WorldWideScience

Sample records for adaptive speckle imaging

  1. An adaptive Kalman filter for speckle reductions in ultrasound images

    Speckle is the term used to describe the granular appearance found in ultrasound images. The presence of speckle reduces the diagnostic potential of the echographic technique because it tends to mask small inhomogeneities of the investigated tissue. We developed a new method of speckle reductions that utilizes an adaptive one-dimensional Kalman filter based on the assumption that the observed image can be considered as a superimposition of speckle on a ''true images''. The filter adaptivity, necessary to avoid loss of resolution, has been obtained by statistical considerations on the local signal variations. The results of the applications of this particular Kalman filter, both on A-Mode and B-MODE images, show a significant speckle reduction

  2. Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.

    Bamber, J C; Daft, C

    1986-01-01

    Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images. PMID:3510500

  3. Structural adaptive and optimal speckle filtering in multilook full polarimetric SAR images

    Sun Nan; Zhang Bingchen; Wang Yanfei

    2007-01-01

    A novel approach is proposed for speckle reduction in multilook full polarimetric SAR images.In contrast to others, this approach adopts an enhanced structure detection method to estimate the parameters of the polarimetric covariance matrix for the multilook polarimetric whitening filtering (MPWF) algorithm and thus a structural adaptive and optimal speckle filter is developed.To evaluate the present approach, NASA SIR-C/X-SAR, L band, four-look processed polarimetric SAR data of the Tian-Mountain Forest is used for simulation.Experimental results demonstrate the effectiveness of this novel filtering algorithm in case of both speckle reduction and preservation of texture information.Comparisons with other methods are also made.

  4. An adaptive total variation image reconstruction method for speckles through disordered media

    Gong, Changmei; Shao, Xiaopeng; Wu, Tengfei

    2013-09-01

    Multiple scattering of light in highly disordered medium can break the diffraction limit of conventional optical system combined with image reconstruction method. Once the transmission matrix of the imaging system is obtained, the target image can be reconstructed from its speckle pattern by image reconstruction algorithm. Nevertheless, the restored image attained by common image reconstruction algorithms such as Tikhonov regularization has a relatively low signal-tonoise ratio (SNR) due to the experimental noise and reconstruction noise, greatly reducing the quality of the result image. In this paper, the speckle pattern of the test image is simulated by the combination of light propagation theories and statistical optics theories. Subsequently, an adaptive total variation (ATV) algorithm—the TV minimization by augmented Lagrangian and alternating direction algorithms (TVAL3), which is based on augmented Lagrangian and alternating direction algorithm, is utilized to reconstruct the target image. Numerical simulation experimental results show that, the TVAL3 algorithm can effectively suppress the noise of the restored image and preserve more image details, thus greatly boosts the SNR of the restored image. It also indicates that, compared with the image directly formed by `clean' system, the reconstructed results can overcoming the diffraction limit of the `clean' system, therefore being conductive to the observation of cells and protein molecules in biological tissues and other structures in micro/nano scale.

  5. ICA Based Speckle Filtering for Target Extraction in SAR Images Using Adaptive Space Separation

    LI Yu-tong; ZHOU Yue; YANG Lei

    2008-01-01

    A novel approach based on independent component analysis (ICA) for speckle filtering and target extraction of synthetic aperture radar (SAR) images is proposed using adaptive space separation with weighted information entropy (WIE) incorporated. First the basis and the independent components are respectively obtained by ICA technique, and WIE of the image is computed; then based on the threshold computed from function T-WIE (threshold versus weighted-information-entropy), independent components are adaptively separated and the bases are classified accordingly. Thus, the image space is separated into two subspaces: "clean" and "noise". Then, a proposed nonlinear operator ABO is applied on each component of the 'clean' subspace for further optimization. Finally, recovery image is obtained reconstructing this subspace and target is easily extracted with binarisation. Note that here T-WIE is an interpolated function based on several representative target SAR images using proposed space separation algorithm.

  6. Photothermal laser speckle imaging

    Regan, Caitlin; Ramirez-San-Juan, Julio C.; Choi, Bernard

    2014-01-01

    The analysis of speckle contrast in a time-integrated speckle pattern enables visualization of superficial blood flow in exposed vasculature, a method we call laser speckle imaging (LSI). With current methods, LSI does not enable visualization of subsurface or small vasculature, because of optical scattering by stationary structures. In this work we propose a new technique called photothermal LSI to improve the visualization of blood vessels. A 595 nm laser pulse was used to excite blood in b...

  7. Video surveillance with speckle imaging

    Carrano, Carmen J.; Brase, James M.

    2007-07-17

    A surveillance system looks through the atmosphere along a horizontal or slant path. Turbulence along the path causes blurring. The blurring is corrected by speckle processing short exposure images recorded with a camera. The exposures are short enough to effectively freeze the atmospheric turbulence. Speckle processing is used to recover a better quality image of the scene.

  8. Speckle noise reduction techniques for high-dynamic range imaging

    Bordé, Pascal J

    2007-01-01

    High-dynamic range imaging from space in the visible, aiming in particular at the detection of terrestrial exoplanets, necessitates not only the use of a coronagraph, but also of adaptive optics to correct optical defects in real time. Indeed, these defects scatter light and give birth to speckles in the image plane. Speckles can be cancelled by driving a deformable mirror to measure and compensate wavefront aberrations. In a first approach, targeted speckle nulling, speckles are cancelled iteratively by starting with the brightest ones. This first method has demonstrated a contrast better than 1e9 in laboratory. In a second approach, zonal speckle nulling, the total energy of speckles is minimized in a given zone of the image plane. This second method has the advantage to tackle simultaneously all speckles from the targeted zone, but it still needs better experimental demonstration.

  9. Speckle imaging algorithms for planetary imaging

    Johansson, E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    I will discuss the speckle imaging algorithms used to process images of the impact sites of the collision of comet Shoemaker-Levy 9 with Jupiter. The algorithms use a phase retrieval process based on the average bispectrum of the speckle image data. High resolution images are produced by estimating the Fourier magnitude and Fourier phase of the image separately, then combining them and inverse transforming to achieve the final result. I will show raw speckle image data and high-resolution image reconstructions from our recent experiment at Lick Observatory.

  10. Speckle Noise Reduction in Medical Ultrasound Images

    Faouzi Benzarti

    2012-03-01

    Full Text Available Ultrasound imaging is an incontestable vital tool for diagnosis, it provides in non-invasive manner the internal structure of the body to detect eventually diseases or abnormalities tissues. Unfortunately, the presence of speckle noise in these images affects edges and fine details which limit the contrast resolution and make diagnostic more difficult. In this paper, we propose a denoising approach which combines logarithmic transformation and a non linear diffusion tensor. Since speckle noise is multiplicative and nonwhite process, the logarithmic transformation is a reasonable choice to convert signal-dependent or pure multiplicative noise to an additive one. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image. To illustrate the effective performance of our algorithm, we present some experimental results on synthetically and real echographic images.

  11. Nonlocal Total-Variation-Based Speckle Filtering for Ultrasound Images.

    Wen, Tiexiang; Gu, Jia; Li, Ling; Qin, Wenjian; Wang, Lei; Xie, Yaoqin

    2016-07-01

    Ultrasound is one of the most important medical imaging modalities for its real-time and portable imaging advantages. However, the contrast resolution and important details are degraded by the speckle in ultrasound images. Many speckle filtering methods have been developed, but they are suffered from several limitations, difficult to reach a balance between speckle reduction and edge preservation. In this paper, an adaptation of the nonlocal total variation (NLTV) filter is proposed for speckle reduction in ultrasound images. The speckle is modeled via a signal-dependent noise distribution for the log-compressed ultrasound images. Instead of the Euclidian distance, the statistical Pearson distance is introduced in this study for the similarity calculation between image patches via the Bayesian framework. And the Split-Bregman fast algorithm is used to solve the adapted NLTV despeckling functional. Experimental results on synthetic and clinical ultrasound images and comparisons with some classical and recent algorithms are used to demonstrate its improvements in both speckle noise reduction and tissue boundary preservation for ultrasound images. PMID:26316172

  12. Speckles in laser Doppler perfusion imaging

    Rajan, V; Varghese, B.; Leeuwen, van; W. Steenbergen

    2006-01-01

    We report on the quantitative influence of speckles in laser Doppler perfusion imaging. The influence of speckles on the signal amplitude and on the Doppler spectrum is demonstrated experimentally for particle suspensions with different scattering levels and various beam widths. It is shown that the type of tissue affects the instrumental response through the effect of lateral light diffusion on the number of speckles involved in the detection process. These effects are largest for narrow beams.

  13. Speckle Suppression Method for SAR Image

    Jiming Guo

    2013-04-01

    Full Text Available In this study, a new speckle reduction method was proposed in terms of by Bidimensional Empirical Mode Decomposition (BEMD. In this method, the SAR image containing speckle noise was decomposed into a number of elementary components by using BEMD and then the extremal points are done the boundary equivalent extension after screening and the residual continue to be done the boundary equivalent extension until screening is completed, finally, the image was reconstructed, which reduced the speckle noise. Experimental results show that this method has good effect on suppressing speckle noise, compared to the average filter, median filter and gaussian filter and has advantages of sufficiently retaining edge and detail information while suppressing speckle noise.

  14. Fractality of pulsatile flow in speckle images

    Nemati, M.; Kenjeres, S.; Urbach, H. P.; Bhattacharya, N.

    2016-05-01

    The scattering of coherent light from a system with underlying flow can be used to yield essential information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in the properties of the speckle images. This can be studied using the standard laser speckle contrast and also the fractality of images. In this paper, we report the results of experiments performed to study pulsatile flow with speckle images, under different experimental configurations to verify the robustness of the techniques for applications. In order to study flow under various levels of complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations. The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the in vivo case. The speckle images were analyzed using the techniques of fractal dimension and speckle contrast analysis. The results of these techniques for the various experimental scenarios were compared. The fractal dimension is a more sensitive measure to capture the complexity of the signal though it was observed that it is also extremely sensitive to the properties of the scattering medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.

  15. Image recovery from polarimetric, nonimaged laser speckle

    Dixon, Donald B.; Cain, Stephen C.

    2010-11-01

    The addition of polarization diversity for a non-imaging laser speckle system provides improvement for the phase retrieval problem. The polarization diversity of the remote scene provides additional information for successfully recovering a two-dimensional image from noisy autocorrelations obtained from laser speckle patterns or pupil plane images. The proposed system may be used to characterize space-borne objects and debris with an earthbased sensor array. We propose an Expectation-Maximization (EM) algorithm with a simple, statistical-based stopping criteria. Results from both simulation and laboratory experiment are presented.

  16. Enhanced Video Surveillance (EVS) with speckle imaging

    Carrano, C J

    2004-01-13

    Enhanced Video Surveillance (EVS) with Speckle Imaging is a high-resolution imaging system that substantially improves resolution and contrast in images acquired over long distances. This technology will increase image resolution up to an order of magnitude or greater for video surveillance systems. The system's hardware components are all commercially available and consist of a telescope or large-aperture lens assembly, a high-performance digital camera, and a personal computer. The system's software, developed at LLNL, extends standard speckle-image-processing methods (used in the astronomical community) to solve the atmospheric blurring problem associated with imaging over medium to long distances (hundreds of meters to tens of kilometers) through horizontal or slant-path turbulence. This novel imaging technology will not only enhance national security but also will benefit law enforcement, security contractors, and any private or public entity that uses video surveillance to protect their assets.

  17. Adaptive ultrasonic speckle reduction based on the slope-facet model.

    Huang, Huan-Chao; Chen, Jau-Yuen; Wang, Sheng-De; Chen, Chung-Ming

    2003-08-01

    The flat-facet model has been implicitly assumed for the structure of the image surface by most conventional speckle-reduction algorithms. However, this model is rarely found in a real ultrasound (US) image. To preserve the higher order structures and to capture the spatially variant property of the speckle, a new adaptive speckle-reduction algorithm, called the symmetrical speckle-reduction filter (SSRF), was developed based on the slope-facet model. The basic idea of the SSRF was to estimate the uncorrupted signal on the largest symmetrical slope facet centered at each target pixel. The symmetry constraint ensured the correctness of the mean value. An empirical speckle model was incorporated to account for the nature of the speckle in US image. A two-stage despeckling strategy was employed to enhance the statistical reliability of each estimate by forming a union of a set of symmetrical despeckling windows. The proposed SSRF algorithm was compared with two filtered-based and one wavelet-based approaches and the experimental results showed that the proposed SSRF outperformed these three previous approaches in both the synthetic images and the clinical US images tested in this study. PMID:12946519

  18. Speckle Imaging: a boon for astronomical observations

    Saha, S. K.

    2000-01-01

    The speckle imaging is a photographic technique that resolves objects viewed through severely distorted media. The results are insensitive to the errors caused by apparent size of the isoplanatic patch and the telescope aberrations. In this article, a short descriptions of the atmospheric turbulence and its effect on the flat wavefront from a stellar source is presented; the shortcomings of the conventional long-exposure images in the presence of Earth's atmosphere are discussed. The advantag...

  19. Laser Speckle Imaging of Cerebral Blood Flow

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  20. Effect of speckle on APSCI method and Mueller Imaging

    Upadhyay, Debajyoti; Lacot, Eric; De Martino, Antonello; Orlik, Xavier

    2014-01-01

    The principle of the polarimetric imaging method called APSCI (Adapted Polarization State Contrast Imaging) is to maximize the polarimetric contrast between an object and its background using specific polarization states of illumination and detection. We perform here a comparative study of the APSCI method with existing Classical Mueller Imaging(CMI) associated with polar decomposition in the presence of fully and partially polarized circular Gaussian speckle. The results show a noticeable increase of the Bhattacharyya distance used as our contrast parameter for the APSCI method, especially when the object and background exhibit several polarimetric properties simultaneously.

  1. Noise analysis in laser speckle contrast imaging

    Yuan, Shuai; Chen, Yu; Dunn, Andrew K.; Boas, David A.

    2010-02-01

    Laser speckle contrast imaging (LSCI) is becoming an established method for full-field imaging of blood flow dynamics in animal models. A reliable quantitative model with comprehensive noise analysis is necessary to fully utilize this technique in biomedical applications and clinical trials. In this study, we investigated several major noise sources in LSCI: periodic physiology noise, shot noise and statistical noise. (1) We observed periodic physiology noise in our experiments and found that its sources consist principally of motions induced by heart beats and/or ventilation. (2) We found that shot noise caused an offset of speckle contrast (SC) values, and this offset is directly related to the incident light intensity. (3) A mathematical model of statistical noise was also developed. The model indicated that statistical noise in speckle contrast imaging is related to the SC values and the total number of pixels used in the SC calculation. Our experimental results are consistent with theoretical predications, as well as with other published works.

  2. High-contrast Imaging from Space: Speckle Nulling in a Low Aberration Regime

    Bordé, P J; Borde, Pascal J.; Traub, Wesley A.

    2006-01-01

    High-contrast imaging from space must overcome two major noise sources to successfully detect a terrestrial planet angularly close to its parent star: photon noise from diffracted star light, and speckle noise from star light scattered by instrumentally-generated wavefront perturbation. Coronagraphs tackle only the photon noise contribution by reducing diffracted star light at the location of a planet. Speckle noise should be addressed with adaptative-optics systems. Following the tracks of Malbet, Yu and Shao (1995), we develop in this paper two analytical methods for wavefront sensing and control that aims at creating dark holes, i.e. areas of the image plane cleared out of speckles, assuming an ideal coronagraph and small aberrations. The first method, speckle field nulling, is a fast FFT-based algorithm that requires the deformable-mirror influence functions to have identical shapes. The second method, speckle energy minimization, is more general and provides the optimal deformable mirror shape via matrix...

  3. Artificial incoherent speckles enable precision astrometry and photometry in high-contrast imaging

    Jovanovic, Nemanja; Martinache, Frantz; Pathak, Prashant; Hagelberg, Janis; Kudo, Tomoyuki

    2015-01-01

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments, are constantly improving the contrast detection limit for companions at ever closer separations to the host star. In order to constrain their properties and ultimately compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system in SCExAO to generate a field of speckles for the purposes of calibration. Speckles can be placed up to $22.5~\\lambda/D$ from the star, with any position angle, brightness and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between $0$ and $\\pi$, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitativ...

  4. Robust non-homomorphic approach for speckle reduction in medical ultrasound images.

    Gupta, S; Chauhan, R C; Saxena, S C

    2005-03-01

    Most existing wavelet-based image denoising techniques are developed for additive white Gaussian noise. In applications to speckle reduction in medical ultrasound (US) images, the traditional approach is first to perform the logarithmic transform (homomorphic processing) to convert the multiplicative speckle noise model to an additive one, and then the wavelet filtering is performed on the log-transformed image, followed by an exponential operation. However, this non-linear operation leads to biased estimation of the signal and increases the computational complexity of the filtering method. To overcome these drawbacks, an efficient, non-homomorphic technique for speckle reduction in medical US images is proposed. The method relies on the true characterisation of the marginal statistics of the signal and speckle wavelet coefficients. The speckle component was modelled using the generalised Nakagami distribution, which is versatile enough to model the speckle statistics under various scattering conditions of interest in medical US images. By combining this speckle model with the generalised Gaussian signal first, the Bayesian shrinkage functions were derived using the maximum a posteriori (MAP) criterion. The resulting Bayesian processor used the local image statistics to achieve soft-adaptation from homogeneous to highly heterogeneous areas. Finally, the results showed that the proposed method, named GNDShrink, yielded a signal-to-noise ratio (SNR) gain of 0.42dB over the best state-of-the-art despeckling method reported in the literature, 1.73dB over the Lee filter and 1.31dB over the Kaun filter at an input SNR of 12.0dB, when tested on a US image. Further, the visual comparison of despeckled US images indicated that the new method suppressed the speckle noise well, while preserving the texture and organ surfaces. PMID:15865126

  5. Flux or speed? Examining speckle contrast imaging of vascular flows.

    Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K

    2015-07-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384

  6. A Level Set Filter for Speckle Reduction in SAR Images

    Huang Bo

    2010-01-01

    Full Text Available Despite much effort and significant progress in recent years, speckle removal for Synthetic Aperture Radar (SAR image still is a challenging problem in image processing. Unlike the traditional noise filters, which are mainly based on local neighborhood statistical average or frequencies transform, in this paper, we propose a speckle reduction method based on the theory of level set, one form of curvature flow propagation. Firstly, based on partial differential equation, the Lee filter can be cast as a formulation of anisotropic diffusion function; furthermore, we continued to deduce it into a level set formulation. Level set flow into the method allows the front interface to propagate naturally with topological changes, where the speed is proportional to the curvature of the intensity contours in an image. Hence, small speckle will disappear quickly, while large scale interfaces will be slow to evolve. Secondly, for preserving finer detailed structures in images when smoothing the speckle, the evolution is switched between minimum or maximum curvature speed depending on the scale of speckle. The proposed method has been illustrated by experiments on simulation image and ERS-2 SAR images under different circumstances. Its advantages over the traditional speckle reduction filter approaches have also been demonstrated.

  7. Evaluation of various speckle reduction filters on medical ultrasound images.

    Wu, Shibin; Zhu, Qingsong; Xie, Yaoqin

    2013-01-01

    At present, ultrasound is one of the essential tools for noninvasive medical diagnosis. However, speckle noise is inherent in medical ultrasound images and it is the cause for decreased resolution and contrast-to-noise ratio. Low image quality is an obstacle for effective feature extraction, recognition, analysis, and edge detection; it also affects image interpretation by doctor and the accuracy of computer-assisted diagnostic techniques. Thus, speckle reduction is significant and critical step in pre-processing of ultrasound images. Many speckle reduction techniques have been studied by researchers, but to date there is no comprehensive method that takes all the constraints into consideration. In this paper we discuss seven filters, namely Lee, Frost, Median, Speckle Reduction Anisotropic Diffusion (SRAD), Perona-Malik's Anisotropic Diffusion (PMAD) filter, Speckle Reduction Bilateral Filter (SRBF) and Speckle Reduction filter based on soft thresholding in the Wavelet transform. A comparative study of these filters has been made in terms of preserving the features and edges as well as effectiveness of de-noising.We computed five established evaluation metrics in order to determine which despeckling algorithm is most effective and optimal for real-time implementation. In addition, the experimental results have been demonstrated by filtered images and statistical data table. PMID:24109896

  8. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  9. BL_Wiener Denoising Method for Removal of Speckle Noise in Ultrasound Image

    Suhaila Sari

    2015-02-01

    Full Text Available Medical imaging techniques are extremely important tools in medical diagnosis. One of these important imaging techniques is ultrasound imaging. However, during ultrasound image acquisition process, the quality of image can be degraded due to corruption by speckle noise. The enhancement of ultrasound images quality from the 2D ultrasound imaging machines is expected to provide medical practitioners more reliable medical images in their patients’ diagnosis. However, developing a denoising technique which could remove noise effectively without eliminating the image’s edges and details is still an ongoing issue. The objective of this paper is to develop a new method that is capable to remove speckle noise from the ultrasound image effectively. Therefore, in this paper we proposed the utilization of Bilateral Filter and Adaptive Wiener Filter (BL_Wiener denoising method for images corrupted by speckle noise. Bilateral Filter is a non-linear filter effective in removing noise, while Adaptive Wiener Filter balances the tradeoff between inverse filtering and noise smoothing by removing additive noise while inverting blurring. From our simulation results, it is found that the BL_Wiener method has improved between 0.89 [dB] to 3.35 [dB] in terms of PSNR for test images in different noise levels in comparison to conventional methods.

  10. Modeled and measured image-plane polychromatic speckle contrast

    Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.

    2016-02-01

    The statistical properties of speckle relevant to short- to medium-range (tactical) active tracking involving polychromatic illumination are investigated. A numerical model is developed to allow rapid simulation of speckled images including the speckle contrast reduction effects of illuminator bandwidth, surface slope, and roughness, and the polarization properties of both the source and the reflection. Regarding surface slope (relative orientation of the surface normal and illumination/observation directions), Huntley's theory for speckle contrast, which employs geometrical approximations to decrease computation time, is modified to increase accuracy by incorporation of a geometrical correction factor and better treatment of roughness and polarization. The resulting model shows excellent agreement with more exact theory over a wide range. An experiment is conducted to validate both the numerical model developed here and existing theory. A diode laser source with coherence length of 259±7 μm is reflected off of a silver-coated diffuse surface. Speckle data are gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55 and 1. Taking the measured data as truth, both equations show error mean and standard deviation of less than 3%. Thus, the theory is validated over the range of this experiment.

  11. Laser Speckle Imaging: A Novel Method for Detecting Dental Erosion

    Koshoji, Nelson H.; Bussadori, Sandra K.; Bortoletto, Carolina C.; Prates, Renato A.; Oliveira, Marcelo T.; Deana, Alessandro M.

    2015-01-01

    Erosion is a highly prevalent condition known as a non-carious lesion that causes progressive tooth wear due to chemical processes that do not involve the action of bacteria. Speckle images proved sensitive to even minimal mineral loss from the enamel. The aim of the present study was to investigate the use of laser speckle imaging analysis in the spatial domain to quantify shifts in the microstructure of the tooth surface in an erosion model. 32 fragments of the vestibular surface of bovine ...

  12. Speckle imaging with the MAMA detector: Preliminary results

    Horch, E.; Heanue, J. F.; Morgan, J. S.; Timothy, J. G.

    1994-01-01

    We report on the first successful speckle imaging studies using the Stanford University speckle interferometry system, an instrument that uses a multianode microchannel array (MAMA) detector as the imaging device. The method of producing high-resolution images is based on the analysis of so-called 'near-axis' bispectral subplanes and follows the work of Lohmann et al. (1983). In order to improve the signal-to-noise ratio in the bispectrum, the frame-oversampling technique of Nakajima et al. (1989) is also employed. We present speckle imaging results of binary stars and other objects from V magnitude 5.5 to 11, and the quality of these images is studied. While the Stanford system is capable of good speckle imaging results, it is limited by the overall quantum efficiency of the current MAMA detector (which is due to the response of the photocathode at visible wavelengths and other detector properties) and by channel saturation of the microchannel plate. Both affect the signal-to-noise ratio of the power spectrum and bispectrum.

  13. Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors.

    Rabbani, Hossein; Vafadust, Mansur; Abolmaesumi, Purang; Gazor, Saeed

    2008-09-01

    Speckle noise is an inherent nature of ultrasound images, which may have negative effect on image interpretation and diagnostic tasks. In this paper, we propose several multiscale nonlinear thresholding methods for ultrasound speckle suppression. The wavelet coefficients of the logarithm of image are modeled as the sum of a noise-free component plus an independent noise. Assuming that the noise-free component has some local mixture distribution (MD), and the noise is either Gaussian or Rayleigh, we derive the minimum mean squared error (MMSE) and the averaged maximum a posteriori (AMAP) estimators for noise reduction. We use Gaussian and Laplacian MD for each noise-free wavelet coefficient to characterize their heavy-tailed property. Since we estimate the parameters of the MD using the expectation maximization (EM) algorithm and local neighbors, the proposed MD incorporates some information about the intrascale dependency of the wavelet coefficients. To evaluate our spatially adaptive despeckling methods, we use both real medical ultrasound and synthetically introduced speckle images for speckle suppression. The simulation results show that our method outperforms several recently and the state-of-the-art techniques qualitatively and quantitatively. PMID:18713684

  14. Nephron blood flow dynamics measured by laser speckle contrast imaging

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N;

    2011-01-01

    simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...

  15. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging.

    Basak, Kausik; Dey, Goutam; Mahadevappa, Manjunatha; Mandal, Mahitosh; Sheet, Debdoot; Dutta, Pranab Kumar

    2016-09-01

    Laser speckle contrast imaging (LSCI) provides a noninvasive and cost effective solution for in vivo monitoring of blood flow. So far, most of the researches consider changes in speckle pattern (i.e. correlation time of speckle intensity fluctuation), account for relative change in blood flow during abnormal conditions. This paper introduces an application of LSCI for monitoring wound progression and characterization of cutaneous wound regions on mice model. Speckle images are captured on a tumor wound region at mice leg in periodic interval. Initially, raw speckle images are converted to their corresponding contrast images. Functional characterization begins with first segmenting the affected area using k-means clustering, taking wavelet energies in a local region as feature set. In the next stage, different regions in wound bed are clustered based on progressive and non-progressive nature of tissue properties. Changes in contrast due to heterogeneity in tissue structure and functionality are modeled using LSCI speckle statistics. Final characterization is achieved through supervised learning of these speckle statistics using support vector machine. On cross evaluation with mice model experiment, the proposed approach classifies the progressive and non-progressive wound regions with an average sensitivity of 96.18%, 97.62% and average specificity of 97.24%, 96.42% respectively. The clinical information yield with this approach is validated with the conventional immunohistochemistry result of wound to justify the ability of LSCI for in vivo, noninvasive and periodic assessment of wounds. PMID:27131831

  16. Laser speckle imaging: a novel method for detecting dental erosion.

    Nelson H Koshoji

    Full Text Available Erosion is a highly prevalent condition known as a non-carious lesion that causes progressive tooth wear due to chemical processes that do not involve the action of bacteria. Speckle images proved sensitive to even minimal mineral loss from the enamel. The aim of the present study was to investigate the use of laser speckle imaging analysis in the spatial domain to quantify shifts in the microstructure of the tooth surface in an erosion model. 32 fragments of the vestibular surface of bovine incisors were divided in for groups (10 min, 20 min. 30 min and 40 min of acid etching immersed in a cola-based beverage (pH approximately 2.5 twice a day during 7 days to create an artificial erosion. By analyzing the laser speckle contrast map (LASCA in the eroded region compared to the sound it was observed that the LASCA map shifts, proportionally to the acid each duration, by: 18%; 23%; 39% and 44% for the 10 min; 20 min; 30 min and 40 min groups, respectively. To the best of our knowledge, this is the first study to demonstrate the correlation between speckle patterns and erosion progression.

  17. Sensitivity, noise and quantitative model of Laser Speckle Contrast Imaging

    Yuan, Shuai

    In the dissertation, I present several studies on Laser Speckle Contrast Imaging (LSCI). The two major goals of those studies are: (1) to improve the signal-noise-ratio (SNR) of LSCI so it can be used to detect small blood flow change due to brain activities; (2) to find a reliable quantitative model so LSCI results can be compared among experiments and subjects and even with results from other blood flow monitoring techniques. We sought to improve SNR in the following ways: (1) We investigated the relationship between exposure time and the sensitivities of LSCI. We found that relative sensitivity reaches its maximum at an exposure time of around 5 ms. (2) We studied the relationship between laser speckle and camera aperture stop, which is actually the relationship between laser speckle and speckle/pixel size ratio. In general, speckle and pixel size should be approximately 1.5 - 2 to reach the maximum of detection factor beta as well as speckle contrast (SC) value and absolute sensitivity. This is also an important study for quantitative model development. (3) We worked on noise analysis and modeling. Noise affects both SNR and quantitative model. Usually random noise is more critical for SNR analysis. The main random noises in LSCI are statistical noise and physiological noise. Some physiological noises are caused by the small motions induced by heart beat or breathing. These are periodic and can be eliminated using methods discussed in this dissertation. Statistical noise is more fundamental and cannot be eliminated entirely. However it can be greatly reduced by increasing the effective pixel number N for speckle contrast processing. To develop the quantitative model, we did the following: (1) We considered more experimental factors in the quantitative model and removed several ideal case assumptions. In particular, in our model we considered the general detection factor beta, static scatterers and systematic noise. A simple calibration procedure is suggested

  18. Subspace-based technique for speckle noise reduction in ultrasound images

    Yahya, Norashikin; Nidal S. Kamel; Malik, Aamir S

    2014-01-01

    Background and purpose Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images. Methods In this paper, a subspace-based speckle r...

  19. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination

    Chaigne, Thomas; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2015-01-01

    In deep tissue photoacoustic imaging, the spatial resolution is inherently limited by acoustic diffraction. Moreover, as the ultrasound attenuation increases with frequency, resolution is often traded-off for penetration depth. Here we report on super-resolution photoacoustic imaging by use of multiple speckle illumination. Specifically, we show that the analysis of second-order fluctuations of the photoacoustic images combined with image deconvolution enables resolving optically absorbing structures beyond the acoustic diffraction limit. A resolution increase of almost a factor 2 is demonstrated experimentally. Our method introduces a new framework that could potentially lead to deep tissue photoacoustic imaging with sub-acoustic resolution.

  20. A method to transfer speckle patterns for digital image correlation

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50με in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation. (paper)

  1. A method to transfer speckle patterns for digital image correlation

    Chen, Zhenning; Quan, Chenggen; Zhu, Feipeng; He, Xiaoyuan

    2015-09-01

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50με in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation.

  2. Dynamic speckle image segmentation using self-organizing maps

    Pra, Ana L. Dai; Meschino, Gustavo J.; Guzmán, Marcelo N.; Scandurra, Adriana G.; González, Mariela A.; Weber, Christian; Trivi, Marcelo; Rabal, Héctor; Passoni, Lucía I.

    2016-08-01

    The aim of this work is to build a computational model able to automatically identify, after training, dynamic speckle pattern regions with similar properties. The process is carried out using a set of descriptors applied to the intensity variations with time in every pixel of a speckle image sequence. An image obtained by projecting a self-organized map is converted into regions of similar activity that can be easily distinguished. We propose a general procedure that could be applied to numerous situations. As examples we show different situations: (a) an activity test in a simplified situation; (b) a non-biological example and (c) biological active specimens. The results obtained are encouraging; they significantly improve upon those obtained using a single descriptor and will eventually permit automatic quantitative assessment.

  3. Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images.

    Aysal, Tuncer C; Barner, Kenneth E

    2007-05-01

    Speckle is a multiplicative noise that degrades ultrasound images. Recent advancements in ultrasound instrumentation and portable ultrasound devices necessitate the need for more robust despeckling techniques, for both routine clinical practice and teleconsultation. Methods previously proposed for speckle reduction suffer from two major limitations: 1) noise attenuation is not sufficient, especially in the smooth and background areas; 2) existing methods do not sufficiently preserve or enhance edges--they only inhibit smoothing near edges. In this paper, we propose a novel technique that is capable of reducing the speckle more effectively than previous methods and jointly enhancing the edge information, rather than just inhibiting smoothing. The proposed method utilizes the Rayleigh distribution to model the speckle and adopts the robust maximum-likelihood estimation approach. The resulting estimator is statistically analyzed through first and second moment derivations. A tuning parameter that naturally evolves in the estimation equation is analyzed, and an adaptive method utilizing the instantaneous coefficient of variation is proposed to adjust this parameter. To further tailor performance, a weighted version of the proposed estimator is introduced to exploit varying statistics of input samples. Finally, the proposed method is evaluated and compared to well-accepted methods through simulations utilizing synthetic and real ultrasound data. PMID:17518065

  4. Twinkle Twinkle Little Star - Speckle Imaging for Exoplanet Characterization

    Howell, Steve B.; Scott, Nic; Horch, Elliott

    2016-06-01

    The NASA K2 mission is finding many high-value exoplanets and world-wide follow-up is ensuing. The NASA TESS mission will soon be launched, requiring additional ground-based observations as well. As a part of the NASA-NSFNN-EXPLORE program to enable exoplanet research, our group is building two new speckle interferometry cameras for the Kitt Peak WIYN 3.5-m telescope and the Gemini-N 8-m telescope. Modeled after the successful DSSI visitor instrument that has been used at these telescopes for many years, speckle observations provide the highest resolution images available today from any ground- or space-based single telescope. They are the premier method through which small, rocky exoplanets can be validated. Available for public use in early 2017, WIYNSPKL and GEMSPKL will obtain simultaneous images in two filters with fast EMCCD readout, "speckle" and “wide-field” imaging modes, and user support for proposal writing, observing, and data reduction. We describe the new cameras, their design, and their benefits for exoplanet follow-up, characterization, and validation. Funding for this project comes from the NASA Exoplanet Exploration Program and NASA HQ.

  5. Functional laser speckle imaging of cerebral blood flow under hypothermia

    Li, Minheng; Miao, Peng; Zhu, Yisheng; Tong, Shanbao

    2011-08-01

    Hypothermia can unintentionally occur in daily life, e.g., in cardiovascular surgery or applied as therapeutics in the neurosciences critical care unit. So far, the temperature-induced spatiotemporal responses of the neural function have not been fully understood. In this study, we investigated the functional change in cerebral blood flow (CBF), accompanied with neuronal activation, by laser speckle imaging (LSI) during hypothermia. Laser speckle images from Sprague-Dawley rats (n = 8, male) were acquired under normothermia (37°C) and moderate hypothermia (32°C). For each animal, 10 trials of electrical hindpaw stimulation were delivered under both temperatures. Using registered laser speckle contrast analysis and temporal clustering analysis (TCA), we found a delayed response peak and a prolonged response window under hypothermia. Hypothermia also decreased the activation area and the amplitude of the peak CBF. The combination of LSI and TCA is a high-resolution functional imaging method to investigate the spatiotemporal neurovascular coupling in both normal and pathological brain functions.

  6. Speckle lifetime in XAO coronagraphic images: temporal evolution of SPHERE coronagraphic images

    Milli, J; Mouill, D; Mawet, D; Girard, J G; Vigan, A; Boccaletti, A; Kasper, M; Wahhaj, Z; Lagrange, A -M; Beuzit, J -L; Fusco, T; Sauvage, J -F; Galicher, R

    2016-01-01

    The major source of noise in high-contrast imaging is the presence of slowly evolving speckles that do not average with time. The temporal stability of the point-spread-function (PSF) is therefore critical to reach a high contrast with extreme adaptive optics (xAO) instruments. Understanding on which timescales the PSF evolves and what are the critical parameters driving the speckle variability allow to design an optimal observing strategy and data reduction technique to calibrate instrumental aberrations and reveal faint astrophysical sources. We have obtained a series of 52 min, AO-corrected, coronagraphically occulted, high-cadence (1.6Hz), H-band images of the star HR 3484 with the SPHERE (Spectro-Polarimeter High-contrast Exoplanet REsearch instrument on the VLT. This is a unique data set from an xAO instrument to study its stability on timescales as short as one second and as long as several tens of minutes. We find different temporal regimes of decorrelation. We show that residuals from the atmospheric...

  7. A PDE based Method for Speckle Reduction of Log-compressed Ultrasound Image

    Jie Huang

    2011-04-01

    Full Text Available Speckle noise is widely existence in coherent imaging systems, such as synthetic aperture radar, sonar, ultrasound and laser imaging, and is commonly described as signal correlated. In this paper, we focus on speckle reduction problem in real ultrasound image. Unlike traditional anisotropic diffusion methods usually taking image gradient as a diffusion index, in this paper, we present a new texture based anisotropic diffusion method for speckle reduction in real ultrasound image. The results comparing our new method with other well known methods on both synthetic images and real ultrasound images are reported to show the superiority of our method in keeping important features of real ultrasound images.

  8. Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images.

    Yue, Yong; Croitoru, Mihai M; Bidani, Akhil; Zwischenberger, Joseph B; Clark, John W

    2006-03-01

    This paper introduces a novel nonlinear multiscale wavelet diffusion method for ultrasound speckle suppression and edge enhancement. This method is designed to utilize the favorable denoising properties of two frequently used techniques: the sparsity and multiresolution properties of the wavelet, and the iterative edge enhancement feature of nonlinear diffusion. With fully exploited knowledge of speckle image models, the edges of images are detected using normalized wavelet modulus. Relying on this feature, both the envelope-detected speckle image and the log-compressed ultrasonic image can be directly processed by the algorithm without need for additional preprocessing. Speckle is suppressed by employing the iterative multiscale diffusion on the wavelet coefficients. With a tuning diffusion threshold strategy, the proposed method can improve the image quality for both visualization and auto-segmentation applications. We validate our method using synthetic speckle images and real ultrasonic images. Performance improvement over other despeckling filters is quantified in terms of noise suppression and edge preservation indices. PMID:16524086

  9. Multiscale entropy study of medical laser speckle contrast images.

    Humeau-Heurtier, Anne; Mahé, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    Laser speckle contrast imaging (LSCI) is a noninvasive full-field optical imaging technique that gives a 2-D microcirculatory blood flow map of tissue. Due to novelty of commercial laser speckle contrast imagers, image processing of LSCI data is new. By opposition, the numerous signal processing works of laser Doppler flowmetry (LDF) data-that give a 1-D view of microvascular blood flow-have led to interesting physiological information. Recently, analysis of multiscale entropy (MSE) of LDF signals has been proposed. A nonmonotonic evolution of MSE with two distinctive scales-probably dominated by the cardiac activity-has been reported. We herein analyze MSE of LSCI data. We compare LSCI results with the ones of LDF signals obtained during the same experiment. We show that when time evolution of LSCI single pixels is studied, MSE presents a monotonic decreasing pattern, similar to the one of Gaussian white noises. By opposition, when the mean of LSCI pixel values is computed in a region of interest (ROI) and followed with time, MSE pattern becomes close to the one of LDF data, for ROI large enough. LSCI is gaining increased interest for blood flow monitoring. The physiological implications of our results require future study. PMID:22868525

  10. Speckle reduction algorithm for laser underwater image based on curvelet transform

    Wei Ni; Baolong Guo; Liu Yang; Peiyan Fei

    2006-01-01

    @@ Based on the analysis on the statistical model of speckle noise in laser underwater image, a novel speckle reduction algorithm using curvelet transform is proposed. Logarithmic transform is performed to transform the original multiplicative speckle noise into additive noise. An improved hard thresholding algorithm is applied in curvelet transform domain. The classical Monte-Carlo method is adopted to estimate the statistics of contourlet coefficients for speckle noise, thus determining the optimal threshold set. To further improve the visual quality of despeckling laser image, the cycle spinning technique is also utilized. Experimental results show that the proposed algorithm can achieve better performance than classical wavelet method and maintain more detail information.

  11. Constructive role of sensors nonlinearities in the acquisition of partially polarized speckle images

    We study the impact of the level of the speckle noise on data acquisition in a partially polarized coherent imaging system with the presence of a nonlinearity in the imaging sensor characteristic. In perfectly linear acquisition conditions, due to the essentially multiplicative action of the speckle, the image contrast is unchanged as the speckle noise level increases, and so it has no impact on the quality of the acquired images. On the contrary, in nonlinear conditions the acquisition is affected by the speckle noise level. However, this effect of the speckle is not always detrimental. We show that, in definite nonlinear conditions, there is usually an optimal level of the speckle noise that leads to a maximum quality of the acquired images. We theoretically analyze such nonlinear regimes with partially polarized speckled images. We specifically exhibit the existence of an optimal speckle noise level in the interesting case of images realized only by a depolarization contrast. Illustrations are given with a simple 1-bit hard limiter and binary images. Then, we propose and discuss as perspectives an experimental optical setup to confront theory and experiment.

