goods and sometimes as wastes. Because of the great complexity of the problems and in order to have a clear picture, a specific second study, which is closely connected to the first, has been conducted on the
A "mental models" approach to the communication of subsurface hydrology and hazards
Gibson, Hazel; Stewart, Iain S.; Pahl, Sabine; Stokes, Alison
2016-05-01
Communicating information about geological and hydrological hazards relies on appropriately worded communications targeted at the needs of the audience. But what are these needs, and how does the geoscientist discern them? This paper adopts a psychological "mental models" approach to assess the public perception of the geological subsurface, presenting the results of attitudinal studies and surveys in three communities in the south-west of England. The findings reveal important preconceptions and misconceptions regarding the impact of hydrological systems and hazards on the geological subsurface, notably in terms of the persistent conceptualisation of underground rivers and the inferred relations between flooding and human activity. The study demonstrates how such mental models can provide geoscientists with empirical, detailed and generalised data of perceptions surrounding an issue, as well reveal unexpected outliers in perception that they may not have considered relevant, but which nevertheless may locally influence communication. Using this approach, geoscientists can develop information messages that more directly engage local concerns and create open engagement pathways based on dialogue, which in turn allow both geoscience "experts" and local "non-experts" to come together and understand each other more effectively.
Household hazardous waste disposal to landfill: Using LandSim to model leachate migration
Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW. - Aquatic pollutants linked to the disposal of household hazardous waste in municipal landfills have the potential to exist in soil and groundwater for many years
Budimir, M.E.A.; Atkinson, P. M.; Lewis, H.G.
2015-01-01
Quantitative modelling of landslide hazard, as opposed to landslide susceptibility, as a function of the earthquake trigger is vital in understanding and assessing future potential exposure to landsliding. Logistic regression analysis is a method commonly used to assess susceptibility to landsliding; however, estimating probability of landslide hazard as a result of an earthquake trigger is rarely undertaken. This paper utilises a very detailed landslide inventory map and a comprehensive data...
Pradhan, Biswajeet; Lee, Saro; Shattri, Mansor
This paper deals with landslide hazard analysis and cross-application using Geographic Information System (GIS) and remote sensing data for Cameron Highland, Penang Island and Selangor in Malaysia. The aim of this study was to cross-apply and verify a spatial probabilistic model for landslide hazard analysis. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazard analysis. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. These factors were analyzed using an artificial neural network model to generate the landslide hazard map. Each factor's weight was determined by the back-propagation training method. Then the landslide hazard indices were calculated using the trained back-propagation weights, and finally the landslide hazard map was generated using GIS tools. Landslide hazard maps were drawn for these three areas using artificial neural network model derived not only from the data for that area but also using the weight for each parameters, one of the statistical model, calculated from each of the other two areas (nine maps in all) as a cross-check of the validity of the method. For verification, the results of the analyses were compared, in each study area, with actual landslide locations. The verification results showed sufficient agreement between the presumptive hazard map and the existing data on landslide areas.
Two statistical models for long term seismic hazard assessment in Vrancea, Romania
Intermediate-depth earthquakes have occurred frequently in Vrancea, Romania and caused severe damages. To understand the regularity of earthquake occurrence and to predict future earthquakes, we analyzed M ≥7.0 earthquakes during the period of 1500 - 2000 using earthquake catalogue ROMPLUS. Firstly, we have attempted to assess the long-term seismic hazards in Vrancea using a stress-release (SR) model which models the elastic rebound theory in a stochastic process. Renewal models were also applied to the same data set, but these did not perform as well as the SR-model. The SR-model has identified that the probability of an M≥7.0 earthquake occurring in Vrancea in a 5-year period exceeds 40% by the end of this decade. Secondly, we have proposed the periodic upward migration model, in which 1) the first M7 earthquake occurs at a deeper segment of the seismic region at the beginning of each century, 2) the second one occurs at a middle segment at the midst of each century, and 3) the third one occurs at a shallower segment at the end of each century. 4) The above activity repeats every century. We could demonstrate using AIC that this model is better than a uniform Poisson model in time and space. (authors)
Pieter-Jan Vlok
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Increased competitiveness in the production world necessitates improved maintenance strategies to increase availabilities and drive down cost . The maintenance engineer is thus faced with the need to make more intelligent pre ventive renewal decisions . Two of the main techniques to achieve this is through Condition Monitoring (such as vibrat ion monitoring and oil anal ysis and Statistical Failure Analysis (typically using probabilistic techniques . The present paper discusses these techniques, their uses and weaknesses and then presents th e Proportional Hazard Model as an solution to most of these weaknesses. It then goes on to compare the results of the different techniques in monetary terms, using a South African case study. This comparison shows clearly that the Proportional Hazards Model is sup erior to the present t echniques and should be the preferred model for many actual maintenance situations.
