WorldWideScience

Sample records for adaptive remote-sensing techniques

  1. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our

  2. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  3. Noninvasive Remote Sensing Techniques for Infrastructures Diagnostics

    Angelo Palombo; Stefano Pignatti; Angela Perrone; Francesco Soldovieri; Tony Alfredo Stabile; Simone Pascucci

    2011-01-01

    The present paper aims at analyzing the potentialities of noninvasive remote sensing techniques used for detecting the conservation status of infrastructures. The applied remote sensing techniques are ground-based microwave radar interferometer and InfraRed Thermography (IRT) to study a particular structure planned and made in the framework of the ISTIMES project (funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme). To exploit ...

  4. Laser Remote Sensing: Velocimetry Based Techniques

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  5. Automatic Image Registration Technique of Remote Sensing Images

    M. Wahed; Gh.S.El-tawel; A.Gad El-karim

    2013-01-01

    Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by apply...

  6. Evaluation of reforestation using remote sensing techniques

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  7. Monitoring asphalt pavement damages using remote sensing techniques

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  8. Target Detection: Remote Sensing Techniques for Defence Applications

    B. B. Chaudhuri

    1995-10-01

    Full Text Available The tremendous development in remote sensing technology in the recent past has opened up new challenges in defence applications. On important area of such applications is in target detection. This paper describes both classical and newly developed approaches to detect the targets by using remotely-sensed digital images. The classical approach includes statistical classification methods and image processing techniques. The new approach deals with a relatively new sensor technology, namely, synthetic aperture radar (SAR systems and fast developing tools, like neural networks and multisource data integration for analysis and interpretation. With SAR images, it is possible to detect targets or features of a target that is otherwise not possible. Neural networks and multisource data integration tools also have a great potential in analysing and interpreting remote sensing data for target detection.

  9. Digital Beamforming Techniques for Spaceborne Radar Remote Sensing

    Krieger, Gerhard; Gebert, Nicolas; Moreira, Alberto

    2006-01-01

    This paper introduces the innovative concept of multidimensional waveform encoding for spaceborne synthetic aperture radar. The combination of this technique with digital beamforming on receive enables a new generation of SAR systems with improved performance and flexible imaging capabilities. Implementation specific issues will be discussed and performance examples demonstrate the potential for different remote sensing applications.

  10. INVESTIGATION OF REMOTE SENSING TECHNIQUES FOR AGRICULTURAL FEEDLOT POLLUTION DETECTION

    This research effort was directed toward the application of remote sensing techniques to the detection and monitoring of pollution from cattle feeding operations. Five livestock feeding operations were selected for the study along the James River from Huron to Redfield, South Dak...

  11. Remote Sensing

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  12. Image processing techniques for remote sensing data

    RameshKumar, M.R.

    -Type text/plain; charset=UTF-8 4. IMAGE PROCE:>SINGTOO~IQUE3FOR RmOTE SmSING DATA M. R. RAIirnH KUMAR National Institute of Oceanography, Dona PaUla, Goa-403004. Digital image processing is used for improvement of pictorial information for human... interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance...

  13. Remote sensing techniques for support of coastal zone resource management.

    Piland, R. O.

    1973-01-01

    Description of remote sensing studies carried out for the purpose of developing and/or demonstrating techniques which can be employed for land use inventory, marsh vegetation classification, and water characteristics surveys. Attention is given to results obtained with (1) photo interpretation techniques and procedures for the development of land use information from high-altitude aircraft and satellite imagery, (2) computer based pattern recognition techniques utilizing multispectral scanner data for marsh vegetation classification, and (3) infrared and microwave techniques for the monitoring and surveying of coastal water temperature and salinity characteristics.

  14. Automatic Image Registration Technique of Remote Sensing Images

    M. Wahed

    2013-03-01

    Full Text Available Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by applying median filtering to enhance the images. Secondly, the Steerable Pyramid Transform is adopted to produce multi-resolution levels of reference and sensed images; then, the Scale Invariant Feature Transform (SIFT is utilized for extracting feature points that can deal with the large variations of scale, rotation and illumination between images .Thirdly, matching the features points by using the Euclidian distance ratio; then removing the false matching pairs using the RANdom SAmple Consensus (RANSAC algorithm. Finally, the mapping function is obtained by the affine transformation. Quantitative comparisons of our technique with the related techniques show a significant improvement in the presence of large scale, rotation changes, and the intensity changes. The effectiveness of the proposed technique is demonstrated by the experimental results.

  15. INTERACTIVE DOMAIN ADAPTION FOR THE CLASSIFICATION OF REMOTE SENSING IMAGES USING ACTIVE LEARNING

    U.Pushpa Lingam

    2015-11-01

    Full Text Available Interactive Domain Adaptation (IDA technique based on active learning for the classification of remote sensing images. Interactive domain adaptation method is used for adapting the supervised classifier trained on a given remote sensing source image to make it suitable for classifying a different but related target image. The two images can be acquired in different locations and at different times. This method iteratively selects the most informative samples of the target image to be labeled and included in the training set and the source image samples are reweighted or removed from the training set on the basis of their disagreement with the target image classification problem. The consistent information available from the source image can be effectively exploited for the classification of the target image and for guiding the selection of new samples to be labeled, whereas the inconsistent information is automatically detected and removed. This approach significantly reduces the number of new labeled samples to be collected from the target image. Experimental results on both a multispectral very high resolution and a hyper spectral data set confirm the effectiveness of the interactive domain adaptation for theclassification of remote sensing using active learning method.

  16. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  17. Remote sensing techniques applied to seismic vulnerability assessment

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  18. Hyperspectral remote sensing techniques for early detection of plant diseases

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  19. Basalt nuclear-waste repository remote sensing using electromagnetic techniques

    The electromagnetic permittivity and attenuation rate of basalt, from the Near Surface Test Facility of the Basalt Waste Isolation Project at Hanford, Washington, have been measured in the laboratory as a function of water content at frequencies from 25 MHz to 1000 MHz. Both the permittivity and the attenuation rate are strongly related to water content of basalt in this frequency range. Completely dehydrated, the rock has a frequency-independent relative permittivity of about 8 and attenuation rates (inverse skin depths) of 0.04 m-1 and 3.2 m-1 at 25 MHz and 1000 MHz, respectively. When completely saturated by tap water to 6% by volume, the relative permittivity ranges from 16.5 to 10.0 and the attenuation ranges from 0.3 m-1 to 5.5 m-1 between 25 MHz and 1000 MHz. The data indicate that high-frequency electromagnetic remote sensing techniques, such as those used in radar, cross-borehole tomography, and borehole logging, may be useful in characterizing proposed basalt repositories and monitoring established waste repositories. Electromagnetic methods are particularly suited to delineating water content of the rock and, when completely saturated, crack and pore porosity of the rock mass within a repository. 7 references, 3 figures

  20. Integration of remote sensing and geophysical techniques for coastal monitoring

    Simoniello, T.; Carone, M. T.; Loperte, A.; Satriani, A.; Imbrenda, V.; D'Emilio, M.; Guariglia, A.

    2009-04-01

    Coastal areas are of great environmental, economic, social, cultural and recreational relevance; therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both the marine and terrestrial components (ICZM-EU initiative). We implemented an integrated study based on remote sensing and geophysical techniques for monitoring a coastal area located along the Ionian side of Basilicata region (Southern Italy). This area, between the Bradano and Basento river mouths, is mainly characterized by a narrow shore (10-30 m) of fine sandy formations and by a pine forest planted in the first decade of 50's in order to preserve the coast and the inland cultivated areas. Due to drought and fire events and saltwater intrusion phenomena, such a forest is affected by a strong decline with consequent environmental problems. Multispectral satellite data were adopted for evaluating the spatio-temporal features of coastal vegetation and the structure of forested patterns. The increase or decrease in vegetation activity was analyzed from trends estimated on a time series of NDVI (Normalized Difference Vegetation Index) maps. The fragmentation/connection levels of vegetated patterns was assessed form a set of landscape ecology metrics elaborated at different structure scales (patch, class and landscape) on satellite cover classifications. Information on shoreline changes were derived form a multi-source data set (satellite data, field-GPS surveys and Aerial Laser Scanner acquisitions) by taking also into account tidal effects. Geophysical campaigns were performed for characterizing soil features and limits of salty water infiltrations. Form vertical resistivity soundings (VES), soil resistivity maps at different a deeps (0

  1. Remote Sensing of Sea State by the Brewsters Angle Technique

    P.V. Sathe

    1990-04-01

    Full Text Available The extent of plane polarised light resulting from Brewsters reflection from the wide-roughened sea surface is studied for various sea states on the assumption that the incident light on the air-sea interface is unpolarised. The sea states associated with different wind speeds are simulated using the Cox and Munk 'wind speed-wave slope' law and the Gaussian distribution of wave-slopes. The spatial distribution of plane polarised component of diffuse reflected light is also studied with a view to exploring possibilities of using this parameter for remote sensing of sea state from a sensor viewing the sea surface through an appropriate polaroid. The results show that the plane polarised fraction of reflected light as received in a given look angle can be directly related to the prevailing sea state and can be used as a convenient parameter for remote sensing of sea state. The scope and limitations of the method proposed are discussed.

  2. Noise Estimation from Remote Sensing Images by Fractal Theory and Adaptive Image Block Division

    FU Peng

    2015-11-01

    Full Text Available A novel approach for additive noise estimation from highly textured optical remote sensing images has been proposed, which is based on fractal theory and adaptive image block division. Different from the conventional regular block division based noise estimation methods, the divided adaptive image blocks with the proposed method are adhering to the local image information, which are most likely to be homogeneous blocks. Combining with the week textured image region detection using fractal theory and noise standard deviation calculation using statistical analysis, the proposed method can automatically estimate additive noise intensity from optical remote sensing images. Quantified analysis of experiments with ZY-3 satellite images demonstrates that the proposed method is applicable to optical remote sensing images with various complexities and different noise levels. Meanwhile, the notion of week textured image region detection and adaptive image block division can also be applied to multiplicative noise estimation from radar images after modification.

  3. Efficient visualization techniques for high resolution remotely sensed data in a network environment

    2008-01-01

    There are three major research hotspots in efficient visualization techniques of high resolution remotely sensed data in network environment: the data organiza-tion and access in disk storage,the image data stitching and fitting methods,and the network transfers and access. In this paper a new method of "Big File" organi-zation for improving the storage access efficiency of high resolution remote data is presented; a "virtual data source" concept is introduced to solve the stitching problem of remotely sensed data from different sources with different resolutions; a remotely sensed data access engine design based on ATL technique is discussed to process the network transfers and access of remotely sensed data. All these techniques have been adopted in a prototype of digital China named "ChinaStar".

  4. DEVELOPMENT AND EXPERIMENTAL VERIFICATION OF KEY TECHNIQUES TO VALIDATE REMOTE SENSING PRODUCTS

    Li, X; Wang, S. G.; Ge, Y.; Jin, R; S. M. Liu; M. G. Ma; W. Z. Shi; Li, R. X.; Liu, Q. H.

    2013-01-01

    Validation of remote sensing land products is a fundamental issue for Earth observation. Ministry of Science and Technology of the People’s Republic of China (MOST) has launched a high-tech R&D Program named ‘Development and experimental verification of key techniques to validate remote sensing products’ in 2011. This paper introduces the background, scientific objectives, research contents of this project and research result already achieved. The objectives of this project include (...

  5. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Satya Kalluri; Peter Gilruth; David Rogers; Martha Szczur

    2007-01-01

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availabi...

  6. A Novel Graph Based Fuzzy Clustering Technique For Unsupervised Classification Of Remote Sensing Images

    Banerjee, B.; Krishna Moohan, B.

    2014-01-01

    This paper addresses the problem of unsupervised land-cover classification of multi-spectral remotely sensed images in the context of self-learning by exploring different graph based clustering techniques hierarchically. The only assumption used here is that the number of land-cover classes is known a priori. Object based image analysis paradigm which processes a given image at different levels, has emerged as a popular alternative to the pixel based approaches for remote sensing ima...

  7. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  8. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Satya Kalluri

    2007-10-01

    Full Text Available Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  9. Applications of remote sensing techniques to the assessment of dam safety: A progress report

    Remote sensing detection and data collection techniques, combined with data from image analyses, have become effective tools that can be used for rapid identification, interpretation and evaluation of the geological and environmental information required in some areas of performance analysis of hydraulic dams. Potential geological hazards to dams such as faults, landslides and liquefaction, regional crustal warping or tilting, stability of foundation materials, flooding and volcanic hazards are applications in which remote sensing may aid analysis. Details are presented of remote sensing techiques, optimal time of data acquisition, interpreting techniques, and application. Techniques include LANDSAT thematic mapper (TM), SPOT images, thermal infrared scanning, colour infrared photography, normal colour photography, panchromatic black and white, normal colour video, infrared video, airborne multi-spectral electronic imagery, airborne synthetic aperture radar, side scan sonar, and LIDAR (optical radar). 3 tabs

  10. Towards automated statewide land cover mapping in Wisconsin using satellite remote sensing and GIS techniques

    Attention is given to an initial research project being performed by the University of Wisconsin-Madison, Environmental Remote Sensing Center in conjunction with seven local, state, and federal agencies to implement automated statewide land cover mapping using satellite remote sensing and geographical information system (GIS) techniques. The basis, progress, and future research needs for this mapping program are presented. The research efforts are directed toward strategies that integrate satellite remote sensing and GIS techniques in the generation of land cover data for multiple users of land cover information. The project objectives are to investigate methodologies that integrate satellite data with other imagery and spatial data resident in emerging GISs in the state for particular program needs, and to develop techniques that can improve automated land cover mapping efficiency and accuracy. 10 refs

  11. Geographic information systems and remote sensing techniques in environmental assessment

    Digital map products and spatial inventories are becoming increasingly available from geological surveys, agricultural, natural resource, environmental, energy, transportation and forestry departments. As well there are now multitudes of specialized digital airborne and satellite image products available. This wide availability of geographically referenced data and the advances in spatial data analysis software are providing geoscientists with new tools and new ways of viewing traditionally used data. Through several examples, this paper will demonstrate how remote sensing and GIS technologies can contribute to environmental assessment of an urban fringe area. Nowhere is the need for spatial inventories and mapping greater than in such areas, where pre-existing information becomes rapidly outdated. A 260-km2 site, north of Metropolitan Toronto was chosen as a study area. A spatial data base was constructed which included imagery from three different satellite sensors, a Digital Terrain Model (DTM), and digital drainage network, and a digital copy of the Ontario Geological Survey's Quaternary geological map. (author). 15 refs., 1 tab., 17 figs

  12. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  13. Remote sensing of chlorophyll a fluorescence of vegetation canopies. 1. Near and far field measurement techniques

    This article presents instruments and techniques, used in several vegetation monitoring experiments. Simultaneous monitoring was performed with different approaches, including fluorescence lidar and passive remote sensing, leaf level reflectance, and laser fluorimetry, and compared with physiological measurements. Most of the instrumentation described was designed and built for this application. Experiments were carried out in the laboratory and in the field, to investigate the relationship between chlorophyll fluorescence spectra and plant ecophysiology. Remote sensing, spectroscopy, and ecophysiology data were then collected by an intensive research team, joining different experiences and working in national and international projects

  14. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  15. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  16. A selected bibliography: Remote sensing techniques for evaluating the effects of surface mining

    Carneggie, David M.; Ohlen, Donald O.

    1979-01-01

    This bibliography contains 39 citations of technical papers and other publications dealing with the applications of remote sensing techniques for analyzing and monitoring surface mining. These references summarize recent developments in methods used to identify, map, analyze, and monitor surface mining, particularly coal surface mining.

  17. Status and prospect of hyperspectral remote sensing technique in rock and mineral identification

    Hyperspectral remote sensing technology (including physical principle of rock and mineral identification, abstracted spectral parameters, hyperspectral data processing and analysis technology) is first introduced and then measuring apparatus is also briefly introduced in the paper. At last, the present status and prospect of hyperspectral technique in the application of resources exploration is discussed. (authors)

  18. Lithology intelligent identification using support vector machine and adaptive cellular automata in multispectral remote sensing image

    Wang, Xianmin; Niu, Ruiqing; Wu, Ke

    2011-07-01

    Remote sensing provides a new idea and an advanced method for lithology identification, but lithology identification by remote sensing is quite difficult because 1. the disciplines of lithology identification in a concrete region are often quite different from the experts' experience; 2. in the regions with flourishing vegetation, lithology information is poor, so it is very difficult to identify the lithologies by remote sensing images. At present, the studies on lithology identification by remote sensing are primarily conducted on the regions with low vegetation coverage and high rock bareness. And there is no mature method of lithology identification in the regions with flourishing vegetation. Traditional methods lacking in the mining and extraction of the various complicated lithology information from a remote sensing image, often need much manual intervention and possess poor intelligence and accuracy. An intelligent method proposed in this paper for lithology identification based on support vector machine (SVM) and adaptive cellular automata (ACA) is expected to solve the above problems. The method adopted Landsat-7 ETM+ images and 1:50000 geological map as the data origins. It first derived the lithology identification factors on three aspects: 1. spectra, 2. texture and 3. vegetation cover. Second, it plied the remote sensing images with the geological map and established the SVM to obtain the transition rules according to the factor values of the samples. Finally, it established an ACA model to intelligently identify the lithologies according to the transition and neighborhood rules. In this paper an ACA model is proposed and compared with the traditional one. Results of 2 real-world examples show that: 1. The SVM-ACA method obtains a good result of lithology identification in the regions with flourishing vegetation; 2. it possesses high accuracies of lithology identification (with the overall accuracies of 92.29% and 85.54%, respectively, in the two

  19. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  20. Fluorometric Techniques For The Measurement Of Oceanic Chlorophyll In The Support Of Remote Sensing

    Smith, Raymond C; Baker, Karen S.; Dustan, Phillip

    1981-01-01

    Satellite imagery is now being used to estimate the near-surface chlorophyll concentration for large ocean areas. To assess the accuracy and precision of these remote sensing techniques, contemporaneous ship and satellite data for the determination of oceanic chlorophyll concentrations have been collected. Since chlorophyll fluorometry is a widely used technique for the determination of chlorophylls at sea, our analyses have led us to review the literature of fluorometry in order to re-examin...

  1. Assessment of back-end RFI mitigation techniques in passive remote sensing

    Querol Borràs, Jorge; Alonso Arroyo, Alberto; Onrubia Ibáñez, Raúl; Pascual Biosca, Daniel; Camps Carmona, Adriano José

    2015-01-01

    Radio-Frequency Interference (RFI) is a growing problem specially for those systems that work with low power signals such as passive remote sensing instruments. Consequently, RFI mitigation techniques are currently under development. This works aims at evaluating back-end mitigation algorithms in terms of their probability of detection and mitigation performance. Results show that Wavelet Denoising (WD), and Multiresolution Fourier Transform (MFT) are the best techniques ...

  2. Urban Mapping and Growth Prediction using Remote Sensing and GIS Techniques, Pune, India

    Sivakumar, V.

    2014-01-01

    This study aims to map the urban area in and around Pune region between the year 1991 and 2010, and predict its probable future growth using remote sensing and GIS techniques. The Landsat TM and ETM+ satellite images of 1991, 2001 and 2010 were used for analyzing urban land use class. Urban class was extracted / mapped using supervised classification technique with maximum likelihood classifier. The accuracy assessment was carried out for classified maps. The achieved overall accurac...

  3. Robust satellite techniques for remote sensing of seismically active areas

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  4. Application Summary of Remote Sensing Technique of the West-East Gas Transportation Pipeline

    WangWeimin

    2004-01-01

    The West-East Gas Transportation Pipeline (WEGTP) is a strategic project for the energy source transport, which is about 3900km long. The remote sensing technique has the unique superiority to obtain the geographic information. The remote sensing technique is used in WEGTP to interpret comprehensively the information of geology, landform and humane geography along the route of pipeline, and to update the topographic map along the route of Zhengzhou-Shanghai section pipeline, and to interpret finely the crossing point of the Nanjing Changjiang river crossing section. Through the overlap of TM image and the DEM, the complicated landform information can be grasped by the three dimensional flight over the section of complicated geography. The application achievements are managed with RS-GIS service system.

  5. Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery

    The increasingly widespread use of CSP (concentrated solar power) plants to produce electricity has generated a constant search to improve and optimize final production. These plants are looking for new technologies and methodologies that offer significant, reliable strategies which can be applied to their systems. Clouds are hydrometeors which affect solar radiation, decreasing its value and, consequently, electricity production. Knowing when solar radiation is obstructed by clouds provides useful information to CSP operators to adapt electricity production to the cloud presence, optimizing electricity production processes. As a result of this necessity to study cloud cover, short and medium-term cloudiness forecasting is presented here, where cloudiness is predicted for the following three hours. - Highlights: • A methodology has been developed for estimating clouds in total sky imagery (TSI-880). • Remote sensing techniques were used to estimate cloud coverage in satellite imagery. • Cloudiness forecasting has been made in the short- and medium-term (1–180 min). • Results were shown for cloudless, partially-cloudy and overcast skies for 2010–2011. • In general, TSI forecasting presents better results than MSG for the first 40 min

  6. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data

    Mohd Hasmadi I

    2009-01-01

    Full Text Available The importance of the accuracy assessment of a remote sensing output cannot be overemphasised as without it the quality of map or output produced would be of lesser value to the end user.Remote sensing image classification involves supervised and unsupervised techniques and both show different levels of accuracy after accuracy assessment was conducted. This paper describes the findings of a study that was carried out to perform supervised and unsupervised techniques on remote sensing data for land cover classification and to evaluate the accuracy result of both classification techniques. The study used SPOT 5 satellite image taken on January 2007 for 270 / 343 (path / row as a primary data and topographical map and land cover maps as supporting data. The land cover for the study area was classified into 5 themes namely vegetation, urban area, water body, grassland and barren land. Ground verification was carried out to verify and assess the accuracy of classification. A total of 72 sample points were collected using systematic random sampling. The sample points represented 25% of the total study area. The results showed that the overall accuracy for the supervised classification was 90.28% where Kappa statistics was 0.86, while the unsupervised classification result was 80.56% accurate with 0.73 Kappa statistics. In conclusion, this study found that the supervised classification technique appears more accurate than the unsupervised classification.

  7. Potential of using remote sensing techniques for global assessment of water footprint of crops

    Romaguera, Mireia; Hoekstra, Arjen Y; Su, Zhongbo; Maarten S. Krol; Salama, Mhd Suhyb

    2010-01-01

    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration,...

  8. Potential of Using Remote Sensing Techniques for Global Assessment of Water Footprint of Crops

    Mireia Romaguera; Hoekstra, Arjen Y.; Zhongbo Su; Maarten S. Krol; Mhd. Suhyb Salama

    2010-01-01

    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration,...

  9. Remote Sensing and GIS Techniques to map Groundwater Recharge and Discharge

    Tweed, S.; Leblanc, M.; Webb, J.; Lubczynski, M.; Stagnitti, F.

    2006-12-01

    In salinity prone catchments, effective management of water resources involves balancing the requirements of sustainable resource allocation with salinity mitigation programs and ecosystem protection. Understanding groundwater recharge and discharge processes is a key component to achieving this balance. In this study, surface and sub-surface features are linked with recharge and discharge processes by incorporating GIS and remote sensing mapping techniques for an unconfined basalt aquifer, in a salinity and drought prone region of southeast Australia. The basalt aquifer covers ~11,500 km2 in an agriculturally intensive region. The approach requires (a) knowledge of local hydrogeological processes, to choose appropriate surface/sub-surface indicators, (b) adequate remote sensing and GIS techniques as well as necessary datasets to map these indicators, and (c) validation of the results at test sites and at the catchment-scale. This approach, applied systematically across a catchment, provides a framework for mapping recharge and discharge areas. A key component in assigning surface and sub-surface indicators is the relevance to the dominant recharge and discharge processes occurring, and using appropriate remote sensing and GIS techniques with the capacity to identify these.

  10. Advanced Remote Sensing Research

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  11. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  12. A Novel Graph Based Fuzzy Clustering Technique For Unsupervised Classification Of Remote Sensing Images

    Banerjee, B.; Krishna Moohan, B.

    2014-11-01

    This paper addresses the problem of unsupervised land-cover classification of multi-spectral remotely sensed images in the context of self-learning by exploring different graph based clustering techniques hierarchically. The only assumption used here is that the number of land-cover classes is known a priori. Object based image analysis paradigm which processes a given image at different levels, has emerged as a popular alternative to the pixel based approaches for remote sensing image segmentation considering the high spatial resolution of the images. A graph based fuzzy clustering technique is proposed here to obtain a better merging of an initially oversegmented image in the spectral domain compared to conventional clustering techniques. Instead of using Euclidean distance measure, the cumulative graph edge weight is used to find the distance between a pair of points to better cope with the topology of the feature space. In order to handle uncertainty in assigning class labels to pixels, which is not always a crisp allocation for remote sensing data, fuzzy set theoretic technique is incorporated to the graph based clustering. Minimum Spanning Tree (MST) based clustering technique is used to over-segment the image at the first level. Furthermore, considering that the spectral signature of different land-cover classes may overlap significantly, a self-learning based Maximum Likelihood (ML) classifier coupled with the Expectation Maximization (EM) based iterative unsupervised parameter retraining scheme is used to generate the final land-cover classification map. Results on two medium resolution images establish the superior performance of the proposed technique in comparison to the traditional fuzzy c-means clustering technique.

  13. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration

    Nu WEN; Shi-zhi YANG; Cheng-jie ZHU; Sheng-cheng CUI

    2014-01-01

    In this paper, we present an adaptive two-step contourlet-wavelet iterative shrinkage/thresholding (TcwIST) algorithm for remote sensing image restoration. This algorithm can be used to deal with various linear inverse problems (LIPs), including image deconvolution and reconstruction. This algorithm is a new version of the famous two-step iterative shrinkage/thresholding (TwIST) algorithm. First, we use the split Bregman Rudin-Osher-Fatemi (ROF) model, based on a sparse dictionary, to decom-pose the image into cartoon and texture parts, which are represented by wavelet and contourlet, respectively. Second, we use an adaptive method to estimate the regularization parameter and the shrinkage threshold. Finally, we use a linear search method to find a step length and a fast method to accelerate convergence. Results show that our method can achieve a signal-to-noise ratio improvement (ISNR) for image restoration and high convergence speed.

  14. On the determination of agricultural prospects using remote sensing and field technique

    Emetere, Moses Eterigho; Omotosho, T. V.; Olusola, Kayode

    2016-02-01

    The food budget is gradually depleting due to climatic change. The research problem is to see the extent of climate change via catalytic factor e.g. soil compaction. The field work has been reported and the remote sensing technique was used to compliment salient findings established. The Modern Era Retrospective-analysis for Research and Applications (MERRA) was used to obtain five years satellite imagery between 2008 and 2012. The results were used to propound a simple model which shows that the effects of either H >ɛ σ Tr4 or H <ɛ σ Tr4 may be detrimental to crop survival in the nearest future.

  15. Utilization of remotely sensed data for agricultural insurance as adaptation to climate change

    Hongo, C.; Ogasawara, C.; Sigit, G.; Tamura, E.

    2015-12-01

    Impact of climate change is not only seen on food production but also on food security, socio-economics of the poor and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change, meaning that the agricultural insurance can contribute to promotion of the stability in food security as one of 4 pillars defined by FOA of the United Nations. Having the above as background, we conducted research on utilization of remote sensing data including satellite data to assess damage ratio of rice production which could be used for calculation of indemnity in the agricultural insurance. Our study site was in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield in dry season could be estimated at level of 1 % significance using SPOT5 satellite data taken in 2014, and the 10-fold cross-validation result was 0.7t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data on the estimated result and the average yield of the past 10 years. According to the Indonesian agricultural insurance, if the damage of rice reaches 75% or above, the indemnity shall be paid to farmers. In our study site, the result showed that about 80 paddy fields located in lower irrigation region were the area to be paid by the insurance. Our study results suggest that the utilization of remote sensing data is much useful and promising for assessment of the damage ratio of rice production with precise, quick and quantitative, and also it can be incorporated into the insurance procedures.

  16. Application of radar polarimetry techniques for retrieval snow and rain characteristics in remote sensing

    M. Darvishi

    2013-09-01

    Full Text Available The presence of snow cover has significant impacts on the both global and regional climate and water balance on earth. The accurate estimation of snow cover area can be used for forecasting runoff due to snow melt and output of hydroelectric power. With development of remote sensing techniques at different scopes in earth science, enormous algorithms for retrieval hydrometeor parameters have been developed. Some of these algorithms are used to provide snow cover map such as NLR with AVHRR/MODIS sensor for Norway, Finnish with AVHRR sensor for Finland and NASA with MODIS sensor for global maps. Monitoring snow cover at different parts of spectral electromagnetic is detectable (visible, near and thermal infrared, passive and active microwave. Recently, specific capabilities of active microwave remote sensing such as snow extent map, snow depth, snow water equivalent (SWE, snow state (wet/dry and discrimination between rain and snow region were given a strong impetus for using this technology in snow monitoring, hydrology, climatology, avalanche research and etc. This paper evaluates the potentials and feasibility of polarimetric ground microwave measurements of snow in active remote sensing field. We will consider the behavior co- and cross-polarized backscattering coefficients of snowpack response with polarimetric scatterometer in Ku and L band at the different incident angles. Then we will show how to retrieve snow cover depth, snow permittivity and density parameters at the local scale with ground-based SAR (GB-SAR. Finally, for the sake of remarkable significant the transition region between rain and snow; the variables role of horizontal reflectivity (ZHH and differential reflectivity (ZDR in delineation boundary between snow and rain and some others important variables at polarimetric weather radar are presented.

  17. A Study on Integrated Community Based Flood Mitigation with Remote Sensing Technique in Kota Bharu, Kelantan

    This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area

  18. Using optical remote sensing techniques to track the development of ozone-induced stress

    Meroni, Michele, E-mail: michele.meroni@unimib.i [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Panigada, Cinzia; Rossini, Micol [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Picchi, Valentina [CNR, Plant Virology Institute, Milan Unit, Milan (Italy); Department of Tree Science, Entomology and Plant Pathology ' G. Scaramuzzi' , University of Pisa, Pisa (Italy); Cogliati, Sergio; Colombo, Roberto [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy)

    2009-05-15

    In this paper, a literature review about optical remote sensing (RS) of O{sub 3} stress is presented. Studies on O{sub 3}-induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O{sub 3}-induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O{sub 3} fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O{sub 3} stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O{sub 3} stress by means of optical remote sensing are discussed.

  19. Application of remote sensing techniques for conserving scarce water resources: a case study from Pakistan

    Pakistan, which was once a water surplus, is now a water deficit country according to Malin Falkenmark criteria. The conventional wisdom of managing canal water supplies, which usually results in over- or under-irrigation, is not sufficient to meet the challenge of water demand in future. This paper introduces the use of modem tools like Remote Sensing (RS), Geographic Information Systems (GIS) and CROPWAT to improve the management of the existing irrigation systems. This study was conducted for the Pehure High Level Canal (PHLC) and the Upper Swat Canal (USC) system in the North Western Frontier Province (NWFP) of Pakistan. Crop identification at distributary level was made from multi-temporal Remote Sensing satellite images, using various image processing techniques, such as supervised, unsupervised classification and spectral mixture analysis. Cropped areas were calculated for each individual crop from these classified images, and then crop water requirement at distributary level was estimated using CROPWAT. Assuming all other parameters of the CROPWAT model optimistic, the calculated crop area was of major concern. The supervised classification with support of unsupervised classification and ground truth information has proven to be the best option and cost-effective technique for calculating the actual cropped area. The results of this study can be used while devising guidelines for water managers to release the canal supplies based, on crop water requirement. This practice will help in avoiding wastage of canal water at farm level, which can be optimally used for increasing irrigated areas and crop productivity in the area. (author)

  20. Using optical remote sensing techniques to track the development of ozone-induced stress

    In this paper, a literature review about optical remote sensing (RS) of O3 stress is presented. Studies on O3-induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O3-induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O3 fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O3 stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O3 stress by means of optical remote sensing are discussed.

  1. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  2. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  3. Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling

    Sean Sweeney

    2015-11-01

    Full Text Available Traditional smallholder farming systems dominate the savanna range countries of sub-Saharan Africa and provide the foundation for the region’s food security. Despite continued expansion of smallholder farming into the surrounding savanna landscapes, food insecurity in the region persists. Central to the monitoring of food security in these countries, and to understanding the processes behind it, are reliable, high-quality datasets of cultivated land. Remote sensing has been frequently used for this purpose but distinguishing crops under certain stages of growth from savanna woodlands has remained a major challenge. Yet, crop production in dryland ecosystems is most vulnerable to seasonal climate variability, amplifying the need for high quality products showing the distribution and extent of cropland. The key objective in this analysis is the development of a classification protocol for African savanna landscapes, emphasizing the delineation of cropland. We integrate remote sensing techniques with probabilistic modeling into an innovative workflow. We present summary results for this methodology applied to a land cover classification of Zambia’s Southern Province. Five primary land cover categories are classified for the study area, producing an overall map accuracy of 88.18%. Omission error within the cropland class is 12.11% and commission error 9.76%.

  4. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  5. Modelling of total suspended particulates in Malaysian coastal waters using remote sensing techniques

    Abdullah, Anisah Lee

    2004-01-01

    This study focused on environmental remote sensing with the objective of constructing a remote sensing algorithm to determine Total Suspended Particulate (TSP) concentrations in Malaysian coastal surface waters. Other objectives included coral reef mapping and production of quantitative map of [TSP] using the remote sensing algorithm at the study area which was Tanjung Rhu, located northeast of Pulau Langkawi, Peninsular Malaysia. Measured [TSP] varied from 93.92 ± 50.10 mg/L to 148.65 ± 45.3...

  6. NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION

    Arundhati Misra

    2013-02-01

    Full Text Available Microwave Remote Sensing data acquired by a RADAR sensor such as SAR(Synthetic Aperture Radar is affected by a peculiar kind of noise called speckle. This noise not only renders the data ineffective for classification, texture analysis, segmentation etc. which are used for image analysis purposes, but also degrades the overall contrast and radiometric quality of the image. Here we discuss the various noise removal techniques which have been widely used by scientists all over the world. Different filtering methods have their pros and cons, and no single method can give the most satisfactory result. In order to circumvent those issues, better and better methods are being attempted. One of the recent methods is that based on Wavelet technique. This paper discusses the denoising techniques based on Wavelets and the results from some of those methods. The relative merits and demerits of the filters and their evaluation is also done.

  7. A new joint application of non-invasive remote sensing techniques for structural health monitoring

    This paper aims at analysing the potentialities of a new technological approach for the dynamic monitoring of civil infrastructures. The proposed approach is based on the joint use of a high-frequency thermal camera and a microwave radar interferometer to measure the oscillations due to traffic excitations of the Sihlhochstrasse Bridge, Switzerland, which was selected as test bed site in the ISTIMES project (EU—Seventh Framework Programme). The good quality of the results encourages the use of the proposed approach for the static and dynamic investigation of structures and infrastructures. Moreover, the remote sensing character of the two applied techniques makes them particularly suitable to study structures located in areas affected by natural hazard phenomena, and also to monitor cultural heritage buildings for which some conventional techniques are considered invasive. Obviously, their reliability needs further experiments and comparisons with standard contact sensors. (paper)

  8. Quantifying Stream Habitat: Relative Effort Versus Quality of Competing Remote Sensing & Ground-Based Survey Techniques

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2010-12-01

    Numerous field and analytical methods exist to assist in the quantification of the quantity and quality of in-stream habitat for salmonids. These methods range from field sketches or ‘tape and stick’ ground-based surveys, through to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although some investigators have assessed the quality of specific individual survey methods, the inter-comparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to quantify relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from different ground-based and remotely sensed surveys of varying degrees of sophistication, as well as enumerate the effort and cost in completing the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Three different traditional (“stick and tape”) survey techniques were used, including a variant using map-grade GPS. Complete topographic/bathymetric surveys were attempted at each site using separate rtkGPS, total station, ground-based LiDaR, boat-based echo-sounding (w/ ADCP), traditional airborne LiDaR, and imagery-based spectral methods. Separate, georectified aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Preliminary results from the surveys highlight that no single technique works across the full range of conditions where stream habitat surveys are needed. The results are helpful for understanding the strengths and weaknesses of each approach in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete quantification of habitat conditions in rivers.

  9. Applications of remote sensing techniques to county land use and flood hazard mapping

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  10. Assessment of agricultural drought vulnerability in the Philippines using remote sensing and GIS-based techniques

    Drought is a recurrent extreme climate event that can cause crop damage and yield loss, thereby inflicting negative socioeconomic impacts all over the world. According to several climate studies, drought events may be more frequent and more severe as global warming progresses. As an agricultural country, the Philippines is highly susceptible to adverse impacts of drought using remotely sensed information and geographic processing techniques. An agricultural drought vulnerability map identifying croplands that are least vulnerable, moderately vulnerable, and most vulnerable to crop water-related stress, was developed. Vulnerability factors, including land use system, irrigation support. Available soil-water holding capacity, as well as satellite-derived evapotranspiration and rainfall, were taken into consideration in classifying and mapping agricultural drought vulnerability at a national level. (author)

  11. MAPPING GLAUCONITE UNITES WITH USING REMOTE SENSING TECHNIQUES IN NORTH EAST OF IRAN

    R. Ahmadirouhani

    2014-10-01

    Full Text Available Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM, band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  12. Landuse and Landcover Change Detection in Lalgudi Block, Tiruchirappalli District - Using Remote Sensing and GIS Techniques

    S. Balaselvakumar

    2015-05-01

    Full Text Available In this paper an attempt has been carried out mapping and analysis the landuse and landcover change detection in Lalgudi block of Tiruchirappalli district using remote sensing and GIS techniques. The total area of the study area is 272.2 sq.km. It is located in the central part of Tamil Nadu. Landuse and Landcover change detection maps were generated and classified into agriculture land, built-up land, fallow land, natural vegetation, river sand, water bodies, and scrub without scrub land for the year 1990, 2000 and 2010 based on NRSA classification. Each landuse and landcover has been changed positively and negatively for the three decades, especially agriculture land, sandy area, natural vegetation and fallow land, which is about 19.62%, 6.56%, 13.16% and 14.91 percentages respectively.