  12. Integration of speckle de-noising and image segmentation using synthetic aperture radar image for flood extent extraction

    J Senthilnath; Shenoy, Vikram H; Rajendra, Ritwik; Omkar, SN; Mani, V.; Diwakar, PG

    2013-01-01

    Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise ...

  13. SPECKLE NOISE FILTERING FOR ULTRASOUND IMAGES OF COMMON CAROTID ARTERY: A REVIEW

    D. Sasikala; Madheswaran, M.

    2014-01-01

    Speckle is modeled as a signal dependent noise, which tends to reduce the image resolution and contrast, thereby reducing the diagnostic values of the ultrasound imaging modality. Reduction of speckle noise is one of the most important processes to increase the quality of biomedical images. Filters are used to improve the quality of ultrasound images by removing the noise. This paper compares the performance of the thresholding technique Bayes Shrink in despeckling the medical ultrasound imag...

  14. Experimental imaging coding system using three-dimensional subjective speckle structures

    We propose, and experimentally demonstrate, an optical encoding system employing a three-dimensional subjective speckle distribution as a secure information carrier. An image mask (containing the information to be sent) is illuminated by randomly distributed light. The outgoing wavefront reaches a lens, and thus three-dimensional subjective speckle distributions are generated in the normal direction of the scattering plane. These speckle structures are sampled by registering consecutive planes along the optical axis with a complementary metal-oxide semiconductor camera. Along with the optical parameters (keys), these intensity patterns are sent through independent channels to a receiver. By replicating the original system with the keys and implementing a single-beam multiple-intensity reconstruction, we show that the message recipient needs a minimum set of speckle images to successfully recover the original information. Moreover, intercepting a partial set of speckle images with the keys may not result in a successful interception. (paper)

  15. Experimental imaging coding system using three-dimensional subjective speckle structures

    Mosso, F.; Peters, E.; Bolognini, N.; Tebaldi, M.; Torroba, R.; Pérez, D. G.

    2013-12-01

    We propose, and experimentally demonstrate, an optical encoding system employing a three-dimensional subjective speckle distribution as a secure information carrier. An image mask (containing the information to be sent) is illuminated by randomly distributed light. The outgoing wavefront reaches a lens, and thus three-dimensional subjective speckle distributions are generated in the normal direction of the scattering plane. These speckle structures are sampled by registering consecutive planes along the optical axis with a complementary metal-oxide semiconductor camera. Along with the optical parameters (keys), these intensity patterns are sent through independent channels to a receiver. By replicating the original system with the keys and implementing a single-beam multiple-intensity reconstruction, we show that the message recipient needs a minimum set of speckle images to successfully recover the original information. Moreover, intercepting a partial set of speckle images with the keys may not result in a successful interception.

  16. Low-cost laser speckle contrast imaging of blood flow using a webcam

    Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.

    2013-01-01

    Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phanto...

  17. DE-SPECKLING OF SAR IMAGES BASED ON OPTIMAL BASIS WAVELET VIA PATCH ORDERING

    Anakha Satheesh P*, Dr. D. Loganathan

    2016-01-01

    Synthetic Aperture Radar (SAR) technology has mainly used for capturing high quality images from higher altitudes. SAR imagery has become an important application over optical satellite imagery because of its ability to operate in any whether condition. The SAR image acquired via coherent imaging are associated with a noise called speckle noise, which is multiplicative in nature. The presence of speckle noise degrades the quality of SAR image then leads to loss of crucial information. So it h...

  18. Integration of image exposure time into a modified laser speckle imaging method

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  19. Fast multiscale directional filter bank-based speckle mitigation in gallstone ultrasound images.

    Leavline, Epiphany Jebamalar; Sutha, Shunmugam; Singh, Danasingh Asir Antony Gnana

    2014-02-01

    Speckle noise is a multiplicative type of noise commonly seen in medical and remote sensing images. It gives a granular appearance that degrades the quality of the recorded images. These speckle noise components need to be mitigated before the image is used for further processing and analysis. This paper presents a novel approach for removing granular speckle noise in gray scale images. We used an efficient multiscale image representation scheme named fast multiscale directional filter bank (FMDFB) along with simple threshold methods such as Vishushrink for image processing. It is a perfect reconstruction framework that can be used for a wide range of image processing applications because of its directionality and reduced computational complexity. The FMDFB-based speckle mitigation is appealing over other traditional multiscale approaches such as wavelets and Contourlets. Our experimental results show that the despeckling performance of the proposed method outperforms the wavelet and Contourlet-based despeckling methods. PMID:24562027

  20. Early diagnosis of teeth erosion using polarized laser speckle imaging

    Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie

    2016-07-01

    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.

  1. Early diagnosis of teeth erosion using polarized laser speckle imaging.

    Abou Nader, Christelle; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie

    2016-07-01

    Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness. PMID:26720050

  2. System of acquisition and processing of images of dynamic speckle

    In this paper we show the design and implementation of a system to capture and analysis of dynamic speckle. The device consists of a USB camera, an isolated system lights for imaging, a laser pointer 633 nm 10 mw as coherent light source, a diffuser and a laptop for processing video. The equipment enables the acquisition and storage of video, also calculated of different descriptors of statistical analysis (vector global accumulation of activity, activity matrix accumulation, cross-correlation vector, autocorrelation coefficient, matrix Fujji etc.). The equipment is designed so that it can be taken directly to the site where the sample for biological study and is currently being used in research projects within the group

  3. System of acquisition and processing of images of dynamic speckle

    Vega, F.; >C Torres,

    2015-01-01

    In this paper we show the design and implementation of a system to capture and analysis of dynamic speckle. The device consists of a USB camera, an isolated system lights for imaging, a laser pointer 633 nm 10 mw as coherent light source, a diffuser and a laptop for processing video. The equipment enables the acquisition and storage of video, also calculated of different descriptors of statistical analysis (vector global accumulation of activity, activity matrix accumulation, cross-correlation vector, autocorrelation coefficient, matrix Fujji etc.). The equipment is designed so that it can be taken directly to the site where the sample for biological study and is currently being used in research projects within the group.

  4. Lung vasculature imaging using speckle variance optical coherence tomography

    Cua, Michelle; Lee, Anthony M. D.; Lane, Pierre M.; McWilliams, Annette; Shaipanich, Tawimas; MacAulay, Calum E.; Yang, Victor X. D.; Lam, Stephen

    2012-02-01

    Architectural changes in and remodeling of the bronchial and pulmonary vasculature are important pathways in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. However, there is a lack of methods that can find and examine small bronchial vasculature in vivo. Structural lung airway imaging using optical coherence tomography (OCT) has previously been shown to be of great utility in examining bronchial lesions during lung cancer screening under the guidance of autofluorescence bronchoscopy. Using a fiber optic endoscopic OCT probe, we acquire OCT images from in vivo human subjects. The side-looking, circumferentially-scanning probe is inserted down the instrument channel of a standard bronchoscope and manually guided to the imaging location. Multiple images are collected with the probe spinning proximally at 100Hz. Due to friction, the distal end of the probe does not spin perfectly synchronous with the proximal end, resulting in non-uniform rotational distortion (NURD) of the images. First, we apply a correction algorithm to remove NURD. We then use a speckle variance algorithm to identify vasculature. The initial data show a vascaulture density in small human airways similar to what would be expected.

  5. Speckle reduction in optical coherence tomography imaging by affine-motion image registration

    Alonso-Caneiro, David; Read, Scott A.; Collins, Michael J.

    2011-11-01

    Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.

  6. Simulations of multi-contrast x-ray imaging using near-field speckles

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  7. Simulations of multi-contrast x-ray imaging using near-field speckles

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself

  8. Fabrication and optimization of micro-scale speckle patterns for digital image correlation

    Experimental investigations are performed on the fabrication and optimization of micro-scale speckle patterns formed by spinning an epoxy resin and powder for digital image correlation measurements. New factors influencing the fabrication process, including the ambient temperature, centrifugal velocity, and solidifying time, are carefully analyzed and are evaluated in terms of the average gray gradient and particle agglomeration, and the optimal micro-scale speckle pattern is obtained with the proposed parameters in the fabrication process. Additionally, the micro-scale speckle pattern is experimentally verified by performing prescribed rigid-body translation tests, and the relative errors are approximately 1.5%. Finally, the micro-scale speckle patterns are transferred to tensile specimens of aluminum and a polymer material with a V notch. The measurement results are consistent with the theoretical predictions, and this agreement demonstrates the feasibility and accuracy of the micro-scale speckle patterns. (paper)

  9. On the origin of speckle in x-ray phase contrast images of lung tissue

    Phase contrast x-ray imaging of small animal lungs reveals a speckled intensity pattern not seen in other tissues, making the lungs highly visible in comparison to other organs. Although bearing a superficial resemblance to alveoli, the cause of this speckle has not been established. With a view to determining the mechanism for the formation of speckle, this paper details the results of propagation-based phase contrast experiments performed on mice lungs, together with packed glass microspheres used to emulate lung tissue. These experimental studies are compared to numerical simulations, based on wave propagation techniques. We find that speckle arises from focusing effects, with multiple alveoli acting as aberrated compound refractive lenses. Both experiments and modelling suggest that this speckle-formation phenomenon may lead to better screening methods for human lungs than conventional radiography

  10. On the origin of speckle in x-ray phase contrast images of lung tissue

    Kitchen, M J [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia); Paganin, D [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia); Lewis, R A [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia); Yagi, N [SPring-8/JASRI, Mikazuki, Hyogo 679-5198 (Japan); Uesugi, K [SPring-8/JASRI, Mikazuki, Hyogo 679-5198 (Japan); Mudie, S T [Centre for X-ray Physics and Imaging, School of Physics and Materials Engineering, Monash University, VIC 3800 (Australia)

    2004-09-21

    Phase contrast x-ray imaging of small animal lungs reveals a speckled intensity pattern not seen in other tissues, making the lungs highly visible in comparison to other organs. Although bearing a superficial resemblance to alveoli, the cause of this speckle has not been established. With a view to determining the mechanism for the formation of speckle, this paper details the results of propagation-based phase contrast experiments performed on mice lungs, together with packed glass microspheres used to emulate lung tissue. These experimental studies are compared to numerical simulations, based on wave propagation techniques. We find that speckle arises from focusing effects, with multiple alveoli acting as aberrated compound refractive lenses. Both experiments and modelling suggest that this speckle-formation phenomenon may lead to better screening methods for human lungs than conventional radiography.

  11. Fabrication and optimization of micro-scale speckle patterns for digital image correlation

    Zhu, Jianguo; Yan, Gaoshen; He, Guanglong; Chen, Lei

    2016-01-01

    Experimental investigations are performed on the fabrication and optimization of micro-scale speckle patterns formed by spinning an epoxy resin and powder for digital image correlation measurements. New factors influencing the fabrication process, including the ambient temperature, centrifugal velocity, and solidifying time, are carefully analyzed and are evaluated in terms of the average gray gradient and particle agglomeration, and the optimal micro-scale speckle pattern is obtained with the proposed parameters in the fabrication process. Additionally, the micro-scale speckle pattern is experimentally verified by performing prescribed rigid-body translation tests, and the relative errors are approximately 1.5%. Finally, the micro-scale speckle patterns are transferred to tensile specimens of aluminum and a polymer material with a V notch. The measurement results are consistent with the theoretical predictions, and this agreement demonstrates the feasibility and accuracy of the micro-scale speckle patterns.

  12. Spatial sub-Rayleigh imaging analysis via speckle laser illumination

    Wang, Yunlong; Liu, Ruifeng; Chen, Dongxu; Gao, Hong; Zhang, Pei; Li, Fuli

    2016-01-01

    It is commonly accepted that optical sub-Rayleigh imaging has potential application in many fields. In this Letter, by confining the divergence of the optical field, as well as the size of the illumination source, we show that the first-order averaged intensity measurement via speckle laser illumina- tion can make an actual breakthrough on the Rayleigh limit. For a high-order algorithm, it has been reported that the autocorrelation function can be utilized to achieve the sub-Rayleigh feature. However, we find that this sub- Rayleigh feature for the high-order algorithm is limited only to binary objects, and the image will be distorted when a gray object is placed. This property encourages us to find the physics behind the high-order correlation imaging algo- rithm. We address these explanations in this Letter and find that for different types of high-order algorithm, there is always a seat in the right place from the cross-correlation function.

  13. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  14. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical masking of a vessel position and measurements of it’s diameter from laser speckle images. This approach demonstrates high reliability and stability.

  15. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations. PMID:18794967

  16. Ultrasound harmonic imaging with reducing speckle noise by spatial-frequency compounding approach

    Guo, Wei; Wang, Yuanyuan; Yu, Jinhua

    2015-12-01

    Speckle noise is a phenomenon inherent in any coherent imaging process and decreases the signal-to-noise ratio (SNR), which brings down the imaging quality. Speckle noise reduction is particularly important in the tissue harmonic imaging (THI) since it has the lower energy and the poorer SNR than the fundamental imaging (FI). Recently plane wave imaging (PWI) has been widely explored. Since the entire imaging region can be covered in one emission, the frame rate increases greatly. In PWI, speckle can be reduced by incoherently averaging images with different speckle patterns. Such images can be acquired by varying the angle from which a target is imaged (spatial compounding, SC) or by changing the spectrum of the pulse (frequency compounding, FC). In this paper we demonstrate here that each approach is only a partial solution and that combining them provides a better result than applying either approach separately. We propose a spatial-frequency compounding (SFC) method for THI. The new method brings a good speckle suppression result. To illustrate the performance of our method, experiments have been conducted on the simulated data. A nonlinear simulation platform based on the full-wave model is used in the harmonic imaging simulation. Results show that our method brings the SNR an improvement of up to 50% in comparison with the single frame HI while maintaining a far better performance in both terms of resolution and contrast than the FI. Similar results can be obtained from our further experiments.

  17. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  18. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction

    Mogensen, Mette; Jørgensen, Thomas Martini; Thrane, Lars;

    2010-01-01

    suggests a method for improving OCT image quality for skin cancer imaging. EXPERIMENTAL DESIGN: OCT is an optical imaging method analogous to ultrasound. Two basal cell carcinomas (BCC) were imaged using an OCT speckle reduction technique (SR-OCT) based on repeated scanning by altering the distance between...

  19. A theoretical analysis of the super-resolution capacity of imagers using speckle illuminations

    Idier, Jérôme; Liu, Penghuan; Allain, Marc; Bourguignon, Sébastien; Sentenac, Anne

    2015-01-01

    Speckle based imaging consists in forming a super-resolved reconstruction of an unknown object from low-resolution images obtained under random inhomogeneous illuminations (speckles). However, the origin of this super-resolution is unclear. In this work, we demonstrate that, under physically realistic conditions, the correlation of the data have a super-resolution power corresponding to the squaring of the imager point spread function. This theoretical result is important for many practical imaging systems such as acoustic and electromagnetic tomographies, fluorescence and photoacoustic microscopies or synthetic aperture radar imaging.

  20. In vivo small animal lung speckle imaging with a benchtop in-line XPC system

    Garson, A. B.; Gunsten, S.; Vasireddi, S.; Brody, S.; Anastasio, M. A.

    2016-04-01

    X-ray phase-contrast (XPC) images of mouse lungs were acquired in vivo with a benchtop XPC system employing a conventional microfocus source. A strong speckled intensity pattern was present in lung regions of the XPC radiographs, previously only observed in synchroton experiments and in situ benchtop studies. We showed how the texture characteristics of the speckle is influenced by the amount of air present in the lungs at different points in the breathing cycle.

  1. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study

    Parthasarathy, Ashwin B.; Weber, Erica L.; Richards, Lisa M.; Fox, Douglas J.; Dunn, Andrew K.

    2010-11-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. CBF measurements are important for assessing whether blood flow has returned to presurgical baseline levels and for assessing postsurgical tissue viability. Existing techniques for intraoperative monitoring of CBF based on magnetic resonance imaging are expensive and often impractical, while techniques such as indocyanine green angiography cannot produce quantitative measures of blood flow. Laser speckle contrast imaging (LSCI) is an optical technique that has been widely used to quantitatively image relative CBF in animal models in vivo. In a pilot clinical study, we adapted an existing neurosurgical operating microscope to obtain LSCI images in humans in real time during neurosurgery under baseline conditions and after bipolar cautery. Simultaneously recorded ECG waveforms from the patient were used to develop a filter that helped reduce measurement variabilities due to motion artifacts. Results from this study demonstrate the feasibility of using LSCI to obtain blood flow images during neurosurgeries and its capability to produce full field CBF image maps with excellent spatial resolution in real-time with minimal disruption to the surgical procedure.

  2. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  3. Optimum exposure time for speckle imaging through the atmosphere using the bispectrum technique

    McCrae, Kimberley A.; Roggemann, Michael C.; Welsh, Byron M.

    1996-10-01

    Bispectrum speckle imaging uses the average of many short exposure frames to eliminate atmospheric effects on images. Unfortunately, objects are often dim, requiring longer exposure times to collect enough photons to reconstruct an image. We investigate this trade-off using a computer simulation to create image frames under various seeing conditions, then determine the exposure time that yields the highest signal-to-noise ratio for the unbiased speckle interferometry estimator and the lowest mean square error for the reconstructed phase. We have found that for low light levels and for high read noise cases the optimum exposure time is greater than one Greenwood coherence time.

  4. High-order correlation of non-Rayleigh speckle fields and its application in super-resolution imaging

    Zhang, Suzhen; Wang, Wei; Yu, Rong; Yang, Xiaoxue

    2016-05-01

    Classical correlation of Rayleigh speckle fields E(x) can only mimic second-order correlation in quantum imaging. Here, we propose a method to explore the high-order correlation of non-Rayleigh speckle fields E N (x) which shows a totally different property from the Rayleigh speckle fields. As a specific example, we illustrate and analyze in detail the third-order speckle scanning imaging which overcomes the diffraction barrier by a factor of \\sqrt{3} . The influences of diffractions in the illumination path and the detection path are also discussed. This investigation may pave the way for applications in super-resolution imaging.

  5. Speckle filtering of medical ultrasonic images using wavelet and guided filter.

    Zhang, Ju; Lin, Guangkuo; Wu, Lili; Cheng, Yun

    2016-02-01

    Speckle noise is an inherent yet ineffectual residual artifact in medical ultrasound images, which significantly degrades quality and restricts accuracy in automatic diagnostic techniques. Speckle reduction is therefore an important step prior to the analysis and processing of the ultrasound images. A new de-noising method based on an improved wavelet filter and guided filter is proposed in this paper. According to the characteristics of medical ultrasound images in the wavelet domain, an improved threshold function based on the universal wavelet threshold function is developed. The wavelet coefficients of speckle noise and noise-free signal are modeled as Rayleigh distribution and generalized Gaussian distribution respectively. The Bayesian maximum a posteriori estimation is applied to obtain a new wavelet shrinkage algorithm. The coefficients of the low frequency sub-band in the wavelet domain are filtered by guided filter. The filtered image is then obtained by using the inverse wavelet transformation. Experiments with the comparison of the other seven de-speckling filters are conducted. The results show that the proposed method not only has a strong de-speckling ability, but also keeps the image details, such as the edge of a lesion. PMID:26489484

  6. Assessment of incident intensity on laser speckle contrast imaging using a nematic liquid crystal spatial light modulator (Conference Presentation)

    Kirby, Mitchell A.; Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-03-01

    In this work the effects of incident intensity and effective camera dynamic range on image acquisition of both frozen and time-averaged dynamic speckle patterns, and their effects on laser speckle contrast imaging are addressed. A nematic liquid crystal, phase-only, spatial light modulator (SLM) was employed to generate laser speckle in a controlled and repeatable fashion. By addressing the calculated spatial contrast of frozen and time-averaged dynamic speckle patterns imaged across a wide range of intensities, we present a description of optimum intensity characteristics that should be observed when using LSCI. The results indicate the importance of assessing the intensity of the signal quantized by the camera in LSCI. By analyzing intensity PDF's during image acquisition of speckle patterns used in LSCI, an optimum incident intensity can be detected when a single, polarized speckle frame displays the first order statistics characteristic of fully developed speckle. Our results indicate that there is a range of laser power densities where the ensuing imaged speckle exhibit optimum sensitivity to flow as well as relatively constant calculated contrast values. It is clear that at high intensities, high frequency information is lost due to camera saturation, resulting in a decrease in contrast. When imaging speckle at low intensity, there is a risk for loss of data during the digital quantization process. The results are presented in a generalized fashion, so they should be applicable to any LSCI system, regardless of incident laser power or camera depth.

  7. Bayesian-Based Speckle Suppression for SAR Image Using Contourlet Transform

    De-Xiang Zhang; Qing-Wei Gao; Xiao-Pei Wu

    2008-01-01

    A novel and efficient speckle noise reduction algorithm based on Bayesian contourlet shrinkage using contourlet transform is proposed. First, we show the sub-band decompositions of SAR images using contourlet transforms, which provides sparse representation at both spatial and directional resolutions. Then, a Bayesian contourlet shrinkage factor is applied to the decomposed data to estimate the best value for noise-free contourlet coefficients. Experimental results show that compared with conventional wavelet despeckling algorithm, the proposed algorithm can achieve an excellent balance between suppresses speckle effectively and preserves image details, and the significant information of original image like textures and contour details is well maintained.

  8. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    Tsantis, Stavros [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Spiliopoulos, Stavros; Karnabatidis, Dimitrios [Department of Radiology, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Skouroliakou, Aikaterini [Department of Energy Technology Engineering, Technological Education Institute of Athens, Athens 12210 (Greece); Hazle, John D. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Kagadis, George C., E-mail: gkagad@gmail.com, E-mail: George.Kagadis@med.upatras.gr, E-mail: GKagadis@mdanderson.org [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-07-15

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  9. Evaluating multi-exposure speckle imaging estimates of absolute autocorrelation times.

    Kazmi, S M Shams; Wu, Rebecca K; Dunn, Andrew K

    2015-08-01

    Multi-exposure speckle imaging (MESI) is a camera-based flow-imaging technique for quantitative blood-flow monitoring by mapping the speckle-contrast dependence on camera exposure duration. The ability of laser speckle contrast imaging to measure the temporal dynamics of backscattered and interfering coherent fields, in terms of the accuracy of autocorrelation measurements, is a major unresolved issue in quantitative speckle flowmetry. MESI fits for a number of parameters including an estimate of the electric field autocorrelation decay time from the imaged speckles. We compare the MESI-determined correlation times in vitro and in vivo with accepted true values from direct temporal measurements acquired with a photon-counting photon-multiplier tube and an autocorrelator board. The correlation times estimated by MESI in vivo remain on average within 14±11% of those obtained from direct temporal autocorrelation measurements, demonstrating that MESI yields highly comparable statistics of the time-varying fields that can be useful for applications seeking not only quantitative blood flow dynamics but also absolute perfusion. PMID:26258378

  10. Speckle reduction in optical coherence tomography by two-step image registration

    Zhang, Hang; Li, Zhongliang; Wang, Xiangzhao; Zhang, Xiangyang

    2015-03-01

    The image quality of optical coherence tomography can be severely influenced by speckle noise (i.e., signal-degrading speckle). Averaging multiple B-scans can effectively suppress speckle noise. Because of sample motion, images subject to averaging must be aligned exactly. We propose a two-step image registration scheme that combines global and local registrations for speckle reduction by the averaging of multiple B-scans. The method begins with a global registration to compensate for overall motion, which is estimated based on the rigid transformation model involving translation and rotation. Then each A-scan is aligned by cross-correlation using a graph-based algorithm, followed by a pixel subdivision method to improve smoothness in local registration. The method does not rely on any information about the retinal layer boundaries. We have applied this method to the registration of macular optical coherence tomography images. The results show the reduction of speckle noise and the enhanced visualization of layer structures. A signal-to-noise ratio improvement of nearly the square root of the number of averaged B-scans and a contrast-to-noise ratio improvement of around 11 are achieved through our method.

  11. A Study of Speckle Noise Reduction Filters

    Jyoti Jaybhay

    2015-06-01

    Full Text Available Ultrasound images and SAR i.e. synthetic aperture radar images are usually corrupted because of speckle noise also called as granular noise. It is quite a tedious task to remove such noise and analyze those corrupted images. Till now many researchers worked to remove speckle noise using frequency domain methods, temporal methods, and adaptive methods. Different filters have been developed as Mean and Median filters, Statistic Lee filter, Statistic Kuan filter, Frost filter, Srad filter. This paper reviews filters used to remove speckle noise.

  12. Speckle suppression in digital holographic imaging with random phases and different wavelengths

    Leng, Junmin; Sang, Xinzhu; Yan, Binbin

    2014-03-01

    An effective speckle suppression method in digital holography is experimentally demonstrated with a wavelength-tunable coherent light source and a moving diffuser. Multiple off-axis digital holograms with different wavelengths and random phases are obtained. The Fresnel transformation algorithm is used to calculate the diffraction integral in the reconstruction. The speckle noise in the reconstructed images is suppressed by superposing and averaging the intensity of multiple reconstruction images. Experiment results and the parameter evaluation show that the presented method is effective and feasible.

  13. Probabilistic graphical modeling of speckle statistics in laser speckle contrast imaging for noninvasive and label-free retinal angiography.

    Basak, Kausik; Dey, Goutam; Sheet, Debdoot; Mahadevappa, Manjunatha; Mandal, Mahitosh; Dutta, Pranab K

    2015-08-01

    This paper introduces a noninvasive and label-free approach for retinal angiography using Laser speckle contrast imaging (LSCI). Retinal vessel structure is segmented using a Hidden Markov Random Field (HMRF) based model. Prior to that, k-means clustering is used to obtain initial parameter set and labels for HMRF. Final parameter set for HMRF is estimated using expectation-maximization (EM) algorithm and final labeling is achieved using maximum aposteriori (MAP) algorithm. Clique energy for HMRF is computed from eigenvalue analysis of structure tensor for each pixel. This helps to get connectivity in the direction of strongest tangents in its neighborhood, facilitating the tracking of fine vessels in retinal vascular network. Quantitative evaluation shows an average vessel segmentation accuracy of 96.41% in normal condition with substantial improvement in tracking capability of fine vessels. Changes in blood flow can be tracked and observed at segmented output; particularly applicable for the study of different pathological conditions. PMID:26737719

  14. The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction

    Cai, Xiao-ou; Wang, Hui

    2008-01-01

    Based on the whole process of the recording and reconstruction of digital holography, we study the formation cause of speckle noise in its reconstructed image and acquire the conclusion that the small size of hologram aperture diffraction aggravates the speckle noise of reconstructed image and the speckle noise has been one of primary noise sources in the reconstruction process. In order to reduce the speckle noise resulting from little hologram aperture diffraction, we set an appropriate aperture function matching the recording parameter and aperture size of hologram and deconvolve the reconstructed image with it. The validity has been proved in theory and experiment. Therefore, it offers a brand-new thought and practical way to reduce the speckle noise in the reconstructed image of digital holography.

  15. Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images.

    Yu, Hancheng; Gao, Jianlin; Li, Aiting

    2016-03-01

    In this Letter, a probability-based non-local means filter is proposed for speckle reduction in optical coherence tomography (OCT). Originally developed for additive white Gaussian noise, the non-local means filter is not suitable for multiplicative speckle noise suppression. This Letter presents a two-stage non-local means algorithm using the uncorrupted probability of each pixel to effectively reduce speckle noise in OCT. Experiments on real OCT images demonstrate that the proposed filter is competitive with other state-of-the-art speckle removal techniques and able to accurately preserve edges and structural details with small computational cost. PMID:26974099

  16. New speckle analysis algorithm for flow visualization in optical coherence tomography images

    De Pretto, Lucas R.; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2015-06-01

    Optical Coherence Tomography (OCT) is a noninvasive technique capable of generating in vivo high-resolution images. However, OCT images are degraded by a granular and random noise called speckle. Nevertheless, such a noise may be used to gather information regarding the sample, as is exploited by techniques like Speckle Variance - OCT (SV-OCT). SV-OCT is widely used in the literature, but the variance calculation is computationally expensive. Therefore, we propose a new algorithm to employ speckle in identifying flow based on the evaluation of intensity fluctuation between two consecutively acquired OCT images. Our results were compared to those obtained by traditional method of Speckle Variance to demonstrate the feasibility of the technique. Both algorithms were applied to series of OCT images from a microchannel flow phantom, as well as from a biological tissue with blood flow. The results obtained by our method are in good agreement with those from SV-OCT. We've also analyzed the performance of both algorithms, registering the processing time and memory use. Our method performed 31% faster with the same use of memory. Therefore, we demonstrated a new method to map flow on OCT images.

  17. Speckle reduction approach for breast ultrasound image and its application to breast cancer diagnosis

    Objectives: To retrospectively evaluate the effects of a speckle reduction algorithm on radiologists' diagnosis of malignant and benign breast lesions on ultrasound (US) images. Methods: Using a database of 603 breast (US) images of 211 cases (109 benign lesions and 102 malignant ones), the original and speckle-reduced images were assessed by five radiologists and final assessment categories were assigned to indicate the probability of malignancy according to BI-RADS-US. The diagnostic sensitivity and specificity were investigated by the areas (Az) under the receiver operating characteristic (ROC) curves. Results: The sensitivity and specificity of breast lesions on Ultrasound images improved from 88.7% to 94.3%, from 68.6% to 75.2%, respectively, and the area (Az) under ROC curve of diagnosis also increased from 0.843 to 0.939, Z = 4.969, there were significant differences in the Az between the original breast lesions and speckle-reduced ones on Ultrasound images (P < 0.001). The diagnostic accuracy of breast lesions had been highly improved from 78.67% to 92.73% after employing this algorithm. Conclusions: The results demonstrate the promising performance of the proposed speckle reduction algorithm in distinguishing malignant from benign breast lesions which will be useful for breast cancer diagnosis.

  18. Visualization of perfusion changes with laser speckle contrast imaging using the method of motion history image.

    Ansari, Mohammad Zaheer; Humeau-Heurtier, Anne; Offenhauser, Nikolas; Dreier, Jens P; Nirala, Anil Kumar

    2016-09-01

    Laser speckle contrast imaging (LSCI) is a real-time imaging modality reflecting microvascular perfusion. We report on the application of the motion history image (MHI) method on LSCI data obtained from the two hemispheres of a mouse. Through the generation of a single image, MHI stresses the microvascular perfusion changes. Our experimental results performed during a pinprick-triggered spreading depolarization demonstrate the effectiveness of MHI: MHI allows the visualization of perfusion changes without loss of resolution and definition. Moreover, MHI provides close results to the ones given by the generalized differences (GD) algorithm. However, MHI has the advantage of giving information on the temporal evolution of the perfusion variations, which GD does not. PMID:27321386

  19. Laser speckle contrast imaging for monitoring changes in microvascular blood flow

    Ambrus, Rikard; Strandby, Rune B.; Svendsen, Lars Bo;

    2016-01-01

    BACKGROUND/AIMS: Microvascular blood flow is essential for healing and predicts surgical outcome. The aim of the current study was to investigate the relation between fluxes measured with the laser speckle contrast imaging (LSCI) technique and changes in absolute blood flow. In addition, we studied...

  20. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  1. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis

    Rege, Abhishek; Thakor, Nitish V; Rhie, Kevin; Pathak, Arvind P.

    2011-01-01

    Laser speckle contrast imaging (LSCI) is a high-resolution and high contrast optical imaging technique often used to characterize hemodynamic changes in short-term physiological experiments. In this study, we demonstrate the utility of LSCI for characterizing microvascular remodeling and hemodynamic changes during wound healing angiogenesis in vivo. A 2 mm diameter hole was made in the mouse ear and the periphery of the wound imaged in vivo using LSCI over 12 days. We were able to visualize a...

  2. Myocardial Strain and Strain Rate Imaging: Comparison between Doppler Derived Strain Imaging and Speckle Tracking Echocardiography

    Anita Sadeghpour

    2013-05-01

    Full Text Available Regional myocardial function has been traditionally assessed by visual estimation (1. Echocardiographic strain imaging which is known as deformation imaging, has been emerged as a quantitative technique to accurately estimate regional myocardial function and contractility. Currently, strain imaging has been regarded as a research tool in the most echocardiography laboratories. However, in recent years, strain imaging has gain momentum in daily clinical practice (2. The following two techniques have dominated the research arena of echocardiography: (1 Doppler based tissue velocity measurements, frequently referred to tissue Doppler or myocardial Doppler, and (2 speckle tracking on the basis of displacement measurements (3. Over the past two decades, Tissue Doppler Imaging (TDI and Doppler –derived strain (S and strain rate (SR imaging were introduced to quantify regional myocardial function. However, Doppler–derived strain variables faced criticisms, with regard to the angle dependency, noise interference, and substantial intraobserver and interobserver variability. The angle dependency is the major weakness of Doppler based methodology; however, it has the advantage of online measurements of velocities and time intervals with excellent temporal resolution, which is essential for the assessment of ischemia (4. Speckle-tracking echocardiography (STE or Non Doppler 2D strain echocardiography is a relatively new, largely angle-independent technique that analyzes motion by tracking natural acoustic reflections and interference patterns within an ultrasonic window. The image-processing algorithm tracks elements with approximately 20 to 40 pixels containing stable patterns and are described as ‘‘speckles’’ or ‘‘fingerprints’’. The speckles seen in grayscale B-mode (2D images are tracked consecutively frame to frame (5, 6. Assessment of 2D strain by STE is a semiautomatic method that requires definition of the myocardium

  3. Modelling laser speckle photographs of decayed teeth by applying a digital image information technique

    Ansari, M. Z.; da Silva, L. C.; da Silva, J. V. P.; Deana, A. M.

    2016-09-01

    We report on the application of a digital image model to assess early carious lesions on teeth. When decay is in its early stages, the lesions were illuminated with a laser and the laser speckle images were obtained. Due to the differences in the optical properties between healthy and carious tissue, both regions produced different scatter patterns. The digital image information technique allowed us to produce colour-coded 3D surface plots of the intensity information in the speckle images, where the height (on the z-axis) and the colour in the rendering correlate with the intensity of a pixel in the image. The quantitative changes in colour component density enhance the contrast between the decayed and sound tissue, and visualization of the carious lesions become significantly evident. Therefore, the proposed technique may be adopted in the early diagnosis of carious lesions.

  4. Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system

    Sun, Shen; Hayes-Gill, Barrie R.; He, Diwei; Zhu, Yiqun; Huynh, Nam T.; Morgan, Stephen P.

    2016-08-01

    Full field laser Doppler imaging (LDI) and single exposure laser speckle contrast imaging (LSCI) are directly compared using a novel instrument which can concurrently image blood flow using both LDI and LSCI signal processing. Incorporating a commercial CMOS camera chip and a field programmable gate array (FPGA) the flow images of LDI and the contrast maps of LSCI are simultaneously processed by utilizing the same detected optical signals. The comparison was carried out by imaging a rotating diffuser. LDI has a linear response to the velocity. In contrast, LSCI is exposure time dependent and does not provide a linear response in the presence of static speckle. It is also demonstrated that the relationship between LDI and LSCI can be related through a power law which depends on the exposure time of LSCI.

  5. Assessing spatial resolution versus sensitivity from laser speckle contrast imaging: application to frequency analysis.

    Bricq, Stéphanie; Mahé, Guillaume; Rousseau, David; Humeau-Heurtier, Anne; Chapeau-Blondeau, François; Varela, Julio Rojas; Abraham, Pierre

    2012-10-01

    For blood perfusion monitoring, laser speckle contrast (LSC) imaging is a recent non-contact technique that has the characteristic of delivering noise-like speckled images. To exploit LSC images for quantitative physiological measurements, we developed an approach that implements controlled spatial averaging to reduce the detrimental impact of the noise and improve measurement sensitivity. By this approach, spatial resolution and measurement sensitivity can be traded-off in a flexible way depending on the quantitative prospect of the study. As an application, detectability of the cardiac activity from LSC images of forearm using power spectrum analysis is studied through the construction of spatial activity maps offering a window on the blood flow perfusion and its regional distribution. Comparisons with results obtained with signals of laser Doppler flowmetry probes are performed. PMID:22644256

  6. Speckle reduction for medical ultrasound images with an expectation-maximization framework

    HOU Tao; WANG Yuanyuan; GUO Yi

    2011-01-01

    In view of inherent speckle noise in medical images, a speckle reduction method was proposed based on an expectation-maximization (EM) framework. First, the real component of the in-phase/quadrature (I/Q) ultrasound image is extracted. Then, it is used to blindly estimate the point spread function (PSF) of the imaging system. Finally, based on the EM framework, an iterative algorithm alternating between the Wiener Filter and the anisotropic diffusion (AD) is exploited to produce despeckled images. The comparison experiment is carried out on both simulated and in vivo ultrasound images. It is shown that, with respect to the I/Q image, the proposed method averagely improves the speckle-signal-to-noise ratio (S-SNR) and the edge preservation index (β) of images by the factor of 1.94 and 7.52. Meanwhile, it averagely reduces the normalized mean-squared error (NMSE) by the factor of 3.95. The simulation and in vivo results indicates that the proposed method has a better overall performance than exited ones.

  7. Reconstruction of static line images with reduced speckle using interlaced holograms for holographic laser cutting

    Lee, Hwihyeong; Park, Sangwoo; Jeon, Byoung Goo; Kong, Hong Jin

    2016-07-01

    A hologram can be used for high-power laser processing applications such as cutting, drilling, patterning, or welding. However, not much progress has been made in cutting application compared to the others, because it requires optical reconstruction of static and uniform line images using holograms which have a high damage threshold. These static and uniform line images are difficult to be reconstructed with a single hologram, since they usually suffer from speckle between neighboring spots. We propose a method to reconstruct reduced-speckle static line images using two interlaced holograms which reconstruct odd and even pixel line images, corresponding to two orthogonal polarizations. Then, the two orthogonally polarized line images are superposed for interlacing in the image plane. The proposed method was studied by numerical simulations and demonstrated experimentally. The experimental results show that speckle contrast decreased by about one-third, compared to that of a non-interlaced hologram. This method can be applied also for complex-shaped images which include curved lines as well as straight lines, and we have a plan for laser cutting with this method in the near future.

  8. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-01-01

    Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed a...

  9. SPECKLE NOISE FILTERING FOR ULTRASOUND IMAGES OF COMMON CAROTID ARTERY: A REVIEW

    D. Sasikala

    2014-05-01

    Full Text Available Speckle is modeled as a signal dependent noise, which tends to reduce the image resolution and contrast, thereby reducing the diagnostic values of the ultrasound imaging modality. Reduction of speckle noise is one of the most important processes to increase the quality of biomedical images. Filters are used to improve the quality of ultrasound images by removing the noise. This paper compares the performance of the thresholding technique Bayes Shrink in despeckling the medical ultrasound images with other classical speckle reduction filters like Lee, Frost, Median, Kaun, Wavelet Bayes, Anisotropic diffusion and Wavelet. The performance of these filters is analyzed by the statistical measures such as Peak Signal-to Noise Ratio, Mean Square Error and Equivalent Number of Looks. To produce a better quality resolution picture, the filter should have high Peak Signal to Noise Ratio, low Mean Square Error, high Equivalent Number of Looks. The results obtained are presented in the form of filtered images, statistical tables and graphs. Finally, the best filter has been recommended based on the statistical and experimental results. From the results obtained Lee and Frost filter outperforms the other mentioned filters in terms of high PSNR and low MSE for high variance of noise where as anisotropic diffusion filter outperforms with high PSNR and low MSE with maximum ENL for low variance values of noise.

  10. Analysis of speckle patterns in phase-contrast images of lung tissue

    Kitchen, M. J.; Paganin, D.; Lewis, R. A.; Yagi, N.; Uesugi, K.

    2005-08-01

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  11. Analysis of speckle patterns in phase-contrast images of lung tissue

    Kitchen, M.J. [School of Physics and Materials Engineering, Monash University, Victoria 3800 (Australia)]. E-mail: Marcus.Kitchen@spme.monash.edu.au; Paganin, D. [School of Physics and Materials Engineering, Monash University, Victoria 3800 (Australia); Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Victoria 3800 (Australia); Yagi, N. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan); Uesugi, K. [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Hyogo 679-5198 (Japan)

    2005-08-11

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  12. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction

    J Senthilnath; H Vikram Shenoy; Ritwik Rajendra; S N Omkar; V Mani; P G Diwakar

    2013-06-01

    Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.