AFRIKAANSE OPSOMMING: Verhoogde vlakke van mededinging in die produksie omgewing noodsaak verbeterde instandhouding strategies om beskikbaarheid van toerusting te verhoog en koste te minimeer. Instandhoudingsingenieurs moet gevolglik meer intellegente voorkomende hernuwings besluite neem. Twee prominente tegnieke om hierdie doelwit te bereik is Toestandsmonitering (soos vibrasie monitering of olie analise en Statistiese Falingsanalise (gewoonlik m.b.v. probabilistiese metodes. In hierdie artikel beskou ons beide hierdie tegnieke, hulle gebruike en tekortkominge en stel dan die Proporsionele Gevaarkoers Model voor as 'n oplossing vir meeste van die tekortkominge. Die artikel vergelyk ook die verskillende tegnieke in geldelike terme deur gebruik te maak van 'n Suid-Afrikaanse gevalle studie. Hierdie vergelyking wys duidelik-uit dat die Proporsionele Gevaarkoers Model groter beloft e inhou as die huidige tegni eke en dat dit die voorkeur oplossing behoort te wees in baie werklike instandhoudings situasies.
Socio-economic vulnerability to natural hazards - proposal for an indicator-based model
Eidsvig, U.; McLean, A.; Vangelsten, B. V.; Kalsnes, B.; Ciurean, R. L.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O. C.; Fotopoulou, S.; Pitilakis, K.; Baills, A.; Malet, J. P.
2012-04-01
Vulnerability assessment, with respect to natural hazards, is a complex process that must consider multiple dimensions of vulnerability, including both physical and social factors. Physical vulnerability refers to conditions of physical assets, and may be modeled by the intensity and magnitude of the hazard, the degree of physical protection provided by the natural and built environment, and the physical robustness of the exposed elements. Social vulnerability refers to the underlying factors leading to the inability of people, organizations, and societies to withstand impacts from the natural hazards. Social vulnerability models can be used in combination with physical vulnerability models to estimate both direct losses, i.e. losses that occur during and immediately after the impact, as well as indirect losses, i.e. long-term effects of the event. Direct impact of a landslide typically includes casualties and damages to buildings and infrastructure while indirect losses may e.g. include business closures or limitations in public services. The direct losses are often assessed using physical vulnerability indicators (e.g. construction material, height of buildings), while indirect losses are mainly assessed using social indicators (e.g. economical resources, demographic conditions). Within the EC-FP7 SafeLand research project, an indicator-based method was proposed to assess relative socio-economic vulnerability to landslides. The indicators represent the underlying factors which influence a community's ability to prepare for, deal with, and recover from the damage associated with landslides. The proposed model includes indicators representing demographic, economic and social characteristics as well as indicators representing the degree of preparedness and recovery capacity. Although the model focuses primarily on the indirect losses, it could easily be extended to include more physical indicators which account for the direct losses. Each indicator is individually
A multi-objective model for the hazardous materials transportation problem based on lane reservation
Zhou, 1 Zhen; Chu, Feng; Che, Ada; Mammar, Saïd
2012-01-01
This paper presents an application of the lane reservation strategy in the hazardous materials transportation. Once an accident of hazardous materials transportation happens, its effect is significant. Lane reservation can reduce the hazardous materials transportation risk enormously; however, it will also impact on the normal traffic. The proposed problem is to choose lanes to be reserved on the network and select the path for each hazardous materials shipment among the reserved lanes in ord...
Suzette Payne
2007-08-01
This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.
Suzette Payne
2006-04-01
This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.
A seismic source zone model for the seismic hazard assessment of the Italian territory
Meletti, Carlo; Galadini, Fabrizio; Valensise, Gianluca; Stucchi, Massimiliano; Basili, Roberto; Barba, Salvatore; Vannucci, Gianfranco; Boschi, Enzo
2008-04-01
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map. We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning. The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4. ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates. Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.
Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.