  13. Remote Sensing Analysis Techniques and Sensor Requirements to Support the Mapping of Illegal Domestic Waste Disposal Sites in Queensland, Australia

    Katharine Glanville

    2015-10-01

    Full Text Available Illegal disposal of waste is a significant management issue for contemporary governments with waste posing an economic, social, and environmental risk. An improved understanding of the distribution of illegal waste disposal sites is critical to enhance the cost-effectiveness and efficiency of waste management efforts. Remotely sensed data has the potential to address this knowledge gap. However, the literature regarding the use of remote sensing to map illegal waste disposal sites is incomplete. This paper aims to analyze existing remote sensing methods and sensors used to monitor and map illegal waste disposal sites. The purpose of this paper is to support the evaluation of existing remote sensing methods for mapping illegal domestic waste sites in Queensland, Australia. Recent advances in technology and the acquisition of very high-resolution remote sensing imagery provide an important opportunity to (1 revisit established analysis techniques for identifying illegal waste disposal sites, (2 examine the applicability of different remote sensors for illegal waste disposal detection, and (3 identify opportunities for future research to increase the accuracy of any illegal waste disposal mapping products.

  14. Hyperspectral Remote Sensing of Urban Areas: An Overview of Techniques and Applications

    Helmi Z.M. Shafri

    2012-06-01

    Full Text Available Over the past two decades, hyperspectral remote sensing from airborne and satellite systems has been used as a data source for numerous applications. Hyperspectral imaging is quickly moving into the mainstream of remote sensing and is being applied to remote sensing research studies. Hyperspectral remote sensing has great potential for analysing complex urban scenes. However, operational applications within urban environments are still limited, despite several studies that have explored the capabilities of hyperspectral data to map urban areas. In this paper, we review the methods for urban classification using hyperspectral remote sensing data and their applications. The general trends indicate that combined spatial-spectral and sensor fusion approaches are the most optimal for hyperspectral urban analysis. It is also clear that urban hyperspectral mapping is currently limited to airborne data, despite the availability of spaceborne hyperspectral systems. Possible future research directions are also discussed.

  15. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  16. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological

  17. Analysis of slow - moving landslides by means of integration of ground measurements and remote sensing techniques

    Calò, F.; Ramondini, M.; Calcaterra, D.; Parise, M.

    2009-04-01

    Slow-moving landslides are among the most costly geological hazards in Italy, widely affecting properties and infrastructures. The analysis of unstable slopes characterized by slow movements (that is, velocity comprised between few mm/year to few cm/year) requires a regular and continuous monitoring in order to correctly establish the causes of the instability and to prevent the possible catastrophic phase. However, the sustainability for long time intervals of an effective monitoring network based on traditional measurement methods is, in most of the cases, hampered by financial and technical limitations. "Innovative" monitoring techniques, known as remote sensing techniques, may contribute in overcome these problems. This paper focuses on the application of an integrated monitoring system based on ground and satellite techniques to two case studies, Moio della Civitella (Salerno province) and Calitri (Avellino province), located in the Campania Region of Southern Italy. Detailed geomorphological analysis, carried out through multi-temporal air-photo interpretation and field surveys, resulted in thematic maps (landslides inventory map, landslides activity map, etc) that showed the high density of slope instability phenomena at both the study sites. The main triggering factors are heavy and/or prolonged rainfall, anthropogenic factors and earthquakes (as in the case of the large landslide at Calitri, induced by the 1980 Irpinia earthquake, and which directly involved the historical part of the town). In addition to the geomorphological approach, both sites are being monitored with inclinometers and topographic measurements. These ground data are being, in turn, integrated with the results obtained by applying remote sensing monitoring, in particular interferometric techniques. Current descending Radarsat-2 Ultra-Fine images have been processed with Standard Differential Interferometry, and ERS-1/ERS-2 images acquired from 1992 - 2001 with Permanent Scatterers

  18. Applying remote sensing and GIS techniques in solving rural county information needs

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1992-01-01

    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.

  19. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  20. Satellite remote sensing of wetlands and a comparison of classification techniques

    Ozesmi, Stacy Lee

    Wetland conservation and management requires inventory and monitoring of wetlands and their adjacent uplands. Satellite remote sensing has several advantages for monitoring wetland resources, especially for large geographic areas. This dissertation summarizes the literature on satellite remote sensing of wetlands, including what classification techniques were most successful in identifying wetlands and separating them from other land cover types. Then the use of different features and classification methods were evaluated for their effect on classification accuracy in two large study areas with heterogeneous landcover types, the Twin Cities Metropolitan Area in Minnesota, USA (TCMA) and the Kizilirmak Delta on the Black Sea coast of Turkey. The features examined were all derived from the Landsat MSS or TM imagery: texture, landscape metrics, and indices. The classification methods were conventional per pixel maximum likelihood, three contextual techniques, maximum likelihood with 3 x 3 majority filter, ECHO, and a hybrid segmention method, and one artificial neural network technique, the feedforward multilayer perceptron with backpropagation for training. The use of multitemporal Landsat TM imagery, June, September, and April image dates, and indices were the set of features that gave the highest classification accuracy for the TCMA. Tests with indices highlighted some opportunities for improving wetland classification. For the Kizilirmak Delta, texture features in addition to the MSS bands, gave the highest classification accuracy. For the TCMA, the hybrid segmentation method generally gave the highest overall classification accuracy, followed by followed by the per pixel maximum likelihood with 3 x 3 majority filter, and the ECHO classifier. For the Kizilirmak Delta, the ANN classifier had the best performance. The ANN classifier generally had equal or better classification accuracy than the maximum likelihood classifier, for the full training set and also for a

  1. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping. PMID:25930205

  2. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  3. Urban Mapping and Growth Prediction using Remote Sensing and GIS Techniques, Pune, India

    Sivakumar, V.

    2014-11-01

    This study aims to map the urban area in and around Pune region between the year 1991 and 2010, and predict its probable future growth using remote sensing and GIS techniques. The Landsat TM and ETM+ satellite images of 1991, 2001 and 2010 were used for analyzing urban land use class. Urban class was extracted / mapped using supervised classification technique with maximum likelihood classifier. The accuracy assessment was carried out for classified maps. The achieved overall accuracy and Kappa statistics were 86.33 % & 0.76 respectively. Transition probability matrix and area change were obtained using different classified images. A plug-in was developed in QGIS software (open source) based on Markov Chain model algorithm for predicting probable urban growth for the future year 2021. Based on available data set, the result shows that urban area is expected to grow much higher in the year 2021 when compared to 2010. This study provides an insight into understanding of urban growth and aids in subsequent infrastructure planning, management and decision-making.

  4. Comparing the effects of Different Remote Sensing Techniques for Extracting Deciduous Broadleaf Phenology

    Ilushin, D.; Richardson, A. D.; Toomey, M. P.; Pless, R.; Shapiro, A.

    2013-12-01

    Vegetation phenology, annual life cycles of plants, provides a key feedback with climate variability and change and is an important parameter in land surface models used to predict global climate. As such, there is a need to track the rhythm of the seasons with more detail. Common remote sensing methods used to track phenology are limited by their coarse temporal and/or spatial resolutions. Alternatively, I look to explore the usability of publicly available 'webcams' as an indicator of phenological trends. More specifically, I address the question of how this new measurement relates to that of satellite imagery, a common technique for remote sensing of phenology. I have used a subset of images from publically available, geo-referenced webcams from the Archive of Many Outdoor Scenes, a repository maintained by faculty at Washington University in St. Louis, as my test data. From the GCC (Greenness Chromatic Coordinate, or average greenness) time series produced from each of the 685 cameras used, I extract the phenological transition dates calculated for both spring and fall using curve fitting or threshold methods and compared these values to corresponding dates extracted from satellite imagery. Firstly, I look to the efficacy of reproducing reliable dates of phenological transition from data with missing information, with preliminary results showing that up to twenty percent of data can be missing while still resulting in reliable results. Next, I determine the relationship of differing date extraction methods on the webcams to find out their utility in arriving at dates that correspond with visual cues of phenological dates. These phenologically derived dates are further compared with their corresponding satellite imagery dates to find whether or not there exist prevailing biases between measurements calculated using the near-infrared and visual spectrum versus solely the visual spectrum. Lastly, the resulting information is compared geospatially to look for both

  5. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs

  6. Monitoring the urban expansion of Sparta and Nafplio cities using remote sensing and GIS techniques

    Zervakou, Alexandra D.; Nikolakopoulos, Konstantinos G.; Tsombos, Panagiotis I.; Papanikolaou, George P.

    2008-10-01

    During the last four decades, Greece has suffered from an enormous internal immigration. The majority of small villages were abandoned and the population has been gathered into urban areas, usually into the prefectural capital cities. Because of the significant increase of population, the urban expansion was excessive and in some cases catastrophic. A lot of changes have been occurred to the landforms, drainage networks and landuse. The Institute of geology and Mineral Exploration of Greece (I.G.M.E.), in the frame of CSF 2000 - 2006 (Community Support Framework 2000-2006), has been implementing the pilot project titled "Collection, Codification and Documentation of geothematic information for urban and suburban areas in Greece - pilot applications". Four different cities (Drama - North Greece, Nafplio & Sparta -Peloponnesus and Thrakomakedones - Attica) were selected as pilot areas.For these cities we have tried to detect and map the urban extent and expansion and estimate their growth rate, using GIS and remote sensing techniques. Multitemporal and multiresolution satellite data covering the period 1975-2007 and topographic maps at a scale of 1:5.000 were used for the urban growth mapping and observation.The qualitative and quantitative results for the cities of Nafplio & Sparta are presented in this study.

  7. Soil Erosion Estimation Using Remote Sensing Techniques in Wadi Yalamlam Basin, Saudi Arabia

    Jarbou A. Bahrawi

    2016-01-01

    Full Text Available Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS and Geographic Information Systems (GIS techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating the K-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha. GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.

  8. REMOTE SENSING IMAGE CLASSIFICATION WITH GIS DATA BASED ON SPATIAL DATA MINING TECHNIQUES

    2000-01-01

    Data mining techniques are used to discover knowledge from GIS database in order to improve remote sensing image classification.Two learning granularities are proposed for inductive learning from spatial data,one is spatial object granularity,the other is pixel granularity.We also present an approach to combine inductive learning with conventional image classification methods,which selects class probability of Bayes classification as learning attributes.A land use classification experiment is performed in the Beijing area using SPOT multi-spectral image and GIS data.Rules about spatial distribution patterns and shape features are discovered by C5.0 inductive learning algorithm and then the image is reclassified by deductive reasoning.Comparing with the result produced only by Bayes classification,the overall accuracy increased by 11% and the accuracy of some classes,such as garden and forest,increased by about 30%.The results indicate that inductive learning can resolve spectral confusion to a great extent.Combining Bayes method with inductive learning not only improves classification accuracy greatly,but also extends the classification by subdividing some classes with the discovered knowledge.

  9. Applications of geographic information systems and remote sensing techniques to conservation of amphibians in northwestern Ecuador

    Mariela Palacios González

    2015-01-01

    Full Text Available The biodiversity of the Andean Chocó in western Ecuador and Colombia is threatened by anthropogenic changes in land cover. The main goal of this study was to contribute to conservation of 12 threatened species of amphibians at a cloud forest site in northwestern Ecuador, by identifying and proposing protection of critical areas. We used Geographic Information Systems (GIS and remote sensing techniques to quantify land cover changes over 35 years and outline important areas for amphibian conservation. We performed a supervised classification of an IKONOS satellite image from 2011 and two aerial photographs from 1977 and 2000. The 2011 IKONOS satellite image classification was used to delineate areas important for conservation of threatened amphibians within a 200 m buffer around rivers and streams. The overall classification accuracy of the three images was ≥80%. Forest cover was reduced by 17% during the last 34 years. However, only 50% of the study area retained the initial (1977 forest cover, as land was cleared for farming and eventually reforested. Finally, using the 2011 IKONOS satellite image, we delineated areas of potential conservation interest that would benefit the long term survival of threatened amphibian species at the Ecuadorian cloud forest site studied.

  10. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    Dambach Peter

    2012-03-01

    Full Text Available Abstract Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM, precipitation (Tropical Rainfall Measurement Mission = TRMM, land surface temperatures (LST. Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines

  11. AN ADAPTIVE WEB-BASED LEARNING ENVIRONMENT FOR THE APPLICATION OF REMOTE SENSING IN SCHOOLS

    Wolf, N; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-01-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers’ know-how and education materials t...

  12. Domain Adaptation in remote sensing: increasing the portability of land-cover classifiers

    Matasci G.

    2014-01-01

    Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the ...

  13. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests.

    Wang, Fugui; Xu, Y Jun

    2010-03-01

    This study compared performance of four change detection algorithms with six vegetation indices derived from pre- and post-Katrina Landsat Thematic Mapper (TM) imagery and a composite of the TM bands 4, 5, and 3 in order to select an optimal remote sensing technique for identifying forestlands disturbed by Hurricane Katrina. The algorithms included univariate image differencing (UID), selective principal component analysis (PCA), change vector analysis (CVA), and postclassification comparison (PCC). The indices consisted of near-infrared to red ratios, normalized difference vegetation index, Tasseled Cap index of greenness, brightness, and wetness (TCW), and soil-adjusted vegetation index. In addition to the satellite imagery, the "ground truth" data of forest damage were also collected through field investigation and interpretation of post-Katrina aerial photos. Disturbed forests were identified by classifying the composite and the continuous change imagery with the supervised classification method. Results showed that the change detection techniques exerted apparent influence on detection results with an overall accuracy varying between 51% and 86% and a kappa statistics ranging from 0.02 to 0.72. Detected areas of disturbed forestlands were noticeable in two groups: 180,832-264,617 and 85,861-124,205 ha. The landscape of disturbed forests also displayed two unique patterns, depending upon the area group. The PCC algorithm along with the composite image contributed the highest accuracy and lowest error (0.5%) in estimating areas of disturbed forestlands. Both UID and CVA performed similarly, but caution should be taken when using selective PCA in detecting hurricane disturbance to forests. Among the six indices, TCW outperformed the other indices owing to its maximum sensitivity to forest modification. This study suggested that compared with the detection algorithms, proper selection of vegetation indices was more critical for obtaining satisfactory results. PMID

  14. Morphometric analysis and prioritization of miniwatersheds in Rongli watershed, Sikkim (India) using remote sensing and GIS techniques

    Deo Kumar Tamang; Dinesh Dhakal; DG Shrestha; NP Sharma

    2012-01-01

    In this study, morphometric analysis and prioritization of the seven mini watersheds of Rongli watershed of East districtin Sikkim state, India is carried using Remote Sensing and Geographical Information System (GIS) techniques. Themorphometric parameters considered for analysis are stream length, bifurcation ratio, drainage density, stream frequency,texture ratio, form factor, circulatory ratio, elongation ratio and compactness constant. Rongli watershed has a dendriticdrainage pattern. The...

  15. Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V), India

    M. Anji Reddy; Padmaja Vuppala; S. S. Asadi

    2007-01-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused dat...

  16. Application of remote sensing techniques for the identification of biotic stress in plum trees caused by the Plum pox virus

    Krezhova Dora; Stoev Antoniy; Petrov Nikolay; Maneva Svetla

    2015-01-01

    Two hyperspectral remote sensing techniques, spectral reflectance and chlorophyll fluorescence, were used for the identification of biotic stress (sharka disease) in plum trees at an early stage without visible symptoms on the leaves. The research was focused on cultivars that are widely spread in Bulgaria: ‘Angelina’, ‘Black Diamond’ and ‘Mirabelle’. Hyperspectral reflectance and fluorescence data were collected by means of a portable multichannel fibre-optics spectrometer in the visible and...

  17. Integration of Remote Sensing Techniques With Statistical Methods For Landslide Monitoring and Risk Assessment

    van Westen, Cees; Wunderle, Stefan; Pasquali, Paolo

    In the frame of the Date User Program 2 (DUP) of the European Space Agency (ESA) a new method will be presented to derive landslide hazards, which was developed in close co-operation with the end users in Honduras and Switzerland, respectively. The objective of thi s project is to define a sustainable service using the novel approach based on the fusion of two independent methods, namely combining differential SAR Interferometry techniques (DInSAR) with a statistical approach. The bivariate statistical analysis is based on parameter maps (slope, geomorphology, land use) derived from remote sensing data and field checks as well as on historical aerial photos. The hybrid method is based on SAR data of the last years and new ENVISAT-ASAR data as well as historical data (i.e. former landslides detected in aerial photos), respectively. The historical occurrence of landslides will be combined with actual land sliding and creeping obtained from DInSAR. The landslide occurrence map in high quality forms the input for the statistical landslide hazard analysis. The method intends to derive information on landslide hazards, preferably in the form of probabilities, which will be combined with information on building stock, infrastructure and population density. The vulnerability of population and infrastructure will be taken into account by a weighting factor. The resulting risk maps will be of great value for local authorities, Comisión Permanente de Contingencias (COPECO) of Honduras, local GIS specialists, policy makers and reinsurance companies. We will show the results of the Service Definition Project with some examples of the new method especially for Tegucigalpa the capital of Honduras with approximately 1 million inhabitants.

  18. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques

    Ghosh, Manoj Kumer; Kumar, Lalit; Roy, Chandan

    2015-03-01

    A large percentage of the world's population is concentrated along the coastal zones. These environmentally sensitive areas are under intense pressure from natural processes such as erosion, accretion and natural disasters as well as anthropogenic processes such as urban growth, resource development and pollution. These threats have made the coastal zone a priority for coastline monitoring programs and sustainable coastal management. This research utilizes integrated techniques of remote sensing and geographic information system (GIS) to monitor coastline changes from 1989 to 2010 at Hatiya Island, Bangladesh. In this study, satellite images from Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) were used to quantify the spatio-temporal changes that took place in the coastal zone of Hatiya Island during the specified period. The modified normalized difference water index (MNDWI) algorithm was applied to TM (1989 and 2010) and ETM (2000) images to discriminate the land-water interface and the on-screen digitizing approach was used over the MNDWI images of 1989, 2000 and 2010 for coastline extraction. Afterwards, the extent of changes in the coastline was estimated through overlaying the digitized maps of Hatiya Island of all three years. Coastline positions were highlighted to infer the erosion/accretion sectors along the coast, and the coastline changes were calculated. The results showed that erosion was severe in the northern and western parts of the island, whereas the southern and eastern parts of the island gained land through sedimentation. Over the study period (1989-2010), this offshore island witnessed the erosion of 6476 hectares. In contrast it experienced an accretion of 9916 hectares. These erosion and accretion processes played an active role in the changes of coastline during the study period.

  19. Monitoring deforestation and urbanization growth in rawal watershed area using remote sensing and gis techniques

    The Rawal watershed in Pothwar region of Pakistan has undergone significant changes in its environmental conditions and landuse activities due to numerous socio-economic and natural factors. These ultimately influence the livelihood of the inhabitants of the area. The connected environmental changes are resulting in accelerated land degradation, deforestation, and landslides. In the present study, spatio-temporal behaviour of landuse/landcover in the Rawal watershed area was investigated using Remote Sensing (RS) and Geographical Information System (GIS) techniques. Satellite image data of LANDSAT ETM+ of 1992, 2000 and 2010 periods were processed and analyzed for detecting land use change and identifying risk prone locations in the watershed area. The study results revealed significant changes in the coverage of conifer forest (34 % decrease), scrub forest (29 % decrease) and settlement (231 % increase) during the decade 1992-2010. The rate of decline in conifer class is about 19 ha/annum while that of scrub class is 223 ha/annum. In both the cases, the rates of decrease were higher during the period 1992-2000 than the period 2000-2010. The Agriculture land has shown an increase of about 1.8% while built-up land had increased almost four folds, i.e. from 2.6 % in 1992 to 8.7 % in 2010. The growth in urbanization may result in further loss of forest cover in the watershed area. The findings of the study could help in developing effective strategies for future resource management and conservation, as well as for controlling land degradation in the watershed area. (author)

  20. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  1. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  2. Predicting species cover of marine macrophyte and invertebrate species combining hyperspectral remote sensing, machine learning and regression techniques.

    Jonne Kotta

    Full Text Available In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR, an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems.

  3. Known and unknown unknowns: the application of ensemble techniques to uncertainty estimation in satellite remote sensing data

    A. C. Povey

    2015-08-01

    Full Text Available This paper discusses a best-practice representation of uncertainty in satellite remote sensing data. An estimate of uncertainty is necessary to make appropriate use of the information conveyed by a measurement. Traditional error propagation quantifies the uncertainty in a measurement due to well-understood perturbations in a measurement and auxiliary data – known, quantified "unknowns". The underconstrained nature of most satellite remote sensing observations requires the use of various approximations and assumptions that produce non-linear systematic errors that are not readily assessed – known, unquantifiable "unknowns". Additional errors result from the inability to resolve all scales of variation in the measured quantity – unknown "unknowns". The latter two categories of error are dominant in underconstrained remote sensing retrievals and the difficulty of their quantification limits the utility of existing uncertainty estimates, degrading confidence in such data. This paper proposes the use of ensemble techniques to present multiple self-consistent realisations of a data set as a means of depicting unquantified uncertainties. These are generated using various systems (different algorithms or forward models believed to be appropriate to the conditions observed. Benefiting from the experience of the climate modelling community, an ensemble provides a user with a more complete representation of the uncertainty as understood by the data producer and greater freedom to consider different realisations of the data.

  4. Known and unknown unknowns: the application of ensemble techniques to uncertainty estimation in satellite remote sensing data

    Povey, A. C.; Grainger, R. G.

    2015-08-01

    This paper discusses a best-practice representation of uncertainty in satellite remote sensing data. An estimate of uncertainty is necessary to make appropriate use of the information conveyed by a measurement. Traditional error propagation quantifies the uncertainty in a measurement due to well-understood perturbations in a measurement and auxiliary data - known, quantified "unknowns". The underconstrained nature of most satellite remote sensing observations requires the use of various approximations and assumptions that produce non-linear systematic errors that are not readily assessed - known, unquantifiable "unknowns". Additional errors result from the inability to resolve all scales of variation in the measured quantity - unknown "unknowns". The latter two categories of error are dominant in underconstrained remote sensing retrievals and the difficulty of their quantification limits the utility of existing uncertainty estimates, degrading confidence in such data. This paper proposes the use of ensemble techniques to present multiple self-consistent realisations of a data set as a means of depicting unquantified uncertainties. These are generated using various systems (different algorithms or forward models) believed to be appropriate to the conditions observed. Benefiting from the experience of the climate modelling community, an ensemble provides a user with a more complete representation of the uncertainty as understood by the data producer and greater freedom to consider different realisations of the data.

  5. Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation

    Exton, R. J.; Houghton, W. M.; Esaias, W.; Harriss, R. C.; Farmer, F. H.; White, H. H.

    1983-01-01

    The theoretical concepts underlying remote sensing of estuarine parameters using laser excitation are examined. The concepts are extended to include Mie scattering as a measure of the total suspended solids and to develop the water Raman signal as an internal standard. Experimental validation of the theory was performed using backscattered laser light from a laboratory tank to simulate a remote-sensing geometry. Artificially prepared sediments and biological cultures were employed to check specific aspects of the theory under controlled conditions. Natural samples gathered from a variety of water types were also analyzed in the tank to further enhance the simulation. The results indicate that it should be possible to remotely quantify total suspended solids, dissolved organics, attenuation coefficient, chlorophyll a, and phycoerythrin in estuarine water using laser excitation.

  6. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2016-03-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  7. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru

    P. Peduzzi

    2010-08-01

    Full Text Available Higher temperatures and changes in precipitation patterns have induced an acute decrease in Andean glaciers, thus leading to additional stress on water supply. To adapt to climate changes, local governments need information on the rate of glacier area and volume losses and on current ice thickness. Remote sensing analyses of Coropuna glacier (Peru delineate an acute glaciated area decline between 1955 and 2008. We tested how volume changes can be estimated with remote sensing and GIS techniques using digital elevation models derived from both topographic maps and satellite images. Ice thickness was measured in 2004 using a Ground Penetrating Radar coupled with a Ground Positioning System during a field expedition. It provided profiles of ice thickness on different slopes, orientations and altitudes. These were used to model the current glacier volume using Geographical Information System and statistical multiple regression techniques. The results revealed a significant glacier volume loss; however the uncertainty is higher than the measured volume loss. We also provided an estimate of the remaining volume. The field study provided the scientific evidence needed by COPASA, a local Peruvian NGO, and GTZ, the German international cooperation agency, in order to alert local governments and communities and guide them in adopting new climate change adaptation policies.

  8. Spatially explicit estimation of forest age by integrating remotely sensed data and inverse yield modeling techniques

    Frate L; Carranza ML; Garfì V; Febbraro MD; Tonti D; Marchetti M; Ottaviano M.; Santopuoli G; Chirici G

    2016-01-01

    In this work we present an innovative method based on the application of inverse yield models for producing spatially explicit estimations of forest age. Firstly, a raster growing stock volume map was produced using the non-parametric k-Nearest Neighbors estimation method on the basis of IRS LISS-III remotely sensed imagery and field data collected in the framework of a local forest inventory. Secondly, species specific inverted yield equations were applied to estimate forest age as a functio...

  9. Evaluation of soil degradation in Northern Sinai (Egypt), using remote sensing and GIS techniques

    Gad, A; Younes, H.; Abdel-Hady, M.

    1996-01-01

    Remote sensing documents and thematic maps were used to provide comprehensive views of surface-bound conditions such as soil and vegetation. The current work applies a parametric methodology, adopted from the FAO/UNEP and UNESCO methodology for assessment and mapping of soil degradation at a scale of 1:250,000. The study area is located in the northern part of Sinai peninsula, Egypt, a region with considerable agriculture potential. Satellite MSS, TM imageries and aerial photographs were util...

  10. Irrigation management with remote sensing techniques. Crop water requirements and biophysical indicators

    Toureiro, Célia; Serralheiro, Ricardo; Shahidian, Shakib

    2013-01-01

    In irrigated agriculture, increasing water management efficiency is the way to save water and to render irrigation a sustainable activity. In the present work procedures with remote sensing are used to determine the contents of available water in the soil at each moment and therefore the opportunity for the application of the water volume strictly necessary to optimize crop growth (irrigation opportunity and irrigation amount). The analysis applied to the Irrigation District of Divor, Évora, ...

  11. Remote Sensing Best Paper Award 2013

    Prasad Thenkabail

    2013-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for 2013. Nominations were selected by the Editor-in-Chief and selected editorial board members from among all the papers published in 2009. Reviews and research papers were evaluated separately.

  12. Adapting remotely sensed snow data for daily flow modeling on the Upper Humber River, Newfoundland and Labrador

    Tom, Melissa

    meteorological data: rainfall, snow cover, and temperature. The results from the snowmelt runoff model using the snow cover data provided very good final Nash-Sutcliffe coefficients of 0.85 for the calibration stage and 0.81 for the validation stage, but a consistent one-day lag of the modeled flow values was also observed. Although these results were not superior to currently employed flood forecasting models for the Upper Humber (because of a one-day lag in the modeled flows), the methodology developed herein may be useful for other river basins in NL where the flows are dominated by snowmelt during the spring such as the Exploits River Basin located in central NL. Remotely sensed snow water equivalent (SWE) data obtained from an advanced microwave scanning radiometer (AMSR-E), aboard the Aqua satellite, was also investigated for daily flow modeling applications. SWE often provide a better estimate of snowmelt than snow cover but this data had several disadvantages in the Humber River Basin. The major obstacles included large spatial resolution (25 km), data inaccuracy for wet snow, boreal forest, mountainous regions, and time step irregularities. Extremely large variances in the SWE data rendered the information inaccurate and ineffective for streamflow forecasting on Newfoundland and Labrador's Humber River. This research makes significant contributions to the field of hydrology providing a valuable methodology in adapting remotely sensed snow data to daily flow simulation and will be helpful to local authorities.

  13. Application of Remote Sensing Technique to Suspended Sediment Estimation of Pinan River, Eastern Taiwan

    Wang, Y. S.; Chang, C. P.

    2014-12-01

    Because of the rapid compression between the Eurasian Plate and the Philippine Sea Plate, the Central Range of the Taiwan Island continued to quickly uplift. Moreover, because of being located in the subtropical area, Taiwan has abundant rainfall, and has distinct wet and dry season. Typhoons which almost brought violent rain, struck Taiwan average four times a year during the summer. This extreme tectonic and weather condition makes that a large number of sediments easily to be taken away from the mountainous area and output to the downstream estuary in a short time. These eroded sediments can be classified into two categories. One is bedrock sediments, and the other is suspended sediments which could be detected by the satellite remote sensing technique. In previous studies, some suspended sediment concentration (SSC) predictions were carried out by using optical satellites imagery in different areas. As we know, the more suspension sediment in water can directly reflect the higher reflectance of solar radiation. In addition, the exact form of the relationship between SSC and reflectance also depends on the mineralogy, color, and size of the sediments. Therefore, most studies developed unique relationships by relating field measurements of SSC to reflectance data from satellite imagery. The Pinan River is the largest river in eastern Taiwan. It rises in the Central Range and flows through Taitung County for 84 kilometers. Statistically, in Taiwan, more than 40 percent typhoons struck and landed from the Pinan River watershed. Abundant rainfall coupled with short channel caused plenty of sediments output from the Pinan River. In this study, we focus on Pinan River estuary by using SSC field data which was got from the Hydrological Year Book of Taiwan published by Water Resources Agency every year. Because of lack of field data, we got daily river discharge to establish the Rating Curve and predict daily SSC. Moreover, we also used FORMOSAT-2 imagery in band 3 and

  14. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image

  15. Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand

    Römer, Hannes; Willroth, Philipp; Kaiser, Gunilla; Diez, Javier Revilla; Ludwig, Ralf; Vafeidis, Anthanasios

    2012-01-01

    Recent tsunami disasters, such as the 2004 Indian Ocean tsunami or the 2011 Japan earthquake and tsunami, have highlighted the need for effective risk management. Remote sensing is a relatively new method for risk analysis, which shows significant potential in conducting spatially explicit risk and vulnerability assessments. In order to explore and discuss the potential and limitations of remote sensing techniques, this paper presents a case study from the tsunami affected A...

  16. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  17. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  18. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  19. Application of remote sensing techniques for the identification of biotic stress in plum trees caused by the Plum pox virus

    Krezhova Dora

    2015-12-01

    Full Text Available Two hyperspectral remote sensing techniques, spectral reflectance and chlorophyll fluorescence, were used for the identification of biotic stress (sharka disease in plum trees at an early stage without visible symptoms on the leaves. The research was focused on cultivars that are widely spread in Bulgaria: ‘Angelina’, ‘Black Diamond’ and ‘Mirabelle’. Hyperspectral reflectance and fluorescence data were collected by means of a portable multichannel fibre-optics spectrometer in the visible and near infrared spectral ranges (400-1000 nm. Statistical and deterministic analyses were applied for assessing the significance of the differences between the spectral data of healthy (control and infected plum leaves. Comparative analyses were performed with complementary serological test DAS-ELISA, broadly implemented in plant virology. The strong relationship that was found between the results from the two remote sensing techniques and serological analysis indicates the applicability of hyperspectral reflectance and fluorescence techniques for conducting health condition assessments of vegetation easily and without damage before the appearance of visible symptoms.

  20. A study of radionuclide dispersion by river systems, using GIS and remote sensing techniques

    The Krasnoyarsk Mining and Chemical Combine in Zheleznogorsk, Russia, is situated on the banks of the Yenisey river. The combine consists of three RBMK-type graphite moderate reactors, a reprocessing plant for the production of weapons-grade plutonium and storage facilities for nuclear waste. Discharges of radionuclides into the Yenisey river were either part of normal operation procedures or caused by accidental releases (Strand et al., 1997). So far, little is known about the transport and fate of the radioactive contaminants in the areas downstream of the Krasnoyarsk CC that are influenced by the Yenisey river system. Aim is to comprehend the dispersion of radionuclides through the river system. Remotely sensed and field study information are combined in a geographical information system (GIS) to study the processes leading to the dispersion of sediment-bound radionuclides carried by the river system. Since the extent of the study area is several thousands or kilometres of river and adjacent flood plains, use is made of a record of remotely sensed (satellite) images that are handled by the GIS. Panchromatic, high resolution satellite images as well as multispectral Landsat MSS and TM images were compiled for the area of interest. The panchromatic images were taken in a period during which the facility was in operation (1960-1972) and obtained for intervals of circa 6 months. A time series of satellite images enables the identification of erosion and sedimentation zones. The behaviour and fate of particle-reactive radionuclides, e.g. 239,240Pu and to large extent 137Cs, will be closely related to the movement of sediment. With respect to the behaviour and fate of more conservative radionuclides as 90Sr, information is required accounting for fractionation between the particulate and aqueous phases. Stereo images are used to comprehend the geomorphology of the Yenisey river systems, focused on classification of sedimentary deposits. Landsat MSS and TM with five

  1. Scale issues in remote sensing

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  2. An overview of GNSS remote sensing

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  3. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and section scales; hence, its application together with in-situ grid transects for validation, may be optimal for use in similar scenarios. The HSR dataset was first degraded to 17 bands with the same spectral range as the RGB dataset and also to a dataset with 3 equivalent bands

  4. Analysis of Heat Environment Indexes Using Integrated Remote Sensing and Site Measurement Techniques in a Community

    Kun Li; Jian Kang; YeHao Song; Dong Jiang

    2014-01-01

    Remote sensing and on⁃site measurement are used to determine the heat environment within a community, and are compared the differences for heat analysis. The two methods perform differently for various underlying surfaces. The individual methods can detect different aspects of the heat environment, which used in combination are useful for heat island research. The differences in estimated air and surface temperatures are smaller in open space and more obvious for vegetated surfaces. Ventilation does not affect the difference between air and surface temperature in open areas, and the vegetation surface and shading moderates surface temperature more effectively than the water surface; The forest is a type of underlying surface with heat comfortable, in which the feeling of air temperature is much difference to the structure of heat environment that should be survey and detected separately. The two methods can be used to study different aspects of the heat environment, thus forming a comprehensive approach for planners in urban and rural spaces.

  5. Spatial and Temporal knowledge representation techniques for traditional machine learning classifiers applied to remote sensing data.

    Cervone, G.; Kafatos, M.

    2005-12-01

    Formulating general hypotheses from limited observations is one of the fundamental principles of scientific discovery. The data mining approach consists, among others, in generating new knowledge analyzing massive amounts of data and using background knowledge. Knowledge representation is one of the fundamental topics of data mining, because the representation language dictates which algorithms to use, as well as the effective usefulness of the learned hypotheses. Programs that use richer representation languages have the advantage of generating hypotheses that are compact and easy to understand, and the disadvantage of being more complex, slower and ususally with more control parameters. On the other hand, programs that use simpler representaiton languages overcome these shortcomings, but fail to generate hypotheses that can be easily interpreted and used for problem solving and decision making. Symbolic machine learning methods, such as decision rule classifiers, use a complex representation language which can be used to describe difficult concepts, and allow to cope with spatial and temporal data, such as remote sensing data. Because data are usually collected as a sequence of observations over time and in specific locations, very often it is necessary to find relations not only in the data per se, but also in the temporal and spatial distribution of the observations. Due to the increasingly large amount of spatial and temporal data collected and analyzed in several fields such as remote sensing, geographical information systems (GIS), bioinformatics, medicine, bank transactions, etc, spatial and temporal knowledge representaion has become a problem of crucial importance. Present research investigates methods to use existing symbolic machine learning classifiers with temporal and spatial data. The data are converted in a representation language which is suitable to learn spatial and temporal relationship without modifying the existing algorithms. Results from

  6. Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County

    Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo

    2014-05-01

    The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.

  7. Irrigation Management with Remote Sensing Techniques. Crop Water Requirements and Biophysical Indicators

    Toureiro, Célia; Serralheiro, Ricardo

    2013-04-01

    Saving water in irrigated agriculture is increasingly relevant, as the irrigation sector is in many regions the biggest water consumer, but must be a sustainable activity. Therefore, the need urges for water use control methods and water resources planning. In irrigated agriculture, the right way for saving water is constituted by the increase of efficiency in water management. This work validates procedures and methodologies with remote sensing to determine the water availability in the soil at each moment and therefore the opportunity for the application of the water volume strictly necessary to optimize crop growth (irrigation opportunity and irrigation amount). The analysis applied to the Irrigation District of Divor, Évora, having used 7 experiment plots, which are areas watered by center-pivot systems, cultivated to corn. Data were determined from multispectral and infrared images of the cultivated surface obtained by satellite or by flying unmanned platform and integrated with parameters of the atmosphere and of the crops for calculating biophysical indicators and indices of water stress in the vegetation (NDVI, Kc, Kcb, CWSI). Therefore, evapotranspiration (ETc) was estimated, with which crop water requirement was calculated, with the opportunity and the amount of irrigation water to allocate. As this information is geographic referenced, maps can be prepared with GIS technology, describing water situation and the opportunity for watering crops. If the remote images are available with enough high spatial and temporal resolution, the frequent availability of maps can serve as a basis for a farmers irrigation advice system and for the regional irrigation authority to make decisions on the irrigation management at the regional scale. This can be a significant contribute to an efficient water management technology and a sustainable irrigated agriculture. Key-Words: Remote Sensing, Vegetation Index, Crop Coefficients, Water Balance

  8. Remote Sensing Best Paper Award for the Year 2014

    Prasad Thenkabail

    2014-01-01

    Remote Sensing has started to institute a “Best Paper” award to recognize the most outstanding papers in the area of remote sensing techniques, design and applications published in Remote Sensing. We are pleased to announce the first “Remote Sensing Best Paper Award” for the year 2014.