  13. Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography

    Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew

    2016-03-01

    Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.

  14. Adaptive Image Denoising by Mixture Adaptation.

    Luo, Enming; Chan, Stanley H; Nguyen, Truong Q

    2016-10-01

    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the expectation-maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper. First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. The experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms. PMID:27416593

  15. Probing depth and dynamic response of speckles in near infrared region for spectroscopic blood flow imaging

    Yokoi, Naomichi; Aizu, Yoshihisa

    2016-04-01

    Imaging method based on bio-speckles is a useful means for blood flow visualization of living bodies and, it has been utilized for analyzing the condition or the health state of living bodies. Actually, the sensitivity of blood flow is influenced by tissue optical properties, which depend on the wavelength of illuminating laser light. In the present study, we experimentally investigate characteristics of the blood flow images obtained with two wavelengths of 780 nm and 830 nm in the near-infrared region. Experiments are conducted for sample models using a pork layer, horse blood layer and mirror, and for a human wrist and finger, to investigate optical penetration depth and dynamic response of speckles to the blood flow velocity for two wavelengths.

  16. Low-spatial-coherence broadband fiber source for speckle free imaging

    Redding, Brandon; Mokan, Vadim; Seifert, Martin; Choma, Michael A; Cao, Hui

    2015-01-01

    We designed and demonstrate a fiber-based amplified spontaneous emission (ASE) source with low spatial coherence, low temporal coherence, and high power per mode. ASE is produced by optically pumping a large gain core multimode fiber while minimizing optical feedback to avoid lasing. The fiber ASE source provides 270 mW of continuous wave emission, centered at {\\lambda}=1055 nm with a full-width half-maximum bandwidth of 74 nm. The emission is distributed among as many as ~70 spatial modes, enabling efficient speckle suppression when combined with spectral compounding. Finally, we demonstrate speckle-free full field imaging using the fiber ASE source. The fiber ASE source provides a unique combination of high power per mode with both low spatial and low temporal coherence, making it an ideal source for full-field imaging and ranging applications.

  17. Ear swelling test by using laser speckle imaging with a long exposure time

    Kalchenko, Vyacheslav; Kuznetsov, Yuri; Preise, Dina; Meglinski, Igor; Harmelin, Alon

    2014-06-01

    Laser speckle imaging with long exposure time has been applied noninvasively to visualize the immediate reaction of cutaneous vessels in mice in response to a known primary irritant and potential allergen-methyl salicylate. The compound has been used topically on the surface of the pinna and the reaction of the vascular network was examined. We demonstrate that irritant-induced acute vascular reaction can be effectively and accurately detected by laser speckle imaging technique. The current approach holds a great promise for application in routine screening of the cutaneous vascular response induced by contact agents, screenings of mouse ear swelling test, and testing the allergenic potential of new synthetic materials and healthcare pharmaceutical products.

  18. Strain Imaging: The Emergence of Speckle Tracking Echocardiography into Clinical Pediatric Cardiology.

    Colquitt, John L; Pignatelli, Ricardo H

    2016-01-01

    Speckle tracking echocardiography measures myocardial strain and allows for the quantification of regional and global left and right ventricular function. A growing body of literature is supporting its transition from research into clinical practice. This article aims to provide a practical review of strain imaging as it applies to congenital and pediatric heart disease, with the goals of increasing literacy and advocating for greater clinical integration. PMID:26879728

  19. Speckle noise reduction in ultrasound biomedical B-scan images using discrete topological derivative.

    Damodaran, Nedumaran; Ramamurthy, Sivakumar; Velusamy, Sekar; Manickam, Gayathri Kanakaraj

    2012-02-01

    Over three decades, several despeckling techniques have been developed by researchers to reduce the speckle noise inherently present in ultrasound B-scan images without losing the diagnostic information. The topological derivative (TD) is the recently adopted technique in the area of biomedical image processing. In this work, we computed the topological derivative for an appropriate function associated to the ultrasound B-scan image gradient by assigning a diffusion factor k, which indicates the cost endowed to that particular image. In this article, a novel image denoising approach, called discrete topological derivative (DTD) has been implemented. The algorithm has been developed in MATLAB7.1 and tested over 200 ultrasound B-scan images of several organs such as the liver, kidney, gall bladder and pancreas. Further, the performance of the DTD algorithm has been estimated by calculating important performance metrics. A comparative study was carried out between the DTD and the traditional despeckling techniques. The calculated peak signal-to-noise ratio (PSNR) (the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation) value of the DTD despeckled liver image is found to be 28 which is comparable with the outperformed speckle reducing anisotropic diffusion (SRAD) filter. SRAD filter is an edge-sensitive diffusion method for speckled images of ultrasonic and radar imaging applications. Canny edge detection and visual inspection of DTD filtered images by the trained radiologist found that the DTD algorithm preserves the hypoechoic and hyperechoic regions resulting in improved diagnosis as well as tissue characterization. PMID:22230135

  20. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  1. The Speckle Noise Reduction and the Boundary Enhancement on Medical Ultrasound Images using the Cellular Neural Networks

    Park, Hyunkyung; Miyazaki, Ryota; Nishimura, Toshihiro; Tamaki, Yasuhiro

    The purpose is to remove the speckle noise and to emphasize the boundary of a tumor by filtering based on the intensity difference in the medical ultrasound images. The proposed method is evaluated using numerical phantom simulating ultrasound B-mode images, and the effect is confirmed by applying to medical ultrasound images. Therefore, some important features such as tissue boundaries and small tumors may be overlooked. A CNN (cellular neural networks) for the speckle reduction and the edge enhancement are proposed in this paper. A CNN which is a kind of recurrent neural network can deal with images by the weight of neurons called a cell. It could be obtained more detail images recognition compared with the previous studies. A determination template parameters of the CNN for ultrasound image processing is discussed. The experimental results show effectiveness of applying the proposed method to boundary enhancement and the speckle reduction of medical ultrasound image.

  2. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources

  3. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  4. Application of speckle and (multi-object) multi-frame blind deconvolution techniques on imaging and imaging spectropolarimetric data

    Puschmann, K G

    2011-01-01

    We test the effects of reconstruction techniques on 2D data to determine the best approach. We obtained a time-series of spectropolarimetric data in the Fe I line at 630.25 nm with the Goettingen Fabry-Perot Interferometer (FPI) that are accompanied by imaging data at 431.3 nm and Ca II H. We apply both speckle and (MO)MFBD techniques. We compare the spatial resolution and investigate the impact of the reconstruction on spectral characteristics. The speckle reconstruction and MFBD perform similar for our imaging data with nearly identical intensity contrasts. MFBD provides a better and more homogeneous resolution at the shortest wavelength. The MOMFBD and speckle deconvolution of the intensity spectra lead to similar results, but our choice of settings for the MOMFBD yields an intensity contrast smaller by about 2% at a comparable spatial resolution. None of the reconstruction techniques introduces artifacts in the intensity spectra. The speckle deconvolution (MOMFBD) has a rms noise in V/I of 0.32% (0.20%). ...

  5. Application of fast CCD drift scanning to speckle imaging of binary stars

    Fors, O; Nuñez, J

    2004-01-01

    A new application of a fast CCD drift scanning technique that allows us to perform speckle imaging of binary stars is presented. For each observation, an arbitrary number of speckle frames is periodically stored on a computer disk, each with an appropriate exposure time given both atmospheric and instrumental considerations. The CCD charge is shifted towards the serial register and read out sufficiently rapidly to avoid an excessive amount of interframe dead time. Four well-known binary systems (ADS 755, ADS 2616, ADS 3711 and ADS 16836) are observed in to show the feasibility of the proposed technique. Bispectral data analysis and power spectrum fitting is carried out for each observation, yielding relative astrometry and photometry. A new approach for self-calibrating this analysis is also presented and validated. The proposed scheme does not require any additional electronic or optical hardware, so it should allow most small professional observatories and advanced amateurs to enjoy the benefits of diffract...

  6. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-03-01

    Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed and the result is followed with time. Unfortunately, this leads to a poor spatial resolution for the analyzed data. At the same time, a higher spatial resolution for the perfusion maps is wanted. To get over this dilemma we propose a new post-acquisition visual representation for LSCI perfusion data using the so-called generalized differences (GD) algorithm. From a stack of perfusion images, the procedure leads to a new single image with the same spatial resolution as the original images and this new image reflects perfusion changes. The algorithm is herein applied on simulated stacks of images and on experimental LSCI perfusion data acquired in three different situations with a commercialized laser speckle contrast imager. The results show that the GD algorithm provides a new way of visualizing LSCI perfusion data. PMID:25576743

  7. Speckle reduction of SAR images using ICA basis enhancement and separation

    Yutong Li; Yue zhou

    2007-01-01

    @@ An approach for synthetic aperture radax (SAR) image de-noising based on independent component analysis (ICA) basis images is proposed. Firstly, the basis images and the code matrix of the original image are obtained using ICA algorithm. Then, pointwise H(o)lder exponent of each basis is computed as a cost criterion for basis enhancement, and then the enhanced basis images are classified into two sets according to a separation rule which separates the clean basis from the original basis. After these key procedures for speckle reduction, the clean image is finally obtained by reconstruction on the clean basis and original code matrix. The reconstructed image shows better visual perception and image quality compared with those obtained by other traditional techniques.

  8. Intravascular laser speckle imaging for the mechanical analysis of coronary plaques (Conference Presentation)

    Hosoda, Masaki; Wang, Jing; Tsikudi, Diane; Nadkarni, Seemantini

    2016-02-01

    Acute myocardial infarction is frequently caused by the rupture of coronary plaques with severely compromised viscoelastic properties. We have developed a new optical technology termed intravascular laser speckle imaging (ILSI) that evaluates plaque viscoelastic properties, by measuring the time scale (time constant, τ) of temporally evolving laser speckle fluctuations. To enable coronary evaluation in vivo, an optical ILSI catheter has been developed that accomplishes omni-directional illumination and viewing of the entire coronary circumference without the need for mechanical rotation. Here, we describe the capability of ILSI for evaluating human coronary atherosclerosis in cadaveric hearts. ILSI was conducted in conjunction with optical coherence tomography (OCT) imaging in five human cadaveric hearts. The left coronary artery (LCA), left anterior descending (LAD), left circumflex artery (LCx), and right coronary artery (RCA) segments were resected and secured on custom-developed coronary holders to enable accurate co-registration between ILSI, OCT, and histopathology. Speckle time constants, τ, calculated from each ILSI section were compared with lipid and collagen content measured from quantitative Histopathological analysis of the corresponding Oil Red O and Picrosirius Red stained sections. Because the presence of low viscosity lipid elicits rapid speckle fluctuations, we observed an inverse correlation between τ measured by ILSI and lipid content (R= -0.64, p< 0.05). In contrast, the higher viscoelastic modulus of fibrous regions resulted in a positive correlation between τ and collagen content (R= 0.54, p< 0.05). These results demonstrate the feasibility of conducting ILSI evaluation of arterial mechanical properties using a miniaturized omni-directional catheter.

  9. Speckle-reduction algorithm for ultrasound images in complex wavelet domain using genetic algorithm-based mixture model.

    Uddin, Muhammad Shahin; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-05-20

    Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures. PMID:27411128

  10. Estimation of spectral transmittance curves from RGB images in color digital holographic microscopy using speckle illuminations

    Funamizu, Hideki; Tokuno, Yuta; Aizu, Yoshihisa

    2016-06-01

    We investigate the estimation of spectral transmittance curves in color digital holographic microscopy using speckle illuminations. In color digital holography, it has the disadvantage in that the color-composite image gives poor color information due to the use of lasers with the two or three wavelengths. To overcome this disadvantage, the Wiener estimation method and an averaging process using multiple holograms are applied to color digital holographic microscopy. Estimated spectral transmittance and color-composite images are shown to indicate the usefulness of the proposed method.

  11. Low-cost laser speckle contrast imaging of blood flow using a webcam.

    Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K

    2013-01-01

    Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082

  12. Use of a speckle reduction technique to improve the reconstruction image quality of CCD-based optical computed tomography scanner

    This study proposed a speckle reduction technique (SRT) that employs a rotating diffuser in the parallel beam optical computed tomography (CT). Results showed that the mean and standard deviation of the gray level are 89.79±4.53 and 89.16±2.88 for reconstruction images without SRT and with SRT, respectively. The proposed SRT effectively removed ring artifacts. In addition, two image processing techniques, namely, the mean and Wiener filters, were also used to improve the reconstructed images. The image processing technique alone effectively reduced ring artifacts, but some fluctuations were still observed in the line profiles of the reconstructed images. Results proved that the proposed SRT is a simple method that is easily implemented to improve image quality for parallel beam optical CT. The combination of SRT and image filters was suggested to achieve the best image reconstruction quality through the full removal of ring artifacts. - Highlights: • Speckle reduction technique is effective to remove ring artifacts. • The fluctuation in reconstruction image can be reduced using speckle reduction technique. • The image processing technique can reduce the ring artifacts effectively, but few fluctuations can still be observed in line profiles. • The combination speckle reduction technique and image filters can achieve the best quality of reconstruction image

  13. Non-invasive real-time imaging through scattering layers and around corners via speckle correlations

    Katz, Ori; Fink, Mathias; Gigan, Sylvain

    2014-01-01

    Imaging with optical resolution through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples, such as biological tissues, randomly scatter and diffuse light, impeding conventional image formation. Despite many advancements, no current method enables to noninvasively image in real-time using diffused light. Here, we show that owing to the memory-effect for speckle correlations, a single image of the scattered light, captured with a standard high-resolution camera, encodes all the information that is required to image through the medium or around a corner. We experimentally demonstrate single-shot imaging through scattering media and around corners using incoherent light and various samples, from white paint to dynamic biological samples. Our lensless technique is simple, does not require laser sources, wavefront-shaping, nor time-gated detection, and is realized here using a camera-phone. It has the potential to en...

  14. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  15. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  16. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  17. Suppressing Speckle Noise for Simultaneous Differential Extrasolar Planet Imaging (SDI) at the VLT and MMT

    Biller, B A; Lenzen, R; Brandner, W; McCarthy, D; Nielsen, E; Kellner, S; Hartung, M; Biller, Beth A.; Close, Laird M.; Lenzen, Rainer; Brandner, Wolfgang; Carthy, Donald Mc; Nielsen, Eric; Kellner, Stephan; Hartung, Markus

    2006-01-01

    We discuss the instrumental and data reduction techniques used to suppress speckle noise with the Simultaneous Differential Imager (SDI) implemented at the VLT and the MMT. SDI uses a double Wollaston prism and a quad filter to take 4 identical images simultaneously at 3 wavelengths surrounding the 1.62 um methane bandhead found in the spectrum of cool brown dwarfs and gas giants. By performing a difference of images in these filters, speckle noise from the primary can be significantly attenuated, resulting in photon noise limited data past 0.5''. Non-trivial data reduction tools are necessary to pipeline the simultaneous differential imaging. Here we discuss a custom algorithm implemented in IDL to perform this reduction. The script performs basic data reduction tasks but also precisely aligns images taken in each of the filters using a custom shift and subtract routine. In our survey of nearby young stars at the VLT and MMT (see Biller et al., this conference), we achieved H band contrasts >25000 (5 sigma D...

  18. A Multi-Chanel Speckle Imaging for the DOT

    Sütterlin, P.; Hammerschlag, R.H.; Bettonvil, F.C.M.; Rutten, R.J.; Skomorovsky, V.I.; Domyshev, G.N.

    2001-01-01

    The Dutch Open Telescope (DOT) had its initial observing campaighn in September 1999. Alhough only a simple video system was used, the results demonstrated the excellent high-resolution capabilities of the combination of the open-teloscope concept, the DOT optics, the remaining image degradation due

  19. Spatio-temporal speckle correlations for imaging in turbid media

    Skipetrov, S.E.

    2001-01-01

    We discuss the far-field spatio-temporal cross-correlations of waves multiple-scattered in a turbid medium in which is embedded a hidden heterogeneous region (inclusion) characterized by a distinct scatterer dynamics (as compared to the rest of the medium). We show that the spatio-temporal correlation is affected by the inclusion which suggests a new method of imaging in turbid media. Our results allow qualitative interpretation in terms of diffraction theory: the cross-correlation of scatter...

  20. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    Kuznetsov, Yu L; Kalchenko, V V [Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100 (Israel); Astaf' eva, N G [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation); Meglinski, I V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  1. High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera.

    Dragojević, Tanja; Bronzi, Danilo; Varma, Hari M; Valdes, Claudia P; Castellvi, Clara; Villa, Federica; Tosi, Alberto; Justicia, Carles; Zappa, Franco; Durduran, Turgut

    2015-08-01

    Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions. PMID:26309751

  2. Stick based Non-local Means Filter for Speckle Reduction in Ultrasonic Images

    Liu Ting

    2015-01-01

    Full Text Available Accurate visualization and quantification of human structure is an important prerequisite for a number of clinical procedures. Specially, a current challenging issue in medical ultrasonic images is the problem of speckle reduction while keeping the structure and texture information. A stick based non-local means filter is proposed in this paper. An asymmetric stick filter kernel is firstly defined by decomposing the rectangle search window of non-local means (NLM filter into a set of line segments with variable orientations. Then, the sticks which used to search for similar pixels are selected by a normalized variance function. Finally, the weighted sum of averages of the similar pixels searched along each selected stick is used to produce the filtered image. With the introduction of the asymmetric stick, it is possible to implement the NLM filter in an oriented diffusion way. Experiments of synthetic and real clinical ultrasound images show that the stick based NLM filter performs effectively in suppressing speckle while pre-serving resolvable structures and even enhancing linear features such as the edges.

  3. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui

    2015-02-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946

  4. Development of a laser speckle imaging system for measuring relative blood flow velocity

    Smith, Michael S. D.; Packulak, Ernie F.; Sowa, Michael G.

    2006-09-01

    Determining the viability of damaged or surgically reconstructed tissue is critical in most plastic and reconstructive surgery procedures. Information about tissue blood flow in the region in question can make this determination much easier. Laser speckle imaging (LSI) is one technique that could potentially aid in making this determination. LSI is a non-contact full-field imaging technique with simultaneous high spatial and temporal resolution. Tissue is illuminated with diffuse red laser light and the spatial and/or temporal statistics of the resulting speckle pattern can be used to calculate relative flow velocities. We have developed a LSI system that produces relative velocity blood flow images. Bench tests of the system indicate that it may be used to distinguish between normal, decreased, and increased blood flow states of a human finger. The system has also been used to take some initial laboratory measurements using an animal model - an epigastric free flap on a rat. Preliminary results indicate that the method may be used to distinguish states of venous or arterial occlusion from unoccluded states of the skin flap. While further experimentation is necessary, these initial results indicate that LSI could be a useful aid to the plastic surgeon for assessing tissue viability.

  5. Quantitative assessment of reactive hyperemia using laser speckle contrast imaging at multiple wavelengths

    Young, Anthony; Vishwanath, Karthik

    2016-03-01

    Reactive hyperemia refers to an increase of blood flow in tissue post release of an occlusion in the local vasculature. Measuring the temporal response of reactive hyperemia, post-occlusion in patients has the potential to shed information about microvascular diseases such as systemic sclerosis and diabetes. Laser speckle contrast imaging (LSCI) is an imaging technique capable of sensing superficial blood flow in tissue which can be used to quantitatively assess reactive hyperemia. Here, we employ LSCI using coherent sources in the blue, green and red wavelengths to evaluate reactive hyperemia in healthy human volunteers. Blood flow in the forearms of subjects were measured using LSCI to assess the time-course of reactive hyperemia that was triggered by a pressure cuff applied to the biceps of the subjects. Raw speckle images were acquired and processed to yield blood-flow parameters from a region of interest before, during and after application of occlusion. Reactive hyperemia was quantified via two measures - (1) by calculating the difference between the peak LSCI flow during the hyperemia and baseline flow, and (2) by measuring the amount of time that elapsed between the release of the occlusion and peak flow. These measurements were acquired in three healthy human participants, under the three laser wavelengths employed. The studies shed light on the utility of in vivo LSCI-based flow sensing for non-invasive assessment of reactive hyperemia responses and how they varied with the choice source wavelength influences the measured parameters.

  6. Contrast enhancement of laser speckle skin image: use of optical clearing agent in conjunction with micro-needling

    Son, Taeyoon; Yoon, Jinhee; Ko, Chang-Yong; Lee, Yong-Heum; Kwon, Kiwoon; Kim, Han Sung; Lee, Kyoung Joung; Jung, Byungjo

    2008-02-01

    Laser speckle imaging modality is one of widely used methods to evaluate blood flow because of its simplicity. However, laser speckle image has a limitation in the evaluation of subcutaneous blood flow due to its low contrast perfusion image. Various methods have been tried to enhance the perfusion image contrast. Such methods presented positive results in some degree. However, it could not be fundamental solutions due to low penetration depth of lasers restricted by optical tissue scattering property. This study suggests a method to enhance the perfusion image contrast of laser speckle imaging modality by increasing the penetration depth of lasers. An optical clearing agent (glycerol) was topically applied on skin treated with micro-needle roller in order to reduce the time period of optical tissue clearing and therefore, enhance the penetration depth of laser. In this study, we investigated the effect of glycerol and micro-needling methods in the contrast enhancement of laser speckle perfusion skin image and presented the results of in-vitro and in-vivo animal experiment.

  7. [Non-linear real-time adaptive filtration of ultrasound TI628A echotomoscope images].

    Barannik, E A; Volokhov, Iu V; Marusenko, A I

    1997-01-01

    The statistical uncertainty caused by speckle noise artifacts is the reason for the great importance of the problem which is the optimum choice between the medical diagnostic systems resolution and the statistical accuracy of histological tissue identification. The way of speckle noise suppression, which is closely associated with the well-known idea of adaptive filtration and based on the physical analysis of the origin of true and false signals, is very promising. The testing results of the nonlinear real-time adaptive filter which has been designed for a TI628A echotomoscope are presented. The filter has been shown to have a rather high contrast and space resolution and reduces the speckle noise and other artifacts of the images. PMID:9445983

  8. Imaging through diffusive layers using speckle pattern fractal analysis and application to embedded object detection in tissues

    Tremberger, George, Jr.; Flamholz, A.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Brathwaite, G.; Boteju, J.; Marchese, P.; Lieberman, D.; Cheung, T.; Holden, Todd

    2007-09-01

    The absorption effect of the back surface boundary of a diffuse layer was studied via laser generated reflection speckle pattern. The spatial speckle intensity provided by a laser beam was measured. The speckle data were analyzed in terms of fractal dimension (computed by NIH ImageJ software via the box counting fractal method) and weak localization theory based on Mie scattering. Bar code imaging was modeled as binary absorption contrast and scanning resolution in millimeter range was achieved for diffusive layers up to thirty transport mean free path thick. Samples included alumina, porous glass and chicken tissue. Computer simulation was used to study the effect of speckle spatial distribution and observed fractal dimension differences were ascribed to variance controlled speckle sizes. Fractal dimension suppressions were observed in samples that had thickness dimensions around ten transport mean free path. Computer simulation suggested a maximum fractal dimension of about 2 and that subtracting information could lower fractal dimension. The fractal dimension was shown to be sensitive to sample thickness up to about fifteen transport mean free paths, and embedded objects which modified 20% or more of the effective thickness was shown to be detectable. The box counting fractal method was supplemented with the Higuchi data series fractal method and application to architectural distortion mammograms was demonstrated. The use of fractals in diffusive analysis would provide a simple language for a dialog between optics experts and mammography radiologists, facilitating the applications of laser diagnostics in tissues.

  9. Content adaptive screen image scaling

    Zhai, Yao; Wang, Qifei; Lu, Yan; Li, Shipeng

    2015-01-01

    This paper proposes an efficient content adaptive screen image scaling scheme for the real-time screen applications like remote desktop and screen sharing. In the proposed screen scaling scheme, a screen content classification step is first introduced to classify the screen image into text and pictorial regions. Afterward, we propose an adaptive shift linear interpolation algorithm to predict the new pixel values with the shift offset adapted to the content type of each pixel. The shift offse...

  10. Three-dimensional Dynamic Deformation Measurements using Stereoscopic Imaging and Digital Speckle Photography

    Prentice, Helen

    2005-07-01

    A technique has been developed in order to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified translated-lens method: this allows split-frame photography, increased image resolution and a larger effective lens separation in order to increase image disparity and reduce errors in the shape reconstruction. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets with significantly finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical and numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to sheets of Copper and Mild Steel of various thicknesses.

  11. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Hongchang Wang; Yogesh Kashyap; Kawal Sawhney

    2016-01-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time...

  12. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood i...

  13. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.

    Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo

    2016-04-01

    Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572

  14. Laser speckle analysis synchronised with cardiac cycle

    Zakharov, Pavel; Scheffold, Frank; Weber, Bruno

    2015-07-01

    We present an improved Laser speckle imaging approach to investigate the cerebral blood flow response following function stimulation of a single vibrissa. By synchronising speckle analysis with the cardiac cycle we are able to obtain robust averaging of the correlation signals while at the same time removing the contributions due to the pulsation of blood flow and associated tissue adaptation. With our inter-pulse correlation analysis we can follow second-scale dynamics of the cortical vascular system in response to functional brain activation. We find evidence for two temporally separated processes in the blood flow pattern following stimulation we tentatively attribute to vasodilation and vasoconstriction phases, respectively.

  15. Preliminary images from an adaptive imaging system

    J.A. Griffiths; M.G. Metaxas; S. Pani; H. Schulerud; C. Esbrand; G.J. Royle; B. Price; T. Rokvic; R. Longo; A. Asimidis; E. Bletsas; D. Cavouras; A. Fant; P. Gasiorek; H. Georgiou; G. Hall; J. Jones; J. Leaver; G. Li; D. Machin; N. Manthos; J. Matheson; M. Noy; J.M. Østby; F. Psomadellis; P.F. van der Stelt; S. Theodoridis; F. Triantis; R. Turchetta; C. Venanzi; R.D. Speller

    2008-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephal

  16. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging)

    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture. (paper)

  17. Electronic speckle pattern interferometry for fracture expansion in nuclear graphite based on PDE image processing methods

    Tang, Chen; Zhang, Junjiang; Sun, Chen; Su, Yonggang; Su, Kai Leung

    2015-05-01

    Nuclear graphite has been widely used as moderating and reflecting materials. However, due to severe neutron irradiation under high temperature, nuclear graphite is prone to deteriorate, resulting in massive microscopic flaws and even cracks under large stress in the later period of its service life. It is indispensable, therefore, to understand the fracture behavior of nuclear graphite to provide reference to structural integrity and safety analysis of nuclear graphite members in reactors. In this paper, we investigated the fracture expansion in nuclear graphite based on PDE image processing methods. We used the second-order oriented partial differential equations filtering model (SOOPDE) to denoise speckle noise, then used the oriented gradient vector fields for to obtain skeletons. The full-field displacement of fractured nuclear graphite and the location of the crack tip were lastly measured under various loading conditions.

  18. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging)

    Deana, A. M.; Jesus, S. H. C.; Koshoji, N. H.; Bussadori, S. K.; Oliveira, M. T.

    2013-07-01

    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture.

  19. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  20. High-frame-rate color-encoded speckle imaging for visually intuitive rendering of complex flow dynamics

    Yiu, BYS; Yu, ACH

    2013-01-01

    BACKGROUND, MOTIVATION AND OBJECTIVE: Realization of flow imaging at high frame rates can undoubtedly benefit the visualization of complex flow patterns with significant spatiotemporal variations. It would be even better if fluid motion can be coherently rendered through parallel display of both flow trajectory and flow speed. Driven by these motivations, we have developed a new high-frame-rate ultrasound flow visualization technique called color-encoded speckle imaging (CESI). It provides a ...

  1. Clutter filtering issues in speckle tracking for two-dimensional blood velocity estimation: a potential solution based on compounded imaging

    Søvik Alnes, Solveig; Swillens, Abigaïl; Segers, Patrick; Torp, Hans; Lovstakken, Lasse

    2012-01-01

    Clutter filtering issues remains a major limitation in multi-dimensional blood velocity estimation. In this work we investigate how compounded plane wave imaging can be used to minimize clutter filtering issues when using speckle tracking for two-dimensional velocity estimation. By using a dual scan angle approach one can ensure a sufficient beam-to-flow angle for most imaging scenarios. Segmentation algorithms based on the estimated power and mean axial velocity were used to determine whethe...

  2. InnoPOL: an EMCCD imaging polarimeter and 85-element curvature AO system on the 3.6-m AEOS telescope for cost effective polarimetric speckle suppression

    Harrington, David; Chun, Mark; Ftaclas, Christ; Gisler, Daniel; Kuhn, Jeff

    2016-01-01

    The Hokupa'a-85 curvature adaptive optics system components have been adapted to create a new AO-corrected coud\\'{e} instrument at the 3.67m Advanced Electro-Optical System (AEOS) telescope. This new AO-corrected optical path is designed to deliver an f/40 diffraction-limited focus at wavelengths longer than 800nm. A new EMCCD-based dual-beam imaging polarimeter called InnoPOL has been designed and is presently being installed behind this corrected f/40 beam. The InnoPOL system is a flexible platform for optimizing polarimetric performance using commercial solutions and for testing modulation strategies. The system is designed as a technology test and demonstration platform as the coud\\'{e} path is built using off-the-shelf components wherever possible. Models of the polarimetric performance after AO correction show that polarization modulation at rates as slow as 200Hz can cause speckle correlations in brightness and focal plane location sufficient enough to change the speckle suppression behavior of the mod...

  3. Dynamical properties of speckled speckles

    Hanson, Steen Grüner; Iversen, Theis Faber Quist; Hansen, Rene Skov

    2010-01-01

    the static diffuser and the plane of observation consist of an optical system that can be characterized by a complex-valued ABCD-matrix (e.g. simple and complex imaging systems, free space propagation in both the near-and far-field, and Fourier transform systems). The use of the complex ABCD...... diffuser is assumed to be Gaussian but the derived expressions are not restricted to a plane incident beam. The results are applicable for speckle-based systems for determining mechanical displacements, especially for long-range systems, and for analyzing systems for measuring biological activity beyond a...

  4. Effect of cranial window type on monitoring neurovasculature using laser speckle contrast imaging

    Yu, Hang; Senarathna, Janaka; Tyler, Betty M.; Hossain, Syed; Thakor, Nitish V.; Pathak, Arvind P.

    2016-03-01

    The cranial window preparation provides optical access to the rodent brain for high-resolution in vivo optical imaging. Two types of cranial windows are commonly employed, namely the open-skull window and thinned-skull window. Chronic in vivo laser speckle contrast imaging (LSCI) through the cranial window permits characterization of neurovascular morphology and blood flow changes over days or weeks. However, the effects of window type and their long-term stability for in vivo LSCI have not been studied. Here we systematically characterize the effect of each cranial window type on in vivo neurovascular monitoring with LSCI over two weeks. Imaging outcomes for each window were assessed in terms of contrast-to-noise ratio (CNR), microvessel density (MVD) and total vessel length (TVL). We found that the thinned-skull window required a shorter recovery period (~ 4 days), provided a larger field of view and was a good choice for short-term (i.e. type for LSCI-based neurovascular imaging.

  5. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

    Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi

    2015-09-01

    Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

  6. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements between different investigators. LSCI provides spatial and temporal information on the location of adequate tissue perfusion and may thus be an important aid in optimizing surgical and anesthesiological procedures for strategically selecting anastomotic site in patients undergoing esophagectomy with GTR. PMID:27336874

  7. Features on photorefractive registered speckles

    Ángel-Toro, Luciano; Bolognini, Néstor; Tebaldi, Myrian

    1999-01-01

    The recording and read-out of a volume speckle pattern is investigated for transmission geometry. The modulation of the 3D speckle grains appears when the image of a coherently illuminated random diffusor is formed onto the crystal by an optical system whose pupil consists of two identical holes. The intensity distribution of the speckle pattern imaged onto the BSO crystal leads to a space-charge field by drift of photocarriers, resulting in a refractive index modulation. The main features of...

  8. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  9. Imaging functional blood vessels by the laser speckle imaging (LSI) technique using Q-statistics of the generalized differences algorithm.

    Ansari, Mohammad Zaheer; Cabrera, Humberto; Ramírez-Miquet, Evelio E

    2016-09-01

    In this work, we report about q statistics concept to improve the performance of generalized differences algorithm based on intensity histogram for imaging functional blood vessel structures in a rodent window chamber of a mice. The method uses the dynamic speckle signals obtained by transilluminating the rodent window chamber to create activity maps of vasculatures. The proposed method of generalized differences with q statistics (GDq) is very sensitive to the values of defined parameters such as: camera exposure time, the q value and the camera frame number. Appropriate choice of q values enhances the visibility (contrast) of functional blood vessels but at the same time without sacrificing the spatial resolution, which is of utmost importance for in-vivo vascular imaging. PMID:27154269

  10. Widefield lensless endoscopy via speckle-correlations

    Porat, Amir; Rigneault, Hervé; Oron, Dan; Gigan, Sylvain; Katz, Ori

    2016-01-01

    Flexible fiber-optic endoscopes provide a minimally-invasive solution for imaging at depths beyond the reach of conventional microscopes. Current endoscopes require focusing and/or scanning mechanisms at the distal end, which limit miniaturization and frame-rate, and induce aberrations. Alternative lensless solutions are based on adaptive wavefront-correction, but are extremely sensitive to fiber bending. Here, we demonstrate a novel endoscopic approach, which enables single-shot imaging at a variable working distance through a conventional fiber bundle, without the use of any distal optics. Our approach computationally retrieves the object image from a single speckle pattern transmitted through the bundle, exploiting phase information preserved through inherent angular speckle correlations. Unlike conventional fiber-bundle endoscopes, the resulting image is unpixelated, the resolution is diffraction-limited, objects can be imaged at variable working distance, and the technique is completely insensitive to fi...

  11. Real-time motion stabilization with B-mode ultrasound using image speckle information and visual servoing

    Krupa, A; Fichtinger, G.; Hager, G.D.

    2009-01-01

    Special Issue on Medical Robotics, Ayache, N. and Desai, J. (Eds.) International audience We develop visual servo control to stabilize the image of moving soft tissue in B-mode ultrasound (US) imaging. We define the target region in a B-mode US image, and automatically control a robot to manipulate an US probe by minimizing the difference between the target and the most recently acquired US image. We exploit tissue speckle information to compute the relative pose between the probe and t...

  12. Low-spatial coherence electrically-pumped semiconductor laser for speckle-free full-field imaging

    Redding, B; Huang, X; Lee, M L; Stone, A D; Choma, M A; Cao, H

    2014-01-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically-pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ~1000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, wh...

  13. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics

    Choi, Bernard; Ramírez-San-Juan, Julio C.; Lotfi, Justin; Nelson, J. S.

    2006-07-01

    Noninvasive blood flow imaging can provide critical information on the state of biological tissue and the efficacy of approaches to treat disease. With laser speckle imaging (LSI), relative changes in blood flow are typically reported, with the assumption that the measured values are on a linear scale. A linear relationship between the measured and actual flow rate values has been suggested. The actual flow rate range, over which this linear relationship is valid, is unknown. Herein we report the linear response range and velocity dynamic range (VDR) of our LSI instrument at two relevant camera integration times. For integration times of 1 and 10 ms, the best case VDR was 80 and 60 dB, respectively, and the worst case VDR was 20 and 50 dB. The best case VDR values were similar to those reported in the literature for optical Doppler tomography. We also demonstrate the potential of LSI for monitoring blood flow dynamics in the rodent dorsal skinfold chamber model. These findings imply that LSI can provide accurate wide-field maps of microvascular blood flow rate dynamics and highlight heterogeneities in flow response to the application of exogenous agents.

  14. Digital adaptive optics line-scanning confocal imaging system

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  15. Determination of astrometry and photometry of faint companions in the presence of residual speckle noise

    Burke, Daniel; Devaney, Nicholas; Gladysz, Szymon

    In this paper we examine approaches to faint companion detection and estimation in multi-spectral images. We will employ the Hotelling observer which is the optimal linear algorithm for signal detection. We have shown how to use this observer to estimate faint object position and brightness in the presence of residual speckle which usually limit astrometric and photometric techniques. These speckles can be reduced by differential imaging techniques such as Angular Differential Imaging and Spectral Differential Imaging. Here we present results based on simulations of adaptive optics corrected images from an ELT which contain quasi-static speckle noise. The simulation includes Angular Differential Imaging to reduce the residual speckle and subsequent multi-wavelenght processing. We examine the feasibility of this approach on simulated ELT observations of faint companions.

  16. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  17. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  18. Laser speckle

    Tiziani, Hans J.

    1993-01-01

    Im Gegensatz zu der holografischen Interferometrie ermöglicht die Speckle-Interferometrie eine reine elektrooptische Datenaufzeichnung mit fernsehtechnischen Mitteln. Die zumeist fotografische Aufzeichnung und umständliche, aber auch zeitintensive Entwicklung der Speckle-lnterferogramme kann entfallen. Dies wird möglich, weil in der Speckle-lnterferometrie die Specklegröße der Ortsauflösung des Speichers angepaßt werden kann. Damit bietet sich die Speckle-Interferometrie für die industrielle ...

  19. Query Adaptive Image Retrieval System

    Amruta Dubewar

    2014-03-01

    Full Text Available Images play a crucial role in various fields such as art gallery, medical, journalism and entertainment. Increasing use of image acquisition and data storage technologies have enabled the creation of large database. So, it is necessary to develop appropriate information management system to efficiently manage these collections and needed a system to retrieve required images from these collections. This paper proposed query adaptive image retrieval system (QAIRS to retrieve images similar to the query image specified by user from database. The goal of this system is to support image retrieval based on content properties such as colour and texture, usually encoded into feature vectors. In this system, colour feature extracted by various techniques such as colour moment, colour histogram and autocorrelogram and texture feature extracted by using gabor wavelet. Hashing technique is used to embed high dimensional image features into hamming space, where search can be performed by hamming distance of compact hash codes. Depending upon minimum hamming distance it returns the similar image to query image.

  20. Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation

    Surface patterning by e-beam lithography and scanning electron microscope (SEM) imaging distortions are studied via digital image correlation. The global distortions from the reference pattern, which has been numerically generated, are first quantified from a digital image correlation procedure between the (virtual) reference pattern and the actual SEM image both in secondary and backscattered electron imaging modes. These distortions result from both patterning and imaging techniques. These two contributions can be separated (without resorting to an external caliper) based on the images of the same patterned surface acquired at different orientations. Patterning distortions are much smaller than those due to imaging on wide field images. (paper)

  1. Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method - art. no. 66270P

    Jørgensen, Thomas Martini; Thrane, Lars; Mogensen, M.; Pedersen, Finn; Andersen, Peter E.

    2007-01-01

    system. Here, we consider a method that in principle can be fitted to most OCT systems without major modifications. Specifically, we address a spatial diversity technique for suppressing speckle noise in OCT images of human skin. The method is a variant of changing the position of the sample relative to...... the measuring probe. Instead of physically moving the sample, which is often not feasible for in vivo imaging, the position of the focal plane of the probe beam is shifted. If the numerical aperture is sufficiently high this spatial diversity scheme incorporates a variant of angular compounding. We...

  2. Echokardiographische Prädiktoren eines Vorhofflimmerrezidives und atriales Remodeling nach Pulmonalvenenisolation mit einem methodischen Vergleich von Strainmessungen mit Tissue Doppler Imaging und Speckle Tracking Imaging

    Kim, Tu-Won

    2011-01-01

    First, we aimed to compare strain measurement with tissue Doppler imaging (TDI) and speckle tracking imaging (STI). Secondly we wanted to evaluate the changes of diastolic and systolic function after pulmonary vein isolation (PVI) in atrial fibrillation (AF) and to identify the echocardiographic predictors of recurrence. Methods and Results: We included 71 patients undergoing PVI (mean age 58.5 ± 9.8 Years, 28 Women). In 9 Patients a second intervention was done because of recurrence ...

  3. Characterization of SEM speckle pattern marking and imaging distortion by Digital Image Correlation

    Guery, Adrien; Latourte, Felix; Hild, François; Roux, Stéphane

    2014-01-01

    Surface patterning by e-beam lithography and SEM imaging distortions are studied via digital image correlation. The global distortions from the reference pattern, which has been numerically generated, are first quantified from a digital image correlation procedure between the (virtual) reference pattern and the actual SEM image both in secondary and backscattered electron imaging modes. These distortions result from both patterning and imaging techniques. These two contributions can be separa...