2013-11-01
El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and deterministic methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold: on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high-resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps, and from the elevation in the near shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific Basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences-finite volumes numerical model in this work, based on the linear and non-linear shallow water equations, to simulate a total of 24 earthquake-generated tsunami scenarios. Our results show that at the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results
J. A. Álvarez-Gómez
2013-05-01
Full Text Available El Salvador is the smallest and most densely populated country in Central America; its coast has approximately a length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there have been 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and hundreds of victims. The hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached from both Probabilistic and Deterministic Methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold, on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps and from the elevation in the near-shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences – finite volumes numerical model in this work, based on the Linear and Non-linear Shallow Water Equations, to simulate a total of 24 earthquake generated tsunami scenarios. In the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results obtained
Advances in Landslide Hazard Forecasting: Evaluation of Global and Regional Modeling Approach
Kirschbaum, Dalia B.; Adler, Robert; Hone, Yang; Kumar, Sujay; Peters-Lidard, Christa; Lerner-Lam, Arthur
2010-01-01
A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that exhibit a high potential for landslide activity by combining a calculation of landslide susceptibility with satellite-derived rainfall estimates. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale landslide forecasting efforts, it requires several modifications before it can be fully realized as an operational tool. The evaluation finds that the landslide forecasting may be more feasible at a regional scale. This study draws upon a prior work's recommendations to develop a new approach for considering landslide susceptibility and forecasting at the regional scale. This case study uses a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America: Guatemala, Honduras, EI Salvador and Nicaragua. A regional susceptibility map is calculated from satellite and surface datasets using a statistical methodology. The susceptibility map is tested with a regional rainfall intensity-duration triggering relationship and results are compared to global algorithm framework for the Hurricane Mitch event. The statistical results suggest that this regional investigation provides one plausible way to approach some of the data and resolution issues identified in the global assessment, providing more realistic landslide forecasts for this case study. Evaluation of landslide hazards for this extreme event helps to identify several potential improvements of the algorithm framework, but also highlights several remaining challenges for the algorithm assessment, transferability and performance accuracy. Evaluation challenges include representation errors from comparing susceptibility maps of different spatial resolutions, biases in event-based landslide inventory data, and limited nonlandslide event data for more comprehensive evaluation. Additional factors that may improve
Paukatong, K V; Kunawasen, S
2001-01-01
Nham is a traditional Thai fermented pork sausage. The major ingredients of Nham are ground pork meat and shredded pork rind. Nham has been reported to be contaminated with Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. Therefore, it is a potential cause of foodborne diseases for consumers. A Hazard Analysis and Critical Control Points (HACCP) generic model has been developed for the Nham process. Nham processing plants were observed and a generic flow diagram of Nham processes was constructed. Hazard analysis was then conducted. Other than microbial hazards, the pathogens previously found in Nham, sodium nitrite and metal were identified as chemical and physical hazards in this product, respectively. Four steps in the Nham process have been identified as critical control points. These steps are the weighing of the nitrite compound, stuffing, fermentation, and labeling. The chemical hazard of nitrite must be controlled during the weighing step. The critical limit of nitrite levels in the Nham mixture has been set at 100-200 ppm. This level is high enough to control Clostridium botulinum but does not cause chemical hazards to the consumer. The physical hazard from metal clips could be prevented by visual inspection of every Nham product during stuffing. The microbiological hazard in Nham could be reduced in the fermentation process. The critical limit of the pH of Nham was set at lower than 4.6. Since this product is not cooked during processing, finally, educating the consumer, by providing information on the label such as "safe if cooked before consumption", could be an alternative way to prevent the microbiological hazards of this product. PMID:11570169
Development of models to inform a national Daily Landslide Hazard Assessment for Great Britain
Dijkstra, Tom A.; Reeves, Helen J.; Dashwood, Claire; Pennington, Catherine; Freeborough, Katy; Mackay, Jonathan D.; Uhlemann, Sebastian S.; Chambers, Jonathan E.; Wilkinson, Paul B.
2015-04-01
were combined with records of observed landslide events to establish which antecedent effective precipitation (AEP) signatures of different duration could be used as a pragmatic proxy for the occurrence of landslides. It was established that 1, 7, and 90 days AEP provided the most significant correlations and these were used to calculate the probability of at least one landslide occurring. The method was then extended over the period 2006 to 2014 and the results evaluated against observed occurrences. It is recognised that AEP is a relatively poor proxy for simulating effective stress conditions along potential slip surfaces. However, the temporal pattern of landslide probability compares well to the observed occurrences and provides a potential benefit to assist with the DLHA. Further work is continuing to fine-tune the model for landslide type, better spatial resolution of effective precipitation input and cross-reference to models that capture changes in water balance and conditions along slip surfaces. The latter is facilitated by intensive research at several field laboratories, such as the Hollin Hill site in Yorkshire, England. At this site, a decade of activity has generated a broad range of research and a wealth of data. This paper reports on one example of recent work; the characterisation of near surface hydrology using infiltration experiments where hydrological pathways are captured, among others, by electrical resistivity tomography. This research, which has further developed our understanding of soil moisture movement in a heterogeneous landslide complex, has highlighted the importance of establishing detailed ground models to enable determination of landslide potential at high resolution. In turn, the knowledge gained through this research is used to enhance the expertise for the daily landslide hazard assessments at a national scale.