  9. Prioritization of Watersheds across Mali Using Remote Sensing Data and GIS Techniques for Agricultural Development Planning

    Murali Krishna Gumma

    2016-06-01

    Full Text Available Implementing agricultural water management programs over appropriate spatial extents can have positive effects on water access and erosion management. Lack of access to water for domestic and agricultural uses represents a major constraint on agricultural productivity and perpetuates poverty and hunger in sub-Saharan Africa (SSA. This lack of access is the result of erratic precipitation, poor water management, limited knowledge of hydrological systems, and inadequate investment in water infrastructure. Water management programs should be made by multi-disciplinary teams that consider the interrelationship between hydraulic and anthropogenic factors. This paper proposes a method to prioritize watersheds for water management and agricultural development across Mali (Western Africa using remote sensing data and GIS tools. The method involves deriving a set of relevant thematic layers from satellite imagery. Satellite images from Landsat ETM+ were used to generate thematic layers such as land use/land cover. Slope and drainage density maps were derived from Shuttle RADAR Topography Mission (SRTM Digital Elevation Model (DEM at 90 m spatial resolution. Population grids were available from the Global rural-urban mapping project (GRUMP database for the year 2000 and mean rainfall maps were extracted from Tropical rainfall measuring mission (TRMM grids for each year between 1988 and 2014. Each thematic layer was divided into classes that were assigned a rank for agriculture and livelihoods development provided by experts in the relevant field (e.g., Soil scientist ranking the soil classes and published literature on those themes. Zones of priority were delineated based on the combination of high scoring ranks from each thematic layer. Five categories of priority zones ranging from “very high” to “very low” were determined based on total score percentages. Field verification was then undertaken in selected categories to check the priority

  10. Introduction to remote sensing

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  11. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  12. A New Fusion Technique of Remote Sensing Images for Land Use/Cover

    WU Lian-Xi; SUN Bo; ZHOU Sheng-Lu; HUANG Shu-E; ZHAO Qi-Guo

    2004-01-01

    In China,accelerating industrialization and urbanization following high-speed economic development and population increases have greatly impacted land use/cover changes,making it imperative to obtain accurate and up to date information on changes so as to evaluate their environmental effects. The major purpose of this study was to develop a new method to fuse lower spatial resolution multispectral satellite images with higher spatial resolution panchromatic ones to assist in land use/cover mapping. An algorithm of a new fusion method known as edge enhancement intensity modulation (EEIM) was proposed to merge two optical image data sets of different spectral ranges. The results showed that the EEIM image was quite similar in color to lower resolution multispectral images,and the fused product was better able to preserve spectral information. Thus,compared to conventional approaches,the spectral distortion of the fused images was markedly reduced. Therefore,the EEIM fusion method could be utilized to fuse remote sensing data from the same or different sensors,including TM images and SPOT5 panchromatic images,providing high quality land use/cover images.

  13. Estimation of soil heat flux in a neotropical Wetland region using remote sensing techniques

    Victor Hugo de Morais Danelichen

    2014-12-01

    Full Text Available The direct estimation of the soil heat flux (G by remote sensing data is not possible. For this, several models have been proposed empirically from the relation of G measures and biophysical parameters of various types of coverage or not vegetated in different places on earth. Thus, the objective of this study was to evaluate the relation between G/Rn ratio and biophysical variables obtained by satellite sensors and evaluate the parameterization of different models to estimate G spatially in three sites with different soil cover types. The net radiation (Rn and G were measured directly in two pastures at Miranda Farm and Experimental Farm and and Monodominant Forest of Cambará. Rn, G, and G/Rn ratio and MODIS products, such as albedo (α, surface temperature (LST, vegetation index (NDVI and leaf area index (LAI varied seasonally at all sites and inter-sites. The sites were different from each other by presenting different relation between measures of Rn, G and G/Rn ratio and biophysical parameters. Among the original models, the model proposed by Bastiaanssen (1995 showed the best performance with r = 0.76, d = 0.95, MAE = 5.70 W m-2 and RMSE = 33.68 W m-2. As the reparameterized models, correlation coefficients had no significant change, but the coefficient Willmott (d increased and the MAE and RMSE had a small decrease.

  14. Prediction of a future washover landscape based on airborne remote sensing techniques

    Eleveld, M.A. [International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede (Netherlands)

    1997-06-01

    International recognition and protection of the Wadden Sea area was established after the {open_quote}Ramsar Convention on Wetlands of International Importance, Especially as Waterfowl Habitat{close_quote}. The Dutch government policy of dynamic preservation of the Dutch coast gives nature almost a free reign at locations designated as natural areas, e.g. the extremes of the Dutch Wadden islands. Management is involved in monitoring the coastal development with the purpose of gaining more insight in the processes affecting these areas, subsequently allowing prediction. An important process observed on the eastern ends of the Wadden islands is the occurrence of washovers. This geomorphological phenomenon, resulting in sand transport from the foredunes to the saltmarsh and tidal flats, has a major ecological impact, influencing among other things the species composition of the saltmarsh. To monitor the washovers several airborne sensors were used. Information on the formation and stabilization of washovers by vegetation, was extracted from multitemporal airborne videography and scanned aerial photographs. Based on the trends derived from these sequential images, digital elevation data and morphological parameters derived from laser altimetry, dynamic modelling in a GIS environment was applied, which resulted in the prediction of the place of washovers and the amount sediment that could be deposited on saltmarsh in the coming years. The general conclusion is that, the presence of washovers causes environmental heterogeneity resulting in a high species diversity. Multitemporal airborne remote sensing data are not only useful for monitoring the landscape but the data also support spatio-temporal modelling.

  15. A study on the determination of electromagnetic reflection values of agricultural crop pattern to improve accuracy of land use map by remote sensing technique

    Mustafa Bolca; Yusuf Kurucu; Ünal Altınbaş; M.Tolga Esetlili; Fulsen Özen

    2012-01-01

    With this study, using remote sensing technique, a data base which covers data on the electromagnetic energy reflections of various kinds of plants has been formed with the purpose of determining crop patterns. A 1/5.000 scale cadastral map was used as topographic map for the purpose of using remote sensing technique more effectively and sensibly for such crops as cotton, maize and sun flower of which the agriculture is exercised widely in Torbalı township and in this context in all the Aegea...

  16. Application of Hyperspectral Remote Sensing Techniques to Evaluate Water Quality in Turbid Coastal Waters of South Carolina.

    Ali, K. A.; Ryan, K.

    2014-12-01

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide valuable ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. Existing remote sensing ocean color products, such as the water quality proxy chlorophyll-a, are based on ocean derived bio-optical models that are primarily calibrated in Case 1 type waters. These traditional models fail to work when applied in turbid (Case 2 type), coastal waters due to spectral interference from other associated color producing agents such as colored dissolved organic matter and suspended sediments. In this work, we introduce a novel technique for the predictive modeling of chlorophyll-a using a multivariate-based approach applied to in situ hyperspectral radiometric data collected from the coastal waters of Long Bay, South Carolina. This method uses a partial least-squares regression model to identify prominent wavelengths that are more sensitive to chlorophyll-a relative to other associated color-producing agents. The new model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 μg/L. This approach capitalizes on the spectral advantage gained from current and future hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight to point-sources and problem areas that may contribute to a decline in water quality. The utility of this tool is in its versatility to a diverse set of coastal waters and its use by coastal and fisheries managers with regard to recreation, regulation, economic and public health purposes.

  17. Use of Remote Sensing Techniques For Geomorphological Study of Some Sites For Eroticism In Farafra Area, Western Desert, Egypt

    The present study deals with investigating some significant geomorphic features in the Farafra Oasis area such as natural caves and white desert which display remarkable landscapes of high esthetic value and very important sites for ecotourism. The study aims to produce a GIS ready database for registration of the natural caves with stalactites and stalagmites and a set of printed thematic maps for the above mentioned features with an explanatory notes for the features considered. To achieve these goals remote sensing and GIS techniques have been used, verified by field trip and GPS instrument for correct locations. The used thematic maps are: topographic maps for roads and tracks and main cities, and geologic maps. The study will be illustrated by numerous field photos. The description of the considered features and including significant photographs will be presented on a CD

  18. Techniques of the environmental observer: India's earth remote sensing program in the age of global information

    Denicola, Lane A.

    This research examines the emergence in India of earth remote sensing (ERS), a principal medium for environmental analysis, communication, and policy-making. ERS---the science and "craft" of analyzing images of terrestrial phenomena collected by aircraft or satellite---constitutes an information technology whose predominance in environmental discourse has grown continuously since first proposed for such applications by American researchers in 1962. Raising many thorny issues in information access and control, the use and popularization of ERS has intensified dramatically since the mid-1980s. In Westernized discourse (both popular and expert), space research and industry are often depicted at a double-remove from the so-called "developing world," where exotic technologies and esoteric goals are overshadowed by patent human needs and a lack of basic infrastructure. Yet advocates hail the utility of ERS in socially relevant applications, and India has amassed upwards of five decades of experience in space, with systems and products rivaled today only by those of the United States and China. A multi-sited ethnography of a nascent visual medium, the dissertation triangulates on its topic by tracing three analytical threads: (1) a diachronic analysis of Indian ERS satellites as an allegory of statehood and participation in the global present, (2) a synchronic analysis of ERS imagery as a discursive artifact and global information commodity, and (3) an analysis of interpretive practice as observed through a single class of Indian and foreign students at the Indian Institute of Remote Sensing (IIRS), considered here as an "interpretive community" of environmental experts. The dissertation is the result of four years of research with ERS students, faculty, researchers, users and administrators in the U.S., the U.K., Turkey and India. In particular, I conducted nine months of ethnographic fieldwork in India in 2002 and 2005, the latter half of which was spent in participant

  19. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  20. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  1. Hyperspectral Remote Sensing Techniques in Predicting Phycocyanin Concentrations in Cyanobacteria: A Comprehensive Study

    Mishra, S.; Mishra, D. R.; Schluchter, W. M.

    2009-12-01

    The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. Our results also show that the widely used 654 nm reflectance peak in existing algorithms is highly sensitive to changes in chlorophyll-a concentration and offers poor PC predictive ability. We present a novel spectral band ratio algorithm that is least sensitive to the presence of chlorophyll. The newly developed band ratio model showed promising results by yielding low root mean squared error (RMSE, 15,260 cells mL-1) and significantly low relative root mean squared error (RMS, 101%) as compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model yielded the lowest RMSE (13,885 cells mL-1) and a high coefficient of determination (0.95) between measured and predicted PC concentration. We also show that the new algorithm is species independent and accurately retrieves PC concentration in the presence of varying amount of chlorophyll-a in the system. Band setting of the model confirms that it can be used for retrieval of PC using hyperspectral sensors such as Hyperion as well as data acquired by other airborne sensors. Figure (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. Data collected from these experiments were included in the evaluation of existing PC predictive models and the calibration and validation of the new spectral band ratio model.

  2. Deforestation Analysis of Riverine Forest of Sindh Using Remote Sensing Techniques

    Habibullah Abbasi

    2011-07-01

    Full Text Available During recent decades the large scale deterioration of forests and natural resources is an eye opener. The degradation of forests and other natural resources has affected the ecology, environment, health and economy. The ecological problems with living organisms such as animals and plants and environmental problems such as increase in temperature and carbon dioxide, these factors have contributed to change in regional climate, health problems such as skin, eye diseases and sunstroke and economic problems such as loss of income to rural population and resources which depend on forests such as livestock. Therefore, it was necessary to carry out land cover/use research focusing on the monitoring and management of the present and past state of forests cover and other related objects using RS (Remote Sensing technologies. The RS is a way of mapping and monitoring the changes taking place in forests cover and other objects on a continuing basis. Sukkur and Shikarpur riverine forests are vanishing quickly due to the construction of barrages /dams on upper streams to produce hydroelectricity and irrigation installations which reduce the discharge of fresh water into the downstream Indus basin. Moreover, anthropogenic activities, livestock population, increased grazing, load and illegal tree cutting have contributed to this. The riverine forests are turning into barren land and most of the land is used for agriculture. These uncontrolled changes contribute to climate change and global warming. These changes are difficult to monitor and control without using RS technology. Assessment of deforestation of the Sukkur and Shikarpur to find temporal changes in the forests cover from April, 1979 to April, 2009 is presented in this paper. The integrated classes such as water body, grass/agriculture land, dry/barren land and forest cover maps show the temporal changes taking place in the forests cover for the last 30 years period. RS has been employed in the

  3. Laser Remote Sensing

    2000-01-01

    LIDAR is the first generation of laser remote sensing deve loped for detection of gas molecule in atmosphere. LIDAR is the abbreviated word for laser radar (laser light detection and ranging). It combines advantages of lasers ability to detect atoms and molecules and radars ability for remote sensing. The advance of technologies: tunable solid state laser (Ti-sapphire, O PO etc), optical fiber, photonics imaging technique and last but not least compu tational techniques, have promoted the development of new types of laser remote sensors capable of detecting toxic and radioactive chemicals and metals not in g as form and not exposed in air but under ground water and subsurface soil. The h igh power laser is used to vaporize the target material and generate plasma. Opt ical fiber is often used to delivery the laser beam and to collect the emission for imaging. The combination of spectroscopy with advanced photonics imaging te chniques can study both the chemical components of sample in-situ under ambient conditions and spatial distribution of different chemicals in remote operation without requiring sample preparation or extensive sample handing. These new deve lopments have greatly enlarged the horizon of traditional capability of remote s ensing.

  4. An integrated study of earth resources in the state of California using remote sensing techniques. [planning and management of water resources

    Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)

    1973-01-01

    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.

  5. Change Detection in Landuse and landcover using Remote Sensing and GIS Techniques

    VEMU SREENIVASULU

    2010-12-01

    Full Text Available Landuse and landcover exerts considerable influence on the various hydrologic phenomenons such as interception, infiltration, evaporation and surface flow. Various aspects of hydrological problems (i.e. Rainfall- Runoff modeling, Sedimentation studies, etc. can be studied if information on landuse / landcover is available for a catchment. In the present study, a landuse / landcover maps of Devak catchment for the years 1958,79,90 and 98 isprepared by Image processing and visual interpretation technique from the analysis of the IRS-1A L2B2 (FCC data for the year 1990, IRS-1C LISS-III (digital data for the year 1998 and SOI topographic maps for the year 1958 &1979. Level-I classification is adapted and the various categories of landuse are Mixed forest mainly pine, agricultural with sparse habitation, open scrub & scattered trees and water bodies (river. Results revealed a large change in the area of different landuse categories during the period from 1958 to 1998.The open scrub and scattered tress covering an area of about 46.17% in 1958 reduced to 9.90% in 1998.while the area under mixed forest increased from 36.68% in 1958 to 65.84% in 1998. The agriculture with sparse habitation also increased from 7.09 % in 1958 to 13.92 % in 1998. The main river drainage covering an area of about 10 % of the total catchment.

  6. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  7. STUDY OF INFLUENCE OF EFFLUENT ON GROUND WATER USING REMOTE SENSING, GIS AND MODELING TECHNIQUES

    S. Pathak

    2012-07-01

    Full Text Available The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India. There are four Common Effluent Treatment Plant (CETP treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi – a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat −1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer – inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer

  8. Remote sensing in soil science.

    Mulders, M.A.

    1987-01-01

    This book provides coverage of remote sensing techniques and their application in soil science. A clear, step-by-step approach to the various aspects ensures that the reader will gain a good grasp of the subject so that he can apply the techniques to his own field of study. The book opens with an in

  9. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques

    Lopes, Fernando Carlos; Pereira, Alcides José; Mantas, Vasco Manuel; Mpengo, Horácio Kativa

    2016-05-01

    Recognition of the main morphostructural features of the western edge of the Huila Plateau (SW Angola) can be done by using remote sensing techniques associated with field work. A digital elevation model (DEM) of the area was built for this purpose. This model is based on altimeter data acquired from the Aster sensor, on which image processing techniques such as enhancement techniques, contrast change and filtering were applied. Other techniques, such as RGB colour composition, were also tested. The processed satellite images were interpreted by visual process and the results were then compared with available geological maps (scale 1: 1 000 000). To facilitate both analysis and interpretation, the edge of the plateau was divided into three sectors: northern (or Chongoroi Edge), central (or Humpata Edge) and southern (or Oncocua Edge). For each sector, the main morphological aspects and main lineament systems were identified and characterized. In the specific case of the central sector, these parameters were also confirmed by field work. This study shows that the morphology of the western edge of the plateau is dominated by N50°W-N60°W, N60°E and N-S trending main tectonic systems. These results have important implications in terms of geological mapping and regional tectonics as well as in land-use planning and other areas, such as hydrogeology or geotechnics.

  10. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques

    Lopes, Fernando Carlos; Pereira, Alcides José; Mantas, Vasco Manuel; Mpengo, Horácio Kativa

    2016-05-01

    Recognition of the main morphostructural features of the western edge of the Huila Plateau (SW Angola) can be done by using remote sensing techniques associated with field work. A digital elevation model (DEM) of the area was built for this purpose. This model is based on altimeter data acquired from the Aster sensor, on which image processing techniques such as enhancement techniques, contrast change and filtering were applied. Other techniques, such as RGB colour composition, were also tested. The processed satellite images were interpreted by visual process and the results were then compared with available geological maps (scale 1: 1 000 000). To facilitate both analysis and interpretation, the edge of the plateau was divided into three sectors: northern (or Chongoroi Edge), central (or Humpata Edge) and southern (or Oncocua Edge). For each sector, the main morphological aspects and main lineament systems were identified and characterized. In the specific case of the central sector, these parameters were also confirmed by field work. This study shows that the morphology of the western edge of the plateau is dominated by N50°W-N60°W, N60°E and N-S trending main tectonic systems. These results have important implications in terms of geological mapping and regional tectonics as well as in land-use planning and other areas, such as hydrogeology or geotechnics.

  11. Optical remote sensing

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  12. Remote Sensing of Environmental Pollution

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  13. Current perspective on remote sensing

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  14. Optical Remote Sensing Laboratory

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  15. Romantic versus scientific perspective: the ruins of Radlin palace in Wielkopolska region in the light of remote sensing techniques

    Wilgocka, Aleksandra; Ruciński, Dominik; RÄ czkowski, Włodzimierz

    2015-06-01

    Although ruins of palace in Radlin, localized in Wielkopolska Region (Poland), could have been a great inspiration for romantic landscape painters, they were hardly considered as the subject of artistic interest. Nevertheless they stand as a marker in a landscape as a romantic background for the village on one hand and a memento for the neighbouring graveyard on another. Small scale excavations carried out in late 1950s with historical maps and analysis of still standing remains gave a general idea about wings order, localisation of main entrance and communication routs inside courtyard. Those early research thereby were the first step to change the meaning of this place from romantic to more scientific. New remote sensing technology allows move even further into scientific direction. The ruins in Radlin have been included into project ArchEO - archaeological applications of Earth Observation techniques. The main aim of the project in case of Radlin is an attempt to answer the question to what extent very high resolution optical satellite imagery might allow better understanding the spatial structure of the place. The various processing techniques were applied to facilitate the detection of archaeological features' impact on the vegetation condition. It enabled to assess the usefulness of satellite based data in recognizing specific archaeological remains. Thus, potential and limitations of satellite imagery versus other sources of spatial information like historic maps, excavation results, aerial photographs and Lidar will be discussed.

  16. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt

    Yasmine Megahed

    2015-09-01

    Full Text Available This study modeled the urban growth in the Greater Cairo Region (GCR, one of the fastest growing mega cities in the world, using remote sensing data and ancillary data. Three land use land cover (LULC maps (1984, 2003 and 2014 were produced from satellite images by using Support Vector Machines (SVM. Then, land cover changes were detected by applying a high level mapping technique that combines binary maps (change/no-change and post classification comparison technique. The spatial and temporal urban growth patterns were analyzed using selected statistical metrics developed in the FRAGSTATS software. Major transitions to urban were modeled to predict the future scenarios for year 2025 using Land Change Modeler (LCM embedded in the IDRISI software. The model results, after validation, indicated that 14% of the vegetation and 4% of the desert in 2014 will be urbanized in 2025. The urban areas within a 5-km buffer around: the Great Pyramids, Islamic Cairo and Al-Baron Palace were calculated, highlighting an intense urbanization especially around the Pyramids; 28% in 2014 up to 40% in 2025. Knowing the current and estimated urbanization situation in GCR will help decision makers to adjust and develop new plans to achieve a sustainable development of urban areas and to protect the historical locations.

  17. Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand

    H. Römer

    2012-06-01

    Full Text Available Recent tsunami disasters, such as the 2004 Indian Ocean tsunami or the 2011 Japan earthquake and tsunami, have highlighted the need for effective risk management. Remote sensing is a relatively new method for risk analysis, which shows significant potential in conducting spatially explicit risk and vulnerability assessments. In order to explore and discuss the potential and limitations of remote sensing techniques, this paper presents a case study from the tsunami-affected Andaman Sea coast of Thailand. It focuses on a local assessment of tsunami hazard and vulnerability, including the socio-economic and ecological components. High resolution optical data, including IKONOS data and aerial imagery (MFC-3 camera as well as different digital elevation models, were employed to create basic geo-data including land use and land cover (LULC, building polygons and topographic data sets and to provide input data for the hazard and vulnerability assessment. Results show that the main potential of applying remote sensing techniques and data derives from a synergistic combination with other types of data. In the case of hazard analysis, detailed LULC information and the correction of digital surface models (DSMs significantly improved the results of inundation modeling. The vulnerability assessment showed that remote sensing can be used to spatially extrapolate field data on socio-economic or ecological vulnerability collected in the field, to regionalize exposure elements and assets and to predict vulnerable areas. Limitations and inaccuracies became evident regarding the assessment of ecological resilience and the statistical prediction of vulnerability components, based on variables derived from remote sensing data.

  18. Hyperspectral remote sensing

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  19. Evaluation of land-use pattern change in West Bhanugach Reserved Forest, Bangladesh, using remote sensing and GIS techniques

    Md. Abdul Halim; Abdus Shahid; Mohammad Shaheed Hossain Chowdhury; Mst. Nazmun Nahar; Md. Shawkat Islam Sohel; Nuruddin, Md. Jahangir; Masao Koike

    2008-01-01

    A study was conducted to investigate the land-use pattern change over a period of 18 years (1988-2006) by using remote sensing and Geographical Information System (GIS) technologies, in the West Bhanugach Reserved Forest, a hill forest, in Sylhet Forest Division of Bangladesh. The images were processed using ERDAS Imagine software. Both supervised and unsupervised approaches were applied and ground control points were collected using a GPS. Maps were prepared using GIS software. Results showed that vegetation cover drastically decreased from the year 1988 to 1996 (1826 ha to 1714.85 ha), but increased gradually from the year 1996 to 2006 (1714.85 ha to 1847.83 ha) due to the initiation of co-management practice involving local communities. Change in bare land was inversely proportionate to the amount of vegetation cover changes unless any other land-uses were converted into bare land. The area of water bodies increased from the year 1988 to 1996 (307.67 ha to 379.53 ha), but decreased from the year 1996 to 1997, then remained invariabile from the year 1997 to 2006. Some recommendations were also made for applying the RS and GIS techniques to study the land-use pattern change in the Bhanugach Reserved Forest and to create a GIS data base for the study area.

  20. Morphometric analysis and prioritization of miniwatersheds in Rongli watershed, Sikkim (India using remote sensing and GIS techniques

    Deo Kumar Tamang

    2012-09-01

    Full Text Available In this study, morphometric analysis and prioritization of the seven mini watersheds of Rongli watershed of East districtin Sikkim state, India is carried using Remote Sensing and Geographical Information System (GIS techniques. Themorphometric parameters considered for analysis are stream length, bifurcation ratio, drainage density, stream frequency,texture ratio, form factor, circulatory ratio, elongation ratio and compactness constant. Rongli watershed has a dendriticdrainage pattern. The highest bifurcation ratio among all the mini watersheds is 5.30 which indicate a strong structuralcontrol on the drainage. The maximum value of circularity ratio is 0.697 for the mini watershed 3A1B2C2c. The miniwatershed 3A1B2C3a has the highest elongation ratio i.e. 0.763. The form factor values are in range of 0.37 to 0.46. Thecompound parameter values are calculated and prioritization rating of seven mini watersheds in Rongli watershed iscarried out. The mini watershed with the lowest compound parameter value is given the highest priority. The miniwatershed 3A1B2C2c has a minimum compound parameter value of 2.25 is likely to be subjected to maximum soilerosion hence it should be provided with immediate soil conservation measures.

  1. Shore Line Shifting of Namkhana Island of Indian Sundarban, South 24 Parganas, West Bengal, India, Using Remote Sensing &GIS Techniques

    Dr. Jatisankar Bandyopadhyay*

    2014-05-01

    Full Text Available The Sundarbans estuary Indian part of the Ganges- Brahmaputra delta of Namkhana Island is constantly under the threat due to natural and anthropogenic causes. This demands implementation of viable management plan backed by scientific reasoning. There are continuous changes upon earth surface by a variety of natural and anthropological agent’s activities. These agents cut, carry, away and deposit the materials from land surface. Running water has higher capacity of erosion than the other geomorphologic agents. The present research Work related to Saptamukhi and Muriganga River which channel is continuously changing due to geomorphic, climatic agents and human activities influenced in the surrounded region of Present River. This changes identification is the main objective of paper with constructive suggestions for control the right side bank erosion and shifting of Saptamukhi River. An attempt has been made here, to apparatus the RS and GIS techniques of Landsat MSS 1975 and ETM+ 2013 image of river change detection using traditional to advance geographical data sources. The advances Remote Sensing data and Topographical data are to be implementing for obtaining 38 years changes results in river stream. The comparatively result explains the 38 years changes in the river bank due to various natural and manmade activities like flood, water velocity, sand excavation, removal the vegetation cover and fertile soil excavation for the various proposes of local surrounded region’s people.

  2. Flood Hazard Assessment along the Western Regions of Saudi Arabia using GIS-based Morphometry and Remote Sensing Techniques

    Shi, Qianwen

    2014-12-01

    Flash flooding, as a result of excessive rainfall in a short period, is considered as one of the worst environmental hazards in arid regions. Areas located in the western provinces of Saudi Arabia have experienced catastrophic floods. Geomorphologic evaluation of hydrographic basins provides necessary information to define basins with flood hazard potential in arid regions, especially where long-term field observations are scarce and limited. Six large basins (from North to South: Yanbu, Rabigh, Khulais, El-Qunfza, Baish and Jizan) were selected for this study because they have large surface areas and they encompass high capacity dams at their downstream areas. Geographic Information System (GIS) and remote sensing techniques were applied to conduct detailed morphometric analysis of these basins. The six basins were further divided into 203 sub-basins based on their drainage density. The morphometric parameters of the six basins and their associated 203 sub-basins were calculated to estimate the degree of flood hazard by combining normalized values of these parameters. Thus, potential flood hazard maps were produced from the estimated hazard degree. Furthermore, peak runoff discharge of the six basins and sub-basins were estimated using the Snyder Unit Hydrograph and three empirical models (Nouh’s model, Farquharson’s model and Al-Subai’s model) developed for Saudi Arabia. Additionally, recommendations for flood mitigation plans and water management schemes along these basins were further discussed.

  3. Monitoring the urban expansion of Athens using remote sensing and GIS techniques in the last 35 years

    Nikolakopoulos, Konstantinos; Pavlopoulos, Kosmas; Chalkias, Christos; Manou, Dora

    2005-10-01

    During the last thirty-five years the capital of Greece has suffered from an enormous internal immigration. Its population has overpassed the five millions and today almost the half population of Greece is squeezed in Athens metropolitan area. Because of the significant increase of population, the urban expansion in the basin of Athens was also excessive and in some cases catastrophic. Buildings have covered all the free places, new roads have been constructed, the drainage networks have been covered or disappeared and a lot of changes have been occurred to the landforms. The construction of the new airport (Elefterios Venizelos) at the beginning of this decade created a new commercial and urban pole at the eastern part of Athens and the constructive activity has been moved to new areas around the airport. Our aim was to detect and map all the changes that occurred in the urban area, estimate the urban expansion rate and the human interferences in the natural landscape, using GIS and remote sensing techniques. We have used satellite images from three different periods (1973, 1992, 2002) and topographic maps of 1:25.000 scale. The spatial resolution of all the satellite images ranges from 5 to 10 meters and is it acceptable for the monitoring and mapping of the urban growth. Supervised classification and on screen digitizing methods have been used in order to map the changes. Finally the qualitative and quantitative results of this study are presented in this paper.

  4. Monitoring land- and water-use dynamics in the Columbia Plateau using remote-sensing computer analysis and integration techniques

    This study successfully utilized advanced, remote-sensing computer-analysis techniques to quantify and map land- and water-use trends potentially relevant to siting, developing, and operating a national high-level nuclear waste repository on the US Department of Energy's (DOE) Hanford Site in eastern Washington State. Specifically, using a variety of digital data bases (primarily multidate Landsat data) and digital analysis programs, the study produced unique numerical data and integrated data reference maps relevant to regional (Columbia Plateau) and localized (Pasco Basin) hydrologic considerations associated with developing such a facility. Accordingly, study results should directly contribute to the preparation of the Basalt Waste Isolation Project site-characterization report currently in progress. Moreover, since all study data developed are in digital form, they can be called upon to contribute to furute reference repository location monitoring and reporting efforts, as well as be utilized in other DOE programmatic areas having technical and/or environmental interest in the Columbia Plateau region. The results obtained indicate that multidate digital Landsat data provide an inexpensive, up-to-date, and accurate data base and reference map of natural and cultural features existing in any region. These data can be (1) computer enhanced to highlight selected surface features of interest; (2) processed/analyzed to provide regional land-cover/use information and trend data; and (3) combined with other line and point data files to accomodate interactive, correlative analyses and integrated color-graphic displays to aid interpretation and modeling efforts

  5. Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V, India

    M. Anji Reddy

    2007-03-01

    Full Text Available Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with > 50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested.

  6. Remote sensing; Fernerkundung

    Glaessler, C.

    2001-07-01

    The potential of different multitemporal and multispectral airborne and spaceborne remote sensing methods for assessment and monitoring of the lignite open-cast mining areas are discussed in this chapter. Emphasis is placed on the successful use of different remote sensing data in variable vegetation structures for dumped sediments with different mineralogical and geochemical properties and for hydrochemical properties of the residual lakes. Multiple remote sensing data are a cost and time efficient tool for the assessment of environmental impacts, supervising of reclamation activities as well as for long term monitoring of the mining area. The airborne data are well suited for large scale detailed research and mapping in smaller sites and the satellite data for the overview scale 1:50 000. An integrated remote sensing-GIS-system including all field and lab data, DTM and other graphical data, improve the results of the remote sensing data classification for the lignite mining region in Central Germany and the Lausitz. (orig.)

  7. Research and development of web oriented remote sensing image publication system based on Servlet technique

    Juanle, Wang; Shuang, Li; Yunqiang, Zhu

    2005-10-01

    According to the requirements of China National Scientific Data Sharing Program (NSDSP), the research and development of web oriented RS Image Publication System (RSIPS) is based on Java Servlet technique. The designing of RSIPS framework is composed of 3 tiers, which is Presentation Tier, Application Service Tier and Data Resource Tier. Presentation Tier provides user interface for data query, review and download. For the convenience of users, visual spatial query interface is included. Served as a middle tier, Application Service Tier controls all actions between users and databases. Data Resources Tier stores RS images in file and relationship databases. RSIPS is developed with cross platform programming based on Java Servlet tools, which is one of advanced techniques in J2EE architecture. RSIPS's prototype has been developed and applied in the geosciences clearinghouse practice which is among the experiment units of NSDSP in China.

  8. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    The paper attempts to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. It is reported that investigation of the signal response shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined. Laboratory data are used to demonstrate that the technique is applicable to water mixtures which contain constituents with both linear and nonlinear radiance gradients. Finally, it is concluded that instrument noise, ground-truth placement, and time lapse between remote sensor overpass and water sample operations are serious barriers to successful use of the technique

  9. Investigations of remote sensing techniques for early detection of Dutch elm disease

    Hammerschlag, R. S.; Sopstyle, W. J.

    1975-01-01

    Several forms of aerial photography were pursued in quest of a technique which could provide early detection of Dutch elm disease. The two most promising techniques tested were multispectral photography with object enhancement and biband ratioing coupled with scanning microdensitometry. For practical purposes the multispectral system has the advantage of providing a readily interpretable image in a relatively short time. Laboratory studies indicated that less emphasis should be placed on the use of a red filter or the near infrared beyond 750 mm for early detection of stress within a single plant species. Color infrared film would be optimal when used for a long term detection of loss of plant vigor which results in a physical change in a plant canopy, but should find minimal practicality for early detection of specific sources of plant stress such as Dutch elm disease. Considerable discretion should be used when interpreting imagery on copy film because of loss of resolution and color definition.

  10. Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing

    Krieger, Gerhard; Gebert, Nicolas; Moreira, Alberto

    2008-01-01

    This paper introduces the innovative concept of multidimensional waveform encoding for space-borne synthetic aperture radar (SAR). The combination of this technique with digital beamforming on receive enables a new generation of SAR systems with improved performance and flexible imag-ing capabilities. Examples are high-resolution wide-swath radar imaging with compact antennas, enhanced sensitivity for applications like along-track interferometry and moving object indication, or the implementa...

  11. Evaluation of Different Soil Salinity Mapping Using Remote Sensing Techniques in Arid Ecosystems, Saudi Arabia

    Mohamed Elhag

    2016-01-01

    Land covers in Saudi Arabia are generally described as salty soils with sand dunes and sand sheets. Waterlogging and higher soil salinity are major challenges to sustaining agricultural practices in Saudi Arabia principally within closed drainage basins. Agricultural practices in Saudi Arabia were flourishing in the last two decades. The newly reclaimed lands were added annually and distributed all over the country. Irrigation techniques are mostly modernized to fulfill water saving strategie...

  12. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information

  13. a Temporal and Spatial Analysis of Urban Heat Island in Basin City Utilizing Remote Sensing Techniques

    Chang, Hsiao-Tung

    2016-06-01

    Urban Heat Island (UHI) has been becoming a key factor in deteriorating the urban ecological environment. Spatial-temporal analysis on its prototype of basin city's UHI and quantitatively evaluating effect from rapid urbanization will provide theoretical foundation for relieving UHI effect. Based on Landsat 8, ETM+ and TM images of Taipei basin areas from 1900 to 2015, this article has retrieved the land surface temperature (LST) at summer solstice of each year, and then analysed spatial-temporal pattern and evolution characters of UHI in Taipei basin in this decade. The results showed that the expansion built district, UHI area constantly expanded from centre city to the suburb areas. The prototype of UHI in Taipei basin that showed in addition to higher temperatures in the centre city also were relatively high temperatures gathered boundaries surrounded by foot of mountains side. It calls "sinking heat island". From 1900 to 2000, the higher UHI areas were different land use type change had obvious difference by public infrastructure works. And then, in next 15 years till 2015, building density of urban area has been increasing gradually. It has the trend that UHI flooding raises follow urban land use density. Hot spot of UHI in Taipei basin also has the same characteristics. The results suggest that anthropogenic heat release probably plays a significant role in the UHI effect, and must be considered in urban planning adaptation strategies.

  14. Remote Sensing of Grass Response to Drought Stress Using Spectroscopic Techniques and Canopy Reflectance Model Inversion

    Bagher Bayat

    2016-07-01

    Full Text Available The aim of this study was to follow the response to drought stress in a Poa pratensis canopy exposed to various levels of soil moisture deficit. We tracked the changes in the canopy reflectance (450–2450 nm and retrieved vegetation properties (Leaf Area Index (LAI, leaf chlorophyll content (Cab, leaf water content (Cw, leaf dry matter content (Cdm and senescent material (Cs during a drought episode. Spectroscopic techniques and radiative transfer model (RTM inversion were employed to monitor the gradual manifestation of drought effects in a laboratory setting. Plots of 21 cm × 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were divided into a well-watered control group and a group subjected to water stress for 36 days. In a regular weekly schedule, canopy reflectance and destructive measurements of LAI and Cab were taken. Spectral analysis indicated the first sign of stress after 4–5 days from the start of the experiment near the water absorption bands (at 1930 nm, 1440 nm and in the red (at 675 nm. Spectroscopic techniques revealed plant stress up to 6 days earlier than visual inspection. Of the water stress-related vegetation indices, the response of Normalized Difference Water Index (NDWI_1241 and Normalized Photochemical Reflectance Index (PRI_norm were significantly stronger in the stressed group than the control. To observe the effects of stress on grass properties during the drought episode, we used the RTMo (RTM of solar and sky radiation model inversion by means of an iterative optimization approach. The performance of the model inversion was assessed by calculating R2 and the Normalized Root Mean Square Error (RMSE between retrieved and measured LAI (R2 = 0.87, NRMSE = 0.18 and Cab (R2 = 0.74, NRMSE = 0.15. All parameters retrieved by model inversion co-varied with soil moisture deficit. However, the first strong sign of water stress on the retrieved grass properties was detected as a change of Cw

  15. An integrated study of earth resources in the state of California using remote sensing techniques

    Colwell, R. N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A weighted stratified double sample design using hardcopy LANDSAT-1 and ground data was utilized in developmental studies for snow water content estimation. Study results gave a correlation coefficient of 0.80 between LANDSAT sample units estimates of snow water content and ground subsamples. A basin snow water content estimate allowable error was given as 1.00 percent at the 99 percent confidence level with the same budget level utilized in conventional snow surveys. Several evapotranspiration estimation models were selected for efficient application at each level of data to be sampled. An area estimation procedure for impervious surface types of differing impermeability adjacent to stream channels was developed. This technique employs a double sample of 1:125,000 color infrared hightflight transparency data with ground or large scale photography.

  16. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  17. Applying satellite remote sensing technique in disastrous rainfall systems around Taiwan

    Liu, Gin-Rong; Chen, Kwan-Ru; Kuo, Tsung-Hua; Liu, Chian-Yi; Lin, Tang-Huang; Chen, Liang-De

    2016-05-01

    Many people in Asia regions have been suffering from disastrous rainfalls year by year. The rainfall from typhoons or tropical cyclones (TCs) is one of their key water supply sources, but from another perspective such TCs may also bring forth unexpected heavy rainfall, thereby causing flash floods, mudslides or other disasters. So far we cannot stop or change a TC route or intensity via present techniques. Instead, however we could significantly mitigate the possible heavy casualties and economic losses if we can earlier know a TC's formation and can estimate its rainfall amount and distribution more accurate before its landfalling. In light of these problems, this short article presents methods to detect a TC's formation as earlier and to delineate its rainfall potential pattern more accurate in advance. For this first part, the satellite-retrieved air-sea parameters are obtained and used to estimate the thermal and dynamic energy fields and variation over open oceans to delineate the high-possibility typhoon occurring ocean areas and cloud clusters. For the second part, an improved tropical rainfall potential (TRaP) model is proposed with better assumptions then the original TRaP for TC rainfall band rotations, rainfall amount estimation, and topographic effect correction, to obtain more accurate TC rainfall distributions, especially for hilly and mountainous areas, such as Taiwan.