  4. Two-dimentional speckle tracking strain imaging in the assessment of myocardial diastolic function in patients with stable angina pectoris

    Somaye Farokhnejad

    2015-06-01

    Full Text Available Introduction: Ischemic heart disease is caused mainly by obstruction of coronary arteries. The ischemic assessment through echocardiography is dependent on wall motion abnormality detection during systole. In patients with ischemic heart disease the diastolic function is impaired before systolic function and measurement of regional diastolic dysfunction if possible will be most sensitive for assessment of obstructed coronary artery region. This study was designed to determine whether regional left ventricular delayed relaxation diagnosis could be detected with strain imaging derived from two-dimensional speckle-tracking echocardiography in patients with coronary artery disease.Methods: All the articles reviewed were obtained using MEDLINE & ScienceDirect (up to October 2014. All data extracted by speckle tracking echocardiography. The index which is used is strain imaging diastolic index which is calculated as: (A-B A×100  . A is the amount of strain at the time Aortic value closure and B is the amount of strain in first one-third point of diastolic duration.Result: Four articles were reviewed. Three articles assessed patients with echocardiography at rest and one with stress echocardiography. All articles showed the coronary artery tracking with significant stenosis is possible by regional deformation analysis through two-dimensional strain.Discussion: The usage of strain images obtained through two-dimensional speckle tracking has been validated for the quantitation assessment of regional dysfunction in ischemic heart disease. Regional LV delayed relaxation diagnosis with strain imaging is a reliable method after treadmill stress test.Conclusion:  Strain imaging is reasonable for evaluation of ischemia as a low cost noninvasive test with high accuracy.

  5. Compressive adaptive computational ghost imaging

    Aßmann, Marc; 10.1038/srep01545

    2013-01-01

    Compressive sensing is considered a huge breakthrough in signal acquisition. It allows recording an image consisting of $N^2$ pixels using much fewer than $N^2$ measurements if it can be transformed to a basis where most pixels take on negligibly small values. Standard compressive sensing techniques suffer from the computational overhead needed to reconstruct an image with typical computation times between hours and days and are thus not optimal for applications in physics and spectroscopy. We demonstrate an adaptive compressive sampling technique that performs measurements directly in a sparse basis. It needs much fewer than $N^2$ measurements without any computational overhead, so the result is available instantly.

  6. Preliminary images from an adaptive imaging system.

    Griffiths, J A; Metaxas, M G; Pani, S; Schulerud, H; Esbrand, C; Royle, G J; Price, B; Rokvic, T; Longo, R; Asimidis, A; Bletsas, E; Cavouras, D; Fant, A; Gasiorek, P; Georgiou, H; Hall, G; Jones, J; Leaver, J; Li, G; Machin, D; Manthos, N; Matheson, J; Noy, M; Ostby, J M; Psomadellis, F; van der Stelt, P F; Theodoridis, S; Triantis, F; Turchetta, R; Venanzi, C; Speller, R D

    2008-06-01

    I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephalography. In our system, the exposure in each image region is optimised and the beam intensity is a function of tissue thickness and attenuation, and also of local physical and statistical parameters in the image. Using a linear array of detectors, the system will perform on-line analysis of the image during the scan, followed by optimisation of the X-ray intensity to obtain the maximum diagnostic information from the region of interest while minimising exposure of diagnostically less important regions. This paper presents preliminary images obtained with a small area CMOS detector developed for this application. Wedge systems were used to modulate the beam intensity during breast and dental imaging using suitable X-ray spectra. The sensitive imaging area of the sensor is 512 x 32 pixels 32 x 32 microm(2) in size. The sensors' X-ray sensitivity was increased by coupling to a structured CsI(Tl) scintillator. In order to develop the I-ImaS prototype, the on-line data analysis and data acquisition control are based on custom-developed electronics using multiple FPGAs. Images of both breast tissues and jaw samples were acquired and different exposure optimisation algorithms applied. Results are very promising since the average dose has been reduced to around 60% of the dose delivered by conventional imaging systems without decrease in the visibility of details. PMID:18291697

  7. Episcopic coaxial illumination device for the simultaneous recording of the speckle signature in the spectrum and in the image of scattering reflective surfaces

    Fernández, José L.; López-Vázquez, José Carlos; Trillo, Cristina; Doval, Ángel F.

    2012-10-01

    Inspection of optically rough surfaces in search of defects or other surface features with deterministic reflectance distributions is a subject well suited to optical techniques. We present a device with episcopic coaxial illumination, specifically developed for such kind of inspection tasks, which simultaneously renders both a coherent image and the spatial spectrum of a portion of the surface, precisely defined by the illuminating laser spot. It is based on the wellknown single-lens coherent image processing system, with beamsplitters added to insert the illuminating laser beam and to allow simultaneous access to the Fourier transform and the image planes. The device allows inspecting the speckle signature of surface features in both planes, thus allowing different defect recognition approaches. By selecting the size of the illuminated area of the object or the lens aperture, different speckle sizes can be obtained. If the speckle size is made large enough, identification of individual features can be made on the basis of their particular speckle signatures. Some envisaged applications are the characterization of defects or structures in rough surfaces, the evaluation of speckle statistics in precisely defined zones of surfaces or the identification of authentication marks.

  8. Nuclear Speckles

    Spector, David L.; Lamond, Angus I.

    2011-01-01

    Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. ...

  9. Local intensity adaptive image coding

    Huck, Friedrich O.

    1989-01-01

    The objective of preprocessing for machine vision is to extract intrinsic target properties. The most important properties ordinarily are structure and reflectance. Illumination in space, however, is a significant problem as the extreme range of light intensity, stretching from deep shadow to highly reflective surfaces in direct sunlight, impairs the effectiveness of standard approaches to machine vision. To overcome this critical constraint, an image coding scheme is being investigated which combines local intensity adaptivity, image enhancement, and data compression. It is very effective under the highly variant illumination that can exist within a single frame or field of view, and it is very robust to noise at low illuminations. Some of the theory and salient features of the coding scheme are reviewed. Its performance is characterized in a simulated space application, the research and development activities are described.

  10. Despeckling of medical ultrasound images using data and rate adaptive lossy compression.

    Gupta, Nikhil; Swamy, M N S; Plotkin, Eugene

    2005-06-01

    A novel technique for despeckling the medical ultrasound images using lossy compression is presented. The logarithm of the input image is first transformed to the multiscale wavelet domain. It is then shown that the subband coefficients of the log-transformed ultrasound image can be successfully modeled using the generalized Laplacian distribution. Based on this modeling, a simple adaptation of the zero-zone and reconstruction levels of the uniform threshold quantizer is proposed in order to achieve simultaneous despeckling and quantization. This adaptation is based on: (1) an estimate of the corrupting speckle noise level in the image; (2) the estimated statistics of the noise-free subband coefficients; and (3) the required compression rate. The Laplacian distribution is considered as a special case of the generalized Laplacian distribution and its efficacy is demonstrated for the problem under consideration. Context-based classification is also applied to the noisy coefficients to enhance the performance of the subband coder. Simulation results using a contrast detail phantom image and several real ultrasound images are presented. To validate the performance of the proposed scheme, comparison with two two-stage schemes, wherein the speckled image is first filtered and then compressed using the state-of-the-art JPEG2000 encoder, is presented. Experimental results show that the proposed scheme works better, both in terms of the signal to noise ratio and the visual quality. PMID:15957598

  11. The Subaru Coronagraphic Extreme Adaptive Optics Imager: First Results and On-Sky Performance

    Currie, Thayne; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2013-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control ("speckle nulling"). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  12. Three-dimensional shear wave imaging based on full-field laser speckle contrast imaging with one-dimensional mechanical scanning.

    Chao, Pei-Yu; Li, Pai-Chi

    2016-08-22

    The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms. PMID:27557169

  13. Blurred Image Classification based on Adaptive Dictionary

    Xiaofei Zhou; Guangling Sun; Jie Yin

    2012-01-01

    Two frameworks for blurred image classification bas ed on adaptive dictionary are proposed. Given a blurred image, instead of image deblurring, the sem antic category of the image is determined by blur insensitive sparse coefficients calculated dependin g on an adaptive dictionary. The dictionary is adap tive to an assumed space invariant Point Spread Function (PSF) estimated from the input blurred image. In o ne of th...

  14. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  15. Adaptive Computed Tomography Imaging Spectrometer Project

    National Aeronautics and Space Administration — The present proposal describes the development of an adaptive Computed Tomography Imaging Spectrometer (CTIS), or "Snapshot" spectrometer which can...

  16. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    J.P. Borges

    2016-01-01

    Full Text Available Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61 and healthy age-matched subjects (n=24. Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01. With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04. In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  17. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging.

    Borges, J P; Lopes, G O; Verri, V; Coelho, M P; Nascimento, P M C; Kopiler, D A; Tibirica, E

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; PAPU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men. PMID:27599202

  18. Near Field Speckles

    Brogioli, Doriano

    2008-01-01

    Elastic light scattering has been extensively used to study samples showing a non uniform refraction index on lengthscales from a fraction of a micrometer to a fraction of a millimeter. Typically, a wide laser beam is sent through the sample, and the light scattered at any angle is measured by a detector in the far field. In this Ph. D. thesis, I describe three new techniques, which allow to measure the scattering intensities, working in the near field: hOmoyne Near Field Speckles (ONFS), hEterodyne Near Field Speckles (ENFS) and Schlieren-like Near Field Speckles (SNFS). Basically, the experimental setup consists in a wide laser beam passing through the sample; a lens forms an image of a plane at a given distance from the cell on a CCD sensor. The image, in the near field, shows speckles, since it is formed by the stochastical interference of the light coming from a random sample. I show that, under suitable conditions, the correlation function of such a field closely mirrors the correlation function of the ...

  19. An in vivo analysis of facial muscle change treated with botulinum toxin type A using digital image speckle correlation

    Xu, Yan; Palmaccio, Samantha Palmaccio; Bui, Duc; Dagum, Alexander; Rafailovich, Miriam

    Been famous for clinical use from early 1980s, the neuromuscular blocking agent Botulinum toxin type A (BTX-A), has been used to reduce wrinkles for a long time. Only little research has been done to quantify the change of muscle contraction before and after injection and most research paper depend on subjective evaluation from both patients and surgeons. In our research, Digital Image Speckle Correlation (DISC) was employed to study the mechanical properties of skin, contraction mode of muscles (injected) and reaction of neighbor muscle group (un-injected).At the same time, displacement patterns (vector maps)generated by DISC can predict injection locus for surgeons who normally handle it depending only on visual observation.

  20. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System

    Namgung, Bumseok; Ng, Yan Cheng; Nam, Jeonghun; Leo, Hwa Liang; Kim, Sangho

    2015-01-01

    This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI) as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats was induced by infusing Dextran 500. To elucidate the impact of RBC aggregation on microvascular perf...

  1. Flexibly combined optical microangiography and dual-wavelength laser speckle system for comprehensive imaging of hemodynamic and metabolic responses

    Shi, Lei; Qin, Jia; An, Lin; Wang, Ruikang K.

    2014-03-01

    We have proposed and developed a multi-modal non-invasive biomedical optical imager. It was combined from the subsystems of optical microangiography and dual-wavelength laser speckle contrast imaging. The system was designed to maintain the performances of both subsystems. It was capable of simultaneously imaging the hemodynamic and metabolic responses in tissue environment in vivo. To achieve such requirements, we utilized unique optical setup, such as paired dichroic mirrors to compensate dispersion, additional relay lens to increase working distance and translational sample probe to freely select imaging area and focal plane. The multi-functionality of the system was demonstrated in an investigation of hemodynamic and metabolic responses on an acute wound healing model in mouse pinna in vivo. The microvasculature, blood flow and hemoglobin concentration from millimeter down to capillary level were comprehensively visualized. The captured instantaneous responses to wound onset differed greatly between localized areas; after that blood flow had a rebalance tendency, and hemoglobin concentration dynamically recovered to baseline situation.

  2. EVALUATION OF FILTERS FOR ENVISAT ASAR SPECKLE SUPPRESSION IN PASTURE AREA

    X. Wang

    2012-07-01

    Full Text Available In order to quantify real time pasture biomass from SAR image, regression model between ground measurements of biomass and ENVISAT ASAR backscattering coefficient should be built up. An important prerequisite of valid and accurate regression model is accurate grass backscattering coefficient which, however, cannot be obtained when there is speckle. Speckle noise is the best known problem of SAR images because of the coherent nature of radar illumination imaging system. This study aims to choose better adaptive filter from NEST software to reduce speckle noise in homogeneous pasture area, with little regard to linear feature (e.g. edge between pasture and forest or point feature (e.g. pond, tree preservation. This paper presents the speckle suppression result of ENVISAT ASAR VV/VH images in pasture of Western Australia (WA using four built-in adaptive filters of the NEST software: Frost, Gamma Map, Lee, and Refined Lee filter. Two indices are usually used for evaluation of speckle suppression ability: ENL (Equivalent Number of Looks and SSI (Speckle Suppression Index. These two, however, are not reliable because sometimes they overestimate mean value. Therefore, apart from ENL and SSI, the authors also used a new index SMPI (Speckle Suppression and Mean Preservation Index. It was found that, Lee filter with window size 7×7 and Frost filter (damping factor = 2 with window size 5×5 gave the best performance for VV and VH polarization, respectively. The filtering, together with radiometric calibration and terrain correction, paves the way to extraction of accurate backscattering coefficient of grass in homogeneous pasture area in WA.

  3. Reduction of speckle contrast in HDTV laser projection display.

    Apeland, Knut Øyvind

    2008-01-01

    Abstract In this thesis the focus has been on laser speckle. It is done in collaboration with poLight. They are developing a projector, where laser light is the source of illumination. In such projectors, laser speckle degrades the image quality. The aim of this project is to construct a speckle reduction device to be used in the laser projector. The theory covers a description of laser speckle, how to reduce the speckle contrast, and five methods to so. We explain why speckle arises and whi...

  4. Digital Image Speckle Correlation for the Quantification of the Cosmetic Treatment with Botulinum Toxin Type A (BTX-A)

    Bhatnagar, Divya; Conkling, Nicole; Rafailovich, Miriam; Dagum, Alexander

    2012-02-01

    The skin on the face is directly attached to the underlying muscles. Here, we successfully introduce a non-invasive, non-contact technique, Digital Image Speckle Correlation (DISC), to measure the precise magnitude and duration of facial muscle paralysis inflicted by BTX-A. Subjective evaluation by clinicians and patients fail to objectively quantify the direct effect and duration of BTX-A on the facial musculature. By using DISC, we can (a) Directly measure deformation field of the facial skin and determine the locus of facial muscular tension(b)Quantify and monitor muscular paralysis and subsequent re-innervation following injection; (c) Continuously correlate the appearance of wrinkles and muscular tension. Two sequential photographs of slight facial motion (frowning, raising eyebrows) are taken. DISC processes the images to produce a vector map of muscular displacement from which spatially resolved information is obtained regarding facial tension. DISC can track the ability of different muscle groups to contract and can be used to predict the site of injection, quantify muscle paralysis and the rate of recovery following BOTOX injection.

  5. Monitoring Hypoxia Induced Changes in Cochlear Blood Flow and Hemoglobin Concentration Using a Combined Dual-Wavelength Laser Speckle Contrast Imaging and Doppler Optical Microangiography System

    Reif, Roberto; Qin, Jia; Shi, Lei; Dziennis, Suzan; Zhi, Zhongwei; Nuttall, Alfred L.; Wang, Ruikang K.

    2012-01-01

    A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI) system and a Doppler optical microangiography (DOMAG) system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) in mice. DOMAG can obtain three-dimensiona...

  6. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation template matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion

  7. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation template matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion

  8. Arterial elasticity imaging: comparison of finite-element analysis models with high-resolution ultrasound speckle tracking

    Park Dae

    2010-06-01

    Full Text Available Abstract Background The nonlinear mechanical properties of internal organs and tissues may be measured with unparalleled precision using ultrasound imaging with phase-sensitive speckle tracking. The many potential applications of this important noninvasive diagnostic approach include measurement of arterial stiffness, which is associated with numerous major disease processes. The accuracy of previous ultrasound measurements of arterial stiffness and vascular elasticity has been limited by the relatively low strain of nonlinear structures under normal physiologic pressure and the measurement assumption that the effect of the surrounding tissue modulus might be ignored in both physiologic and pressure equalized conditions. Methods This study performed high-resolution ultrasound imaging of the brachial artery in a healthy adult subject under normal physiologic pressure and the use of external pressure (pressure equalization to increase strain. These ultrasound results were compared to measurements of arterial strain as determined by finite-element analysis models with and without a surrounding tissue, which was represented by homogenous material with fixed elastic modulus. Results Use of the pressure equalization technique during imaging resulted in average strain values of 26% and 18% at the top and sides, respectively, compared to 5% and 2%, at the top and sides, respectively, under physiologic pressure. In the artery model that included surrounding tissue, strain was 19% and 16% under pressure equalization versus 9% and 13% at the top and sides, respectively, under physiologic pressure. The model without surrounding tissue had slightly higher levels of strain under physiologic pressure compared to the other model, but the resulting strain values under pressure equalization were > 60% and did not correspond to experimental values. Conclusions Since pressure equalization may increase the dynamic range of strain imaging, the effect of the

  9. Adaptive image processing a computational intelligence perspective

    Guan, Ling; Wong, Hau San

    2002-01-01

    Adaptive image processing is one of the most important techniques in visual information processing, especially in early vision such as image restoration, filtering, enhancement, and segmentation. While existing books present some important aspects of the issue, there is not a single book that treats this problem from a viewpoint that is directly linked to human perception - until now. This reference treats adaptive image processing from a computational intelligence viewpoint, systematically and successfully, from theory to applications, using the synergies of neural networks, fuzzy logic, and

  10. Speckle noise reduction in breast ultrasound images: SMU (srad median unsharp) approch

    Image denoising has become a very essential for better information extraction from the image and mainly from so noised ones, such as ultrasound images. In certain cases, for instance in ultrasound images, the noise can restrain information which is valuable for the general practitioner. Consequently medical images are very inconsistent, and it is crucial to operate case to case. This paper presents a novel algorithm SMU (Srad Median Unsharp) for noise suppression in ultrasound breast images in order to realize a computer aided diagnosis (CAD) for breast cancer.

  11. Non-invasive single-shot 3D imaging through a scattering layer using speckle interferometry

    Somkuwar, Atul S; R., Vinu; Park, Yongkeun; Singh, Rakesh Kumar

    2015-01-01

    Optical imaging through complex scattering media is one of the major technical challenges with important applications in many research fields, ranging from biomedical imaging, astronomical telescopy, and spatially multiplex optical communications. Although various approaches for imaging though turbid layer have been recently proposed, they had been limited to two-dimensional imaging. Here we propose and experimentally demonstrate an approach for three-dimensional single-shot imaging of objects hidden behind an opaque scattering layer. We demonstrate that under suitable conditions, it is possible to perform the 3D imaging to reconstruct the complex amplitude of objects situated at different depths.

  12. Image segmentation of diseased lentil leaves for disease speckle%扁豆病害叶片的病斑剥离分割

    李学俊; 赵礼良

    2014-01-01

    Traditional segmentation methods can obtain better result for these images which have distinct difference between the goal and background area. However these methods are difficult to obtain ideal disease speckle for diseased lentil leave images which have minor difference among normal leaves and disease speckles. So in this paper, it proposes a method that is suitable for diseased lentil leave images. This method has two stages including initial segmentation and secondary segmentation. Color gradient graph of these images is computed, then the Otsu algorithm is applied to eliminate lower gra-dient. Watershed algorithm is used to pre-segment the images, then a rough target zone based on zone area features is gained. FCM algorithm is applied to rough target zone. By analyzing difference between green alley of disease speckle and normal leaves, disease speckle is acquired. Experimental results show good effect of segmenting disease speckle with this method.%传统的分割方法针对目标和背景灰度值差距大的图像能得到较好的分割效果,但在对正常叶片和病斑灰度值相似度高的扁豆病害叶片图像分割时,难以得到理想的目标病斑。针对该问题,提出了一种适合正常叶片和病斑相似度高的图像剥离分割方法。该方法包括初始分割和二次分割两个步骤。初始分割是基于样本图片的彩色梯度图,采用最大类间标准方差与分水岭相结合的算法获得病斑粗略区域。二次分割是对粗略目标区域进行模糊C聚类分割得到目标病斑。实验结果表明,该剥离分割算法能提高病斑分割精确度,较好地分割出病斑目标。

  13. Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm.

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-12-01

    Laser speckle contrast imaging (LSCI) enables a noninvasive monitoring of microvascular perfusion. Some studies have proposed to extract information from LSCI data through their multiscale entropy (MSE). However, for reaching a large range of scales, the original MSE algorithm may require long recordings for reliability. Recently, a novel approach to compute MSE with shorter data sets has been proposed: the short-time MSE (sMSE). Our goal is to apply, for the first time, the sMSE algorithm in LSCI data and to compare results with those given by the original MSE. Moreover, we apply the original MSE algorithm on data of different lengths and compare results with those given by longer recordings. For this purpose, synthetic signals and 192 LSCI regions of interest (ROIs) of different sizes are processed. Our results show that the sMSE algorithm is valid to compute the MSE of LSCI data. Moreover, with time series shorter than those initially proposed, the sMSE and original MSE algorithms give results with no statistical difference from those of the original MSE algorithm with longer data sets. The minimal acceptable length depends on the ROI size. Comparisons of MSE from healthy and pathological subjects can be performed with shorter data sets than those proposed until now. PMID:26220209

  14. Blurred Image Classification Based on Adaptive Dictionary

    Guangling Sun

    2013-02-01

    Full Text Available Two frameworks for blurred image classification bas ed on adaptive dictionary are proposed. Given a blurred image, instead of image deblurring, the sem antic category of the image is determined by blur insensitive sparse coefficients calculated dependin g on an adaptive dictionary. The dictionary is adap tive to an assumed space invariant Point Spread Function (PSF estimated from the input blurred image. In o ne of the proposed two frameworks, the PSF is inferred separately and in the other, the PSF is updated combined with sparse coefficients calculation in an alternative and iterative manner. The experimental results have evaluated three types of blur namely d efocus blur, simple motion blur and camera shake bl ur. The experiment results confirm the effectiveness of the proposed frameworks.

  15. Stochastic parallel gradient descent based adaptive optics used for high contrast imaging coronagraph

    Dong, Bing; Zhang, Xi

    2011-01-01

    An adaptive optics (AO) system based on stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of stellar coronagraph in order to further improve the contrast. The principle of SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of SPGD algorithm is demonstrated by experimental system featured with a 140-actuators deformable mirror (DM) and a Hartmann- Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph. The LCA can modulate the incoming light to generate a pupil apodization mask in any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at angular distance of 2{\\lambda}/D after corrected by SPGD based AO.

  16. Image segmentation based on adaptive mixture model

    As an important research field, image segmentation has attracted considerable attention. The classical geodesic active contour (GAC) model tends to produce fake edges in smooth regions, while the Chan–Vese (CV) model cannot effectively detect images with holes and obtain the precise boundary. To address the above issues, this paper proposes an adaptive mixture model synthesizing the GAC model and the CV model by a weight function. According to image characteristics, the proposed model can adaptively adjust the weight function. In this way, the model exploits the advantages of the GAC model in regions with rich textures or edges, while exploiting the advantages of the CV model in smooth local regions. Moreover, the proposed model is extended to vector-valued images. Through experiments, it is verified that the proposed model obtains better results than the traditional models. (paper)

  17. A Learning Approach for Adaptive Image Segmentation

    Martin, Vincent; Thonnat, Monique

    2007-01-01

    In this chapter, we have proposed a learning approach for three major issues of image segmentation: context adaptation, algorithm selection and parameter tuning according to the image content and the application need. This supervised learning approach relies on hand-labelled samples. The learning process is guided by the goal of the segmentation and therefore makes the approach reliable for a broad range of applications. The user effort is restrained compared to other supervised methods since...

  18. Laser speckle contrast imaging of blood flow from anesthetized mice: correcting drifts in measurements due to breathing movements

    Nogueira, Gesse E. C.; Ribeiro, Márcio A. C.; Campos, Juliane C.; Ferreira, Julio C. B.

    2015-06-01

    Background: Laser speckle contrast imaging allows non-invasive assessment of cutaneous blood flow. Although the technique is attractive to measure a quantity related to the skin blood flow (SBF) in anesthetized animal models, movements from breathing can mask the SBF signal. As a consequence, the measurement is overestimated because a variable amount of a DC component due to the breathing movements is added to the SBF signal. Objective: To evaluate a method for estimating the background level of the SBF signal, rejecting artefacts from breathing. Methods: A baseline correction method used for accurate DNA sequencing was evaluated, based on estimating the background level of a signal in small temporal sliding-windows. The method was applied to evaluate a mouse model of hindlimb ischemia. SBF signals from hindlimbs of anesthetized C57BL/6 mice (n=13) were registered. The mean SBF (Fi and Fc from ischemic and control hindlimbs) were computed from the registers and from the corresponding estimated background levels (Fib and Fcb from ischemic and control hindlimbs). Results: The mean values of the percentages (a measure of ischemia) MI = (Fi/Fc).100 and MIb = (Fib/Fcb).100 were computed to be 30+/-4% and 23+/-3% respectively (mean +/- SE). Evidences of statistical differences between both, ischemic and control hindlimbs, were obtained (p<0.05, paired student-t). The mean error [(MI-MIb)/MIb].100 obtained was 45+/-14% (mean+/-SE). Conclusion: The recovery of a corrupted SBF signal by breathing artefacts is feasible, allowing more accurate measurements.

  19. The use of digital image speckle correlation to measure the mechanical properties of skin and facial muscular activity

    Staloff, Isabelle Afriat

    Skin mechanical properties have been extensively studied and have led to an understanding of the structure and role of the collagen and elastin fibers network in the dermis and their changes due to aging. All these techniques have either isolated the skin from its natural environment (in vitro), or, when studied in vivo, attempted to minimize the effect of the underlying tissues and muscles. The human facial region is unique compared to the other parts of the body in that the underlying musculature runs through the subcutaneous tissue and is directly connected to the dermis with collagen based fibrous tissues. These fibrous tissues comprise the superficial musculoaponeurotic system, commonly referred to as the SMAS layer. Retaining ligaments anchor the skin to the periosteum, and hold the dermis to the SMAS. In addition, traditional techniques generally collect an average response of the skin. Data gathered in this manner is incomplete as the skin is anisotropic and under constant tension. We therefore introduce the Digital Image Speckle Correlation (DISC) method that maps in two dimensions the skin deformation under the complex set of forces involved during muscular activity. DISC, a non-contact in vivo technique, generates spatial resolved information. By observing the detailed motion of the facial skin we can infer the manner in which the complex ensemble of forces induced by movement of the muscles distribute and dissipate on the skin. By analyzing the effect of aging on the distribution of these complex forces we can measure its impact on skin elasticity and quantify the efficacy of skin care products. In addition, we speculate on the mechanism of wrinkle formation. Furthermore, we investigate the use of DISC to map the mechanism of film formation on skin of various polymers. Finally, we show that DISC can detect the involuntary facial muscular activity induced by various fragrances.

  20. Speckle disturbance limit in laser-based cinema projection systems

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2015-09-01

    In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain.

  1. High sensitive fundus autofluorescence imaging combined with speckle-free optical coherence tomography

    Stremplewski, Patrycjusz; Komar, Katarzyna; Szkulmowski, Maciej; Motoczyńska, Marta; Wojtkowski, Maciej

    2013-03-01

    Scattering and fluorescence images provide complementary information about the health condition of the human eye, so getting them in a single measurement, using a single device may significantly improve a quality of diagnosis as it has been already demonstrated in Spectralis (Heidelberg Eng.) OCT instrument. There is still challenge to improve quality of fundus autofluorescence (FAF) images. The biggest obstacle in obtaining in vivo images of sufficient quality is very low fluorescence signal. For eye safety reasons, and because of patient comfort, using highpower fluorescence excitation is not an adequate solution to the low signal problem. In this contribution we show a new detection method in the retinal autofluorescence imaging, which may improve the sensitivity. We used a fast modulated (up to 500 MHz) diode laser of wavelength 473 nm and detected fluorescence in the spectral range 500-680 nm by photomultiplier and lock-in amplifier. Average power of the collimated blue beam on the cornea used for FAF measurements was set to 50 μW, 10 μW, and even 4.5 μW.

  2. Fuzzy epsilon filters for removal of thermal and speckle noise from gray-scale images

    Bessai, H. J.

    1994-11-01

    This paper develops constructions of filters for semi-automatic enhancement of still images. It emphasizes the joint application of linear and nonlinear filtering techniques. The decision which filter type is to be activated predominantly depends on perceptual criteria. These means of judging are readily described in terms of linguistic variables, i.e., the user is relieved from the tedious task of evaluating noise statistics. The decision process itself is supported by standard fuzzy reasoning techniques and corrected updates of the crisp outputs are available on a user-defined frame-by-frame or window-by-window basis. Thus, both handling of the filter tools and the individual filtering depth (gain, bandwidth, etc.) are controlled by a common rule base. Experiments with noisy grayscale images demonstrate that compared to non-joint methods, the proposed solution results in acceptable scene interpretation and clear identification of originally concealed objects.

  3. A Generalized Speckle Tracking Algorithm for Ultrasonic Strain Imaging Using Dynamic Programming

    Jiang, Jingfeng; Hall, Timothy J.

    2009-01-01

    This study developed an improved motion estimation algorithm for ultrasonic strain imaging that employs a dynamic programming technique. In this paper, we model the motion estimation task as an optimization problem. Since tissue motion under external mechanical stimuli often should be reasonably continuous, a set of cost functions combining correlation and various levels of motion continuity constraint were used to regularize the motion estimation. To solve the optimization problem with a rea...

  4. Evaluation of Right Ventricular Global Longitudinal Function in Patients with Tetralogy of Fallot by Two-dimensional Ultrasound Speckle Tracking Imaging

    李玉曼; 谢明星; 王新房; 吕清; 卢晓芳; 杨亚利; 马红; 方凌云; 张静; 李卫芹

    2010-01-01

    Quantification of right ventricular(RV)volume and function remains a challenge because of RV complex geometry by conventional echocardiography.The purpose of this study was to assess RV global longitudinal function in patients with tetralogy of Fallot(TOF)by 2-dimensional ultrasound speckle tracking imaging(STI).Thirty-eight patients with TOF were enrolled in this study and divided into child group(n=25)and adult group(n=13)according to age.Thirty-eight age-and sex-matched normal subjects were selected as c...

  5. Adaptive contrast imaging: transmit frequency optimization

    Ménigot, Sébastien; Novell, Anthony; Voicu, Iulian; Bouakaz, Ayache; Girault, Jean-Marc

    2010-01-01

    Introduction: Since the introduction of ultrasound (US) contrast imaging, the imaging systems use a fixed emitting frequency. However it is known that the insonified medium is time-varying and therefore an adapted time-varying excitation is expected. We suggest an adaptive imaging technique which selects the optimal transmit frequency that maximizes the acoustic contrast. Two algorithms have been proposed to find an US excitation for which the frequency was optimal with microbubbles. Methods and Materials: Simulations were carried out for encapsulated microbubbles of 2 microns by considering the modified Rayleigh-Plesset equation for 2 MHz transmit frequency and for various pressure levels (20 kPa up to 420kPa). In vitro experiments were carried out using a transducer operating at 2 MHz and using a programmable waveform generator. Contrast agent was then injected into a small container filled with water. Results and discussions: We show through simulations and in vitro experiments that our adaptive imaging technique gives: 1) in case of simulations, a gain of acoustic contrast which can reach 9 dB compared to the traditional technique without optimization and 2) for in vitro experiments, a gain which can reach 18 dB. There is a non negligible discrepancy between simulations and experiments. These differences are certainly due to the fact that our simulations do not take into account the diffraction and nonlinear propagation effects. Further optimizations are underway.

  6. Propierties of speckle patterns generated through multiaperture pupils

    ??ngel-Toro, Luciano; Tebaldi, Myrian; Trivi, Marcelo; Bolognini, N??stor

    2001-01-01

    The characteristics of the image speckles obtained through multiple aperture pupils are theoretically analyzed in terms of the parameters defining the pupils. The possibility of interpreting and synthesizing the image speckle distribution in terms of rather elementary structures is considered, based on the Fourier optics analysis. Then, first and second order statistical properties of the speckle patterns are studied by evaluating both the mutual intensity and the auto-correlation intensity o...

  7. REGISTRATION OF BRAIN IMAGES USING MODIFIED ADAPTIVE POLAR TRANSFORM

    D.Sasikala,

    2010-09-01

    Full Text Available Image registration has great significance in medicine, with a lot of techniques anticipated in it. This paper discusses an approach for medical image registration. It registers images of the mono or multi modalities for CT or MRI images using Modified Adaptive Polar Transform. The performance of the Adaptive Polar Transform with theproposed technique is examined. The results prove that the proposed method performs better than Adaptive Polar Transform technique. The proposed method reduces the errors and also the elapsed time for registration. An analysis is presented for the medical image registration of brain images using Adaptive Polar Transform and Modified Adaptive Polar Transform.

  8. Speckle interferometric technique to assess soap films

    ??ngel Toro, Luciano; Bolognini, N??stor Alberto; Tebaldi, Myrian Cristina; Trivi, Marcelo Ricardo

    2003-01-01

    An speckle interferometric technique to monitor the thinning process of vertical soap film before the film rupture is presented -- The interferometric arrangement consists in a double aperture pupil optical system which images an input diffuser -- In a first step, a reference specklegram is stored in the computer buffer memory -- Afterwards, the soap film is located in front of one pupil aperture, an uniform displacement of the diffuser is produced and a new speckle pattern is stored -- The s...

  9. Highly porous nanoberyllium for X-ray beam speckle suppression

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  10. Highly porous nanoberyllium for X-ray beam speckle suppression

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  11. Full-field optical deformation measurement in biomechanics: digital speckle pattern interferometry and 3D digital image correlation applied to bird beaks.

    Soons, Joris; Lava, Pascal; Debruyne, Dimitri; Dirckx, Joris

    2012-10-01

    In this paper two easy-to-use optical setups for the validation of biomechanical finite element (FE) models are presented. First, we show an easy-to-build Michelson digital speckle pattern interferometer (DSPI) setup, yielding the out-of-plane displacement. We also introduce three-dimensional digital image correlation (3D-DIC), a stereo photogrammetric technique. Both techniques are non-contact and full field, but they differ in nature and have different magnitudes of sensitivity. In this paper we successfully apply both techniques to validate a multi-layered FE model of a small bird beak, a strong but very light biological composite. DSPI can measure very small deformations, with potentially high signal-to-noise ratios. Its high sensitivity, however, results in high stability requirements and makes it hard to use it outside an optical laboratory and on living samples. In addition, large loads have to be divided into small incremental load steps to avoid phase unwrapping errors and speckle de-correlation. 3D-DIC needs much larger displacements, but automatically yields the strains. It is more flexible, does not have stability requirements, and can easily be used as an optical strain gage. PMID:23026697

  12. Modulated speckle simulations based on the random-walk model

    Lencina, Alberto; Vaveliuk, Pablo; Tebaldi, Myriam C.; Bolognini, Néstor Alberto

    2003-01-01

    The random walk model is employed to simulate modulated speckle patterns. We demonstrate that the geo metrical image approximation fails to describe the modulated speckle pattern. A new approach to analyzing this phenomenon is proposed. The validity of the approximations employed is verified by comparison of the simulation with the experimental results. Speckle metrological applications and phase measurement tech niques could be improved by taking advantage of this model.

  13. Multidimensional Speckle Noise Model

    Fàbregas Xavier; López-Martínez Carlos; Pottier Eric

    2005-01-01

    One of the main problems of SAR imagery is the presence of speckle noise, originated by the inherent coherent nature of this type of systems. For one-dimensional SAR systems it has been demonstrated that speckle can be considered as a multiplicative noise term. Nevertheless, this simple model cannot be exported when multidimensional SAR imagery is addressed. This paper is devoted to present the latest advances into the definition of a multidimensional speckle noise model which does not depen...

  14. Image-guided and adaptive radiotherapy

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  15. Extreme Adaptive Optics Planet Imager: XAOPI

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  16. Analysis of tilt by modulated speckles generated with a double aperture pupil mask

    Molina Prado, Martha Lucía; Bolognini, Néstor; Tebaldi, Myrian

    2015-03-01

    We present a method based on modulated speckles to detect tilt movement of a diffusing surface. In our proposal a speckle image of the speckle produced by a reflective diffusing surface is formed by a lens having a double aperture. The double aperture yields to an interference process so that the resulting speckle distribution is fringe modulated. The tilting of the diffusing surface is mapped as a shifting of the speckle. Then, the double aperture pupil lens system maps the speckle shifting into a fringes shifting. We study the system performance in terms of the diffuser tilt. Experimental results that confirm our proposal are presented.

  17. Adaptive spatial compounding for improving ultrasound images of the epidural space on human subjects

    Tran, Denis; Hor, King-Wei; Kamani, Allaudin; Lessoway, Vickie; Rohling, Robert N.

    2008-03-01

    Administering epidural anesthesia can be a difficult procedure, especially for inexperienced physicians. The use of ultrasound imaging can help by showing the location of the key surrounding structures: the ligamentum flavum and the lamina of the vertebrae. The anatomical depiction of the interface between ligamentum flavum and epidural space is currently limited by speckle and anisotropic reflection. Previous work on phantoms showed that adaptive spatial compounding with non-rigid registration can improve the depiction of these features. This paper describes the development of an updated compounding algorithm and results from a clinical study. Average-based compounding may obscure anisotropic reflectors that only appear at certain beam angles, so a new median-based compounding technique is developed. In order to reduce the computational cost of the registration process, a linear prediction algorithm is used to reduce the search space for registration. The algorithms are tested on 20 human subjects. Comparisons are made among the reference image plus combinations of different compounding methods, warping and linear prediction. The gradient of the bone surfaces, the Laplacian of the ligamentum flavum, and the SNR and CNR are used to quantitatively assess the visibility of the features in the processed images. The results show a significant improvement in quality when median-based compounding with warping is used to align the set of beam-steered images and combine them. The improvement of the features makes detection of the epidural space easier.

  18. An efficient adaptive arithmetic coding image compression technology

    This paper proposes an efficient lossless image compression scheme for still images based on an adaptive arithmetic coding compression algorithm. The algorithm increases the image coding compression rate and ensures the quality of the decoded image combined with the adaptive probability model and predictive coding. The use of adaptive models for each encoded image block dynamically estimates the probability of the relevant image block. The decoded image block can accurately recover the encoded image according to the code book information. We adopt an adaptive arithmetic coding algorithm for image compression that greatly improves the image compression rate. The results show that it is an effective compression technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. An effective method for reducing speckle noise in digital holography

    Xin Kang

    2008-01-01

    An effective method for reducing the speckle noise in digital holography is proposed in this paper.Different from the methods based on classical filtering technique,it utilizes the multiple holograms which are generated by rotating the illuminating light continuously.The intensity images reconstructed by a series of holograms generated by rotating the illuminating light possess different speckle patterns.Hence by properly averaging the reconstructed intensity fields,the speckle noises can be reduced greatly.Experimental results show that the proposed method is simple and effective to reduce speckle noise in digital holography.

  20. Achieving High Contrasts Through Speckle Rejection With Slicer Based Integral Field Spectrographs

    Salter, Graeme; Thatte, Niranjan; Tecza, Matthias; Clarke, Fraser

    2011-09-01

    Speckle noise, not photon noise, remains to be the limiting factor in the direct detection of high contrast companions. With studies for the future exo-planet characterisation and imaging instruments on the ELTs under way, the correct choice of technology must be made that will enable the fitting and removal of the speckle noise that remains after AO. We conclusively demonstrate, through the use of an experimental setup producing a simulated speckle, that slicer based integral field spectrographs (IFS) and post-processing using spectral deconvolution can achieve speckle rejection factors of 1000 in broad band reconstructed images (and 100 per spectral channel). This represents an order of magnitude improvement over current state-of-the-art. Contrary to popular belief, we do not find any evidence that this choice of IFS technology limits the achievable contrast of extra solar planet direct detection instruments. Coupled with extreme adaptive optics systems and high performance coronagraphs, a slicer based integral field spectrograph can achieve contrasts exceeding 10^9, making it an attractive option for the next generation of instruments being designed for the direct detection of extra solar planets (e.g. EPICS for the E-ELT).