A general additive-multiplicative rates model for recurrent event data
无
2009-01-01
In this article, we propose a general additive-multiplicative rates model for recurrent event data. The proposed model includes the additive rates and multiplicative rates models as special cases. For the inference on the model parameters, estimating equation approaches are developed, and asymptotic properties of the proposed estimators are established through modern empirical process theory. In addition, an illustration with multiple-infection data from a clinic study on chronic granulomatous disease is provided.
Stiffness Model of a 3-DOF Parallel Manipulator with Two Additional Legs
Yu, Guang; Wu, Jun; Wang, Liping
2014-01-01
This paper investigates the stiffness modelling of a 3-DOF parallel manipulator with two additional legs. The stiffness model in six directions of the 3-DOF parallel manipulator with two additional legs is derived by performing condensation of DOFs for the joint connection and treatment of the fixed-end connections. Moreover, this modelling method is used to derive the stiffness model of the manipulator with zero/one additional legs. Two performance indices are given to compare the stiffness ...
Bambara, G.; Peyras, L.; Felix, H.; Serre, D.
2015-01-01
The experience feedback on a crisis that hit a city is frequently used as a "recollection" tool. To capitalize information about an experience feedback from the cities that have been affected by a natural hazard, the authors propose in this study a functional model to model scenarios of city crises. In this model, the city, considered as a complex system, was modelled using a functional analysis method. Based on such modelling, two risk analysis methods (Failure Mode and Eff...
Exploration of land-use scenarios for flood hazard modeling - the case of Santiago de Chile
Müller, A.; Reinstorf, F.
2011-04-01
Urban expansion leads to modifications in land use and land cover and to the loss of vegetated areas. These developments are in some regions of the world accelerated by a changing regional climate. As a consequence, major changes in the amount of green spaces can be observed in many urban regions. Amongst other dependences the amount of green spaces determines the availability of retention areas in a watershed. The goal of this research is to develop possible land-use and land-cover scenarios for a watershed and to explore the influence of land-use and land-cover changes on its runoff behavior using the distributed hydrological model HEC-HMS. The study area for this research is a small peri-urban watershed in the eastern area of Santiago de Chile. Three spatially explicit exploratory land-use/land-cover scenario alternatives were developed based on the analysis of previous land-use developments using high resolution satellite data, on the analysis of urban planning laws, on the analysis of climate change predictions, and on expert interviews. Modeling the resulting changes in runoff allows making predictions about the changes in flood hazard which the adjacent urban areas are facing after heavy winter precipitation events. The paper shows how HEC-HMS was used applying a distributed event modeling approach. The derived runoff values are combined with existing flood hazard maps and can be regarded as important source of information for the adaptation to changing conditions in the study area. The most significant finding is that the land-use changes that have to be expected after long drought periods pose the highest risk with respect to floods.
Hayes, P.; Trigg, J. L.; Stauffer, D.; Hunter, G.; McQueen, J.
2006-05-01
Consequence assessment (CA) operations are those processes that attempt to mitigate negative impacts of incidents involving hazardous materials such as chemical, biological, radiological, nuclear, and high explosive (CBRNE) agents, facilities, weapons, or transportation. Incident types range from accidental spillage of chemicals at/en route to/from a manufacturing plant, to the deliberate use of radiological or chemical material as a weapon in a crowded city. The impacts of these incidents are highly variable, from little or no impact to catastrophic loss of life and property. Local and regional scale atmospheric conditions strongly influence atmospheric transport and dispersion processes in the boundary layer, and the extent and scope of the spread of dangerous materials in the lower levels of the atmosphere. Therefore, CA personnel charged with managing the consequences of CBRNE incidents must have detailed knowledge of current and future weather conditions to accurately model potential effects. A meteorology team was established at the U.S. Defense Threat Reduction Agency (DTRA) to provide weather support to CA personnel operating DTRA's CA tools, such as the Hazard Prediction and Assessment Capability (HPAC) tool. The meteorology team performs three main functions: 1) regular provision of meteorological data for use by personnel using HPAC, 2) determination of the best performing medium-range model forecast for the 12 - 48 hour timeframe and 3) provision of real-time help-desk support to users regarding acquisition and use of weather in HPAC CA applications. The normal meteorology team operations were expanded during a recent modeling project which took place during the 2006 Winter Olympic Games. The meteorology team took advantage of special weather observation datasets available in the domain of the Winter Olympic venues and undertook a project to improve weather modeling at high resolution. The varied and complex terrain provided a special challenge to the
Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.
1991-01-01
Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.