  18. Remote Sensing Segmentation Benchmark

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.

    Piscataway, NJ : IEEE Press, 2012, s. 1-4. ISBN 978-1-4673-4960-4. [IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). Tsukuba Science City (JP), 11.11.2012] R&D Projects: GA ČR GAP103/11/0335; GA ČR GA102/08/0593 Grant ostatní: CESNET(CZ) 409/2011 Keywords : remote sensing * segmentation * benchmark Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/mikes-remote sensing segmentation benchmark.pdf

  19. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences. PMID:23500022

  20. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  1. Monitoring land and water uses in the Columbia Plateau using remote-sensing computer analysis and integration techniques

    This study successfully utilized advanced, remote-sensing computer-analysis techniques to quantify and map land- and water-use trends potentially relevant to siting, developing, and operating a high-level national, nuclear waste repository on the US Department of Energy's Hanford Site in eastern Washington State. Specifically, using a variety of digital data bases (primarily multidate LANDSAT data) and digital analysis programs, the study produced unique numerical data and integrated data reference maps relevant to regional (Columbia Plateau) and localized (Pasco Basin) hydrologic considerations associated with developing such a facility. Because all study data developed are in digital form, they can be called upon to contribute to future reference repository location monitoring and reporting efforts, as well as to be utilized in other US Department of Energy programmatic areas having technical and/or environmental interest in the Columbia Plateau region. The results obtained indicate that multidate digital LANDSAT data provide an inexpensive, up-to-date, and accurate data base and reference map of natural and cultural features existing in any region. These data can be (1) computer enhanced to highlight selected surface features of interest; (2) processed/analyzed to provide regional land cover/use information and trend data; and (3) combined with other line and point data files to accommodate interactive, correlative analyses and integrated colorgraphic displays to aid interpretation and modeling efforts. Once the digital base is established, selected site information can be assessed immediately, various forms of data can be accessed concurrently or separately, and data sets may be displayed or mapped at any scale. Available editing software provides the opportunity to generate credible scenarios for a site while preserving the actual data base. 6 references

  2. Integration of Remote Sensing Techniques for Intensity Zonation within a Landslide Area: A Case Study in the Northern Apennines, Italy

    Veronica Tofani

    2014-01-01

    Full Text Available This paper describes the application of remote sensing techniques, based on SAR interferometry for the intensity zonation of the landslide affecting the Castagnola village (Northern Apennines of Liguria region, Italy. The study of the instability conditions of the landslide started in 2001 with the installation of conventional monitoring systems, such as inclinometers and crackmeters, ranging in time from April 2001 to April 2002, which allowed to define the deformation rates of the landslide and to locate the actual landslide sliding surface, as well as to record the intensity of the damages and cracks affecting the buildings located within the landslide perimeter. In order to investigate the past long-term evolution of the ground movements a PSI (Persistent Scatterers Interferometry analysis has been performed making use of a set of ERS1/ERS2 images acquired in 1992–2001 period. The outcome of the PSI analysis has allowed to confirm the landslide extension as mapped within the official landslide inventory map as well as to reconstruct the past line-of-sight average velocities of the landslide and the time-series deformations. Following the high velocities detected by the PSI, and the extensive damages surveyed in the buildings of the village, the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR system has been installed. The GBInSAR monitoring system has been equipped during October 2008 and three distinct campaigns have been carried out from October 2008 until March 2009. The interpretation of the data has allowed deriving a multi-temporal deformation map of the landslide, showing the up-to-date displacement field and the average landslide velocity. A new landslide boundary has been defined and two landslide sectors characterized by different displacement rates have been identified.

  3. MICROWAVE REMOTE SENSING IN SOIL QUALITY ASSESSMENT

    S. K. Saha

    2012-08-01

    Full Text Available Information of spatial and temporal variations of soil quality (soil properties is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers in recent past showed the potential utility of hyperspectral remote sensing technique for spatial estimation of soil properties. However, limited research studies have been carried out showing the potential of microwave remote sensing data for spatial estimation of various soil properties except soil moisture. This paper reviews the status of microwave remote sensing techniques (active and passive for spatial assessment of soil quality parameters such as soil salinity, soil erosion, soil physical properties (soil texture & hydraulic properties; drainage condition; and soil surface roughness. Past and recent research studies showed that both active and passive microwave remote sensing techniques have great potentials for assessment of these soil qualities (soil properties. However, more research studies on use of multi-frequency and full polarimetric microwave remote sensing data and modelling of interaction of multi-frequency and full polarimetric microwave remote sensing data with soil are very much needed for operational use of satellite microwave remote sensing data in soil quality assessment.

  4. Remote Sensing Information Classification

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  5. Online Remote Sensing Interface

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  6. An assessment of landslide susceptibility in the Faifa area, Saudi Arabia, using remote sensing and GIS techniques

    Alharbi, T.; M. Sultan; Sefry, S.; ElKadiri, R.; Ahmed, M.; Chase, R.; Milewski, A.; Abu Abdullah, M.; M. Emil; K. Chounaird

    2014-01-01

    An integrated approach was adopted over Faifa Mountain and its surroundings, in Saudi Arabia, to identify landslide types, distribution, and controlling factors, and to generate landslide susceptibility maps. Given the inaccessibility of the area, we relied on remote sensing observations and GIS-based applications to enable spatial analysis of data and extrapolation of limited field observations. Susceptibility maps depicting debris flows within ephemeral valleys (Type I) an...

  7. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  8. Remote sensing in biological oceanography

    Esaias, W. E.

    1981-01-01

    The main attribute of remote sensing is seen as its ability to measure distributions over large areas on a synoptic basis and to repeat this coverage at required time periods. The way in which the Coastal Zone Color Scanner, by showing the distribution of chlorophyll a, can locate areas productive in both phytoplankton and fishes is described. Lidar techniques are discussed, and it is pointed out that lidar will increase the depth range for observations.

  9. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Marc Cattet

    2010-11-01

    Full Text Available Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC. Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI, inversion algorithm, data fusion, and the integration of remote sensing (RS and geographic information system (GIS.

  10. Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas.

    Imbrenda, Vito; Coluzzi, Rosa; Calamita, Giuseppe; Luigia Giannossi, Maria; D'Emilio, Mariagrazia; Lanfredi, Maria; Makris, John; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Margiotta, Salvatore; Emanuela Bonomo, Agnese; De Martino, Gregory; Perrone, Angela; Rizzo, Enzo; Pignatti, Stefano; Summa, Vito; Simoniello, Tiziana

    2015-04-01

    Land degradation processes, such as salinization and waterlogging, are increasingly affecting extensive areas devoted to agriculture threatening the sustainability of farming practices. Soil salinization typically appears as an excess accumulation of salt generally pronounced at the soil surface. Commonly, soil salinity is defined and measured by means of laboratory measurements of the electrical conductivity of liquid extracted from saturated soil-paste or different soil-water suspensions. Lab measurements are generally time consuming, costly, destructive, untimely for practical situations where the determination of the causes and/or the assessment of management practices are of interest. Recently, emerging survey techniques proved to be powerful tools to support soil salinity appraisal reducing costs and increasing the amount of spatial information. In the frame of PRO-LAND project (PO-FESR Basilicata 2007-2013) the research activities have been focused on the study of a complex salinization phenomenon occurring in a coastal environment of the Basilicata region (Southern Italy) as a result of natural and anthropic disturbances. The study area is located in the southernmost part of the Bradanic Trough along the sandy Ionian coastal plain. The hydrogeological conditions affect shallowness of the aquifer (45-50 cm below the ground) allowing the occurrence of seawater intrusion. Moreover, during last century, human activities, i.e. built-up of dams, the emergence of farms and industries, played a relevant role in the alteration of soil and groundwater quality of the area. In this work, both ground-based and remote sensing data were used. First, a geophysical mapping of electrical conductivity was carried out using a multi-frequency portable electro-magnetic induction (EMI) sensor. Based on the geophysical mapping and on optimization sampling approach, a number of locations were identified to collect soil samples for the geomineralogical characterization. Airborne

  11. Assessment of Soil Degradation in The Northern Part of Nile Delta, Egypt, Using Remote Sensing and Gis Techniques

    The present work aims at monitoring soil degradation process within the last two decades in the northern part of Nile Delta .The investigated area lies between longitudes 31 00 and 31 15 E and latitudes 31 00 and 31 37 N, covering an area of about 344584.01 feddans. Detecting soil degradation and recognizing its various types is a necessity to take the practical measures for combating it as well as conserving and keeping the agricultural soil healthy. Land degradation was assessed by adopting new approach through the integration of GLASOD/ FAa approach and Remote Sensing / GIS techniques .The main types of human induced soil degradation that observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging .On the other hand water erosion because of sea rise is assessed. The obtained data showed that, areas that were affected by compaction increment have been spatially enlarged by 40.9 % and those affected by compaction decrease have been spatially reduced by 22.6 % of the total area, meanwhile areas that have been unchanged were estimated by 36.5% of the total area. The areas that were affected by water logging increase have been spatially enlarged by 52.2 % and those affected by water logging decrease have been spatially reduced by 10.1 % of the total area, meanwhile the areas which have been unchanged were represented by 37.7 % of the total area. Areas that were affected by salinity increase have been spatially enlarged by 31.4 % of the total area and those affected by salinity decrease have been reduced by 43.3 % of the total area. An area represented by 25.2 % of the total area has been unchanged. Alkalinization (sodicity) was expressed by the exchangeable sodium percentage (ESP).Areas that were affected by sodicity increase have been spatially enlarged by 33.7 %, meanwhile those affected by sodicity decrease have been spatially reduced by 33.6 % of the total area. An area represented by 32.6 % of the total area has been unchanged

  12. Using Remote Sensing and Spatial Analyses Techniques For Optimum Land Use Planning, West of Suez Canal, Egypt

    The current study aims at using remote sensing (RS) and Geographic Information System (GIS) techniques for optimum landuse planning of the area located north Ismaillia - south Port Said Governorates on the western side of Suez Canal. It is bounded by longitudes 32 degree 10 and 32 degree 20 E and latitudes 300 4 rand 31 0 00' N. Great part of this area is under reclamation and suffering from improper landuse. Ten geomorphologic units were recognized i.e. clay flats, decantation basins, overflow basins, sand sheets, gypsiferous flats, old river terraces, sand flats, turtle backs, lake beds, and recent river terraces. Using US Soil Taxonomy, two soil orders could be identified; Entisols and Aridisols which are represented by ten great groups: Typic Haplosalids, Typic Haplogypsids, Typic Toriorthents, Vertic Argigypsids, Vertic Torrijluvents, Vertic Natrargids ,Typic Torripsamments, Typic Torrifluvens, Aquic Torriorthents and Typic Psammaquents. Surface and ground water with respect to salinity and alkalinity hazards were investigated ,where surface water of the main canals was classified as C2-S 1, C3-S 1 ,C4-S2 and C4-S4, meanwhile the ground water was classified as C3-S 1, C3 -S 1 ,C4-S2 ,C4-SI and C4-S4 .Optimum landuse planning of the studied area includes three approaches i.e., physical planning, optimum cropping pattern and other uses. Physical planning includes designing of three geospatial models. I-treatment plant site selection model. 2-central village site selection model and 3- shortest path for new Canal model. Current cropping pattern was obtained by matching the crop requirements with soil characteristics, where soils of high sand flats and low gypsiferrous flats are currently highly suitable (S2) for sugar beat, alfalfa and cotton, soils of low sand flats are currently highly suitable (S2) for olive, citrus and melon, soils of low recent river terraces are currently highly suitable (S2) for sugar beat, cotton, corn and rice ,soils of moderately recent

  13. Remote sensing and water resources

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  14. Remote sensing applications in water resources

    Kumar, Nagesh D; Reshmidevi, TV

    2013-01-01

    With the introduction of the earth observing satellites, remote sensing has become an important tool in analyzing the Earth's surface characteristics, and hence in supplying valuable information necessary for the hydrologic analysis. Due to their capability to capture the spatial variations in the hydro-meteorological variables and frequent temporal resolution sufficient to represent the dynamics of the hydrologic processes, remote sensing techniques have significantly changed the water resou...

  15. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  16. Remote sensing image fusion

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  17. Introduction to remote sensing

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  18. Hyperspectral remote sensing for light pollution monitoring

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  19. Study of Sand Dunes and Their Effect on Desertification of Cultivated Lands in Shaanxi Province, China Using Remote Sensing Techniques

    2002-01-01

    About half of the arid and semi-arid lands in the world are deserts that comprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes cover considerable areas of the Yulin desert and northern Jinbian. Sand dunes are moving in the main wind direction and converting some agricultural area to wasteland. Remote sensing of sand dunes helps in the understanding of aeolian process and desertification. Remote sensing data combined with field studies are valuable in studying sand dunes, regional aeolian depositional history. In particular, active and inactive sand dunes of the north Shaanxi Province were studied using remote sensing and geographic information system. In this study, we describe the Landsat thematic mapper (TM) images, covering north Shaanxi Province, which were used to study the distribution, shape, size, trends, density and movement of sand dunes and their effect on desertification of cultivated lands. Estimation was made depending on soil erodibility factor (Ⅰ) and local climatic factor (C) during the period (June to September). The result indicates that soil erosion caused sand drift of 8.957 5, 7.03 ton for Yulin and Jinbian, respectively. The mean sand dunes movement rate were 4.37, 3.11 m, whereas, monthly sand dune advance rate were 1.092 5, 0.777 5 m, for the two locations, respectively. The study reveals that cultivated lands extended obliquely to the direction of sand dune movement are extremely affected, while other segments that extend parallel to the direction of the movement are not affected. Accordingly the north Shaanxi Province was divided into areas of different classes of potential risk. Moreover, blown sands and sand movement from neighboring highlands also affect the area of western desert.

  20. Applications of Remote sensing and Geographical information system techniques on Geomorphological mapping of coastal part of East Godavari district. Andhra Pradesh, India.

    Dr. Padma kumari, K; Jnaneswari,D; Dr.SubbaRao, D.V; Sridhar, P

    2012-01-01

    In this paper an attempt has been made to study of mapping of the geomorphological land forms, using remote sensing and GIS techniques in the coastal part of East Godavari District, Andhra Pradesh, India on 1: 50,000 scale. The Godavari delta, is termed as the rice bowl of Andhra Pradesh and second longest river 1465 km in the country spreads over an area of about 5100 sq km on the east coast of India bordering the Bay of Bengal and is a densely populated zone of intense economic activity, Fe...

  1. Measuring urban sprawl on geospatial indices characterized by leap frog development using remote sensing and GIS techniques

    Noor, N. M.; Asmawi, M. Z.; Rusni, N. A.

    2014-02-01

    Characterizing urban sprawl using spatial measures requires a concise definition of what constitutes sprawling urban spatial patterns. This research attempts to study a measurement of defining sprawl by using leapfrog development index through remote sensing and GIS approach. The IKONOS pan-sharpened and SPOT-5 with 1 and 2.5 meter resolution were used and combined with Geographical information system (GIS) database to analyze the geospatial indicators using the leapfrog development index. Kuantan city has been selected as a study area to examine the leapfrog development based on land use pattern for year 2012. The findings show Kuantan has identified as non-sprawling cities with result from characterization in leapfrog development that has been tested. However, the gap between sprawl and non-sprawling was very low. It is anticipated this research will provide a new direction in sprawl nationally that address finding of sprawl at the atomic level and present a robust analytical approach for characterizing urban development in city scale at once promoting a city via GIS & Remote Sensing technology respectively towards Digital and Green cities.

  2. A Technique for Remote Sensing of Suspended Sediments and Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    Li, Rong-Rong; Kaufman, Yoram J.

    2002-01-01

    We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  3. Evaluating Damage Assessment of Breaches Along the Embankments of Indus River during Flood 2010 Using Remote Sensing Techniques

    Ahmad, R.; Daniyal, D.

    2013-09-01

    Natural disasters cause human sufferings and property loss, if not managed properly. It cannot be prevented but their adverse impacts can be reduced through proper planning and disaster mitigation measures. The floods triggered by heavy rains during July 2010 in Pakistan caused swallowing of rivers causing human, agriculture, livestock and property losses in almost all over the country. The heavy rains in upper part of country were attributed to El-Nina effect. Accumulated water in the rivers floodplain overtopped and breached flood protective infrastructure. Flood damage particularly in Sindh province was caused by breaches in the embankments and even after months of flood recession in rivers, flood water affected settled areas in the province. This study evaluates the role of satellite remote sensing particularly in assessment of breaches and consequential damages as well as measures leading to minimize the effects of floods caused by breaches in flood protective infrastructure. More than 50 SPOT-5 imageries had been used for this purpose and breached areas were delineated using pre and post flood imageries, later on rehabilitation work were also monitored. A total 136 breaches were delineated out of which 60 were in the Punjab and 76 in Sindh province. The study demonstrates the potentials of satellite remote sensing for mapping and monitoring natural disasters and devising mitigation strategies.

  4. EVALUATING DAMAGE ASSESSMENT OF BREACHES ALONG THE EMBANKMENTS OF INDUS RIVER DURING FLOOD 2010 USING REMOTE SENSING TECHNIQUES

    R. Ahmad

    2013-09-01

    Full Text Available Natural disasters cause human sufferings and property loss, if not managed properly. It cannot be prevented but their adverse impacts can be reduced through proper planning and disaster mitigation measures. The floods triggered by heavy rains during July 2010 in Pakistan caused swallowing of rivers causing human, agriculture, livestock and property losses in almost all over the country. The heavy rains in upper part of country were attributed to El-Nina effect. Accumulated water in the rivers floodplain overtopped and breached flood protective infrastructure. Flood damage particularly in Sindh province was caused by breaches in the embankments and even after months of flood recession in rivers, flood water affected settled areas in the province. This study evaluates the role of satellite remote sensing particularly in assessment of breaches and consequential damages as well as measures leading to minimize the effects of floods caused by breaches in flood protective infrastructure. More than 50 SPOT-5 imageries had been used for this purpose and breached areas were delineated using pre and post flood imageries, later on rehabilitation work were also monitored. A total 136 breaches were delineated out of which 60 were in the Punjab and 76 in Sindh province. The study demonstrates the potentials of satellite remote sensing for mapping and monitoring natural disasters and devising mitigation strategies.

  5. Measuring urban sprawl on geospatial indices characterized by leap frog development using remote sensing and GIS techniques

    Characterizing urban sprawl using spatial measures requires a concise definition of what constitutes sprawling urban spatial patterns. This research attempts to study a measurement of defining sprawl by using leapfrog development index through remote sensing and GIS approach. The IKONOS pan-sharpened and SPOT-5 with 1 and 2.5 meter resolution were used and combined with Geographical information system (GIS) database to analyze the geospatial indicators using the leapfrog development index. Kuantan city has been selected as a study area to examine the leapfrog development based on land use pattern for year 2012. The findings show Kuantan has identified as non-sprawling cities with result from characterization in leapfrog development that has been tested. However, the gap between sprawl and non-sprawling was very low. It is anticipated this research will provide a new direction in sprawl nationally that address finding of sprawl at the atomic level and present a robust analytical approach for characterizing urban development in city scale at once promoting a city via GIS and Remote Sensing technology respectively towards Digital and Green cities

  6. Comparative analysis of property taxation policies within Greece and Cyprus evaluating the use of GIS, CAMA, and remote sensing techniques

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.

    2014-08-01

    This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.

  7. Remote sensing for water quality

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology

  8. A study on the determination of electromagnetic reflection values of agricultural crop pattern to improve accuracy of land use map by remote sensing technique

    Mustafa Bolca

    2012-07-01

    Full Text Available With this study, using remote sensing technique, a data base which covers data on the electromagnetic energy reflections of various kinds of plants has been formed with the purpose of determining crop patterns. A 1/5.000 scale cadastral map was used as topographic map for the purpose of using remote sensing technique more effectively and sensibly for such crops as cotton, maize and sun flower of which the agriculture is exercised widely in Torbalı township and in this context in all the Aegean Region. In the current study, August 2001 dated Landsat 7 satellite images of the region were interpreted and ground realities and satellite images of the agricultural crops with high economic value which are widely cultivated in the region were overlapped and their values of reflection were determined. Images thus obtained were overlapped with 1/5.000 cadastre maps and product varieties could be determined at the basis of large section of a map, plot and parcel. Separately collaboration with technical personnel from the Directorate of Torbalı Township Agriculture was achieved in field and lab studies, and by transferring the data obtained into their computers, tangible steps were taken in the direction of applying technology at the basis of the Township. As a result, an important and basic database was formed that could be used for the payout of incentive premiums to the local organization for various crops or that could render functionality to the implementation of Agricultural policies based on record system.

  9. An analysis of the accuracy and cost-effectiveness of a cropland inventory utilizing remote sensing techniques

    Jensen, J. R.; Tinney, L. R.; Estes, J. E.

    1975-01-01

    Cropland inventories utilizing high altitude and Landsat imagery were conducted in Kern County, California. It was found that in terms of the overall mean relative and absolute inventory accuracies, a Landsat multidate analysis yielded the most optimum results, i.e., 98% accuracy. The 1:125,000 CIR high altitude inventory is a serious alternative which can be very accurate (97% or more) if imagery is available for a specific study area. The operational remote sensing cropland inventories documented in this study are considered cost-effective. When compared to conventional survey costs of $62-66 per 10,000 acres, the Landsat and high-altitude inventories required only 3-5% of this amount, i.e., $1.97-2.98.

  10. Application of remote sensing techniques to study hydro-meteorological changes on the dynamics of glaciers, Bhagirathi basin, Garhwal Himalaya

    M. Tamil Selvan

    2012-03-01

    Full Text Available Hydro-meteorology is an interdisciplinary science involving the study and analysis of the interrelationships between the atmospheric and land phases of water as it moves through the hydrologic cycle. The recent development in remote sensing gives an opportunity to map natural features on earth surface with more accurately as 20 years before. In this paper, the de-glaciation pattern of the Bhagirathi basin has been studied from year 1980-2006 and various climatic parameters are also analysed during this period and compared with the changes on the glacier dynamics. Bhagirathi River and its tributaries are dependent predominantly on glacier and snow melt and precipitation. The average rainfall data for the Garhwal Himalaya varies between 1000 to 2500mm of which 50-80 % falls during the monsoon period between June and September. Over the study period, average daily maximum and minimum temperatures were computed to be 14.7 and 4.1°C respectively, whereas average mean temperature was 9.4°C. The investigation was carried out with the satellite images from the Landsat images of Multispectral Scanner (MSS and Thematic Mapper (TM and ETM+. Alongwith the Landsat images, Indian Remote Sensing Satellite (IRS LISS-III images have been used for preparing a repetitive glacier inventory. The retreat rate was faster in year 1980-2000 compare to the year 2000-2006. With the gradual retreat, the tributaries of the glaciers are susceptible to a detachment from the main body, thus showing fragmentation.

  11. Evapotranspiration and remote sensing

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  12. Remote sensing research in geographic education: An alternative view

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  13. Prospecting for phosphate rocks south of sawanet Al-hamra-Ghadir el Hamal area using remote sensing techniques and radiometric survey

    Gamma-ray spectrometry and remote sensing techniques were used to explore for possible phosphate deposits in the area located between Ash-Sharquieh and Khneifiss phosphate mines. The survey includes areas situated north of Wadi Ghadir El Hamal and south of Sawanet Al Hamra ridges. The Geographical Information System (GIS) was used to handle, overlay and cross the data sets collected by the two techniques in order to produce a phosphate prediction map based on three categories namely favorite facies, suitable geologic age and relatively high radioactivity. The resulted map showed three classes of priorities to find phosphate rocks. The fellow-up field investigation over locations belong to the first class has led to discover phosphate rocks. The mineralogical and chemical studies of samples collected from those rocks showed that they are of a good quality and are similar to Ash Sharquieh phosphate deposit. (author)

  14. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  15. EvaluationofLandCoverChangesRemoteSensingTechnique (Case Study: Hableh Rood Subwatershed of ShahrabadBasin

    Khadijeh Abolfathi

    2016-03-01

    Full Text Available The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI images between 2001 and 2013. Supervised classification was used for classification of Landsat images. Four land use classes were delineated including rangeland, irrigated farming and plantations land, and dry farming lands,urban. Visual interpretation, expert knowledge of the study area and ground truth information accumulated with field works to assess the accuracy of the classification results. Overall accuracy of 2001 and 2013 image classification was 81.48 (Kappa coefficient: 0.7340 and 87.04 (Kappa coefficient: 0.7841, respectively. The results showed considerable land cover changes for the given study area. Land cover change detection showed that in a period of 12 years, 277.57 hectares of dry farming lands and 340 hectares of dense range have been lost. But, 341 hectares for low dense range, 280 hectares for semi dense range and 1.4 hectares for urban areas, have been added in area.

  16. The use of remote sensing and GIS techniques with special emphasis on the use of Arc hydro data model in characterizing Atbara River watershed

    Remote sensing and GIS techniques were used successfully to establish hydrological information platform for Atbara sub-basin which drains from Ethiopia and Eretria to Sudan with entire area of about 224299 Km2. The study area have strategic importance, for many reasons; rich in minerals wealth, agricultural resources, and endowed with a substantial amount of water resources but the spatial and temporal distribution of water resources is imbalance. Remote Sensing and Digital elevation models (DEMs) are known to be very useful data sources for the automated delineation of flow paths, sub watersheds and flow networks for hydrologic modeling and watershed characterization, Landsat ETM + 30 m and Digital Elevation Models SRTM 90 m data used in this project, many digital image processing techniques used to enhanced images, interpretation and extracted information from satellite images by using ERDAS imagine, wile Arc GIS and arc hydro tools were used to processing and extract information from DEMs, stream network and catchment delineation and creation of geo database. It is the main output of this project, ready made GIS layers used to complete watershed characterizations view. The results of this research present in creation Arc hydro data model, and many thematic maps for Atbara sub-basin characteristics. The use of remote sensing in the study give efficient qualitative and quantitative detailed information about geomorphologic features drainage patterns, addition to general overview for land cover and land use. Moreover, the use of Digital Elevation Models in addition to the delineation of stream network and catchment give valuable information on the pale-geography and pale-climate of the study area. River network and watersheds delineations proved that El Gash River was once joining the Atbara River and it was a part of Nile Basin System. This might indicate that pale climatic conditions in the area were wet than the present. Geo database and Arc hydro data model

  17. Remote Sensing Digital Image Analysis An Introduction

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  18. Oil spill remote sensing sensors and aircraft

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  19. Applications of Remote Sensing

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  20. Hyperspectral remote sensing techniques applied to the noninvasive investigation of mural paintings: a feasibility study carried out on a wall painting by Beato Angelico in Florence

    Cucci, Costanza; Picollo, Marcello; Chiarantini, Leandro; Sereni, Barbara

    2015-06-01

    Nowadays hyperspectral imaging is a well-established methodology for the non-invasive diagnostics of polychrome surfaces, and is increasingly utilized in museums and conservation laboratories for documentation purposes and in support of restoration procedures. However, so far the applications of hyperspectral imaging have been mainly limited to easel paintings or paper-based artifacts. Indeed, specifically designed hyperspectral imagers, are usually used for applications in museum context. These devices work at short-distances from the targets and cover limited size surfaces. Instead, almost still unexplored remain the applications of hyperspectral imaging to the investigations of frescoes and large size mural paintings. For this type of artworks a remote sensing approach, based on sensors capable of acquiring hyperspectral data from distances of the order of tens of meters, is needed. This paper illustrates an application of hyperspectral remote sensing to an important wall-painting by Beato Angelico, located in the San Marco Museum in Florence. Measurements were carried out using a re-adapted version of the Galileo Avionica Multisensor Hyperspectral System (SIM-GA), an avionic hyperspectral imager originally designed for applications from mobile platforms. This system operates in the 400-2500 nm range with over 700 channels, thus guaranteeing acquisition of high resolution hyperspectral data exploitable for materials identification and mapping. In the present application, the SIM-GA device was mounted on a static scanning platform for ground-based applications. The preliminary results obtained on the Angelico's wall-painting are discussed, with highlights on the main technical issues addressed to optimize the SIM-GA system for new applications on cultural assets.

  1. Remote sensing in uranium exploration. Basic guidance

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  2. Application of remote sensing in forestry

    Lauer, D. T.

    1973-01-01

    The use of remote sensing techniques in forestry studies is investigated. In particular, inventory, monitoring, detection, and management are discussed. Data show that infrared imagery appears to be the best technique for forestry studies. Data also show that color photographs are more easily interpreted than black and white ones.

  3. Updating the 1/50.000 geological maps of IGME with remote sensing data, marine geology data, GPS measurements and GIS techniques: the case of KEA Island

    Nikolakopoulos, Konstantinos G.; Tsombos, Panagiotis I.; Mitropoulos, Dimitrios; Zervakou, Alexandra; Grasemann, Bernhard; Iglseder, Christoph; Petrakakis, Konstantin; Müller, Monica; Rice, A. Hugh N.; Voit, Klaus; Zámolyi, Andras; Draganits, Erich

    2009-09-01

    In this study the combined use of field mapping and measurements, remote sensing data analysis and GIS techniques for the geological mapping of KEA Island at a 1/50.000 scale, is presented. The geological formations, geotectonic units and the tectonic structure were recognized in situ and mapped. Interpretation of high resolution satellite images (Quickbird) and medium resolution satellite images (Landsat 7 ETM and ASTER) has been carried out in order to detect the linear or not structures of the study area. The in situ mapping was enhanced with data from the digital processing of the satellite data. Marine geology data such as bathymetric data and seismic profiles were also taken into account. All the analogical and digital data were imported in a geodata base specially designed for geological data. After the necessary topological control and corrections the data were unified and processed in order to create the final layout at 1/50.000 scale.

  4. Modelling runoff and glacier melt in the Hunza basin in northern Pakistan using satellite remote sensing techniques

    The glaciers in western Karakoram are important for freshwater supply in the rivers of Pakistan. Global warming influences the future water supply from glaciers. In order to study the hydrological conditions and possible impacts of climate change, runoff simulations are performed for the Hunza basin. The hydrological modelling system SRM (Snowmelt Runoff Model) is customized and applied to the Hunza basin. Various data obtained from satellite remote sensing imagery and meteorological stations in the study area are processed, prepared and used as input to SRM. For runoff simulations the basin is divided into five sub-basins. The (sub-) basins are defined by the hydrological response units (HRU) based on the elevation zones and land-cover types. The spatially distributed data are aggregated HRU-wise as input for the model simulations. The energy available for snow and glacier melt is parameterized in SRM by degree day factors which are defined separately for seasonal snow, ice and debris covered glaciers. The model is calibrated for the Hunza basin using the meteorological and remote sensing data from years 2002 and 2003. The daily runoff is simulated and compared with the measured discharge data obtained from the power company. The Nash-Sutcliffe correlation coefficient of simulated versus measured runoff data is 0.87 for year 2002 and 0.96 for year 2003 which indicates a good agreement. An estimation of mass balance of Baltoro glacier is made using the meteorological data from Shigar station applying the hydrological method to estimate accumulation and melt. Based on these data is found that Baltoro glacier has slightly negative mass balance. The ablation rates of debris covered parts of Baltoro glacier at 4150 m elevation are estimated to be between 3 and 4 cm per day. However, the uncertainty in mass balance modelling is high due to poor knowledge of accumulation inferred by spatial extrapolation from station data.Keeping the glacier area unchanged, for the 2002

  5. GIS and remote sensing techniques for measuring agriculture land loss in Balik Pulau region of Penang state, Malaysia

    Khalid Sabbar Mohammed

    2015-02-01

    Full Text Available Currently, Malaysia like other Asian countries has experienced rapid expansion of urbanization due to economic development, industrialization, massive migrations as well as natural population growth. This expansion particularly unplanned consumed a huge amount of arable land in the urban milieu and in its surrounding areas. This paper aims to measure arable land loss due to massive urbanization in Balik Pulau region of Penang State, Malaysia. Landsat TM (Thematic Mapper images of 1992 and 2002 at the resolution of 30 m and Landsat ETM (Enhanced Thematic Mapper 2010 have been used to measure the rate of urban expansion and its impact on agricultural land. The integration of Remote Sensing and Geographical information system GIS were used to quantify the conversion of arable land to built-up areas in Penang State. The result reveals that built-up areas have expanded rapidly during the last four decades at the expense of agricultural land in Balik Pulau Region. Built-up areas had increased from 1793.22 ha in 1992 to 3235.38 ha in 2002, while agricultural areas decreased from 6171.32 to 4727.83 ha during the same period. The expansion of Built-up area is directed towards low-lying areas with less topographical barrier causing heavy loss in productive land and environmental degradation. In order to safeguard the environment and maintain arable land, urbanization should be controlled and rationalized through legislative measures, wise policy and public awareness. More attention should be given to the areas that have witnessed massive urbanization and coordination between various sectors involved in development is a must.

  6. Estimation of spatial-temporal rainfall distribution using remote sensing techniques: A case study of Makanya catchment, Tanzania

    Jeniffer, Kinoti; Su, Zhongbo; Woldai, Tsahaei; Maathuis, Ben

    Rainfall-runoff modeling provides an opportunity to easily simulate the response of a watershed, thus providing an option for sustainable water resources management particularly in dry regions of Sub-Saharan Africa (SSA). Analysis of rainfall-runoff relationships in a catchment forms the basis of hydrological modeling. However, rainfall is a highly dynamic process, constantly changing in form and intensity as it passes over a given area. Traditionally, rainfall is measured using limited rain gauges at ground stations and often, the dynamics are not captured and yet it is the main input variable in any hydrological modeling. Without improved rainfall estimation, flow discharge estimates from rainfall-runoff relationship in both gauged and ungauged catchments particularly in arid and semi-arid regions remain a major challenge. Application of remote sensing information becomes crucial in the process of estimating rainfall patterns of these areas. The estimation of rainfall in this study was based on the blending of the geostationary MeteoSat Second Generation (MSG), infrared channel with the low-earth orbiting passive Tropical Rainfall Measuring Mission (TRMM), and microwave channel satellite data. To combine these two satellite data, a regression function associated with a threshold as an upper cloud temperature limit where rain occurs was determined. In this way, Makanya catchment rainfall maps (daily, monthly, and seasonal) with 3 km pixel size from 2004 to 2006 were generated by aggregating the 15 min rainfall values. Comparison of the results obtained from the blended TRMM-MSG with the available ground gauge data for 2004 and 2005 periods, gave a good correlation of about 80%. In conclusion, the developed TRMM-MSG blending procedure was found to be a reliable and robust way of obtaining spatial-temporal rainfall distribution of a given area and particularly so for arid and semi-arid lands (ASALs) such as Makanya with sparse data acquisition networks.

  7. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  8. Support for global science - Remote sensing's challenge

    Estes, J. E.; Star, J. L.

    1986-01-01

    Advances in remote sensing techniques are discussed. The benefits possible to remote sensing with the new Earth Observing System, which is composed of the Space Station and coorbiting and polar satellite platforms, are examined. Current changes in the remote sensing field, which involve a change from an industrial society to an informational society, force technology to high technology with high touch, short term to long term, centralized to decentralized, hierarchies to networks, and either/or to multiple option systems are studied. The explanatory and objective types of analyses for investigating biophysical, geochemical, and socioeconomic processes are described; the procedures include: morphometric, cause and effect, temporal and functional and ecological system analyses, inventory, mapping, monitoring, and modeling.

  9. Ground-water applications of remote sensing

    Moore, Gerald K.

    1982-01-01

    Remote sensing can be used as a tool to inventory springs and seeps and to interpret lithology, structure, and ground-water occurrence and quality. Thermograms are the best images for inventory of seeps and springs. The steps in aquifer mapping are image analysis and interpretation and ground-water interpretation. A ground-water interpretation is derived from a conceptual geologic model by inferring aquifer characteristics and water salinity. The image selection process is very important for obtaining maximum geologic and hydrologic information from remotely sensed data. Remote sensing can contribute an image base map or geologic and hydrologic parameters, derived from the image, to the multiple data sets in a hydrologic information system. Various merging and integration techniques may then be used to obtain information from these data sets.

  10. Laboratory exercises, remote sensing of the environment

    Mintzer, O.; Ray, J.

    1981-01-01

    The exercises are designed to convey principles and theory of remote sensing, and methodologies of its application to civil engineering and environmental concerns, including agronomy, geography, geology, wildlife, forestry, hydrology, and other related fields. During the exercises the student is introduced to several types of remote sensing represented by imagery from conventional format: panchromatic, black-and-white infrared, color, and infrared, 35mm aerial photography, thermal infrared, radar, multispectral scanner, and LANDSAT. Upon completion of the exercises the student is expected to know: (1) the electromagnetic spectrum, its various wavelength sub-sections and their uses as sensors, (2) the limitations of each sensor, (3) the interpretation techniques used for extracting data from the various types of imagery, and (4) the cost effectiveness of remote sensing procedures for acquiring and evaluating data of the natural environment.

  11. Geobotanical Remote Sensing for Geothermal Exploration

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  12. Multisensor image fusion guidelines in remote sensing

    Pohl, C.

    2016-04-01

    Remote sensing delivers multimodal and -temporal data from the Earth's surface. In order to cope with these multidimensional data sources and to make the most of them, image fusion is a valuable tool. It has developed over the past few decades into a usable image processing technique for extracting information of higher quality and reliability. As more sensors and advanced image fusion techniques have become available, researchers have conducted a vast amount of successful studies using image fusion. However, the definition of an appropriate workflow prior to processing the imagery requires knowledge in all related fields - i.e. remote sensing, image fusion and the desired image exploitation processing. From the findings of this research it can be seen that the choice of the appropriate technique, as well as the fine-tuning of the individual parameters of this technique, is crucial. There is still a lack of strategic guidelines due to the complexity and variability of data selection, processing techniques and applications. This paper gives an overview on the state-of-the-art in remote sensing image fusion including sensors and applications. Putting research results in image fusion from the past 15 years into a context provides a new view on the subject and helps other researchers to build their innovation on these findings. Recommendations of experts help to understand further needs to achieve feasible strategies in remote sensing image fusion.