  1. Short-term neural adaptation to simultaneous bifocal images.

    Aiswaryah Radhakrishnan

    Full Text Available Simultaneous vision is an increasingly used solution for the correction of presbyopia (the age-related loss of ability to focus near images. Simultaneous Vision corrections, normally delivered in the form of contact or intraocular lenses, project on the patient's retina a focused image for near vision superimposed with a degraded image for far vision, or a focused image for far vision superimposed with the defocused image of the near scene. It is expected that patients with these corrections are able to adapt to the complex Simultaneous Vision retinal images, although the mechanisms or the extent to which this happens is not known. We studied the neural adaptation to simultaneous vision by studying changes in the Natural Perceived Focus and in the Perceptual Score of image quality in subjects after exposure to Simultaneous Vision. We show that Natural Perceived Focus shifts after a brief period of adaptation to a Simultaneous Vision blur, similar to adaptation to Pure Defocus. This shift strongly correlates with the magnitude and proportion of defocus in the adapting image. The magnitude of defocus affects perceived quality of Simultaneous Vision images, with 0.5 D defocus scored lowest and beyond 1.5 D scored "sharp". Adaptation to Simultaneous Vision shifts the Perceptual Score of these images towards higher rankings. Larger improvements occurred when testing simultaneous images with the same magnitude of defocus as the adapting images, indicating that wearing a particular bifocal correction improves the perception of images provided by that correction.

  2. Speckle-based spectrometer

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  3. Adaptive Real Time Imaging Synthesis Telescopes

    Wright, Melvyn

    2012-01-01

    The digital revolution is transforming astronomy from a data-starved to a data-submerged science. Instruments such as the Atacama Large Millimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer Array (SKA) will measure their accumulated data in petabytes. The capacity to produce enormous volumes of data must be matched with the computing power to process that data and produce meaningful results. In addition to handling huge data rates, we need adaptive calibration and beamforming to handle atmospheric fluctuations and radio frequency interference, and to provide a user environment which makes the full power of large telescope arrays accessible to both expert and non-expert users. Delayed calibration and analysis limit the science which can be done. To make the best use of both telescope and human resources we must reduce the burden of data reduction. Our instrumentation comprises of a flexible correlator, beam former and imager with digital signal processing closely coupled...

  4. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid.

    Gorczynska, Iwona; Migacz, Justin V; Zawadzki, Robert J; Capps, Arlie G; Werner, John S

    2016-03-01

    We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using a contrast-to-noise (CNR) metric to assess the capability of the three methods to visualize the choriocapillaris layer. For evaluation of the static tissue noise suppression in OCTA images we proposed to calculate CNR between the photoreceptor/RPE complex and the choriocapillaris layer. Finally, we demonstrated that implementation of intensity-based OCT imaging and OCT angiography methods allows for visualization of retinal and choroidal vascular layers known from anatomic studies in retinal preparations. OCT projection imaging of data flattened to selected retinal layers was implemented to visualize retinal and choroidal vasculature. User guided vessel tracing was applied to segment the retinal vasculature. The results were visualized in a form of a skeletonized 3D model. PMID:27231598

  5. Deformation measurements of materials at low temperatures using laser speckle photography method

    The authors observed deformations of several materials during cooling down process from room temperature to liquid nitrogen temperature using the laser speckle photography method. The in-plane displacements were measured by the image plane speckle photography and the out-of-plane displacement gradients by the defocused speckle photography. The results of measurements of in-plane displacement are compared with those of FEM analysis. The applicability of laser speckle photography method to cryogenic engineering are also discussed

  6. Adaptive image ray-tracing for astrophysical simulations

    Parkin, E. R.

    2010-01-01

    A technique is presented for producing synthetic images from numerical simulations whereby the image resolution is adapted around prominent features. In so doing, adaptive image ray-tracing (AIR) improves the efficiency of a calculation by focusing computational effort where it is needed most. The results of test calculations show that a factor of >~ 4 speed-up, and a commensurate reduction in the number of pixels required in the final image, can be achieved compared to an equivalent calculat...

  7. 非下采样Contourlet域的ICA法SAR图像相干斑抑制%Speckle reduction of SAR image based on independent component analysis in nonsubsampled Contourlet domain

    贺峥嵘; 刘智; 王番; 陈永昌

    2011-01-01

    相干斑是SAR图像固有信息,也是SAR图像处理研究的重要方面之一.将非下采样Contourlet变换和统计信号处理中的独立分量分析相结合进行斑点抑制.对SAR图像进行非下采样金字塔和非下采样方向性滤波器组分解,在分解得到的非下采样Contourlet变换域利用扩展Infomax算法分离SAR图像斑点噪声.实验结果表明,该方法不仅较好抑制噪声,而且能够很好保持SAR图像细节信息.%Speckle noise was generated by the coherent processing of synthetic aperture radar (SAR) signals. Speckle denoising remained the major issues in SAR image processing. In this paper we combined the nonsubsampled contourlet transform (NSCT) and the independent component analysis used in statistical signal processing to filter SAR images. Firstly, we decomposed SAR image by the nonsubsampled pyramid (NSP) and the nonsubsampled directional filter bank (NSDFB). And then implemented the extended Infomax algorithm in this NSCT domain to separate speckles from SAR images. The experimental results presented the proposed method could get preferable results without losing details of SAR images.

  8. Speckle-based wavemeter

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Chakrabarti, Maumita

    2015-01-01

    A spectrometer based on the application of dynamic speckles will be disclosed. The method relies on scattering of primarily coherent radiation from a slanted rough surface. The scattered radiation is collected on a detector array and the speckle displacement is monitored during a change in the...... incident wavelength. The change of wavelength gives an almost linear phaseshift across the scattering surface resulting in an almost linear shift of the speckle pattern, which is subsequently monitored. It is argued that frequency changes close to 100 MHz can be probed using a common CMOS array...

  9. Photothermal speckle modulation for noncontact materials characterization.

    Stolyarov, Alexander M; Sullenberger, Ryan M; Crompton, David R; Jeys, Thomas H; Saar, Brian G; Herzog, William D

    2015-12-15

    We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5-8.7 μm), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm probe laser illuminate a sample surface such that the two laser spots overlap. Surface absorption of the intensity-modulated pump laser induces a time-varying thermoelastic surface deformation, resulting in a time-varying 532 nm scattering speckle field from the surface. The speckle modulation amplitude, derived from a series of visible camera images, is found to correlate with the amplitude of the surface motion. By tuning the pump laser's wavelength over a molecular absorption feature, the amplitude spectrum of the speckle modulation is found to correlate to the IR absorption spectrum. As an example, we demonstrate this technique for spectroscopic identification of thin polymeric films. Furthermore, by adjusting the rate of modulation of the pump beam and measuring the associated modulation transfer to the visible speckle pattern, information about the thermal time constants of surface and sub-surface features can be revealed. Using this approach, we demonstrate the ability to distinguish between different materials (including metals, semiconductors, and insulators) based on differences in their thermal conductivities. PMID:26670512

  10. Real-time adaptive video image enhancement

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  11. Logic operations by using modulated speckle

    Tebaldi, Myrian; Ángel-Toro, Luciano; Trivi, Marcelo; Bolognini, Néstor

    2001-01-01

    An alternative image multiplexing technique is proposed. In the arrangement implemented, the input is imaged by introducing a multiple aperture pupil in the imaging lens. Then, the speckle pattern is modulated by several system of fringes. The input images are sequentially encoded by using a different pupil during each exposure. The pupil arrangements implemented are selected to concentrate in each spot the spectral information corresponding to not more than two exposures. The spectral amplit...

  12. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction is partial due to the limitation of hardware. We propose a kind of hybrid image post-processing method, which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image. This method is applied in the image restoration of the vivid human retinal images. The results show that it is effective to improve the retinal image quality

  13. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    TIAN Yu; RAO Chang-Hui; RAO Xue-Jun; WANG Cheng; YU Xiang; LIU Qian; XUE Li-Xia; LING Ning; JIANG Wen-Han

    2008-01-01

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time.However the correction is partial due to the limitation of hardware.We propose a kind of hybrid image post-processing method.which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image.This method is applied in the image restoration of the vivid human retinal images.The results show that it is effective to improve the retinal image quality.

  14. Adaptive Super-Spatial Prediction Approach For Lossless Image Compression

    Arpita C. Raut,

    2014-04-01

    Full Text Available Existing prediction based lossless image compression schemes perform prediction of an image data using their spatial neighborhood technique which can’t predict high-frequency image structure components, such as edges, patterns, and textures very well which will limit the image compression efficiency. To exploit these structure components, adaptive super-spatial prediction approach is developed. The super-spatial prediction approach is adaptive to compress high frequency structure components from the grayscale image. The motivation behind the proposed prediction approach is taken from motion prediction in video coding, which attempts to find an optimal prediction of structure components within the previously encoded image regions. This prediction approach is efficient for image regions with significant structure components with respect to parameters as compression ratio, bit rate as compared to CALIC (Context-based adaptive lossless image coding.

  15. Adaptive Multi-Resolution Scheme for Efficient Image Compression

    Babel, Marie; Déforges, Olivier; Ronsin, Joseph

    2003-01-01

    The LAR (Locally Adaptive Resolution) method is a multi-layers still image coding scheme, efficient from very low to high bit rates. The first stage is devoted to the representation and compression of the global information (low resolution image), and relies on an adaptive resolution in the image. This paper presents some improvements on the first layer through an original quad-tree like decomposition based on a predictive scheme, and the integration of a powerful interpolation post-processin...

  16. Determination of left ventricular short-axis views torsion in patients with heart failure by speckle tracking imaging and its clinical significance

    Objective: To evaluate the clinical value of speckle tracking imaging (STI) for the measurement of left ventricular short-axis views regional rotation in patients with heart failure (HF). Methods: High frame rate two-dimensional images from the left ventricular short-axis views in 31 patients with CHF (CHF group) and 32 healthy controls (control group) were recorded. The regional rotation (Rot) was measured in the left ventricular short-axis views; the peak endocardium rotation (endo-rot), peak epicardium rotation (epi-rot), peak bulk rotation (bulk-rot), and peak mural torsion (mural-tor) were measured separately. Results: Compared with control group, the regional Rot of each segment in patients with CHF was significantly decreased (all P<0.01), the peak endo-rot, peak epi-rot,peak bulk-rot, and peak mural-tor were aslo significantly decreased (all P<0.05) in patients with CHF. The left ventricular torsion of patients with CHF was significantly lower than that in control group (P<0.01). Conclusion: STI can exactly evaluate the characteristics of left ventricular rotation and the heart function in patients with CHF. (authors)

  17. Multimodal Medical Image Fusion by Adaptive Manifold Filter

    Peng Geng; Shuaiqi Liu; Shanna Zhuang

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally,...

  18. Adaptive Local Image Registration: Analysis on Filter Size

    Vishnukumar S; M.Wilscy

    2012-01-01

    Adaptive Local Image Registration is a Local Image Registration based on an Adaptive Filtering frame work. A filter of appropriate size convolves with reference image and gives the pixel values corresponding to the distorted image and the filter is updated in each stage of the convolution. When the filter converges to the system model, it provides the registered image. The filter size plays an important role in this method. The analysis on the filter size is done using Peak Signal-to-Noise Ra...

  19. Speckle photography with different pupils in a multiple-exposure scheme

    ??ngel Toro, Luciano; Bolognini, N??stor Alberto; Tebaldi, Myrian Cristina; Trivi, Marcelo Ricardo

    2000-01-01

    The use of different multiple-aperture pupils for recording each image in speckle photography is proposed -- The introduction of suitable spatial frequency carriers, by internally modulating imaged speckles, allows one to selectively isolate or combine the spectral content of different images into spatially separated regions in the Fourier plane -- Theoretical and experimental results extend the speckle photography technique to the depiction of several specklegrams of multiple uniform in-plan...

  20. Escherichia coli activity characterization using a laser dynamic speckle technique

    Ramírez-Miquet, Evelio E; Contreras-Alarcón, Orestes R

    2012-01-01

    The results of applying a laser dynamic speckle technique to characterize bacterial activity are presented. The speckle activity was detected in two-compartment Petri dishes. One compartment was inoculated and the other one was left as a control blank. The speckled images were processed by the recently reported temporal difference method. Three inoculums of 0.3, 0.5, and 0.7 McFarland units of cell concentration were tested; each inoculum was tested twice for a total of six experiments. The dependences on time of the mean activity, the standard deviation of activity and other descriptors of the speckle pattern evolution were calculated for both the inoculated compartment and the blank. In conclusion the proposed dynamic speckle technique allows characterizing the activity of Escherichia coli bacteria in solid medium.

  1. Cluster speckle structures through multiple apertures forming a closed curve

    Mosso, E.; Tebaldi, M.; Lencina, A.; Bolognini, N.

    2010-04-01

    In this work, cluster-like speckle patterns are analyzed. These patterns are generated when a diffuser illuminated by coherent light is imaged by a lens having a pupil mask with multiple apertures forming a closed curve. We show that the cluster structure results from the complex modulation produced inside each speckle which is generated by multiple interferences of light through the apertures. In particular, when the apertures are uniformly distributed along a closed curve, the resulting image speckle cluster replicates the pupil aperture distribution. Experimental results and theoretical simulations show that cluster features depend on the apertures distribution and the size of the closed curves.

  2. DIGITAL SPECKLE CORRELATION METHOD IMPROVED BY GENETIC ALGORITHM

    MaShaopeng; JillGuanchang

    2003-01-01

    The digital speckle correlation method is an important optical metrology for surface displacement and strain measurement. With this technique, the whole field deformation information can be obtained by tracking the geometric points on the speckle images based on a correlation-matching search technique. However, general search techniques suffer from great computational complexity in the processing of speckle images with large deformation and the large random errors in the processing of images of bad quality. In this paper, an advanced approach based on genetic algorithms (GA) for correlation-matching search is developed. Benefiting from the abilities of global optimum and parallelism searching of GA, this new approach can complete the correlation-matching search with less computational consumption and at high accuracy. Two experimental results from the simulated speckle images have proved the efficiency of the new approach.

  3. Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Dong, Weisheng; Shi, Guangming; Wu, Xiaolin

    2010-01-01

    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are ad...

  4. Lagrangian speckle model and tissue-motion estimation--theory.

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear. PMID:10504093

  5. Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system.

    Roberto Reif

    Full Text Available A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI system and a Doppler optical microangiography (DOMAG system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO, deoxyhemoglobin (Hb and total hemoglobin (HbT in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.

  6. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  7. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  8. Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method - art. no. 66270P

    Jørgensen, Thomas Martini; Thrane, Lars; Mogensen, M.;

    2007-01-01

    have tested the scheme with a mobile fiber-based time-domain real-time OCT system. Essential enhancement was obtained in image contrast when performing in vivo imaging of normal skin and lesions. Resulting images show improved delineation of structure in correspondence with the observed improvements in...

  9. In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions

    Zawadzki, Robert J.; Jones, Steven M.; Kim, Dae Yu; Poyneer, Lisa; Capps, Arlie G.; Hamann, Bernd; Olivier, Scot S.; Werner, John S.

    2012-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the outer layers of the human retina. Despite the significant progress in imaging cone and rod photoreceptor mosaics, visualization of cellular structures in the inner retina has been achieved only with extrinsic contrast agents that have not been approved for use with humans. In this paper we describe the main limiting factors in visualizing inner retinal cells and the methods we implemented to reduce their effects on images acquired with AO-OCT. These include improving the system point spread function (AO performance), monitoring of motion artifacts (retinal motion tracking), and speckle pattern reduction (temporal and spatial averaging). Results of imaging inner retinal morphology and the improvement offered by the new UC Davis AOOCT system with spatio-temporal image averaging are presented.

  10. Image edge detection based on adaptive weighted morphology

    Lihui Jiang; Yanying Guo

    2007-01-01

    A novel morphological edge detector based on adaptive weighted morphological operators is presented. It judges image edge and direction by adaptive weighted morphological structuring elements (SEs). If the edge direction exists, a big weight factor in SE is put; if it does not exist, a small weight factor in SE is put. Thus we can achieve an intensified edge detector. Experimental results prove that the new operator's performance dominates those of classical operators for images in edge detection, and obtains superbly detail edges.

  11. Contrast-based sensorless adaptive optics for retinal imaging

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T. O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In thi...

  12. Development of an optimized algorithm for the characterization of microflow using speckle patterns present in optical coherence tomography signal

    This work discusses the Optical Coherence Tomography system (OCT) and its application to the microfluidics area. To this end, physical characterization of microfluidic circuits were performed using 3D (three-dimensional) models constructed from OCT images of such circuits. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels. Going further, this work paper studies and develops analytical techniques for microfluidic flow, in particular techniques based on speckle pattern. In the first instance, existing methods were studied and improved, such as Speckle Variance - OCT, where a gain of 31% was obtained in processing time. Other methods, such as LASCA (Laser Speckle Contrast Analysis), based on speckle autocorrelation, are adapted to OCT images. Derived from LASCA, the developed analysis technique based on intensity autocorrelation motivated the development of a custom OCT system as well as an optimized acquisition software, with a sampling rate of 8 kHz. The proposed method was, then, able to distinguish different flow rates, and limits of detection were tested, proving its feasibility for implementation on Brownian motion analysis and flow rates below 10 μl/min. (author)

  13. Comparing Nonsubsampled Wavelet, Contourlet and Shearlet Transforms for Ultrasound Image Despeckling

    Sedigheh Ghofrani

    2015-01-01

    Ultrasound images suffer of multiplicative noise named speckle. Bayesian shrinkage in transform domain is a well-known method based on finding threshold value to suppress the speckle noise. The main problem of applying Bayesian shrinkage is finding the optimum threshold value in appropriate transform domain. In this paper, we compare the performance of adaptive Bayesian thresholding when nonsubsampled Wavelet, Contourlet and Shearlet transforms are used. We processed two synthetic test images...

  14. Coherent Image Layout using an Adaptive Visual Vocabulary

    Dillard, Scott E.; Henry, Michael J.; Bohn, Shawn J.; Gosink, Luke J.

    2013-03-06

    When querying a huge image database containing millions of images, the result of the query may still contain many thousands of images that need to be presented to the user. We consider the problem of arranging such a large set of images into a visually coherent layout, one that places similar images next to each other. Image similarity is determined using a bag-of-features model, and the layout is constructed from a hierarchical clustering of the image set by mapping an in-order traversal of the hierarchy tree into a space-filling curve. This layout method provides strong locality guarantees so we are able to quantitatively evaluate performance using standard image retrieval benchmarks. Performance of the bag-of-features method is best when the vocabulary is learned on the image set being clustered. Because learning a large, discriminative vocabulary is a computationally demanding task, we present a novel method for efficiently adapting a generic visual vocabulary to a particular dataset. We evaluate our clustering and vocabulary adaptation methods on a variety of image datasets and show that adapting a generic vocabulary to a particular set of images improves performance on both hierarchical clustering and image retrieval tasks.

  15. An adaptive algorithm for low contrast infrared image enhancement

    Liu, Sheng-dong; Peng, Cheng-yuan; Wang, Ming-jia; Wu, Zhi-guo; Liu, Jia-qi

    2013-08-01

    An adaptive infrared image enhancement algorithm for low contrast is proposed in this paper, to deal with the problem that conventional image enhancement algorithm is not able to effective identify the interesting region when dynamic range is large in image. This algorithm begin with the human visual perception characteristics, take account of the global adaptive image enhancement and local feature boost, not only the contrast of image is raised, but also the texture of picture is more distinct. Firstly, the global image dynamic range is adjusted from the overall, the dynamic range of original image and display grayscale form corresponding relationship, the gray scale of bright object is raised and the the gray scale of dark target is reduced at the same time, to improve the overall image contrast. Secondly, the corresponding filtering algorithm is used on the current point and its neighborhood pixels to extract image texture information, to adjust the brightness of the current point in order to enhance the local contrast of the image. The algorithm overcomes the default that the outline is easy to vague in traditional edge detection algorithm, and ensure the distinctness of texture detail in image enhancement. Lastly, we normalize the global luminance adjustment image and the local brightness adjustment image, to ensure a smooth transition of image details. A lot of experiments is made to compare the algorithm proposed in this paper with other convention image enhancement algorithm, and two groups of vague IR image are taken in experiment. Experiments show that: the contrast ratio of the picture is boosted after handled by histogram equalization algorithm, but the detail of the picture is not clear, the detail of the picture can be distinguished after handled by the Retinex algorithm. The image after deal with by self-adaptive enhancement algorithm proposed in this paper becomes clear in details, and the image contrast is markedly improved in compared with Retinex

  16. Noise Estimation from Remote Sensing Images by Fractal Theory and Adaptive Image Block Division

    FU Peng

    2015-11-01

    Full Text Available A novel approach for additive noise estimation from highly textured optical remote sensing images has been proposed, which is based on fractal theory and adaptive image block division. Different from the conventional regular block division based noise estimation methods, the divided adaptive image blocks with the proposed method are adhering to the local image information, which are most likely to be homogeneous blocks. Combining with the week textured image region detection using fractal theory and noise standard deviation calculation using statistical analysis, the proposed method can automatically estimate additive noise intensity from optical remote sensing images. Quantified analysis of experiments with ZY-3 satellite images demonstrates that the proposed method is applicable to optical remote sensing images with various complexities and different noise levels. Meanwhile, the notion of week textured image region detection and adaptive image block division can also be applied to multiplicative noise estimation from radar images after modification.

  17. Adaptive Outlier Rejection in Image Super-resolution

    Yrjänäinen Jukka

    2006-01-01

    Full Text Available One critical aspect to achieve efficient implementations of image super-resolution is the need for accurate subpixel registration of the input images. The overall performance of super-resolution algorithms is particularly degraded in the presence of persistent outliers, for which registration has failed. To enhance the robustness of processing against this problem, we propose in this paper an integrated adaptive filtering method to reject the outlier image regions. In the process of combining the gradient images due to each low-resolution image, we use adaptive FIR filtering. The coefficients of the FIR filter are updated using the LMS algorithm, which automatically isolates the outlier image regions by decreasing the corresponding coefficients. The adaptation criterion of the LMS estimator is the error between the median of the samples from the LR images and the output of the FIR filter. Through simulated experiments on synthetic images and on real camera images, we show that the proposed technique performs well in the presence of motion outliers. This relatively simple and fast mechanism enables to add robustness in practical implementations of image super-resolution, while still being effective against Gaussian noise in the image formation model.

  18. Towards Adaptive High-Resolution Images Retrieval Schemes

    Kourgli, A.; Sebai, H.; Bouteldja, S.; Oukil, Y.

    2016-06-01

    Nowadays, content-based image-retrieval techniques constitute powerful tools for archiving and mining of large remote sensing image databases. High spatial resolution images are complex and differ widely in their content, even in the same category. All images are more or less textured and structured. During the last decade, different approaches for the retrieval of this type of images have been proposed. They differ mainly in the type of features extracted. As these features are supposed to efficiently represent the query image, they should be adapted to all kind of images contained in the database. However, if the image to recognize is somewhat or very structured, a shape feature will be somewhat or very effective. While if the image is composed of a single texture, a parameter reflecting the texture of the image will reveal more efficient. This yields to use adaptive schemes. For this purpose, we propose to investigate this idea to adapt the retrieval scheme to image nature. This is achieved by making some preliminary analysis so that indexing stage becomes supervised. First results obtained show that by this way, simple methods can give equal performances to those obtained using complex methods such as the ones based on the creation of bag of visual word using SIFT (Scale Invariant Feature Transform) descriptors and those based on multi scale features extraction using wavelets and steerable pyramids.

  19. Superresolution restoration of an image sequence: adaptive filtering approach.

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented. PMID:18262881

  20. Dynamic speckle texture processing using averaged dimensions

    Rabal, Héctor; Arizaga, Ricardo; Cap, Nelly; Trivi, Marcelo; Mavilio Nuñez, Adriana; Fernandez Limia, Margarita

    2006-08-01

    Dynamic speckle or biospeckle is a phenomenon generated by laser light scattering in biological tissues. It is also present in some industrial processes where the surfaces exhibit some kind of activity. There are several methods to characterize the dynamic speckle pattern activity. For quantitative measurements, the Inertia Moment of the co occurrence matrix of the temporal history of the speckle pattern (THSP) is usually used. In this work we propose the use of average dimensions (AD) for quantitative classifications of textures of THSP images corresponding to different stages of the sample. The AD method was tested in an experiment with the drying of paint, a non biological phenomenon that we usually use as dynamic speckle initial test. We have chosen this phenomenon because its activity can be followed in a relatively simple way by gravimetric measures and because its behaviour is rather predictable. Also, the AD was applied to numerically simulated THSP images and the performance was compared with other quantitative method. Experiments with biological samples are currently under development.

  1. Modified Adaptive Weighted Averaging Filtering Algorithm for Noisy Image Sequences

    LI Weifeng; YU Daoyin; CHEN Xiaodong

    2007-01-01

    In order to avoid the influence of noise variance on the filtering performances, a modified adaptive weighted averaging (MAWA) filtering algorithm is proposed for noisy image sequences. Based upon adaptive weighted averaging pixel values in consecutive frames, this algorithm achieves the filtering goal by assigning smaller weights to the pixels with inappropriate estimated motion trajectory for noise. It only utilizes the intensity of pixels to suppress noise and accordingly is independent of noise variance. To evaluate the performance of the proposed filtering algorithm, its mean square error and percentage of preserved edge points were compared with those of traditional adaptive weighted averaging and non-adaptive mean filtering algorithms under different noise variances. Relevant results show that the MAWA filtering algorithm can preserve image structures and edges under motion after attenuating noise, and thus may be used in image sequence filtering.

  2. Variational denoising method for electronic speckle pattern interferometry

    Fang Zhang; Wenyao Liu; Chen Tang; Jinjiang Wang; Li Ren

    2008-01-01

    Traditional speckle fringe patterns by electronic speckle pattern interferometry (ESPI) are inherently noisy and of limited visibility, so denoising is the key problem in ESPI. We present the variational denoising method for ESPI. This method transforms the image denosing to minimizing an appropriate penalized energy function and solving a partial differential equation. We test the proposed method on computer-simulated and experimental speckle correlation fringes, respectively. The results show that this technique is capable of significantly improving the quality of fringe patterns. It works well as a pre-processing for the fringe patterns by ESPI.

  3. In vivo high-resolution retinal imaging using adaptive optics.

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  4. Limitations to adaptive optics image quality in rodent eyes

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2012-01-01

    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality ...

  5. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales

    Jovanovic, N.; Martinache, F.; Guyon, O.; Clergeon, C.; Singh, G.; Kudo, T.; Garrel, V.; Newman, K.; Doughty, D.; Lozi, J.; Males, J.; Minowa, Y.; Hayano, Y.; Takato, N.; Morino, J.; Kuhn, J.; Serabyn, E.; Norris, B.; Tuthill, P.; Schworer, G.; Stewart, P.; Close, L.; Huby, E.; Perrin, G.; Lacour, S.; Gauchet, L.; Vievard, S.; Murakami, N.; Oshiyama, F.; Baba, N.; Matsuo, T.; Nishikawa, J.; Tamura, M.; Lai, O.; Marchis, F.; Duchene, G.; Kotani, T.; Woillez, J.

    2015-09-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multiband instrument which makes use of light from 600 to 2500 nm, allowing for coronagraphic direct exoplanet imaging of the inner 3λ/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well-corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase-induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1λ/D. Noncommon path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid-2016) can take deeper exposures and/or perform angular, spectral, and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable subdiffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.

  6. Speckle-Free Coherence Tomography of Turbid Media

    Liba, Orly; SoRelle, Elliott D; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M; Chu, Steven; de la Zerda, Adam

    2016-01-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show a method based purely on light manipulation that is able to entirely remove the speckle noise originating from turbid samples without any compromise in resolution. We refer to this method as Speckle-Free OCT (SFOCT). Using SFOCT, we succeeded in revealing small structures that are otherwise hidden by speckle noise when using conventional OCT, including the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, sweat ducts, and Meissners corpuscle in the human fingertip skin. SFOCT has the potential to markedly increase OCTs diagnostic capabilities of various human diseases by revealing minute features that correlate with early pathology.

  7. Multiple rotation assessment through isothetic fringes in speckle photography

    Ángel-Toro, Luciano; Tebaldi, Myrian; Bolognini, Néstor

    2007-01-01

    The use of different pupils for storing each speckled image in speckle photography is employed to determine multiple in-plane rotations. The method consists of recording a four exposure specklegram where the rotations are done between exposures. This specklegram is then optically processed in a whole field approach rendering isothetic fringes, which give detailed information about the multiple rotations. It is experimentally demonstrated that the proposed arrangement permits the depiction of ...

  8. Contrast-based sensorless adaptive optics for retinal imaging.

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  9. Coherent anti-Stokes Raman scattering microscopy with dynamic speckle illumination

    Heinrich, Christoph; Hofer, Alexander; Bernet, Stefan; Ritsch-Marte, Monika [Division for Biomedical Physics, Innsbruck Medical University, Muellerstrasse. 44, A-6020 Innsbruck (Austria)], E-mail: Stefan.Bernet@i-med.ac.at

    2008-02-15

    We demonstrate that dynamic speckle patterns can be utilized to improve the optical sectioning power of wide-field coherent anti-Stokes Raman scattering (CARS) microscopy. The time-dependent speckle patterns are generated by randomly moving a multimode fiber delivering one of the excitation laser pulses. The standard deviation of various CARS images with changing speckle illumination yields an enhanced axial resolution as compared with a simply averaged CARS image. The procedure makes use of the intrinsically high speckle contrast even in scattering materials.

  10. New adaptive sampling method in particle image velocimetry

    This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)

  11. Speckles and Shadow Bands

    Mason, Brian D.

    1995-03-01

    Speckle interferometry has for the past two decades provided a means to measure very accurate relative positions of binary stars, data crucial to the fundamental determination of basic stellar parameters. As a technique for observing small angular separations speckle interferometry is exceeded only by long baseline interferometry (a technique still in infancy) and the observation of lunar occultation phenomena. As the moon passes in front of stars the light coming from those stars is occulted. Occultations of binary stars can determine relative intensities and can measure separations which are comparable to those measured by long-baseline interferometers. The data are difficult to interpret since the measured separation is a projection of the true angular separation and non-standard filters are often used. No complete listing of all occultation measures has been published since the compilation of David Evans (IAU Colloquium No. 62, Current Techniques in Double and Multiple Star Research, Lowell Observatory Bulletin No. 167, 1981, eds. Harrington, R.A. \\& Franz, O.G., Lowell Observatory, Flagstaff). The dissertation presents 772 measures of 357 systems, an increase of 60\\% over the Evans catalog. The methodology of speckle interferometry is presented, followed by 362 re-reduction measures and 253 new measures. The re-reduction measures were cases where prior analysis showed no companion. With improved reduction algorithms, detection frequency significantly increased. One observation in eight previously showing no companion produced a measurable result. Results were obtained with the 1.8-m Perkins telescope of Lowell Observatory, the 2.5-m Hooker telescope of Mt. Wilson Observatory, the 3.8-m Mayall telescope of Kitt Peak National Observatory and the 4.0-m telescope at Cerro Tololo InterAmerican Observatory. All but 130 of the occultation objects have speckle observations. The likelihood of future detection by speckle is considered. An analysis of 131 negative

  12. An Improved Adaptive Deconvolution Algorithm for Single Image Deblurring

    Hsin-Che Tsai

    2014-01-01

    Full Text Available One of the most common defects in digital photography is motion blur caused by camera shake. Shift-invariant motion blur can be modeled as a convolution of the true latent image and a point spread function (PSF with additive noise. The goal of image deconvolution is to reconstruct a latent image from a degraded image. However, ringing is inevitable artifacts arising in the deconvolution stage. To suppress undesirable artifacts, regularization based methods have been proposed using natural image priors to overcome the ill-posedness of deconvolution problem. When the estimated PSF is erroneous to some extent or the PSF size is large, conventional regularization to reduce ringing would lead to loss of image details. This paper focuses on the nonblind deconvolution by adaptive regularization which preserves image details, while suppressing ringing artifacts. The way is to control the regularization weight adaptively according to the image local characteristics. We adopt elaborated reference maps that indicate the edge strength so that textured and smooth regions can be distinguished. Then we impose an appropriate constraint on the optimization process. The experiments’ results on both synthesized and real images show that our method can restore latent image with much fewer ringing and favors the sharp edges.

  13. Adaptive image contrast enhancement based on human visual properties

    Existing methods for image contrast enhancement focus mainly on the properties of the image to be processed while excluding any consideration of the observer characteristics. In several applications, particularly in the medical imaging area, effective contrast enhancement for diagnostic purposes can be achieved by including certain basic human visual properties. In this paper the authors present a novel adaptive algorithm that tailors the required amount of contrast enhancement based on the local contrast of the image and the observer's Just-Noticeable-Difference (JND). This algorithm always produces adequate contrast in the output image, and results in almost no ringing artifacts even around sharp transition regions, which is often seen in images processed by conventional contrast enhancement techniques. By separating smooth and detail areas of an image and considering the dependence of noise visibility on the spatial activity of the image, the algorithm treats them differently and thus avoids excessive enhancement of noise, which is another common problem for many existing contrast enhancement techniques. The present JND-Guided Adaptive Contrast Enhancement (JGACE) technique is very general and can be applied to a variety of images. In particular, it offers considerable benefits in digital radiography applications where the objective is to increase the diagnostic utility of images. A detailed performance evaluation together with a comparison with the existing techniques is given to demonstrate the strong features of JGACE

  14. Adaptative segmentation for phase-contrast X-Ray imaging

    A set-up for X-Ray Imaging was mounted using a micro source X-ray generator, a Shad-O Box detector and a X-ray Imaging Plate System. We implemented the in-line phase contrast technique in our laboratory. Phase contrast imaging is an emerging X-ray imaging technique capable of improving the conspicuity of fine detail in an image, including some detail which are not visible with conventional techniques. The application of phase contrast imaging techniques to medical diagnostics (e.g. mammography) and the new segmentation adaptative algorithms based in entropy has opened new horizons for X-ray based imaging. The ROI (Region Of Interest) extraction is an important step in de X-ray imaging processing, because it reduces the computational cost. The classical spatial filters used in image segmentation show different results when the dimension of an image changes, this implies modifying the algorithm and it takes longer. The phase contrast technique shows better detail information. In order to avoid different results on images with variable dimensions, we used the non extensive systems concept applied to images through Tsallis entropy that assumes subsets of probabilities for different regions in the X-ray image. The ROI extraction based on Tsallis entropy and phase contrast X-ray images offers high quality region extraction and therefore more accurate diagnoses

  15. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... four approaches, {Linear Scan, DS Boxcar, DS Hanning, MV}, have full width at half maximum of {0.82, 0.71, 1.28, 0.12} mm and peak side-lobe levels of {-40.1, -16.8, -34.4, -57.0} dB....

  16. Temporal adaptation enhances efficient contrast gain control on natural images.

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  17. Adaptive polyphase subband decomposition structures for image compression.

    Gerek, O N; Cetin, A E

    2000-01-01

    Subband decomposition techniques have been extensively used for data coding and analysis. In most filter banks, the goal is to obtain subsampled signals corresponding to different spectral regions of the original data. However, this approach leads to various artifacts in images having spatially varying characteristics, such as images containing text, subtitles, or sharp edges. In this paper, adaptive filter banks with perfect reconstruction property are presented for such images. The filters of the decomposition structure which can be either linear or nonlinear vary according to the nature of the signal. This leads to improved image compression ratios. Simulation examples are presented. PMID:18262904

  18. Performance of the Gemini Planet Imager's adaptive optics system.

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term. PMID:26835769

  19. Guided Adaptive Image Smoothing via Directional Anisotropic Structure Measurement.

    Zang, Yu; Huang, Hua; Zhang, Lei

    2015-09-01

    Image smoothing prefers a good metric to identify dominant structures from textures adaptive of intensity contrast. In this paper, we drop on a novel directional anisotropic structure measurement (DASM) toward adaptive image smoothing. With observations on psychological perception regarding anisotropy, non-periodicity and local directionality, DASM can well characterize structures and textures independent on their contrast scales. By using such measurement as constraint, we design a guided adaptive image smoothing scheme by improving extrema localization and envelopes construction in a structure-aware manner. Our approach can well suppresses the staircase-like artifacts and blur of structures that appear in previous methods, which better suits structure-preserving image smoothing task. The algorithm is performed on a space-filling curve as the reduced domain, so it is very fast and much easy to implement in practice. We make comprehensive comparisons with previous state-of-the-art methods for a variety of applications. Experimental results demonstrate the merit using our DASM as metric to identify structures, and the effectiveness and efficiency of our adaptive image smoothing approach to produce commendable results. PMID:26357284

  20. X-ray Multimodal Tomography Using Speckle-Vector Tracking

    Berujon, Sebastien; Ziegler, Eric

    2016-04-01

    We demonstrate computerized tomography (CT) reconstructions from absorption, phase, and dark-field signals obtained from scans acquired when the x-ray probe light is modulated with speckle. Two different interlaced schemes are proposed to reduce the number of sample exposures. First, the already demonstrated x-ray speckle-vector tracking (XSVT) concept for projection imaging allows the three signal CT reconstructions from multiple images per projection. Second, a modified XSVT approach is shown to provide absorption and phase reconstructions, this time from a single image per angular projection. Reconstructions from data obtained at a synchrotron facility emphasize the potential of the approaches for the imaging of complex samples.

  1. Mercury radar speckle dynamics

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  2. A decade of innovation with laser speckle metrology

    Ettemeyer, Andreas

    2003-05-01

    Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.

  3. Granularit\\'e laser et interf\\'erences de speckles

    Chenaud, Boris

    2009-01-01

    In this paper we introduce experimentally the phenomenon of speckle and its interferometric applications. With the popularization of CCD sensors and webcams, it is now easy to acquire speckles patterns, to reduce them and exploit them. The material used here is what we could find easily in high schools. All Image processing mentioned in this article could be done using the free software called IRIS. Keywords are essentially diffraction, interference phenomena and Fourier optics. After presenting the characteristics of speckles we discuss the phenomenon of speckles interferences by analogy with the conventional 2 and N waves interferences. Finally, we apply interferometry to measure the angular separation between the components of a double star in drawing heavily on the historical experience of Antoine Labeyrie.

  4. Assessment of Fevicol (adhesive Drying Process through Dynamic Speckle Techniques

    Mohammad Z. Ansari

    2015-04-01

    Full Text Available Dynamic laser speckle (or biospeckle analysis is a useful measurement tool to analyze micro-motion on a sample surface via temporal statistics based on a sequence of speckle images. The aim of this work was to evaluate the use of dynamic speckles as an alternative tool to monitoring Fevicol drying process. Experimental demonstration of intensity-based algorithm to monitor Fevicol drying process is reported. The experiment was explored with the technique called Inertia Moment of co-occurrence matrix. The results allowed verifying the drying process and it was possible to observe different activity stages during the drying process. Statistical Tukey test at 5% significance level allowed differentiating different stages of drying. In conclusion, speckle activity, measured by the Inertia Moment, can be used to monitor drying processes of the Fevicol.

  5. Feasibility studies for speckle interferometry used to measure deformation in nuclear fuel cladding

    Speckle interferometry is an optical technique able to measure and to image displacement of surface. An original setup is used to investigate the measurement of a deformed cylinder as a feasibility study. This shape allows us to determine the capability of this technique to measure nuclear fuel rod cladding. Indeed, in a nuclear reactor, the fuel rod undergoes different physical phenomena that induce dimensional changes in the cladding. The aim of this study is to quantify the amplitude of local ridges appearing on the outer cladding surface due to the 'hourglass shape' assumed by the pellets under irradiation. Because of the environmental constraints imposed by testing, an optical measuring device will be used to experimentally characterize mechanical strain induced by the interaction between the cladding and the fuel pellets. The aim of this paper is to examine the experimental feasibility of speckle interferometry using model samples. An experimental setup based on the speckle interferometry technique was therefore implemented to measure local deformation in nuclear fuel cladding. Different experiments on model samples have shown that this technique is well adapted to the measuring range, shape, and condition of the surface as well as the working distance. (authors)

  6. Diffusion kurtosis imaging based on adaptive spherical integral

    Liu, Y; Chen, L.; Yu, Y.

    2011-01-01

    Diffusion kurtosis imaging (DKI) is a recent approach in medical engineering that has potential value for both neurological diseases and basic neuroscience research. In this letter, we develop a robust method based on adaptive spherical integral that can compute kurtosis based quantities more precisely and efficiently. Our method integrates spherical trigonometry with a recursive computational scheme to make numerical estimations in kurtosis imaging convergent. Our algorithm improves the effi...

  7. Speckle photography through different multiaperture pupils

    ??ngel Toro, Luciano; Tebaldi, Myrian Cristina; Bolognini, N??stor Alberto; Trivi, Marcelo Ricardo

    1999-01-01

    An image multiplexing method based on the internal modulation of speckle grains by employing different multiple aperture pupils for recording is proposed. The interferometric fringes profile and visibility in the Fourier plane, for uniform in-plane displacement double- exposed specklegrams through different pupils recording, are analyzed in terms of the geometric parameters of the pupils. Experimental evidences are presented. ?? (1999) COPYRIGHT SPIE--The International Society for Optical...

  8. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  9. Adaptive edge image enhancement based on maximum fuzzy entropy

    ZHANG Xiu-hua; YANG Kun-tao

    2006-01-01

    Based on the maximum fuzzy entropy principle,the edge image with low contrast is optimally classified into two classes adaptively,under the condition of probability partition and fuzzy partition.The optimal threshold is used as the classified threshold value,and a local parametric gray-level transformation is applied to the obtained classes.By means of two parameters representing,the homogeneity of the regions in edge image is improved.The excellent performance of the proposed technique is exercisable through simulation results on a set of test images.It is shown how the extracted and enhanced edges provide an efficient edge-representation of images.It is shown that the proposed technique possesses excellent performance in homogeneity through simulations on a set of test images,and the extracted and enhanced edges provide an efficient edge-representation of images.

  10. High-resolution adaptive imaging with a single photodiode

    Soldevila, F.; Salvador-Balaguer, E.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2015-09-01

    During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest in the development of advanced techniques for high-resolution real-time operation in applications such as biological microscopy. Here, we introduce an adaptive compressive technique based on wavelet trees within this framework. In our adaptive approach, the resolution of the projecting patterns remains deliberately small, which is crucial to avoid the demanding memory requirements of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have demonstrated a cost-effective solution employing a commercial projection display.

  11. Laser speckle reduction based on compressive sensing and edge detection

    Wen, Dong-hai; Jiang, Yue-song; Hua, Hou-qiang; Yu, Rong; Gao, Qian; Zhang, Yan-zhong

    2013-09-01

    Polarization active imager technology obtains images encoded by parameters different than just the reflectivity and therefore provides new information on the image. So polarization active imager systems represent a very powerful observation tool. However, automatic interpretation of the information contained in the reflected intensity of the polarization active image data is extremely difficult because of the speckle phenomenon. An approach for speckle reduction of polarization active image based on the concepts of compressive sensing (CS) theory and edge detection. First, A Canny operator is first utilized to detect and remove edges from the polarization active image. Then, a dictionary learning algorithm which is applied to sparse image representation. The dictionary learning problem is expressed as a box-constrained quadratic program and a fast projected gradient method is introduced to solve it. The Gradient Projection for Square Reconstruction (GPSR) algorithm for solving bound constrained quadratic programming to reduce the speckle noise in the polarization active images. The block-matching 3-D (BM3D) algorithm is used to reduce speckle nosie, it works in two steps: The first one uses hard thresholding to build a relatively clean image for estimating statistics, while the second one performs the actual denoising through empirical Wiener filtering in the transform domain. Finally, the removed edges are added to the reconstructed image. Experimental results show that the visual quality and evaluation indexes outperform the other methods with no edge preservation. The proposed algorithm effectively realizes both despeckling and edge preservation and reaches the state-of-the-art performance.

  12. An adaptive algorithm for motion compensated color image coding

    Kwatra, Subhash C.; Whyte, Wayne A.; Lin, Chow-Ming

    1987-01-01

    This paper presents an adaptive algorithm for motion compensated color image coding. The algorithm can be used for video teleconferencing or broadcast signals. Activity segmentation is used to reduce the bit rate and a variable stage search is conducted to save computations. The adaptive algorithm is compared with the nonadaptive algorithm and it is shown that with approximately 60 percent savings in computing the motion vector and 33 percent additional compression, the performance of the adaptive algorithm is similar to the nonadaptive algorithm. The adaptive algorithm results also show improvement of up to 1 bit/pel over interframe DPCM coding with nonuniform quantization. The test pictures used for this study were recorded directly from broadcast video in color.

  13. An image adaptive, wavelet-based watermarking of digital images

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  14. Speckle reduction by phase-based weighted least squares.

    Zhu, Lei; Wang, Weiming; Qin, Jing; Heng, Pheng-Ann

    2014-01-01

    Although ultrasonography has been widely used in clinical applications, the doctor suffers great difficulties in diagnosis due to the artifacts of ultrasound images, especially the speckle noise. This paper proposes a novel framework for speckle reduction by using a phase-based weighted least squares optimization. The proposed approach can effectively smooth out speckle noise while preserving the features in the image, e.g., edges with different contrasts. To this end, we first employ a local phase-based measure, which is theoretically intensity-invariant, to extract the edge map from the input image. The edge map is then incorporated into the weighted least squares framework to supervise the optimization during despeckling, so that low contrast edges can be retained while the noise has been greatly removed. Experimental results in synthetic and clinical ultrasound images demonstrate that our approach performs better than state-of-the-art methods. PMID:25570846

  15. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice

    Kofman, Itamar; Abookasis, David

    2015-10-01

    The measurement of dynamic changes in brain hemodynamic and metabolism events following head trauma could be valuable for injury prognosis and for planning of optimal medical treatment. Specifically, variations in blood flow and oxygenation levels serve as important biomarkers of numerous pathophysiological processes. We employed the dual-wavelength laser speckle imaging (DW-LSI) technique for simultaneous monitoring of changes in brain hemodynamics and cerebral blood flow (CBF) at early stages of head trauma in a mouse model of intact head injury (n=10). For induction of head injury, we used a weight-drop device involving a metal mass (˜50 g) striking the mouse's head in a regulated manner from a height of ˜90 cm. In comparison to baseline measurements, noticeable dynamic variations were revealed immediately and up to 1 h postinjury, which indicate the severity of brain damage and highlight the ability of the DW-LSI arrangement to track brain pathophysiology induced by injury. To validate the monitoring of CBF by DW-LSI, measurements with laser Doppler flowmetry (LDF) were also performed (n=5), which confirmed reduction in CBF following injury. A secondary focus of the study was to investigate the effectiveness of hypertonic saline as a neuroprotective agent, inhibiting the development of complications after brain injury in a subgroup of injured mice (n=5), further demonstrating the ability of DW-LSI to monitor the effects upon brain dynamics of drug treatment. Overall, our findings further support the use of DW-LSI as a noninvasive, cost-effective tool to assess changes in hemodynamics under a variety of pathological conditions, suggesting its potential contribution to the biomedical field. To the best of our knowledge, this work is the first to make use of the DW-LSI modality in a small animal model to (1) investigate brain function during the critical first hour of closed head injury trauma, (2) correlate between injury parameters of LDF measurements, and (3

  16. Application of dynamic speckle interferometry for diagnosis of metabolism change in cultured cells

    Vladimirov, A. P.; Mikhailova, J. A.; Baharev, A. A.; Malygin, A. S.; Novosyolova, I. A.; Yakin, D. I.

    2015-08-01

    Previously, a speckle interferometry technique and a device that allows quantitative evaluation of the metabolic activity of cultured cells were theoretically grounded and successfully tested. A speckle time-averaging technique was proposed to separate and study the processes occurring in cells at various velocities. The objective of the present research was comparing the parameters of speckle dynamics used to evaluate cell metabolism and averaged in areas of various size. Areas inside the speckle image of a cell as well as areas of the image plane with various numbers of cells were averaging areas. Defrosted L-41 cells precipitated on a glass substrate were the target of the research. Time-average value T of digital radiation intensity in the TV camera pixels I~ (1) and the correlation coefficient of two digital images η (2) were used as speckle field change parameters. The digital images corresponded to a single frame area at two time moments.

  17. Digital Image Processing for Noise Reduction in Medical Ultrasonics

    Loupas, Thanasis

    Available from UMI in association with The British Library. Requires signed TDF. The purpose of this project was to investigate the application of digital image processing techniques as a means of reducing noise in medical ultrasonic imaging. Ultrasonic images suffer primarily from a type of acoustic noise, known as speckle, which is generally regarded as a major source of image quality degradation. The origin of speckle, its statistical properties as well as methods suggested to eliminate this artifact were reviewed. A simple model which can characterize the statistics of speckle on displays was also developed. A large number of digital noise reduction techniques was investigated. These include frame averaging techniques performed by commercially available devices and spatial filters implemented in software. Among the latter, some filters have been proposed in the scientific literature for ultrasonic, laser and microwave speckle or general noise suppression and the rest are original, developed specifically to suppress ultrasonic speckle. Particular emphasis was placed on adaptive techniques which adjust the processing performed at each point according to the local image content. In this way, they manage to suppress speckle with negligible loss of genuine image detail. Apart from preserving the diagnostically significant features of a scan another requirement a technique must satisfy before it is accepted in routine clinical practice is real-time operation. A spatial filter capable of satisfying both these requirements was designed and built in hardware using low-cost and readily available components. The possibility of incorporating all the necessary filter circuitry into a single VLSI chip was also investigated. In order to establish the effectiveness and usefulness of speckle suppression, a representative sample from the techniques examined here was applied to a large number of abdominal scans and their effect on image quality was evaluated. Finally, further

  18. Adaptive image coding based on cubic-spline interpolation

    Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien

    2014-09-01

    It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.

  19. Wavelet domain image restoration with adaptive edge-preserving regularization.

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data. PMID:18255433

  20. An adaptive multi-feature segmentation model for infrared image

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  1. Autonomous Image Segmentation using Density-Adaptive Dendritic Cell Algorithm

    Vishwambhar Pathak

    2013-08-01

    Full Text Available Contemporary image processing based applications like medical diagnosis automation and analysis of satellite imagery include autonomous image segmentation as inevitable facility. The research done shows the efficiency of an adaptive evolutionary algorithm based on immune system dynamics for the task of autonomous image segmentation. The recognition dynamics of immune-kernels modeled with infinite Gaussian mixture models exhibit the capability to automatically determine appropriate number of segments in presence of noise. In addition, the model using representative density-kernel-parameters processes the information with much reduced space requirements. Experiments conducted with synthetic images as well as real images recorded assured convergence and optimal autonomous model estimation. The segmentation results tested in terms of PBM-index values have been found comparable to those of the Fuzzy C-Means (FCM for the same number of segments as generated by our algorithm.

  2. Adaptive Image Digital Watermarking with DCT and FCM

    SU Liyun; MA Hong; TANG Shifu

    2006-01-01

    A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The watermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.

  3. ADAPTIVE MULTIRESOLUTION IMAGE AND VIDEO COMPRESSION AND PRE/POST-PROCESSING OF IMAGE AND VIDEO STREAMS

    Rabiee, Hamid R.; Kashyap, R. L.

    1996-01-01

    This report is divided into two sections. In the first section, the focus is on adaptive transform-based image compression and motion compensation at low bit rates. A new adalptive algorithm for image representation and coding is introduced. This algorithm is based on the concept of segmented orthogonal matching pursuits (SOMP), and adaptively selects the best representation from an overcomplete dictionary of wavelet functions. In the second section, the pre-processing and post-processing of ...

  4. High Resolution Images of Orbital Motion in the Orion Trapezium Cluster with the LBT Adaptive Optics System

    Close, L M; Males, J R; Arcidiacono, C; Skemer, A; Guerra, J C; Busoni, L; Brusa, G; Pinna, E; Miller, D L; Riccardi, A; McCarthy, D W; Xompero, M; Kulesa, C; Quiros-Pacheco, F; Argomedo, J; Brynnel, J; Esposito, S; Mannucci, F; Boutsia, K; Fini, L; Thompson, D J; Hill, J M; Woodward, C E; Briguglio, R; Rodigas, T J; Stefanini, P; Agapito, G; Hinz, P; Follette, K; Green, R

    2012-01-01

    The new 8.4m LBT adaptive secondary AO system, with its novel pyramid wavefront sensor, was used to produce very high Strehl (75% at 2.16 microns) near infrared narrowband (Br gamma: 2.16 microns and [FeII]: 1.64 microns) images of 47 young (~1 Myr) Orion Trapezium theta1 Ori cluster members. The inner ~41x53" of the cluster was imaged at spatial resolutions of ~0.050" (at 1.64 microns). A combination of high spatial resolution and high S/N yielded relative binary positions to ~0.5 mas accuracies. Including previous speckle data, we analyse a 15 year baseline of high-resolution observations of this cluster. We are now sensitive to relative proper motions of just ~0.3 mas/yr (0.6 km/s at 450 pc) this is a ~7x improvement in orbital velocity accuracy compared to previous efforts. We now detect clear orbital motions in the theta1 Ori B2/B3 system of 4.9+/-0.3 km/s and 7.2+/-0.8 km/s in the theta1 Ori A1/A2 system (with correlations of PA vs. time at >99% confidence). All five members of the theta1 Ori B system a...

  5. Raster image adaptation for mobile devices using profiles

    Rosenbaum, René; Hamann, Bernd

    2012-02-01

    Focusing on digital imagery, this paper introduces a strategy to handle heterogeneous hardware in mobile environments. Constrained system resources of most mobile viewing devices require contents that are tailored to the requirements of the user and the capabilities of the device. Appropriate image adaptation is still an unsolved research question. Due to the complexity of the problem, available solutions are either too resource-intensive or inflexible to be more generally applicable. The proposed approach is based on scalable image compression and progressive refinement as well as data and user profiles. A scalable image is created once and used multiple times for different kinds of devices and user requirements. Profiles available on the server side allow for an image representation that is adapted to the most important resources in mobile computing: screen space, computing power, and the volume of the transmitted data. Options for progressively refining content thereby allow for a fluent viewing experience during adaptation. Due to its flexibility and low complexity, the proposed solution is much more general compared to related approaches. To document the advantages of our approach we provide empirical results obtained in experiments with an implementation of the method.

  6. Adapting smartphones for low-cost optical medical imaging

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  7. ADAPTIVE TCHEBICHEF MOMENT TRANSFORM IMAGE COMPRESSION USING PSYCHOVISUAL MODEL

    Ferda Ernawan

    2013-01-01

    Full Text Available An extension of the standard JPEG image compression known as JPEG-3 allows rescaling of the quantization matrix to achieve a certain image output quality. Recently, Tchebichef Moment Transform (TMT has been introduced in the field of image compression. TMT has been shown to perform better than the standard JPEG image compression. This study presents an adaptive TMT image compression. This task is obtained by generating custom quantization tables for low, medium and high image output quality levels based on a psychovisual model. A psychovisual model is developed to approximate visual threshold on Tchebichef moment from image reconstruction error. The contribution of each moment will be investigated and analyzed in a quantitative experiment. The sensitivity of TMT basis functions can be measured by evaluating their contributions to image reconstruction for each moment order. The psychovisual threshold model allows a developer to design several custom TMT quantization tables for a user to choose from according to his or her target output preference. Consequently, these quantization tables produce lower average bit length of Huffman code while still retaining higher image quality than the extended JPEG scaling scheme.

  8. Superoscillation in speckle patterns

    Dennis, Mark R; Courtial, Johannes

    2008-01-01

    Waves are superoscillatory where their local phase gradient exceeds the maximum wavenumber in their Fourier spectrum. We consider the superoscillatory area fraction of random optical speckle patterns. This follows from the joint probability density function of intensity and phase gradient for isotropic gaussian random wave superpositions. Strikingly, this fraction is 1/3 when all the waves in the two-dimensional superposition have the same wavenumber. The fraction is 1/5 for a disk spectrum. Although these superoscillations are weak compared with optical fields with designed superoscillations, they are more stable on paraxial propagation.

  9. SAR Image Despeckling with Adaptive Multiscale Products Based on Directionlet Transform

    Yixiang Lu

    2013-01-01

    Full Text Available Synthetic aperture radar (SAR images are inherently affected by multiplicative speckle noise generated by radar coherent wave. In this paper, a new despeckling algorithm based on directionlets using multiscale products is proposed. We first take an anisotropic directionlet transform on the logarithmically transformed SAR images and multiply the coefficients at adjacent scales to enhance the details of image under consideration. Then, different from traditional thresholding methods, a threshold is applied to the multiscale products of the directionlet coefficients to suppress noise. Since the multiplication amplifies the significant features of signal and dilute noise, the proposed method reduces noise effectively while preserving edge structures. Finally, we compare the performance of the proposed algorithm with other despeckling methods applied to synthetic image and real SAR images. Experimental results demonstrate the effectiveness of the proposed method in SAR images despeckling.

  10. Adaptive registration of diffusion tensor images on lie groups

    Liu, Wei; Chen, LeiTing; Cai, HongBin; Qiu, Hang; Fei, Nanxi

    2016-08-01

    With diffusion tensor imaging (DTI), more exquisite information on tissue microstructure is provided for medical image processing. In this paper, we present a locally adaptive topology preserving method for DTI registration on Lie groups. The method aims to obtain more plausible diffeomorphisms for spatial transformations via accurate approximation for the local tangent space on the Lie group manifold. In order to capture an exact geometric structure of the Lie group, the local linear approximation is efficiently optimized by using the adaptive selection of the local neighborhood sizes on the given set of data points. Furthermore, numerical comparative experiments are conducted on both synthetic data and real DTI data to demonstrate that the proposed method yields a higher degree of topology preservation on a dense deformation tensor field while improving the registration accuracy.

  11. Adaptive registration of diffusion tensor images on lie groups

    Liu, Wei; Chen, LeiTing; Cai, HongBin; Qiu, Hang; Fei, Nanxi

    2016-06-01

    With diffusion tensor imaging (DTI), more exquisite information on tissue microstructure is provided for medical image processing. In this paper, we present a locally adaptive topology preserving method for DTI registration on Lie groups. The method aims to obtain more plausible diffeomorphisms for spatial transformations via accurate approximation for the local tangent space on the Lie group manifold. In order to capture an exact geometric structure of the Lie group, the local linear approximation is efficiently optimized by using the adaptive selection of the local neighborhood sizes on the given set of data points. Furthermore, numerical comparative experiments are conducted on both synthetic data and real DTI data to demonstrate that the proposed method yields a higher degree of topology preservation on a dense deformation tensor field while improving the registration accuracy.

  12. Adaptive Digital Image Watermarking Based on Combination of HVS Models

    P. Foris

    2009-09-01

    Full Text Available In this paper two new blind adaptive digital watermarking methods of color images are presented. The adaptability is based on perceptual watermarking which exploits Human Visual System (HVS models. The first method performs watermark embedding in transform domain of DCT and the second method is based on DWT. Watermark is embedded into transform domain of a chosen color image component in a selected color space. Both methods use a combination of HVS models to select perceptually significant transform coefficients and at the same time to determine the bounds of modification of selected coefficients. The final HVS model consists of three parts. The first part is the HVS model in DCT (DWT domain. The second part is the HVS model based on Region of Interest and finally the third part is the HVS model based on Noise Visibility Function. Watermark has a form of a real number sequence with normal distribution.

  13. Adaptive Image Transmission Scheme over Wavelet-Based OFDM System

    GAOXinying; YUANDongfeng; ZHANGHaixia

    2005-01-01

    In this paper an adaptive image transmission scheme is proposed over Wavelet-based OFDM (WOFDM) system with Unequal error protection (UEP) by the design of non-uniform signal constellation in MLC. Two different data division schemes: byte-based and bitbased, are analyzed and compared. Different bits are protected unequally according to their different contribution to the image quality in bit-based data division scheme, which causes UEP combined with this scheme more powerful than that with byte-based scheme. Simulation results demonstrate that image transmission by UEP with bit-based data division scheme presents much higher PSNR values and surprisingly better image quality. Furthermore, by considering the tradeoff of complexity and BER performance, Haar wavelet with the shortest compactly supported filter length is the most suitable one among orthogonal Daubechies wavelet series in our proposed system.

  14. High resolution adaptive imaging of a single atom

    Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C

    2015-01-01

    We report the optical imaging of a single atom with nanometer resolution using an adaptive optical alignment technique that is applicable to general optical microscopy. By decomposing the image of a single laser-cooled atom, we identify and correct optical aberrations in the system and realize an atomic position sensitivity of $\\approx$ 0.5 nm/$\\sqrt{\\text{Hz}}$ with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom, and opens up the possibility of performing out-of-focus 3D particle tracking, imaging of atoms in 3D optical lattices or sensing forces at the yoctonewton (10$^{-24}$ N) scale.

  15. ADAPTATIVE IMAGE WATERMARKING SCHEME BASED ON NEURAL NETWORK

    BASSEL SOLAIMANE

    2011-01-01

    Full Text Available Digital image watermarking has been proposed as a method to enhance medical data security, confidentiality and integrity. Medical image watermarking requires extreme care when embedding additional data, given their importance to clinical diagnosis, treatment, and research. In this paper, a novel image watermarking approach based on the human visual system (HVS model and neural network technique is proposed. The watermark was inserted into the middle frequency coefficients of the cover image’s blocked DCT based transform domain. In order to make the watermark stronger and less susceptible to different types of attacks, it is essential to find the maximum amount of interested watermark before the watermark becomes visible. In this paper, neural networks are used to implement an automated system of creating maximum-strength watermarks. The experimental results show that such method can survive of common image processing operations and has good adaptability for automated watermark embedding.

  16. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    Sim, K S; Teh, V; Nia, M E

    2016-03-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. SCANNING 38:148-163, 2016. © 2015 Wiley Periodicals, Inc. PMID:26235517

  17. Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system

    Chaix, Cécile; Kovalsky, Stephen; Kosmider, Matthew; Barrett, Harrison H.; Furenlid, Lars R.

    2013-01-01

    AdaptiSPECT is a pre-clinical adaptive SPECT imaging system under final development at the Center for Gamma-ray Imaging. The system incorporates multiple adaptive features: an adaptive aperture, 16 detectors mounted on translational stages, and the ability to switch between a non-multiplexed and a multiplexed imaging configuration. In this paper, we review the design of AdaptiSPECT and its adaptive features. We then describe the on-going integration of the imaging system.

  18. Algorithm for dynamic Speckle pattern processing

    Cariñe, J.; Guzmán, R.; Torres-Ruiz, F. A.

    2016-07-01

    In this paper we present a new algorithm for determining surface activity by processing speckle pattern images recorded with a CCD camera. Surface activity can be produced by motility or small displacements among other causes, and is manifested as a change in the pattern recorded in the camera with reference to a static background pattern. This intensity variation is considered to be a small perturbation compared with the mean intensity. Based on a perturbative method we obtain an equation with which we can infer information about the dynamic behavior of the surface that generates the speckle pattern. We define an activity index based on our algorithm that can be easily compared with the outcomes from other algorithms. It is shown experimentally that this index evolves in time in the same way as the Inertia Moment method, however our algorithm is based on direct processing of speckle patterns without the need for other kinds of post-processes (like THSP and co-occurrence matrix), making it a viable real-time method. We also show how this algorithm compares with several other algorithms when applied to calibration experiments. From these results we conclude that our algorithm offer qualitative and quantitative advantages over current methods.

  19. Time history speckle pattern under statistical view

    Braga, R. A.; Silva, W. S.; Sáfadi, T.; Nobre, C. M. B.

    2008-05-01

    The dynamic speckle analysis has been done because speckle interference began to be evaluated as an important source of information, especially those related to biological samples under laser beam. The time history speckle pattern, a THSP image, is an approach to analyze, which allows a summary to represent the activity monitored. THSP adoption has compelled the research to evaluate the information and the reliability of its inner pattern. This study presents a statistical approach to analyze the data using white noise tests and cross-spectrum analysis. The data analyzed was a set of THSP from animal sperm samples. The evaluation of white noise among lines was conducted using the Fischer test over eight THSP and the cross-spectral approach has been conducted by comparing the information in each THSP. The results presented that the THSP of the sperm did not behave as a white noise in a global evaluation, and specifically in the Gaussian white noise test over 4096 lines; only six lines presented the behavior of a white noise pattern. The strong rejection of white noise test confirms that the THSP pattern allows reliable information. The results obtained with the cross-spectral analysis presented differences between lines within the same THSP, showing that the information of an inner pattern varies in relation to space, which is against the findings in literature.

  20. The Effect of Aberrations and Scatter on Image Resolution Assessed by Adaptive Optics Retinal Section Imaging

    Wanek, Justin; Mori, Marek; Shahidi, Mahnaz

    2007-01-01

    The effect of increased high order wavefront aberrations on image resolution was investigated and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a simulated model eye retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lor...

  1. Development of an optimized algorithm for the characterization of microflow using speckle patterns present in optical coherence tomography signal; Desenvolvimento de um algoritimo otimizado para caracterizacao de fluxos microfluidicos utilizando padroes de speckle presentes no sinal de tomografia por coerencia optica

    Pretto, Lucas Ramos de

    2015-07-01

    This work discusses the Optical Coherence Tomography system (OCT) and its application to the microfluidics area. To this end, physical characterization of microfluidic circuits were performed using 3D (three-dimensional) models constructed from OCT images of such circuits. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels. Going further, this work paper studies and develops analytical techniques for microfluidic flow, in particular techniques based on speckle pattern. In the first instance, existing methods were studied and improved, such as Speckle Variance - OCT, where a gain of 31% was obtained in processing time. Other methods, such as LASCA (Laser Speckle Contrast Analysis), based on speckle autocorrelation, are adapted to OCT images. Derived from LASCA, the developed analysis technique based on intensity autocorrelation motivated the development of a custom OCT system as well as an optimized acquisition software, with a sampling rate of 8 kHz. The proposed method was, then, able to distinguish different flow rates, and limits of detection were tested, proving its feasibility for implementation on Brownian motion analysis and flow rates below 10 μl/min. (author)

  2. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494

  3. Multimodal Medical Image Fusion by Adaptive Manifold Filter

    Peng Geng

    2015-01-01

    Full Text Available Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.

  4. Multi-Conjugate Adaptive Optics images of the Trapezium Cluster

    Bouy, H; Marchetti, E; Martín, E L; Huélamo, N; Navascues, D Barrado y

    2007-01-01

    Multi-Conjugate Adaptive Optics (MCAO) combines the advantages of standard adaptive optics, which provides high contrast and high spatial resolution, and of wide field ~1' imaging. Up to recently, MCAO for astronomy was limited to laboratory experiments. In this paper, we present the first scientific results obtained with the first MCAO instrument put on the sky. We present a new study of the Trapezium cluster using deep MCAO images with a field of view of 1'x1' obtained at the VLT. We have used deep J, H and Ks images recently obtained with the prototype MCAO facility MAD at the VLT in order to search for new members and new multiple systems in the Trapezium cluster. On bright targets (Ks~9mag), these images allow us to reach DeltaKs~6mag as close as 0.4" We report the detection of 128 sources, including 10 new faint objects in the magnitude range between 16.1

  5. Speckle decorrelation influence on measurements quality in vortex metrology

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-01

    We study speckle decorrelation effects in connection with conventional vortex metrology techniques. Our proposal is based on processing speckled images recorded by using two different experimental set-ups. In both schemes two laterally displaced patterns are generated: one scheme allows for obtaining undecorrelated speckle distributions and the other for decorrelated ones. Vortex networks associated with speckle patterns are analyzed by employing the usual tools developed for vortex metrology. For each recorded image, a 2D pseudo-phase map is generated on the basis of the Reisz transform. Then the vortices are located, and parameterized in terms of their topological charge, eccentricity, vorticity and angles between the zero crossing lines from the real and the imaginary parts of the analytical signal. After tracking the homologous vortices onto the maps, the histograms corresponding to the coordinate displacements are analyzed. We show that histograms interpretation is prone to failure due to its high sensitivity to decorrelation. Experimental evidences are presented to support the restrictions imposed by decorrelation of actual speckles due to uniform in-plane displacements.

  6. Spatially Adaptive Image Restoration Using Fuzzy Punctual Kriging

    Anwar M. Mirza; Asmatullah Chaudhry; Badre Munir

    2007-01-01

    We present a general formulation based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Gray-level images degraded with Gaussian white noise have been considered. Based on the pixel local neighborhood, fuzzy logic has been employed intelligently to avoid unnecessary estimation of a pixel. The intensity estimation of the selected pixels is then carried out by employing punctual kriging in conjunction with the method of Lagrange multipliers and estimates of local semi-variances. Application of such a hybrid technique performing both selection and intensity estimation of a pixel demonstrates substantial improvement in the image quality as compared to the adaptive Wiener filter and existing fuzzy- kriging approaches. It has been found that these filters achieve noise reduction without loss of structural detail information, as indicated by their higher structure similarity indices, peak signal to noise ratios and the new variogram based quality measures.

  7. Adaptively wavelet-based image denoising algorithm with edge preserving

    Yihua Tan; Jinwen Tian; Jian Liu

    2006-01-01

    @@ A new wavelet-based image denoising algorithm, which exploits the edge information hidden in the corrupted image, is presented. Firstly, a canny-like edge detector identifies the edges in each subband.Secondly, multiplying the wavelet coefficients in neighboring scales is implemented to suppress the noise while magnifying the edge information, and the result is utilized to exclude the fake edges. The isolated edge pixel is also identified as noise. Unlike the thresholding method, after that we use local window filter in the wavelet domain to remove noise in which the variance estimation is elaborated to utilize the edge information. This method is adaptive to local image details, and can achieve better performance than the methods of state of the art.

  8. Adaptive interference hyperspectral image compression with spectrum distortion control

    Jing Ma; Yunsong Li; Chengke Wu; Dong Chen

    2009-01-01

    As one of the next generation imaging spectrometers,interferential spectrometer has been paid much attention.With traditional spectrum compression methods,the hyperspectral images generated by interferential spectrometer can only be protected with better visual quality in spatial domain,but its optical applications in Fourier domain are often ignored.So the relation between the distortion in Fourier domain and the compression in spatial domain is analyzed in this letter.Based on this analysis,a novel coding scheme is proposed,which can compress data in spatial domain while reducing the distortion in Fourier domain.The bitstream of set partitioning in hierarchical trees (SPIHT) is truncated by adaptively lifting the rate-distortion slopes of zerotrees according to the priorities of optical path difference (OPD) based on rate-distortion optimization theory.Experimental results show that the proposed scheme can achieve better performance in Fourier domain while maintaining the image quality in spatial domain.

  9. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik;

    2014-01-01

    Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation...

  10. A narrow-band speckle-free light source via random Raman lasing

    Hokr, Brett H; Bixler, Joel N; Dyer, Phillip N; Noojin, Gary D; Redding, Brandon; Thomas, Robert J; Rockwell, Benjamin A; Cao, Hui; Yakovlev, Vladislav V; Scully, Marlan O

    2015-01-01

    Currently, no light source exists which is both narrow-band and speckle-free with sufficient brightness for full-field imaging applications. Light emitting diodes (LEDs) are excellent spatially incoherent sources, but are tens of nanometers broad. Lasers on the other hand can produce very narrow-band light, but suffer from high spatial coherence which leads to speckle patterns which distort the image. Here we propose the use of random Raman laser emission as a new kind of light source capable of providing short-pulsed narrow-band speckle-free illumination for imaging applications.

  11. An adaptive filtered back-projection for photoacoustic image reconstruction

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  12. Adaptive coded aperture imaging: progress and potential future applications

    Gottesman, Stephen R.; Isser, Abraham; Gigioli, George W., Jr.

    2011-09-01

    Interest in Adaptive Coded Aperture Imaging (ACAI) continues to grow as the optical and systems engineering community becomes increasingly aware of ACAI's potential benefits in the design and performance of both imaging and non-imaging systems , such as good angular resolution (IFOV), wide distortion-free field of view (FOV), excellent image quality, and light weight construct. In this presentation we first review the accomplishments made over the past five years, then expand on previously published work to show how replacement of conventional imaging optics with coded apertures can lead to a reduction in system size and weight. We also present a trade space analysis of key design parameters of coded apertures and review potential applications as replacement for traditional imaging optics. Results will be presented, based on last year's work of our investigation into the trade space of IFOV, resolution, effective focal length, and wavelength of incident radiation for coded aperture architectures. Finally we discuss the potential application of coded apertures for replacing objective lenses of night vision goggles (NVGs).

  13. Breast image feature learning with adaptive deconvolutional networks

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  14. Adaptive Fusion of Stochastic Information for Imaging Fractured Vadose Zones

    Daniels, J.; Yeh, J.; Illman, W.; Harri, S.; Kruger, A.; Parashar, M.

    2004-12-01

    A stochastic information fusion methodology is developed to assimilate electrical resistivity tomography, high-frequency ground penetrating radar, mid-range-frequency radar, pneumatic/gas tracer tomography, and hydraulic/tracer tomography to image fractures, characterize hydrogeophysical properties, and monitor natural processes in the vadose zone. The information technology research will develop: 1) mechanisms and algorithms for fusion of large data volumes ; 2) parallel adaptive computational engines supporting parallel adaptive algorithms and multi-physics/multi-model computations; 3) adaptive runtime mechanisms for proactive and reactive runtime adaptation and optimization of geophysical and hydrological models of the subsurface; and 4) technologies and infrastructure for remote (pervasive) and collaborative access to computational capabilities for monitoring subsurface processes through interactive visualization tools. The combination of the stochastic fusion approach and information technology can lead to a new level of capability for both hydrologists and geophysicists enabling them to "see" into the earth at greater depths and resolutions than is possible today. Furthermore, the new computing strategies will make high resolution and large-scale hydrological and geophysical modeling feasible for the private sector, scientists, and engineers who are unable to access supercomputers, i.e., an effective paradigm for technology transfer.

  15. Adaptive Semi-linear Inversion of Strong Gravitational Lens Imaging

    Nightingale, James

    2014-01-01

    We present a new pixelized method for the inversion of gravitationally lensed extended source images which we term adaptive semi-linear inversion (SLI). At the heart of the method is an h-means clustering algorithm which is used to derive a source plane pixelization that adapts to the lens model magnification. The distinguishing feature of adaptive SLI is that every pixelization is derived from a random initialization, ensuring that data discretization is performed in a completely different and unique way for every lens model parameter set. We compare standard SLI on a fixed source pixel grid with the new method and demonstrate the shortcomings of the former when modeling singular power law ellipsoid (SPLE) lens profiles. In particular, we demonstrate the superior reliability and efficiency of adaptive SLI which, by design, fixes the number of degrees of freedom (NDOF) of the optimization and thereby removes biases present with other methods that allow the NDOF to vary. In addition, we highlight the importanc...

  16. Speckle statistics of entangled photons

    Klein, Avraham; Agam, Oded; Spivak, Boris

    2016-07-01

    We consider the propagation of several entangled photons through an elastically scattering medium and study statistical properties of their speckle patterns. We find the spatial correlations of multiphoton speckles and their sensitivity to changes of system parameters. Our analysis covers both the directed-wave regime, where rays propagate almost ballistically while experiencing small-angle diffusion, and the real-space diffusive regime. We demonstrate that long-range correlations of the speckle patterns dominate experimental signatures for large-aperture photon detectors. We also show that speckle sensitivity depends strongly on the number of photons N in the incoming beam, increasing as √{N } in the directed-wave regime and as N in the diffusive regime.

  17. Speckle statistics of entangled photons

    Klein, Avraham; Spivak, Boris

    2016-01-01

    We consider the propagation of several entangled photons through an elastically scattering medium and study statistical properties of their speckle patterns. We find the spatial correlations of multiphoton speckles and their sensitivity to changes of system parameters. Our analysis covers both the directed-wave regime, where rays propagate almost ballistically while experiencing small-angle diffusion, and the real-space diffusive regime. We demonstrate that long-range correlations of the speckle patterns dominate experimental signatures for large-aperture photon detectors. We also show that speckle sensitivity depends strongly on the number of photons $N$ in the incoming beam, increasing as $\\sqrt{N}$ in the directed-wave regime and as $N$ in the diffusive regime.

  18. Modified Speckle Reduction Algorithm for Local Adaptive Filtering%改进的局部自适应滤波散斑抑制算法

    顾小萍; 方亮; 唐劲松

    2009-01-01

    提出了一种改进的局部自适应滤波(Locally adaptive filter,LOAF)的散斑抑制算法,其特点是采用线性最小误差方差估计器,在没有对信号模型进行线性化的条件下得到了滤波器的最优权系数.滤波系数完全由局部统计特性确定,且对散斑统计特性没有任何先验知识假定,从而保证了算法具有良好的稳健性.采用复杂场景、边缘快变和平坦区域合成孔径雷达和声纳图像对算法进行了测试.测试评估的指标体系包括客观标准和主观标准两个方面,测试结果表明算法是有效的.

  19. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. PMID:25641600

  20. Adaptive Kaczmarz method for image reconstruction in electrical impedance tomography

    We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term JTJ which could be expensive in terms of computation cost and memory in large-scale problems, we propose solving the inverse problem by applying the optimal current patterns for distinguishing the actual conductivity from the conductivity estimate between each iteration of the block Kaczmarz algorithm. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation with the Kaczmarz method can produce more accurate and stable solutions adaptively as compared to traditional Kaczmarz- and Gauss–Newton-type methods. Choices of initial current pattern estimates are discussed in this paper. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results. (paper)

  1. SAR imaging via iterative adaptive approach and sparse Bayesian learning

    Xue, Ming; Santiago, Enrique; Sedehi, Matteo; Tan, Xing; Li, Jian

    2009-05-01

    We consider sidelobe reduction and resolution enhancement in synthetic aperture radar (SAR) imaging via an iterative adaptive approach (IAA) and a sparse Bayesian learning (SBL) method. The nonparametric weighted least squares based IAA algorithm is a robust and user parameter-free adaptive approach originally proposed for array processing. We show that it can be used to form enhanced SAR images as well. SBL has been used as a sparse signal recovery algorithm for compressed sensing. It has been shown in the literature that SBL is easy to use and can recover sparse signals more accurately than the l 1 based optimization approaches, which require delicate choice of the user parameter. We consider using a modified expectation maximization (EM) based SBL algorithm, referred to as SBL-1, which is based on a three-stage hierarchical Bayesian model. SBL-1 is not only more accurate than benchmark SBL algorithms, but also converges faster. SBL-1 is used to further enhance the resolution of the SAR images formed by IAA. Both IAA and SBL-1 are shown to be effective, requiring only a limited number of iterations, and have no need for polar-to-Cartesian interpolation of the SAR collected data. This paper characterizes the achievable performance of these two approaches by processing the complex backscatter data from both a sparse case study and a backhoe vehicle in free space with different aperture sizes.

  2. Medical image sequence coding using adaptive vector quantization

    A two-stage adaptive vector quantization scheme for radiographic image sequence coding is introduced. In vector quantization, an image sequence is first mapped into a vector set; each vector is then encoded by two distinct pieces of information, the label and the corresponding codeword. The main problem in adaptive vector quantization is how to track the changes occurring in the sequence by updating the labels and the codewords. In the scheme proposed, encoding is performed in two stages. In the first stage, the label memory of the primary codebook is replenished to track the changes caused mainly by patient motions. In the second stage, the residual error vectors drawn from the area with contrast dye material are further encoded by a small secondary codebook. Numerical and pictorial results are presented and demonstrate that good reproduction, especially those parts of the image containing contrast dye, can be obtained at a compression ratio of approximately 10 to 1 (about 0.8 bits/pixel)

  3. Granulometry use for the study of dynamics speckles patterns

    Dynamic speckle patterns are generated by laser light scattering on surfaces that exhibit some kind of activity, due to physical or biological processes that take place in the illuminated object. The characterization of this dynamic process is carried out by studying the texture changes of auxiliary images: temporal history of the speckle pattern (THSP) obtained from this speckles patterns. The drying process of water borne paint is studied through a method based on mathematical morphology applied to the THSP image processing. It is based on obtaining the granulometry of these images and their characteristic granulometric spectrum. From the granulometric size distribution of each THSP image four parameters are obtained: mean length, standard deviation, asymmetry and kurtosis. These parameters are found to be suitable as texture features. The Mahalanobis distance is calculated between the texture features of the THSP images representative of the temporary stages of the drying process and the features of the final stage or pattern texture. The behavior of the distance function describes satisfactorily the drying process of the water borne paint. Finally, these results are compared with the obtained by other methods. Compared with others, the granulometric method reported in this work distinguished by its simplicity and easy implementation and can be used to characterize the evolution of any process recorded through dynamic speckles. (Author)

  4. Segmentation of SAR images

    Kwok, Ronald

    1989-01-01

    The statistical characteristics of image speckle are reviewed. Existing segmentation techniques that have been used for speckle filtering, edge detection, and texture extraction are sumamrized. The relative effectiveness of each technique is briefly discussed.