  13. Application of remote sensing to agricultural field trials.

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or replace conve

  14. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique

    Rajendran, Sankaran; Nasir, Sobhi

    2015-08-01

    Moho and Moho Transition Zone (MTZ) of the Samail ophiolite of Sultanate of Oman are characteristic to potential occurrences of chromite deposit, hydrothermal mineralization and serpentinization. Mapping of Moho and MTZ, and discriminating them in between the mafic and ultramafic rocks in ophiolite sequence are more significant and important. The present study describes the remote sensing spectral characters of minerals and rocks of the Moho and MTZ and discriminates the Moho of Wadi Al Abyad of Nakhl massif, and Wadi Nidab and Wadi Abda regions of Sumail massif in the visible and near infrared (VNIR), and short wavelength infrared (SWIR) spectral regions using low-cost multispectral satellite data of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Results of this study show that the red-green-blue (RGB) color composite images of ASTER spectral bands 8, 3 and 1, and 8, 7 and 4 are able to delineate the Moho and MTZ of the regions. The RGB images of ASTER band ratios (4/8, 4/1, 3/2 * 4/3 and (1 + 3)/2, (4 + 6)/5, (7 + 9)/8) are capable to discriminate the mantle material (ultramafic harzburgites) and crustal rocks (mafic gabbros). The occurrence of such rock types is demonstrated by detection of their minerals using Spectral Angle Mapper (SAM) image processing method. The presence of Moho and MTZ, and associated lithologies are verified in field at Wadi Al Abyad, Wadi Nidab, Wadi Abda, Wadi Tayin, Wadi Fizh and several locations of Nakhl regions of Samail ophiolites. The laboratory study shows the occurrence of typical minerals namely olivine, orthopyroxene and clinopyroxene in the harzburgite and the minerals such as plagioclase, clinopyroxene, hornblende, orthopyroxene and olivine in the layered gabbro. The spectral properties of the rocks are studied using Portable Infrared Mineral Analyzer (PIMA) spectrometer and the occurrences of minerals are confirmed by X-ray diffraction (XRD) analyses. This study demonstrates the sensor

  15. Structural modeling of the Zagros fold-and-thrust belt (Iraq) combining field work and remote sensing techniques

    Reif, D.; Grasemann, B.; Faber, R.; Lockhart, D.

    2009-04-01

    contacts) from digital elevation models. The minimum vegetation cover in the investigated area allows an accurate picking of geological planes from the digital elevation model, which has been draped with LANDSAT and ASTER satellite images in order to enhance the contrast of lithological contacts. Geological planes of finite extent are interpolated in the Fault Trace module by virtual planes, which can be translated and rotated in any spatial direction. Comparison of measured data from the field with interpolated spatial orientations from the remote sensing data demonstrate that the calculated dip and strike values can be reproduced within the measurements error of a geological field compass.

  16. Remote Sensing of shallow sea floor for digital earth environment

    Understanding the sea floor biodiversity requires spatial information that can be acquired from remote sensing satellite data. Species volume, spatial patterns and species coverage are some of the information that can be derived. Current approaches for mapping sea bottom type have evolved from field observation, visual interpretation from aerial photography, mapping from remote sensing satellite data along with field survey and hydrograhic chart. Remote sensing offers most versatile technique to map sea bottom type up to a certain scale. This paper reviews the technical characteristics of signal and light interference within marine features, space and remote sensing satellite. In addition, related image processing techniques that are applicable to remote sensing satellite data for sea bottom type digital mapping is also presented. The sea bottom type can be differentiated by classification method using appropriate spectral bands of satellite data. In order to verify the existence of particular sea bottom type, field observations need to be carried out with proper technique and equipment

  17. Remote sensing of coastal processes and resources

    Klemas, V.

    1981-01-01

    The use of remote sensors and multispectral analysis techniques in solving environmental and resource management problems in the coastal zone is illustrated. The specific applications discussed include the analysis of coastal vegetation and productivity, remote sensing of estuarine fronts and their effects on oil dispersion, drift and dispersion of ocean-dumped wastes, and multispectral analysis of water pollutants and suspended sediment concentration.

  18. Remote sensing for cotton farming

    Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...

  19. Commerical Remote Sensing Data Contract

    U.S. Geological Survey

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  20. Comparison of the resulting error in data fusion techniques when used with remote sensing, earth observation, and in-situ data sets for water quality applications

    Ziemba, Alexander; El Serafy, Ghada

    2016-04-01

    Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance

  1. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  2. Analysis of anthropogenic impacts on the hydrological state of a Pleistocene catchment area using remote sensing techniques

    Leuschner, Annette; Merz, Christoph; Steidl, Jörg; van Gasselt, Stephan

    2016-04-01

    The water budget of a catchment area can be depicted by the complex interaction between topography and discharge as well as anthropogenic and climatic impacts. Over the last decades, the Pleistocene lowlands of North-Eastern Germany have experienced extensive anthropogenic modifications. The hydrological system has been significantly altered by the installation of artificial drainage, such as surface ditches and subsurface tile drains. It has been shown, that artificial drainage systems provide pathways for diffuse nutrients and pollutants leaching into surface and also subsurface water bodies, which is especially pronounced in lowland areas. The detection of these transport paths is important for obtaining an understanding of the regional water and substance balance and the development of strategies to improve hydrological conditions. Unfortunately, detailed data about locations of historic artificial drainage are rare or not available at all. The aim of this study was to identify the extensive anthropogenic modifications, like artificial drainage networks and land use changes, over the last decades with the aid of photogrammetric data and multispectral imagery. The detection of anthropogenic modifications is based on the method of Tetzlaff, et al. (2009), who developed an approach by interpreting aerial photographs for drained areas. We used color-infrared (CIR) aerial photographs, in order to apply different spectral techniques for obtaining information about water content and vitality status of plant cover. Although this method is sensitive to daily variations of soil moisture and plant growth as response to climate conditions, and the type of drainage pipe installation technique, we were able to identify different locations of artificial drainage. Complementary to this approach we utilized spectral classification methods for land cover in order to extract different land cover categories, and evaporation rates, depending on the land cover and surface

  3. Streamflow modelling by remote sensing: A contribution to digital Earth

    Remote sensing contributes valuable information to streamflow estimates. This paper discusses its relevance to the digital earth concept. The authors categorize the role of remote sensing in streamflow modelling and estimation. This paper emphasizes the applications and challenges of satellite-based products in streamflow modelling. Importance and application of streamflow models is firstly described. Then, different classifications of models, modelling processes and several uncertainties sources that affect models prediction are explained. In addition, we explore the advantages of satellite precipitation estimates in modelling, uncertainties in remotely sensed data and some improvement techniques. The connection, relationship and contribution of remote sensing for streamflow modelling to digital earth principle are identified. Finally, we define and illustrate the future directions and necessary developments of streamflow measurement by remote sensing

  4. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  5. Current remote sensing in natural resource management

    Greer, Jerry D.

    2003-08-01

    Natural resource management agencies continue to be one of the heavy users of remote sensing data. From the earliest days of aerial photography, managers have depended upon broad area coverage in various levels of resolution for information needed to conserve and preserve the Earth's resource base. The USDA Forest Service is one agency that has been an active user of remote sensing data since the days when foresters began using aerial photographs to analyze timber crops. To this day, the use of data acquired by aerial reconnaissance is an important part of the tools used to gather information. Last year, in April of 2002, the Forest Service, Remote Sensing Applications Cener with headquarters in Salt Lake City, Utah, sponsored The Ninth Biennial Remote Sensing Applications Conference in San Diego, California. Presentations at that conference demonstrate that airborne reconnaissance techniques continue to be of importance to managers of our natural resources. This paper is an overview of papers presented at the conference with emphasis upon applications that either use or have the potential to use airborne reconnaissance in data collection. Primary areas of interest include data collection for natural resource management and for law enforcement purposes on public lands an other remote, inaccessible back country areas.

  6. Remote sensing from UAVs for hydrological monitoring

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    2014-01-01

    The potential of Unmanned Aerial Vehicles (UAVs) has significantly increased over the last five years due to cost reductions and improved sensors. In addition, advanced real time kinematic GPS techniques have enabled cm-accuracy navigation and flight control for UAVs. UAVs have numerous advantages compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and inter...

  7. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  8. Electro-optical detection of uranium-238 decay products in the atmosphere: LIDAR remote sensing techniques are stuied to determine effectiveness in detecting uranium ore

    This study was conducted in two phases. The first phase dealt with theoretical calculations of expected detection sensitivities using LIDAR remote sensing techniques to measure airborne daughter products of 238U. The most promising species for this technique were found to be 214Bi and 210Pb, with effective photon scattering cross sections of 3.5 x 10-17 cm2 and 8 x 10-15 cm2 respectively. The theoretical calculations regarding system sensitivity were based on approximate calculations of the appropriate transition probabilities and estimates of the effects of atmospheric fluorescent quenching. Phase two consisted of experimental measurements of the total effective photon scattering cross sections and the effects of quenching by various atmospheric gases. Results of these measurements indicated that the calculated transition probabilities and effective scattering cross sections, exclusive of quenching, were in reasonable agreement with measured values. However, results of the quenching measurements showed that the original theoretical estimates had underestimated the effects of quenching by more than an order of magnitude. Calculations of expected LIDAR system performance based on the experimentally measured quantities showed that, although the system would be very sensitive by normal standards (1 part in 1018 at a range of 180 m), it would still be inadequate to the needs of an aerial survey search for 238U ore deposits

  9. Signal processing for remote sensing

    Chen, CH

    2007-01-01

    Written by leaders in the field, Signal Processing for Remote Sensing explores the data acquisitions segment of remote sensing. Each chapter presents a major research result or the most up to date development of a topic. The book includes a chapter by Dr. Norden Huang, inventor of the Huang-Hilbert transform who, along with and Dr. Steven Long discusses the application of the transform to remote sensing problems. It also contains a chapter by Dr. Enders A. Robinson, who has made major contributions to seismic signal processing for over half a century, on the basic problem of constructing seism

  10. Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-10-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TM+IGOM are considered as a benchmark because the II-TM solves Maxwells equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TM+IGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 μm) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and

  11. Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TM+IGOM are considered as a benchmark because the II-TM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TM+IGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 μm) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  12. The Technical Framework of Multi-source Remote Sensing Data Mining

    HuiliGong; JingLi; WenjiZhao; SongmeiZhang

    2004-01-01

    With the delivery of a great deal remote sensing data to land from Landsat constantly, Remote Sensing Satellite Ground Station accumulates abundant satellite remote sensing data. For lack of effective data mining (DM) and knowledge Discovery from Databases (KDD technique) to these data, most part of the information cannot be usede fficiently. Technical innovation and improvement of the traditional DM and KDD, study of the data mining and KDD will both increase the interpretation level and intelligentized, and moreover explore and utilize the remote sensing information at the maximum degree. Based on the traditional data mining and KDD, the authors probed the technical flow of DM and KDD of the remote sensing, designed the systematical framework of multi-sources remote sensing DM, put forward a prototypeEstablished a base for further exploring andsystem.of multi-sources remote sensing DM system. developing multi-sources remote sensing DM system.

  13. Applications of Remote sensing and Geographical information system techniques on Geomorphological mapping of coastal part of East Godavari district. Andhra Pradesh, India.

    Dr. Padma kumari, K

    2012-10-01

    Full Text Available In this paper an attempt has been made to study of mapping of the geomorphological land forms, using remote sensing and GIS techniques in the coastal part of East Godavari District, Andhra Pradesh, India on 1: 50,000 scale. The Godavari delta, is termed as the rice bowl of Andhra Pradesh and second longest river 1465 km in the country spreads over an area of about 5100 sq km on the east coast of India bordering the Bay of Bengal and is a densely populated zone of intense economic activity, Fed by a large 312,812 km2 drainage basin .The total study area is 1856.19 sq kms. The data used supervised classification was preferred for the best identification of features. Major features are Bay, Beach, coastal plain, Deltaic plain, fluvial plain, pediplain, river, tidal creek and forestUsing LISS III IRS P6 data.In this classification coastal plains are 402.32 sq km, Deltaic plains covers 719.15 sq km , flood plains 49.69 sq km marine land forms of Bay, Beach,Beach ridge, and river, brackish water, etc., are formed along the coastal areas are present in the table1(1.

  14. Using Remote Sensing and GIS Techniques to Detect Changes to the Prince Alfred Hamlet Conservation Area in the Western Cape, South Africa

    Duncan, P.; Lewarne, M.

    2016-06-01

    Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.

  15. Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery

    Salvador Sánchez-Carrillo

    2011-07-01

    Full Text Available In remote sensing, traditional methodologies for image classification consider the spectral values of a pixel in different image bands. More recently, classification methods have used neighboring pixels to provide more information. In the present study, we used these more advanced techniques to discriminate between mangrove and non‑mangrove regions in the Gulf of California of northwestern Mexico. A maximum likelihood algorithm was used to obtain a spectral distance map of the vegetation signature characteristic of mangrove areas. Receiver operating characteristic (ROC curve analysis was applied to this map to improve classification. Two classification thresholds were set to determine mangrove and non-mangrove areas, and two performance statistics (sensitivity and specificity were calculated to express the uncertainty (errors of omission and commission associated with the two maps. The surface area of the mangrove category obtained by maximum likelihood classification was slightly higher than that obtained from the land cover map generated by the ROC curve, but with the difference of these areas to have a high level of accuracy in the prediction of the model. This suggests a considerable degree of uncertainty in the spectral signatures of pixels that distinguish mangrove forest from other land cover categories.

  16. Satellite remote-sensing technologies used in forest fire management

    TIAN Xiao-rui; Douglas J. Mcrae; SHU Li-fu; WANG Ming-yu; LI Hong

    2005-01-01

    Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.

  17. Coral reef remote sensing applications

    Kuchler, D.A.; Jupp, D.L.B.; Claasen, D.B.; Bour, William

    1986-01-01

    Great Barrier Reef work is the major example used to describe how remote sensing technology is being applied in coral reef studies. Such studies include reef geography, reef form, surface cover, vegetation, micro aspects and oceanography. New generation sensors optimized for oceanographic applications, means that coral reef and oceanic studies will adopt more precise and more extensive uses of remote sensing technology. (Résumé d'auteur)

  18. Water management and remote sensing

    Assem, S. van den; W. G. M. Bastiaanssen; Claassen, T.H.L.; R. A. Feddes; M. Menenti; Minderhoud, P.; Nieuwenhuis, G.J.A.; Van Nieuwkoop, J; Stokkom, H.T.C. van; Stokman, N.G.M.; Thunnissen, H.A.M.; Visser, T.N.M.

    1990-01-01

    In modern water management detailed information is required on processes that occur and on the state of water systems, including the way they are influenced by human activities. Remote sensing can contribute significantly to these information. For example, areal patterns of water quality parameters such as suspended solids and algae, and physical and hydrological conditions of the soil can be directly observed. Moreover, with successive synoptical images, remote sensing provides the opportuni...

  19. Miniaturized RF Remote Sensing Instruments

    Brady, James; McEachron, Greg

    1995-01-01

    Until recently, miniaturization of RF remote sensing instruments has not been cost effective. Aperture size has governed launch vehicle selection and spacecraft mass has been well within margins. However, as technologies improve for miniature spacecraft, multiple spacecraft can fit within small launch vehicle shrouds. Down-sizing payloads is now advantageous. E-Systems is applying state-of the- art technologies to significantly reduce the size and weight of RF remote sensing payload electroni...

  20. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter

  1. A framework for developing remote sensing applications

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  2. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m2 plots in February 2000 and two 4m2 plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  3. Research on visualization technique of forestry remote sensing image using IDL%基于IDL的林业遥感图像可视化技术研究

    刘群; 曾怡

    2015-01-01

    With the development of remote sensing science and technology, to carry out the investigation and monitoring of forestry resources has become a principal mean to understand current situation and trend of development with the help of remote sensing images. An IDL-based forestry remote sensing image classification and visualization system, through numerical simulation and calculation results visualization of IMG remote sensing files, has been designed and implemented, combined with a typical problem of remote sensing image detect instances in forestry. The results show that it is IDL(Inter-active Data Language)matrix-oriented features and powerful data visualization capabilities that is an ideal tool of detec-tion of forest resources and forestry remote sensing image visualization.%随着空间科技的发展,借助遥感图像开展森林资源调查和监测逐渐成为了解森林资源现状及发展趋势的主要手段。结合林业遥感图像检测典型问题实例,通过对IMG遥感影像的数值模拟和计算结果的可视化,设计并实现了基于IDL的林业遥感图像分类与可视化系统。结果表明,IDL 面向矩阵的特性和强大的数据可视化能力是林业资源检测和林业遥感图像可视化的理想工具。

  4. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  5. Sea Ice Monitoring by Remote Sensing

    Sandven, Stein; Ola M. Johannessen

    2006-01-01

    Reprinted with permission from The American Society for Photogrammetry & Remote Sensing. Sandven, S. and O.M. Johannesen. “Sea Ice Monitoring by Remote Sensing.” Manual of Remote Sensing: Remote Sensing of the Marine Environment. James F.R. Gower, ed. 3rd Edtion, volume 6. Bethesda: American Society for Photogrammetry & Remote Sensing, 2006. 241-283. This article originally appeared as chapter 8 in the Manual of Remote Sensing, vol. 6, 3rd edition: Remote Sensing of the Marine Environment. Th...

  6. Measurement Strategies for Remote Sensing Applications

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  7. Remote sensing models and methods for image processing

    Schowengerdt, Robert A

    1997-01-01

    This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, s

  8. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  9. Using Remote Sensing and Gis Techniques For Assessment The Environmental Changes in The Area Surrounding Suez Canal, Egypt

    Multi-temporal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data were utilized in a Geographic Information System (GIS) to evaluate changes in landuse II and cover in the area surrounds the Suez Canal, Egypt. The area is bounded by the Great Bitter Lake from the south, El Qantara city from the north, Nile Delta from the west, and Sinai Peninsula from the east. The area witnessed a rapid development in the past three decades, and the environmental changes were very remarkable. The data collected by Landsat sensors, TM (1984) and ETM+ (2000) were used to conduct a change detection and landuse analysis over the area of study. Both images were spatially registered and band four (Near Infra-Red) was radiometrically normalized to eliminate the atmospheric and sun luminance variation. Band algebra techniques were implemented to generate a reflectance difference image. On the other hand, the images were classified with supervised (maximum likelihood) technique with the help of ground truth data to provide the landuse maps for 1984 and 2000 periods. These maps were converted to GIS environment and final landuse changes have been provided

  10. Remote sensing of subsurface water temperature by Raman scattering

    Leonard, D. A.; Caputo, B.; Hoge, F. E.

    1979-01-01

    The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.

  11. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  12. NASA Remote Sensing Research as Applied to Archaeology

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  13. MICROWAVE REMOTE SENSING IN SOIL QUALITY ASSESSMENT

    Saha, S K

    2012-01-01

    Information of spatial and temporal variations of soil quality (soil properties) is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers in recent past showed the potential utility of hyperspectral remote sensing technique for spatial est...

  14. Comparison of Water Vapor Measurements from Ground-based and Space-based GPS Atmospheric Remote Sensing Techniques

    Colon-Pagan, Ian; Kuo, Ying-Hwa

    2008-10-01

    In this study, we compare precipitable water vapor (PWV) values from ground-based GPS water vapor sensing and COSMIC radio occultation (RO) measurements over the Caribbean Sea, Gulf of Mexico, and United States regions as well as global analyses from NCEP and ECMWF models. The results show good overall agreement; however, the PWV values estimated by ground-based GPS receivers tend to have a slight dry bias for low PWV values and a slight wet bias for higher PWV values, when compared with GPS RO measurements and global analyses. An application of a student T-test indicates that there is a significant difference between both ground- and space-based GPS measured datasets. The dry bias associated with space-based GPS is attributed to the missing low altitude data, where the concentration of water vapor is large. The close agreements between space-based and global analyses are due to the fact that these global analyses assimilate space-based GPS RO data from COSMIC, and the retrieval of water vapor profiles from space-based technique requires the use of global analyses as the first guess. This work is supported by UCAR SOARS and a grant from the National Oceanic and Atmospheric Administration, Educational Partnership Program under the cooperative agreement NA06OAR4810187.

  15. A self-trained semisupervised SVM approach to the remote sensing land cover classification

    Liu, Ying; Zhang, Bai; Wang, Li-min; Wang, Nan

    2013-09-01

    Support vector machines (SVM) are nowadays receiving increasing attention in remote sensing applications although this technique is very sensitive to the parameters setting and training set definition. Self-training is an effective semisupervised method, which can reduce the effort needed to prepare the training set by training the model with a small number of labeled examples and an additional set of unlabeled examples. In this study, a novel semisupervised SVM model that uses self-training approach is proposed to address the problem of remote sensing land cover classification. The key characteristics of this approach are that (1) the self-adaptive mutation particle swarm optimization algorithm is introduced to get the optimum parameters that improve the generalization performance of the SVM classifier, and (2) the Gustafson-Kessel fuzzy clustering algorithm is proposed for the selection of unlabeled points to reduce the impact of ineffective labels. The effectiveness of the proposed technique is evaluated firstly with samples from remote sensing data and then by identifying different land cover regions in the remote sensing imagery. Experimental results show that accuracy level is increased by applying this learning scheme, which results in the smallest generalization error compared with the other schemes.

  16. Diachronic analysis of salt-affected areas using remote sensing techniques: the case study of Biskra area, Algeria

    Afrasinei, Gabriela M.; Melis, Maria T.; Buttau, Cristina; Bradd, John M.; Arras, Claudio; Ghiglieri, Giorgio

    2015-10-01

    In the Wadi Biskra arid and semi-arid area, sustainable development is limited by land degradation, such as secondary salinization of soils. As an important high quality date production region of Algeria, it needs continuous monitoring of desertification indicators, since the bio-physical setting defines it as highly exposed to climate-related risks. For this particular study, for which little ground truth data was possible to acquire, we set up an assessment of appropriate methods for the identification and change detection of salt-affected areas, involving image interpretation and processing techniques employing Landsat imagery. After a first phase consisting of a visual interpretation study of the land cover types, two automated classification approaches were proposed and applied for this specific study: decision tree classification and principal components analysis (PCA) of Knepper ratios. Five of the indices employed in the Decision Tree construction were set up within the current study, among which we propose a salinity index (SMI) for the extraction of highly saline areas. The results of the 1984 to 2014 diachronic analysis of salt - affected areas variation were supported by the interpreted land cover map for accuracy estimation. Connecting the outputs with auxiliary bio-physical and socio-economic data, comprehensive results are discussed, which were indispensable for the understanding of land degradation dynamics and vulnerability to desertification. One aspect that emerged was the fact that the expansion of agricultural land in the last three decades may have led and continue to contribute to a secondary salinization of soils. This study is part of the WADIS-MAR Demonstration Project, funded by the European Commission through the Sustainable Water Integrated Management (SWIM) Program (www.wadismar.eu).

  17. Assessment of tsunami vulnerability and resilience of coastal ecosystems at the Andaman Sea coast of Thailand – potential and limitations of remote sensing and GIS techniques for a local scale approach

    Römer, Hannes

    2011-01-01

    The thesis deals with the assessment of tsunami vulnerability and resilience of coastal ecosystems at the Andaman coast of Thailand by applying a remote sensing based approach. Object-oriented image analysis, change detection techniques and field investigations are used to a) retrospectively investigate the spatial patterns of tsunami vulnerability and b) to evaluate the potential and limitations of using high-resolution imagery (here IKONOS data) in the field of tsunami vulnerability and ris...

  18. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    O. Bock

    2013-10-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute-Provence (OHP. Two Raman lidars (IGN mobile lidar and OHP NDACC lidar, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these data sets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. Changes in the calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2–3%. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow White measurements up to 12 km. An overall dry bias is found

  19. Analyzing suitability for urban expansion under rapid coastal urbanization with remote sensing and GIS techniques: a case study of Linanyungang, China

    Zhao, Wenjun; Zhu, Xiaodong; Reenberg, Anette;

    2010-01-01

    Beginning in 2000, Lianyungang's urbanization entered a period of rapid growth, spatially as well as economically. Rapid and intensive expansion of "construction land" imposed increasing pressures on regional environment. With the support of remote sensing data and GIS tools, this paper reports a...

  20. Satellite remote sensing of vegetation

    Mahr, Tobias; Peper, Eva; Schubert, Alexander; Warnach, Simon; Pöhler, Denis; Horbanski, Martin; Beirle, Steffen; Mies, Kornelia; Platt, Ulrich; Wagner, Thomas

    2013-04-01

    DOAS (Differential Optical Absorption Spectroscopy) allows to determine the concentration of trace gases based on their specific absorptions cross-sections along a light path. Since 1995, this principle is employed successfully on satellite-based instruments like GOME, GOME-2 and SCIAMACHY for the global measurement of stratospheric and tropospheric trace gases like ozone and nitrogen oxides. Usually, spectral signatures from the ground, where a big part of the sunlight is reflected, are neglected in the evaluation. This can lead to errors in the trace gas determination. However, these structures offer the opportunity to identify surface properties of the earth and different types of vegetation. To analyse spectral reflectance properties, high resolved reflection spectra (FWHM 0.29 nm) from 95 plants were measured between 350 and 1050 nm. They can serve as a basis for the analysis of satellite data. Including different vegetation reference spectra, it is possible to determine groups of plants with similar optical properties. This allows to derive global maps of the spatio-temporal variation of plant distribution by satellite remote sensing. We present first results of this technique based on SCIAMACHY observations.

  1. Review of oil spill remote sensing.

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. PMID:24759508

  2. The Use of Remote Sensing Technique to Predict Gross Domestic Product (GDP): An Analysis of Built-Up Index and GDP in Nine Major Cities in Canada

    Faisal, K.; Shaker, A.

    2014-09-01

    City/regional authorities are responsible to design and structure the urban morphology based on the desired land-use activities. One of the key concerns regarding urban planning is to establish certain development goals, such as Gross Domestic Product (GDP). In Canada, the gross national income mainly relies on mining and manufacturing industries. In order to facilitate new city development, this study aims to utilize remote sensing and GIS techniques to assess the relationship between the industrial area and the reported GDP in nine major cities in Canada. Free archive multi-temporal Landsat TM images and land use vector data were obtained for year 2005 and 2010 during the summer season, where the socio-economic data, such as GDP, population, and total employment are obtained from Metropolitan Housing Outlook for the same duration. The Landsat TM images were first atmospherically corrected and the built-up values were computed using the Normalized Difference Built-up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) from the Landsat images. The high built-up values within the industrial areas were acquired for further analysis. Finally, a correlation analysis was conducted between the GDP, Population, and Total Employment with respect to the built-up areas. Preliminary findings show that the R2 between the percentage of built-up areas and industrial area within the corresponding city is 0.82. In addition, the R2 between the built-up areas and GDP ranges from 0.73 to 0.78. Consistent findings are observed in the similar correlation between the built-up areas and population, as well as the built-up areas and the employment, where the R2 is within 0.72 to 0.73. With the correlation found, we believe that results can be used as a generic indication for the federal/municipals authorities, which are aiming or target for a specific GDP with respect to the planned industrial area.

  3. Floods and wetlands: combining a water-balance model and remote-sensing techniques to characterize hydrological processes of ecological importance in the Tana River Delta (Kenya

    C. Leauthaud

    2012-10-01

    Full Text Available The Tana River Delta (TRD provides a multitude of ecosystem services for the local communities including fishing, farming and livestock keeping. The hydrological regime of its river determines for a large part the environmental health of the delta. The development of upstream irrigation schemes and hydroelectric infrastructure can seriously impact the ecological status of the TRD. The Tana Inundation Model (TIM presented here is the first known hydrological model of the TRD. Using it, we quantify essential hydrological variables of ecological importance for 2002–2011 such as flood extent and duration, flood timing and frequency, flood peaks and water height. TIM also provides an annual water balance. The model simulates river inflows and outflows, precipitation, overland flow, evapotranspiration and infiltration. The TRD is characterized by scarce hydrological data and a high cloud cover limiting the use of many remote sensing techniques. The methodology therefore combined a conventional water-balance analysis with the extraction of inundation extents from MODIS satellite imagery at a medium spatial and temporal resolution. In non extreme years and for the actual configuration of the Tana River, the flooded area exceeds 560 km2. Floods over 200 km2 occur approximately every two years, with a mean duration of less than 25 days. River discharge from the upper catchment counts for over 96% of the total water inflow. This study provides the first known estimates of these variables for the Tana River Delta and is therefore primordial for the management of the water and other natural resources of the zone. The hydrological model based on the Generalized Likelihood Uncertainty Estimation (GLUE is generic enough to be applied to other catchments with scarce hydrological data.

  4. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  5. Remote sensing to monitor uranium tailing sites

    This report concerns the feasibility of using remotely-sensed data for long-term monitoring of uranium tailings. Decommissioning of uranium mine tailings sites may require long-term monitoring to confirm that no unanticipated release of contaminants occurs. Traditional ground-based monitoring of specific criteria of concern would be a significant expense depending on the nature and frequency of the monitoring. The objective of this study was to evaluate whether available remote-sensing data and techniques were applicable to the long-term monitoring of tailings sites. This objective was met by evaluating to what extent the data and techniques could be used to identify and discriminate information useful for monitoring tailings sites. The cost associated with obtaining and interpreting this information was also evaluated. Satellite and aircraft remote-sensing-based activities were evaluated. A monitoring programme based on annual coverage of Landsat Thematic Mapper data is recommended. Immediately prior to and for several years after decommissioning of the tailings sites, airborne multispectral and thermal infrared surveys combined with field verification data are required in order to establish a baseline for the long-term satellite-based monitoring programme. More frequent airborne surveys may be required if rapidly changing phenomena require monitoring. The use of a geographic information system is recommended for the effective storage and manipulation of data accumulated over a number of years

  6. Editorial: Special issue on remote sensing of light pollution

    Aubé, Martin; Kocifaj, Miroslav

    2016-09-01

    This special issue contains papers related to the measurement, prediction, consequences and control of light pollution. The main underlying question of the special issue is: How remote sensing and field experiments can help us to understand and monitor light pollution? Through the papers published herein, you will find answers related to the use of remote sensing techniques as diverse as hyperspectral measurements, broadband photometry, along with DSLR color cameras image analysis.

  7. Remote Sensing for Wind Energy

    2011-01-01

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style informati...

  8. Remote sensing for site characterization

    Kuehn, Friedrich, (Edited By); King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  9. Remote Sensing of Water Pollution

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  10. Very-high-resolution mapping of river-immersed topography by remote sensing

    Feurer, D.; Bailly, J.S.; C. Puech; Le Coarer, Y.; Viau, A.

    2008-01-01

    Remote sensing has been used to map river bathymetry for several decades. Non-contact methods are necessary in several cases: inaccessible rivers, large-scale depth mapping, very shallow rivers. The remote sensing techniques used for river bathymetry are reviewed. Frequently, these techniques have been developed for marine environment and have then been transposed to riverine environments. These techniques can be divided into two types: active remote sensing, such as ground penetrating radar ...

  11. Laser applications for atmospheric remote sensing

    One of the most important thing to solve the environmental pollution problems are to establish a measurement technique to detect the kind and the type of pollution timely, quantitatively and qualitatively with accuracy and precision. The conventional measurement techniques such as wet analysis methods and spectrophotometric methods are generally time-consuming and require many man-powers, so it is apt to induce relatively higher errors in analytical processes. The application of laser for environmental remote sensing is the most powerful candidate to overcome the above-mentioned drawbacks of the conventional methods. In this report, we propose the possibility of laser application for environmental sensing. (Author)

  12. Oil pollution signatures by remote sensing.

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  13. Remote sensing of natural phenomena

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  14. EPA Remote Sensing Information Gateway

    Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.

    2009-12-01

    The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct

  15. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H.; Pratchett, Morgan S.; Riegl, Bernhard; Burt, John A.; Petrov, Peter; Amos, Carl

    2016-01-01

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~ 40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C)...

  16. Remote Sensing Information Science Research

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  17. Possible uses of satellite remote sensing in agrometeorology

    Remote sensing offers new possibilities in agrometeorology. Meteorological satellites (which have good revisit capability but low spatial resolution) and earth observation satellites (which have good spatial resolution but poor revisit capability) give complementary information on crop growth conditions and on the biological status of plants. Thermal infrared data can be used to map local climates, to estimate water balance at the scale of a small region and to determine the extent and the seriousness of damage caused by major climatic accidents (frost, drought). Visible near, near and middle infrared data are well adapted to crop identification and monitoring, biomass estimation and yield forecasting. The combination of information given by these 2 types of satellites should in future provide better knowledge and better control of agricultural production. However the application of such techniques may be limited by the cloud cover

  18. Remote sensing for wind energy

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  19. Remote Sensing for Wind Energy

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete;

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy....... Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing in...

  20. Geological remote sensing signatures of terrestrial impact craters

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  1. Multi- and hyperspectral geologic remote sensing: A review

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  2. Integrated non-invasive remote-sensing techniques and field survey for the geoarchaeological study of the Sud Lípez mining district, Bolivia

    New investigations have been carried out in the framework of a joint French–Argentine project dealing with the mineral resources and the metal production in the Andean plateau from the 10th to the 18th century. Geoarchaeology of the Sud Lípez, southern Bolivia, is revisited using multisource remote-sensing data including archive data from the 1960s and recent very high resolution (VHR) data simultaneously acquired with field work. The detailed geological mapping of the area is allowed by the field survey complemented by the multispectral and VHR data. The emphasis is on integrating all the geological features such as morphologies, petrology of the volcanics, lithology of the volcano-sedimentary rocks, regional and local faulting, veins, hydrothermally altered rocks, etc. GeoEye-1, which features the most advanced technology ever used in a civilian remote-sensing system, allows the detailed mapping of the archaeological remains that are particularly numerous at San Antonio de Lípez, with shallow pits, shafts connected in depth with adits, and large slag areas. Particularly, the plan of three old miners' villages has been drawn and its accuracy has been evaluated. (paper)

  3. IMPACT ANALYSIS OF OPEN CAST COAL MINES ON LAND USE/ LAND COVER USING REMOTE SENSING AND GIS TECHNIQUE: A CASE STUDY

    ANIL Z CHITADE

    2010-12-01

    Full Text Available Industrialisation plays vital role in the overall development and progress of any region. Along with the development, on the same time, it has the adverse impact on environment such as air pollution, water pollution and many others.Wardha basin of Chandrapur district (M.S has abounded with ample high quality coal minerals. This region has witnessed a lot of changes in land use/land cover (LULC due to exploration of coal minerals and subsequently the adverse impact on environment. This research explains the use of remote sensing (RS, Global positioning system (GPS, and GIS technology for the detection of LULC changes. In this work LULC changes have been detected using remotely sensed images during the period from 1990 to 2010, using Landsat-TM image of year 1990 and Cartosat-I image of year 2010. The above images were rectified and georeferenced using GPS data collected by point positioning mode observations.Ground truthing for the LULC classification accuracy assessment has been done using GPSinstrument. Image analysis operations have been carried out using Erdas Imagine software. Various effects of coal mining activities on the Land use have been highlighted.

  4. Hyperspectral remote sensing of wild oyster reefs

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  5. Remote sensing strategies for global resource exploration and environmental management

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources

  6. ENHANCEMENTS OF REMOTE SENSING FOR VEHICLE EMISSIONS IN TUNNELS

    The University of Denver in cooperation with the Desert Research Institute, U.S. EPA, and General Motors Corporation have successfully adapted the University of Denver's remote sensing system for vehicle exhaust to the measurement of vehicles in a tunnel environment. wo studies c...

  7. Water area variations in seasonal lagoons from the Biosphere Reserve of "La Mancha Húmeda" (Spain) determined by remote sensing classification methods and data mining techniques

    Dona, Carolina; Niclòs, Raquel; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan Manuel; Camacho, Antonio

    2015-04-01

    La Mancha Húmeda is a wetland-rich area located in central Spain that was designated as a Biosphere reserve in 1980. This area includes several dozens of temporal lagoons, mostly saline, whose water level fluctuates and usually become dry during the warmest season. Water inflows into these lagoons come from both runoff of very small catchment and, in some cases, from groundwater although some of them also receive wastewater from nearby towns. Most lack surface outlets and they behave as endorheic systems, with the main water withdrawal due to evaporation causing salt accumulation in the lake beds. Under several law protection coverage additional to that of Biosphere Reserve, including Ramsar and Natura 2000 sites, management plans are being developed in order to accomplish the goals enforced by the European Water Framework Directive and the Habitats Directive, which establish that all EU countries have to achieve a good ecological status and a favorable conservation status of these sites, and especially of their water bodies. A core task to carry out the management plans is the understanding of the hydrological trend of these lagoons with a sound monitoring scheme. To do so, an estimation of the temporal evolution of the flooded area for each lagoon, and its relationship with meteorological patterns, which can be achieved using remote sensing technologies, is a key procedure. The current study aims to develop a remote sensing methodology capable of estimating the changing water coverage areas in each lagoon with satellite remote sensing images and ground truth data sets. ETM+ images onboard Landsat-7 were used to fulfill this goal. These images are useful to monitor small-to-medium size water bodies due to its 30-m spatial resolution. In this work several methods were applied to estimate the wet and dry pixels, such as water and vegetation indexes, single bands, supervised classification methods and genetic programming. All of the results were compared with ground

  8. Assessment of biochemical concentrations of vegetation using remote sensing technology

    2002-01-01

    The main biochemicals (such as lignin, protein, cellulose, sugar, starch, chlorophyll and water) of vegetation are directly or indirectly involved in major ecological processes, such as the functions of terrestrial ecosystems (i.e., nutrient-cycling processes, primary production, and decomposition). Remote sensing techniques provide a very convenient way of data acquisition capable of covering a large area several times during one season, so it can play a unique and essential role provided that we can relate remote sensing measurements to the biochemical characteristics of the Earth surface in a reliable and operational way. The application of remote sensing techniques for the estimation of canopy biochemicals was reviewed. Three methods of estimating biochemical concentrations of vegetation were included in this paper: index, stepwise multiple linear regression, and stepwise multiple linear regression based on a model of the forest crown. In addition, the vitality and potential applying value are stressed.

  9. Advanced remote sensing terrestrial information extraction and applications

    Liang, Shunlin; Wang, Jindi

    2012-01-01

    Advanced Remote Sensing is an application-based reference that provides a single source of mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors such as RADAR and LIDAR. Scientists in a number of different fields including geography, geology, atmospheric science, environmental science, planetary science and ecology will have access to critically-important data extraction techniques and their virtually unlimited application

  10. Optical vs. electronic enhancement of remote sensing imagery

    Colwell, R. N.; Katibah, E. F.

    1976-01-01

    Basic aspects of remote sensing are considered and a description is provided of the methods which are employed in connection with the optical or electronic enhancement of remote sensing imagery. The advantages and limitations of various image enhancement methods and techniques are evaluated. It is pointed out that optical enhancement methods and techniques are currently superior to electronic ones with respect to spatial resolution and equipment cost considerations. Advantages of electronic procedures, on the other hand, are related to a greater flexibility regarding the presentation of the information as an aid for the interpretation by the image analyst.

  11. Remote sensing of evapotranspiration over crops using combined airborne and ground-based observations

    Remote sensing of evapotranspiration (ET) over crops could be valuable for managing scarce water resources, especially for irrigated lands. In the past decade remote sensing techniques have advanced to allow frequent estimation of ET at spatial scales useful for many farms. These techniques include ...

  12. Dynamic Monitoring of Soil and Water Losses Using Remote Sensing and GIS Techniques: a Case Study of Jialing River, Yangtze River, China

    Li, C.; Zhu, Y. J.; Li, G. E.; Zhu, Y. Q.; Li, R. H.; Wang, L.; Wu, Y. J.

    2016-06-01

    Water and soil loss problems are serious in China, especially in the upper and middle reaches of big rivers. This paper dynamically observed water and soil loss in key control regions in Jialing River Basin. Based on remotely sensed images, the method used in this paper is a combination of field investigation and indoor artificial interpretation under the technologies of RS and GIS. The method was proven to be effective of improving the accuracy of interpreting. The result shows the land use types of the researched regions and how they changed among the previous years. Evaluation of water and soil conservation was made. This result can provide references for further policy-making and water and soil loss controlling.

  13. The Combined Use of Airborne Remote Sensing Techniques within a GIS Environment for the Seismic Vulnerability Assessment of Urban Areas: An Operational Application

    Antonio Costanzo

    2016-02-01

    Full Text Available The knowledge of the topographic features, the building properties, and the road infrastructure settings are relevant operational tasks for managing post-crisis events, restoration activities, and for supporting search and rescue operations. Within such a framework, airborne remote sensing tools have demonstrated to be powerful instruments, whose joint use can provide meaningful analyses to support the risk assessment of urban environments. Based on this rationale, in this study, the operational benefits obtained by combining airborne LiDAR and hyperspectral measurements are shown. Terrain and surface digital models are gathered by using LiDAR data. Information about roads and roof materials are provided through the supervised classification of hyperspectral images. The objective is to combine such products within a geographic information system (GIS providing value-added maps to be used for the seismic vulnerability assessment of urban environments. Experimental results are gathered for the city of Cosenza, Italy.

  14. A 10-Year Assessment of Hemlock Decline in the Catskill Mountain Region of New York State Using Hyperspectral Remote Sensing Techniques.

    Hanavan, Ryan P; Pontius, Jennifer; Hallett, Richard

    2015-02-01

    The hemlock woolly adelgid is a serious pest of Eastern and Carolina hemlock in the eastern United States. Successfully managing the hemlock resource in the region depends on careful monitoring of the spread of this invasive pest and the targeted application of management options such as biological control, chemical, or silvicultural treatments. To inform these management activities and test the applicability of a landscape-scale remote sensing effort to monitor hemlock condition, hyperspectral collections, and concurrent ground-truthing in 2001 and 2012 of hemlock condition were compared with field metrics spanning a 10-yr survey in the Catskills region of New York. Fine twig dieback significantly increased from 9 to 15% and live crown ratio significantly decreased from 67 to 56% in 2001 and 2012, respectively. We found a significant shift from 59% "healthy" hemlock in 2001 to only 16% in 2012. However, this shift from healthy to declining classifications was mostly a shift to decline class 2 "early decline". These results indicate that while there has been significant increase in decline symptoms as measured in both field and remote sensing assessments, a majority of the declining areas identified in the resulting spatial coverages remain in the "early decline" category and widespread mortality has not yet occurred. While this slow decline across the region stands in contrast to many reports of mortality within 10 yr, the results from this work are in line with other long-term monitoring studies and indicate that armed with the spatial information provided here, continued management strategies can be focused on particular areas to help control the further decline of hemlock in the region. PMID:26470138

  15. Machine learning in geosciences and remote sensing

    David J. Lary; Amir H. Alavi; Amir H. Gandomi; Annette L. Walker

    2016-01-01

    Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regres-sion or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the ef-ficiency of ML for tackling the geosciences and remote sensing problems.

  16. Support for global science: Remote sensing's challenge

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  17. Monitoring Marsh Dynamics Through Remote Sensing

    Díaz-Delgado, Ricardo; Aragonés, David; Ameztoy, Iban; Bustamante, Javier

    2010-01-01

    Remote sensing has been used widely, and in many different ways, for wetlands. From simple wetland delineation and mapping to water body characterisation and the extraction of biophysical parameters, remote sensing images have provided useful results. Remote sensing offers synoptic and repetitive views of the same places on Earth. Additionally, remote sensors have been capturing long time series of images, with most sensors still fully active. This allows historical reconstruction of land cov...

  18. The reduction of remote sensing data by visual means. [education

    Colwell, R. N.; Poulton, C. E.; Schrumpf, B. J.

    1980-01-01

    Issues likely to be of concern to educators called upon to teach courses involving the reduction (interpretation) of remotely sensed data by visual means are considered. Topics covered include: (1) information requirements of those using remotely-sensed data; (2) educational concepts involved in teaching students how to generate the desired information from a visual analysis of the data; (3) principles and techniques specific to the photointerpretation process; (4) concepts involved in the making of photographic measurements, as dictated by the geometry of remote sensing imagery; (5) the nature of the various kinds of mapping, plotting, and photointerpretation equipment; and (6) some special considerations with respect to the convergence of evidence and other principles involved in the interpretation of photographs. A recommended procedure for determining the usefulness of any given type of aerial or space photography in relation to the inventory of natural resources is included.

  19. Introductory remote sensing principles and concepts principles and concepts

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  20. Remote Sensing for Wind Energy

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it...... is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the compendium is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... writing of the compendium, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a...

  1. Remote Sensing for Wind Energy

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia;

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy....... Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly...

  2. Remote Sensing for Wind Energy

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it...... is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the compendium is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to...... our colleagues in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote...

  3. Levee Health Monitoring With Radar Remote Sensing

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  4. The global troposphere: Biogeochemical cycles, chemistry, and remote sensing.

    Levine, J S; Allario, F

    1982-09-01

    The chemical composition of the troposphere is controlled by various biogeochemical cycles that couple the atmosphere with the oceans, the solid Earth and the biosphere, and by atmospheric photochemical/chemical reactions. These cycles and reactions are discussed and a number of key questions concerning tropospheric composition and chemistry for the carbon, nitrogen, oxygen and sulfur species are identified. Next, we review various remote sensing techniques and instruments capable of measuring and monitoring tropospheric species from the ground, aircraft and space to address some of these key questions. We also consider future thrusts in remote sensing of the troposphere. PMID:24264018

  5. Wind measurements by optical remote sensing; Windmessung mit optischer Fernerkundung

    Emeis, S. [Inst. fuer Meteorologie und Klimaforschung - Atmosphaerische Umweltforschung (IMK-IFU), Forschungszentrum Karlsruhe GmbH, Garmisch-Partenkirchen (Germany)

    2006-08-15

    The use of wind energy requires precise wind measurements. The hitherto existing in situ-techniques with cup anemometers mounted on masts will meet mechanical and financial limits at future hub heights. Ground-based optical remote sensing methods that measure the vertical profile of wind speed up to some hundred metres height may be a way out from these problems. This paper will discuss the basic principles of anemometry by remote sensing and will present some optical methods (lidar, lidar-Doppler-anemometry) in more detail. (orig.)

  6. Microwave and millimeter-wave remote sensing for security applications

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  7. The use of remote sensing for landslide studies in Europe

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola

    2013-04-01

    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  8. Remote sensing estimates of impervious surfaces for pluvial flood modelling

    Kaspersen, Per Skougaard; Drews, Martin

    This paper investigates the accuracy of medium resolution (MR) satellite imagery in estimating impervious surfaces for European cities at the detail required for pluvial flood modelling. Using remote sensing techniques enables precise and systematic quantification of the influence of the past 30...

  9. A selected bibliography: Remote sensing applications in geography

    Ripple, W.J.

    1977-01-01

    The bibliography contains 82 citations of selected publications and technical reports.  The references deal with the application of remote sensing techniques to the collection and analysis of geographic data.  All of the citations were published between January 1968 and July 1977.

  10. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  11. A New GIS based Application of Sequential Technique to Prospect Karstic Groundwater using Remotely Sensed and Geoelectrical Methods in Karstified Tepal Area, Shahrood, Iran

    Fereydoun Sharifi

    2015-06-01

    Full Text Available In this research, recognition of karstic water-bearing zones using the management of exploration data in Kal-Qorno valley, situated in the Tepal area of Shahrood, has been considered. For this purpose, the sequential exploration method was conducted using geological evidences and applying remote sensing and geoelectrical resistivity methods in two major phases including the regional and local scales. Thus, geological structures and lithological units in regional scale have been investigated for groundwater potential. In this regard, suitable potential maps have been provided in the geographical information system (GIS environment, using fuzzy data-driven and knowledge-driven methods. To obtain the final karstic water potential model, the prepared maps were combined using fuzzy ‘AND’ operator. In the local scale, geoelectrical surveys were conducted in the recognized high potential zones. Consequently, the results of geological investigations, analysis of lineaments extracted from satellite imagery and geoelectrical resistivity data modeling and interpretation were integrated to decide on the position of high yield extraction wells. As a result, karstic water zones in the study area were identified, and based on that, two suitable drilling locations to access and extract karstic groundwater in the study area have been suggested.

  12. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site. PMID:26971815

  13. Remotely Sensed Ground Control Points

    Hummel, P.

    2016-06-01

    Accurate ground control is required to georeferenced airborne and spaceborne images. The production of ortho-photogrammetric data requires ground control that is traditionally provided as Ground Control Points (GCPs) by GNSS measurements in the field. However, it can be difficult to acquire accurate ground control points due to required turn-around time, high costs or impossible access. CompassData, Inc. a specialist in ground control, has expanded its service to deliver Remotely Sensed Ground Control Points (RSGCPs®). TerraSAR-X and TanDEM-X are two satellites with such high accuracy of their orbital positions and SAR data that RSGCPs® can be produced to a sub-meter quality depending on certain parameters and circumstances. The technology and required parameters are discussed in this paper as well as the resulting accuracies.

  14. An adaptability analysis of remote sensing indices in evaluating fire severity%林火烈度遥感评估指数适应性分析

    谭柳霞; 曾永年; 郑忠

    2016-01-01

    Performing quantitative evaluation of forest fire severity scientifically and reasonably is helpful to revealing the changing of forest ecosystems under fire, and is also of great significance for studying the vegetation recovery and management. Taking the north rim of Grand Canyon National Park in USA as the study area, combined with the composite burn index ( CBI) after field survey, the authors used Landsat5 TM images of Poplar Fire to analyze the applicability of NDVI, NBR,ΔNDVI andΔNBR so as to evaluate fire severity. According to the result obtained, there is some difference between the four remote sensing indices in identifying forest fire intensity of different levels. For non-fire and light fire, indices from a uni-temporal can perform better than indices from bi -temporal (pre and post fire), and NBR has the highest accuracy up to 66. 7% and 80%, respectively; on the contrary, for moderate fire and severe fire, indices from bi-temporal ( pre and post fire) can perform better than indices from a uni -temporal, and ΔNBR outperformed the others, because it considers only indices difference resulting from change of vegetation situation and environmental factors caused by forest fire and not affected by surroundings;it has high accuracy of evaluating moderate fire and severe fire, with the accuracy up to 100% and 90%. In general, indices from bi-temporal ( pre and post fire) have higher overall accuracy than indices from a uni-temporal, and ΔNBR has the highest overall accuracy in evaluating fire severity with the accuracy up to 86. 2%, which is hence the most suitable remote sensing indices to evaluate fire severity in this study area.%科学合理地定量评估林火烈度,对揭示林火干扰下森林生态系统的变化,以及植被的恢复与管理具有重要意义。以美国科罗拉多大峡谷国家公园北缘的Poplar Fire为实验区,利用Landsat5 TM影像,结合实地调查的综合火烧指数( composite burn index,CBI),分析评价

  15. Hyperspectral Remote Sensing for Tropical Rain Forest

    Kamaruzaman Jusoff

    2009-01-01

    Full Text Available Problem statement: Sensing, mapping and monitoring the rain forest in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions and are now included in climate change negotiations. Approach: We reviewed the potential for air and spaceborne hyperspectral sensing to identify and map individual tree species measure carbon stocks, specifically Aboveground Biomass (AGB and provide an overview of a range of approaches that have been developed and used to map tropical rain forest across a diverse set of conditions and geographic areas. We provided a summary of air and spaceborne hyperspectral remote sensing measurements relevant to mapping the tropical forest and assess the relative merits and limitations of each. We then provided an overview of modern techniques of mapping the tropical forest based on species discrimination, leaf chlorophyll content, estimating aboveground forest productivity and monitoring forest health. Results: The challenges in hyperspectral Imaging of tropical forests is thrown out to researchers in such field as to come with the latest techniques of image processing and improved mapping resolution leading towards higher precision mapping accuracy. Some research results from an airborne hyperspectral imaging over Bukit Nanas forest reserve was shared implicating high potential of such very high resolution imaging techniques for tropical mixed dipterocarp forest inventory and mapping for species discrimination, aboveground forest productivity, leaf chlorophyll content and carbon mapping. Conclusion/Recommendations: We concluded that while spaceborne hyperspectral remote sensing has often been discounted as inadequate for the task, attempts to map with airborne sensors are still insufficient in tropical developing countries like Malaysia. However, we demonstrated this with a case

  16. Technology Progress Report for Microwave Remote Sensing

    JIANG Jingshan; DONG Xiaolong; LIU Heguang

    2004-01-01

    In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for China's lunar exploration satellite (Chang'E-1), meteorological satellite FY-3 and ocean dynamic measurement satellite (HY-2) are reported.

  17. Preface: Remote Sensing of Water Resources

    Deepak R. Mishra; D’Sa, Eurico J.; Sachidananda Mishra

    2016-01-01

    The Special Issue (SI) on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  18. Remote sensing and reflectance profiling in entomology

    Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...

  19. Remote sensing of vegetation structure using computer vision

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal

  20. Land border monitoring with remote sensing technologies

    Malinowski, Radoslaw

    2010-09-01

    The remote sensing technology has many practical applications in different fields of science and industry. There is also a need to examine its usefulness for the purpose of land border surveillance. This research started with analysis of potential direct use of Earth Observation technology for monitoring migrations of people and preventing smuggling. The research, however, proved that there are still many fields within which the EO technology needs to be improved. From that point the analysis focused on improving Border Permeability Index which utilizes EO techniques as a source of information. The result of BPI analysis with use of high resolution data provides new kind of information which can support and make more effective work of authorities from security domain.

  1. The importance of fracturing in the Pimenta Bueno-Ro Basin structure: A study of the morphostructural elements of the rupture-ductile character through remote sensing techniques and products

    Desouzapontes, Clayton

    1989-08-01

    The Pimenta Bueno sedimentary basin was studied with remote sensing techniques and images. A structural analysis was performed by statistical treatment over linear element of relief and drainage obtained from LANDSAT/TM images and radar mosaic in the scale of 1:250,000. Interpretation of the anisotropy drainage curves and interpretation of the magnetic lineaments in the whole area was also done. The main structural trends of fractures found in this area are: N85E-S80E, N10E-N10W, and N40-50E. The fractures in the range N85E-S80E were responsible for the control of paleozoic sedimentation in this basin. The drainage anisotropy analysis over the cretaceous sedimentation gave strong coherence with the most important regional lineaments, making the identification of highs and lows of the basement easy.

  2. Three Dimensional Remote Sensing of Vegetation in Human Landscapes Using Computer Vision Technologies

    Dandois, J.; Ellis, E. C.

    2009-12-01

    Urban and other populated and used landscapes today cover a greater extent globally than do wild ecosystems. Methods for accurate ecological measurements on their vegetation and other ecological properties are therefore essential for ecology and earth science. Yet human landscapes are characterized by complex mosaics of vegetation and built structures that are heterogeneous at very fine spatial scales, therefore defying ecological measurements by conventional two dimensional remote sensing techniques, even when these are applied at fine spatial scales. To better measure and understand human-environment interactions within densely populated landscapes, high-spatial resolution three dimensional (3D) remote sensing techniques are needed. Current methods of remote sensing from aerial and satellite platforms are able to resolve land cover and three-dimensional structure using a combination of passive and active sensor technologies (e.g., optical imagers and LIDAR sensors). Despite such advances, there remain substantial gaps in knowledge about the distribution and biological characteristics of vegetation across all regions of earth, especially in densely populated environments. Here we present new methods for very fine scale 3D remote sensing of vegetation structure using computer vision techniques applied to standard digital photographs taken from consumer grade digital cameras mounted on low-altitude aerial platforms. Computer vision algorithms are used to produce 3D geometry from overlapping images, generating datasets very similar to LIDAR point clouds, and useful for measuring vegetation structure characteristics like canopy structure and tree height. These are then used to estimate vegetation biophysical characteristics like canopy density and biomass. Preliminary results demonstrate that this approach offers great promise as a tool for obtaining ecological measurements such as canopy height and vegetation form at the scale of individual trees in a low-cost and

  3. First European Workshop on 'Remote sensing in mineral exploration'

    The First European Workshop on 'Remote sensing in mineral exploration' organized by the Commission of the European Communities in February 1985 took stock of the results obtained within the European Community on the application of remote sensing techniques in exploration. The papers presented in this publication are essentially based on data obtained with the first generation of satellites and some airborne experiments. Important progress in data processing and interpretation has been made in the EEC since 1979 and is continuing to be made. The main aim is to provide the EC mining industry with a new tool for exploration. Significant results have already been obtained with the EEC playing an important role in the promotion of this relatively new technique. The main R and D trend is towards an integration of multidata sets (remote sensing, geochemical, geophysical and other data) to improve the methodology for delineating new targets in exploration. Another general trend is the participation of mining companies in remote sensing experiments. Further improvement for exploration is expected in the near future with the thematic mapper and the spot imageries as well as new airborne sensors

  4. Remote sensing monitoring of the global ozonosphere

    Genco, S.; Bortoli, D.; Ravegnani, F.

    2013-10-01

    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  5. Research Dynamics of the Classification Methods of Remote Sensing Images

    Zhang, Yan; Wu, Baoguo; Wang, Dong

    2013-01-01

    As the key technology of extracting remote sensing information, the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods, the new study dynamics of remote sensing classification, such as artificial neural networks, support vector machine, active lear...

  6. Using Remote Sensing Technique to Investigate Geothermal Water in North of Guangdong Province, China%粤北地热资源遥感调查探测模式与应用

    姚金; 李静荣; 凌造

    2011-01-01

    目前,地热资源勘查仍以传统的物探方法为主,这样在探测区地热宏观环境条件不明时,就会出现投资风险大或盲目开采的情况;而遥感对地热资源的探测是弥补这一不足的先进技术.本文利用陆地卫星遥感数据处理方法进行了有效的遥感地质解译,依据陆地卫星红外遥感数据所反映的地物辐射温度差异特点,对遥感影像进行波段差值运算、HIS(HLS)彩色变换的增强处理,获得了工作区范围内的热异常分布格局.另通过遥感地质解译、地面调查等综合分析,剔除地热假异常,有效提取了地热异常的分布范围.综合热红外遥感地热异常和遥感地质解泽及野外实地调查所获得的地质、构造、地形地貌等信息,建立有利于形成地下热水的信息模式,以指导实际寻找未知区域地下热水工作.上述实例说明,该技术方法切实可行,值得进一步研究和推广.%The exploitation of geothermal resource has very important significance to make the best use of clean energy sources, play down the strain in energy sources and develop circulatory economy. At present, the traditional geophysical exploration method of geothermal resource has the disadvantages of long period and large investment resulted by the anomalies in gravity, magnetism and electricity. It is likely to appear large risk investment or blind mining. However, the exploitation of geothermal resource based on modern remote sensing technique that uses infrared wave band has the characteristics of speediness, large area and lower cost in geothermal information extraction. Using relative data processing method, we carried through remote sensing geological interpretation. According to the differences of ground object radiation temperature reflected by earth satellite infrared remote sensing data, we enhanced effects in band difference algorithm and HIS (HLS) color switch in order to distill the distribution of geothermal anomaly

  7. Remote sensing support for post fire forest management

    Chirici G

    2008-02-01

    Full Text Available Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring, a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR and, above all, very high (VHR spatial resolution. In the last decade, HR and VHR passive (optical remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and imagery by light aerial vectors or VHR satellite is currently sought as a viable option for the post-fire monitoring.

  8. Advanced and applied remote sensing of environmental conditions

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  9. A Comparative Study of Removal Noise from Remote Sensing Image

    Al-amri, Salem Saleh; Khamitkar, S D

    2010-01-01

    This paper attempts to undertake the study of three types of noise such as Salt and Pepper (SPN), Random variation Impulse Noise (RVIN), Speckle (SPKN). Different noise densities have been removed between 10% to 60% by using five types of filters as Mean Filter (MF), Adaptive Wiener Filter (AWF), Gaussian Filter (GF), Standard Median Filter (SMF) and Adaptive Median Filter (AMF). The same is applied to the Saturn remote sensing image and they are compared with one another. The comparative study is conducted with the help of Mean Square Errors (MSE) and Peak-Signal to Noise Ratio (PSNR). So as to choose the base method for removal of noise from remote sensing image.

  10. A Comparative Study of Removal Noise from Remote Sensing Image

    Santosh Khamitkar

    2010-01-01

    Full Text Available This paper attempts to undertake the study of three types of noise such as Salt and Pepper (SPN, Random variation Impulse Noise (RVIN, Speckle (SPKN. Different noise densities have been removed between 10% to 60% by using five types of filters as Mean Filter (MF, Adaptive Wiener Filter (AWF, Gaussian Filter (GF, Standard Median Filter (SMF and Adaptive Median Filter (AMF. The same is applied to the Saturn remote sensing image and they are compared with one another. The comparative study is conducted with the help of Mean Square Errors (MSE and Peak-Signal to Noise Ratio (PSNR. So as to choose the base method for removal of noise from remote sensing image.

  11. In-situ and Remote-Sensing Data Fusion Using Machine Learning Techniques to Infer Urban and Fire Related Pollution Plumes

    Segal-Rosenhaimer, M.; Russell, P. B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C. J.; Johnson, R. R.; Dunagan, S. E.; Shinozuka, Y.; Kacenelenbogen, M. S.; Chatfield, R. B.

    2014-12-01

    Airmass type characterization is key in understanding the relative contribution of various emission sources to atmospheric composition and air quality and can be useful in bottom-up model validation and emission inventories. However, classification of pollution plumes from space is often not trivial. Sub-orbital campaigns, such as SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) give us a unique opportunity to study atmospheric composition in detail, by using a vast suite of in-situ instruments for the detection of trace gases and aerosols. These measurements allow identification of spatial and temporal atmospheric composition changes due to various pollution plumes resulting from urban, biogenic and smoke emissions. Nevertheless, to transfer the knowledge gathered from such campaigns into a global spatial and temporal context, there is a need to develop workflow that can be applicable to measurements from space. In this work we rely on sub-orbital in-situ and total column remote sensing measurements of various pollution plumes taken aboard the NASA DC-8 during 2013 SEAC4RS campaign, linking them through a neural-network (NN) algorithm to allow inference of pollution plume types by input of columnar aerosol and trace-gas measurements. In particular, we use the 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) airborne measurements of wavelength dependent aerosol optical depth (AOD), particle size proxies, O3, NO2 and water vapor to classify different pollution plumes. Our method relies on assigning a-priori "ground-truth" labeling to the various plumes, which include urban pollution, different fire types (i.e. forest and agriculture) and fire stage (i.e. fresh and aged) using cluster analysis of aerosol and trace-gases in-situ and expert input and the training of a NN scheme to fit the best prediction parameters using 4STAR measurements as input. We explore our misclassification rates as

  12. In-Situ and Remote-Sensing Data Fusion Using Machine Learning Techniques to Infer Urban and Fire Related Pollution Plumes

    Russell, P. B.; Segal-Rozenhaimer, M.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C.J.; Johnson, R. R.; Dunagan, S. E.; Shinozuka, Y.; Kacenelenbogen, M.; Chatfield, R. B.

    2014-01-01

    Airmass type characterization is key in understanding the relative contribution of various emission sources to atmospheric composition and air quality and can be useful in bottom-up model validation and emission inventories. However, classification of pollution plumes from space is often not trivial. Sub-orbital campaigns, such as SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) give us a unique opportunity to study atmospheric composition in detail, by using a vast suite of in-situ instruments for the detection of trace gases and aerosols. These measurements allow identification of spatial and temporal atmospheric composition changes due to various pollution plumes resulting from urban, biogenic and smoke emissions. Nevertheless, to transfer the knowledge gathered from such campaigns into a global spatial and temporal context, there is a need to develop workflow that can be applicable to measurements from space. In this work we rely on sub-orbital in-situ and total column remote sensing measurements of various pollution plumes taken aboard the NASA DC-8 during 2013 SEAC4RS campaign, linking them through a neural-network (NN) algorithm to allow inference of pollution plume types by input of columnar aerosol and trace-gas measurements. In particular, we use the 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) airborne measurements of wavelength dependent aerosol optical depth (AOD), particle size proxies, O3, NO2 and water vapor to classify different pollution plumes. Our method relies on assigning a-priori ground-truth labeling to the various plumes, which include urban pollution, different fire types (i.e. forest and agriculture) and fire stage (i.e. fresh and aged) using cluster analysis of aerosol and trace-gases in-situ and auxiliary (e.g. trajectory) data and the training of a NN scheme to fit the best prediction parameters using 4STAR measurements as input. We explore our

  13. Remote sensing of earth terrain

    Kong, J. A.

    1988-01-01

    Two monographs and 85 journal and conference papers on remote sensing of earth terrain have been published, sponsored by NASA Contract NAG5-270. A multivariate K-distribution is proposed to model the statistics of fully polarimetric data from earth terrain with polarizations HH, HV, VH, and VV. In this approach, correlated polarizations of radar signals, as characterized by a covariance matrix, are treated as the sum of N n-dimensional random vectors; N obeys the negative binomial distribution with a parameter alpha and mean bar N. Subsequently, and n-dimensional K-distribution, with either zero or non-zero mean, is developed in the limit of infinite bar N or illuminated area. The probability density function (PDF) of the K-distributed vector normalized by its Euclidean norm is independent of the parameter alpha and is the same as that derived from a zero-mean Gaussian-distributed random vector. The above model is well supported by experimental data provided by MIT Lincoln Laboratory and the Jet Propulsion Laboratory in the form of polarimetric measurements.

  14. Remote sensing of coastal and ocean studies

    Sathe, P.V.

    , in modern space sciences, its usage is restricted to mean detection of features at or near the earth's surface from space using electromagnetic radiation. Remote sensing is often considered as opposite of astronomy. In astronomy, we observe the space from... earth to know more about the space, while in remote sensing, we observe earth from space to know more about the earth. Inter pretation of ordinary black-and-white photographs of earth's terrain taken from aircrafts is as much remote sensing as is est...

  15. An international organization for remote sensing

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  16. A review on spectral processing methods for geological remote sensing

    Asadzadeh, Saeid; de Souza Filho, Carlos Roberto

    2016-05-01

    In this work, many of the fundamental and advanced spectral processing methods available to geologic remote sensing are reviewed. A novel categorization scheme is proposed that groups the techniques into knowledge-based and data-driven approaches, according to the type and availability of reference data. The two categories are compared and their characteristics and geologic outcomes are contrasted. Using an oil-sand sample scanned through the sisuCHEMA hyperspectral imaging system as a case study, the effectiveness of selected processing techniques from each category is demonstrated. The techniques used to bridge between the spectral data and other geoscience products are then discussed. Subsequently, the hybridization of the two approaches is shown to yield some of the most robust processing techniques available to multi- and hyperspectral remote sensing. Ultimately, current and future challenges that spectral analysis are expected to overcome and some potential trends are highlighted.

  17. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  18. NOAA Coastal Mapping Remote Sensing Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey...

  19. Airborne Remote Sensing for Earth Science Applications

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  20. Application of Spaceborne Remote Sensing to Archaeology

    Crippen, Robert E.

    1997-01-01

    Spaceborne remote sensing data have been underutilized in archaeology for a variety of seasons that are slowly but surely being overcome. Difficulties have included cost/availability of data, inadequate resolution, and data processing issues.

  1. Remote Sensing of Snow and Evapotranspiration

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  2. Remotely sensed small reservoir monitoring

    Eilander, Dirk; Annor, Frank; Iannini, Lorenzo; van de Giesen, Nick

    2013-04-01

    A new 'growing' maximum likelihood classification algorithm for small reservoir delineation has been developed and is tested with Radarsat-2 data for reservoirs in the semi-arid Upper East Region, Ghana. The delineation algorithm is able to find the land-water boundary from SAR imagery for different weather and environmental conditions. As such, the algorithm allows for remote sensed operational monitoring of small reservoirs. Multipurpose small reservoirs (1-100 ha) are important for many livelihoods in rural semi-arid West Africa. In order to manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage fluctuation. Several studies on remotely sensed reservoir mapping have recently been published, but no single method yields good results for all weather and environmental conditions. Detection of small reservoirs from optical satellite imagery using supervised maximum likelihood classification is a well proved method. The application of this method for the monitoring of small reservoirs is however limited because of its dependence on cloud-free day-acquisitions. Delineation from SAR images is promising, but because of difficulties with wind induced Bragg-scattering and low contrast between the water surface and the dried-out surroundings at the end of the dry season, only quasi manual methods have been applied successfully. A smart combination of optical satellite based detection combined with a delineation method for SAR imagery is proposed. From the optical satellite based small reservoir detection the reservoir window is determined in which the 'growing' maximum likelihood classification on SAR images is performed. A water-class seed and land-class seed are implemented and grown dependent on the likelihood of a pixel to belong to one class. The likelihood is calculated based on the probability distributions of the growing land and water populations. Combinations of single

  3. Preface: Remote Sensing of Water Resources

    Deepak R. Mishra

    2016-02-01

    Full Text Available The Special Issue (SI on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  4. Optical remote sensing of Belgian coastal waters

    Ovidio, F.; K. Ruddick; Vasilkov, A.; Burenkov, V.

    2001-01-01

    This paper summarises the research conducted at MUMM in optical remote sensing of Belgian coastal waters during the period 1997-2000. The motivation for this research consists of the need to provide information for marine environmental management of coastal eutrophication and sediment transport related problems. The basic products provided by optical remote sensing are maps of chlorophyll concentration and total suspended matter. A key contribution has been made for the atmospheric correction...

  5. Freeware for GIS and Remote Sensing

    Lena Halounová

    2007-12-01

    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  6. Retrieval operators of remote sensing applications

    A set of operators of remote sensing applications have been proposed to fulfill most of the Functional Requirements (FR). These operators capture the functions of the applications, which can be considered as the services provided by the applications. In general, a good application meets maximum FR from user. In this paper, we have defined a remote sensing application by a set, having all images created at dissimilar time instances, and each image is categorized into set of different layers. (author)

  7. Hyperspectral remote sensing for light pollution monitoring

    P. Marcoionni; Guzzi, D.; Castagnoli, F.; M. Benvenuti; Barducci, A.; I. Pippi

    2006-01-01

    industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) and the Visible InfraRed Scanner (VIRS-200). These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coa...

  8. Satellite remote sensing of water turbidity

    Moore, Gerald K.

    1980-01-01

    Remote sensing instruments obtain an optical measure of water colour and turbidity. Colour increases the absorption of light in water and decreases the remotely sensed signal; turbidity increases the backscatter of light. For low concentrations of suspended materials, spectral reflectance is determined mostly by the absorptance characteristics of water; for higher concentrations, the absorptance characteristics of suspended particles are the most important factors. -from Authorwater colour suspended materials

  9. Remote Sensing and Crowd-Sourcing

    Guida, R.; Brett, PTB; Khan, SS

    2013-01-01

    Collection of ground truth to validate remote sensing classification and/or detection algorithms is rarely accounted for due to the inaccessibility of the sites or the elevated costs of such operations. In this paper some of the opportunities behind crowd sourcing are explored through the description of a remote sensing project on water quality monitoring in Africa where the ground truth was collected involving and training people from local communities.

  10. Remote sensing, imaging, and signal engineering

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  11. Some operative applications of remote sensing

    Tonelli, A

    2000-01-01

    Among the methods of applied geophysics, remote sensing plays a major and an ancillary role, at the same time. The major role deals with the acquisition and processing of data with the aim of describing the properties of the surfaces and their subsurface mass. The ancillary one consists in furnishing indications to address specific geophysical surveys. The paper presents some operative applications of remote sensing by stations fixed on ground and by airborne surveys: monitoring the biogas ve...

  12. Remote sensing observation used in offshore wind energy

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun;

    2008-01-01

    ocean wind mapping provides the basis for detailed offshore wind farm wake studies and is highly useful for development of new wind retrieval algorithms from C-, L-, and X-band data. Satellite observations from SAR and scatterometer are used in offshore wind resource estimation. SAR has the advantage of...... winds have been used to index the potential offshore wind power production, and the results compare well with observed power production (mainly land-based) covering nearly two decades for the Danish area.......Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  13. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  14. Research of Unmanned Aerial Vehicle Remote Sensing Technique Applied to Monitor Landslip and Barrier Lake Hazard in Chengkou County of Chongqing%低空无人飞行器遥感技术在重庆城口滑坡堰塞湖灾害监测中的应用研究

    马泽忠; 王福海; 刘智华; 刘学

    2011-01-01

    In the paper, unmanned aerial vehicle (UAV) remote sensing technique was applied to monitor landslip geological hazard in Chengkou county of Chongqing by analyzing methods of low-altitude flying UAV remote sensing technique in complex terrain and weather conditions to access and process digital image data,and applications of low-altitude flying UAV remote sensing technique to landslip geological hazard assessment and hazard loss evaluation was explored. The distinct advantage of accomplishing remote sensing data acquirement, processing, 3-dimension modeling and application analysis was proved in the study. The conclusion could be derived that the accurate and excellent accounts basis information and data of statistical analysis could be provided to emergency rescues of geological hazard, disaster relief work, assessment of natural disaster and reconstruction by applying UAV remote sensing digital ortho-photo map and digital elevation model, and using low-altitude flying UAV remote sensing technique can be effective for the traditional remote sensing technology in geological hazard monitoring.%应用无人飞行器低空遥感技术对重庆城口滑坡地质灾害进行监测,分析了无人飞行器低空遥感技术在复杂地形及气象条件下数据获取与数据处理的技术流程和方法,并对无人飞行器低空遥感技术在滑坡地质灾害灾情评估和灾损评价中的应用上进行了探索.结果表明,无人飞行器低空遥感技术在困难地区完成遥感数据的获取与处理、三维建模和应用分析具有明显优势;无人飞行器低空遥感技术生成的数字正射影像图和数字高程模型数据可以为地质灾害发生后的抢险救灾、灾情评估和灾后重建提供准确、直观、翔实的基础数据和统计分析数据;采用无人飞行器低空遥感进行地质灾害监测可以有效弥补传统遥感技术的不足,为地质灾害遥感监测提供技术保障.

  15. Remote sensing applications to support sustainable natural resource management

    Brewer, Charles Kenneth

    The original design of this dissertation project was relatively simple and straightforward. It was intended to produce one single, dynamic, classification and mapping system for existing vegetation that could rely on commonly available inventory and remote sensing data. This classification and mapping system was intended to provide the analytical basis for resource planning and management. The problems encountered during the first phase of the original design transformed this project into an extensive analysis of the nature of these problems and a decade-long remote sensing applications development endeavor. What evolved from this applications development process is a portion of what has become a "system of systems" to inform and support natural resource management. This dissertation presents the progression of work that sequentially developed a suite of remote sensing applications designed to address different aspects of the problems encountered with the original project. These remote sensing applications feature different resource issues, and resource components and are presented in separate chapters. Chapter one provides an introduction and description of the project evolution and chapter six provides a summary of the work and concluding discussion. Chapters two through five describe remote sensing applications that represent related, yet independent studies that are presented essentially as previously published. Chapter two evaluates different approaches to classifying and mapping fire severity using multi-temporal Landsat TM data. The recommended method currently represents the analytical basis for fire severity data produced by the USDA Forest Service and the US Geological Survey. Chapter three also uses multi-temporal Landsat data and compares quantitative, remote-sensing-based change detection methods for forest management related canopy change. The recommended method has been widely applied for a variety of forest health and disaster response applications

  16. Research Dynamics of the Classification Methods of Remote Sensing Images

    Yan; ZHANG; Baoguo; WU; Dong; WANG

    2013-01-01

    As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods,the new study dynamics of remote sensing classification,such as artificial neural networks,support vector machine,active learning and ensemble multi-classifiers,were introduced,providing references for the automatic and intelligent development of remote sensing images classification.

  17. Application of remote sensing to estimating soil erosion potential

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  18. Laboratory requirements for in-situ and remote sensing of suspended material

    Kuo, C. Y.; Cheng, R. Y. K.

    1978-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  19. Training state agency personnel in satellite remote sensing technology - Solutions to a special problem

    Short, N. M.

    1980-01-01

    To aid state/local agencies in starting effective programs to apply Landsat and other remote sensing data, NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has developed a comprehensive training program as part of its technology transfer mission. Skills in data processing and interpretation are produced through 'hands-on' experience with computer techniques used to conduct practical applications involving state-oriented projects, conducted jointly by agencies and ERRSAC. In time, ERRSAC will shift much of these training activities to universities where future agency personnel can obtain a broader foundation in remote sensing.

  20. Reconstruction of Cloud Contaminated Remote Sensing Images Using Inpainting Strategy

    D.Linett Sophia

    2013-05-01

    Full Text Available This paper focuses a method for cloud detection and their reconstruction technique. Detecting theseportions of an image and then filling in the missing data is an important photo editing work. The filling-in approach such as inpainting techniques, which aim at filling holes in remote sensing images by propagating surrounding structures and texture information. Inpainting technique is a novel method for completing missing parts caused by the detection of foreground or background elements from an image.Reconstruction of missing data in remotely sensed image is of great challenge due to its complexity. These images may be partly contaminated by cloud. Detection of these clouds and accurate reconstruction of cloud removed area in satellite image is done here. To improve the accuracy in remotely sensed images, efficient inpainting techniques can be applied for reconstruction of missing regions. Large areas with lots of information lost are harder to reconstruct, because information in other parts of the image is not enough to get an impression of what is missing. Image inpainting is not to recover the originalimage, but to create some image that has a close resemblance with the original image. In this paper two different methods are proposed for filling in process. The first method involves reconstruction process by Exemplar Inpainting whereas the other method uses the Modified Exemplar inpainting. The entire process is developed using MATLAB software. The proposed method of cloud detection here is simple and easily applied to all cloud cover images.

  1. Remote sensing for the geobotanical and biogeochemical assessment of environmental contamination

    Wickham, J.; Chesley, M.; Lancaster, J.; Mouat, D.

    1993-01-01

    Under Contract Number DE-AC08-90NV10845, the DOE has funded the Desert Research Institute (DRI) to examine several aspects of remote sensing, specifically with respect to how its use might help support Environmental Restoration and Waste Management (ERWM) activities at DOE sites located throughout the country. This report represents partial fulfillment of DRI`s obligations under that contract and includes a review of relevant literature associated with remote sensing studies and our evaluation and recommendation as to the applicability of various remote sensing techniques for DOE needs. With respect to DOE ERWM activities, remote sensing may be broadly defined as collecting information about a target without actually being in physical contact with the object. As the common platforms for remote sensing observations are aircraft and satellites, there exists the possibility to rapidly and efficiently collect information over DOE sites that would allow for the identification and monitoring of contamination related to present and past activities. As DOE sites cover areas ranging from tens to hundreds of square miles, remote sensing may provide an effective, efficient, and economical method in support of ERWM activities. For this review, remote sensing has been limited to methods that employ electromagnetic (EM) energy as the means of detecting and measuring target characteristics.

  2. Remote sensing for the geobotanical and biogeochemical assessment of environmental contamination

    Under Contract Number DE-AC08-90NV10845, the DOE has funded the Desert Research Institute (DRI) to examine several aspects of remote sensing, specifically with respect to how its use might help support Environmental Restoration and Waste Management (ERWM) activities at DOE sites located throughout the country. This report represents partial fulfillment of DRI's obligations under that contract and includes a review of relevant literature associated with remote sensing studies and our evaluation and recommendation as to the applicability of various remote sensing techniques for DOE needs. With respect to DOE ERWM activities, remote sensing may be broadly defined as collecting information about a target without actually being in physical contact with the object. As the common platforms for remote sensing observations are aircraft and satellites, there exists the possibility to rapidly and efficiently collect information over DOE sites that would allow for the identification and monitoring of contamination related to present and past activities. As DOE sites cover areas ranging from tens to hundreds of square miles, remote sensing may provide an effective, efficient, and economical method in support of ERWM activities. For this review, remote sensing has been limited to methods that employ electromagnetic (EM) energy as the means of detecting and measuring target characteristics

  3. WaveCluster for Remote Sensing Image Retrieval

    Priti Maheshwary; Namita Srivastava

    2011-01-01

    Wave Cluster is a grid based clustering approach. Many researchers have applied wave cluster technique for segmenting images. Wave cluster uses wave transformation for clustering the data item. Normally it uses Haar, Daubechies and Cohen Daubechies Feauveau or Reverse Bi-orthogonal wavelets. Symlet, Biorthogonal and Meyer wavelet families have been used in this paper to compare its lustering capacity and then results of this are used to retrieve the remote sensing image. The results are prom...

  4. Remotely-sensed optical and thermal indicators of land degradation

    Lacaze, Bernard

    2004-01-01

    Land degradation monitoring systems must take into account several indicators like vegetation cover, rain-use efficiency, surface run-off, soil erosion. Some of theses indicators may be derived from remote-sensing data. Estimation of vegetation cover from satellite-data relies mainly on conventional or improved vegetation indices, although evidences of better results in arid zones have been obtained from the use of spectral unmixing techniques. Estimation of vegetation condition is generally ...

  5. Remote sensing of tidal networks and their relation to vegetation

    Mason, D. C.; Scott, T.R.

    2004-01-01

    The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The stat...

  6. Literature relevant to remote sensing of water quality

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  7. Laser Remote Sensing: FY07 Summary Report

    Standoff detection and characterization of chemical plumes using Frequency Modulated Differential Absorption Lidar (FM-DIAL) is a promising technique for the detection of nuclear proliferation activities. For the last several years Pacific Northwest National Laboratory (PNNL) has been developing an FM-DIAL based remote sensing system as part of PNNL's Infrared Sensors project within NA-22's Enabling Technologies portfolio. In FY06 the remote sensing effort became a stand-alone project within the Plutonium Production portfolio with the primary goal of transitioning technology from the laboratory to the user community. Current systems remotely detect trace chemicals in the atmosphere over path lengths of hundreds of meters for monostatic operation (without a retro-reflector target) and up to ten kilometers for bistatic operation (with a retro-reflector target). The FM-DIAL sensor is sensitive and highly selective for chemicals with narrow-band absorption features on the order of 1-2 cm-1; as a result, the FM-DIAL sensors are best suited to simple di-atomic or tri-atomic molecules and other molecules with unusually narrow absorption features. A broadband sensor is currently being developed. It is designed to detect chemicals with spectral features on the order of several 10s of wavenumbers wide. This will expand the applicability of this technology to the detection of more complicated molecules. Our efforts in FY07 focused on the detection of chemicals associated with the PUREX process. The highest value performance measure for FY07, namely the demonstration of the Broadband Laser Spectrometer (BLS) during chemical release experiments, was successfully achieved in June, July and August of this year. Significant advancements have been made with each of the other tasks as well. A short-wave infrared version of the miniature FM-DIAL (FM-Mini) instrument was successfully demonstrated during field tests in June. During FY07 another version of the FM-Mini was built using

  8. Laser Remote Sensing: FY07 Summary Report

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.; Mendoza, Albert

    2007-09-30

    Standoff detection and characterization of chemical plumes using Frequency Modulated Differential Absorption Lidar (FM-DIAL) is a promising technique for the detection of nuclear proliferation activities. For the last several years Pacific Northwest National Laboratory (PNNL) has been developing an FM-DIAL based remote sensing system as part of PNNL's Infrared Sensors project within NA-22's Enabling Technologies portfolio. In FY06 the remote sensing effort became a stand-alone project within the Plutonium Production portfolio with the primary goal of transitioning technology from the laboratory to the user community. Current systems remotely detect trace chemicals in the atmosphere over path lengths of hundreds of meters for monostatic operation (without a retro-reflector target) and up to ten kilometers for bistatic operation (with a retro-reflector target). The FM-DIAL sensor is sensitive and highly selective for chemicals with narrow-band absorption features on the order of 1-2 cm-1; as a result, the FM-DIAL sensors are best suited to simple di-atomic or tri-atomic molecules and other molecules with unusually narrow absorption features. A broadband sensor is currently being developed. It is designed to detect chemicals with spectral features on the order of several 10s of wavenumbers wide. This will expand the applicability of this technology to the detection of more complicated molecules. Our efforts in FY07 focused on the detection of chemicals associated with the PUREX process. The highest value performance measure for FY07, namely the demonstration of the Broadband Laser Spectrometer (BLS) during chemical release experiments, was successfully achieved in June, July and August of this year. Significant advancements have been made with each of the other tasks as well. A short-wave infrared version of the miniature FM-DIAL (FM-Mini) instrument was successfully demonstrated during field tests in June. During FY07 another version of the FM-Mini was

  9. Remote sensing image fusion via quaternion model

    Serief, Chahira

    Due to the design constraints of optical satellite sensors, there is an inverse relationship between their spectral and spatial resolution. Consequently, remote sensing spaceborne imagery is usually offered to the community as two separate products: a high spatial resolution panchromatic (PAN) image and low spatial resolution multispectral (MS) image. However, multispectral (MS) images having both high spectral and spatial resolution are generally desired for various remote sensing applications such as land use, precision agriculture, pollution monitoring and mapping urban areas. This tradeoff of spectral and spatial resolutions can be resolved by injecting fine spatial information extracted from the PAN image into the MS images. This process is known as pansharpening and it has become a powerful and economical solution to take advantage of the high spatial information of the PAN image and the essential spectral information of MS images. The problem of pansharpening has been studied for approximately three decades and the literature on the subject is both rich and diverse. The existing pansharpening methods differ in the way the spatial details are extracted from the PAN image and injected into the MS bands. The main challenge in pansharpening techniques is to preserve as much as possible, the original spectral information while improving the spatial resolution. However, state-of-the-art pansharpening methods are based on a marginal scheme which relies on color separation (RGB decomposition for example) of the spectral images resulting in significant loss of spectral information. This is due to the fact that marginal schemes cannot capture the correlation among spectral channels. A mathematically elegant solution to this problem can be found in the hypercomplex numbers, in particular quaternion model. The quaternion model allows handling color images as a single entity and allows consequently capturing the correlations among spectral channels. The goal of this

  10. Remote Sensing of Ionosphere by IONOLAB Group

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  11. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2013-01-01

    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.

  12. Geological characteristics in buried coalfields synthetically using remote sensing and non-remote sensing information

    Dai, Shifeng; Wang, Silong; Liu, Yurong

    1998-08-01

    With the rapid development of coal industry in China, the emphasis of the geological exploration has been changed from the exposed area to the buried area. Because of the limitation of the geological condition and the exploration methods, it is very difficult to study the geological phenomena in buried coalfield. To the coal geologists in China, to search an effective and practical method has been the important tackle key problem for recent years. In this paper, the authors discussed the characteristics of remote sensing technology in the geological study, and the forming mechanism of remote sensing information in the buried area from the view of agrology and physics, so the important academic evidences were offered for the geological study using remote sensing image in the buried coalfield. The characteristics of the non-remote sensing information, the geophysics information and the basal geological information, were also introduced in the study of buried geological bodies. The authors expounded the general processing method in the investigation of buried geological bodies using remote sensing and non-remote sensing information. At last, the probable distribution area of buried igneous rocks, in Huaibei coalfield in China, were successfully forecasted synthetically using the remote sensing, and non-remote sensing information.

  13. Parallelized LEDAPS method for Remote Sensing Preprocessing Based on MPI

    Xionghua; CHEN; Xu; ZHANG; Ying; GUO; Yong; MA; Yanchen; YANG

    2013-01-01

    Based on Landsat image,the Landsat Ecosystem Disturbance Adaptive Processing System(LEDAPS)uses radiation change detection method for image processing and offers the surface reflectivity products for ecosystem carbon sequestration and carbon reserves.As the accumulation of massive remote sensing data especially for the Landsat image,the traditional serial LEDAPS for image processing has a long cycle that make a lot of difficulties in practical application.For this problem,this paper design a high performance parallel LEDAPS processing method based on MPI.The results not only aimed to improve the calculation speed and save computing time,but also considered the load balance between the flexibly extended computing nodes.Results show that the highest speed ratio of parallelized LEDAPS reached 7.37 when the number of MPI process is 8.It effectively improves the ability of LEDAPS to handle massive remote sensing data and reduces the forest carbon stocks calculation cycle by using the remote sensing images.

  14. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  15. Remote sensing applied to forest resources

    Hernandezfilho, P. (Principal Investigator)

    1984-01-01

    The development of methodologies to classify reforested areas using remotely sensed data is discussed. A preliminary study was carried out in northeast of the Sao Paulo State in 1978. The reforested areas of Pinus spp and Eucalyptus spp were based on the spectral, spatial and temporal characteristics fo LANDSAT imagery. Afterwards, a more detailed study was carried out in the Mato Grosso do Sul State. The reforested areas were mapped in functions of the age (from: 0 to 1 year, 1 to 2 years, 2 to 3 years, 3 to 4 years, 4 to 5 years and 5 to 6 years) and of the heterogeneity stand (from: 0 to 20%, 20 to 40%, 40 to 60%, 60 to 80% and 80 to 100%). The relative differences between the artificial forest areas, estimated from LANDSAT data and ground information, varied from -8.72 to +9.49%. The estimation of forest volume through a multistage sampling technique, with probability proportional to size, is also discussed.

  16. Malaria Modeling using Remote Sensing and GIS Technologies

    Kiang, Richard

    2004-01-01

    Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.

  17. Airborne laser sensors for oil spill remote sensing

    The use of remote sensing technology as an effective tool in oil spill response measures was discussed. Environment Canada is currently developing airborne oil spill remote sensors, including the Scanning Laser Environmental Airborne Fluorosensor (SLEAF), and the Laser Ultrasonic Remote Sensing of Oil Thickness (LURSOT). Each remote sensor is designed to respond to specific roles in oil spill response. The SLEAF is designed to detect and map oil spills in complicated shoreline environments. The LURSOT will provide an absolute measurement of oil thickness from an airborne platform. The information provided is necessary to determine which countermeasures should be taken, such as dispersant application or in-situ burning. A new measuring technique has also been developed in which the thickness of oil spill on water can be accurately measured. 1 fig

  18. Swarm intelligence for classification of remote sensing data

    2008-01-01

    This paper proposes a new method to classify remote sensing data by using Particle Swarm Optimization (PSO). This method is to generate classification rules through simulating the behaviors of bird flocking. Optimized intervals of each band are found by particles in multi-dimension space, linked with land use types for forming classification rules. Compared with other rule induction techniques (e.g. See5.0), PSO can efficiently find optimized cut points of each band, and have good convergence in the search process. This method has been applied to the classification of remote sensing data in Panyu district of Guangzhou with satisfactory results. It can produce higher accuracy in the classification than the See5.0 decision tree model.

  19. The promise of remote sensing in the atmospheric sciences

    Atlas, D.

    1981-01-01

    The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.

  20. Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers

    Nowakowski Artur

    2015-10-01

    Full Text Available Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics.

  1. On multidisciplinary research on the application of remote sensing to water resources problems. [Wisconsin

    Clapp, J. L.

    1973-01-01

    Research objectives during 1972-73 were to: (1) Ascertain the extent to which special aerial photography can be operationally used in monitoring water pollution parameters. (2) Ascertain the effectiveness of remote sensing in the investigation of nearshore mixing and coastal entrapment in large water bodies. (3) Develop an explicit relationship of the extent of the mixing zone in terms of the outfall, effluent and water body characteristics. (4) Develop and demonstrate the use of the remote sensing method as an effective legal implement through which administrative agencies and courts can not only investigate possible pollution sources but also legally prove the source of water pollution. (5) Evaluate the field potential of remote sensing techniques in monitoring algal blooms and aquatic macrophytes, and the use of these as indicators of lake eutrophication level. (6) Develop a remote sensing technique for the determination of the location and extent of hydrologically active source areas in a watershed.

  2. On multidisciplinary research on the application of remote sensing to water resources problems

    1972-01-01

    This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.

  3. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques; Estudio de la Influencia de las Actividades Mineras de Mercurio en la Comarca de Almaden Aplicando Tecnicas de Teledeteccion

    Rico, C.; Schmid, T.; Millan, R.; Gumuzzio, J.

    2010-11-17

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs.

  4. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    Taylor, George C., Jr.

    1971-01-01

    . Nuclear methodology in hydrologic applications is generally more complex than the conventional and hence requires a high level of technical expertise for effective use. Application of nuclear techniques to hydrologic problems in the developing countries is likely to be marginal for some years to come, owing to the higher costs involved and expertise required. Nuclear techniques, however, would seem to have particular promise in studies of water movement in unsaturated soils and of erosion and sedimentation where conventional techniques are inadequate, inefficient and in some cases costly. Remote sensing offers great promise for synoptic evaluations of water resources and hydrologic processes, including the transient phenomena of the hydrologic cycle. Remote sensing is not, however, a panacea for deficiencies in hydrologic data programs in the developing countries. Rather it is a means for extending and augmenting on-the-ground observations ans surveys (ground truth) to evaluated water resources and hydrologic processes on a regionall or even continental scale. With respect to economic growth goals in developing countries, there are few identifiable gaps in existing hydrologic instrumentation and methodology insofar as appraisal, development and management of available water resources are concerned. What is needed is acceleration of institutional development and professional motivation toward more effective use of existing and proven methodology. Moreover, much sophisticated methodology can be applied effectively in the developing countries only when adequate levels of indigenous scientific skills have been reached and supportive institutional frameworks are evolved to viability.

  5. Water stress detection from remote sensing using the SSEBI-2 algorithm: a case study in Morocco

    Jacobs, C.; Roerink, G.J.; Hammani, A.

    2008-01-01

    Accurate estimations of Actual Evapotranspiration (ETa) are a prerequisite for optimal irrigation scheduling. Quantification of ETa at critical growth stages can be used to avoid water stress in crops. For large irrigated areas, remote sensing techniques are important tools for ETa assessments. This paper describes the application of a simplified remote sensing algorithm (SSEBI-2) to derive daily estimates of actual evapotranspiration for the Tadla irrigation perimeter in Morocco.

  6. Mangrove research at the Vrije Universiteit Brussel II : the remote sensing aspect

    Dahdouh-Guebas, F.; N. Koedam

    2002-01-01

    An integrated research framework on mangrove vegetation structure dynamics, regeneration and restoration was presented in the Forests and Water Issue of ETFRN News 33 (Dahdouh-Guebas, 2001b). It discussed the broad framework in which changes in the vegetation structure of mangrove forests, amongst other research topics, were studied over several decades using remote sensing techniques. This contribution emphasizes ‘why’ such monitoring is necessary and ‘how’ this remote sensing aspect is carr...

  7. A Study on Coastline Extraction and Its Trend Based on Remote Sensing Image Data Mining

    Yun Zhang; Xueming Li; Jianli Zhang; Derui Song

    2013-01-01

    In this paper, data mining theory is applied to carry out the field of the pretreatment of remote sensing images. These results show that it is an effective method for carrying out the pretreatment of low-precision remote sensing images by multisource image matching algorithm with SIFT operator, geometric correction on satellite images at scarce control points, and other techniques; the result of the coastline extracted by the edge detection method based on a chromatic aberration Canny operat...

  8. Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences

    Hongyan Zhang; Zeyu Yang; Liangpei Zhang; Huanfeng Shen

    2014-01-01

    Multi-angle remote sensing images are acquired over the same imaging scene from different angles, and share similar but not identical information. It is therefore possible to enhance the spatial resolution of the multi-angle remote sensing images by the super-resolution reconstruction technique. However, different sensor shooting angles lead to different resolutions for each angle image, which affects the effectiveness of the super-resolution reconstruction of the multi-angle images. In vie...

  9. Remote sensing of natural resources. Quarterly literature review, October-December 1980

    This review covers literature pertaining to documented data and data gathering techniques that are performed or obtained remotely from space, aircraft, or ground-based stations. All of the documentation is related to remote sensing sensors or the remote sensing of the natural resources. Section headings are: general; geology; environmental quality; hydrology; vegetation; oceanography; regional planning and land use; data manipulation; and instrumentation and technology

  10. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  11. The estimating of the spatial distribution of forest biomass in China based on remote sensing and downscaling techniques%基于遥感降尺度估算中国森林生物量的空间分布

    刘双娜; 周涛; 舒阳; 戴铭; 魏林艳; 张鑫

    2012-01-01

    -resolution information into regional-scale, high-resolution information. This method has recently been used effectively and achieved good results in the field of ecosystem carbon cycling.Combining remote sensing data with ground-based observations is a key step in the quantitative research of forest biomass spatial distribution patterns. In particular, national forest resource inventory data can be used to combine the advantages of remote sensing data, and its spatial characteristics, with the reliability of detailed information from the ground to produce reliable statistical information reflecting the surface characteristics. This paper is based on the sixth China forest inventory dataset, a vegetation map of the People's Republic of China (1:1000000), and the spatially explicit Net Primary Production ( NPP) datasets derived from the Moderate-resolution Imaging Spectroradiometer ( MODIS) Gross Primary Production (GPP)/NPP products. We quantitatively estimated the spatial distribution of forest biomass (1 km resolution) using the spatial downscaling technique. The results provide four finding. (1) The downscaling technique can effectively combine the advantages of both remote sensing and forest inventory data and will be useful in mapping forest biomass at the regional scale. In this study, the average errors in the calculated total biomass and average biomass are 1.4% and 1.6% , respectively, which is comparable to other studies on a national scale. In this study, average error is 6% for the estimated biomass density on the provincial scale. In addition, the total biomass error is 37% for Yunnan Province, while other provincial scales averaged an error level of 10% . (2) China's biomass in young forests, middle-aged forests, nearly mature forests, mature forests and over mature forests show an increasing trend in biomass, and the overall trend appears reasonable. Young to mature forest stages, which are gradually increasing in age, have shown a large increase in biomass. Mature forests

  12. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection

  13. Thermal infrared remote sensing sensors, methods, applications

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  14. Space remote sensing systems an introduction

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  15. Applications of remote sensing in public health.

    Barnes, C. M.; Fuller, C. E.; Schneider, H. J.; Kennedy, E. E.; Jones, H. G.; Morrison, D. R.

    1973-01-01

    Current research concerning the determination of the habitat of mosquito vectors of disease is discussed. It is shown how advanced interpretative processes have enabled recognition of the breeding areas of salt marsh mosquitoes and the breeding sites of the mosquito responsible for the transmission of St. Louis strain of encephalitis and of human filariasis. In addition, remote sensing data have also been useful in the study of the habitat of endemic strains of Venezuelan encephalitis virus in Florida. The beginning of the application of remote sensing to such public health aspects as air, water, and urban degradation is noted.

  16. Offshore winds mapped from satellite remote sensing

    Hasager, Charlotte Bay

    2014-01-01

    uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost. The...... advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  17. Monitoring water quality by remote sensing

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  18. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  19. The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications. [image enhancement and thematic classification in Brazil

    Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.

    1982-01-01

    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.

  20. Combining Remote Sensing with in situ Measurements for Riverine Characterization

    Calantoni, J.; Palmsten, M. L.; Simeonov, J.; Dobson, D. W.; Zarske, K.; Puleo, J. A.; Holland, K. T.

    2014-12-01

    At the U.S. Naval Research Laboratory we are employing a wide variety of novel remote sensing techniques combined with traditional in situ sampling to characterize riverine hydrodynamics and morphodynamics. Surface currents were estimated from particle image velocimetry (PIV) using imagery from visible to infrared bands, from both fixed and airborne platforms. Terrestrial LIDAR has been used for subaerial mapping from a fixed platform. Additionally, LIDAR has been combined with hydrographic surveying (multibeam) in mobile scanning mode using a small boat. Hydrographic surveying (side scan) has also been performed using underwater autonomous vehicles. Surface drifters have been deployed in combination with a remotely operated, floating acoustic Doppler current profiler. Other fixed platform, in situ sensors, such as pencil beam and sector scanning sonars, acoustic Doppler velocimeters, and water level sensors have been deployed. We will present an overview of a variety of measurements from different rivers around the world focusing on validation examples of remotely sensed quantities with more traditional in situ measurements. Finally, we will discuss long-term goals to use remotely sensed data within an integrated environmental modeling framework.

  1. Known and unknown unknowns: uncertainty estimation in satellite remote sensing

    Povey, A. C.; Grainger, R. G.

    2015-11-01

    This paper discusses a best-practice representation of uncertainty in satellite remote sensing data. An estimate of uncertainty is necessary to make appropriate use of the information conveyed by a measurement. Traditional error propagation quantifies the uncertainty in a measurement due to well-understood perturbations in a measurement and in auxiliary data - known, quantified "unknowns". The under-constrained nature of most satellite remote sensing observations requires the use of various approximations and assumptions that produce non-linear systematic errors that are not readily assessed - known, unquantifiable "unknowns". Additional errors result from the inability to resolve all scales of variation in the measured quantity - unknown "unknowns". The latter two categories of error are dominant in under-constrained remote sensing retrievals, and the difficulty of their quantification limits the utility of existing uncertainty estimates, degrading confidence in such data. This paper proposes the use of ensemble techniques to present multiple self-consistent realisations of a data set as a means of depicting unquantified uncertainties. These are generated using various systems (different algorithms or forward models) believed to be appropriate to the conditions observed. Benefiting from the experience of the climate modelling community, an ensemble provides a user with a more complete representation of the uncertainty as understood by the data producer and greater freedom to consider different realisations of the data.

  2. Evolutionary computation for information extraction from remotely sensed imagery

    Momm, Henrique Garcia

    Automated and semi-automated techniques have been researched as an alternative way to reduce human interaction and thus improve the information extraction process from imagery. This research developed an innovative methodology by integrating machine learning algorithms with image processing and remote sensing procedures to form the evolutionary framework. In this biologically-inspired methodology, non-linear solutions are developed by iteratively updating a set of candidate solutions through operations such as: reproduction, competition, and selection. Uncertainty analysis is conducted to quantitatively assess the system's variability due to the random generation of the initial set of candidate solutions, from which the algorithm begins. A new convergence approach is proposed and results indicate that it not only reduces the overall variability of the system but also the number of iterations needed to obtain the optimal solution. Additionally, the evolutionary framework is evaluated in solving different remote sensing problems, such as: non-linear inverse modeling, integration of image texture with spectral information, and multitemporal feature extraction. The investigations in this research revealed that the use of evolutionary computation to solve remote sensing problems is feasible. Results also indicate that, the evolutionary framework reduces the overall dimensionality of the data by removing redundant information while generating robust solutions regardless of the variations in the statistics and the distribution of the data. Thus, signifying that the proposed framework is capable of mathematically incorporating the non-linear relationship between features into the final solution.

  3. Estimation rice yield based on integration remote sensing information and crop model

    Guo, Jianmao; Wang, Qi; Zheng, Tengfei; Li, Xujie; Shi, Junyi; Zhu, Jinhui

    2012-10-01

    Crop model is a powerful tool in crop growth monitoring and yield forecasting, however crop model is developed based on single point scale, due to regional differentiation、field variation and other reasons lead to input parameters and initial conditions which required by crop model simulation are hard to obtain, the application of crop model has been greatly limited in the regional scale, the introduction of remote sensing will solve this problem, remote sensing is combined with the crop model WOFOST, using the state variable retrieved by remote sensing to optimize crop model simulation, revaluing the sensitive parameters and initial conditions which needed in crop model on the region scale, in order to take the advantage of crop model in the area.This study is on the basis of adaptive adjustment and amendment of crop model WOFOST, build a winter wheat growth simulation model which is suitable for Yucheng, Shandong; Using the field experiment data calibration and validation the WOFOST model, discussed the method which combined crop simulation model and remote sensing under water stress level, using remote sensing calibrated some key processes of crop simulation or reinitialize、parameterize the crop simulation model in order to achieve the optimization model; Explored some reasonable and practical method of remote sensing information application in crop simulation at regional scale, with more research, make it possible to monitor regional crop growth and forecast the output.

  4. Recent Progresses in Atmospheric Remote Sensing Research in China-- Chinese National Report on Atmospheric Remote Sensing Research in China during 1999-2003

    邱金桓; 陈洪滨

    2004-01-01

    Progresses of atmospheric remote sensing research in China during 1999-2003 are summarily introduced.This research includes: (1) microwave remote sensing of the atmosphere; (2) Lidar remote sensing; (3)remote sensing of aerosol optical properties; and (4) other research related to atmospheric remote sensing,including GPS remote sensing of precipitable water vapor and radiation model development.

  5. Remote Sensing for Hazard Mitigation and Resource Protection in Pacific Latin America: New NSF sponsored initiative at Michigan Tech.

    Rose, W. I.; Bluth, G. J.; Gierke, J. S.; Gross, E.

    2005-12-01

    Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety and, eventually, economic development, they lack the resources required to advance the development and practice of remote sensing. Both developed and developing countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development, and this common commitment creates a solid foundation upon which to build an integrated education and research project. This will prepare students for careers in science and engineering through their efforts to solve a suite of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. This project makes two important advances: (1) We intend to develop the first formal linkage among geoscience agencies from four Pacific Latin American countries (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing tools for hazard mitigation and water resource development; (2) We will build a new educational system of applied research and engineering, using two existing educational programs at Michigan Tech: a new Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems This project will involve 1-2 post-doctoral researchers, 3 Ph.D., 9 PC/MI, and roughly 20 undergraduate students each year.

  6. Assessment of some remote sensing techniques used to detect land use/land cover changes in South-East Transilvania, Romania.

    Vorovencii, Iosif

    2014-05-01

    This paper assesses the image differencing technique for the Normalized Difference Vegetation Index (NDVI), the second principal component (PC2), and the TM 4 band (TM 4), as well as the post-classification comparison (PCC) in order to analyze the land use/land cover changes in the South-East Transilvania, Romania. The analysis was performed using two frames from Landsat 5 TM satellite images acquired on August 5, 1993 and July 24, 2009. After applying the NDVI, PC2, and TM 4 image differencing techniques, the images obtained were transformed into change/no change maps. The thresholds identified to highlight the changes were set at 0.6 s for NDVI and 0.7 s for PC2 and TM 4. Before applying the PCC technique, the satellite images were classified through the supervised classification method. The overall accuracy obtained was 85.91 % and the kappa statistics 0.8249 for 1993, 88.18 % and 0.8497 for 2009, respectively. The assessment of the changes detection methods in the studied area shows that the first place is occupied by NDVI image differencing with an overall accuracy of 83.80 %, followed by PCC method with 83.20 %, PC2 difference with an overall accuracy of 81.60 %, and TM 4 difference with an overall accuracy of 79.40 %. PMID:24323320

  7. Reconstructing landslide dynamics and characteristics using remote sensing data (photogrammetry, LiDAR and seismic data): comparison between different techniques and complementary data analysis

    Torné, Marta; Guinau, Marta; Tapia, Mar; Perez, Cristina; Jesús Royan, Manuel; Echeverria, Anna; Roig, Pere; Suriñach, Emma

    2015-04-01

    The purpose of this study is to characterize the rock planar landslide that occurred in the village of La Riba (Catalonia) on May 5th 2013, using different techniques such as photogrammetry, terrestrial LiDAR data, and seismic data. Advantages and disadvantages of these techniques were evaluated. Back-analysis and characterization of landslides allow us to better understand their behaviour. This information could be used to protect areas affected by similar hazards. Remote techniques are an excellent tool to obtain data and to reduce the exposure of technicians in unstable (or inaccessible) areas. After the May 5th natural landslide, a controlled blasting was carried out to stabilize the slope. Using this programmed blasting as a benchmark, two photogrammetric models and two terrestrial LiDAR data models corresponding to the pre and post blast were made to compute the rock volume involved in the blast. The blasting process was recorded with two HD video cameras and by two temporary seismic stations deployed close to the site. Both the seismic and video records enabled us to reconstruct the details of the blasted landslide. The volumes obtained from seismic data were compared with the total volumes computed by LiDAR and photogrammetry. Moreover, information about the natural landslide was obtained from the records of a permanent seismic station 10 km from the site. Data such as the estimated fallen volume, the landslide mechanism and time of occurrence are information that would otherwise not be obtained. Six discontinuity families were detected and characterized in the rock slope using the photogrammetric and LiDAR models with a software developed by the Institut de Recerca de Geomodels of the Universitat de Barcelona. Similar results were obtained from the two models, but the higher point density of the LiDAR data enabled us to detect more discontinuity surfaces and in greater detail. The volume involved in the blast was calculated using two methods: 1) the

  8. 3-D visualisation of palaeoseismic trench stratigraphy and trench logging using terrestrial remote sensing and GPR – combining techniques towards an objective multiparametric interpretation

    S. Schneiderwind

    2015-09-01

    Full Text Available Two normal faults on the Island of Crete and mainland Greece were studied to create and test an innovative workflow to make palaeoseismic trench logging more objective, and visualise the sedimentary architecture within the trench wall in 3-D. This is achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of iso cluster analysis of a true colour photomosaic representing the spectrum of visible light. Passive data collection disadvantages (e.g. illumination were addressed by complementing the dataset with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D-interpretation of GPR data collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. Sedimentary feature geometries related to earthquake magnitude can be used to improve the accuracy of seismic hazard assessments. Therefore, this manuscript combines multiparametric approaches and shows: (i how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GRP techniques, and (ii how a multispectral digital analysis can offer additional advantages and a higher objectivity in the interpretation of palaeoseismic and stratigraphic information. The multispectral datasets are stored allowing unbiased input for future (re-investigations.

  9. Remote Sensing of Shelf Sea Hydrodynamics

    Brown, Otis B.

    This volume, edited by Nihoul, is a collection of papers by participants in the 15th Liege Colloquium, held in 1983. Although the title is somewhat daunting, the premise is a good one, i.e., “What can one learn about the basic theory of shelf-sea hydrodynamics by using remote sensing?” As with any such collection, some papers hit the mark (e.g., T. Nishimura et al., S. Onishi, and J. Witling), others give focus to the work (e.g., J. Nihoul, R. Pingree), while other work seems but distantly related to the subject at hand (e.g., the contributions of J. Gower and of S. Lin et al.). In the following review, I will try to give the reader a flavor for the volume's 18 sections. The book can be split into four themes: introduction to remote sensing, use of remote sensing and models, use of remote sensing to study oceanic variability, and optical oceanography.

  10. Satellite Remote Sensing in Offshore Wind Energy

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul;

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  11. Remote sensing and today's forestry issues

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  12. Remote sensing of plant functional types.

    Ustin, Susan L; Gamon, John A

    2010-06-01

    Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations. PMID:20569415

  13. Use of remote sensing techniques and aeromagnetic data to study episodic oil seep discharges along the Gulf of Suez in Egypt

    Highlights: • Oil spills detection. • Image enhancement techniques. • Aeromagnetic data processing and interpretation. -- Abstract: Four successive oil discharges were observed during the last 2 years following the recording of the earthquake events. Oil slicks were clearly observed in the thermal band of the Enhanced Thematic Mapper images acquired during the discharge events. Lineaments were extracted from the ETM+ image data and SRTM (DEM). The seismic activity is conformable in time and spatially related to active major faults and structural lineaments. The concerned site was subjected to a numerous earthquakes with magnitudes ranging from 3 to 5.4 Mb. Aeromagnetic field data analyses indicated the existence of deep major faults crossing the Gebel El-Zeit and the Mellaha basins (oil reservoirs). The magnetic field survey showed major distinctive fault striking NE–SW at 7000 m depth. Occurrence of these faults at great depth enables the crude oil to migrate upward and appear at the surfaces as oil seeps onshore and as offshore slicks in the Gemsa–Hurghada coastal zone

  14. Soil erosion survey using remote sensing images

    Jakab, Gergely; Kertész, Ádám; Madarász, Balázs; Pálinkás, Melinda; Tóth, Adrienn

    2016-04-01

    Soil erosion is one of the most effective soil degradation processes reducing crop production on arable fields significantly. It also leads to serious environmental hazards such as eutrophication, mud and flesh floods. Beyond the processes there is an urgent need to survey and descript the current degree of erosion of arable lands in order to provide adequate land use techniques and mitigate the harmful effects. Surveying soil erosion is a very time consuming process since soil loss and deposition take place next to each other resulting a rather diverse erosion pattern even within a plot. Remote sensing is a possible way to determine the degree of soil erosion without special efforts taken in the field. The application of images can provide high resolution erosion maps of almost any type of arable fields. The method is based on the identification of the origin of the surface soil layer, i.e. whether it represents an originally deeper laying horizon (e.g. B horizon), or the parent material. A case study was carried out on a Cambisol formed on loess parent material. The soil and the parent rock have various reflectance spectra in the visible range, so this strip was used for the investigations. For map creation "training sites" were used in ArcMap environment. The obtained results suggest that the method is highly effective and useful, however, other properties like moisture content and plant cover can limit automated application. In this case new training sites are needed. The study was supported by the National Research, Development and Innovation Office (NKFIH),), project Nr. 108755 and the support is gratefully acknowledged here. G. Jakab was supported by the János Bolyai Fellowship.

  15. Passive microwave remote sensing of soil moisture

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  16. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield

    Sonbul, Abdullah R.; El-Shafei, Mohamed K.; Bishta, Adel Z.

    2016-05-01

    Modern earth resource satellites provide huge amounts of digital imagery at different resolutions. These satellite imageries are considered one of the most significant sources of data for mineral exploration. Image processing techniques were applied to the exposed rocks around the Al-Aqiq area of the Asir terrane in the southern part of the Arabian Shield. The area under study has two sub-parallel N-S trending metamorphic belts of green-schist facies. The first belt is located southeast of Al-Aqiq, where the Al-Hajar Gold Mine is situated. It is essentially composed of metavolcanics and metasedimentary rocks, and it is intruded by different plutonic rocks of primarily diorite, syenite and porphyritic granite. The second belt is located northwest of Al-Aqiq, and it is composed of metavolcanics and metasedimentary rocks and is intruded by granite bodies. The current study aimed to distinguish the lithological units, detect and map the alteration zones, and extract the major fault lineaments around the Al-Hajar gold prospect. Digital satellite imageries, including Landsat 7 ETM + multispectral and panchromatic and SPOT-5 were used in addition to field verification. Areas with similar spectral signatures to the prospect were identified in the nearby metamorphic belt; it was considered as a target area and was inspected in the field. The relationships between the alteration zones, the mineral deposits and the structural elements were used to locate the ore-bearing zones in the subsurface. The metasedimentary units of the target area showed a dextral-ductile shearing top-to-the-north and the presence of dominant mineralized quartz vein-system. The area to the north of the Al-Hajar prospect showed also sub-parallel shear zones along which different types of alterations were detected. Field-based criteria such as hydrothermal breccia, jasper, iron gossans and porphyritic granite strongly indicate the presence of porphyry-type ore deposits in Al-Hajar metamorphic belt that

  17. Accuracy assessment of water vapour measurements from in-situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    O. Bock

    2013-04-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute Provence. Two Raman lidars, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these datasets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. A drift in the IGN-LATMOS Raman lidar calibration of 15% over the 45 days of the experiment is evidenced but not yet explained. When this drift is removed, the precision of the calibration factors improves to 2–3%. However, the variations in the absolute calibration factor between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow-White measurements up to 12 km. An overall dry bias is found in the measurements from both MODEM radiosondes. Investigation of situations with low RH values (<10% in

  18. On Creating Global Gridded Terrestrial Water Budget Estimates from Satellite Remote Sensing

    Zhang, Yu; Pan, Ming; Wood, Eric F.

    2016-03-01

    The increasing availability and reliability of satellite remote sensing products [e.g., precipitation (P), evapotranspiration (ET), and the total water storage change (TWSC)] make it feasible to estimate the global terrestrial water budget at fine spatial resolution. In this study, we start from a reference water budget dataset that combines all available data sources, including satellite remote sensing, land surface model (LSM) and reanalysis, and investigate the roles of different non-satellite remote sensing products in closing the terrestrial water budget through a sensitivity analysis by removing/replacing one or more categories of products during the budget estimation. We also study the differences made by various satellite products for the same budget variable. We find that the gradual removal of non-satellite data sources will generally worsen the closure errors in the budget estimates, and remote sensing retrievals of P, ET, and TWSC together with runoff (R) from LSM give the worst closure errors. The gauge-corrected satellite precipitation helps to improve the budget closure (4.2-9 % non-closure errors of annual mean precipitation) against using the non-gauge-corrected precipitation (7.6-10.4 % non-closure errors). At last, a data assimilation technique, the constrained Kalman filter, is applied to enforce the water balance, and it is found that the satellite remote sensing products, though with worst closure, yield comparable budget estimates in the constrained system to the reference data. Overall, this study provides a first comparison between the water budget closure using the satellite remote sensing products and a full combination of remote sensing, LSM, and reanalysis products on a quasi-global basis. This study showcases the capability and potential of the satellite remote sensing in closing the terrestrial water budget at fine spatial resolution if properly constrained.

  19. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  20. A macroecological analysis of SERA derived forest heights and implications for forest volume remote sensing.

    Matthew Brolly

    Full Text Available Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to

  1. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  2. Mapping Water Use and Drought with Satellite Remote Sensing

    Anderson, Martha

    2014-01-01

    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  3. Lidar: A laser technique for remote sensing

    Wilkerson, T. D.; Hickman, G. D.

    1978-01-01

    Experimental airborne lidar systems proved to be useful for shallow water bathymetric measurements, and detection and identification of oil slicks and algae. Dye fluorescence applications using organic dyes was studied. The possibility of remotely inducing dye flourescence by means of pulsed lasers opens up several hydrospheric applications for measuring water currents, water temperature, and salinity. Aerosol measurements by lidar are also discussed.

  4. Innovative Remote Sensing techniques for vegetation monitoring

    This paper describes methods developed for using ASPIS (Advanced Spectroscopic Imaging System) to monitor biophysical parameters in studying the effects of climatic change, desertification and land degradation on semi-natural and agricultural vegetation in the Mediterranean region

  5. Water quality monitoring using remote sensing technique

    Adsavakulchai, Suwannee; Panichayapichet, Paweena

    2003-03-01

    There has been a rapid growth of shrimp farm around Kung Krabaen Bay in the past decade. This has caused enormous rise in generation of domestic and industrial wastes. Most of these wastes are disposed in the Kung Krabaen Bay. There is a serious need to retain this glory by better water quality management of this river. Conventional methods of monitoring of water quality have limitations in collecting information about water quality parameters for a large region in detailed manner due to high cost and time. Satellite based technologies have offered an alternate approach for many environmental monitoring needs. In this study, the high-resolution satellite data (LANDSAT TM) was utilized to develop mathematical models for monitoring of chlorophyll-a. Comparison between empirical relationship of spectral reflectance with chl-a and band ratio between the near infrared (NIR) and red was suggested to detect chlorophyll in water. This concept has been successfully employed for marine zones and big lakes but not for narrow rivers due to constraints of spatial resolution of satellite data. This information will be very useful in locating point and non-point sources of pollution and will help in designing and implementing controlling structures.

  6. 航空遥感惯性稳定平台非线性摩擦建模与补偿%Nonlinear Friction Modeling and Adaptive Compensation on an Inertially Stabilized Platform System for Aerial Remote Sensing Application

    刘炜; 周向阳

    2013-01-01

    为降低摩擦对航空遥感三轴惯性稳定平台高精度控制的影响,提出基于LuGre模型的惯性稳定平台反步积分自适应摩擦补偿方法.根据系统速度过零多值及位置“平顶”现象建立惯性稳定平台LuGre摩擦模型,利用两步辨识及动态参数优化方法得到系统摩擦模型参数,进而以李雅普诺夫稳定性理论为基础设计反步积分自适应摩擦补偿控制器.通过Matlab仿真分析摩擦对系统精度的影响,并与前馈补偿方法相比较,评价反步积分自适应补偿方法的有效性和鲁棒性.通过试验对某航空遥感惯性稳定平台方位系统进行摩擦模型及补偿方法验证.试验结果表明,反步积分自适应补偿能显著减小摩擦对系统的影响,使方位系统角位置误差波动范围、角位置跟踪方均根误差比未补偿前分别减少78.7%、91.5%,与仿真结果一致,对提高航空遥感三轴惯性稳定平台系统控制精度具有重要意义.%To decrease the influences of friction on control precision of a three-axis inertially stabilized platform (ISP) applied in the aerial remote sensing system,an adaptive backstepping control method based on the LuGre model is put forward.According to the characteristics of variable speed values over zero and flatheaded position,the LuGre model of a three-axis ISP is developed and parameters are identified through two-step and dynamic parameter optimization method.Then an adaptive backstepping controller is designed based on the theory of stability.The influences of friction on the precision of ISP's control system are analyzed by Matlab and compared with those of feedforward controller,the validity and robust of the controller are evaluated.Finally,to vaiidate the proposed model and compensation method,the experiments are carried out to the yaw-gimbal system of an ISP.The results show that the adaptive backstepping method can significantly reduce the influences of friction on control

  7. The application of hyperspectral remote sensing to coast environment investigation

    ZHANG Liang; ZHANG bing; CHEN Zhengchao; ZHENG Lanfen; TONG Qingxi

    2009-01-01

    Requirements for monitoring the coastal zone environment are first summarized. Then the application of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended.

  8. Kite Aerial Photography as a Tool for Remote Sensing

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  9. History and future of remote sensing technology and education

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  10. Remote sensing based on hyperspectral data analysis

    Sharifahmadian, Ershad

    In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized

  11. An experiment using mid and thermal infrared in quantum remote sensing

    BI; Siwen; HAN; Jixia

    2006-01-01

    The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.

  12. Advances in Remote Sensing of Flooding

    Yong Wang

    2015-11-01

    Full Text Available With the publication of eight original research articles, four types of advances in the remote sensing of floods are achieved. The uncertainty of modeled outputs using precipitation datasets derived from in situ observations and remote sensors is further understood. With the terrestrial laser scanner and airborne light detection and ranging (LiDAR coupled with high resolution optical and radar imagery, researchers improve accuracy levels in estimating the surface water height, extent, and flow of floods. The unmanned aircraft system (UAS can be the game changer in the acquisition and application of remote sensing data. The UAS may fly everywhere and every time when a flood event occurs. With the development of urban structure maps, the flood risk and possible damage is well assessed. The flood mitigation plans and response activities become effective and efficient using geographic information system (GIS-based urban flood vulnerability and risk maps.

  13. Remote sensing for disaster mitigation of Sinabung

    Tampubolon, T.; Yanti, J.

    2016-05-01

    Indonesia, a country with many active volcanoes, potentially occur natural disaster due to eruptions. One of volcanoes at Indonesia was Sinabung mountain, that located on Karo Regency, North Sumatera 3°10'12″ N 98°23'31" E, 2,460 masl. A fasile and new observation method for mapping the erupted areas was remote sensing. the remote sensing consisted of Landsat 8 OLI that was published on February 8th 2015 as input data ENVI 4.7 and ArcGIS 10 as mapping tools. The Land surface temperature (LST) was applied on mapping this resulted. The highest LST was 90.929657 °C. In addition, the LST distribution indicated that the flowing lava through south east. Therefore, the south east areas should be considered as mitigated areas.

  14. Remote sensing in Michigan for land resource management

    Sattinger, I. J.

    1972-01-01

    This project to demonstrate the application of earth resource survey technology to current problems in Michigan was undertaken jointly by the Environmental Research Institute of Michigan and Michigan State University. Remote sensing techniques were employed to advantage in providing management information for the Pointe Mouillee State Game Area and preparing an impact assessment in advance of the projected construction of the M-14 freeway from Ann Arbor to Plymouth, Michigan. The project also assisted the state government in its current effort to develop and implement a state-wide land management plan.

  15. Automated extraction of metadata from remotely sensed satellite imagery

    Cromp, Robert F.

    1991-01-01

    The paper discusses research in the Intelligent Data Management project at the NASA/Goddard Space Flight Center, with emphasis on recent improvements in low-level feature detection algorithms for performing real-time characterization of images. Images, including MSS and TM data, are characterized using neural networks and the interpretation of the neural network output by an expert system for subsequent archiving in an object-oriented data base. The data show the applicability of this approach to different arrangements of low-level remote sensing channels. The technique works well when the neural network is trained on data similar to the data used for testing.

  16. Near Remote Sensing for Tactical Earth Protection

    Salamí San Juan, Esther; Pastor Llorens, Enric; Barrado Muxí, Cristina

    2009-01-01

    In this paper we present how to use an Unmanned Aerial System in remote sensing. The system is specifically designed for forest fire management, as a support tool for the Fire Services to improve their tactical decisions. The system payload includes two cameras: a thermal camera and a visual camera. A simple image processing algorithm is applied to the thermal images in order to detect hot areas. In case of detecting a hot spot, it raises an event and notifies the geog...

  17. Spectral Active Clustering of Remote Sensing Images

    Wang, Zifeng; Xia, Gui-Song; Xiong, Caiming; Zhang, Liangpei

    2014-01-01

    Mining useful information from remote sensing images is a longstanding and challenging problem in earth observation, among which images clustering is used to discover meaningful scene information, by grouping similar image pixels into clusters. The main difficulty of image clustering, however, lies in the fact that imperfect similarity measure between images usually leads to bad clustering results. Supervised classification with labeled training samples can partially solve this problem, but t...

  18. Highlights: US Commercial Remote Sensing Industry Analysis

    Rabin, Ron

    2002-01-01

    This viewgraph presentation profiles the US remote sensing industry based on responses to a survey by 1450 industry professionals. The presentation divides the industry into three sectors: academic, commercial, and government; the survey results from each are covered in a section of the presentation. The presentation also divides survey results on user needs into the following sectors: spatial resolution, geolocation accuracy; elevation accuracy, area coverage, imagery types, and timeliness. Data, information, and software characteristics are also covered in the presentation.

  19. Leveraging Remote Sensing for Conservation Decision Making

    LEIDNER Allison; SZANTOI ZOLTAN; Brink, Andreas

    2013-01-01

    From September 30 till October 02, 2013 about 30 scientists, decision makers and environmental non-governmental organizations participated in the JRC’s Workshop on Remote Sensing for Conservation in Ispra, Italy. The workshop was organized by the JRC, and promoted under the Committee on Earth Observation Satellites’ (CEOS) Biodiversity Group. Scope of the workshop was to discuss “real-world” application of RS data to conservation policy with a particular focus on developing countries. The par...

  20. Remote sensing of bubble clouds in seawater

    Flatau, Piotr J.; Flatau, Maria; Zaneveld, J. R. V.; Mobley, Curtis D.

    2000-01-01

    We report on the influence of submerged bubble clouds on the remote sensing properties of water. We show that the optical effect of bubbles on radiative transfer and on the estimate of the ocean color is significant. We present a global map of the volume fraction of air in water derived from daily wind speed data. This map, together with the parameterization of the microphysical properties, shows the possible significance of bubble clouds on the albedo of incoming solar energy

  1. Remote sensing of water vapor features

    Fuelberg, Henry E.

    1991-01-01

    The three major objectives of the project are outlined: (1) to describe atmospheric water vapor features as functions of space and time; (2) to evaluate remotely sensed measurements of water vapor content; and (3) to study relations between fine-scale water vapor fields and convective activity. Data from several remote sensors were used. The studies used the GOES/VAS, HIS, and MAMS instruments have provided a progressively finer scale view of water vapor features.

  2. Benchmarking of Remote Sensing Segmentation Methods

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248. ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 3.026, year: 2014 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  3. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    Im, Jungho; Jensen, John R.; Coleman, Mark; Nelson, Eric

    2009-08-01

    Abstract - Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized difference vegetation index based simple linear regression (NSLR), (2) partial least squares regression (PLSR) and (3) machine-learning regression trees (MLRT) to predict the biophysical and biochemical characteristics of the crops (leaf area index, stem biomass and five leaf nutrients concentrations). The calibration and cross-validation results were compared between the three techniques. The PLSR approach generally resulted in good predictive performance. The MLRT approach appeared to be a useful method to predict characteristics in a complex environment (i.e. many tree species and numerous fertilization and/or irrigation treatments) due to its powerful adaptability.

  4. Multi-source remote sensing image fusion classification based on DS evidence theory

    Liu, Chunping; Ma, Xiaohu; Cui, Zhiming

    2007-11-01

    A new adaptive remote sensing image fusion classification based on the Dempster-Shafer theory of evidence is presented. This method uses a limited number of prototypes as items of evidence, which is automatically generated by modified Fuzzy Kohonen Clustering Network (FKCN). The class fuzzy membership of each prototype is also determined using reference pattern set. For each input vector a basic probability assignment (BPA) function are computed based on these distances and on the degree of membership of prototypes to each class. And lastly this evidence is combined using Dempster's rule. This proposed method can be implemented in a modified FKCN with specific architecture consisting of one input layer, a prototype layer, a BPA layer, a combination and output layer, and decision layer. The experimental results show that the excellent performance of classification as compared to existing FKCN and basic DS fusion techniques.

  5. Estimating Riparian ET through Remote Sensing

    Samani, Z.; Bawazir, S.; Bleiweiss, M.; Skaggs, R.; Schmugge, T.

    2005-12-01

    Riparian evapotranspiration (ET) along the Rio Grande River has become a major hydrological as well as political issue in New Mexico. The State of New Mexico has spent millions of dollars in recent years to eradicate riparian vegetation without being able to quantify the change in regional ET. Many studies have focused on measuring evapotranspiration of individual riparian vegetation types, mainly saltcedar and native cottonwood. However, the riparian vegetation on the Middle Rio Grande varies in density and species.. Spatial variation in climate, soil type and depth to groundwater causes variation in ET, as well. It is obvious that in order to obtain more accuracy in measurements, multiple sampling points are needed; thus, making the process costly and impractical An alternative solution, which is also cost-effective, is measuring ET by using remote sensing technology. Remote sensing combines regional satellite data with localized ET measurement to calculate regional ET. REEM (Regional ET Estimation Model) is a process that uses the energy balance at the top of the canopy to estimate ET. REEM has been using ASTER images for values of surface temperature, albedo and NDVI to calculate net radiation (Rn), ground heat flux (G) and sensible heat flux (H). The ET is then calculated as residual of the energy components. The REEM model is being used to calculate regional ET values for the Riparian vegetation of the Middle Rio Grande. The paper compares the ET values for various vegetation types using remote sensing and ET derived from Eddy Covariance Flux Towers.

  6. GPS Remote Sensing Measurements Using Aerosonde UAV

    Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.

    2005-01-01

    In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.

  7. Modeling of pulsed lasers for remote sensing

    Walsh, Brian M.; Barnes, Norman P.; Petros, Mulugeta; Yu, Jirong; Singh, Upendra N.

    2005-01-01

    Pulsed lasers are useful for remote sensing of wind and greenhouse gases to better understand the atmosphere and its impact on weather patterns and the environment. It is not always practical to develop and optimize new laser systems empirically due to the time and expense associated with such endeavors. A practical option is to use a laser model to predict various performance parameters and compare these with the needs required for a particular remote sensing application. This approach can be very useful in determining the efficacy of potential laser systems, saving both time and money before proceeding with the actual construction of a laser device. As a pedagogical example, the modeling of diode pumped Tm:Ho:YLF and Tm:Ho:LuLF lasers are examined. Tm:Ho lasers operating around 2.0 μm have been used for wind measurements such as clear air turbulence and wake vortices. The model predictions for the laser systems examined here are compared to the actual laser performance, validating the usefulness of the modeling approach. While Tm:Ho fluoride lasers are used as a pedagogical example, the model is applicable to any lanthanide series pulsed laser system. This provides a useful tool for investigating potential laser systems that meet the requirements desired for a variety of remote sensing applications.

  8. Remote sensing methods for power line corridor surveys

    Matikainen, Leena; Lehtomäki, Matti; Ahokas, Eero; Hyyppä, Juha; Karjalainen, Mika; Jaakkola, Anttoni; Kukko, Antero; Heinonen, Tero

    2016-09-01

    To secure uninterrupted distribution of electricity, effective monitoring and maintenance of power lines are needed. This literature review article aims to give a wide overview of the possibilities provided by modern remote sensing sensors in power line corridor surveys and to discuss the potential and limitations of different approaches. Monitoring of both power line components and vegetation around them is included. Remotely sensed data sources discussed in the review include synthetic aperture radar (SAR) images, optical satellite and aerial images, thermal images, airborne laser scanner (ALS) data, land-based mobile mapping data, and unmanned aerial vehicle (UAV) data. The review shows that most previous studies have concentrated on the mapping and analysis of network components. In particular, automated extraction of power line conductors has achieved much attention, and promising results have been reported. For example, accuracy levels above 90% have been presented for the extraction of conductors from ALS data or aerial images. However, in many studies datasets have been small and numerical quality analyses have been omitted. Mapping of vegetation near power lines has been a less common research topic than mapping of the components, but several studies have also been carried out in this field, especially using optical aerial and satellite images. Based on the review we conclude that in future research more attention should be given to an integrated use of various data sources to benefit from the various techniques in an optimal way. Knowledge in related fields, such as vegetation monitoring from ALS, SAR and optical image data should be better exploited to develop useful monitoring approaches. Special attention should be given to rapidly developing remote sensing techniques such as UAVs and laser scanning from airborne and land-based platforms. To demonstrate and verify the capabilities of automated monitoring approaches, large tests in various environments

  9. Hydrologic Remote Sensing and Land Surface Data Assimilation

    Hamid Moradkhani

    2008-05-01

    Full Text Available Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface–atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF and Particle filter (PF, for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law and could be a strong alternative to EnKF which is subject to some

  10. Remote Sensing, Modeling, and In-Situ Measurements to Study the Spring and Summer Thermal Regime of the Kuparuk River, Northern Alaska

    Floyd, A.; Liljedahl, A. K.; Gens, R.; Prakash, A.; Mann, D. H.

    2011-12-01

    A combined use of remote sensing techniques, modeling and in-situ measurements is a pragmatic approach to study arctic hydrology, given the vastness, complexity, and logistical challenges posed by most arctic watersheds. Remote sensing techniques can provide tools to assess the geospatial variations that form the integrated response of a river system and therefore provide important details to study climate change effects on the remote arctic environment. The proposed study tests the applicability of remote sensing and modeling techniques to map, monitor and compare river temperatures and river break-up in the coastal and foothill sections of the Kuparak River, which is an intensely studied watershed. We co-registered about hundred synthetic aperture radar (SAR) images from RADARSAT-1, ERS-1 and ERS-2 satellites, acquired during the months of May through July for a period between 1999 and 2010. Co-registration involved a Fast Fourier Transform (FFT) match of amplitude images. The offsets were then applied to the radiometrically corrected SAR images, converted to dB values, to generate an image stack. We applied a mask to extract pixels representing only the river, and used an adaptive threshold to delineate open water from frozen areas. The variation in river break-up can be bracketed by defining open vs. frozen river conditions. Summer river surface water temperatures will be simulated through the well-established HEC-RAS hydrologic software package and validated with field measurements. The three-pronged approach of using remote sensing, modeling and field measurements demonstrated in this study can be adapted to work for other watersheds across the Arctic.

  11. Water Quality Assessment using Satellite Remote Sensing

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  12. Remote Sensing Tertiary Education Meets High Intensity Interval Training

    Joyce, K. E.; White, B.

    2015-04-01

    Enduring a traditional lecture is the tertiary education equivalent of a long, slow, jog. There are certainly some educational benefits if the student is able to maintain concentration, but they are just as likely to get caught napping and fall off the back end of the treadmill. Alternatively, a pre-choreographed interactive workshop style class requires students to continually engage with the materials. Appropriately timed breaks or intervals allow students to recover briefly before being increasingly challenged throughout the class. Using an introductory remote sensing class at Charles Darwin University, this case study presents a transition from the traditional stand and deliver style lecture to an active student-led learning experience. The class is taught at undergraduate and postgraduate levels, with both on-campus as well as online distance learning students. Based on the concept that active engagement in learning materials promotes 'stickiness' of subject matter, the remote sensing class was re-designed to encourage an active style of learning. Critically, class content was reviewed to identify the key learning outcomes for the students. This resulted in a necessary sacrifice of topic range for depth of understanding. Graduates of the class reported high levels of enthusiasm for the materials, and the style in which the class was taught. This paper details a number of techniques that were used to engage students in active and problem based learning throughout the semester. It suggests a number of freely available tools that academics in remote sensing and related fields can readily incorporate into their teaching portfolios. Moreover, it shows how simple it can be to provide a far more enjoyable and effective learning experience for students than the one dimensional lecture.

  13. Satellite Remote Sensing Detection of Wastewater Plumes in Southern California

    Trinh, R. C.; Holt, B.; Pan, B. J.; Rains, C.; Gierach, M. M.

    2014-12-01

    Wastewater discharged through ocean outfalls can surface near coastlines and beaches, posing a threat to the marine environment and human health. Coastal waters of the Southern California Bight (SCB) are an ecologically important marine habitat and a valuable resource in terms of commercial fishing and recreation. Two of the largest wastewater treatment plants along the U.S. West Coast discharge into the SCB, including the Hyperion Wastewater Treatment Plant (HWTP) and the Orange County Sanitation District (OCSD). In 2006, HWTP conducted an internal inspection of its primary 8 km outfall pipe (60 m depth), diverting treated effluent to a shorter 1.2 km pipe (18 m depth) from Nov. 28 to Nov. 30. From Sep. 11 - Oct. 4, 2012, OCSD conducted a similar diversion, diverting effluent from their 7 km outfall pipe to a shallower 2.2 km pipe, both with similar depths to HWTP. Prevailing oceanographic conditions in the SCB, such as temporally reduced stratification and surface circulation patterns, increased the risk of effluent being discharged from these shorter and shallower pipes surfacing and moving onshore. The aim of this study was to evaluate the capabilities of satellite remote sensing data (i.e., sea surface roughness from SAR, sea surface temperature from MODIS-Aqua and ASTER-Terra, chlorophyll-a and water leaving radiance from MODIS-Aqua) in the identification and tracking of wastewater plumes during the 2006 HWTP and 2012 OCSD diversion events. Satellite observations were combined with in situ, wind, and current data taken during the diversion events, to validate remote sensing techniques and gain surface to subsurface context of the nearshore diversion events. Overall, it was found that satellite remote sensing data were able to detect surfaced wastewater plumes along the coast, providing key spatial information that could inform in situ field sampling during future diversion events, such as the planned 2015 HWTP diversion, and thereby constrain costs.

  14. Ecological environment condition evaluation mode of county region based on remote sensing techniques.%基于遥感技术的县级区域环境质量评价模型研究

    刘瑞; 王世新; 周艺; 姚尧; 韩向娣

    2012-01-01

    建立了一种完全基于遥感数据的县级区域生态环境状况评价模型,该模型利用支持向量机的方法对广西钦州市钦南区HJ-1星CCD数据进行分类,提取土地利用类型,同时建立了生物丰度指数、植被覆盖度指数、水资源密度指数、土壤侵蚀指数和人类活动指数5种评价指标,对这些指数加权求和得到区域生态环境状况指数,定量化评价实验区域生态环境质量.评价结果表明,该区域整体生态环境质量良好,生态环境状况为良的区域占总面积的64.105%,主要集中在钦南区的林地区域,生态环境状况为一般的区域占31.206%,主要分布在水资源丰富的区域,而生态环境状况为差的区域则占3.668%,主要集中在人类活动频繁的城区.%A new ecological environment condition evaluation model ot county region based on remote sensing techniques only was proposed. In this model, the classification method based on support vector machines with an HJ-1 CCD image of Qinnan district, Guangxi province was used for extraction of land use data. Indices of biodiversity, vegetation coverage, water density, soil erosion and human activities were extracted and the weighted sums of them were composed of regional ecological index which was used to evaluate the regional eco-environmental quality. Overall ecological environment was relatively good. Area in good land accounted for 64.105% of Qinnan district ,which mainly distributed in forest area; 31.206% of the whole district belonged to moderate grade which distributed in areas with rich water resources; poor land accounted for 3.668% which distributed in building areas.

  15. Remote sensing new model for monitoring the east Asian migratory locust infections based on its breeding circle

    Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai

    2006-12-01

    Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.

  16. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  17. A ground systems template for remote sensing systems

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS

  18. On the feasibility of benefit-cost analysis applied to remote sensing projects. [California water resources

    Merewitz, L.

    1973-01-01

    The following step-wise procedure for making a benefit-cost analysis of using remote sensing techniques could be used either in the limited context of California water resources, or a context as broad as the making of integrated resource surveys of the entire earth resource complex on a statewide, regional, national, or global basis. (1) Survey all data collection efforts which can be accomplished by remote sensing techniques. (2) Carefully inspect the State of California budget and the Budget of the United States Government to find annual cost of data collection efforts. (3) Decide the extent to which remote sensing can obviate each of the collection efforts. (4) Sum the annual costs of all data collection which can be equivalently accomplished through remote sensing. (5) Decide what additional data could and would be collected through remote sensing. (6) Estimate the value of this information. It is not harmful to do a benefit-cost analysis so long as its severe limitations are recalled and it is supplemented with socio-economic impact studies.

  19. Remote sensing applied to crop disease control, urban planning, and monitoring aquatic plants, oil spills, rangelands, and soil moisture

    1975-01-01

    The application of remote sensing techniques to land management, urban planning, agriculture, oceanography, and environmental monitoring is discussed. The results of various projects are presented along with cost effective considerations.

  20. Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers

    Nowakowski, Artur

    2015-10-01

    Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics. The proposed method is employed for the exemplary problem of artificial area identification. Classification of IKONOS multispectral data results in short computational time and overall accuracy of 94.4% comparing to 94.0% obtained by using AdaBoost.M1 with trees and 93.8% achieved using Random Forest. The influence of a manipulation of the final threshold of the strong classifier on classification results is reported.

  1. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  2. Adaptive cancellation techniques

    1983-11-01

    An adaptive signal canceller has been evaluated for the enhancement of pulse signal reception during the transmission of a high power ECM jamming signal. The canceller design is based on the use of DRFM(Digital RF Memory) technology as part of an adaptive multiple tapped delay line. The study includes analysis of relationship of tap spacing and waveform bandwidth, survey of related documents in areas of sidelobe cancellers, transversal equalizers, and adaptive filters, and derivation of control equations and corresponding control processes. The simulation of overall processes included geometric analysis of the multibeam transmitting antenna, multiple reflection sources and the receiving antenna; waveforms, tap spacings and bandwidths; and alternate control algorithms. Conclusions are provided regarding practical system control algorithms, design characteristics and limitations.

  3. A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective

    Shafique, Muhammad; van der Meijde, Mark; Khan, M. Asif

    2016-03-01

    The 8th October 2005 Kashmir earthquake, in northern Pakistan has triggered thousands of landslides, which was the second major factor in the destruction of the build-up environment, after earthquake-induced ground shaking. Subsequent to the earthquake, several researchers from home and abroad applied a variety of remote sensing techniques, supported with field observations, to develop inventories of the earthquake-triggered landslides, analyzed their spatial distribution and subsequently developed landslide-susceptibility maps. Earthquake causative fault rupture, geology, anthropogenic activities and remote sensing derived topographic attributes were observed to have major influence on the spatial distribution of landslides. These were subsequently used to develop a landslide susceptibility map, thereby demarcating the areas prone to landsliding. Temporal studies monitoring the earthquake-induced landslides shows that the earthquake-induced landslides are stabilized, contrary to earlier belief, directly after the earthquake. The biggest landslide induced dam, as a result of the massive Hattian Bala landslide, is still posing a threat to the surrounding communities. It is observed that remote sensing data is effectively and efficiently used to assess the landslides triggered by the Kashmir earthquake, however, there is still a need of more research to understand the mechanism of intensity and distribution of landslides; and their continuous monitoring using remote sensing data at a regional scale. This paper, provides an overview of remote sensing and GIS applications, for the Kashmir-earthquake triggered landslides, derived outputs and discusses the lessons learnt, advantages, limitations and recommendations for future research.

  4. Analysis and Modeling of Agricultural Land use using Remote Sensing and Geographic Information System: a Review

    Amol D. Vibhute, Dr. Bharti W. Gawali

    2013-05-01

    Full Text Available GIS, remote sensing and Global positioning System are the most widely useful tools for land use planning and decision support system. Remotely sensed imagery is beneficial for agricultural production. It gives the accurate information of agricultural activities such as different crop identification and classification, crop condition monitoring, crop growth, crop area and yield estimation, mapping of soil characteristics and precision farming. Information from remotely sensed imagery, geographic information system and global positioning system allows farmers to carry only affected areas of a field. Problems within the field may be identified before they create a big problem in the agricultural production using remotely sensed images. This paper attempts to review different techniques for various applications of GIS and Remote sensing for land use/land cover change detection, crop identification and classification, crop condition monitoring, crop growth, crop area and yield estimation, mapping of soil characteristics and precision farming. Thus implementating GIS and RS for better production of the crops as well as land use/land cover change detection can be achieved.

  5. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  6. Prediction of reef fish spawning aggregations using remote sensing: A review

    Spawning aggregation is a very important occurrence to particular reef fish species as they use this opportunity to reproduce. However, due to their predictable nature, these aggregations have always been vulnerable to overexploitation. This problem leads to the importance of identifying the exact time and location for reef fish spawning aggregation. Thus, this paper review a little bit about spawning aggregation of reef fish as well as their characteristics, and problems regarding this phenomena. The use of remote sensing in marine applications is also described here in order to discuss how remote sensing can be utilize to predict reef fish spawning aggregation. Based on the unique geomorphological characteristics of the spawning aggregation, remote sensing seems to be a powerful tool to determine their exact times and locations. It has been proved that satellite imagery was able to delineate specific reef geomorphologies such as shelf edges and reef promontories. Despite of the widely use of remote sensing in marine applications, in fact there are still lack of studies had been carried out regarding spawning aggregations of reef fish due to the skeptical point-of-view by certain researchers over the capability of this technique. However, there is actually no doubt that the use of remote sensing will provide a better hand to the authorities in order to establish a more effective monitoring and conservation plan for these spawning aggregations

  7. Earth Science Remote Sensing Technology Overview

    Buckner, J. L.

    2006-12-01

    From instruments to data access, the NASA Earth Science Technology Office (ESTO) develops technologies that enable a full range of scientific measurements, operational requirements, and practical applications that benefit society at large. The Advanced Sensors Group leads developments in remote sensing technologies through the Advanced Component Technologies and Instrument Incubator Programs. The Advanced Information Systems Group pursues sensor webs, computing, automation, interoperability, networking, communication protocols, and other technologies to enhance the production, collection, handling, transmission, analysis, and comprehension of data. This presentation will provide a brief overview of the ESTO and serve as a "kick-off " session for the Frontiers in Advanced Information Systems and Earth System Observation Technology session.

  8. Remote sensing and actuation using unmanned vehicles

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  9. Spatial reasoning in remotely sensed data

    Campbell, J.; Ehrich, R. W.; Elliott, D.; Haralick, R. M.; Wang, S.

    1981-01-01

    Photointerpreters employ a variety of implicit spatial models to provide interpretations from remotely sensed aerial or satellite imagery. In this paper one application is illustrated: how ridges and valleys can be automatically interpreted from Landsat imagery of a mountainous area, and how a relative elevation terrain model can be constructed from this interpretation. How to examine valleys for the possible presence of streams or rivers is shown, and how a spatial relational model can be set up to make a final interpretation of the river drainage network is explored.

  10. Estimating reforestation by means of remote sensing

    Dejesusparada, N. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1981-01-01

    LANDSAT imagery at the scale of 1:250.000 and obtained from bands 5 and 7 as well as computer compatible tapes were used to evaluate the effectiveness of remotely sensed orbital data in inventorying forests in a 462,100 area of Brazil emcompassing the cities of Ribeirao, Altinopolis Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Santa Rita do Passa Quatro, and Santa Rosa do Viterbo. Visual interpretation of LANDSAT imagery shows that 37,766 hectares (1977) and 38,003.75 hectares (1979) were reforested areas of pine and eucalyptus species. An increment of 237.5 hectares was found during this two-year time lapse.

  11. Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing

    Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.

    1994-01-01

    It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.

  12. Some Insights on Grassland Health Assessment Based on Remote Sensing

    Dandan Xu

    2015-01-01

    Full Text Available Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  13. Some insights on grassland health assessment based on remote sensing.

    Xu, Dandan; Guo, Xulin

    2015-01-01

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment. PMID:25643060

  14. FRACTAL DIMENSION OF URBAN EXPANSION BASED ON REMOTE SENSING IMAGES

    IACOB I. CIPRIAN

    2012-11-01

    Full Text Available Fractal Dimension of Urban Expansion Based on Remote Sensing Images: In Cluj-Napoca city the process of urbanization has been accelerated during the years and implication of local authorities reflects a relevant planning policy. A good urban planning framework should take into account the society demands and also it should satisfy the natural conditions of local environment. The expansion of antropic areas it can be approached by implication of 5D variables (time as a sequence of stages, space: with x, y, z and magnitude of phenomena into the process, which will allow us to analyse and extract the roughness of city shape. Thus, to improve the decision factor we take a different approach in this paper, looking at geometry and scale composition. Using the remote sensing (RS and GIS techniques we manage to extract a sequence of built-up areas (from 1980 to 2012 and used the result as an input for modelling the spatialtemporal changes of urban expansion and fractal theory to analysed the geometric features. Taking the time as a parameter we can observe behaviour and changes in urban landscape, this condition have been known as self-organized – a condition which in first stage the system was without any turbulence (before the antropic factor and during the time tend to approach chaotic behaviour (entropy state without causing an disequilibrium in the main system.

  15. Use of Remote Sensing Products for the SERVIR Project

    Policelli, Frederick S.

    2010-01-01

    The United Nations University (UNU) estimates that floods presently impacts greater than 520 million people per year worldwide, resulting in up to 25,000 annual deaths, extensive homelessness, disaster-induced disease, crop and livestock damage, famine, and other serious harm. Meanwhile, aid agencies such as the International Federation of Red Cross and Red Crescent Societies (IFRC) are increasingly seeking better information concerning flood hazards in order to plan for and help mitigate the effects of damaging floods. There is fertile ground to continue development of better remote sensing and modeling techniques to help manage flood related disasters. Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid flood mapping and distribution, and e) validation of flood forecasting and detection products.

  16. Remote sensing programs and courses in engineering and water resources

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  17. Proceedings of the eighth thematic conference on geologic remote sensing

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  18. Remote sensing retrieval of water constituents in shallow coastal waters with applications to the Venice lagoon

    Zhou, X.; Marani, M.; Albertson, J. D.; Silvestri, S.

    2013-12-01

    Lagoons and estuaries worldwide are experiencing accelerated ecosystem degradation due to increased direct and indirect anthropogenic pressure. Monitoring the environmental state and trends in such environment would benefit from the use of remote sensing techniques, which can access a wide range of spatial and temporal scales. However, most remote sensors are not suitable for monitoring shallow and optically-complex waters, because of their low spatial and spectral-resolution and of the uncertainties associated with the contribution of the bottom sediment to the observed remote sensing signal. We apply here a remote sensing-based approach to mapping suspended sediment and chlorophyll concentrations in the shallow Venice lagoon, which integrates hyperspectral remote sensing data, a simplified radiative transfer model, and in-situ water quality measurements. First, we calibrate and validate the key parameters of the model, such as bottom albedo and absorption/backscattering coefficients of sediment, by comparing remote sensing derived water constituent concentrations with in-situ data. We then determine the statistics of those parameters, and the associated estimation uncertainty, by applying a bootstrapping technique. Finally, the lagoon-wide distribution of water constituent concentrations, and of the estimation uncertainty, is derived by inverting the model. The estimates are consistent with measured concentrations and their known optical properties, particularly for the suspended sediment concentrations, while chlorophyll concentration estimates remain more uncertain. Our analyses show that remote sensing methods can provide reliable water constituent concentrations at the system scale and that uncertainties become overwhelming only in particularly shallow areas (water depths indicatively lower than 1 m in the present application). Importantly, the joint use of radiative transfer models, in situ observations, and statistical techniques allows the production of

  19. Basic research in the field of thermal infrared remote sensing

    2000-01-01

    This overview paper points out that one of the problems impeding further development of remote sensing is that not much attention has been paid to basic research.Key contents of basic research in remote sensing,including modeling,inversion,scaling and scientific experiments,are reviewed.Significance of basic research is demonstrated through summarizing the intentions and progress of the project "Quantitative Remote Sensing Research on Land Surface Energy Exchange".

  20. Basic research in the field of thermal infrared remote sensing

    徐冠华

    2000-01-01

    This overview paper points out that one of the problems impeding further development of remote sensing is that not much attention has been paid to basic research. Key contents of basic research in remote sensing, including modeling, inversion, scaling and scientific experiments, are reviewed. Significance of basic research is demonstrated through summarizing the intentions and progress of the project "Quantitative Remote Sensing Research on Land Surface Energy Exchange".