  5. Adaptive spatial compounding for improving ultrasound images of the epidural space

    Tran, Denis; Kamani, Allaudin; Lessoway, Vickie; Rohling, Robert N.

    2007-03-01

    Epidural anesthesia can be a difficult procedure, especially for inexperienced physicians. The use of ultrasound imaging can help by depicting the location of the epidural space to choose the needle trajectory appropriately. Anatomical features in the lower back are not always clearly visible because of speckle poor reflection from structures at certain angles, and shadows from bony surfaces. Spatial compounding has the potential to reduce speckle and emphasize structures by averaging a number of images taken at different isonation angles. However, the beam-steered images are not perfectly aligned due to non-constant speed of sound causing refraction errors. This means compounding can blur features. A non-rigid registration method, called warping, shifts each block of pixels of the beam-steered images in order to find the best alignment to the reference image without beam-steering. By applying warping, the features become sharper after compounding. To emphasize features further, edge detection is also applied to the individual images in order to select the best features for compounding. The warping and edge detection parameters are calculated in real-time for each acquired image. In order to reduce computational complexity, linear prediction of the warping vectors is used. The algorithm is tested on a phantom of the lower back with a linear probe. Qualitative comparisons are made among the original plus combinations of compounding, warping, edge detection and linear prediction. The linear gradient and Laplacian of a Gaussian are used to quantitatively assess the visibility of the bone boundaries and ligamentum flavum on the processed images. The results show a significant improvement in quality.

  6. Nonlocal means filter-based speckle tracking.

    Afsham, Narges; Rasoulian, Abtin; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert

    2015-08-01

    The objective of sensorless freehand 3-D ultrasound imaging is to eliminate the need for additional tracking hardware and reduce cost and complexity. However, the accuracy of current out-of-plane pose estimation is main obstacle for full 6-degree-of-freedom (DoF) tracking. We propose a new filter-based speckle tracking framework to increase the accuracy of out-of-plane displacement estimation. In this framework, we use the displacement estimation not only for the specific speckle pattern, but for the entire image. We develop a nonlocal means (NLM) filter based on a probabilistic normal variance mixture model of ultrasound, known as Rician-inverse Gaussian (RiIG). To aggregate the local displacement estimations, Stein's unbiased risk estimate (SURE) is used as a quality measure of the estimations. We derive an explicit analytical form of SURE for the RiIG model and use it as a weight factor. The proposed filter-based speckle tracking framework is formulated and evaluated for three commonly used noise models, including the RiIG model. The out-of-plane estimations are compared with our previously proposed model-based algorithm in a set of ex vivo experiments for different tissue types. We show that the proposed RiIG filter-based method is more accurate and less tissue-dependent than the other methods. The proposed method is also evaluated in vivo on the spines of five different subjects to assess the feasibility of a clinical application. The 6-DoF transform parameters are estimated and compared with the electromagnetic tracker measurements. The results show higher tracking accuracy for typical small lateral displacements and tilt rotations between image pairs. PMID:26276959

  7. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  8. Speckle reduction methods in laser-based picture projectors

    Akram, M. Nadeem; Chen, Xuyuan

    2016-02-01

    Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.

  9. Analysis of strawberry ripening by dynamic speckle measurements

    Mulone, C.; Budini, N.; Vincitorio, F. M.; Freyre, C.; López Díaz, A. J.; Ramil Rego, A.

    2013-11-01

    This work seeks to determine the age of a fruit from observation of its dynamic speckle pattern. A mobile speckle pattern originates on the fruit's surface due to the interference of the wavefronts reflected from moving scatterers. For this work we analyzed two series of photographs of a strawberry speckle pattern, at different stages of ripening, acquired with a CMOS camera. The first day, we took ten photographs at an interval of one second. The same procedure was repeated the next day. From each series of images we extracted several statistical descriptors of pixel-to-pixel gray level variation during the observation time. By comparing these values from the first to the second day we noticed a diminution of the speckle activity. This decay demonstrated that after only one day the ripening process of the strawberry can be detected by dynamic speckle pattern analysis. For this study we employed a simple new algorithm to process the data obtained from the photographs. This algorithm allows defining a global mobility index that indicates the evolution of the fruit's ripening.

  10. Multiple rotation assessment through isothetic fringes in speckle photography

    Ángel, Luciano; Tebaldi, Myrian; Bolognini, Néstor

    2007-05-01

    The use of different pupils for storing each speckled image in speckle photography is employed to determine multiple in-plane rotations. The method consists of recording a four-exposure specklegram where the rotations are done between exposures. This specklegram is then optically processed in a whole field approach rendering isothetic fringes, which give detailed information about the multiple rotations. It is experimentally demonstrated that the proposed arrangement permits the depiction of six isothetics in order to measure either six different angles or three nonparallel components for two local general in-plane displacements.

  11. Multiple rotation assessment through isothetic fringes in speckle photography

    The use of different pupils for storing each speckled image in speckle photography is employed to determine multiple in-plane rotations. The method consists of recording a four-exposure specklegram where the rotations are done between exposures. This specklegram is then optically processed in a whole field approach rendering isothetic fringes, which give detailed information about the multiple rotations. It is experimentally demonstrated that the proposed arrangement permits the depiction of six isothetics in order to measure either six different angles or three nonparallel components for two local general in-plane displacements

  12. Characterization of Holmes in The Adventure of Speckled Band

    CHEN Xiao-ling

    2015-01-01

    Sherlock Holmes is the fictional creation of Sir Arthur Conan Doyle. In The Adventure of the Speckled Band, Sir Arthur Conan Doyle has succeeded in creating the image of Sherlock Holmes. He is not only an excellent detective who is skillful in as⁃tute observation and deductive reasoning, but also the symbol of justice and wisdom.

  13. IR speckle-interferometry of SN 1987A

    The speckle observations in the near IR, carried out on August 6, 1987 at the ESO 3.6 m telescope, yielded the detection of a weak oscillation superimposed on the visibility of the unresolved ejecta. A ring halo with the diameter 420 ± 80 ma appears as the most plausible image. Its interpretation as due to an IR light echo is discussed

  14. High-resolution Imaging of Living Retina through Optic Adaptive Retinal Imaging System

    Chunhui Jiang; Wenji Wang; Ning Ling; Gezhi Xu; Xuejun Rao; Xinyang Li; Yudong Zhang

    2002-01-01

    Purpose: To evaluate the possibility as well as the usage of adaptive optics in high-resolution retinal imaging.Methods:From March to November 2001, the fundus of 25 adults were checked by using Optic Adaptive Retinal Imaging System (OAS). The age of the subjects varied from 18~48 years. All had normal visual acuity from 0.9 to 1.0. No abnormality was found in the ocular examination, and their medical as well as ocular history was unremarkable. Results: High-resolution images of the retinal cells, photoreceptor and bipolar cell, were analysed. In these images, the cells are clearly resolved. The density of the photoreceptor at area 1.5 degree from the foveloa is around 40 000~50 000/mm2. At area 3 degree, it drops to less than 30 000/mm2.Conclusion:Optic Adaptive Retinal Imaging System (AOS) is able to get high-resolution image of retinal cells in living human eyes. It may be widely used in ophthalmology experimentally and clinically.

  15. Shape adaptive, robust iris feature extraction from noisy iris images.

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  16. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  17. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  18. Extreme learning machine and adaptive sparse representation for image classification.

    Cao, Jiuwen; Zhang, Kai; Luo, Minxia; Yin, Chun; Lai, Xiaoping

    2016-09-01

    Recent research has shown the speed advantage of extreme learning machine (ELM) and the accuracy advantage of sparse representation classification (SRC) in the area of image classification. Those two methods, however, have their respective drawbacks, e.g., in general, ELM is known to be less robust to noise while SRC is known to be time-consuming. Consequently, ELM and SRC complement each other in computational complexity and classification accuracy. In order to unify such mutual complementarity and thus further enhance the classification performance, we propose an efficient hybrid classifier to exploit the advantages of ELM and SRC in this paper. More precisely, the proposed classifier consists of two stages: first, an ELM network is trained by supervised learning. Second, a discriminative criterion about the reliability of the obtained ELM output is adopted to decide whether the query image can be correctly classified or not. If the output is reliable, the classification will be performed by ELM; otherwise the query image will be fed to SRC. Meanwhile, in the stage of SRC, a sub-dictionary that is adaptive to the query image instead of the entire dictionary is extracted via the ELM output. The computational burden of SRC thus can be reduced. Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency. PMID:27389571

  19. Analysis of error in measurement and resolution of electronic speckle photography in material testing

    Causes and magnitude of error in measurement and resolution are investigated for electronic speckle photography (ESP), which is used like a strain gauge in material testing. For this purpose a model of the rough surface which allows the description of cross correlation of speckle images under the influence of material strain is developed. The process through which material strain leads to decorrelation of speckle images is shown. The error in measurement which is caused by defocused imaging and statistical errors in the displacement estimation of speckle images is investigated theoretically. The results are supported by simulations and experiments. Moreover the resolution of ESP can be improved through increased optical magnification as well as adjusted aperture. Resolutions which are usually considered to be accessible only to interferometric techniques are achieved. (author)

  20. Analysis of error in measurement and resolution of electronic speckle photography in material testing

    Feiel, R

    1999-01-01

    Causes and magnitude of error in measurement and resolution are investigated for electronic speckle photography (ESP), which is used like a strain gauge in material testing. For this purpose a model of the rough surface which allows the description of cross correlation of speckle images under the influence of material strain is developed. The process through which material strain leads to decorrelation of speckle images is shown. The error in measurement which is caused by defocused imaging and statistical errors in the displacement estimation of speckle images is investigated theoretically. The results are supported by simulations and experiments. Moreover the resolution of ESP can be improved through increased optical magnification as well as adjusted aperture. Resolutions which are usually considered to be accessible only to interferometric techniques are achieved.

  1. Towards real time speckle controlled retinal photocoagulation

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  2. Edge adaptive intra field de-interlacing of video images

    Lachine, Vladimir; Smith, Gregory; Lee, Louie

    2013-02-01

    Expanding image by an arbitrary scale factor and thereby creating an enlarged image is a crucial image processing operation. De-interlacing is an example of such operation where a video field is enlarged in vertical direction with 1 to 2 scale factor. The most advanced de-interlacing algorithms use a few consequent input fields to generate one output frame. In order to save hardware resources in video processors, missing lines in each field may be generated without reference to the other fields. Line doubling, known as "bobbing", is the simplest intra field de-interlacing method. However, it may generate visual artifacts. For example, interpolation of an inserted line from a few neighboring lines by vertical filter may produce such visual artifacts as "jaggies." In this work we present edge adaptive image up-scaling and/or enhancement algorithm, which can produce "jaggies" free video output frames. As a first step, an edge and its parameters in each interpolated pixel are detected from gradient squared tensor based on local signal variances. Then, according to the edge parameters including orientation, anisotropy and variance strength, the algorithm determines footprint and frequency response of two-dimensional interpolation filter for the output pixel. Filter's coefficients are defined by edge parameters, so that quality of the output frame is controlled by local content. The proposed method may be used for image enlargement or enhancement (for example, anti-aliasing without resampling). It has been hardware implemented in video display processor for intra field de-interlacing of video images.

  3. 斑点追踪成像技术在心肌梗死左室心肌应变能力中的应用%Application of Speckle Tracking Imaging in Left Ventricular Strain Capacity of Myocardial Infarction

    喻丽华; 赵季红; 蔡伟; 李学文

    2012-01-01

    目的:探讨超声斑点追踪成像(speckle tracking imaging,STI)技术评价心肌梗死患者左室心肌整体和局部应变的价值.方法:收集医院60例确诊为前壁心肌梗死患者,将同期体检健康志愿者60例作为正常对照.分别收集2组心尖位左室长轴3个切面高帧频二维动态图像,以自动功能成像软件(automated functional imaging,AFI)测量左室18节段峰值收缩期应变(S)、切面峰值收缩应变(GLS)及左室长轴平均总应变(GLS-Avg),分析GLS-Avg与左室射血分数(left ventricular ejection fraction,LVEF)的相关性;比较2组患者GLS-Avg.结果:前壁心肌梗死患者左室18节段S值自基底段向心尖段逐渐增加,各壁间差异无统计学意义(P>0.05);前壁心肌梗死患者各节段壁应变绝对值低于正常对照组(P<0.05).GLS-Avg与LVEF具有良好相关性(r=0.93,P<0.05).结论:斑点追踪成像技术能定量测定心肌梗死患者左室和整体心肌的变化.%Objective To study the application of speckle tracking imaging(STI) technology in myocardial infarction patients with left ventricular global and local strain. Methods Sixty cases of myocardial infarction patients were selected, and another sixty healthy patients were in control group. Left ventricular apical long-axis positions were recorded in three two-dimensional slices of high frame rate dynamic images. Left ventricular peak systolic strain in paragraph 18(S), the section peak systolic strain(GLS) and left ventricular long axis of the average total strain(GLS-Avg) of all cases were measured by automated functional imaging(AFI). The relationship of GLS-Avg and left ventricular ejection fraction(LVEF) was analyzed. Results Paragraph 18(S) values of left ventricle from the basal to apical segments gradually increased in control group. The intramural difference was not statistically significant(P>0.05), and strain of the wall segment in myocardial infarction group was lower than that of the control

  4. Signal-to-noise based local decorrelation compensation for speckle interferometry applications

    Speckle-based interferometric techniques allow assessing the whole-field deformation induced on a specimen due to the application of load. These high sensitivity optical techniques yield fringe images generated by subtracting speckle patterns captured while the specimen undergoes deformation. The quality of the fringes, and in turn the accuracy of the deformation measurements, strongly depends on the speckle correlation. Specimen rigid body motion leads to speckle decorrelation that, in general, cannot be effectively counteracted by applying a global translation to the involved speckle patterns. In this paper, we propose a recorrelation procedure based on the application of locally evaluated translations. The proposed procedure implies dividing the field into several regions, applying a local translation, and calculating, in every region, the signal-to-noise ratio (SNR). Since the latter is a correlation indicator (the noise increases with the decorrelation) we argue that the proper translation is that which maximizes the locally evaluated SNR. The search of the proper local translations is, of course, an interactive process that can be facilitated by using a SNR optimization algorithm. The performance of the proposed recorrelation procedure was tested on two examples. First, the SNR optimization algorithm was applied to fringe images obtained by subtracting simulated speckle patterns. Next, it was applied to fringe images obtained by using a shearography optical setup from a specimen subjected to mechanical deformation. Our results show that the proposed SNR optimization method can significantly improve the reliability of measurements performed by using speckle-based techniques

  5. Optical design of the comet Shoemaker-Levy speckle camera

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    An optical design is presented in which the Lick 3 meter telescope and a bare CCD speckle camera system was used to image the collision sites of the Shoemaker-Levy 9 comet with the Planet Jupiter. The brief overview includes of the optical constraints and system layout. The choice of a Risley prism combination to compensate for the time dependent atmospheric chromatic changes are described. Plate scale and signal-to-noise ratio curves resulting from imaging reference stars are compared with theory. Comparisons between un-corrected and reconstructed images of Jupiter`s impact sites. The results confirm that speckle imaging techniques can be used over an extended time period to provide a method to image large extended objects.

  6. Speckle-moire phenomenon based on the study of speckles polarization for multieffect simulated biotissue

    He, Duo-Min

    1995-02-01

    Based on the study of speckles polarization for multi-effect simulated biotissue, a new phenomenon called speckle-moire is created within a single diffraction halo of a laser specklegram. This is made by controlling the correlation between selected speckle pairs within a multiexposure specklegram via the polarization properties of laser speckles. This phenomenon can be used to measure the difference between two displacements or deformations processes, such as, in the field of speckle metrology for biomedical science.

  7. Micron narrowband adaptive optics imaging in the arches cluster

    Blum, R D; Pasquali, A; Heydari-Malayeri, M; Conti, P S; Schmutz, W

    2001-01-01

    Canada-France-Hawaii-Telescope adaptive optics bonnette images through narrow-band filters in the $K-$band are presented for the Arches cluster. Continuum fluxes, line fluxes, and equivalent widths are derived from high angular resolution images, some near diffraction limited, for the well known massive stars in the Arches cluster. Images were obtained in the lines of \\ion{He}{1} 2.06 \\mic, \\ion{H}{1} Br$\\gamma$ (2.17 \\mic), and \\ion{He}{2} 2.19 \\mic as well as continuum positions at 2.03 \\mic, 2.14 \\mic, and 2.26 \\mic. In addition, fluxes are presented for \\ion{H}{1} P$\\alpha$ (1.87 \\mic) and a nearby continuum position (1.90 \\mic) from Hubble Space Telescope archival data. The 2 \\mic and P$\\alpha$ data reveal two new emission-line stars and three fainter candidate emission-line objects. Indications for a spectral change of one object between earlier observations in 1992/1993 and our data from 1999 are found. The ratio of \\ion{He}{2} 2.19 \\mic to Br$\\gamma$ emission exhibits a narrow distribution among the s...

  8. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk [Department of Biomedical Engineering, NIH Resource Center for Medical Ultrasonic Transducer Technology, University of Southern California, Los Angeles, CA (United States)], E-mail: jongsjeo@usc.edu

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions

  9. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  10. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  11. Experimental Characterization of Correlation-Functions of Random Surfaces by Speckle Measurement and Complementary Algorithm

    程传福; 刘曼; 滕树云; 宋洪胜; 陈建平; 徐至展

    2003-01-01

    A method for the extracting the correlation functions of random surfaces is proposed by using the image speckle intensity. Theoretically, we analyse the integral expression of average intensity of the image speckles, and compare it with the pair of Fourier-Bessel-transform-and-the-inversion of the exponential function of the height-height correlation function of the random surfaces. Then the algorithm is proposed numerically to complement the lacking Bessel function factor in the expression of the average speckle intensity, which changes the intensity data into the pair of the Fourier-Bessel-transform. Experimentally, we measure the average image speckle intensities versus the radius of the filtering aperture in the 4 f system and extract the height-height correlation function by using the proposed algorithm. The results of the practical measurements for three surface samples and the comparison with those by atomic force microscopy validate the feasibility of this method.

  12. A novel iterative non-local means algorithm for speckle reduction

    Zhan, Yi; Zhang, Xuming; Ding, Mingyue

    2012-02-01

    Despeckling of ultrasound images is a crucial step for facilitating subsequent image processing. The non-local means (NLM) filter has been widely applied for denoising images corrupted by Gaussian noise. However, the direct application of this filter in ultrasound images cannot provide satisfactory restoration results. To address this problem, a novel iterative adaptive non-local means (IANLM) filter is proposed to despeckle ultrasound images. In the proposed filter, the speckle noise is firstly transformed into additive Gaussian noise by square root operation. Then the decay parameter is estimated based on a selected homogeneous region. Finally, an iterative strategy combined with the local clustering method based on pixel intensities is adopted to realize effective image smoothing while preserving image edges. Comparisons of the restoration performance of IANLM filter with other state-of-the-art despeckling methods are made. The quantitative comparisons of despeckling synthetic images based on Peak signal-to-noise ratio (PSNR) show that the IANLM filter can provide the best restoration performance among all the evaluated filters. The subjective visual comparisons of the denoised synthetic and ultrasound images demonstrate that the IANLM filter outperforms other compared algorithms in that it can achieve better performance of noise reduction, artifact avoidance, edges and textures preservation and contrast enhancement.

  13. Adaptive Parametrization of Multivariate B-splines for Image Registration

    Hansen, Michael Sass; Glocker, Benjamin; Navab, Nassir;

    2008-01-01

    We present an adaptive parametrization scheme for dynamic mesh refinement in the application of parametric image registration. The scheme is based on a refinement measure ensuring that the control points give an efficient representation of the warp fields, in terms of minimizing the registration...... cost function. In the current work we introduce multivariate B-splines as a novel alternative to the widely used tensor B-splines enabling us to make efficient use of the derived measure.The multivariate B-splines of order n are Cn- 1 smooth and are based on Delaunay configurations of arbitrary 2D or 3...... reside on a regular grid. In contrast, by efficient non- constrained placement of the knots, the multivariate B- splines are shown to give a good representation of inho- mogeneous objects in natural settings. The wide applicability of the method is illustrated through its application on medical data and...

  14. Recognition using information-optimal adaptive feature-specific imaging.

    Baheti, Pawan K; Neifeld, Mark A

    2009-04-01

    We present an information-theoretic adaptive feature-specific imaging (AFSI) system for a M-class recognition task. The proposed system utilizes the recently developed task-specific information (TSI) framework to incorporate the knowledge from previous measurements and adapt the projection matrix at each step. The decision-making framework is based on sequential hypothesis testing. We quantify the number of measurements required to achieve a specified probability of misclassification (P(e)), and we compare the performances of three approaches: the new TSI-based AFSI system, a previously reported statistical AFSI system, and static FSI (SFSI). The TSI-based AFSI system exhibits significant improvement compared with SFSI and statistical AFSI at low signal-to-noise ratio (SNR). It is shown that for M=4 hypotheses, SNR=-20 dB and desired P(e)=10(-2), TSI-based AFSI requires 3 times fewer measurements than statistical AFSI, and 16 times fewer measurements than SFSI. We also describe an extension of the proposed method that is suitable for recognition in the presence of nuisance parameters such as illumination conditions and target orientations. PMID:19340282

  15. Dynamical speckles in watery surfaces

    Recovery of watery surfaces with monolayer of surfactant substances is of interest in diverse technological applications. The format ion and study of molecular monolayer deposited in these surfaces require the application of measurements techniques that allow evaluating the recovery grade locally without modifying practically the studied surface. In this paper the preliminary results obtained by the authors it plows exposed applying the technique of dynamic speckle interferometry in watery surfaces and their consideration like to possible resource to measure the grade of local recovery of these surfaces on the it bases that the speckles pattern dog reveal the dynamics of evaporation that takes place in the same ones. (Author)

  16. X-ray pulse wavefront metrology using speckle tracking.

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-07-01

    An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology. PMID:26134791

  17. Speckles in interstellar radio-wave scattering

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  18. Speckle Noise Reduction via Nonconvex High Total Variation Approach

    Yulian Wu; Xiangchu Feng

    2015-01-01

    We address the problem of speckle noise removal. The classical total variation is extensively used in this field to solve such problem, but this method suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex total generalized variation (TGV) regularization is used to preserve both edges and details of the images. The TGV regularization which is able to remove the staircase effect has strong theoretical guarantee by means of its ...

  19. Speckle and fringe dynamics in imagingspeckle-pattern interferometry for spatial-filtering velocimetry

    Jakobsen, Michael Linde; Iversen, Theis F. Q.; Yura, Harold T.;

    2011-01-01

    This paper analyzes the dynamics of laser speckles and fringes, formed in an imaging-speckle-pattern interferometer with the purpose of sensing linear three-dimensional motion and out-of-plane components of rotation in real time, using optical spatial-filtering-velocimetry techniques. The ensemble......-average definition of the cross-correlation function is applied to the intensity distributions, obtained in the observation plane at two positions of the object. The theoretical analysis provides a description for the dynamics of both the speckles and the fringes. The analysis reveals that both the magnitude and...

  20. Adaptive Optics Images of Kepler Objects of Interest

    Adams, Elisabeth R; Dupree, Andrea K; Gautier, T Nick; Kulesa, Craig; McCarthy, Don

    2012-01-01

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.1 arcsec from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200-inch. Most objects (60%) have at least one star within 6 arcsec separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2 arcsec of the target star; 6 companions (7%) are closer than 0.5 arcsec. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed,...

  1. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2011-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978...

  2. Speckle dynamics for intensity-modulated illumination

    We analyze the dynamics of laser speckle patterns, designed for sensing with a receiver, based on spatial filtering. The speckle translation arises after free-space propagation of light scattered from nonspecular surfaces of a solid object in motion. The speckle pattern is manipulated by modulating the intensity of the coherent light, illuminating the target. The space-time normalized cross covariance of speckle patterns incident on the spatial sensor is calculated for the field distribution of three Gaussian beams having arbitrary directions and separations when incident on the target. The modulation of the intensity distribution at the target introduce a higher spatial frequency component in the speckle pattern. The theoretical analysis provides the statistical parameters for both the speckles and the higher spatial frequency component. The analysis reveals that the speckles and the higher spatial frequency component do not necessarily translate as a rigid structure. The theoretical findings are supported by measurements

  3. Digital Speckle Technique Applied to Flow Visualization

    2000-01-01

    Digital speckle technique uses a laser, a CCD camera, and digital processing to generate interference fringes at the television framing rate. Its most obvious advantage is that neither darkroom facilities nor photographic wet chemical processing is required. In addition, it can be used in harsh engineering environments. This paper discusses the strengths and weaknesses of three digital speckle methodologies. (1) Digital speckle pattern interferometry (DSPI) uses an optical polarization phase shifter for visualization and measurement of the density field in a flow field. (2) Digital shearing speckle interferometry (DSSI) utilizes speckle-shearing interferometry in addition to optical polarization phase shifting. (3) Digital speckle photography (DSP) with computer reconstruction. The discussion describes the concepts, the principles and the experimental arrangements with some experimental results. The investigation shows that these three digital speckle techniques provide an excellent method for visualizing flow fields and for measuring density distributions in fluid mechanics and thermal flows.

  4. Coherence gated wavefront sensorless adaptive optics for two photon excited fluorescence retinal imaging (Conference Presentation)

    Jian, Yifan; Cua, Michelle; Bonora, Stefano; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a novel system for adaptive optics two photon imaging. We utilize the bandwidth of the femtosecond excitation beam to perform coherence gated imaging (OCT) of the sample. The location of the focus is directly observable in the cross sectional OCT images, and adjusted to the desired depth plane. Next, using real time volumetric OCT, we perform Wavefront Sensorless Adaptive Optics (WSAO) aberration correction using a multi-element adaptive lens capable of correcting up to 4th order Zernike polynomials. The aberration correction is performed based on an image quality metric, for example intensity. The optimization time is limited only by the OCT acquisition rate, and takes ~30s. Following aberration correction, two photon fluorescence images are acquired, and compared to results without adaptive optics correction. This technique is promising for multiphoton imaging in multi-layered, scattering samples such as eye and brain, in which traditional wavefront sensing and guide-star sensorless adaptive optics approaches may not be suitable.

  5. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Inhye Yoon; Seokhwa Jeong; Jaeheon Jeong; Doochun Seo; Joonki Paik

    2015-01-01

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image a...

  6. Speckle observations of eta Carinae

    Speckle observations of the central star-like object in eta Carinae with the AAT have shown that it is an unresolved (7 Lsun. Most likely it is a single star of approx. 100 Msun. No evidence of any binary component with a separation of between 0.03-0.9 arcsec has been found. (author)

  7. Despeckling of Medical Ultrasound Images of Kidney-Performance Evaluvation of Spatial Filters

    S. Bama; Selvathi, D.

    2012-01-01

    Ultrasound imaging is a widely used medical diagnostic technique capable of producing real time images of soft tissues like kidney, liver, gallbladder, spleen etc. Speckle noise is an ubiquitous phenomena found in all coherent imaging modalities that degrades both the image quality and the visual interpretation of the acquired data. Several adaptive spatial domain filters have been documented to deal with this issue. The objective of this study is to identify an efficient and optimum despeckl...

  8. Effect of changing speckles in digital holography on measurements of static and vibratory displacements.

    Stetson, Karl A

    2016-06-01

    This paper presents a study of speckle effects in measurements of static and vibratory displacements by digital holography. Such effects are shown to arise from changes in speckle fields that often occur between holographic recordings. These may be between recording holograms before and after static deformations or changes in sets of holograms recorded for vibration measurement. If the images do not change between such recordings, the effects appear to be limited mainly to round-off errors. PMID:27411207

  9. Dynamic speckle interferometry of high-cycle material fatigue: Theory and some experiments

    Vladimirov, A. P.

    2016-06-01

    The objective of this paper was theoretical analysis of speckle dynamics in the image plane of a thin transparent object. It was suggested that speckle dynamics develops in simultaneous periodic motion of the sample, micro- and macro-variations of its refraction index and its translational motion. The results of the theory were contrasted with the data obtained in the fatigue tests with transparent object.

  10. Construction and solution of an adaptive image-restoration model for removing blur and mixed noise

    Wang, Youquan; Cui, Lihong; Cen, Yigang; Sun, Jianjun

    2016-03-01

    We establish a practical regularized least-squares model with adaptive regularization for dealing with blur and mixed noise in images. This model has some advantages, such as good adaptability for edge restoration and noise suppression due to the application of a priori spatial information obtained from a polluted image. We further focus on finding an important feature of image restoration using an adaptive restoration model with different regularization parameters in polluted images. A more important observation is that the gradient of an image varies regularly from one regularization parameter to another under certain conditions. Then, a modified graduated nonconvexity approach combined with a median filter version of a spatial information indicator is proposed to seek the solution of our adaptive image-restoration model by applying variable splitting and weighted penalty techniques. Numerical experiments show that the method is robust and effective for dealing with various blur and mixed noise levels in images.

  11. Adaptive image content-based exposure control for scanning applications in radiography

    H. Schulerud; J. Thielemann; T. Kirkhus; K. Kaspersen; J.M. Østby; M.G. Metaxas; G.J. Royle; J. Griffiths; E. Cook; C. Esbrand; S. Pani; C. Venanzi; P.F. van der Stelt; G. Li; R. Turchetta; A. Fant; S. Theodoridis; H. Georgiou; G. Hall; M. Noy; J. Jones; J. Leaver; F. Triantis; A. Asimidis; N. Manthos; R. Longo; A. Bergamaschi; R.D. Speller

    2007-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project which has designed and developed a new adaptive X-ray imaging system using on-line exposure control, to create locally optimized images. The I-ImaS system allows for real-time image analysis during acquisition, thus enabling real-time exposu

  12. Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other.

    Brooks, Kevin R; Mond, Jonathan M; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the "thin ideal" has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of "self" and "other" are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g., expanded other/contracted self), and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one's own body following exposure to "thin" and to "fat" others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size. PMID:27471447

  13. Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other

    Brooks, Kevin R.; Mond, Jonathan M.; Stevenson, Richard J.; Stephen, Ian D.

    2016-01-01

    Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the “thin ideal” has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of “self” and “other” are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g., expanded other/contracted self), and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one's own body following exposure to “thin” and to “fat” others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size. PMID:27471447

  14. Development of a digital image correlation procedure adapted for kinematic measurements in polycrystals: application to the identification of crystal plasticity laws parameters

    A digital image correlation procedure adapted to kinematic measurements in polycrystals has been developed in this work to identify parameters of crystal plasticity laws. 2D kinematic measurements are performed on the surface of 316LN austenitic steel polycrystals from a sequence of images acquired using a Scanning Electron Microscope (SEM) during in-situ tensile tests for various mean grain sizes. To enable digital image correlation, a speckle adapted to the microscopic scale is deposited onto the specimen surface by a microlithography process. Spatial distortions resulting from both patterning and SEM imaging techniques are quantified. The knowledge of the microstructure at the surface by electron backscattered diffraction allows for kinematic measurements to be performed using an unstructured finite element mesh taking as support the grain or twin boundaries. This same mesh is then used for the simulation of each tensile test on the experimental microstructure with the measured nodal displacements prescribed as boundary conditions with their time evolution. Two local crystal plasticity laws are considered to simulate the observed strain heterogeneities, namely, the Meric-Cailletaud model and the DD-CFC law developed at EDF R and D. Comparisons between measurements and simulations are performed in terms of displacements, strains but also activated slip systems. Last, an inverse identification method is proposed for the identification of the sought constitutive parameters based on both the local displacement fields and the material homogenized behavior. The parameters associated with isotropic hardening of Meric-Cailletaud law are thus identified for various mean grain sizes. It is also shown that some of the interaction parameters of slip systems can be estimated. (author)

  15. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Souchon, Remi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence ...

  16. EFFICIENCY AND CAPABILITY OF FRACTAL IMAGE COMPRESSION WITH ADAPTIVE QUARDTREE PARTITIONING

    Utpal Nandi

    2013-08-01

    Full Text Available In this paper, efficiency and capability of an adaptive quardtree partitioning scheme of fractal image compression technique is discussed with respect to quardtree partitioning scheme. In adaptive quardtree partitioning scheme, the image is partitioned recursively into four sub-images. Instead of middle points of the image sides are selected as in quardtree partitioning scheme, Image contexts are used to find the partitioning points. The image is partitioned row-wise into two sub-images using biased successive differences of sum of pixel values of rows of the image. Biased successive differences of sum of pixel values of columns of the sub-images are used to partition each sub-image farther column-wise into two parts. Then, a fractal image compression technique based on the adaptive quardtree partitioning scheme is discussed. The comparison of the compression ratio, compression time and PSNR are done between fractal image compression with quardtree and adaptive quardtree partitioning schemes. The fractal image compression with adaptive quardtree partitioning scheme offers better rate of compression most of the time with comparatively improved PSNR. But, the time of compression of the same scheme is much more than its counterpart.

  17. Adaptive optics images. III. 87 Kepler objects of interest

    Dressing, Courtney D.; Dupree, Andrea K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Adams, Elisabeth R. [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719 (United States); Kulesa, Craig; McCarthy, Don, E-mail: cdressing@cfa.harvard.edu [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  18. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  19. Global minimization of adaptive local image fitting energy for image segmentation

    Guoqi Liu; Zhiheng Zhou; Shengli Xie

    2014-01-01

    The active contour model based on local image fitting (LIF) energy is an effective method to deal with intensity inhomo-geneities, but it always conflicts with the local minimum problem because LIF has a nonconvex energy function form. At the same time, the parameters of LIF are hard to be chosen for better per-formance. A global minimization of the adaptive LIF energy model is proposed. The regularized length term which constrains the zero level set is introduced to improve the accuracy of the bound-aries, and a global minimization of the active contour model is presented. In addition, based on the statistical information of the intensity histogram, the standard deviation σ with respect to the truncated Gaussian window is automatical y computed accord-ing to images. Consequently, the proposed method improves the performance and adaptivity to deal with the intensity inhomo-geneities. Experimental results for synthetic and real images show desirable performance and efficiency of the proposed method.

  20. Magnetic resonance imaging for adaptive cobalt tomotherapy: A proposal

    Kron Tomas

    2006-01-01

    itself. Rotational delivery is less susceptible to problems related to the use of a low energy megavoltage photon source while the helical delivery reduces the negative impact of the relatively large penumbra inherent in the use of Cobalt sources for radiotherapy. On the other hand, the use of a 60Co source ensures constant dose rate with gantry rotation and makes dose calculation in a magnetic field as easy as the range of secondary electrons is limited. The MR-integrated Cobalt tomotherapy unit, dubbed ′MiCoTo,′ uses two independent physical principles for image acquisition and treatment delivery. It would offer excellent target definition and will allow following target motion during treatment using fast imaging techniques thus providing the best possible input for adaptive radiotherapy. As an additional bonus, quality assurance of the radiation delivery can be performed in situ using radiation sensitive gels imaged by MRI.

  1. Medical Image Denoising using Adaptive Threshold Based on Contourlet Transform

    Satheesh, S; 10.5121/acij.2011.2205

    2011-01-01

    Image denoising has become an essential exercise in medical imaging especially the Magnetic Resonance Imaging (MRI). This paper proposes a medical image denoising algorithm using contourlet transform. Numerical results show that the proposed algorithm can obtained higher peak signal to noise ratio (PSNR) than wavelet based denoising algorithms using MR Images in the presence of AWGN.

  2. A new-speckle interferometry system for the MAMA detector

    Horch, E.; Morgan, J. S.; Giaretta, G.; Kasle, D. B.

    1992-01-01

    We have developed a new system for making speckle observations with the multianode microchannel array (MAMA) detector. This system is a true photon-counting imaging device which records the arrival time of every detected photon and allows for reconstruction of image features near the diffraction limit of the telescope. We present a description of the system and summary of observational results obtained at the Lick Observatory 1-m reflector in 1991 September. The diffraction limit of the 1-m telescope at 5029 A is about 0.125 arcsec and we have successfully resolved the catalogued interferometric binary HD 202582 with a separation of 0.157 +/- 0.031 arcsec. A pair of stars in the open cluster Chi Persei separated by 2.65 +/- 0.22 arcsec with approximate V magnitudes 8.6 and 11.5 has also been successfully analyzed with the speckle technique.

  3. A View on Despeckling in Ultrasound Imaging

    S.Kalaivani Narayanan

    2009-09-01

    Full Text Available Ultrasound imaging is a widely used and safe medical diagnostic technique, due to its noninvasive nature, low cost and capability of forming real time imaging. However the usefulness of ultrasound imaging is degraded by the presence of signal dependant noise knownas speckle. The speckle pattern depends on the structure of the image tissue and various imaging parameters. There are two main purposes for speckle reduction in medical ultrasound imaging (1 to improve the human interpretation of ultrasound images (2 despeckling is the preprocessing step for many ultrasound image processing tasks such as segmentation and registration. A number of methods have been proposed for speckle reduction in ultrasoundimaging. While incorporating speckle reduction techniques as an aid for visual diagnosis, it has to keep in mind that certain speckle contains diagnostic information and should be retained. The objective of this paper is to give an overview about types of speckle reduction techniques in ultrasound imaging.

  4. Speckle photography in biomechanical testing

    Kasprzak, Henryk T.; Podbielska, Halina

    1994-02-01

    The application of speckle photography in biomechanical testing of bones and surgical fixing devices is presented. Double-exposure speckle photography is used for measuring the in-plane deformation of broken lower leg bones supported with different fixing devices under axial loading. An osteosynthesis plate, an external fixator, and an intramedullar nail mounted on the tibia shaft are tested. The results for different loading conditions are analyzed and compared with those obtained by holographic interferometry. Further, the human hyoid bone is investigated by this method. The load is applied to the anterior surface of the body of the bone. All tested specimen show an asymmetric displacement, the greatest in a plane vertical to the load. An evaluation of fracture behavior can be done from the displacement pattern.

  5. Statistics of spatially integrated speckle intensity difference

    Hanson, Steen Grüner; Yura, Harold

    2009-01-01

    We consider the statistics of the spatially integrated speckle intensity difference obtained from two separated finite collecting apertures. For fully developed speckle, closed-form analytic solutions for both the probability density function and the cumulative distribution function are derived...... here for both arbitrary values of the mean number of speckles contained within an aperture and the degree of coherence of the optical field. Additionally, closed-form expressions are obtained for the corresponding nth statistical moments....

  6. Development of speckle reduction technology in laser projection displays

    Tong, Zhaomin

    2013-01-01

    Lasers as illumination sources in displays have excellent features compared to lamps and Light Emitting Diodes (LEDs). Lasers have the following advantages: high luminance, small etendue, long lifetime, linear polarization, low power consumption and mercury free, and they can enable a wider color gamut. However, the highly temporal and spatial coherence of the laser introduces a grainy light intensity distribution known as speckle when the laser beam illuminates a rough screen, and the image ...

  7. Improved detectability of microcirculatory dynamics by laser speckle flowmetry

    Postnov, Dmitry D; Sosnovtseva, Olga; Tuchin, Valery V

    2015-01-01

    Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full-field laser speckle flowmetry provides a real-time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important...... issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion....

  8. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  9. Random laser speckle based modulation transfer function measurement of midwave infrared focal plane arrays

    Barnard, Kenneth J.; Anisimov, Igor; Scheihing, John E.

    2012-08-01

    Direct measurement of the modulation transfer function (MTF) of focal plane arrays (FPAs) using random laser speckle approaches for the visible/near-infrared wavelength band has been well documented over the last 20 years. These methods have not transitioned to the midwave infrared (MWIR) primarily because other techniques have been sufficient and MWIR laser sources with sufficient output power have been unavailable. However, as the detector pitch decreases, MTF measurements become more difficult due to diffraction, while potential MTF degradation due to lateral carrier diffusion crosstalk makes accurate MTF characterization critical for sensor system design. Here, a random laser speckle FPA MTF measurement approach is adapted for use in the MWIR that utilizes a quantum cascade laser coupled with an integrating sphere to generate the appropriate in-band random speckle. Specific challenges associated with the technique are addressed including the validity of the Fresnel diffraction assumptions describing the propagation of the random speckle field from the integrating sphere to the FPA. Improved methods for estimating the power spectral density (PSD) of the measured speckle that reduce data requirements are presented. The statistics and uniformity of the laser speckle are presented along with PSD measurements and estimated MTFs of a MWIR FPA.

  10. Speckle photography for fluid mechanics measurements

    Fomin, N.A. [Belarus Academy of Sciences, Minsk (Belarus). Heat and Mass Transfer Institute

    1998-07-01

    Speckle photography is an advanced experimental technique used for the non-intrusive quantitative determination of density, velocity and temperature fields in gas, liquid, and plasma flows. The book presents the diffraction theory of speckle formation as well as a statistical description of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Computer-aided data acquisition and processing are considered and examples for their use are given. An essential part of the book is devoted to the estimation of turbulence parameters in turbulent flows and to the description of speckle tomography, the most promising approach in the tomography of complex 3D flows. (orig.)

  11. Tracking speckle displacement by double Kalman filtering

    Donghui Li; Li Guo

    2006-01-01

    @@ A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter, and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to verify the double-Kalman-filter tracker's ability of tracking laser speckle's constant displacement.

  12. A Novel Approach of Harris Corner Detection of Noisy Images using Adaptive Wavelet Thresholding Technique

    Dey, Nilanjan; Nandi, Pradipti; Barman, Nilanjana

    2012-01-01

    In this paper we propose a method of corner detection for obtaining features which is required to track and recognize objects within a noisy image. Corner detection of noisy images is a challenging task in image processing. Natural images often get corrupted by noise during acquisition and transmission. Though Corner detection of these noisy images does not provide desired results, hence de-noising is required. Adaptive wavelet thresholding approach is applied for the same.

  13. A novel smartphone ophthalmic imaging adapter: User feasibility studies in Hyderabad, India

    Ludwig, Cassie A.; Murthy, Somasheila I.; Pappuru, Rajeev R.; Alexandre Jais; Myung, David J; Chang, Robert T

    2016-01-01

    Aim of Study: To evaluate the ability of ancillary health staff to use a novel smartphone imaging adapter system (EyeGo, now known as Paxos Scope) to capture images of sufficient quality to exclude emergent eye findings. Secondary aims were to assess user and patient experiences during image acquisition, interuser reproducibility, and subjective image quality. Materials and Methods: The system captures images using a macro lens and an indirect ophthalmoscopy lens coupled with an iPhone 5S. We...

  14. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    Zhiwei Ye; Mingwei Wang; Zhengbing Hu; Wei Liu

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three fa...

  15. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-01-01

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results. PMID:25808767

  16. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  17. Laser speckle photography: Comparison of methods of evaluation; Laser-Speckle-Photographie: Vergleich von Auswertemethoden

    Kulenovic, R.; Groll, M. [Stuttgart Univ. (Germany). Inst. fuer Kernenergie und Energiesysteme

    1998-11-01

    The fundamentals of Laser speckle photography (LSP) are described. LSP is a method for contactless temperature measurement in gaseous fluids. The basic physical equations are presented, and a measuring set-up for measuring temperature fields in the temperature boundary layer of a convective air flow around a heated rod is presented along with representative measured results. Another section discusses digital LSP and numerical methods of evaluation for digitalized specklegrams. Apart from autocorrelation, cross-correlation and minimum square difference (MQD), also the numerical reconstruction of Young's strips with the aid of a Fresnel transformation is described. The influence of the reconstruction parameters is illustrated by numerically reconstructed strip images. Finally, the effects of different picture qualties (brightness/contrast, noise) for numerical reconstruction of specklegrams are presented qualitatively and discussed. [German] Vorliegender Beitrag beschreibt die allgemeinen Grundlagen der Laser-Speckle-Photographie (LSP). Als ein Messeinsatzgebiet der LSP werden die beruehrungslose Temperaturmessung in gasfoermigen Fluiden vorgestellt und deren physikalischen Grundgleichungen erlaeutert. In diesem Zusammenhang werden ein Messaufbau zur Temperaturfeldmessung in der Temperaturgrenzschicht einer Luftkonvektionsstroemung um einen beheizten Stab und repraesentative Messerggebnisse gezeigt. Ein weiterer Beitragsteil befasst sich mit der digitalen Laser-Speckle-Photographie (DLSP) und hier insbesondere mit den numerischen Auswertemethoden digitalisierter Specklegramme. Neben der Auto-, Kreuzkorrelation und der Minimum-Quadrat-Differenz-Methode (MQD) wird speziell die numerische Rekonstruktion der Youngschen Streifen mit Hilfe der Fresnel-Transformation beschrieben. Anhand von numerisch rekonstruierten Streifenbildern wird der Einfluss der Rekonstruktionsparameter veranschaulicht. Abschliessend werden die Auswirkungen unterschiedlicher Bildqualitaeten

  18. A mobile communication device adapted to provide a dynamic display arrangement

    2011-01-01

    part comprises means for correcting a skew angle in the multi-coloured image projected onto a surface. Thereby is achieved that the mobile communication device is able to provide RGB full colour dynamic image projection which is preferred over monochromatic laser projection because it is a speckle free......The invention relates to a mobile communication device comprising a light projector adapted to project a multi-coloured image onto a surface; a hinged mirror comprising a first mirror part adapted to be tilted around the hinge into the light path of the light projector; wherein the first mirror...

  19. Quality evaluation of adaptive optical image based on DCT and Rényi entropy

    Xu, Yuannan; Li, Junwei; Wang, Jing; Deng, Rong; Dong, Yanbing

    2015-04-01

    The adaptive optical telescopes play a more and more important role in the detection system on the ground, and the adaptive optical images are so many that we need find a suitable method of quality evaluation to choose good quality images automatically in order to save human power. It is well known that the adaptive optical images are no-reference images. In this paper, a new logarithmic evaluation method based on the use of the discrete cosine transform(DCT) and Rényi entropy for the adaptive optical images is proposed. Through the DCT using one or two dimension window, the statistical property of Rényi entropy for images is studied. The different directional Rényi entropy maps of an input image containing different information content are obtained. The mean values of different directional Rényi entropy maps are calculated. For image quality evaluation, the different directional Rényi entropy and its standard deviation corresponding to region of interest is selected as an indicator for the anisotropy of the images. The standard deviation of different directional Rényi entropy is obtained as the quality evaluation value for adaptive optical image. Experimental results show the proposed method that the sorting quality matches well with the visual inspection.

  20. Despeckling of Medical Ultrasound Images

    Michailovich, Oleg V.; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation ...

  1. ADAPTIVE LIFTING BASED IMAGE COMPRESSION SCHEME WITH PARTICLE SWARM OPTIMIZATION TECHNIQUE

    Nishat kanvel; Dr.S.Letitia,; Dr.Elwin Chandra Monie

    2010-01-01

    This paper presents an adaptive lifting scheme with Particle Swarm Optimization technique for image compression. Particle swarm Optimization technique is used to improve the accuracy of the predictionfunction used in the lifting scheme. This scheme is applied in Image compression and parameters such as PSNR, Compression Ratio and the visual quality of the image is calculated .The proposed scheme iscompared with the existing methods.

  2. Context adaptive coding of bi-level images

    Forchhammer, Søren

    2008-01-01

    .g. in the lossless JBIG bi-level image coding standard, and in the entropy coding of contemporary lossless and lossy image and video coding standards and schemes. The theoretical work and analysis of universal context based coding has addressed sequences of data and finite memory models as Markov chains and sources....... This paper discusses relations between context based coding of images and the context formation in some image models. Image models include Markov random fields (MRF), which hav a non-causal description, and the special case of Pickard random fields, which are causal. These field represent generalizations...... to 2-D of a finite memory source. Further developments of causal image models, e.g. to approximate MRF, lead to considering hidden states in the context formation. These causal image models provides image coding models and they are here related to context based image coding. The entropy of the image...

  3. Diffraction-limited imaging with very large telescopes; Proceedings of the NATO Advanced Study Institute, Cargese, France, Sept. 13-23, 1988

    Alloin, D. M.; Mariotti, J.-M.

    Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.

  4. Altered Visual Adaptation to Body Shape in Eating Disorders: Implications for Body Image Distortion.

    Mohr, Harald M; Rickmeyer, Constanze; Hummel, Dennis; Ernst, Mareike; Grabhorn, Ralph

    2016-07-01

    Previous research has shown that after adapting to a thin body, healthy participants (HP) perceive pictures of their own bodies as being fatter and vice versa. This aftereffect might contribute to the development of perceptual body image disturbances in eating disorders (ED).In the present study, HP and ED completed a behavioral experiment to rate manipulated pictures of their own bodies after adaptation to thin or fat body pictures. After adapting to a thin body, HP judged a thinner than actual body picture to be the most realistic and vice versa, resembling a typical aftereffect. ED only showed such an adaptation effect when they adapted to fat body pictures.The reported results indicate a relationship between body image distortion in ED and visual body image adaptation. It can be suspected that due to a pre-existing, long-lasting adaptation to thin body shapes in ED, an additional visual adaption to thin body shapes cannot be induced. Hence this pre-existing adaptation to thin body shapes could induce perceptual body image distortions in ED. PMID:26921409

  5. Spatially adaptive migration tomography for multistatic GPR imaging

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method. (paper)

  7. Slice image pretreatment for cone-beam computed tomography based on adaptive filter

    According to the noise properties and the serial slice image characteristics in Cone-Beam Computed Tomography (CBCT) system, a slice image pretreatment for CBCT based on adaptive filter was proposed. The judging criterion for the noise is established firstly. All pixels are classified into two classes: adaptive center weighted modified trimmed mean (ACWMTM) filter is used for the pixels corrupted by Gauss noise and adaptive median (AM) filter is used for the pixels corrupted by impulse noise. In ACWMTM filtering algorithm, the estimated Gauss noise standard deviation in the current slice image with offset window is replaced by the estimated standard deviation in the adjacent slice image to the current with the corresponding window, so the filtering accuracy of the serial images is improved. The pretreatment experiment on CBCT slice images of wax model of hollow turbine blade shows that the method makes a good performance both on eliminating noises and on protecting details. (authors)

  8. Cytopathology whole slide images and adaptive tutorials for postgraduate pathology trainees: a randomized crossover trial.

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2015-09-01

    To determine whether cytopathology whole slide images and virtual microscopy adaptive tutorials aid learning by postgraduate trainees, we designed a randomized crossover trial to evaluate the quantitative and qualitative impact of whole slide images and virtual microscopy adaptive tutorials compared with traditional glass slide and textbook methods of learning cytopathology. Forty-three anatomical pathology registrars were recruited from Australia, New Zealand, and Malaysia. Online assessments were used to determine efficacy, whereas user experience and perceptions of efficiency were evaluated using online Likert scales and open-ended questions. Outcomes of online assessments indicated that, with respect to performance, learning with whole slide images and virtual microscopy adaptive tutorials was equivalent to using traditional methods. High-impact learning, efficiency, and equity of learning from virtual microscopy adaptive tutorials were strong themes identified in open-ended responses. Participants raised concern about the lack of z-axis capability in the cytopathology whole slide images, suggesting that delivery of z-stacked whole slide images online may be important for future educational development. In this trial, learning cytopathology with whole slide images and virtual microscopy adaptive tutorials was found to be as effective as and perceived as more efficient than learning from glass slides and textbooks. The use of whole slide images and virtual microscopy adaptive tutorials has the potential to provide equitable access to effective learning from teaching material of consistently high quality. It also has broader implications for continuing professional development and maintenance of competence and quality assurance in specialist practice. PMID:26093936

  9. The adaptive-loop-gain adaptive-scale CLEAN deconvolution of radio interferometric images

    Zhang, L.; Zhang, M.; Liu, X.

    2016-05-01

    CLEAN algorithms are a class of deconvolution solvers which are widely used to remove the effect of the telescope Point Spread Function (PSF). Loop gain is one important parameter in CLEAN algorithms. Currently the parameter is fixed during deconvolution, which restricts the performance of CLEAN algorithms. In this paper, we propose a new deconvolution algorithm with an adaptive loop gain scheme, which is referred to as the adaptive-loop-gain adaptive-scale CLEAN (Algas-Clean) algorithm. The test results show that the new algorithm can give a more accurate model with faster convergence.

  10. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods

    Schmidt, Johannes F. M.; Claudio Santelli; Sebastian Kozerke

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by convention...

  11. Adaptive mesh generation for image registration and segmentation

    Fogtmann, Mads; Larsen, Rasmus

    This paper deals with the problem of generating quality tetrahedral meshes for image registration. From an initial coarse mesh the approach matches the mesh to the image volume by combining red-green subdivision and mesh evolution through mesh-to-image matching regularized with a mesh quality...

  12. An Image Enhancement Method Using the Quantum-Behaved Particle Swarm Optimization with an Adaptive Strategy

    Xiaoping Su

    2013-01-01

    Full Text Available Image enhancement techniques are very important to image processing, which are used to improve image quality or extract the fine details in degraded images. In this paper, two novel objective functions based on the normalized incomplete Beta transform function are proposed to evaluate the effectiveness of grayscale image enhancement and color image enhancement, respectively. Using these objective functions, the parameters of transform functions are estimated by the quantum-behaved particle swarm optimization (QPSO. We also propose an improved QPSO with an adaptive parameter control strategy. The QPSO and the AQPSO algorithms, along with genetic algorithm (GA and particle swarm optimization (PSO, are tested on several benchmark grayscale and color images. The results show that the QPSO and AQPSO perform better than GA and PSO for the enhancement of these images, and the AQPSO has some advantages over QPSO due to its adaptive parameter control strategy.

  13. High contrast imaging of exoplanets on ELTs using a super-Nyquist wavefront control scheme

    Gerard, Benjamin L

    2016-01-01

    One of the key science goals for extremely large telescopes (ELTs) is the detailed characterization of already known directly imaged exoplanets. The typical adaptive optics (AO) Nyquist control region for ELTs is ~0.4 arcseconds, placing many already known directly imaged planets outside the DM control region and not allowing any standard wavefront control scheme to remove speckles that would allow higher SNR images/spectra to be acquired. This can be fixed with super-Nyquist wavefront control (SNWFC), using a sine wave phase plate to allow for wavefront control outside the central DM Nyquist region. We demonstrate that SNWFC is feasible through a simple, deterministic, non-coronagraphic, super-Nyquist speckle nulling technique in the adaptive optics laboratory at the National Research Council of Canada. We also present results in simulation of how SNWFC using the self coherent camera (SCC) can be used for high contrast imaging. This technique could be implemented on future high contrast imaging instruments t...

  14. Speckle correlation method used to detect an object's surface slope

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2006-09-01

    We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval (10°-30°). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.

  15. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  16. Development of Speckle Interferometry Algorithm and System

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.

  17. AVES-IMCO: an adaptive optics visible spectrograph and imager/coronograph for NAOS

    Beuzit, Jean-Luc; Lagrange, A.-M.; Mouillet, D.; Chauvin, G.; Stadler, E.; Charton, J.; Lacombe, F.; AVES-IMCO Team

    2001-05-01

    The NAOS adaptive optics system will very soon provide diffraction-limited images on the VLT, down to the visible wavelengths (0.020 arcseconds at 0.83 micron for instance). At the moment, the only instrument dedicated to NAOS is the CONICA spectro-imager, operating in the near-infrared from 1 to 5 microns. We are now proposing to ESO, in collaboration with an Italian group, the development of a visible spectrograph/imager/coronograph, AVES-IMCO (Adaptive Optics Visual Echelle Spectrograph and IMager/COronograph). We present here the general concept of the new instrument as well as its expected performances in the different modes.

  18. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  19. INTERACTIVE DOMAIN ADAPTION FOR THE CLASSIFICATION OF REMOTE SENSING IMAGES USING ACTIVE LEARNING

    U.Pushpa Lingam

    2015-11-01

    Full Text Available Interactive Domain Adaptation (IDA technique based on active learning for the classification of remote sensing images. Interactive domain adaptation method is used for adapting the supervised classifier trained on a given remote sensing source image to make it suitable for classifying a different but related target image. The two images can be acquired in different locations and at different times. This method iteratively selects the most informative samples of the target image to be labeled and included in the training set and the source image samples are reweighted or removed from the training set on the basis of their disagreement with the target image classification problem. The consistent information available from the source image can be effectively exploited for the classification of the target image and for guiding the selection of new samples to be labeled, whereas the inconsistent information is automatically detected and removed. This approach significantly reduces the number of new labeled samples to be collected from the target image. Experimental results on both a multispectral very high resolution and a hyper spectral data set confirm the effectiveness of the interactive domain adaptation for theclassification of remote sensing using active learning method.

  20. Estimation of the bi-dimensional motion of the arterial wall in ultrasound imaging with a combined approach of segmentation and speckle tracking

    Zahnd, Guillaume

    2012-01-01

    This thesis is focused on the domain of bio-medical image processing. The aim of our study is to assess in vivo the parameters traducing the mechanical properties of the carotid artery in ultrasound imaging, for early detection of cardiovascular diseases. The analysis of the longitudinal motion of the arterial wall tissues, i.e. in the same direction as the blood flow, represents the principal motivation of this work. The three main contributions proposed in this work are i) the development o...

  1. Implementasi dan Perbandingan Metode Alpha-Trimmed Mean Filter dan Adaptive Media Filter untuk Reduksi Noise pada Citra Digital

    Nababan, Sunfirst Lady Jeanfera

    2015-01-01

    Basically, every image acquisition can cause to the presence of noise in the resulting image. Uniform Noise, Salt & Pepper Noise, and Speckle Noise are three of many model noises that are present in the image. Digital image that contained noise can cause problems in the form of an image that cannot be interpreted properly by human, however noise can be reduce through image restoration called filtering. Filter method that can be used to reduce the noises are Alpha-Trimmed Mean Filter and Adapt...

  2. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma

    Aznar, M C; Andersen, Flemming; Berthelsen, A K;

    2011-01-01

    Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... uptake in PET/CT images. These results suggest that advanced therapies (such as SUV-based dose painting) will likely require breathing-adapted PET images and that the relevant SUV thresholds are yet to be investigated....

  3. Spatiotonal adaptivity in super-resolution of under-sampled image sequences

    Pham, T Q

    2006-01-01

    This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimat...

  4. Speckle photography applied to measure deformations of very large structures

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  5. Demonstration Of Synthetic Exo-earth Detection In The Lab With Speckle Subtraction Techniques

    Belikov, Ruslan; Give'on, A.; Savransky, D.; Pueyo, L.; Kern, B.; Kasdin, J.

    2007-12-01

    The problem of detecting and imaging earth-like exoplanets is hampered by the fact that wavefront error in the optics of a space telescope creates a speckle pattern that can swamp the exoplanet. The standard approach for dealing with speckles is to suppress them below the planet level by a deformable mirror using a wavefront control algorithm. However, such wavefront control may take a long time to achieve speckle suppression of 1010, the nominal contrast necessary for exo-earths, especially if the target star is dim. Furthermore, a very precise deformable mirror and electronics are required. In this paper, we present and demonstrate in the lab a method to detect planet light from amidst a brighter speckle pattern (as long as that pattern is stable), thus relaxing the requirement of 1010 speckle suppression. Furthermore, our detection is simultaneous with wavefront control and uses all the images taken in the course of wavefront control, saving valuable mission time. The method consists of (a) using the wavefront control estimate of the coherent speckle field to separate the speckles from the incoherent planet light, and (b) using a matched filter to reduce noise. No motion or rotation of the telescope is required for this method. The experiment was conducted on the High Contrast Imaging Testbed at the Jet Propulsion Lab using the Shaped Pupil coronagraph under 10% optical bandwidth. This work was funded in part by JPL contract 1254357 and the Michelson Science Center, and carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    Johannes F M Schmidt

    Full Text Available An approach to Magnetic Resonance (MR image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.

  7. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675

  8. An improved adaptive wavelet shrinkage for ultrasound despeckling

    P Nirmala Devi; R Asokan

    2014-08-01

    Ultrasound imaging is the most widely used medical diagnostic technique for clinical decision making, due to its ability to make real time imaging for moving structures, low cost and safety. However, its usefulness is degraded by the presence of signal dependent speckle noise. Several wavelet-based denoising schemes have been reported in the literature for the removal of speckle noise. This study proposes a new and improved adaptive wavelet shrinkage in the translational invariant domain. It exploits the knowledge of the correlation of the wavelet coefficients within and across the resolution scales. A preliminary coefficient classification representing useful image information and noise is performed with a novel inter-scale dependency measure. The spatial context adaptation of the wavelet coefficients within a subband is achieved by a local spatial adaptivity indicator, determined by using a truncation threshold. A weighted signal variance is estimated based on this measure and used in the determination of a subband adaptive threshold. The proposed thresholding function aims to reduce the fixed bias of the soft thresholding approach. Experiments conducted with the proposed filter are compared with the existing filtering algorithms in terms of Peak-Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Structural Similarity IndexMeasure (SSIM), Equivalent Number of Looks (ENL) and Edge Preservation Index (EPI). A comparison of the results shows that the proposed filter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images.

  9. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation.

    Fadaee, Shannon B; Migliaccio, Americo A

    2016-04-01

    The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1% increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2%). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1-2 retinal image position error signals every 100 ms (i.e. target position update rate 15-20 Hz) are sufficient to drive VOR adaptation. PMID:26715411

  10. Digital speckle photography and speckle tomography in heat transfer studies

    Asseban, A.; Lallemand, M.; Saulnier, J.-B. [ENSMA, Futurascope (France). Laboratoire d' Etudes Thermique; Fomin, N.; Lavinskaja, E. [Heat and Mass Transfer Institute, Minsk (Belarus); Merzkirch, W.; Vitkin, D. [Universitaet GH Essen (Germany). Lerstuhl fuer Stroemungslehre

    2000-11-01

    The line-of-sight speckle photography of transparent media is used for quantitative measurements of the instantaneous temperature fields in 3D unsteady flows. Both electronic and photographic methods are employed for specklegram recording. The subsequent specklegram treatment uses the Young's fringes method as well as cross-correlation analysis of small interrogation areas of the recordings. Experimental data for three different heat transfer configurations are obtained and discussed. The first one is natural convection over extended vertical heated plates with forward facing steps, the second is unsteady 3D convective flow around a suddenly heated vertical thin wire, and the third one is a convective plume above a multi-jet flame. Both local and global Nusselt numbers are determined via measuring local surface temperature gradients for these convective flows. The results are compared with Ostrach's theory for a single vertical plate and with the data obtained by Mach-Zehnder interferometry. The 3D temperature fields are reconstructed for axisymmetric convective flows around a suddenly heated vertical wire using quasi-double projection measurement and the Radon inversion. 3D temperature distributions above the combustion zone are reconstructed using multi-projection speckle photography measurements and computerised tomography. (author)

  11. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  12. ADAPTATIVE IMAGE WATERMARKING SCHEME BASED ON NEURAL NETWORK

    BASSEL SOLAIMANE; ADNENE CHERIF; SAMEH OUESLATI,

    2011-01-01

    Digital image watermarking has been proposed as a method to enhance medical data security, confidentiality and integrity. Medical image watermarking requires extreme care when embedding additional data, given their importance to clinical diagnosis, treatment, and research. In this paper, a novel image watermarking approach based on the human visual system (HVS) model and neural network technique is proposed. The watermark was inserted into the middle frequency coefficients of the cover image’...

  13. On the Adaptability of Neural Network Image Super-Resolution

    Chua, Kah Keong; Tay, Yong Haur

    2012-01-01

    In this paper, we described and developed a framework for Multilayer Perceptron (MLP) to work on low level image processing, where MLP will be used to perform image super-resolution. Meanwhile, MLP are trained with different types of images from various categories, hence analyse the behaviour and performance of the neural network. The tests are carried out using qualitative test, in which Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The r...

  14. Adaptive region-based multimodal image fusion using ICA bases

    Cvejic, N; Canagarajah, CN; Bull, DR

    2006-01-01

    In this paper, we present a novel multimodal image fusion algorithm in ICA domain. It uses segmentation to determine the most important regions in the input images and consequently fuses the ICA coefficients from given regions using the Piella fusion metric to maximise the quality of the fused image. The proposed method exhibits significantly higher performance than the basic ICA algorithm and improvement over other state-of-the-art algorithms In this paper, we present a novel multimodal i...

  15. Adaptive GIS Image Compression and Restoration Using Neural Networks

    Al-Bastaki, Yousif

    2003-01-01

    This study aims to describe research into the field of GIS image compression, decompression and restoration. Geographical Information System (GIS) data comprises huge size into memory. For this purpose, it needs compression, which has high compression rate. But high compression rate cause of some distortion and losses. Restoration is a process by which an image suffering some form of distortion or degradation can be recovered to its original form. The proposed windows-based image compression ...

  16. A View on Despeckling in Ultrasound Imaging

    S.Kalaivani Narayanan; R.S.D.Wahidabanu

    2009-01-01

    Ultrasound imaging is a widely used and safe medical diagnostic technique, due to its noninvasive nature, low cost and capability of forming real time imaging. However the usefulness of ultrasound imaging is degraded by the presence of signal dependant noise knownas speckle. The speckle pattern depends on the structure of the image tissue and various imaging parameters. There are two main purposes for speckle reduction in medical ultrasound imaging (1) to improve the human interpretation of u...

  17. Evaluation of myocardial function in patients with coronary heart disease by speckle tracking imaging%二维斑点追踪技术评价冠心病患者心肌功能的研究

    张丽华; 谷智明; 封淑文; 王岩

    2015-01-01

    Objective To investigate the clinical value of speckle tracking imaging ( STI ) in the diagnosis of coronary heart disease ( CHD ) with normal ventricular wall motion� Methods According to the results of coronary angiography, 50 patients with CHD and 40 age⁃matched subjects were enrolled� The two⁃dimensional loop⁃cines were obtained in apical 4-chamber view, apical 2-chamber view and long axis view of left ventricle� Globe longitudinal systolic peak strain ( GLPS ) and average globe longitudinal systolic peak strain ( GLPS⁃Avg) were measured and calculated� GLPS⁃Avg were applied to evaluate the diagnostic efficiency for CHD by receiver operating characteristic curve� Results The absolute value of GLPS_Avg in CHD group (-15�79%± 3�35%) was significantly decreased compared with that of the normal group (-19�02%± 2�78%)�The cutoff value of GLPS⁃Avg to diagnose CHD was-17�7%, with the sensitivity 77�5% and specificity 60�0%.Conclusions GLPS⁃Avg with STI technique was helpful to diagnose CHD.%目的:应用二维斑点追踪成像( speckle tracking imaging, STI)技术对常规方法显示室壁运动正常的冠心病患者进行定量分析,探讨STI技术用于诊断冠心病的临床应用价值。方法采集经冠状动脉造影证实的50例冠心病和40例对照组患者的心尖长轴、四腔和两腔观的二维灰阶动态图像,测量比较两组各节段纵向收缩期峰值应变( global longitudinal systolic peak strain, GLPS)及整体纵向平均应变( GLPS⁃Avg),应用受试者工作特征曲线( receiver operating characteristic curve, ROC曲线)评价GLPS⁃Avg对筛选冠心病的敏感性和特异性。结果冠心病组各节段心肌的GLPS均明显低于对照组,差异性具统计学意义(P<0�05)。 GLPS⁃Avg 冠心病组(-15�79%±3�35%)绝对值低于正常组(-19�02%±2�78%)的绝对值,有统计学差异(P<0�05)。 ROC

  18. Depths-encoded angular compounding for speckle reduction in optical coherence tomography

    Cao, Zhaoyuan; Qian, Jie; Chen, Xinjian; Mo, Jianhua

    2016-03-01

    Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.

  19. The adaptive-loop-gain adaptive-scale CLEAN deconvolution of radio interferometric images

    Zhang, L; Liu, X

    2016-01-01

    CLEAN algorithms are a class of deconvolution solvers which are widely used to remove the effect of the telescope Point Spread Function (PSF). Loop gain is one important parameter in CLEAN algorithms. Currently the parameter is fixed during deconvolution, which restricts the performance of CLEAN algorithms. In this paper, we propose a new deconvolution algorithm with an adaptive loop gain scheme, which is referred to as the adaptive-loop-gain adaptivescale CLEAN (Algas-Clean) algorithm. The test results show that the new algorithm can give a more accurate model with faster convergence.

  20. Adaptive beaming and imaging in the turbulent atmosphere

    Lukin, Vladimir P

    2002-01-01

    Due to the wide application of adaptive optical systems, an understanding of optical wave propagation in randomly inhomogeneous media has become essential, and several numerical models of individual AOS components and of efficient correction algorithms have been developed. This monograph contains detailed descriptions of the mathematical experiments that were designed and carried out during more than a decade's worth of research.

  1. Classification in Medical Image Analysis Using Adaptive Metric KNN

    Chen, Chen; Chernoff, Konstantin; Karemore, Gopal Raghunath; Lo, Pechin Chien Pau; Nielsen, Mads; Lauze, Francois Bernard

    2010-01-01

    the assumption that images are drawn from Brownian Image Model (BIM), the normalized metric based on variance of the data, the empirical metric is based on the empirical covariance matrix of the unlabeled data, and an optimized metric obtained by minimizing the classification error. The spectral...

  2. Darkfield adapter for whole slide imaging: adapting a darkfield internal reflection illumination system to extend WSI applications.

    Kawano, Yoshihiro; Higgins, Christopher; Yamamoto, Yasuhito; Nyhus, Julie; Bernard, Amy; Dong, Hong-Wei; Karten, Harvey J; Schilling, Tobias

    2013-01-01

    We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of

  3. Darkfield adapter for whole slide imaging: adapting a darkfield internal reflection illumination system to extend WSI applications.

    Yoshihiro Kawano

    Full Text Available We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI, also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI. Our darkfield system uses an ultra-thin light-emitting diode (LED light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1 no oil condenser is required for high resolution imaging (2 there is less scatter from dust and dirt on the slide specimen (3 there is less halo, providing a more natural darkfield contrast image, and (4 the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the

  4. Simultaneous measurement of translation and tilt using digital speckle photography

    Bhaduri, Basanta; Quan, Chenggen; Tay, Cho Jui; Sjoedahl, Mikael

    2010-06-20

    A Michelson-type digital speckle photographic system has been proposed in which one light beam produces a Fourier transform and another beam produces an image at a recording plane, without interfering between themselves. Because the optical Fourier transform is insensitive to translation and the imaging technique is insensitive to tilt, the proposed system is able to simultaneously and independently determine both surface tilt and translation by two separate recordings, one before and another after the surface motion, without the need to obtain solutions for simultaneous equations. Experimental results are presented to verify the theoretical analysis.

  5. Simultaneous measurement of translation and tilt using digital speckle photography

    A Michelson-type digital speckle photographic system has been proposed in which one light beam produces a Fourier transform and another beam produces an image at a recording plane, without interfering between themselves. Because the optical Fourier transform is insensitive to translation and the imaging technique is insensitive to tilt, the proposed system is able to simultaneously and independently determine both surface tilt and translation by two separate recordings, one before and another after the surface motion, without the need to obtain solutions for simultaneous equations. Experimental results are presented to verify the theoretical analysis.

  6. Adaptive radiotherapy for bladder cancer reduces integral dose despite daily volumetric imaging

    We studied the integral radiation dose in 27 patients who had adaptive radiotherapy for bladder cancer using kilo voltage cone beam CT imaging. Compared to conventional radiotherapy the reduction in margin and choice of best plan of three for the day resulted in a lower total dose in most patients despite daily volumetric imaging.

  7. From amorphous speckle pattern to reconfigurable Bessel beam via wavefront shaping

    Di Battista, Diego; Leonetti, Marco; Zacharakis, Giannis

    2015-01-01

    Bessel beams are non-diffracting light structures, which can be produced with simple tabletop optical elements such as axicon lenses or ring spatial filters and coherent laser beams. One of their main characteristic is that Bessel beams maintain their spatial characteristics after meters of propagation. In this paper we demonstrate a system and method for generating Bessel beams from amorphous speckle patterns, exploiting adaptive optimization by a spatial light modulator. These speckles are generated by light modes transmitted through a scattering curtain and selected by a ring shaped filter. With the proposed strategy it is possible to produce at user defined positions, reconfigurable, non-diffracting Bessel beams through a disordered medium.

  8. Influence of ultrasound speckle tracking strategies for motion and strain estimation.

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago

    2016-08-01

    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. PMID:27132112

  9. Adaptive Feature Selection and Extraction Approaches for Image Retrieval based on Region

    Haiyu Song

    2010-02-01

    Full Text Available Image retrieval based on region is one of the most promising and active research directions in recent year's CBIR, while region segmentation, feature selection and feature extraction of region are key issues. However, the existing approaches always adopt a uniform approach of segmentation and feature extraction for all images in the same system. In this paper, we propose adaptive image segmentation and feature extraction approach according to different category image for image retrieval system. To improve performance, we propose adaptive segmentation approach according to different category image. Textured image is segmented by Gaussian Mixture Models (GMM, while non-textured image is segmented by our proposed block-based normalized cut. To accurately describe feature of region, we propose weight assignment method for centroid pixel and its neighbor by convolution with normal distribution when image segmentation by GMM. To improve generalization, we propose adaptive number of Fourier descriptors of shape signature which depends on the energy distribution of Fourier descriptors, instead of fixed number by experience. To simply and efficiently describe the spatial relationships of multi-object or multi-region in same image, we apply simplified topological relationships. The experiments demonstrate that proposed approaches are superior to the traditional approaches.

  10. S4: A spatial-spectral model for speckle suppression

    Fergus, Rob [Department of Computer Science, New York University, New York, NY 10003 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States); Oppenheimer, Rebecca; Brenner, Douglas [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Pueyo, Laurent, E-mail: fergus@cs.nyu.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2014-10-20

    High dynamic range imagers aim to block or eliminate light from a very bright primary star in order to make it possible to detect and measure far fainter companions; in real systems, a small fraction of the primary light is scattered, diffracted, and unocculted. We introduce S4, a flexible data-driven model for the unocculted (and highly speckled) light in the P1640 spectroscopic coronagraph. The model uses principal components analysis (PCA) to capture the spatial structure and wavelength dependence of the speckles, but not the signal produced by any companion. Consequently, the residual typically includes the companion signal. The companion can thus be found by filtering this error signal with a fixed companion model. The approach is sensitive to companions that are of the order of a percent of the brightness of the speckles, or up to 10{sup –7} times the brightness of the primary star. This outperforms existing methods by a factor of two to three and is close to the shot-noise physical limit.

  11. Adaptive monogenic filtering and normalization of ESPI fringe patterns

    Guerrero, J. A.; Marroquin, J. L.; Rivera, M.; Quiroga, J. A.

    2005-11-01

    A technique is presented for filtering and normalizing noisy fringe patterns, which may include closed fringes, so that single-frame demodulation schemes may be successfully applied. It is based on the construction of an adaptive filter as a linear combination of the responses of a set of isotropic bandpass filters. The space-varying coefficients are proportional to the envelope of the response of each filter, which in turn is computed by using the corresponding monogenic image [Felsberg and Sommer, IEEE Trans. Signal Process.49, 3136 (2001)]. Some examples of demodulation of real Electronic Speckle Pattern Interferometry (ESPI) images patterns are presented.

  12. Improved SMB speckle filtering of polarimetric SAR data with synergistic use of orientation angle compensation and spatial majority rule

    柳林; 江利明; 李洪忠

    2016-01-01

    The scattering-model-based (SMB) speckle filtering for polarimetric SAR (PolSAR) data is reasonably effective in preserving dominant scattering mechanisms. However, the efficiency strongly depends on the accuracies of both the decomposition and classification of the scattering properties. In addition, a relatively weak speckle reduction particularly in distributed media was reported in the related literatures. In this work, an improved SMB filtering strategy is proposed considering the aforementioned deficiencies. First, the orientation angle compensation is incorporated into the SMB filtering process to remedy the overestimation of the volume scattering contribution in the Freeman-Durden decomposition. In addition, an algorithm to select the homogenous pixels is developed based on the spatial majority rule for adaptive speckle reduction. We demonstrate the superiority of the proposed methods in terms of scattering property preservation and speckle noise reduction using L-band PolSAR data sets of San Francisco that were acquired by the NASA/JPL airborne SAR (AIRSAR) system.

  13. An Edge-Preserved Image Denoising Algorithm Based on Local Adaptive Regularization

    Li Guo

    2016-01-01

    Full Text Available Image denoising methods are often based on the minimization of an appropriately defined energy function. Many gradient dependent energy functions, such as Potts model and total variation denoising, regard image as piecewise constant function. In these methods, some important information such as edge sharpness and location is well preserved, but some detailed image feature like texture is often compromised in the process of denoising. For this reason, an image denoising method based on local adaptive regularization is proposed in this paper, which can adaptively adjust denoising degree of noisy image by adding spatial variable fidelity term, so as to better preserve fine scale features of image. Experimental results show that the proposed denoising method can achieve state-of-the-art subjective visual effect, and the signal-noise-ratio (SNR is also objectively improved by 0.3–0.6 dB.

  14. Adaptive optics for deeper imaging of biological samples.

    Girkin, John M; Poland, Simon; Wright, Amanda J

    2009-02-01

    Optical microscopy has been a cornerstone of life science investigations since its first practical application around 400 years ago with the goal being subcellular resolution, three-dimensional images, at depth, in living samples. Nonlinear microscopy brought this dream a step closer, but as one images more deeply the material through which you image can greatly distort the view. By using optical devices, originally developed for astronomy, whose optical properties can be changed in real time, active compensation for sample-induced aberrations is possible. Submicron resolution images are now routinely recorded from depths over 1mm into tissue. Such active optical elements can also be used to keep conventional microscopes, both confocal and widefield, in optimal alignment. PMID:19272766

  15. Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy

    The incorporation of daily images into the radiotherapy process leads to adaptive radiation therapy (ART), in which the treatment is evaluated periodically and the plan is adaptively modified for the remaining course of radiotherapy. Deformable registration between the planning image and the daily images is a key component of ART. In this paper, we report our researches on deformable registration between the planning kVCT and the daily MVCT image sets. The method is based on a fast intensity-based free-form deformable registration technique. Considering the noise and contrast resolution differences between the kVCT and the MVCT, an 'edge-preserving smoothing' is applied to the MVCT image prior to the deformable registration process. We retrospectively studied daily MVCT images from commercial TomoTherapy machines from different clinical centers. The data set includes five head-neck cases, one pelvis case, two lung cases and one prostate case. Each case has one kVCT image and 20-40 MVCT images. We registered the MVCT images with their corresponding kVCT image. The similarity measures and visual inspections of contour matches by physicians validated this technique. The applications of deformable registration in ART, including 'deformable dose accumulation', 'automatic re-contouring' and 'tumour growth/regression evaluation' throughout the course of radiotherapy are also studied

  16. Adaptive tracking of maneuvering targets based on IR image data

    Maybeck, Peter S.

    1989-06-01

    The capability of tracking dynamic targets from forward looking infrared (FLIR) measurements was improved substantially by replacing standard correlation trackers with adaptive extended Kalman filters or enhanced correlator/Kalman filter combinations. A tracker able to handle multiple hot-spot targets, in which digital and/or optical signal processing is employed on the FLIR data to identify the underlying target shape is investigated. Furthermore, multiple model adaptive filtering is investigated as a means of changing the field-of-view as well as the tracker bandwidth when target acceleration can vary over a wide range. Enhancements are developed and analyzed: (1) allowing some of the elemental filters within the adaptive algorithm to have rectangular fields-of-view and to be tuned for target dynamics that are harsher in one direction than others; (2) considering both Gauss-Markov acceleration models and constant turn-rate models for target dynamics; and (3) devising an initial target acquisition algorithm to remove important biases in the estimated target template to be used within the tracker. The performance potential of such a tracking algorithm is shown to be substantial.

  17. Adaptation of the MARACAS algorithm for carotid artery segmentation and stenosis quantification on CT images

    Zuluaga, M. A.; Orkisz, M.; Delgado, E. J. F.; Doré, V.; Pinzón, A. M.; Hoyos, M. H.

    2010-01-01

    This paper describes the adaptations of MARACAS algorithm to the segmentation and quantification of vascular structures in CTA images of the carotid artery. The MARACAS algorithm, which is based on an elastic model and on a multi-scale eigen-analysis of the inertia matrix, was originally designed to segment a single artery in MRA images. The modifications are primarily aimed at addressing the specificities of CT images and the bifurcations. The algorithms implemented in this new version are c...

  18. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrins...

  19. Analyzing image-text relations for semantic media adaptation and personalization

    Hughes, Mark; Salway, Andrew; Jones, Gareth J.F.; O''Connor, Noel E.

    2007-01-01

    Progress in semantic media adaptation and personalisation requires that we know more about how different media types, such as texts and images, work together in multimedia communication. To this end, we present our ongoing investigation into image-text relations. Our idea is that the ways in which the meanings of images and texts relate in multimodal documents, such as web pages, can be classified on the basis of low-level media features and that this classification should be an early process...

  20. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimi...